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Abstract
The Atlantic multidecadal variability (AMV) is a coherent pattern of variability of the North Atlantic sea surface temperature 
field affecting several components of the climate system in the Atlantic region and the surrounding areas. The relatively 
short observational record severely limits our understanding of the physical mechanisms leading to the AMV. The present 
study shows that the spatial and temporal characteristics of the AMV, as assessed from the historical records, should also 
be considered as highly uncertain. Using 11 multi-century preindustrial climate simulations from the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) database, we show that the AMV characteristics are not constant along the simulation 
when assessed from different 200-year-long periods to match the observed period length. An objective method is proposed to 
test whether the variations of the AMV characteristics are consistent with stochastic internal variability. For 7 out of the 11 
models analysed, the results indicate a non-stationary behaviour for the AMV time series. However, the possibility that the 
non-stationarity arises from sampling errors can be excluded with high confidence only for one of the 7 models. Therefore, 
longer time series are needed to robustly assess the AMV characteristics. In addition to any changes imposed to the AMV 
by external forcings, the detected dependence on the time interval identified in most models suggests that the character of 
the observed AMV may undergo significant changes in the future.

1  Introduction

In this study we focus on the Atlantic multidecadal vari-
ability (AMV). The AMV is defined as a coherent pattern of 
pseudo-oscillatory changes in the North Atlantic sea surface 
temperature record (0.4 °C range variation) with a dominant 
period in the 60–80 years range (Schlesinger and Raman-
kutty 1994; Kushnir 1994). These multidecadal variations 
have been observed in instrumental data (Enfield et al. 2001; 
Trenberth and Shea 2006; Deser and Blackmon 1993) and 

paleo-proxy records (Delworth and Mann 2000; Gray et al. 
2004; Kilbourne et al. 2014; Saenger et al. 2009).

In past studies (e.g., Schlesinger and Ramankutty 1994) 
but also more recently (e.g., Latif et al. 2006 and; Ting et al. 
2009), the AMV has also been considered to be part of the 
internal variability of the climate system, largely reflecting 
the intrinsic multidecadal variability of the North Atlantic 
meridional overturning circulation (Delworth and Mann 
2000; Knight et al. 2005; Zhang 2008; Medhaug and Furevik 
2011). However, other studies indicate that external factors, 
such as changes in greenhouse gas concentrations, anthro-
pogenic aerosol concentrations, volcanic activity and solar 
insolation, could also play a role in forcing such variability 
(Otterå et al. 2010; Saenger et al. 2009; Booth et al. 2012; 
Swingedouw et al. 2013).

The idea of a mixed origin of AMV, due to the combi-
nation of internal climate variability and external forcing 
associated with human activity (aerosols, CO2), is gaining 
ground (Rotstayn and Lohmann 2002; Terray 2012; Ting 
et al. 2014; Bellucci et al. 2017).

A number of studies have demonstrated the connection 
between the AMV and other components of the climate sys-
tem both within and outside the Atlantic region. The AMV 
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can, for instance, affect climate multidecadal variability over 
both North America and western Europe (Sutton and Hod-
son 2005; Knight et al. 2006; Sutton and Dong 2012; Ting 
et al. 2011; Zhang and Delworth 2006); it can be linked 
to precipitation changes over different regions (e.g. Sahel, 
India, North America and North Eastern Brazil), to vari-
ability in the Atlantic hurricane activity (Enfield et al. 2001; 
Goldenberg et al. 2001; Latif and Keenlyside 2011), and to 
Mediterranean sea surface temperature variability (Mariotti 
and Dell’Aquila 2012; Marullo et al. 2011).

Besides, the AMV has alternately obscured or amplified 
the global warming signal, which makes the attribution of 
global warming more difficult to ascertain (e.g. DelSole 
et al. 2011).

Despite its relevance for climate variability over the 
Atlantic sector and adjacent regions, the exact nature of the 
AMV needs to be understood, as its underlying mechanisms 
have not been adequately explained. Although past studies 
have shown similar ultra-low variability in models, an in-
depth examination of the AMV long-term behaviour is cur-
rently missing.

Due to the shortness of the observational records, vari-
ability over multidecadal time scales is poorly understood. 
Since most of the related observational records go back 
no more than 150 years, too few multidecadal variation 
cycles of AMV can be detected; as a result, the multidec-
adal component of the variability spectrum is only margin-
ally resolved. In addition, reliable deep ocean observations 
are even shorter, which makes the assessment of the role 
of ocean dynamics more difficult. In the present paper, we 
show that the period and amplitude of the AMV as assessed 
from the observational records should be considered uncer-
tain. Special attention is paid to the possibility that AMV 
undergoes different regimes with different time scales and 
amplitude, compared to the present ones. The aim of this 
study is to analyse the possible existence of non-stationary 
aspects of the AMV.

In the climate science context, continuous modifications 
in the processes influencing a variable potentially result in 
a non-stationary behaviour where the statistical properties 
depend on the particular period in question. In literature, 
various studies, using both models and data, reveal this 
aspect. Based on a 2000-year simulation, performed with 
the global coupled GFDL-CM2.1 model, Wittenberg (2009) 
identifies different regimes in El Niño/Southern Oscillation 
(ENSO) modulations. Occasional epochs mimic detailed 
temporal sequences of observed ENSO events, but a differ-
ent 150-year interval may not contain the same oscillation, 
suggesting that the observed ENSO may not be truly repre-
sentative of ENSO longer-term behaviour, since it is not suf-
ficient to resolve the temporal variability of ENSO beyond 
the most recent period. Similarly, Hurrell and Van Loon 
(1997) notice a non-stationary behaviour in the observed 

evolution of winter North Atlantic Oscillation (NAO) over 
the 1865–1994 period: a large fraction of the NAO variance 
around the biennial period comes from the early part of the 
record, while the variability between 6 and 10 years is more 
prominent over the second half of the twentieth-century. The 
possible non-stationarity of the AMV could have important 
consequences in terms of observational uncertainties and 
predictability, yet it has not been the focus of any previ-
ous study. Comparing different coupled general circulation 
models, Ting et al. (2011) find that the simulated AMV 
does not have a well-defined periodicity but varies across 
a range of decadal time scales: some models do not exhibit 
significant oscillatory behaviour, while for models with sig-
nificant autocorrelation above the noise level the periods 
of oscillation range from 20 to 80 years. Such wide range 
of variability is also seen in the multi-model AMV spec-
tra analysed by Ba et al. (2014), where most AMV indices 
exhibit a similar red noise character and show power spec-
tral density on multidecadal time scales, but with different 
periodicity. In the present study we examine in depth this 
aspect by analysing the AMV behaviour in different epochs 
of the model simulation and applying a statistical test to 
evaluate that behaviour. Moreover, a multi-model approach 
for AMV analysis allows us to investigate similarities and 
differences across a large ensemble of 11 state-of-the-art 
coupled climate models.

The paper is organised as follows: the models, simula-
tions and observations that are used are described in Sect. 2. 
The AMV spatial and temporal patterns, as represented by 
the models examined in this study, are presented in Sect. 3, 
together with the phenomenological evidence of the non-
stationary AMV behaviour, using a time-slice approach for 
spectral analysis. Section 4 focuses on the statistical method 
applied to test AMV stationarity (with further details given 
in the Appendix). Finally, a summary and discussion of the 
results are presented in Sect. 5.

2 � Models and data

To explore the stationarity of the AMV we analysed a 
multi-model set of simulations, mostly performed under the 
Coupled Model Intercomparison Project Phase 5 (CMIP5) 
framework. In order to remove any non-stationarity associ-
ated with the external forcing, we used preindustrial simu-
lations. These experiments reveal the unforced variability 
of the model, imposing constant pre-1850 conditions: they 
have prescribed non-evolving atmospheric concentrations 
of all well-mixed gases (including CO2), natural aerosols 
and some short-lived (reactive) compounds, while land use 
is unperturbed with a fixed agriculture disturbance mask 
(Taylor et al. 2012). To properly resolve the multidecadal 
range of the full variability spectrum, long multi-century 



On the spectral characteristics of the Atlantic multidecadal variability in an ensemble of…

1 3

simulations were required. Based on these criteria, 11 model 
simulations were selected (Table 1). Out of these, ten models 
are from the CMIP5 archive. In addition, a 3500-year-long 
integration performed with the GFDL-CM2.1 model, not 
available in the CMIP5 archive, was analysed. The CMIP5 
protocol for preindustrial (piControl) experiments requires 
that an output of 500 years is supplied after a 100 years’ 
spin-up, in order to avoid initial transients. For the same 
purpose, the first 500 years of GFDL-CM2.1 data are not 
used in the analysis. The Met Office Hadley Centre’s sea 
ice and sea surface temperature (SST) data set, HadISST 
(Rayner et al. 2003), from 1870 to 2014 was used to validate 
the model results.

3 � Simulated Atlantic multidecadal 
variability

3.1 � Spatial and temporal patterns

For each model the AMV index is calculated as the annual 
mean SST area-averaged over the region [0°–60°N and 
75°–7.5°W], as in Sutton and Hodson (2005). Prior to the 
analysis, the long-term mean is removed and the result-
ing time series of SST anomalies are linearly detrended in 
order to remove spurious long-term changes associated with 
residual model drifts, which are not physically meaningful. 
In order to isolate the low-frequency variability, SSTs are 
low-pass filtered with a 10-year running mean (low-pass 
Butterworth filters of different orders are also tested to filter 
the time series, with and without zero-phase filtering, yet 
the presented results are not affected by such choices). The 
observed AMV index is calculated in the same manner as for 
the models; nevertheless, the comparison with models is not 

completely consistent because the observed record is com-
paratively shorter and, more importantly, it also accounts for 
external forcings, which are excluded in the model simula-
tions. The applied detrending partially removes the warming 
trend associated with changes in the radiative forcing on 
the observed SSTs, yet the likely influence of other non-
linear forcings on the SST cannot be completely filtered 
out from observations. In the following, we use the general 
term NASST index to indicate the unfiltered, detrended time 
series and keep the term AMV index to refer to the low-pass 
filtered NASST index.

In this section we characterise the variability of the 
NASST, with a spectral analysis of its unfiltered annual 
mean time series, performed via a multi-taper method 
(MTM; Thomson 1982). This methodology does not pre-
scribe an a priori model for the process generating the 
time series that are analysed, while it attempts to reduce 
the variance of spectral estimates by using a small set of 
tapers rather than the unique data taper, or spectral win-
dow. In Fig. 1 the MTM power spectra of the simulated and 
observed NASST time series are shown in colour with the 
corresponding red noise spectra overlapped as thin black 
lines. The frequency bands exhibiting power above the red 
noise level identify the time scales for which the NASST 
deviates from the red noise null-hypothesis, which in turn 
postulates that the low-frequency variance is entirely deter-
mined by the integration of the atmospheric white noise 
(Hasselmann 1976). Focusing on periodicities longer than 
10 years, at multidecadal time scales, spectral peaks above 
the red noise threshold can be seen in all the models and 
in observations. However, for some models (especially for 
the ones with the shortest simulations) there are no spectral 
peaks exceeding the 90% confidence level, though the 80% 
confidence level is still exceeded by some peaks, which is 

Table 1   Eleven multi-century preindustrial simulations that participate in this study

In case of atmospheric grid and its latitude, the tabulated resolution is only valid for the equator region. For higher latitudes, deviations may 
occur. If two values are given for latitude resolution of the ocean grid, the first value is that for the equator and the second for the poles

Model name Length (years) Ocean grid Atmospheric grid

(Lat × Ion, degree) Vertical levels (Lat × Ion, degree) Vertical levels

MPI-ESM-P 1156 1.5 × ~ 1.5 L40 1.8653 × 1.875 L47
CCSM4 1051 0.27, 0.54 × 1.11 L60 0.942 × 1.250 L26
MPI-ESM-LR 1000 1.5 × ~ 1.5 L40 1.8653 × 1.875 L47
CanESM2 996 0.9303, 1.1407 × 0.40625 L40 2.7906 × 2.8125 L35
NorESMl-M 501 ~ 1 × ~ 0.5 L53 1.8947 × 2.5 L26
GFDL-ESM2M 500 0.334, 1 × 1 L50 2.0225 × 2.5 L24
MRI-CGCM3 500 0.5, 0.5 × 1 L50 1.12148 × 1.125 L48
ACCESS1-0 500 0.334, 1 × 1 L50 1.25 × 1.875 L38
ACCESS1-3 500 0.334, 1 × 1 L50 1.25 × 1.875 L38
CESM1-BGC 500 0.27, 0.53 × 1.125 L60 0.9424 × 1.25 L26
GFDL-CM2.1 3500 0.334, 1 × 1 L50 2.0225 × 2.5 L24
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consistent with similar findings of previous multi-model 
assessments (Zhang and Wang 2013; Zanchettin et al. 2014). 
The observations present more power than a red noise pro-
cess for periods longer than 30 years, but the observed spec-
trum is not resolved sufficiently well due to the shortness of 
the data record. Flat low-frequency tails of the spectra are 
seen in CCSM4, MRI-CGCM3 and CESM1-BGC models, 
while peaks are more distinguishable for the rest of models. 
Depending on the model considered, the power spectrum of 
NASST index shows peaks at different frequencies and with 
different amplitudes. This wide range of variability is also 
found in Ba et al. (2014) multi-model comparison.

Figure 2 illustrates the spatial patterns of SST associ-
ated with the AMV index for the models and the HadISST 
observations over the North Atlantic region. The point-wise 
regression patterns between the global SST field and the 
AMV index are shown. Although there are some differences 
among the models, their spatial SST patterns resemble the 
typical basin-wide, comma-shaped pattern described by 
Ting et al. 2011. The majority of the models also show low 
or slightly negative anomalies in the Gulf Stream and the 
Nordic Seas areas. Most of the commonalities among mod-
els and observations stem from the slightly positive regres-
sion loadings seen in the tropical Atlantic (except for the 
MRI-CGCM3 model) while north of 30°N the patterns show 
generally larger differences.

Next, we inspect the individual AMV indices: the ampli-
tudes (standard deviation) are shown in Fig. 3a and the 
corresponding time series in Fig. 3b; note that the GFDL-
CM2.1 AMV index is divided into 1200-year long seg-
ments in order to better discern its features and facilitate 

the comparison with the other models. A visual inspection 
suffices for spotting that the modelled AMV can exhibit 
significant changes from period to period. Focusing on the 
MPI-ESM-P simulation, as an example, different AMV char-
acters can be grossly grouped into 4 categories: (a) mostly 
warm-skewed, (b) nearly-harmonic, (c) intense with longer 
periods, and (d) small amplitude AMV evolution (Fig. 4). 
Besides the AMV time scale, the amplitude of the AMV sig-
nal is also subject to variations from one period to another. 
Different epochs with different characteristics and duration 
can be identified in the evolution of AMV index time series.

3.2 � Evidence for non‑stationary behaviour

Stationarity is a form of temporal homogeneity used in time 
series analysis, which is defined as time-invariance of the 
whole probability distribution of the data generating process 
(strict stationarity), or just of its first two moments (weak 
stationarity) (e.g. Brockwell and Davis 1991).

From now on, the word “stationarity” refers to the weak 
stationarity that requires the process to have the same mean 
and variance at each time and an autocorrelation function 
that depends on the time lag only. A time series is only one 
possible outcome of the underlying stochastic process that 
generated the data part. In practice, we can only have data 
for finite time spans; therefore, even to check these defini-
tions, we have to make approximations (Huang et al. 1998).

In light of Fig. 4, North Atlantic SST variability is ana-
lysed for different epochs. An objective method is used to 
select epochs, which consists in dividing the AMV index 
time series into equal-length intervals. The length of these 

Fig. 1   Multi-taper (MTM) power spectral density estimates of North Atlantic SST for the analysed models and the HadISST observations from 
1870 to 2014. The black thin lines are the AR1 red noise fits, dashed and dotted lines are the 80 and 90% confidence levels, respectively
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intervals is chosen to be 200 years to be approximately com-
parable to the length of the observational record. In order to 
underline the AMV non-stationary behaviour, multi-taper 
spectral analysis is carried out for chunks of consecutive, 
overlapping 200-year-long intervals, shifted by 50 years; for 
both models and observations. Figure 5 shows the results for 
the longest CMIP5 models, for illustrative purposes, while 
the other models present an analogous non-stationary behav-
iour. Spectral analysis is performed for each interval, for the 
entire time series and for observations. Each power spectral 
density is scaled by its maximum. The first interval refers 
to the period from year 1 to year 200, the second interval 
refers to the period [50–250] years, the third to [100–300], 
and so on.

This time-slice/moving-window view of AMV spectral 
features highlights a strong dependence on the selected time 
interval. For example, looking at the MPI-ESM-P model, 
we can see that the AMV during the [450–650] time inter-
val, with central year 550, displays almost no variability for 
periods shorter than 20 years, while during the [900–1100] 
time interval the maximum variability is found at 20 years. 
Therefore, the dominant periods (inverse frequencies) can 

differ a lot depending on the selected intervals. The spectrum 
of the observed index resembles, for example, the spectrum 
of the period [200–400], as both show enhanced power in the 
30–50 years band. However, the observed spectrum differs 
substantially, for example, from the spectrum of the period 
[900–1100], which presents the highest power at higher fre-
quencies (periods shorter than 30 years). It is therefore plau-
sible that the observed AMV spectrum represents only one 
of the several possible characters that emerge in long model 
data sets. If that is so, in the future the AMV could enter a 
regime remarkably different from that of the twentieth cen-
tury. A similar approach is used by Saenger et al. (2009) in 
a 440-year-long proxy-record of Atlantic SST anomalies. 
The authors find that some periods show multidecadal power 
similar to the currently observed AMV, whereas no signifi-
cant multidecadal power is evident in other past epochs.

Transitions among these behaviours of different vari-
ability also emerge from the AMV autocorrelation, diag-
nosed with a similar moving window (Fig. 6). For all 
the analysed models, the AMV time series is split again 
in 200-year-long intervals, shifted by 50 years, and the 
autocorrelation function is computed for each interval. 

Fig. 2   Spatial patterns of SST variations associated with the AMV 
index for the models and the HadISST observations from 1870 to 
2014. Shown are the regression coefficients (°C per standard devia-

tion) obtained by regressing the 10-year running mean filtered and 
detrended SST data on a normalised (unit variance) version of the 
index



	 I. Mavilia et al.

1 3

(a)

(b)

Fig. 3   a Standard deviations of AMV indices for both models (in green) and HadISST data from 1870 to 2014 (in red). b Normalised AMV 
index in the CMIP5 preindustrial simulations (top) and in the GFDL-CM2.1 model (bottom)
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For most models, the dominant time scale of the autocor-
relation function changes with the time interval, reveal-
ing a modulation of AMV that is irregular and interval-
dependent. For the MPI-ESM-LR model, a ∼ 50-year 
time scale characterises the initial part of the record, later 
shortening down to ∼ 25 years, as indicated by the sloping 
contours, where time scale can be seen as the lag distance 
between autocovariance crests or troughs. Other models 
display no preferred time scales for long segments of their 
evolution (see in particular CCSM4 and ACCESS1-3 
models). On the other hand, NorESM1-M model shows 
an almost time-invariant autocorrelation throughout the 
whole length of the model record. The present results are 
consistent with Zanchettin et al. (2010) who show that 
observed and simulated time series of a climate index 
covering several centuries are often characterised by fluc-
tuations on time scales that are not homogeneously dis-
tributed in time: they appear within irregularly intermit-
tent temporal intervals, whose duration varies, in general, 
with the signal fluctuation frequency.

To conclude, the dominant periods/frequencies depend 
not only on the model, but also on the period considered. 
Does this modulation arise by chance? In other words, 
does the AMV show these variations either because of its 
random behaviour or because we only consider a limited 
time interval? We address these questions in the next sec-
tion, by objectively analysing the non-stationary behav-
iour of the AMV in the 11 simulations, using suitable 
statistical tests.

4 � A statistical test for AMV stationarity

The analysis of AMV in the multi-model set of prein-
dustrial integrations, illustrated in the previous section, 
revealed the succession of epochs characterised by differ-
ent spectral characteristics.

Here, a statistical test to rigorously check the AMV sta-
tionarity is described. The null hypothesis (H0) is that the 
AMV is statistically stationary, and any differences that we 
see between different epochs are random and emerge due 
to undersampling. In such a system, apparent “transitions” 
among different regimes of variability would have no under-
lying “cause”. It would be equivalent to a long run of heads 
or tails when flipping a fair coin. Theoretically, stationarity 
is defined as a quality of a process in which statistical param-
eters (mean and standard deviation) do not change with time. 
The most important property of a stationary process is that 
the autocorrelation function depends only on the lag alone 
and thus it does not change with the time at which the func-
tion is calculated. Therefore, a practical test for stationarity 
is to verify whether there is any interval for which the statis-
tical properties (e.g. autocovariance) of the entire time series 
are significantly different. Jointly with that, we need also 
to exclude the possibility that the AMV non-stationarity in 
the models we analyse might arise from sampling errors. In 
fact, a rejection of H0 suggests that the AMV is not station-
ary, in other words that the related differences are so large 
that cannot be explained by randomness and undersampling.

The resampling methods are useful to generate random 
time series that have similar properties to the members of 
the population from which the simulated AMV time series is 

(a) (b)

(c)

(c)

Fig. 4   AMV modulation shows epochs with different characteristics. (a) RED: mostly warm-skewed events; (b) GREEN: moderate, nearly-har-
monic events; (c) PURPLE: intense events with longer periods; (d) YELLOW: small amplitude events
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Fig. 5   Spectral signature of 
AMV index by using the multi-
taper method for 200-year-long 
intervals labelled with the 
central year (shown on top) 
and for the entire time series 
(indicated with “All” on top), 
for MPI-ESM-P, CCSM4, MPI-
ESM-LR and CanESM2. “Obs” 
bin refers to HadISST data from 
1870 to 2014
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Fig. 6   Autocorrelation function of AMV index for moving and overlapped 200-year-long time windows, for the analysed models
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taken. “Random-phase” test is applied to the analysed AMV 
time series. This technique is considered “resampling” in the 
frequency domain, as it does not preserve the distribution of 
values but rather the power spectrum. Therefore, the resa-
mpled series retains the same autocorrelation as the model 
series (Ebisuzaki 1997). First, the Fourier Transform (FT) of 
the model time series is computed. Then, the phases of the 
individual components of the FT are perturbed a number of 
times by adding a random number. This step creates a large 
number of new Fourier series with random phases at each 
frequency. Since the amplitude at each frequency is kept as in 
the model time series, the power spectrum is preserved. Then, 
back to the time domain with the Inverse Fourier Transforms 
(IFT), the new synthetic time series are obtained: they differ 
from the model series because they have modified phases in 
each of their Fourier components, but they have the same 
length and the same power spectrum (autocorrelation) of 
the model NASST time series. Once a large number of such 
synthetic series are created, the latter are used to compute 
the autocovariance range that contains 90% of the respective 
distribution, taken symmetrically around the respective mode 
(the 90% central range). Then, making use of this range, com-
puted separately for each model, the respective stationarity is 
robustly assessed. Below, a concise description of the method 
used to test the AMV stationarity is provided.

The test applied to check the stationarity of the NASST 
and AMV time series involves the following steps:

1.	 1000 synthetic time series are generated with the same 
length and the same spectrum as the model time series 
(bootstrap method) (Ebisuzaki 1997).

2.	 The 1000 synthetic time series are divided in 200-year-
long intervals (length similar to the observations) shifted 
by 1 year.

3.	 The autocovariance function is computed for each of the 
200-year-long intervals and for each of the 1000 syn-
thetic time series, with a maximum lag equal to 60 years.

4.	 The distribution of the autocovariance values of the syn-
thetic time series is used to compute the respective 90% 
central range. This range is defined by the 5th and the 
95th percentiles.

5.	 The relative frequency of occurrence of autocovariance 
values of the original model time series (not synthetic) 
falling outside the defined range is determined (these 
counts are indicated with circles and triangles in Fig. 7).

6.	 The same counts as step 5 are computed also for the 
1000 synthetic time series themselves, in order to show 
the range of variability covered by the 1000 counts and 
to see whether the model time series counts fall inside 
or outside of this range of variability (this range of vari-
ability is accounted by the error bars in Fig. 7).

In the Appendix, a more detailed explanation of the method 
is given using the MPI-ESM-P model as an example. Here, 
concise results are presented for the entire set of models.

Fig. 7   Percentages of autocovariance values that exceed the 90% 
central range computed from the distribution of 1000 synthetic time 
series, for all the NASST and AMV time series. When the autoco-
variance function of the intervals departs from the autocovariance of 

the entire time series more than 10% of times (red dashed line), the 
indices present a non-stationary behaviour. The red error bars on top 
of the red dashed line represent the undersampling error due to the 
limited length of the time series
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For each model, interval and lag, the respective AMV auto-
covariance value is compared to the corresponding 90% central 
range for that lag (the grey shading envelope in Fig. 10). The 
number of values found outside this range is counted. As a 
result, taking into account the total number of autocovariance 
values for the model time series (60 lags multiplied by the num-
ber of intervals), all models present AMV autocovariance val-
ues non contained in the 90% central range. This means that the 
autocovariance function of certain intervals differs significantly 
from the autocovariance function of the entire time series. For 
9 out of 11 models, considering the unfiltered NASST (green 
circles in Fig. 7) the respective counts exceed 10% of the total 
autocovariance values, while for the actual AMV index (10-
year low-pass filtered) (blue triangles in Fig. 7) the same occurs 
for 7 out of 11 models. This difference may be understood by 
considering the sub-decadal variance eliminated by the low-
pass filter. There is a substantial difference in the behaviour of 
the ACCESS model in its 1.0 and 1.3 versions. From Fig. 7, 
it seems that the non-stationary behaviour of the 1.3 version 
might be largely due to the high-frequency component of the 
variability; whereas the 1.0 version appears to be quite unaf-
fected by the low-pass filtering of the SST.

The rejection of H0 for MPI-ESM-P, CCSM4, MPI-
ESM-LR, GFDL-ESM2M, CESM1-BGC, ACCESS1-0 and 
GFDL-CM2.1 models, suggests a non-stationary behaviour 
for these AMV indices. However, the red dashed line at 10% 
in Fig. 7 indicates the number of autocovariance values that 
should be outside of the 90% central range for a station-
ary process of infinite time length. Since we are not dealing 
with infinite time series, we have to estimate the respective 

error due to the limited sampling. The sampling error is 
represented by the error bars in Fig. 7: for each of the 1000 
synthetic time series we counted how many autocovariance 
values exceed the 90% central range (as we did for the model 
time series) then the inferior and superior limits of the error 
bars are the 5th and the 95th percentile of these 1000 counts.

The error bars are quite big for almost all the models, 
being the smallest for the longest time series (GFDL-CM2.1, 
3500-year-long). Only the AMV index simulated by the 
ACCESS1-0 model stands outside the error bar, meaning 
that the variations of the AMV characteristics cannot be 
explained solely by randomness and undersampling. This 
implies that the non-stationarity of the AMV must arise from 
a physical mechanism. For the remaining 10 models, it can-
not be confidently excluded that the apparent non-stationar-
ity is the result of undersampling a stochastic process. The 
length of the model records affects the statistical test since 
short records provide fewer intervals. The test is also sensi-
tive to the number of lags used for computing the autocovari-
ance, this number is limited by the length of the intervals. 
Each model may “require” different number of lags (not nec-
essarily 60 years) depending on the corresponding dominant 
variability time scale, as shown by the big differences in the 
power spectra in Fig. 1.

The reduction of the sampling error with the time series 
length is highlighted in Fig. 8. Here, the longest AMV index 
(from GFDL-CM2.1 model, 3500 years) is made longer in 
order to answer the question: how long should our simulated 
or observed time series be in order to properly estimate the 
AMV autocovariance robustly?

Fig. 8   Sampling error as a function of the length of GFDL-CM2.1 AMV time series
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The length of the synthetic time series is related to the fre-
quencies resolved. Therefore, the length of the time series can 
be increased by adding frequency components in the Fourier 
space and setting the extra frequencies to zero power. This 
way, going back to the time domain, a longer time series is 
produced. This “extended time series” still keep the same 
spectrum as the model time series (except for the extra fre-
quencies carrying zero power). The analysis has been repeated 
using 200-year-long intervals shifted by 1 year as before. It 
was found that the sampling error (the red error bar in Fig. 7) 
decreases from a width of 6.3–2.0% as the length of the time 
series increases from 3500 years (actual length of the GFDL-
CM2.1 AMV time series) to 50,000 years. This artificial length 
increase provides an indication about the sensitivity of the pre-
sented assessment to the length of the model simulations.

5 � Conclusions

The properties of the AMV were examined in a set of multi-
century preindustrial climate simulations performed with an 
ensemble of state-of-the-art coupled general circulation mod-
els. Different regimes of variability were identified in the mod-
elled AMV time series, providing phenomenological evidence 
of a non-stationary behaviour. In order to rigorously assess this 
behaviour, a statistical test for AMV stationarity was devel-
oped starting from the null hypothesis of a statistically station-
ary AMV, whose modulation is entirely random. Most of the 
models display epochs characterised by an autocovariance that 
differs significantly from the one featured by the whole time 
series, therefore indicating the non-stationarity of the AMV 
time series. This test appears to be sensitive to the time fil-
tering applied to the North Atlantic SSTs, with 9 (7) out 11 
models presenting non-stationary behaviour, when unfiltered 
(low-pass filtered) SSTs are used. This suggests that the non-
stationarity of unfiltered North Atlantic SSTs is coming from 
both high- and low-frequency variability. However, given the 
limited length of the model simulations, the uncertainty asso-
ciated with undersampling allows concluding with high confi-
dence that AMV is not-stationary only for one (ACCESS1-0) 
out of the 11 models. Nevertheless, there is such an indication 
for most of the models. The interval-dependent behaviour 
identified in most models suggests that the character of the 
observed AMV may undergo significant changes in the future 
similarly to what seen in the models (dominant periods and 
amplitude of the AMV changes from one epoch to another).

Our study points also to the large differences across models, 
which emerge also among the five CMIP5 models analysed by 
Deshayes et al. (2014), in particular in the representation of 
freshwater budget and circulation in the North Atlantic. Simi-
lar disagreements are found in Ba et al. (2014), Menary et al. 
(2015) and Deshayes et al. (2014), all showing that biases in 

the simulated mean climate state influence the characteristics 
of decadal variability.

To conclude, explaining multidecadal variability is chal-
lenging, not only because of the lack of observational data and 
the multitude of possible processes that may be involved and 
that may not be limited to North Atlantic itself (Frankcombe 
et al. 2010), but also because of model diversity and the associ-
ated uncertainty.

Appendix

A detailed explanation of the method for testing 
AMV stationarity

A detailed explanation of the method for testing AMV sta-
tionarity is given here using the MPI-ESM-P model exam-
ple. The starting point is the generation of 1000 synthetic 

Fig. 9   (Top) model NASST spectrum in black and 1000 spectra asso-
ciated to the 1000 synthetic NASST time series in green lines, via 
multi-taper method. (Bottom) model AMV autocorrelation in black 
and 1000 autocorrelations associated to the 1000 synthetic AMV time 
series in green lines
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time series with the same length and the same spectrum 
as the model NASST time series (1156 years for the MPI-
ESM-P model). In Fig. 9, the 1000 synthetic time series, in 
green, share the same spectrum (top plot) and autocorrela-
tion (bottom plot) as the model time series (superimposed 
as a thick black line). Having verified this, it is possible 
to compute the 90% central range for the autocovariance 
function that represents the 90% range of variation of auto-
covariance values for each lag. Each of the 1000 synthetic 
AMV time series is split in 200-year-long intervals shifted 
by 1 year, obtaining 956(= 1156 − 200) intervals for MPI-
ESM-P model. Therefore, there are 956,000 intervals for 
all the 1000 synthetic time series. The autocovariance 
function is computed for all these intervals, spanning 60 
lags. For each lag, the 90% central range (i.e. the range 
between the 5th percentile and the 95th percentile) of the 
956,000 autocovariance values is computed.

In parallel, also the model AMV time series is divided in 
956 intervals and the autocovariance is computed for all of 
them. For each lag, the 956 autocovariance values are com-
pared with the inferior and superior limits of the 90% central 
range and we count how many values exceed the range.

In order to have a reasonable number of intervals to be 
shown together, in Fig. 10 we plot the intervals shifted by 
50 years instead of 1 year. Each plot refers to a different 
interval, the black line is the model autocovariance function 

for that interval, the grey shading is the 90% central range 
and the red curve represents the mean behaviour of the 
model intervals. Even from a visual inspection is possible 
to find periods where the autocovariance function falls out-
side the 90% central range (grey shading), showing that they 
do not have the same statistical characteristics as the whole 
time series. A more rigorous approach consists in count-
ing the number of autocovariance values that fall outside 
the confidence interval. Taking into account all of the 956 
intervals, there are 57,360 values (that is 956 intervals mul-
tiplied by 60 lags) in total. The result shows 8088 values 
outside, which corresponds to 14.1% of the total, meaning 
that, for the MPI-ESM-P model, 14.1% of the total amount 
of values fall outside the shading, as represented in Fig. 7 
(blue triangle).
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