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Outline

CERFACS has a long-established record of excellence in environmental
and industrial Computational Fluid Dynamics for complex flow
simulation on high-resolution grid enhanced by continuous
developments in numerical models and in High Performance Computing.

Data Assimilation of satellite data for ocean, atmospheric chemistry
or hydraulics modeling is also one of its strong expertise domains.

Uncertainty Quantification has become a developing field based on
ensemble approaches and model-reduction objectives.

Based on these expertise domains, a new challenge for CERFACS is to
develop a Data Driven Modeling axis combining Data Science,
Uncertainty Quantification and Data Assimilation.
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CERFACS expertise

CERFACS has a long-established record of excellence in environmental
and industrial Computational Fluid Dynamics for complex flow
simulation on high-resolution grid enhanced by continuous
developments in numerical models and in High Performance Computing.

Data Assimilation of satellite data for ocean, atmospheric chemistry
or hydraulics modeling is also one of its strong expertise domains.

Uncertainty Quantification has become a developing field based on
ensemble approaches and model-reduction objectives.

Based on these expertise domains, a new challenge for CERFACS is to
develop a Data Driven Modeling axis combining Data Science,
Uncertainty Quantification and Data Assimilation.
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CERFACS: European Centre of Research and
Advanced Training in Scientific Computing

- Scientific and technical researches in order
to improve advanced computing methods

- Transfer of scientific knowledge and
technical methods for industrial applications
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High Performance Computing for aerodynamics
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High Performance Computing for combustion
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CERFACS Strategic Research Plan

Climate variability and Methane-Lox
predictability; from ocean to engine
continental impacts simulation
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High Performance Computing for climate
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Coupled climate model

Atmosphere
ARPEGE-Climat
50 km x 71 levels

Sea ice
GELATO

==

Rivers
routing

TRIP
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Arctic sea ice modelling

2018-2023

z_ CERFACS The stakes and prospects of Data Driven Modelling at CERFACS CERFACS
0. Thual, 2017 conference on big data from space SRS




Impact of Artic sea ice changes on the climate system

Sea Ice Extent, 07 Oct 2017
Arctic Sea Ice Extent Anomalies

September u

€
1_.‘1
eniinalile L k. .

mi

I I I I I I [
1984 1989 1994 1999 2004 2009 2014

Arctic sea-ice is declining and projected to
dramatically decrease in summer by mid-to-late
215t century in response to greenhouse gases.
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 Impact on the climate system?
From NSIDC satellite data (NASA)
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Ocean variability: data and model

AVISO
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Oceanic intrinsic variability with ensemble runs

Year 1993, Month 1, Day 3 Year 1993, Month 1, Day 3

Root mean square of the sea surface
temperature for an ensemble simulation
with 50 members during 50 years

PRACE
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Air-sea coupling at fine scale over SST fronts

High resolution satellite data has
allowed to characterise the mesoscale
air-sea coupling over the Sea Surface
Temperature (SST) frontal regions.

(d How this coupling is represented in
high resolution climate models?
\ [ Impact on simulated climate?

AMSE-R SST (colors)
and QuickSCAT surface
winds (contours)

L) L] L) Ll L]

-9.0-6.0-3.0 0.0 3.0 6.0 9.0

80W 60W 40W

e R
0 T ssT(ec) SST (°C)

E CERFACS The stakes and prospects of Data Driven Modelling at CERFACS CERFACS 15
0. Thual, 2017 conference on big data from space DAL



Data Assimilation

CERFACS has a long-established record of excellence in environmental
and industrial Computational Fluid Dynamics for complex flow
simulation on high-resolution grid enhanced by continuous
developments in numerical models and in High Performance Computing.

Data Assimilation of satellite data for ocean, atmospheric chemistry
or hydraulics modeling is also one of its strong expertise domains.

Uncertainty Quantification has become a developing field based on
ensemble approaches and model-reduction objectives.

Based on these expertise domains, a new challenge for CERFACS is to
develop a Data Driven Modeling axis combining Data Science,
Uncertainty Quantification and Data Assimilation.
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Principles of data assimilation

$ Physical quantity O gjb : background

a. analysis

K
.\/ * yO : observations

*

>

The analysis minimizes the cost function: Time

2J(z) = llz — 2’5+ + ly* — G(@)l|%-
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Gaussian data assimilation

X O Qb : background ] za : analysis

@ (; : observation f B
operator J(@a) — Min J(@)
e yO . observations | y

Informations are weighted with respect to their uncertainties

2J(z) = (z—zb)TB_l (z —2”) +

B v’ — G(z)]' R [y° — G(a)]
O O ) ¢

B . background error R . observation error
— covariance matrix — covariance matrix
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The 4D-Var chain with model error

@ : background |
@ : analysis ° o _ e o
@ : observations © e o o

b '
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1 : corrections of model errors

J( a,ga) — Min J(g,g)
i |

QR

2J(z,q) = II£—%”||2§—1 +> |
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Background error covariance matrix B

liss

Correlation functions around specific points
Modelling of the B operator with a anisotropic diffusion equation
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Modelling the observation error covariance matrix R

I SEVIRI raw data

Unitary response to correlation filter
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Modelling spatial observation error correlations

SEVIRI raw data Mesh for R
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Data assimilation for oceanography

|

Control space: gragoisw
* Temperature, salinity and currents (3D)

* Sea Surface Height (2D)
* 0O(10’) grid points

y Observation space:
. e Satellite and in situ data

* 0(10°) measurements
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Data assimilation for atmospheric chemistry

Control space:

* 03, NO, and other species fields (3D)
 Atmospheric fields (3D)

* 0O(10’) grid points

|

Observation space:

y e Satellite data
— * |Insitu-data

* 0(10°) measurments

\ :
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Scales and use of Earth Observation (EO)
for atmospheric data assimilation at CERFACS
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A hierarchy of models of increasing spatial resolution
Copernicus air-quality services
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Global assimilation of IASI (MetOp)
and MLS (Aura) Level 2 Ozone products

IASI L2 Tropospheric Ozone
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Assimilation of OMI (Aura) NO, columns over Europe

DOMINO (KNMI) NO, TROP. COLUMN ANALYSIS minus FREE RUN surface NO, (ppbv)

DOMINO-CONTROL
Avg: -0.2
Max: 1.4

NO, short life-time, OMI passes once per day, clouds.
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Data assimilation for forest fires

Control space:

* Velocity fields (3D),
* Flamme front (1D)

* Model parameters
* 0(10°) grid points

Observation space:
— e Satellite images
* Temperatures
* 0(10% measurements

Meteorology Topography Vegetation
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Mid-InfraRed (MIR) imagery

Z CERFACS & RiARYIAND Data 30

Assimilation




Data assimilation of images
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Front shape similarity measure

How to properly address shape and position errors for complex fire front topology?

,/‘oﬂ
/’ /, Obs
° 7
/ - —
? a” "
/, '\_’,a q
/ I »
0
"\a
i \° Sim
@2,y ]
X
(x1.y1)

¢ Non-Euclidean operator to represent
shape and topological discrepancies

¢ Direct assimilation of image data

x? =x" + KD (y°,6(x"))
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Uncertainty Quantification

CERFACS has a long-established record of excellence in environmental
and industrial Computational Fluid Dynamics for complex flow
simulation on high-resolution grid enhanced by continuous
developments in numerical models and in High Performance Computing.

Data Assimilation of satellite data for ocean, atmospheric chemistry
or hydraulics modeling is also one of its strong expertise domains.

Uncertainty Quantification has become a developing field based on
ensemble approaches and model-reduction objectives.

Based on these expertise domains, a new challenge for CERFACS is to
develop a Data Driven Modeling axis combining Data Science,
Uncertainty Quantification and Data Assimilation.
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Uncertainty quantification and reduced models

Parameter space

Physical model

* Model constants

* Geometry

* [|nitial conditions

* Boundary conditions
* Etc.

\/

Surrogate model

Results space

C%}

A /

* Equations

e Spatial grid

* Numerical scheme
* Temporal evolution
* Etc.

0D to 3D fields
Temporal evolutions
Integrated quantities
Extreme events

Etc.

= CERFACS
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Uncertainty quantification for modelling

@99 metamodel sample
099 metamodel construction
M forward model
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Response surface

Stochastic
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Surface Water Ocean Topography (SWOT) mission

Potential applications

* Transboundary rivers management (international & inter-regional)

e Clear water management for urban, industrial and agricultural needs
e Hydroelectricity production management

* Fluvial navigation support

* Prevention of the propagation of epidemics ;'

* Integrated management for estuaries

* A better modelling of floods

" = CERFACS
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2D simulation of the Gironde estuary

AR Legend
o i Ks Areas Identify which forcing data
°area 1 parameters are relevant
FEAY TR *area 2 for data assimilation.
ROYAN f earea 3
PORT ‘ saread
LE VERDONZ MESCHERS_SUR_GIRONDE

Reduce the uncertainty of

| the variables that reduce
maritime the most the uncertainty
boundary _ of the water level outputs.
confluence
Gironde ECA?' ‘at Ambés

= 1 ~ 4 upstream i

- boundary :

3 QDordogne +

o r— Qlsle + KRG

One  QDronne ".

a Teste UPStream IntriTs:t_:
a LA_REOLE boundary . E:Em;ﬁ% som
: QGaronne
= CERFACS
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Artificial SWOT data et results production chain

Input of the simulator Artificial SWOT data Assessments and uses
+4.4e1 height (m)
ﬁ:
. Outputs of models : Taking into account
~ ¢ MASCARET (1D) satellite orbits
. jLI'ELEMAC 2D ]
B e — \ ] a b
B e oz =K |y° — G(z°)]
~\ - = MY
The stakes and prospects of Data Driven Modelling at CERFACS Uncertainty
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Surrogate model in hydraulics — Polynomial Chaos

Context Motivation

o  Water resources management at EDF o Low cost estimation of statistical moments and pdfs
o Flood forecasting at SCHAPI o Reduced-cost EnKF (Ensemble Kalman Filter)
Sources of uncertainty o Description of water level covariance matrix for EnKF
o Epistemic errors: friction K, 107 ’ ,

o Random errors: upstream forcing Q Ksl Ks2 Ks3
Quantity of interest

o  Water level 102 -

o Discharge flux

102 |

Non-intrusive PC surrogate model

LH
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N
h(KS,Q;CL) = ZEZ \If@'(KS,Q;a,) 000
1=1

Water level h(a) is expressed as a truncated
sum of polynoms that form an orthogonal

|

|
| |
| |
| |
| |
| |
] 1

basis for the probability density functions of 10° 10 20 30 20 50 60
the uncertain input random variables (K,, Q): S LS,
Validation of the PC surrogate over the Garonne River.
with N — (n -+ P)! and n — 9 L2-error through the channel forP=1,6, 10, 15
n! P! compared to 100 000 samples Monte Carlo experiment.
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Sensitivity Analysis and Data Assimilation with surrogate models
The Garonne river

Sobol indices (sensitivity) Ensemble Kalman Filter
| | ‘ ‘ with altimetric observations (obs)
1.0 Ksl ) Ks2 ) Ks3
5z" = K [y° — G(z")]
E 0.6 P-7 PC-EnKF, 2401 samples
3 EnKF, 2500 samples
0.4}
One obs per grid point SWOT-like obs, 10 km averaged
0.2+ = : ! I ! —ébauche
0.0 N L . ) ) ‘ RMSE < 5% — observation moyennée
0 10 20 30 40 50 60
Curvilinear abscissa 18- -
Background 1
covariance ?,
error matrix ; { ]
{ - ‘\/
B T RMSE=5% |
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Data Science

CERFACS has a long-established record of excellence in environmental
and industrial Computational Fluid Dynamics for complex flow
simulation on high-resolution grid enhanced by continuous
developments in numerical models and in High Performance Computing.

Data Assimilation of satellite data for ocean, atmospheric chemistry
or hydraulics modeling is also one of its strong expertise domains.

Uncertainty Quantification has become a developing field based on
ensemble approaches and model-reduction objectives.

Based on these expertise domains, a new challenge for CERFACS is to
develop a Data Driven Modeling axis combining Data Science,
Uncertainty Quantification and Data Assimilation.
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Practical example of data mining:
classification and downscaling

20071101

NAO- (20%)

. ] ) Atl. Ridge (2)
Linear classication of S - ! ,‘J}!@*«
weather types : st A ’<>\\ 3" '
: i

Nonlinear
classification
. _ methods
Daily atmospheric pressure
Group 2 Groupe 2 centroid
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Statistical and hybrid downscaling

for wind turbine potential

Hybrid downscaling with
mesoscale simulations

Statistical downscaling with Large scale climate
weather classification simulations (GIEC)

Trend of the winter wind turbine potential for 2050

" = CERFACS
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Statistical and hybrid downscaling
for river discharge fluxes

Downscaled rainfall River discharge 2100 trend Large scale rainfall

1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 B

77 49 21 7 35 63 9% 2.0 2.5 3.0 3.5 4.0 4.5

Evolution of river discharge fluxes for 2100
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« Big Data » and climate

Climate data increase
(1 Petabyte = 103 To)

r
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Earth

Impacts
researchers

Boundary specialists

Impacts
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yield, heat stress...

Societal
end users

Society
Enonomy, welfare,
security...
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Data and transfer
reduction
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Practical examples of climate study

Federation
Service

TOTAL to
download:
600 Gb

Data required to the study:

» Temperature at 850 hPa field

* 10 climate models

« 60 years = 21 915 days

« Daily fields = 1 field per day

* Global scale 100 km resolution

Data produced through the post-processing:
« Anomaly of the average of two periods

» Over a specific country for each climate model
» 10 times 2D fields over a small domain

Need of data
reduction
before the

E CERFACS The stakes and prospects of Data Driven Modelling at CERFACS Data
0. Thual, 2017 conference on big data from space Science

4

download Estimated datasize after post-processing: 1 Mb

46



Climate D

ooooo

e-infrastructure

ata Distribution: ESGF

Is-enes
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o

—

Institut ~ ’
;'Pr re \/
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ntro eu aneo
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Meteorological Institute
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ESGF Data Nodes 2015:

9 Deployment -lo)

Peer Groups.
3 Al Peer Groups
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IS-ENES ESGF Portals IS-ENES climate4impact Portal

* 40 worldwide .
« 18 in Europe

KNMI (Netherlands)
Interlinked with Uni. Cantabria

BADC (UK) .

: . « DKRZ (Germany) *
coordinated in IS-ENES i i
(coordi l ) . IPSL (France) downscaling portal (Spain)
« SMHI (Sweden)
- CMCC (Italy) CLIPC Portal
- DMI (Denmark) « Climate Information Portal for
Ack: Michael Lautenschlager, DKRZ Copernicus
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Data distribution platforms
cientific, Technical and Societal motivations

Scientific || @ Efficient Data Analysis: ensemble of scenarios, uncertainties range

estimation, higher resolution, easy share of results...

¢ Robust and flexible Data Life Cycle: more robust experiments setup,

several configurations, reproducible experiments

Technical || @ Process large data volumes, near the data storage: Data Analytics,

Data Life Cycle, streamline the data processing workflow..

¢ Interconnect e-infrastructures and research infrastructures:

metadata description of the data, track provenance...

Societal

e

¢ Provide climate projections data: impact researchers, facilitators,
practitioners...

¢ Ease access with better intuitive interfaces: tailored products from
data processing workflows...

= CERFACS

Data
Science




Prospects of big data for climate

How'’s THE
BIG DATA PROTECT
COMING ALONG,

HOSKINS? ——

© D.Fletcher for CloudTweaks.com

SO

¢ Infrastructure to access relevant climate data

(climate models, satellite observations...)

¢ Community Services with standard interfaces

(on-demand services and calculations...)

¢ Bridge e-infrastructures and research (ease

data sharing, provide support...)

¢ Big Data Techniques (data

geophysical data, neural networks...)

mining for

CONPLEL -
ANALYTIS s
.J“..P;U‘og SIURAEG[W

= CERFACS

The stakes and prospects of Data Driven Modelling at CERFACS
O. Thual, 2017 conference on big data from space
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Conclusion : Data Driven Modelling at CERFACS
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Science

To combine data and physical models
in a framework of high performance computing

= CERFACS



