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The power of backward error analysis

Abstract

As the numerical simulations tackle physical problems of increasing difficulty and numer-
ical models of increasing complexity, the coupling between the numerical approximation
and the finite precision plays a crucial role to assess the domain of computability of the
solutions. Backward error analysis appears today as one of the key to understand this
coupling. Although this concept was primarily designed as a tool to understand the be-
haviour of numerical algorithms in finite precisions, its scope is much wider. The finite
precision computations fit into the large scenery of the methods of approximations, where
the backward error analysis appears to be the tool of choice to deal with any kind of
uncertain computations.

After explaining this conceptual level, from which one can fully embrace the power of the
backward error analysis, we propose a tour of the most recent techniques used to assess the
reliability of numerical software. The current trend is to develop more and more refined
models which are better and better suited to describe the perturbations generated by the
finite precision arithmetic.

We then review three examples of approximation in exact arithmetic that have been en-
riched by the concept of backward error analysis: the homotopic perturbations, the pseu-
dospectra of matrices and operators, and the convergence of iterative methods in Linear
Algebra. This work concludes on the open question of the extraordinary robustness of
Krylov methods with respect to inexact computation.

Keywords: finite precision computations, computability, backward error, conditioning,
iterative methods, Krylov methods.

Puissance de ’analyse inverse des erreurs

Résumé

Alors que la simulation numérique s’emploie & résoudre des problémes physiques de diffi-
culté croissante, le couplage entre ’approximation numérique et le calcul & précision finie
joue un role essentiel dans la calculabilité des solutions. L’analyse inverse des erreurs
apparait aujourd’hui comme 'une des clefs de la compréhension de ce couplage, en per-
mettant de traiter le calcul incertain.

Apres avoir exposé cette approche conceptuelle qui, seule, permet d’apprécier réellement
la puissance de l'analyse inverse des erreurs, nous passons en revue les techniques les
plus récentes pour I’évaluation de la fiabilité du logiciel numérique, et nous présentons
trois domaines d’application ot 'analyse inverse des erreurs permet 1’étude de méthodes
d’approximation. Nous terminons par une réflexion sur la question, toujours ouverte, de
I'extraordinaire robustesse des méthodes de Krylov vis-a-vis au calcul incertain.

Mots-clés : calcul en précision finie, calculabilité, erreur inverse, conditionnement, méthodes
itératives, méthodes de Krylov.
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Foreword

This document presents a synthesis of my eleven years of research at CERFACS, where
I started in September 1989 as a graduate student. The unifying theme of my research
activities has been the use and development of backward error analysis. The introduction
recalls the fundamentals of the theory of computability in finite precision, that we devel-
oped in the book Lectures on Finite Precision Computations co-authored with F. Chaitin-
Chatelin and published by SIAM in 1996. Our approach consists in treating the finite
precision approximation in the same way as any numerical approximation. The resulting
framework proved to be extremely useful in understanding the subtleties of the coupling
between the numerical and arithmetic parameters which govern the reliability of finite
precision computations. The work I have developed afterwards is more concerned with
the techniques of backward error analysis for numerical software and methods. This is
the part that I have chosen to develop in more detail here. In this document, I would
like to survey the evolution of the backward error analysis since its conceptualisation by
J. H. Wilkinson in the sixties. I hope the reader will appreciate the power of this notion
whose ever-growing impact goes now far beyond finite precision computations for which
it was originally intended. I will explain how my own work and that of my co-workers
in the Qualitative Computing Group led by F. Chaitin-Chatelin at CERFACS fit within
the research efforts of the international community in the further development and use of
backward error analysis.

Chapters 1 to 4 and the Bibliography, which consitute the core of this document, are
devoted to the presentation of backward error analysis. Because I have chosen to paint
a panorama of backward error analysis at the dawn of the 215t century instead of just
describing my own work, some readers may feel that my own contributions to the topic
are not highlighted enough. Let me summarise them presently. Most of my research work
performed before 1995 is included in the above mentioned book Lectures on Finite Preci-
sion Computations. This research monograph combines techniques from engineering and
mathematics to describe the rigorous and novel theory of computability in finite precision.
The theoretical analysis is supplemented by a wide range of numerical experiments and
the software tool PRECISE is used extensively to explore the stability on the computer.
This software tool was further enhanced to be part of the parallel library coordinated by
Nag in the framework of the European Esprit project PINEAPL (1996-1998). The topic
of nearness to singularity is addressed in a joint paper with F. Chatelin and T. Braconnier
entitled “Computations in the neighbourhood of algebraic singularities” and published in
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10 Foreword

Num. Funct. Anal. Opt. in 1995. My contribution to backward error analysis in linear
algebra is reflected in two papers, one with V. Toumazou entitled “A note on the norm-
wise perturbation theory for the regular generalised eigenproblem Ax = ABx published
in J. Numer. Linear Algebra Appl. in 1998, and one with S. Gratton and V. Toumazou
dealing with “Structured backward error and condition number for linear systems of the
type A*Ax = b” and published in BIT in 2000. My work related with high nonnormality,
iterative methods and pseudospectra has appeared in various proceedings of international
conferences. My recent studies on inner-outer schemes are currently under review.

As already mentioned, my research is intimately linked with software production. Apart
from the PRECISE toolbox already mentioned, I contributed to packaged iterative solvers
for linear systems and eigensolvers. Most of these routines are publicly available and
are regularly downloaded worldwide by many researchers working in various areas rang-
ing from geophysics or ocean modelling to theoretical physics. As a senior researcher
in the Parallel Algorithms Project, I have been supervising a number of post-doctoral re-
searchers, Ph.D. Student and trainees. I have been the main supervisor of the Ph.D. thesis
of A. Bouras on inner-outer iterations, to be defended in September 2000. My teaching
activities take place at three levels: regular internal training at CERFACS for the new-
comers, lectures in academia on eigenvalues and on the numerical quality of software in
finite precision, and specific training for the engineers from CERFACS shareholders.
Additionally, from its nature, CERFACS depends strongly on industrial funding and this
is why I have been involved in a number of industrial collaborations mainly with CNES,
the French space agency and Aerospatiale. A complete list of my publications followed
by a curriculum vitae (in French) where my administrative and contractual activities are
listed are available in this document. Finally, I include as an extension three papers and
a technical report which develop some aspects of my work that are mentioned in the core
of the document.



Chapter 1

Introduction

For a scientist or an engineer, it is of crucial importance to have confidence in the re-
sults of large codes and in the robustness of the models used. Indeed the emergence of
supercomputers has allowed the intensive use of numerical simulation to replace physical
experiments, even for problems at the frontiers of instability. Computed results may have
very few or even no correct digits. It is really a challenging problem to design tools which
offer information on the quality and validity of computer results, and which provide engi-
neers and scientists with both quantitative and qualitative analyses, in order to help them
extract the appropriate information from results that are seemingly wrong. The research
I have been conducting in the last ten years fits in this context.

The theory of computability described in the first part of this chapter has been de-
signed to give a theoretical framework to finite precision computations, which attempts
to unify the treatment of numerical and arithmetic approximations. In the second part,
we set out the main issues related to the assessment of the quality of reliable software and
numerical methods.

1.1 Computability in finite precision

1.1.1 Numerical approximation

We consider the mathematical problem (P) which consists in solving the equation

(P) F(z) = y. (L1)

We set H = F~!. We assume that there is a solution = H(y) which is locally unique.
We suppose that I (resp., F~1) is continuous in the neighbourhood of x (resp., y): the
problem (P) is then well-posed in the sense of Hadamard.

Scientific computing mostly deals with problems (P) that cannot be solved as such
(that is, by use of a simple inverse operation). Instead, they are replaced by a family of
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12 Introduction

approximations of well-posed problems
(Fp) Fy(zg) = yp, (1.2)

where the parameter 6 is meant to tend to zero. We set similarly Hy = Fg_l. The central
question is then to prove that the approximation xg tends towards x when 6 tends to zero.
This is the core of theoretical numerical analysis. A typical example is when (P) is a
partial differential equation and (P) is a discretization of it. This kind of approximation
is governed by the well-known Laz principle which states

consistency + stability = convergence.
Consistency is the fact that

limg0ys = v,
limg_,o Fy(2) = F(2),Vz in the neighbourhood of x.

The stability is mathematically the equicontinuity® of the family of approximations {Fy}.
The conjunction of both properties is a sufficient condition for the convergence of xy to
x when 6§ — 0. In theoretical numerical analysis (that is, numerical analysis in exact
arithmetic), Fy and/or Hy are known. The role of the numerical analyst is to establish
the proofs of convergence.

The difference |Fy(z) — F(z)| is called the residual consistency error. The Lax prin-
ciple holds when replacing the residual consistency error by the direct consistency error
|Hg(z) — H(z)| which is more convenient when Fy and/or F' are not available (see Chap-
ter 1, Theorem 2.2 of [19]). It is traditional in theoretical numerical analysis and functional
analysis to prove convergence by inspecting the direct error |z — xgy| [3, 30]. On the con-
trary, in applied numerical analysis, or numerical software (that is numerical analysis with
finite precision), it is often the residual error |y — F'(xg)| that plays the fundamental role
[115]. This difference in attitude reveals much more than a matter of taste or tradition.
If both attitudes are mathematically equivalent in exact arithmetic, they are not anymore
equivalent in finite precision as we will see later.

There is a kind of approximation that one would not list naturally as being of the type
defined by (1.2), but which however fits perfectly into this framework: it is finite precision
approximation. When we started to think more conceptually about the principles that
underly the finite precision computation, we realised that it is bound to obey also the
Lax principle of approximation. This led us to define a theory of computability which is
discussed in detail in the book Lectures on Finite Precision Computations co-authored with
F. Chaitin-Chatelin [19]. Let us now recall the main ideas that underpin our understanding
of finite precision computations.

!The family {Fs, 0 <0 < 1} is equicontinuous at z if Ye > 0, 35 > 0 independent of # such that
|z" — z|| < J implies ||Fp(z') — Fo(z)|| < e for all §, 0 < 6 < 1. (See Chapter 1, Definition 2.1 of [19]).
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1.1.2 Finite precision approximation

In this paragraph, we focus on the basic situation where z = H (y) is exactly computable
in a finite number of steps in exact arithmetic. This restriction is done to facilitate the
presentation but iterative algorithms can also be fitted into the same framework [19]. We
also assume that x is a regular point, i.e. that H has continuous first derivatives with
respect to prescribed data at y (otherwise x would be a singular point). We look at
the asymptotic properties of computations on an ideal computer whose precision increases
when some parameter ¢ tends to zero (this parameter can be thought of as machine
precision for instance). Let

(Fe) Fe(ze) = ye (1.3)

be the problem solved with a computer of precision €. We set x. = H.(ye).
As in the case of numerical approximation, the central question is the convergence of
x — x, when ¢ — 0. We say that x is computable in finite precision if and only if z. tends
towards z when ¢ — 0. If x is proved computable in finite precision, then its computer

approximation in double precision will be more accurate than that in single precision: this
might not be true otherwise.

Note that this framework is also suitable for any kind of uncertain computations, that
is with data that are only known to some prescribed tolerance (such as in physical mea-
surements).

The forward analysis carried out in Chapter 1 of [19] leads us to the following decom-
position of the forward error
r—x. = F1+ Ey (14)
where

e By = DH(y)(y — ye) + O(g?) expresses the stability (in the sense of sensitivity) of
the original problem z = F~!(y). Here DH(y) denotes the Jacobian of F~! at v,

o Fy = H.(ye) — H(y.) represents the direct consistency error at y.
We see that the forward error |z — z¢| is subjected to two distinct influences:
e the stability of the mathematical problem through A,

e the finite precision approximation which is, at best, of order 1 in ¢ since one can
show that it always contains a term of the order of e.

In this context, applying the Lax principle to finite precision computations leads to
the following sufficient condition:

arithmetic reliability = computability.

By arithmetic reliability we mean the set of the two following properties
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1. the family of approximations { H.} is equicontinuous,

2. the direct consistency error at y is of order 1 in ¢, i.e. |H.(z) — H(z)| < C(y, F)e
for any z in the neighbourhood of .

The constant C(y, F') depends only on the data and not on the parameter e. This property
is often found in the literature under the name “numerical stability with respect to round-
oftf”. We find this term misleading in the sense that it omits the consistency property to
retain only the idea of stability (equicontinuity).

An interesting example where the computability in finite precision can be easily proved
is Gaussian Elimination. It is discussed in detail in [19]. The growth factor (that is the
maximal element growth during the factorisation) plays the role of the constant C(y, F').

In this paragraph, we have taken into account only one level of approximation €. In
practice we need to solve problems that mix several kinds of approximation.

1.1.3 Numerical and arithmetic coupling

In theoretical numerical analysis, it is often the case that different kinds of approximations
are used: for instance the space and time discretization of a partial differential equation.
According to the numerical method chosen to approximate the equation, a condition link-
ing the different approximation parameters must be fulfilled to guarantee the convergence
of the approximation. This is called conditional stability.

An interesting example of conditional stability is a fully discrete spectral method for
a first-order hyperbolic mixed initial-boundary value problem treated by Trefethen and
Trummer [112], where the notion of e-pseudospectrum?(in exact arithmetic) is used to
express the coupling between the space and time discretizations (see also [19] for a de-
scription of this example).

It is inevitable that the last step of the approximation, that is the computation in
finite precision, must also be coupled with the other numerical approximation parameters.
A typical example is the approximation of the second derivative by finite differences: in
finite precision, the discretization parameter has to be chosen larger than a threshold de-
pending on the arithmetic precision e.

Therefore, numerical stability in exact arithmetic cannot always ensure computability
in finite precision. Instead, one has to consider a uniform stability with respect to all
approximation parameters, i.e. numerical as well as arithmetic parameters. On a com-
puter, a numerically stable method can become conditionally stable with respect to the
arithmetic of the computer.

2The e-pseudospectrum of a matrix A is the set of eigenvalues of all the matrices A + AA, where some
norm of AA is bounded by €. For more details, see Section 3.2 in Chapter 3.
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1.1.4 Exact versus finite precision computation

If the arithmetic approximation can be treated in the same framework as any numerical
computation, there remains, however, fundamental differences between exact and inexact
arithmetic. Indeed the analysis of the numerical approximation is completed when the
convergence of xg towards x is proved. However, in finite precision, it is important to
know how close z. is to z, and a small residual might not be enough to guarantee the
proximity.

Let us first mention here the convergence of iterative stationary methods to solve linear
systems (I — A)x = b. The necessary and sufficient condition of convergence p(A) < 1
(where p(A) is the spectral radius of A, i.e. its largest eigenvalue in modulus) in exact
arithmetic may not be sufficient in finite precision. When the matrix A is normal, the
necessary and sufficient condition holds in finite precision, but when A is far from normal,
this may not be the case any more (see the example of successive iterations [19, 22] where
the residual in finite precision cannot be reduced when the nonnormality increases). In
finite precision, one deals with a family of matrices {A.} for which the condition should
hold uniformly with respect to €. Therefore mathematical conditions have to be modified
so that they become robust in finite precision. This is one reason why the pseudo-spectrum
is a useful concept: convergence conditions based on pseudo-spectra can be more robust
to finite precision than those based on the spectrum alone.

Because one works in practice with a fixed and finite ¢, finite precision determines
a threshold below which it is impossible to reduce the consistency error. In return, this
not only impacts back on the forward error, but affects already the computability of a
solution. One has to revisit the mathematical conditions to obtain a solution by taking
into account the finite precision parameter: this is the way to get new conditions that are
robust with respect to the arithmetic.

Moreover, for numerical approximations, the difference F' — Fp can be known. For in-
stance, in functional analysis, an operator 1" may be approximated by a family of operators
{T},} for which the difference T'— T, is available in some norm. In linear algebra, applying
a Krylov method on a matrix A amounts to working at each step on a matrix A’ so that
A — A’ is exactly a homotopic perturbation of rank one (see Section 3.1 of Chapter 3).
However, in finite precision, the problem actually solved by the computer (F.(z:) = v.)
is not known and is, by no means, uniquely defined. This is why one is bound to design
models to represent the difference F'— F.. One of the reasons for the success of the norm-
wise model is that it deals uniquely with the norm ||F' — F.|| without any knowledge of
the structure of this difference; but this model may fail to capture phenomena in finite
precision which are strongly structured. How faithful a given model represents the reality
of finite precision computations is the central question of backward error analysis. This
will be addressed in Chapter 2.

Finally, we would like to stress the importance of using relative information in finite
precision / uncertain computations. Indeed, for proving the convergence of xy towards x
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in exact arithmetic, one can consider only the absolute norm ||zg — z||. In finite precision,
because ¢ is fixed, we need criteria to decide whether the residual consistency error is small
enough: this is done by comparing against external gauges such as the machine precision
or the data accuracy. Since these gauges are intrinsically relative, the metric to express
the forward and backward errors will naturally be chosen in a relative sense.

1.1.5 Computation in the neighbourhood of a singularity

The forward sensitivity analysis which allows us to reveal the contribution of the Jacobian
of H (i.e. the condition number) to the forward error (see Equation 1.4) is valid under
the assumption that H has continuous first derivatives at y. This assumption is valid as
long as x is not a singular point. However, despite the fact that singularities are rare,
their computational influence can be fatal. In exact arithmetic, the main borderline for
computability of nonlinear problems is that of the class of well-posed problems. Since x
is a continuous function of y, a small perturbation Ay on y (such as that induced by
numerical approximation) induces a small perturbation Az on the solution. Therefore, it
is reasonable to look for numerical methods which converge in exact arithmetic (Az — 0
as Ay — 0). But in finite precision arithmetic, the borderline is drawn closer to enclose
only the subset of the well-posed problems consisting of those problems which are reqular
enough compared to machine precision. As a result, the borderline is fuzzy and depends
on the machine precision of the available computer. This leads us to define the concept of
the distance to singularity viewed by the computer [19, 34].

We are particularly interested in algebraic singularities such as multiple roots of poly-
nomials or multiple eigenvalues of matrices. These cases offer a hierarchy of increasing
singularities: simple / double / triple / ..., which is a hierarchy of decreasing regularities.
Indeed a double root is singular when compared to simple roots (more regular points) but
regular when compared to a triple root (more singular point). The notions regular / sin-
gular are context-dependent: they depend on the point of view chosen. For each level, one
can define some stability through the notion of the Hélder continuity which allows us to
relate the forward error |Az| to the backward error |Ay|1/ 7, where + is the order of the
Holderian singularity.

1.1.6 Where does the backward error analysis a la Wilkinson stand in
this picture ?

Let us go back to the essential condition that ensures computability in finite precision:
the direct consistency error in the neighbourhood of ¢ has to be of the order of 1 in . As
mentioned in Paragraph 1.1.1, this property can be rewritten from the viewpoint of the
residual consistency error, which gives

|Fe(t) — F(t)] < C(y, F)e (1.5)

for any ¢ in the neighbourhood of z. The left-hand side of Inequality (1.5) expresses the
distance between the arithmetic approximation F; and the original problem F': it is a
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backward error in the sense of Wilkinson.

When one wishes to assess the reliability of numerical software, one should first estab-
lish that the backward error is indeed of order 1 in € and exhibit a bound for the backward
error which reveals the constant C'(y, F'). The analysis of this constant C'(y, F') may be
useful in appreciating when the computability in finite precision is severely degraded or
even impossible. It is the aim of a priori backward error analysis, as we shall see later.

Usually, one seeks for cases where the constant C'(y, F') is of the order of a few units so
that the backward error is of the order of machine precision. This is the optimal reliability
which is often referred to as “backward stability” in the field of numerical software.

1. Computability

Numerical stability ” Arithmetic reliability

W.I.t. roTﬂ’ /

Computability in finite precision

II. Quality of reliable software / numerical methods

Backward stability <  Optimal reliability

Backward error ~ C(data) x machine precision

I11. Robustness

Behaviour of the constant C(data)
under perturbations on the data

Figure 1.1: Finite precision computations at a glance

1.1.7 Conclusion

In this first part, we have presented the essence of our concept of finite precision computa-
tion. The picture given in Figure 1.1 adapted from [19] summarises the key notions that
are indispensable for a complete treatment of finite precision. Amongst these notions, the
most essential is the application of the Lax principle, for any numerical method as well as
for the arithmetic approximation. As a consequence, all the approximation parameters,
including the arithmetic one have to be coupled to determine a robust domain of com-
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putability.

As already mentioned, this work is fully developed in the book Lectures on Finite

Precision Computations with F. Chaitin-Chatelin [19]. The theory of computability is
explained therein using a wide range of numerical examples. This theory is the framework
of the work realised within the Qualitative Computing Group led by F. Chaitin-Chatelin
at CERFACS. The book was published in 1996.
Since then, my research has been focused on backward error analysis, either for numer-
ical software in finite precision or for approximation methods in exact arithmetic. This
corresponds to level II in the diagram of Figure 1.1. The backward error analysis a la
Wilkinson mentioned earlier is a complete field of research in itself. We will zoom into it
in the rest of this document. The next section is devoted to explaining what are the main
difficulties encountered when performing backward error analysis, mainly in the field of
linear algebra.

1.2 Backward error analysis a la Wilkinson

Backward error analysis is now a well-established tool in numerical linear algebra. The idea
of backward error analysis dates back to Givens [55] in the fifties and was fully developed
by Wilkinson in the sixties. It was born in the context of finite precision computations.
Assessing the quality of a solution computed in finite precision arithmetic has always
been a major concern for software developers. In the early days of computing, it was even
believed that rounding errors would render unfeasable the computer solution of large linear
systems [75]; and at that time a system involving 20 unknowns was considered as large
... When practice made it clear that solving linear equations on computers was indeed
feasible [44], it became necessary to design appropriate criteria to judge on the quality
of the computed solutions. Equality (1.4) reveals the potential sources of inaccuracy. In
particular, if a computed solution has a poor accuracy, one should be able to tell whether
the inaccuracy is due either

i) either to the use of an algorithm which behaves badly in presence of rounding errors,
or

i1) to the mathematical problem to be solved, because it is highly sensitive to pertur-
bations.

Of course, both difficulties can be present simultaneously. For a computer user, it is
crucial to be able to distinguish between the two cases, because each of them calls for a
different remedy. If the algorithm is responsible, one can try a better implementation or a
different solution technique. It the mathematical problem turns out to be responsible for
the poor accuracy, one can try to reformulate it into a less sensitive problem: this often
means one must think at a higher level from which the problem is derived (the numerical
discretization or even the physical problem for instance). Moreover, extended precision
might help in the second case while it might be useless in the first case.
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Backward error analysis was designed to allow the discrimination between both re-
sponsibilities. The essence of backward error analysis is to set the exact and the finite
precision computation in a common framework by means of the following trick, which we
call the Wilkinson principle [19]:

‘ Consider the computed solution = as the exact solution of a nearby problem.

This almost trivial idea turns out to be much more powerful than it looks at first
sight.

i) It allows us to avoid the details of the computer arithmetic: the errors made during
the course of the computation are interpreted in terms of equivalent perturbations in
the given problem, and the computed quantities are ezact for the perturbed problem.

i1) One advantage is that rounding errors are put on the same footing as errors in the
original data. And the effect of uncertainty in data has usually to be considered in
any case.

i11) It enables us to draw on powerful tools such as derivatives and perturbation theory.

iv) Tt allows us to factor out in the error bound, the contribution of the algorithm from
the contribution of the problem.

v) Finally, it allows a great flexibility in the sensitivity analysis by providing a large
choice of perturbations on the data of the problem to specify what “nearby” means.

Such an error analysis is referred to as backward error analysis because the errors are
reflected back into the original problem. The backward error measures the minimal dis-
tance of the problem to be solved and the set of admissible perturbed problems, which is
essentially done by specifying, in the original problem, the data allowed to vary and some
measure for these variations.

The condition number is the favourite companion of the backward error. The condi-
tion number of a mapping measures the amplification of a perturbation on the input data.
A mapping for which a small perturbation of the input data results in a large perturbation
of the output data is said to be ill-conditioned. The name condition number is attributed
to Turing although the notion of ill-conditioning was used much earlier. The first general
theory of conditioning was developed by Rice [92]. As for the backward error, a condition
number results from the preliminary choice of the input data allowed to vary and of some
measures for these variations, together with the choice of the output data under consider-
ation with a way to measure their variations too.

The backward error and the condition number complement each other beautifully,
thanks to perturbation theory. For regular problems (that is problems which are not
singular), they combine to give an estimation of the error on the computed solution via
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the first-order bound
forward error < condition number x backward error. (1.6)

Indeed the backward error tells the amount of deviation from the original problem, i.e.
by how much the input data have been perturbed. Then the condition number expresses
how this input perturbation affects the solution. The product of the backward error and
the condition number bounds the accuracy of the computed solution.

Some people restrict the term backward error analysis to the study of the backward
error alone. This is not our choice. By backward error analysis, we will refer to both
the backward error and the condition number, because both notions equally contribute
to the assessment of the quality of an approximate solution. To perform a complete
backward error analysis of some given problem, one should first define judiciously the

mapping d %, &: the selection of the input data d is crucial as will be seen later. The
mapping G and its datum d define the model which is meant to extract the essence of the
computational process used to solve the equation F'(x) = y. Then four steps are in order:

i) to define a metric on the input space D which the chosen data d belong to,
i1) to define a metric on the output space X where the solution x lies,

i11) to determine the backward error: given an approximate solution &, compute the
distance from y to the set {J; G(d) = 5&} in the sense of the metric defined by 1),

iv) to determine the condition number: compute the norm of the Fréchet derivative of
F with the metrics defined by i) and ii).

The arithmetic quality of an algorithm is related to the size of the backward error,
which should be as small as possible with respect to machine precision ¥. The best one can
do by running an algorithm on a computer is to introduce no more uncertainty than the
unavoidable one that results from introducing the data onto the computer. This property
is referred to as backward stability after Wilkinson [115]. Strictly speaking, this notion is
closer to the consistency (used in theoretical numerical analysis) than to a stability notion
(as a measure of sensitivity), as explained in Paragraph 1.1.2.

When the data are known with an accuracy of the order of n, then the backward
error should be compared with n. This is important when 7 is significantly larger than
machine precision and has a practical impact on iterative methods whose convergence can
be monitored via the backward error. Such a situation is common in most applications
outside mathematics: for instance the uncertainty in physical measurements leads to inac-
curate data. Of course, the accuracy of the computed solution may decrease accordingly
but, in many cases, what really matters is that the computed solution exactly solves a per-
turbed problem, indistinguishable from the original one at the level of the data uncertainty.
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Since its introduction and development by Wilkinson in the sixties, backward error
analysis has proved to be the tool of choice for the analysis of the numerical behaviour
of algorithms in finite precision, and is now fully incorporated into high performance nu-
merical libraries, at least as far as linear algebra is concerned. The package LAPACK [1],
which aims at solving most problems in linear algebra, contains mainly algorithms which
are guaranteed to be backward stable. The user is often provided with backward errors
and condition number estimates (with different metrics) which make him or her able to
have a critical view of the delivered numbers. Using a software package as LAPACK not
only ensures getting the best performance on modern architectures, but also draws the
best from the finite precision arithmetic, because the software is built upon two key prin-
ciples: an efficient cache management exploiting the memory hierarchy of the computer
and backward error analysis. The rest of this document, in illustrating various subtleties
of backward error analysis, should hopefully convince the reader that the development of
numerical software should be left to the best experts, and should make him or her able to
appreciate the fine art put into it.

The scope of backward error analysis, and its related techniques, has greatly evolved
in the last forty years, and yet this topic remains a very active field of numerical analysis
and even more in linear algebra. In this document, we wish to review the recent advances
in backward error analysis, that we structure into two main directions.

First, we will address in Chapter 2 the progress made in the use of backward error
analysis for finite precision computations, mainly in the field of numerical linear alge-
bra. As we mentioned earlier, backward error analysis is very much dependent on the
initial specifications such as the input and output data and their corresponding metrics.
A major difficulty is to make the appropriate choices so that the derived condition num-
ber and backward error produce a good error prediction. The choice of the model for
the perturbations (data, metrics, structure) chosen to derive the condition number and
the backward error is crucial. Indeed the accuracy of the error prediction given by the
first-order inequality (1.6) depends on the ability of this model to represent faithfully the
perturbations actually created by the algorithm when run in finite precision. The last
twenty years have seen a tremendous refinement in tuning the models in order to better
capture the behaviour of algorithms in finite precision arithmetic, leading to more and
more complex and accurate models. We will give a series of examples where these refined
models succeed in providing tighter error predictions. At the same time, the more complex
the model, the more difficult the backward error analysis. The techniques for establishing
the formulae for the backward error and the condition number have also evolved and we
will show examples of systematic approaches that can help in deriving these formulae.

At this point in our writing, we have been intentionally ambiguous and used the terms
“computed solution” or “approximate solution” indiscriminately. If backward error anal-
ysis was primarily designed for a better understanding of finite precision computation,
nothing in its essence restricts it to finite precision. It can serve to assess the quality of
any approximate solution, wherever the approximation comes from. For instance, back-
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ward error analysis can be used to analyse various kinds of perturbations such as physical
perturbations. It is also the backbone of eigenvalue and pseudo-eigenvalue analysis, an
area which has been blossoming for the last fifteen years. It can also be used to study
the convergence, in exact arithmetic, of approximation methods. In Chapter 3, we will
illustrate the ever-growing role of backward error analysis outside finite precision.

We hope that this document gives the reader a flavour of the power and beauty of
backward error analysis.



Chapter 2

Backward error analysis for finite
precision computations

We mentioned in the introductory chapter that a major issue in analysing finite precision
computations is that one never knows explicitly the problem which is actually solved by the
computer. A way to circumvent this difficulty is to work with a model which is supposed
to represent as faithfully as possible the behaviour of an algorithm in finite precision.
The difficulty in designing a good model is a recurrent question in this chapter. The first
four sections show how the models used in linear algebra are being refined to increase
the performance of backward error analysis in numerical software. In the fifth section,
we address the particular case of singular problems which require a specific treatment for
the forward error is not anymore proportional to the backward error. We then present
the notion of pseudosolution which stems directly from the backward error, and which
has proved to be extremely useful to address the problems of conditional stability and
robust convergence conditions evoked in the previous chapter. We end this chapter by an
overview of the toolbox PRECISE.

2.1 Models

In order to go further in the subtleties of backward error analysis, we need to introduce
some notations and definitions. Let G be a regular mapping such that

G:D — X

d — .

We denote by ||.||p (resp., ||.]|x) a metric on the data (resp., solution) normed linear space
D (resp., X). The subordinate norm ||L||p x of a linear operator L is defined by

|| Ld|| x
azoep |ld||p

23
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Definition 2.1.1 The condition number of G at d is
K =|G'd)p,x
where G'(d) is the Fréchet derivative of G at d.

Definition 2.1.2 Let & be an approzimate solution of the equation G(d) = x. Then the
backward error associated with T is defined by

o .- - <ol
n(z) An;g,}){s_(h G(d+ Ad) = z; [|Ad||p < €}

Some remarks are now in order.

1. The characterisation of the condition number as the norm of the Fréchet derivative
is due to Rice [92]. The condition number measures the stability of the mapping G
at the point d.

2. The definition of the mapping d % 2 relies upon implicit choices which are of major
importance. Let us take an example from the solution of linear systems. If A is a
square n X n matrix with no particular properties (apart from being invertible), the
linear system Ax = b where x and b are two vectors of length n can be solved by
a generic algorithm such as Gaussian Elimination with partial pivoting (GEPP). In
such a context, choosing the mapping A — = = A~1b seems a reasonable way to
get useful information on the sensitivity of the linear system and on the quality of its
computed solution. However, if A possesses strong structural properties, say A is a
Vandermonde matrix defined solely by its generic coefficients a = {ay,...,a,}, then
one should use the appropriate Bjérck-Pereyra algorithm [7] which works directly on
the coefficient vector a rather than on the entries of the matrix A;; = a! ~1 19, 71).
Clearly, the mapping a — x = A~'b should expose the relevant information. In
particular, the corresponding backward error will indicate whether an approximate
solution solves a nearby Vandermonde system, as opposed to a nearby arbitrary
linear system.

3. The definition of the backward error as a min holds because of the regularity
properties of G. By convention, the backward error is infinite whenever the set

{J eD; G(J) = 5:} of admissible perturbations is empty.

4. The condition number defined above is absolute (resp. relative) if the metrics defined
on X and D are absolute (resp. relative). The same remark holds for the definition
of the backward error.

For a choice of a mapping and for a choice of the metrics, one is able to perform a backward
error analysis which amounts to deriving the condition number and the backward error
according to Definitions 2.1.1 and 2.1.2 respectively; stated in this way, it is a purely
mathematical game. The expertise of the numerical analyst comes when choosing the right
mapping and the right metrics to serve a particular purpose which can be, for instance,
to understand the numerical solution of some mathematical problem with some algorithm
in finite precision. By “understand the numerical solution”, we mean at least
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e anticipate the presence of ill-conditioning and determine its causes if possible,
e assess the backward stability of the algorithm,
e predict the forward error.

Great care must be taken in choosing the model of perturbations, that is the data and
the metrics, so that the model faithfully represents the behaviour of the algorithm in
finite precision arithmetic. Even for linear systems, which are the most studied problem
of linear algebra, the design of an efficient model is not a trivial task. The first model
used to perform a backward error analysis on a square linear system is the normuwise
model on the mapping (A4,b) — = = A~'h. The normwise metric on the input space
D=C"" x(C" is

[AA] [|Ab]
I(AA, Ab)||lp = max{— —
P 1Al bl
and the normwise metric on the output space X = C" is
|Az]|
Az, =
Y]
where || . || is a classical subordinate norm in C". The relative normwise condition number

turns out to be

_ AT QAN e+ o)

[l

Ky (2.1)

and the normwise backward error associated with an approximate solution Z [93] is

- |AZ — b||

W) = AR el (22)
For a long time, this model due to Wilkinson has been the only one available to analyse the
finite precision solution of linear systems. However, its limitations were soon appreciated.
In particular, Ky depends upon a diagonal scaling of the data A and b: it is possible
to scale a linear system so that its normwise condition number becomes arbitrarily large,
whereas the accuracy of its numerical solution may not affected if an appropriate lin-
ear solver is used. Moreover, when the first sparse solvers were developed, the researchers
started wondering if a sparse solver in finite precision would solve a nearby sparse problem
with the same sparsity pattern as the original one. More than fifteen years after Wilkin-
son’s work, the tools to answer these questions were given by Skeel [99] with the design of
a componentwise model inspired by the earlier work of Bauer [4]. In the componentwise
model, the metric on the input space is

I(AA, AB) | = min {|AA] < 2 |A], A < e[b]}
£

where the inequality |[AA| < e |A| means |AA;;| < e|A;;| for any i and j. The metric on

the output space is

Az
Az = 12l

(21
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The resulting condition number is

_ AT AT + 18D

KC ) (23)
1]l
and the backward error associated with the approximate solution & [87] is
- Az —b|;
ne(Z) = | ! (2.4)

max ———— ;7 -
i=1,..n (|A||Z| + |b]):

This backward error analysis is independent of any diagonal row scaling of the linear
system. Moreover, the admissible perturbations have the same sparsity pattern as A,
otherwise the backward error is infinite. The componentwise model meets its objectives
and has been extremely successful in the numerical study of direct solvers (either dense
or sparse) based on GEPP. The backward error returned by the general purpose linear
solver in LAPACK is the componentwise backward error. Arioli, Demmel and Duff were
the first to use it for sparse systems.

If the componentwise model prevails for linear systems solved by the Cholesky or the
GEPP algorithm, the normwise model still performs well on other kinds of linear solvers
such as QR factorisation, or iterative linear solvers such as Krylov-type methods [2]. In
the latter case of iterative solvers the backward error is, in addition, an excellent stop-
ping criterion; convergence can be declared when the backward error has reached machine
precision (at best) or becomes smaller than the data uncertainty (if any). A residual
alone would not serve as a stopping criterion because its size cannot be checked against
any reference. For a linear system, the backward error is only a normalised residual (see
Equalities 2.2 and 2.4), but the normalisation is the key!

In joint work with CNES [45], we have developed a GMRES implementation for com-
plex matrices. This code was then further improved to deal with any type of arithmetic
and to satisfy some software quality requirements enabling its efficient use on sequential
and shared or distributed memory parallel computers. In particular, convergence is moni-
tored though the normwise backward error, that the user can scale according to his or her
needs. When preconditioning is used, the normwise backward error on the preconditioned
system is also made available. The resulting packages [46, 47] have been put in the pub-
lic domain, www.cerfacs.fr/algor/Softs/, with a non-commercial licence agreement.
It is regularly downloaded by many researchers working in various areas ranging from
geophysics or ocean modelling to theoretical physics. In particular, the complex version
has been recently integrated into a public domain circuit simulator developed at Bell Labs.

In the light of these comments, one can see how delicate is the task of finding the
appropriate model of perturbation in order understand the behaviour of an algorithm in
finite precision. Given an algorithm, two situations arise:

1. one may want to assess the backward stability of the algorithm under study and to
identify, whenever possible, the cases where the algorithm may fail to be backward
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stable. This is usually the job of software developers. This approach can be called
a priori backward error analysis, or

2. given a computed result, one may want to check whether it is the solution of a
nearby problem. A formula for the backward error is needed. Any user of numerical
algorithms, and in particular engineers, are likely to be in this situation. Deriv-
ing formulae for backward errors and condition numbers can be called a posteriori
backward error analysis.

In the next two sections, we describe in detail these two different aspects of the backward
error analysis.

2.2 A priori backward error analysis

The software designer wants to assess the backward stability of a newly designed algo-
rithm. In particular, he or she may want to anticipate in which cases (that is often for
which class of data) an algorithm may fail to deliver a backward stable answer. For such
a purpose, the software designer has to cope with the propagation of the round-off errors,
in order to appreciate how every floating-point operation reflects back as a perturbation
onto the data: the details of the arithmetic are not hidden any more but this is the price
to pay to obtain general results on the backward stability.

For instance, one of the first results achieved with this approach for linear systems
is due to Wilkinson. We set ~, = nu/(1 — nu) where u is the unit round-off. Let Z be
the computed solution of the linear system Az = b with GEPP. Then Z solves exactly the
perturbed linear system (A + AA)Z = b with ||AA| < 2n2ynpn [|All,,, Where p,, is the
growth factor (ratio between the largest element computed during the factorisation and
the largest entry of A, in modulus). This result ensures that, provided that the growth
factor is reasonable, GEPP is normwise backward stable. Further work has been carried
out after Wilkinson’s result to identify the classes of matrices with large growth factors.
Apart from contrived examples, very few cases of practical origin showing large growth
factors have been reported [72].

A priori backward error analysis requires an intimate knowledge of algorithms and
finite precision. Wilkinson performed the a priori backward error analysis of many fun-
damental algorithms in numerical analysis, including linear systems, eigenproblems or
polynomials [116, 117]. Higham took over from him and has revisited backward error
analysis in a really enjoyable recent book [72] where a priori backward error analyses are
given for most problems and major algorithms in linear algebra, except for eigenprob-
lems. The clarity of the text and the demonstrations stems from a hierarchical use of
backward analysis results. The starting point is the backward analysis of an elementary
floating-point operation. With the IEEE standard, the computed result fl(xz op y) satisfies

fi(z op y) = (z op y)(1 +9)
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where |0| < u and op is any of the four basic operations +, —, X and /. Building upon this
property, one is able to establish the componentwise backward stability of inner products,
compensated summation, solution of triangular systems with backward or forward solves.
When tackling more complex problems, one should try to make as much use as possible of
the above formalism and the results previously obtained. Higham’s book has also proved to
be very helpful in teaching because it provides the reader with many results and references.

2.3 A posteriori backward error analysis

A posteriori error analysis aims at deriving formulae for the backward error and the con-
dition number once the model of perturbation has been defined. Recent advances in the
techniques used for establishing these formulae have been achieved. We review them now.

The condition number of the mapping d %, 2 is the norm of the Fréchet derivative.
When the model of perturbations (that is the metrics) and the mapping are simple enough,
the condition number can be obtained in two steps:

1. derive a first-order Taylor expansion of the mapping G at d and bound it with the
given metrics,

2. exhibit a particular perturbation of the data which achieves the bound.

This approach is particularly successful in many problems of linear algebra (linear systems,
matrix inversion, polynomials, eigenvalues) with the normwise and componentwise models.

However, for more complex problems and/or more complex metrics, the second step
of this approach may not be practical. This happens in particular when dealing with very
structured perturbations.

A step forward has been made in the recent work of Gratton [63] following [31], making
use of the Kronecker product. Consider the mapping

G . Rmxn N ]RTXS

d — =,

where the input space R™*" and the output space R"*® are both equipped with the
Frobenius norm. Let M (G, d) be the matrix of the linear application which represents the
derivative G'(d) in orthonormal bases of R™*™ and R"**. Then the condition number of G
is ||M(G,d)||y. The Kronecker product arises naturally when one looks for an expression
of M(G,d) in vector form so that the 2-norm is easily computable. Using this approach,
Gratton was able to derive the condition number of several mathematical problems, such
as

e the matrix exponential [81, 63],

e linear least-squares [62],
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e the L and U factors of the LU factorisation of a square matrix [63],
e the Q and R factors of the QR factorisation of a square matrix [29, 63],
e the factors of the polar factorisation of a rectangular matrix [24].

Using the same approach, we have performed an analysis of the factors of the LT DL
factorisation, in the context of a collaboration with CNES [17]. The accurate computation
of the trajectory of a satellite using GPS measurements can be done using the LAMBDA
method which basically solves an integer least-squares problem. The core of the LAMBDA
method is an LT DL factorisation. We were able to derive the condition number for the
L and D factors and use them to check the accuracy of this key step. Using real data, we
were able to confirm the validity of their results to CNES.

The derivation of a formula for the backward error is usually more difficult than for
the condition number, because in general it is a nonlinear problem. If the backward
error reduces to a normalised residual in various problems of linear algebra (such as linear
systems or eigenproblems), there are many cases where its formulation is very complex
[50, 62]. The knowledge of a formula for the backward error and the condition number
is also very useful for software designers. Sometimes, the formulae themselves reveal the
source of potential numerical dangers. For instance, for the normwise relative condition
number of the eigenvalue problem Ax = Az, which is

1Al el el
K(\) =
N = el

one sees that ill-conditioned problems are those where the left eigenvector z, becomes
orthogonal to the right eigenvector x, that is when the eigenvalue A is close to being
defective.

When the formulae are more obscure, it might be interesting to turn to an approach which
consists in numerically finding data which maximise the condition number or the backward
error. This can be done for instance through a direct search algorithm [73]. We found
it particularly useful in practice and easy to do with MATLAB which offers well-suited
optimisation routines.

2.4 Two examples of backward error analysis

It this section, we present two examples of our work in backward error analysis for linear
algebra. The first one concerns the generalised eigenvalue problem. The second one deals
with linear systems of the type A* Az = b that arise for instance in Krylov methods for
shifted and inverted eigenproblems. Both cases illustrate the improvement that can be
gained in the understanding of the algorithmic behaviour in finite precision by appropri-
ately choosing the mapping to be studied.

We give a quick overview of each of them. For the complete treatment, the reader is
referred to the articles
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e A note on the normwise perturbation theory for the regular generalized eigenproblem
Ax = ABz, with V. Toumazou, published in the Journal of Numerical Linear Algebra
with Applications [52], and

e Structured backward error and condition number for linear systems of the type
A*Az = b, with S. Gratton and V. Toumazou, published in BIT [50].

Both articles are given in the Annexes.

2.4.1 Backward error analysis for the generalised eigenproblem

The generalised eigenproblem (P) : Az = ABx, where A and B are two square matrices,
often appears at the heart of physical applications. The problem (P), or equivalently the
matrix pair (A, B), is said to be regular if there exists at least one complex number z for
which det(A — zB) is nonzero. Otherwise it is called singular. Computing eigenvalues of
singular matrix pairs belongs to the class of ill-posed problems [40, 41], i.e. their eigenval-
ues can change discontinuously as functions of A and B. In this work [52], we restrict our
study to eigenproblems for regular matrix pairs which are well-posed problems. Regular
matrix pairs (A, B) for which B is nonsingular have the same spectrum as the matrix
B71A. When B is singular, the matrix pair admits at least one infinite eigenvalue.

In [101], Stewart and Sun establish the condition number of the regular generalised
eigenproblem for the choice of a specific norm, namely the chordal norm. The main mo-
tivation for using such a norm is to treat finite and infinite eigenvalues within the same
formalism. In such a case, it is useful to represent the eigenvalue as a pair of numbers
and the chordal norm arises naturally to cope with this situation. The price to pay to
handle infinite eigenvalues is to deal with this very special norm, the chordal norm, which
is difficult to interpret in terms of physical perturbations.

However many situations arise in practice where one seeks a finite eigenvalue only, or
where at least one of the two matrices A or B is nonsingular. It is then possible to use
more natural norms to represent perturbations on the data A and B and on the solution A,
that is norms appropriate for easily representing physical perturbations. Our formulation
relies upon a measure which has the property to be flexible because it can be absolute or
relative with respect to the matrix A and/or B according to the user’s prescription. The
distance between the two matrix pairs (A, B) and (A4’, B') is defined by

6 = min {w > 0; HA — A'H < wa and ||B — B'” < w,B} .

In the context of perturbation analysis, keeping A (resp., B) unchanged amounts to set
a (resp., ) to zero. Setting o = ||Al| and 3 = || B|| gives the classical normwise measure.
Using this metric, we study the mapping (A, B) — (A, z) for which we formulate the
backward error and the condition number. This approach leads to two improvements in
comparison with what existed in the literature:

e it performs better than the chordal metric in the prediction of the forward error,
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e it is more appropriate for the analysis of the QZ algorithm than to apply the standard
model (C' +— (), x)) on the eigenproblem Cx = Az with C' = B~1A. In particular,
it allows us to check whether an appproximate solution is the exact one of a nearby
generalized eigenproblem.

This approach has been further developed for componentwise analysis [70] and ex-
tended to polynomial eigenproblems [102].

2.4.2 Linear systems of the type A*Ax =10

We consider linear systems of the type
A*Ax =0 (2.5)

where A is an m X n rectangular and complex matrix (with m > n) and x and b are two
complex n-vectors. We assume that A is of full rank n and we denote its pseudo-inverse
by Af. Such linear systems arise in a number of applications which require the compu-
tation of the smallest singular value omin of a large matrix A. A possible way to do it
is to compute the smallest eigenvalue Apin of A*A with a Lanczos method with invert
(then omin = vAmin). Therefore, the computation of the Krylov basis requires us to solve
repeatedly linear systems such as (2.5). A particular case of interest is the computation of
the two-norm of resolvent matrices (A — zI)~!. For instance, the computation of spectral
portraits consists in evaluating H (A—zD)~t H2 = omin(A — zI) for z in a prescribed region
of the complex plane. Systems of the form A* Ax = b occur also in other contexts, such as
constrained linear least-squares problems [6] or bound constrained quadratic programming
problems [85, 86].

Our purpose is to be able to predict reliably the computing error made in solving (2.5)
in finite precision. This can be done classically by means of backward error analysis [116],
provided that one has access to a condition number and the associated backward error
for (2.5).

Classical sensitivity analysis of (2.5) leads to the conclusion that the condition number
K is of the order of the square of the condition number of A, where the condition num-
ber of A is defined by Ka(A4) = || 4], ||ATH2. Indeed, Ko(A*A) = ||A*Al|, ||(A*A)_1H2 =
(114]l HAT||2)2 = K2(A). Behind this result, there is the assumption that the linear sys-
tem (2.5) is subject to normwise perturbations on the matrix B = A*A. This condition
number is relevant to predict a computing error when the algorithm used to solve (2.5)
implicitly generates such global perturbations in finite precision. We can expect that this
is the case if we form the product B = A* A explicitly and then solve (2.5) by means of a
Cholesky factorisation.
However, most algorithms used to solve (2.5) never build the product A*A. They rather
involve either a factorisation of A (in the case of direct methods) or matrix-vector multi-
plications A*z and Az (in the case of iterative methods). Therefore, a condition number
useful for predicting the error in the numerical solution of (2.5) by such algorithms should
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take into account structured perturbations such as perturbations in the matrix A only,
and the mapping under study should be A —— x rather than B —— .

Using the technique of the Kronecker product mentioned in Section 2.3, we derive the
condition number and the backward error of the mapping A — x such that A*Ax = b.
The structured condition number of (2.5) can be as large as a quantity of the order of
K2(A) when the solution z or the right-hand side b are in the direction of the right singular
vector of A associated with the largest singular value. But choosing a solution or a right-
hand side in the direction of the right singular vector associated with the smallest singular
value of A permits to keep the structured condition number of (2.5) of the same order as
the condition number of A. We illustrate that our model is appropriate on algorithms that
do not explicitly build the matrix A*A. Numerical experiments that show the relevance
of this condition number in the prediction of the computing error are provided in [50].

2.5 Singular problems

2.5.1 Backward error analysis for well-posed singular problems

Well-posed problems which are so smooth that the solution is at least a C! function of the
data, have been defined as regular problems. Their solutions computed in finite precision
arithmetic with a reliable algorithm are generally good approximations of the exact ones,
provided that the problems are not too ill-conditioned.

Any problem which is not regular is called singular. It is in the neighbourhood of
such singularities that computational difficulties arise. Singular problems are not generic:
under perturbations (such as those induced by finite precision arithmetic), they are usually
transformed into regular problems which then appear as classically ill-conditioned (their
condition number tends to infinity).

If one wants to compute a multiple root of multiplicity m, it is perturbed by finite
precision computation into a set of m (often distinct) approximate roots. Each individual
root is ill-conditioned: its condition number approaches infinity. Any method which is
stable at a regular point becomes unstable with respect to a linear analysis at a singular
point. In order to recover some stability, one has to consider the Holder-continuity of
order v = 1/m: the error ||Az|| on the solution is proportional to ||Az|”, the v** power
of the size of the perturbation on the data.

If one is not primarily interested in each individual approximation, one can recover
stability by grouping the m approximate roots, that is, by taking the computed arithmetic
mean as an approximation to the multiple root.

The linear condition number, which corresponds to some measure of the Fréchet
derivative (see Definition 2.1.1) is a measure of stability for a regular problem. It tends
to infinity whenever the problem approaches a singularity. For Holder singularities of
well-posed problems, we can likewise define normwise Holderian condition numbers. It



for finite precision computations 33

measures the intrinsic difficulty of computing a multiple root, knowing its order ~, and
taking into account the fact that the error ||Az|| is now proportional to the 4* power of
the size of the perturbation on the data.

Condition number

In linear algebra, the most important singular problems of Holder type are multiple
roots of polynomials and defective eigenvalues.
For roots of polynomials, the Holder condition number was established by Wilkinson
[116] for a componentwise metric. Let £ be a root of multiplicity m of the polynomial
p(x) =Y. 7_oarz®. Then its Holder condition number is

ch/m:|f|\p<m (ZW ‘) |

A similar formula for the normwise condition number has been established by Gratton
[63].
The Holder condition number for a defective eigenvalue of index [ is

i = o)

where D = (A — AI)P is a nilpotent matrix and P is the spectral projection. Such a
result can be derived directly from the Laurent expansion of the resolvent norm near A
[69, 76]. It can also be derived from the work of Lidskii [80] about the Puiseux series
expansions of defective eigenvalues. This alternate derivation has been done by Moro,
Burke and Overton [83]. The relationship between the Holder condition number and the
stratification diagram for defective eigenvalues is examined in [26].

Backward error

The distance to singularity is a backward error by definition: it is indeed the size of
the perturbation to the data to render the problem singular. Note that the classical defini-
tion of the backward error is not affected by the singularity: the formula for the backward
error associated with an approximate eigenvalue X or an approximate polynomial root &
hold even if one tries to compute a multiple root or a defective eigenvalue. It is because
the backward error answers the question: what is the distance to the nearest polynomial
(resp., eigenproblem) for which # (resp., A) is an exact root (resp., eigenvalue) ?

It would be different, of course, if one was looking for the nearest polynomial (resp., eigen-
problem) having & (resp., A) as a multiple root (resp., defective eigenvalue).

This subtle difference has had some consequence on the definition of the distance to sin-
gularity, that we address in the next paragraph.
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2.5.2 Condition number and distance to singularity

Regular problems which are ill-conditioned are close to singularity. But which singularity 7
And how close ? This question of the distance to singularity has been central in numerical
linear algebra for the past few years. There have been many efforts to relate the dis-
tance to singularity with the condition number. And in many cases, the question remains
open. Several difficulties arise. First, the metrics chosen have a great impact on the com-
plexity of the answers. Second, the definition of the singular problem is not always unique.

Let’s start by an (apparently) simple example: the matrix inversion A — A7L. It
is easy to define the set of singular problems: it is the set of singular matrices. With a
normwise measure, the distance to singularity of a regular matrix is 1 /(|| A|| ||A_1 H) This
theorem, often attributed to Turing, seems to have already been proved by Banach in the
20s. It was rediscovered by Eckart and Young in 1939 with the 2-norm, and proved by
Gastinel for an arbitrary norm. It shows that the normwise condition number of a matrix
is the reciprocal of the distance to singularity. The higher the condition number, the closer
the matrix to singularity. In view of this simple and nice result, many efforts have been
made to relate the componentwise condition number with the componentwise distance to
singularity. The componentwise distance to singularity

0c(A) =min{|AA| <e|A|; (A+ AA) is singular } = nc(0)

has been characterised by Rohn [94]. The evaluation of this formula has been proved
to be of NP complexity [88]. The term 7¢(0) is the componentwise backward error as-
sociated with the approximate solution z = 0 for the problem consisting in finding the
smallest eigenvalue (in modulus) of A: indeed, a singular matrix has a zero eigenvalue.
It can be easily shown that the componentwise distance to singularity is always larger
than the inverse of the componentwise condition number K¢ (A), which means that a
well-conditioned matrix is far away from a singular matrix, in a componentwise sense.
But what about the reciprocal statement 7 Demmel [39] shows by complexity arguments
that no simple relationship can hold between dc(A) and K¢(A). Higham and he also
conjecture that the ratio between dc(A) and the minimum condition number achievable
by a diagonal scaling of A cannot be larger than a factor of the problem size n. This
is what we also observed on our computer experiments using the toolbox PRECISE and
reported in [19]. This conjecture has been proved by Rump [95, 96] who establishes that a
matrix which is ill-conditioned in a componentwise sense is also close, in a componentwise
sense, to a singular matrix. However, he also shows that, if the matrix is symmetric,
and if the componentwise perturbations are constrained to preserve the symmetry, then
an ill-conditioned matrix can be arbitrarily far from the nearest singular matrix, in this
structured componentwise sense [97].

Matrix inversion is a typical example where the singular problem is uniquely defined
and the complexity arises from the metric. Let’s turn to examples where the nearest
singular problems have been defined in various ways: this is the case in the literature of
polynomials and eigenproblems. As suggested in the previous section, there are two ways
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of defining the distance to singularity for a polynomial p having a root x:

A = min{||Ap|; (p+ Ap) has a multiple root at z},
0 = min{||Ap|; (p+ Ap) has a multiple root y near z}.

Both definitions produce a different relationship with the condition number. Because of
the constraint on p in A (x is exactly a multiple root of (p + Ap)), A is proportional to
the reciprocal of the condition number. On the contrary, ¢ is proportional to some power
of the reciprocal of the condition number. In the paper [34], co-authored with F. Chatelin
and T. Braconnier and published in the Journal of Numerical Functional Analysis and
Optimization, we investigate and illustrate this difference and we give a conjecture that
links § with the condition number. This paper is given in the Annex. Using a simple 3 by
3 matrix whose Jordan structure is parameterized, we give arguments of why we believe
that the definition of ¢ is most useful in the context of finite precision computations.
In finite precision computations, an essential parameter is what we call the “distance
to singularity viewed by the computer” [19], that is the maximal size of perturbations
which a regular problem can be subjected to, while remaining regular for the computer.
Such a distance is often in practice a good approximation to §: this reflects the fact
that the actual computation at a regular point x is influenced by the presence of the
closest singularity y in the neighbourhood of z. Gratton [63] has checked our conjecture
in the context of polynomials in one variable by giving a formulation of the distance to
singularity after refining the definition of 4, where the constraint “y near z” has to be
specified mathematically.

2.6 Backward error and pseudosolutions

When we compared exact and finite precision computations in Section 1.1.4 of the Intro-
duction, we emphasised the fact that some mathematical conditions (such as a necessary
and sufficient conditions for convergence), established in exact arithmetic, may not be
robust in finite precision. The notion of pseudosolution that we present now is one way
to design more robust conditions.

Let F(z) = y be the equation to be solved and G(d) = z be the mapping under
consideration to obtain the solution z. Let & be an approximation of the solution z. The
backward error 7(Z) associated with  has been defined (see Definition 2.1.2) as the size
of the smallest perturbation Ad = d — d of the data d such that 7 is the exact solution of

the perturbed problem G(d) = Z. The explicit formula for n(z) depends on the metrics.

Definition 2.6.1 The set of the pseudosolutions for the mapping G(d) = x is defined by
Ye(w) ={z n(z) < e}

for any € > 0.

The set of e-pseudosolutions represents all the points in the solution space X that can
be considered as an approximate solution of the equation with a backward error less than
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e. In particular, if the computed solution Z is such that n(Z) = €, then X (x) represents
the set of points z in the neighbourhood of z which are indistinguishable from x by the
computation. The notion is related to that of domain of uncertainty for the root x [113].
The larger the set ¥, (z) around z, the more unstable the mapping G at d. Knowledge of
x is not required; it is sufficient that the set ¥ (z) be large.

It may be interesting to look at the border 0%¢(z) of ¥.(z) and determine whether it
encloses a large region. When the border 0¥ (z) is not computable because, for exam-
ple, one has no explicit formula for the backward error or because each component of
n(Z) depends on the whole vector &, one can alternatively plot the sample of perturbed
computed solutions obtained by random perturbations of the data of amplitude less than .

The graphical display of 0%, provides an informative description of ill-conditioning.
Indeed, the first-order bound (1.6) for a given backward error would define a circle around
the exact solution. The shape of the set of e-pseudosolutions gives a more global and
structured view of the effects of ill-conditioning by expressing how it diffuses in the solu-
tion space.

There are two problems which lend themselves very naturally to a graphical display of
0%,. They consist of the computation of the set Z = {z;};=1,... n of roots of polynomials,
and of the spectrum o = {\; }i=1,...n of matrices, because both sets are in¢'. The first one
has been addressed by Mosier [84] under the name of root loci, used in linear control theory;
see also Hinrichsen and Kelb [74] and Toh and Trefethen [104]. In [19], we compare the
set of pseudo-zeros of polynomials for normwise and componentwise perturbations, and
examine the relationship with pseudoeigenvalues of the associated companion matrices.
The second problem, that is the set of pseudoeigenvalues, has been a very active area of
numerical analysis in the last ten years. We address it now.

The e-pseudospectrum Y. of a matrix A is the set defined by

Ye = {ZE(C; 77(2) SE}

where 7(z) is the backward error associated with the approximate eigenvalue z. The spec-
tral portrait of a matrix [19, 57] consists of a graphical display of the map z — 7(z)
in a prescribed region of the complex plane: its level curve at the value € is the border
of ¥X¢. The definition of X, is metric dependent. If the normwise pseudospectrum has
been so far the most often used, componentwise pseudospectrum or any more structured
pseudospectra may play a role in specific areas (see [27] for pseudospectra with homotopic
perturbations and [103] for an example of structured perturbations in control theory).

A feature that has greatly helped in the success of the normwise pseudospectra is that
it is easily computable. Indeed ny(z) = 1/(H(A - zI)_1||2 |Ally) is the scaled recipro-
cal of the norm of the resolvent. This quantity can also be interpreted as the normwise
backward error of the scalar z as an approximate eigenvalue of A. It is also the relative
distance of (A — zI) to singularity. A large amount of literature has been devoted to
computation methods to evaluate ny(z) and the spectral portrait. We have developed
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parallel software tuned for distributed memory machines which computes the pseudospec-
trum in a predefined region of the complex plane by evaluating the resolvent norm with a
Lanczos method [48, 105]. Incidentally, the work on linear systems of the type A*Ax = b
described in Section 2.4.2 arose in this context from the necessity of validating the com-
putational process to evaluate the resolvent norm. This software is part of the PRECISE
toolbox [19] which is described in next section. It has been used to provide spectral
portraits to MatrixMarket, the well-known repository of matrices maintained by NIST
(http://math.nist.gov/MatrixMarket/). See also [110] and the reference therein for a
survey on the computation of pseudospectra.

On the contrary, the componentwise pseudospectra is not computable in a closed form.
Indeed its definition is based on the componentwise backward error associated with the
approximate eigenvalue z which can be written as

ne(z) = rn>i(r)1{|AA| <elA|; (A+AA—zI) is singular} .
&€

Clearly, nc(z) is also the componentwise distance to singularity, and, as we mentioned in
Section 2.5.2, it cannot be simply related to the componentwise condition number and its
computation is NP-hard. When the pseudospectra are not easily computable, one can turn
to the perturbed spectra which consist of the plot of the eigenvalues of (A+AA) where AA
satisfies the chosen model of perturbations and varies in size. Many such plots are given
in [19] and the corresponding software is also part of the toolbox PRECISE. These plots
reflect the most influential Jordan structure in the vicinity of the matrix A. The notion
of the “most influential Jordan structure” has been studied by Ilahi [76] in his Ph.D. thesis.

One of the first uses of pseudospectra in numerical analysis is attributed to Varah
[114]. This idea is closely related to the earlier notion of the spectrum of a family of
matrices [58]. In [19], we have chosen to define the pseudospectrum from the backward
error, which allows flexibility according to the choice of the underlying model of per-
turbations. Its extension to the generalised eigenproblem was done by Toumazou [105].
Recently, Tisseur and Higham [103] have taken the same formalism to extend the notion of
pseudospectra to polynomial eigenproblems (with normwise or structured perturbations).
Because he is concerned with applications in numerical approximation (rather than finite
precision computations), Trefethen [108] considers alternatively an absolute norm and de-
fines absolute e-pseudospectra, as we will see in Chapter 3. He and his co-workers have
popularised plots of perturbed spectra (with complex normwise perturbations) in many
instances (see for example [107, 108]).

We end by an example illustrating the need for robust conditions of convergence in
finite precision. When an eigenvalue X is computed in finite precision with a backward
error of €, the e-pseudospectrum encloses all the approximate eigenvalues having at least
the same level of quality as A\. The larger the e-pseudospectrum, the more unstable the
eigenproblem. Matrices that are good candidates for having a large e-pseudospectrum
are those with a high departure from normality. The influence of high nonnormality on
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eigenvalue computations has been one of our major concerns and has been addressed many
times in the literature [19, 15, 20, 22, 33, 66, 105]. An example from electromagnetism
(provided by the Electromagnetism Project at CERFACS) where the pseudospectra can
help in understanding finite precision computations can be found in [105]: a stationary
iterative scheme for solving a linear system diverges whereas the eigenvalues of the iteration
matrix have been proved to be strictly smaller than 1 in modulus. The pseudospectrum
reveals that a perturbation AA of size of the order of machine precision suffices to make
(A+ AA) have eigenvalues outside the unit circle. The condition that “the spectral radius
of the iteration matrix is less than 1”7 is necessary and sufficient in exact arithmetic, but
is not sufficient in finite precision. See also [19] for a similar academic example.

2.7 The toolbox PRECISE

PRECISE is a set of tools provided to help the user set up computer experiments to ex-
plore the impact, on the quality of convergence of numerical methods, of finite precision
as well as other types of prescribed perturbations of the data.

Because stability is at the heart of the phenomena under study — mathematical as well as
numerical stabilities —, PRECISE allows one to experiment about stability by a straight-
forward randomisation of selected data, then gets the computer to produce a sample of
perturbed solutions and associated residuals, or a sample of perturbed spectra.

The idea of using random perturbations on a selection of data, or parameters, to
get information on the stability of dynamical processes is very natural and very old. It
has been used extensively in physics and technology, but it has not gained popularity in
numerical analysis, nor in numerical software. However, the idea has often been recom-
mended by the best specialists, as illustrated by the following quotation taken from [36]:
“In larger calculational problems, the relations between input data and output data are so com-
plicated that it is difficult to directly apply the general formulas for the propagation of error. One
should then investigate the sensitivity of the output data for errors in the input data by means of an
experimental perturbational calculation: one performs the calculations many times with perturbed
input data and studies the relation between the changes (perturbations) in the input data and the
changes in the output data.”

This quotation serves as an excellent introduction to PRECISE, which provides an

experimental environment for the engineer or the software developer to test the robust-
ness of a numerical method or of an algorithm with respect to finite precision and data
uncertainty.
It allows one to perform a complete statistical backward error analysis on a numerical
method or an algorithm to solve a general nonlinear problem of the form F(z) = y (ma-
trix or polynomial equation), at regular points, and in the neighbourhood of algebraic
singularities. It provides an estimate of the distance to the nearest singularity viewed
by the computer, as well as the order of this singularity. It can also help to perform a
sensitivity analysis by means of graphical displays of samples of perturbed solutions.
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PRECISE offers the following facilities:

1. a module for statistical backward error analysis: it provides a statistical estimation
for:

condition numbers at regular and singular points, for the algorithm/method
and the problem,

backward errors,

reliability and quality indexes,

distances to singularity, or dangerous borders,

order of Holder-singularities.

2. a module for sensitivity analysis: it provides graphical displays of:

perturbed spectra,

spectral portraits and pseudospectra for matrices,

sensitivity portraits and sets of pseudozeros for polynomials,

divergence portraits for iterations depending on a parameter.

PRECISE has been intensively used, since 1988, in several industrial environments
(IBM-France, Thomson-CSF and CERFACS) to test various laws of computation that
emerge from invariant patterns of behaviour for computations in finite precision (see [19])
It has also been used, more classically, to assess the numerical quality of computations in
industrial problems such as

- the flutter phenomenon for Aerospatiale [14, 56],

- an aeroelasticity problem for ONERA (Division Hélicopteres) [5, 13],

- electromagnetic guided waves for Thomson-CSF [13],

- the reliability of an orbitography software for CNES [21, 23, 49, 62, 63],
- fluid dynamics and electromagnetism at CERFACS [48, 51, 105],

- ambiguity resolution in GPS (Jason project) for CNES [18],

- astrophysics for Observatoire Midi-Pyrénées and Politechnico Milano.

The PRECISE code was a vital part of the HPCN (High Performance Computing and
Networking) European project PINEAPL (1996-98) to produce a general purpose library
of parallel numerical software suitable for a wide range of computationally intensive indus-
trial applications and to port several application codes which use this library to parallel
computers. The industrial consortium led by NAG included British Aerospace, CERFACS,
LCR Thomson-CSF, CPS (Napoli, Italy), the Danish Hydraulic Institute (Denmark), IBM
SEMEA, the University of Manchester (UK), Math-Tech, and Piaggio (Italy).
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PRECISE was translated from MATLAB into Fortran to allow large and realistic prob-
lems to be handled and was used to test each item of numerical software produced during
the project. The toolbox is now available as freeware from the CERFACS Web pages
http://www.cerfacs.fr/algor/Softs/PRECISE/index.html [82].

Before closing, it is worth stating that PRECISE has proved an extremely versatile tool
to test algorithmic behaviour on the computer [76, 106], as illustrated by the following
example. The quantity ||A~1||2, where ||.||2 is the spectral norm of a very large matrix A
can be computed using the Lanczos algorithm on A*A, with invert. Such an algorithm
requires the solution of linear systems of the kind A* Ax = b. Extensive experimentation
with PRECISE gave us the necessary intuition for the discovery of the theoretical formulae
for the condition number and the backward error for such linear systems where only A is
perturbed, as described in Section 2.4.2. This study is of importance to design a reliable
code for computing the spectral portrait of a matrix [50, 82]. So PRECISE helped design
itself.

As a conclusion, PRECISE is not intended to be yet another piece of software for
automatic control of round-off error propagation. It is as much a matter of personal taste
as of performance that should guide the user amongst the available methods and software
for automatic control of accuracy. We view PRECISE as a help to investigate difficult
cases, such as computations in the neighbourhood of a singularity, or computations in
the presence of high nonnormality, to get better insight on the underlying mathematical
instability. The better understanding of the problem provided by PRECISE allows in turn
a better use of current software for error control.



Chapter 3

Backward error analysis for
approximation methods in exact
arithmetic

In this chapter, we would like to widen the scope of backward error analysis to applications
that are not primarily concerned with finite precision computations. We review three
domains that have been enriched by the concept of backward error analysis. We start
by showing that the model of homotopic perturbations defines a backward error analysis
which is helpful in understanding the principle of approximation of Krylov methods. Then
we come back to the notion of pseudosolutions which stems directly from the definition
of the backward error, and we examine its applications in exact arithmetic. Finally we
see how the concept of backward error analysis can be incorporated into the study of
the mathematical convergence of iterative methods. In particular we show that backward
error analysis can be used as a useful framework for the analysis of the convergence of
embedded iterative solvers.

3.1 Homotopic perturbations

The work realised by Chaitin-Chatelin [31, 32] and her co-workers on homotopic pertur-
bations is an original contribution for the use of backward error analysis in approximation
methods. An homotopic perturbation of a matrix A is of the form AA = tE where F is
a prescribed deviation matrix and ¢ is a scalar (real or complex). Homotopic unfolding is
a tool of choice for an asymptotic analysis of the Jordan structure of a matrix, as shown
by Lidskii’s theorem [80]. This aspect has been central to the thesis of Ilahi [76].

Using the homotopic framework for the eigenvalue problem (either standard or gener-
alised), Chaitin-Chatelin, Toumazou and Traviesas have derived the backward errors and
associated pseudospectra [27]. They have also shown how the Krylov approximation can be
analysed in exact arithmetic in terms of homotopic perturbations. In the Arnoldi method,
at iteration k, the eigenvalues of the Hessenberg matrix Hj, are supposed to approximate
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at most k eigenvalues of A. The matrix A, the Hessenberg matrix Hj, and the Krylov or-
thonormal basis Vj, = [v1, ..., v] satisfy the identity AVy, = VyHy + hg11,Vks1€r, which
can be reformulated as (A + hyy1,5Er) Vi = Vi, Hy, where By, = —vk+1ef. Therefore the k"
step gives an exact orthonormal basis for an invariant subspace of A+ hyy1 ,E) which is a
rank one homotopic perturbation of A: all the eigenvalues of Hj have the same homotopic
backward error |hg41 | with respect to A in exact arithmetic. The quantity hyiqy can
be viewed as the method error for the Arnoldi method. For more on the implications for
finite precision behaviour, see [16, 28, 106].

3.2 Pseudospectra

3.2.1 Pseudospectra of matrices and nonnormality

Pseudospectra of matrices have been defined in Section 2.6 of Chapter 2, where their role
in helping define robust conditions for convergence in finite precision has been illustrated.
However, pseudospectra play a role beyond finite precision computation. Their use has
been particularly emphasised in computational physics, thanks in particular to the many
works of Trefethen. As an example of such a use of pseudospectra, we have had a collab-
oration with the CFD Project at CERFACS, in which the pseudospectra help to find the
best trade-off between two discretization levels: increasing the order of the Taylor expan-
sion or refining the mesh. This application has been one of the first to use the notion of
pseudospectra of a pencil of matrices (instead of a matrix alone) and is reported in [51].
The matrices that occur in practice often depend, implicitly or explicitly, on one or several
parameters which can be the order n of the matrix A itself, or a physical parameter such
as the Reynolds number or the Péclet number. Whenever the spectral instability of the
family of matrices under consideration is such that the index of at least one eigenvalue
is unbounded and/or the condition number of the Jordan basis is unbounded under the
parameter variation, we shall say — in a somewhat loose sense— that this family of matrices
is highly nonnormal.

Many examples show the physical origin of high nonnormality: see for instance [14, 78, 79,
91, 111]. The coupling between physical phenomena is often transferred to the numerical
approximation of evolution equations as a requirement for a coupling between parameters
such as time steps and mesh sizes to ensure numerical stability. Without a proper restric-
tion on the discretization sizes, the numerical method can be unstable. So we expect that
nonnormality in Physics may have an impact on the numerical stability of the approxima-
tion methods, whenever this stability is dependent on the parameters of the method.

This is indeed the case. For example, it has been well known for a long time that for
fully discrete evolution equations, the condition which requires that the spectrum of the
spatial discretization matrix lies in the stability region for the time-stepping formula is
only a necessary condition for stability whenever the discontinuous operator is nonnormal.
Recently, Trefethen and Reddy [90] have proposed a necessary and sufficient condition by
means of the e-pseudospectra.
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More generally, the realization that, when there is spectral discontinuity with respect
to a parameter, there can be nevertheless continuity for the pseudospectra, led Trefethen
[108] to propose what can be called the following principle: condition for convergence
of numerical methods should be based on pseudospectra rather than on exact spectra.
Trefethen applies his principle to the analysis of the convergence, in ezact arithmetic,
of numerical methods for various PDEs, mainly in computational fluid dynamics (CFD)
[111]. Trefethen’s principle is also well popularised in the SIAM News article “Are eigen-
values overvalued 7" [35].

An area of computational physics where nonnormality is encountered not infrequently
is CFD. For example, it occurs in the study of parallel shear flows in fluid dynamics, whose
behaviour is governed by the Orr-Sommerfeld operator (see [42]). The discretization of
this nonnormal operator leads to a nonnormal matrix whose departure from nonnormality
increases with the Reynolds number of the flow [89].

There are interesting consequences of nonnormality for hydrodynamic stability [111].
In order to explain the discrepancy between the computational predictions of the eigen-
value analysis and laboratory experiments in certain flows, called “subcritical transition to
turbulence”, one traditionally explains it by a failure of the linearisation about the laminar
solution, recommending that one looks closer at the nonlinear terms, or linearises about
another solution (“secondary instability”). Recently the complementary view has emerged
that the cause might sometimes be found in the high nonnormality of the linearised prob-
lem. Schmid and Henningson [98] and Gustavsson [64] proved that the operators that
arise in Poiseuille and Couette flows are in a sense exponentially far from normal. Hence
the stability analysis cannot be based on the exact spectrum, but should be based on the
pseudospectra [111]. This seems to be a very promising new direction in computational
turbulence.

When the nonnormality is not in the mathematical equation but in the approxima-
tion method, one should also be cautious as is illustrated by the fully discrete spectral
approximation of a first order mixed initial boundary value problem devised by Trefethen
and Trummer [112]. With the Chebyshev collocation method in space, they show that the
numerical stability of the discretization in space coupled with the discretization in time is
at risk because the differentiation matrix is nonnormal: it is a low rank perturbation of
a fully defective Jordan block. Numerical stability in exact arithmetic is guaranteed only
with an appropriate coupling between time and space steps.

Since the question of how the physical instability reflects in the equations of the
model is central, the extension of the notion of pseudospectra of matrices to operators
arises naturally. We address it now.
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3.2.2 Pseudospectra of operators

Let T be a closed linear operator on a Banach space. For € > 0, the natural definition of
the e-pseudospectrum of the operator 1" is

oe={z€p@); ||(zI-T)7"|| > 1/} U o(T), (3.1)

where p(T') is the resolvent set of 7" and o(7') is the spectrum of 1" (see [30] for detailed
definitions). This definition uses an absolute norm because it is set in the context of
exact arithmetic. Based on this definition, Harrabi [65] establishes the continuity of the
e-pseudospectrum (for € > 0). If 7" and (7}, ),en are bounded operators in a Banach space
such that ||T"— T},|| — 0 (uniform convergence), then the spectrum of the operator family
(Th)nen is equal to the spectrum of 7. Harrabi has also shown weaker results that hold
for collectively compact convergence [30].

The definition of the pseudospectrum given above is the conventional definition with
non-strict inequality in (3.1) [109]. It makes the pseudospectra a closed set and represents
the natural extension of the definition of pseudospectra for matrices (finite dimension)
to operators (infinite dimension). An alternate definition is derived by taking a strict
inequality instead of > in 3.1 [25] and the corresponding set w.(7') is called spectral value
set in [37, 53]. Under a certain hypothesis, o.(7) is the closure of w.(7"). This hypoth-
esis assumes that the norm of the resolvent of 1" is not constant on an open set in p(7).
This hypothesis is always satisfied for 1" in a Hilbert space or in a Banach space of finite
dimension [8, 69]. However, for an operator in an infinite dimensional Banach space, the
validity of the hypothesis is still an open question in functional analysis.

The relationship between the pseudospectrum of an operator and that of its discretiza-
tions is an interesting topic that keeps developing. See in particular [109] and the references
therein, and [67, 68].

3.3 Convergence of iterative methods in Linear Algebra

Backward error analysis is now more and more recognised as a tool of choice to analyse
the convergence of numerical methods in exact arithmetic. We give two examples of such
a use.

3.3.1 Convergence of the Power method

As a first example, the theoretical convergence of the Power method for the computation
of the dominant eigenvalue of a matrix has recently been revisited by Ilahi, Bouras and
Chaitin-Chatelin [77]. Until now, most of the convergence results for the power method
available in the literature assumed that the dominant eigenvalue is unique and simple or
semi-simple. The work of Ilahi et al. considers the case where this dominant eigenvalue is
defective and the single assumption remains that there are no two distinct eigenvalues of
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largest modulus. In addition, the convergence of the method is analysed in terms of the
backward error associated with the eigenpair (A®), u(*¥)) at the k" iteration, that is

|Au® = XB B,
1AL, ’

n(A® b)) = |

and also through the backward error associated with the eigenvalue alone

1
AL (A= AET)-1|],°

n(Ak))

It is proved in particular that, if the dominant eigenvalue is defective with an index
I > 2, the backward error n(A*) u(®)) converges as 1/k* whereas n(A(*)) converges as
(1/kY) < (1/k?). However, the forward errors on the eigenvalue or on the eigenvector
both converge as 1/k. Because it illustrates the subtle convergence properties expressed
as forward / backward errors, this example is very illustrative of the insight that can be
gained by making full use of backward error analysis.

Note that the backward errors given above are defined in a relative sense (they are
scaled with the norm of A). Strictly speaking, this is useless for the analysis in exact
arithmetic but this was done on purpose in view of future applications in finite precision.

3.3.2 Embedded iterative solvers

Finally, we would like to discuss the convergence of embedded iterative solvers, an area
which, in our opinion, will attract growing interest in the near future.

Iterative processes are widely used in scientific computing and in particular in linear
algebra. We are in interested in the specific case when two iterative solvers are embedded.
The crucial question arises then: what is the best strategy for stopping the inner iterations
for ensuring the convergence of the outer iterations while minimising the global computa-
tional cost ? In the context of matrix computation on large-scale problems, saving inner
iterations usually means making less matrix-vector products, and that represents a po-
tential reduction of the computational cost. If there are various studies for the behaviour
of inexact Newton-like methods, the interest for the study of embedded linear solvers is
more recent, and stems in part from the growing success of iterative Krylov methods.
This question has been partially addressed by numerical experts since the eighties, in the
context of Newton-like methods [38, 43, 54, 59, 60, 100]. It is generally concluded, as
one could expect, that the accuracy of the inner iteration needs to be increased when the
outer process comes closer to the solution. The proposed strategies for monitoring the in-
ner iterations have been so far very problem- and method-dependent. More recently in the
late nineties, it has been emphasised that the behaviour of embedded solvers involving a
Krylov outer process was very different than that of inexact Newton-like methods [60, 61].
A strategy for monitoring the accuracy of inner iterations is proposed in the framework
of symmetric eigenvalue problems with homogeneous linear constraints in [61]. Why do
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Krylov methods behave so differently ?

Our recent results on the control of embedded iterations, in the case where the outer
solver is a Krylov method, have been presented in the report [10] entitled “A relaxation
strategy for inexact matrix-vector products for Krylov methods”. This report, submitted
to the Journal of Numerical Linear Algebra with Applications, is given in the Annex. Less
studied in the literature because they are more recent, these methods seems to have very
strong robustness properties: as outer processes, they accept larger and larger inaccura-
cies from the inner process, provided that these inaccuracies are properly monitored. Our
analysis is set in the framework of backward error analysis, which is the most powerful
tool for handling inexact data and which naturally applies to embedded iterative pro-
cesses. In order to better understand the behaviour of outer Krylov processes with inner
processes whose accuracy can vary and is controllable (such as another iterative method),
we first study the linear Krylov method GMRES with inexact matrix-vector products.
The matrix-vector product, taken as the inner process, is used each time a vector is added
to the Krylov basis. By perturbing each matrix-vector product, we are able to control
its accuracy and in this way check the impact of various strategies for monitoring the
inner accuracy on the outer convergence. We have shown in this way that an interesting
and efficient strategy consists in linking the accuracy of the matrix-vector product to the
reciprocal of the outer residual. Therefore, the matrix-vector products become less and
less accurate as the outer convergence proceeds. This approach is called the relazation
strategy. In practice, we observe that only the first Krylov vectors are computed with the
targeted outer accuracy, while the subsequent vectors are soon subjected to large pertur-
bations: nevertheless, the global outer convergence is not dramatically changed.

However, it is important to observe that the relaxation strategy that we have defined
suffers from an important drawback: it is not scaling independent, while the convergence
of GMRES is. In our first tests reported in [10], the matrices are very well suited to our
strategy. But it is easy to design test cases for which our relaxation strategy will fail to
meet its objective. It is our intention to work on this problem in the near future.

The robustness of Krylov methods to perturbations of the Krylov basis is a remark-
able fact which has many important implications. Indeed, inexact matrix-vector products
arise naturally in multipole methods which have become popular in the solution of elec-
tromagnetism problems. Moreover, most of the embedded iterative solvers with an outer
Krylov scheme can benefit from the results observed in [10]. We have started to explore
two applications that we now briefly review.

Inner-outer iterations in eigenvalue computations

The Arnoldi method and its variants are one of the most popular techniques for solving
large-scale nonsymmetric eigenproblems. This Krylov method allows us to approximate
the periphery of the spectrum of a matrix A. The matrix A is only used through matrix-
vector products for the construction of the Krylov basis onto which it is projected. When
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one seeks internal eigenvalues (for example those close to some prescribed value o), one
can apply a shift and invert technique which results in computing the dominant eigenval-
ues of the matrix (A — oI)~!. The construction of a Krylov basis of size m requires the
solution of m linear systems of the type (A—o1l)z,11 = zx. When the matrix A is so large
that even a sparse direct solver cannot be applied, these systems have to be solved with
an iterative method which becomes the inner process.

In the report [11], we first study the Arnoldi method with inexact matrix-vector prod-
ucts and define a similar relaxation strategy as for GMRES in [10]. A comparison with the
inexact power method underlines the fundamental differences between Krylov-type meth-
ods and Newton-type methods. We then propose two relaxation strategies for the control
of the inner accuracy of the shifted and inverted Arnoldi method. These two strategies
reflect the duality inherent in inversion methods. Indeed, one can consider either the com-
putation of the smallest eigenvalue A of A (final goal) or the computation of the largest
eigenvalue p = 1/\ of B = A~! (means). Consequently, two backward errors can be con-
sidered: the one associated with the computed eigenvalue X of A and the one associated
with the computed eigenvalue i of B. Therefore, there are two ways of assessing the
quality of the convergence, and it is interesting to study which one is the best suited for a
Krylov solver in finite precision. We cannot yet propose a definitive choice between both
viewpoints, and this important question remains open for future work [9].

Domain decomposition

Domain decomposition is a frequently used technique for the solution of partial dif-
ferential equations on parallel computers. A finite-element discretization followed by an
appropriate renumbering of the unknowns leads to a structured linear system, whose diag-
onal blocks A;; (local matrices) correspond to the discretization of the operator restricted
to the interior nodes for each subdomain. A subdomain is connected (via the coupling
blocks Ar; et A;r) to the last diagonal block Ar associated with the interface nodes. The
elimination of the unknowns associated with the interior nodes leads to the condensed sys-
tem Sz = f, where S = Ar—%;(Air A;; 1Am) is the Schur complement. It is not reasonable
to assemble the Schur complement S explicitly because the matrices A;; ! operate on much
larger spaces (depending on the discretization size). Additionally, even if the Schur com-
plement operates on a smaller space (that of the interfaces), it may still be quite large and
is much denser than the matrices it involves. Therefore, the condensed system is often
solved using iterative methods such as the conjugate gradient method (when the Schur
complement is positive definite): at each outer iteration, the matrix-vector product Sz
requires the solution of the local linear systems with coefficient matrices A;; L The latter
can be solved in turn using an iterative method (inner process). Here again, embedded
iterations come in.

In [12], we describe the direct application of the relaxation strategy described in [10].
The control on the accuracy of the matrix-vector product Sx must be transferred in fact
to the control on the accuracy for the solution of each local system: this is done using
backward error analysis arguments. The relaxation scheme is applied to a heterogeneous
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anisotropic problem representative of those arising in semi-conductor modelling. The
numerical experiments show that a significant number of matrix-vector products can be
saved using the relaxation strategy.



Chapter 4

Conclusion

Backward error analysis was primarily designed as a tool to understand the behaviour of
numerical algorithms in finite precision; however its scope is much wider. As explained in
the introductory part, finite precision computations fit into the wider scenery of methods
of approximations, where the backward error analysis appears to be the tool of choice
to deal with any kind of uncertain computations. At this conceptual level, one can fully
embrace the power of backward error analysis.

The apparent simplicity of its principle hides great complexity, visible as soon as one
gets into the subtleties of finite precision computations. A tour of the most recent tech-
niques used to assess the reliability of numerical software has been proposed in the second
chapter. The current trend is to develop more and more refined models which are bet-
ter and better suited to describe the perturbations generated by finite precision arithmetic.

As numerical simulations tackle physical problems of increasing difficulty and the nu-
merical models increase in complexity, the coupling between numerical approximation and
finite precision plays a crucial role in assessing the domain of computability of the solutions.
The correlated question of the robustness of the convergence conditions to perturbations
in the data has emerged in recent years, through the notion of pseudo-solution which is
now being used for numerical approximation as well as for finite precision computations.
It is likely that many examples of applications will continue to emerge.

Finally some numerical methods seem to be particularly robust to perturbations, pro-
vided these perturbations are applied in a proper way. This seems to be the case of the
Krylov methods, which, unlike Newton methods, can bear perturbations of increasing
sizes through the course of the convergence. As a consequence, embedded iterative solvers
can be made less expensive when a Krylov outer scheme is used. Understanding the ro-
bustness of Krylov methods with respect to inexact computation is still a largely open
question, and to our taste, one of the most exciting in linear algebra. There is no doubt
that backward error analysis will prove again to be a key factor in answering this question.

49



50 Conclusion

To end on a more personal touch, I would like to emphasise that CERFACS, its Parallel
Algorithms Project, and the Qualitative Computing Group within it, play an active role
in promoting backward error analysis within the academic and the industrial worlds. It is
not only the core of our research, but also a major topic in our educational activities and
a key component of our industrial collaborations, and it should remain so in the future.
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inverse des erreurs, et concernent ’analyse de perturbations structurées pour les systemes
linéaires ou de moindres carrés (structures du type A*A intervenant dans les calculs
de valeurs singulieres de grandes matrices creuses) ou pour le probleme généralisé de
valeurs propres par exemple (critere d’arrét de méthodes de type Krylov). Je me suis
également intéressée aux instabilités spectrales de matrices fortement non-normales : les
outils développés dans ce domaine (spectres perturbés, pseudo-spectres) sont aussi liés
a lanalyse inverse des erreurs. Actuellement, je travaille sur la convergence de solveurs
itératifs emboités, pour déterminer des stratégies d’arrét des itérations internes afin de
garantir la convergence interne mais au moindre cott. Les applications visées sont, en
particulier, les calcul de valeurs propres par technique de shift-and-invert ou les méthodes
de décomposition de domaine de type Schur. Ici encore, ’analyse inverse des erreurs four-
nit un cadre conceptuel particulierement riche.

Le choix de ces themes a toujours procédé du souci constant d’apporter une expertise
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e de routines implantant des solveurs linéaires efficaces et robustes (GMRES, FGM-
RES, Gradient Conjugué). Les codes FORTRAN ont été réalisés en collaboration
avec L. Giraud et S. Gratton et sont décrits dans les rapports suivants :
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V. Frayssé, L. Giraud, and S. Gratton. A set of GMRES routines for real and com-
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arithmetics. Technical Report TR/PA/00/47, CERFACS, 2000.

J’ai également contribué a la parallélisation du code ARNCHEB qui implante la méthode
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scientifique des chercheurs du groupe Calcul Qualitatif. J’ai personnellement assuré les
encadrements suivants (ou du moins j’y ai pris une part essentielle) :

e Post-docteurs
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e Doctorants

— Amina Bouras (Université Toulouse I) : these soutenue le 22 Septembre 2000.
Sujet : étude de la convergence de solveurs itératifs emboités. Application aux
calculs des valeurs propres de grandes matrices creuses par “shift-and-invert”,
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de domaines de type Schur.
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J’ai également participé de facon active a I’encadrement de six autre thésards du
Groupe Calcul Qualitatif (theéses soutenues : V. Toumazou, S. Gratton, A. Harrabi,
A. Tlahi et E. Traviesas; theses en cours : A. Zaoui) au travers de leur formation, de
I’aide scientifique quotidienne et de l'aide a la rédaction de leur manuscrit.

J’ai été membre du jury des theéses de L. Grammont (Université de St Etienne, 1994),
V. Toumazou (ERIN, Nancy, 1996), S. Gratton (INP, Toulouse, 1998), A. Harrabi
(Toulouse I, 1998) et A. Ilahi (Toulouse I, 1998).

e Stagiaires de 3*™¢ cycle

— H. Kharraz-Aroussi (ENSIAS, Rabat, Maroc), Octobre 1996 & Mai 1999.

Cadre : Programme Formation des Formateurs au Maroc (équivalent & une
these de 3°™¢ cycle).

Sujet : parallélisation d’un solveur linéaire et d’un solveur de valeurs propres
itératifs dans un environnement parallele distribué. Application a la résolution
d’un probléme issu de I'astrophysique.

J.-C. Rioual (ENSEEIHT 3¢ année Informatique et DEA), Octobre 1996 &
Aot 1997.

Sujet : implantation de la méthode d’Arnoldi-Tchébycheff pour le calcul de
valeurs propres de grandes matrices creuses.

A. Guermeur (ENSEEIHT 3°™¢ année Informatique), Octobre 1995 & Juin 1996.
Sujet : conditionnements de factorisations en algebre linéaire

S. Gratton (ENSEEIHT 3°™¢ année Informatique et DEA), Octobre 1993 &
Aoiit 1994.

Sujet : audit (stabilité, précision) des méthodes numériques employées dans un
logiciel de restitution d’orbite du CNES.

e Stagiaires de 22 cycle

— S. Goldstein (CUST, Clermont-Ferrand), Mai a Juillet 1999.

Sujet : traitement d’ambiguités entieres pour GPS - Etude de Sensibilité.

— E. Traviesas (IUP-MICSS, Université Paul Sabatier), Mai & Aotat 1996.

Sujet : conditionnement de la factorisation de Cholesky - erreur inverse optimale
pour le calcul de valeurs propres.

Organisation de conférences

e Industrial days at CERFACS on Inner-Outer iterations — Numerical quality of soft-
ware coupling. 11-12 Septembre 2000. CERFACS, Toulouse, France. Membre du
Comité Scientifique.

e Second Conference on Numerical Analysis and Applications, Rousse, Bulgarie, 11-15
Juin 2000, (co-sponsorisée par SIAM et ILAS). Membre du Comité International de
Programme.
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e Euro-Par’99, Toulouse, 31 Aoit - 3 Septembre 1999. Membre du comité local
d’organisation et “local chair” d’une session sur la fiabilité des calculs paralleles. Co-
éditrice des proceedings publiés par Springer dans la série Lecture Notes in Computer
Sciences.

e Congres National d’Analyse Numérique, Ardeéche, 1997. Organisatrice du minisym-
posium “Difficultés numériques pour le calcul des valeurs propres de matrices de
grandes tailles”.

e Workshop “Eigenvalues and Beyond”, Toulouse, 17-20 Octobre 1995. Co-organisatrice
avec F. Chaitin-Chatelin. Participation active dans le processus de sélection des ar-
ticles pour publication dans BIT.

e International Linear Algebra Year (ILAY), CERFACS, 1995-1996. Membre du comité
local d’organisation.

e IMACS Conference on Iterative Methods, Blagoevgrad, Bulgarie, 17-20 Juin 1995.
Co-organisatrice avec F. Chaitin-Chatelin du minisymposium “Influence of High
Nonnormality on the reliability of Iterative Methods in Computational Linear Alge-

bra”.

o Workshop Reliability of Computations, CERFACS, 30 Mars - ler Avril 1993. Mem-
bre du comité local d’organisation et du Comité Scientifique.

Referee

Je suis régulierement sollicitée comme rapporteur sur des articles soumis a des revues in-
ternationales : BIT (2 articles), SIAM Journal on Matrix Analysis and Applications (3
articles), STAM Journal on Applied Mathematics (1 article), STAM Journal on Scientific
Computing (1 article), Linear Algebra and Its Applications (2 articles), Numerical Linear
Algebra with Applications (1 article), IEEE Journal on Signal Processing (1 article), IMA
Journal on Numerical Analysis (1 article).

Je réalise également des rapports d’évaluation pour des articles soumis a des conférences
internationales telles que SCAN, HPCN, Euro-Par, VecPar ou pour le prix Leslie Fox.

ACTIVITES CONTRACTUELLES

La recherche de financements, et le suivi technique, administratif et budgétaire de
collaborations contractuelles avec 'industrie sont des activités fortement encouragées au
CERFACS, dans le but d’obtenir des ressources extérieures permettant d’accroitre le po-
tentiel humain et matériel consacré aux recherches plus en amont. Dans la mesure du
possible, nous nous efforcons de concevoir des collaborations industrielles dont le contenu
scientifique exploite et peut faire progresser I’état de nos recherches. Les contrats dont j’ai
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eu ou partagé la responsabilité, tant sur le plan technique que sur le plan administratif,
sont les suivants :

e méthodes numériques en orbitographie : un contrat avec le CNES (Novembre 1998
a Mars 2000). Je suis en charge d’une étude concernant la convergence de solveurs
linéaires itératifs emboités. Un état de ’art dans ce domaine émergent ainsi que des
applications dans le domaine des systémes linéaires et des valeurs propres doivent
étre fournis.

e orbitographie précise : un contrat avec le CNES (Novembre 1999 & Septembre 2000).
Ce projet concerne ’évaluation de la qualité numérique des méthodes utilisées pour
le traitement des ambiguités entieres apparaissant dans les données de type GPS.

o fiabilité des calculs : responsable CERFACS du projet européen Esprit intitulé
PINEAPL (Janvier 1996 & Décembre 1998). Ce projet, coordonné par NAG (U.K.),
incluait dans son consortium British Aerospace, CERFACS, Thomson-CSF, CPS
(Naples, Italie), Danish Hydraulic Institute, IBM SEMEA, Université de Manch-
ester, Math-Tech, et PIAGGIO. Le but était de produire une librairie parallele
robuste. Le CERFACS était particulierement en charge du développement de la
boite a outils PRECISE a partir de laquelle la robustesse des routines de la librairie
parallele a été testée et qui a permis d’apporter une expertise sur la qualité de la
résolution des probléemes soumis par les industriels partenaires.

e Solveurs linéaires itératifs : un contrat avec Aerospatiale-Centre Commun de Recherches
(1997). Jai participé a la réalisation technique de ce contrat portant sur I’étude et
I'implantation d’une variante de la méthode Block-QMR pour matrices J-symétriques.

e probléemes de moindres carrés non-linéaires : 3 contrats avec le CNES (Décembre
1994 & Aottt 1995; Décembre 1995 & Aott 1996; Janvier 1997 & Octobre 1997). J’ai
assuré la gestion et participé a la réalisation de ces trois contrats qui s’articulaient
autour de la fiabilité de la résolution de problémes de moindres carrés non-linéaires.
A partir d’un audit effectué sur un code d’orbitographie du CNES, le CERFACS de-
vait étudier et proposer des améliorations aux techniques utilisées pour les moindres
carrés linéaires et non-linéaires. Ces contrats ont servi au financement d’une these
(S. Gratton) qui a a permis des avancées théoriques importantes dans le domaine de
I’analyse inverse des erreurs.

o Solveurs linéaires itératifs : un contrat avec le CNES (Décembre 1995 & Aout 1996).
Ce projet visait a développer un solveur de type GMRES en arithmétique complexe
pour la résolution de systémes complexes non hermitiens creux de grande taille.

ACTIVITES D’ENSEIGNEMENT ET DE FORMATION

Parce que je considere que les activités d’enseignement sont un complément enrichissant
aux activités de recherche, j’ai choisi de participer régulierement & des formations (initiales
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ou continues). J’enseigne principalement ’algebre linéaire appliquée (ou comment aboutir
a des bilbiotheques numériques efficaces et robustes sur des architectures scalaires et par-
alleles) et la fiabilité des calculs sur ordinateur (en particulier I’analyse inverse des erreurs).

e Co-organisation avec L. Giraud d’une formation de trois jours intitulée ”Outils de
programmation efficace et robuste pour le logiciel scientifique” dispensée a un groupe
d’ingénieurs et chercheurs du CNES en Mars 2000.

e Conférenciere invitée a I’école d’été Calcul Numérique et Symbolique : cours de 2
heures sur la résolution des problemes de valeurs propres de grande taille (Rabat,
Maroc, 13-17 Septembre 1999).

e Intervenante dans ’option Mécanique des Fluides Numérique (3°™¢ année) de "ENSEEIHT
pour un cours sur la fiabilité des calculs en précision finie (2 heures en Février 1999,
6 heures prévues en 2000).

e Depuis Octobre 1996, j'organise tous les ans une formation de base pour les nou-
veaux arrivants au CERFACS. Je donne un cours de 3 heures sur ’Algebre Linéaire
Appliquée.

e Depuis 1997, j'interviens chaque année dans le Mastere de Météorologie de Météo-
France. Avec L. Giraud et B. Cuenot, nous avons con¢u un enseignement de cal-
cul scientifique (cours et travaux pratiques) qui part de l’équation différentielle
discrétisée par éléments finis pour arriver a sa résolution parallele. J’interviens dans
cette formation pour 3 heures de cours et 3 heures de travaux pratiques.

e Co-organisation de deux journées de formation au CERFACS en Avril 1994 intitulées
“Calcul Distribué sur Réseaux de Station de Travail”. Les cours dispensés durant
de ces deux journées étaient destinés aux ingénieurs des organismes partenaires du
CERFACS ou ayant des collaborations avec le CERFACS.

e Organisation et réalisation, avec F. Chaitin-Chatelin, d’un cours sur le “Calcul Qual-
itatif”, du 8 au 10 Juin 1993, dans le cadre du programme européen COMETT-
MATARI (volume horaire assuré : 7 heures).

e De Septembre 1989 a Juin 1992, j’ai bénéficié d’'un poste de moniteur de I’enseignement
a ’'UPS. Détachée a TENSEEIHT, j’ai assuré des travaux pratiques d’algorithmique
et de programmation en 1°'® année Informatique.

RESPONSABILITES ADMINISTRATIVES

Une des caractéristiques originales du CERFACS est d’avoir choisi des Chefs de Projet
dont ’activité principale n’est pas au CERFACS, et qui ne sont donc présents qu’a temps
partiel. Les chercheurs seniors ont donc un role trés important & jouer dans ’organisation



et la gestion des équipes de recherche.

Depuis Novembre 1994, je suis I'un des deux chercheurs seniors (permanents) dans le
projet Algorithmique Parallele dirigée par I. Duff (présent a quart-temps environ) et qui
réunit une quinzaine de chercheurs non-permanents (thésitifs et post-docteurs). Mes re-
sponsabilités au sein de cette équipe comprennent :

e la gestion administrative et budgétaire (gestion de contrats industriels, achat de
matériel et de documentation, recrutement, rédaction de réponses aux appels d’offre
européens, représentation de 1’équipe ... )

e organisation des séminaires (internes et externes), de formations (internes, pour les
partenaires du CERFACS, ou externes), et de conférences internationales,

e 'animation du groupe de recherches Calcul Qualitatif, dirigé par F. Chaitin-Chatelin
(également présente a temps partiel). Ce groupe a un effectif moyen de 6 chercheurs
(thésitifs et post-docteurs) et accueille régulierement des stagiaires.

Je suis également membre du bureau du Centre de Compétences Techniques “Calcul Sci-
entifique et Modélisation” du CNES, et a ce titre, représentante du CERFACS dans ce
CCT.

Enfin, j’ai occupé la fonction de déléguée du personnel (suppléante) de Juin 1997 a
Décembre 1998 (mise en place du réglement intérieur, passage au 35 heures, ... ).



Computations in the
neighbourhood of algebraic
singularities

F. Chatelin, V. Frayssé and T. Braconnier

Num. Funct. Anal. Opt., 16:287-302, 1995

This document can be downloaded from the Parallel Algorithms Project
Report Web page at the URL
http://www.cerfacs.fr/algor/algo reports_1994.html






A note on the normwise
perturbation theory for the

regular generalized eigenproblem
Ax = ABx

V. Frayssé and V. Toumazou

J. Numer. Linear Algebra Appl., 5:1-10, 1998

This document can be downloaded from the Parallel Algorithms Project
Report Web page under the reference TR/PA/96/18 at the URL
http://www.cerfacs.fr/algor/algo reports_1996.html






Structured backward error and
condition number for linear
systems of the type A*Az =b

V. Frayssé, S. Gratton and V. Toumazou

BIT, 40:74-83, 2000

This document can be downloaded from the Parallel Algorithms Project
Report Web page under the reference TR/PA/99/05 at the URL
http://www.cerfacs.fr/algor/algo reports_1999.html






A relaxation strategy for inexact
matrix-vector products for Krylov
methods

A. Bouras and V. Frayssé

CERFACS Technical Report TR/PA/00/15, 2000.

This report has been submitted to the Journal of Numerical Linear Algebra with
Applications. It can be downloaded from the Parallel Algorithms Project Report Web
page under the reference TR/PA/00/15 at the URL

http://www.cerfacs.fr/algor/algo reports_2000.html






