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Basto, per iéu, sus la mar de l’istori,
Fugueres tu, Provenco, un pur simbeu,
Un miramen de glori e de vitori

Que, dins 'oumbrun di siécle transitori,
Nous laisso veire un esluci déu Béu.

Qu gagno terms, gagno tout.

Tems, fa chanja, madura, éublida e mouri.

Frédéric Mistral
8 Septembre 1860 (Maillance)
25 Mars 1914 (Maillance)

1l suffit, pour moi, sur la mer de I’histoire,
Tu fus, Provence, un pur symbole,

Un mirage de gloire et de victoire

Qui, dans la transition ténébreuse des sieécles,
Nous laisse voir un éclair de Beauté.

Extrait de Lis oulivado - 1912

Celui qui gagne du temps, gagne tout.

Le temps fait changer, mirir, oublier et mourir.

Proverbes provencauz sur le temps extraits de
Lou Tresor déu Félibrige - 1886
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On the Numerical Solution of Partial Differential Equations:
Iterative Solvers for Parallel Computers

Abstract

Numerical simulations of complex physical phenomena often require the use of parallel computers.
In order to fully benefit from the capabilities of those computers, new algorithms have to be
designed. In addition to the mathematical properties of the problems to be solved, the features
of the target computers should be taken into account when designing those algorithms. We focus
on algorithms for the numerical solution of linear systems arising from the discretization of PDEs
and on their efficient implementations on parallel distributed platforms. In particular we consider
domain decomposition techniques with and without overlap for finite element discretization and
present some results using sparse approximate inverse approaches for dense linear systems arising
from boundary element method in electromagnetism.

Keywords: domain decomposition, two-level preconditioner, sparse approximate inverse precon-
ditioner, Krylov methods, parallel distributed computing.

Sur la Résolution Numérique d’Equations aux Dérivées Par-
tielles: Solveurs Itératifs pour Calculateurs Paralleles

Résumé

Les besoins croissants en puissance de calcul pour la simulation numérique de phénomenes com-
plexes ont conduit & l'utilisation quasi systématique de calculateurs paralleles. Afin d’exploiter
efficacement les capacités de ces ordinateurs une nouvelle algorithmique a di étre développée. En
plus des caractéristques du probleme mathématique & résoudre les nouvelles méthodes numériques
doivent prendre en compte les particularités architecturales des calculateurs sur lesquels elles seront
inplantées. Ce document est consacré a la présentation de méthodes itératives pour la résolution
de systemes linéaires issus de la discrétisation de problemes aux dérivées partielles ainsi qu’a la
description de leur implantation sur machines paralleles & mémoire distribuée. Nous considérons
en particulier des méthodes de décomposition de domaines avec ou sans recouvrement pour des
discrétisations de type éléments finis et présentons quelques résultats obtenus en utilisant des tech-
niques d’inverse approchée pour la résolution de systemes linéaires denses issus de discrétisation
par éléments frontiéres en électromagnétisme.

Mots-clés : méthodes de décomposition de domaine, préconditionneurs & deux niveaux, précondi-
tionneurs creux par inverse approchée, méthodes de Krylov, calcul parallele distribue.
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“With the development of new kinds of equipment of greater capacity, and particularly of
greater speed, it is almost certain that new methods will have to be developed in order to make
fullest use of the new equipment. It is necessary not only to design machines for the mathematics,
but also to develop a new mathematics for the machines” declared D. Hartree in 1952 when ENTAC
(Electronic Numerical Integrator and Computer) was just built. This vision has been the scope of
an extensive research work in the last decades and further extended to include parallel computers.
The study and development of algorithms for high performance computers has been my research
topic first as a PhD student in the ENSSEIHT-IRIT Lab, then as Post-Doc and Senior researcher
at CERFACS in the Parallel Algorithms Project.

CERFACS is a quite unique place where basic research and applied research through industrial
collaborations co-exist and interact, enabling cross fertilization between academic and industrial
communities. The CERFACS researchers time is split between those two activities enabling to
work on several topics that, although connected, are sometimes only loosely coupled. Let me
illustrate this feature through my own experience where the links among all the activities are high
performance computing or linear algebra. Within these collaborations, my work addresses various
topics ranging from computer science concerns such as

e the impact evaluation of the new computer architecture on scientific computing codes from
Aerospatiale [51] or CNES [3, 82],

e the development of a parallel distributed fast Poisson solver and the definition of a paralleliza-
tion strategy for a meso-scale weather forecasting vectorial code for Météo-France [81, 108],

e the porting on distributed memory platforms of the Computational Fluid Dynamic (CFD)
code N3S in the framework of an EC HPCN-ESPRIT project [54, 83],

e or the development of an object oriented software to manage a pool of parallel tasks on hetero-
geneous networks of computers addressing the load balancing and fault tolerance capabilities
in few european ESPRIT projects [8, 9, 109];

to more numerical analysis issues including

e the study of efficient parallel preconditioners for implicit schemes in CFD in a joint work
with Dassault-Aviation [40],

e the study of various Krylov solvers for complex symmetric non Hermitian matrices with
Thomson-LCR. [50],

e the development of the Block-QMR [74] variant for J-symmetric matrices to handle multiple
right hand sides in electromagnetic applications with Aerospatiale [67],

e the study of parallelizable preconditioners for dense linear systems in a joint work with
Aerospatiale [16].

To illustrate how cross fertilization sometimes goes beyond the simple collaboration between
the two communities, let me describe the following example. In a joint work with CNES [68],
we have developed a GMRES implementation for complex matrices. This code was then further
improved to deal with any type of arithmetics and to satisfy some software quality requirements
enabling its efficient use on sequential and shared or distributed memory parallel computers. The
resulting packages [69, 70] have been put in the public domain, www.cerfacs.fr/algor/Softs/,
with a non-commercial license agreement. It is regularly downloaded by many researchers working
in various areas ranging from geophysics or ocean modeling to theoretical physics. In particular, the
complex version has been recently integrated in a public domain circuit simulator developed by [] at
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Research Bell Lab. In addition to the enjoyable research aspects related to these various projects,
learning about their management is also a valuable component as any successful collaboration not
only requires intensive scientific work but also some administrative management.

In this manuscript, we will partially illustrate those two aspects of the research at CER-
FACS but we only report studies conducted on some parallel and parallelizable numerical iterative
techniques for the solution of linear systems arising from the discretization of partial differential
equations (PDE). These linear systems are sparse for finite difference or finite element discretiza-
tions. Their parallel solution is often tackled via domain decomposition techniques that are well
adapted for distributed memory computers. When boundary elements discretization are preferred,
because they are better suited to represent the physical problems as in some electromagnetic or
acoustic applications, the resulting linear system is dense. In this latter situation preconditioned
Krylov solvers are a promising alternative to the classical method of choice, that is the Gaussian
elimination, provided we have fast matrix-vector multiplications and robust and effcient precondi-
tioners.

When dealing with linear systems arising from PDE the scalability of the numerical method
and the scalability of its parallel implementation are key aspects to address when targeting the
solution of large problems. In this respect, we consider those two aspects in separate parts of this
document. Part IT describes the numerical behavior of the numerical techniques we are interested
in and the performance of their parallel implementation is discussed in Part III.

This document is organized as follows. In Part II, we describe in Chapter 1 the numerical
behavior of asynchronous iterations that might constitute an original alternative to load balancing
in order to minimize the idle time of processors for optimizing the throughput of parallel computing
resources. Chapter 2 is devoted to two-level non-overlapping domain decomposition for elliptic self
adjoint operators. We describe parallel preconditioners that can be written as the sum of a sym-
metric positive definite matrix, aiming at capturing the local behavior of the operator plus a low
rank update involving a coarse problem, that intends to represent the global behavior of the elliptic
equation. To illustrate the industrial and inter-disciplinary collaborations at CERFACS we present
in Chapter 3 some investigations using overlapping domain decomposition methods in an industrial
code for CFD. Finally, Chapter 4 presents some sparse approximate inverse preconditioners for the
solution of dense matrices arising in computational electromagnetics. This work is motivated by
the observation that since the inverse of the inverse of a sparse matrix is sparse, then there are
classes of dense matrices for which a sparse approximate inverse might be an appropriate precon-
ditioner. Part III is devoted to the parallel implementation and performance of all the numerical
methods studied in Part II, except the parallelization of the approximate inverse preconditioner
which we plan to address in a near future. In particular a study of the numerical scalability of
the approximate inverse preconditioner in the context of electromagnetism applications, that is
mandatory before addressing the parallel implementation issues, is presented in Part IV which is
devoted to conclusions and future works.

All the work presented in this document was, and in some case is still, developed in collab-
oration with other researchers. The asynchronous iterations work [80, 85] was performed with
P. Spitéri (ENSEEIHT-IRIT) during my PhD; the domain decomposition in part with R. S. Tumi-
naro (Sandia National Lab.) [89], with L. M. Carvalho (University of Rio Janeiro) and P. Le Tallec
(Université Paris IX Dauphine) [39], with L. M. Carvalho and G. Meurant (CEA) [38]. Part of this
work was carried out in the framework of L. M. Carvalho’s PhD thesis [35] at CERFACS. The inves-
tigations on overlapping domain decomposition were conducted in collaboration with G. Chevalier
(CERFACS), F. Chalot and Q. V. Dinh (Dassault Aviation) [40]. Lastly the approximate inverse
preconditioners for dense matrices were first studied in the framework of an industrial collabora-
tion in a joint work with G. Alléon (CCR Aerospatiale) and M. Benzi (formerly at CERFACS and
now Los Alamos National Lab.) [2, 16] and further developed with B. Carpentieri (CERFACS)



INTRODUCTION 15

and I. S. Duff (CERFACS - RAL) [33, 34]. B. Carpentieri is currently completing his PhD on this
latter subject.
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Chapter 1

Asynchronous methods

1.1 Introduction

With the advent of parallel computers, many new algorithms were designed or rediscovered to fully
exploit the new architectures. An dominating concept in the design of parallel algorithms is that
the work should be equally spread among the processors in order to reduce the idle time resulting
from unbalance granularity of the concurrent tasks. This constraint is widely integrated as a
requirement to design efficient parallel algorithms and governs for instance the graph partitioning
algorithms [102, 110] used for parallel sparse matrix computation or domain decomposition. In
contrast to load balancing, the idea of asynchronous methods is to avoid processor idle time by
eliminating as much as possible synchronization points. The price to pay for this freedom is that
some processors will perform extra computations that are expected to be beneficial when the load
is unbalanced or when the communication between the processors is slow.

Since the pioneer paper on this method [46] many authors have intensively studied the theory
and the applications of asynchronous iterations. The convergence analysis of the asynchronous
iterations can be done using different techniques; we mention for instance the analysis based on
some contraction properties in appropriate vectorial norm [46, 128, 139] or the one using order
intervals [65, 129].

Let us also mention some papers where the application of asynchronous iterations to different
areas is discussed: the solution of partial differential equations [5]; to overlapping domain decom-
position [77, 148]; to inverse problems in geophysics and oil exploration [133]; to electrical power
network [10]; to network flow [151]; to convex programming [149], and other optimization [64] and
nonlinear problems [150] and to singular systems of linear equations [134]. In addition notice that
because of the asynchronous behavior of the algorithms special attention should be paid to the
implementation of the stopping criteria [63, 144]. Finally for surveys of asynchronous iterative
methods we refer to [19, 20] and [78] where part of the above list was found.

This chapter is organized as follows. In Section 1.2 we first recall the mathematical model com-
monly used to describe the asynchronous iterations and recall a general convergence theorem based
on vectorial norm contraction properties. We also give a characterization of the contraction ma-
trix using accretive properties of the submatrices that naturally appears when block asynchronous
algorithms are considered [85].

19
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1.2 Mathematical model and theoretical framework

1.2.1 Mathematical models

Consider the following fixed point equation z* = F(z*) defined on E a product of Banach spaces,
ie. E=F x...x E,,.

To describe asynchronous iterations we follow [19, 46, 128] and first define the policy s(p) and
a series of delays d(p).

Definition I1.1.1 A policy is defined by a series s(p) such that:

Vp e IN, s(p) C{1,...,m}, s(p) #0, (I1.1.1)

Vk € {1,...,m} the set {p € INs.t. k € s(p)} is infinite. (I1.1.2)

Definition I1.1.2 A series of delays d(p) is defined by

Vp € IN,r(p) = (ri(p))i=1,m € N

Vp € IN,Vk € {1,...,m} the application: p — cx(p) = p—r1.(p) is a non-decreasing function of
p and satisfies:

cr(p) > 0 and cp(p) =p Vk € s(p), (I1.1.3)

lim ¢ (p) = oo. (I1.1.4)
Using the two above definitions the asynchronous iterations can be defined as follows.

Definition I1.1.3 Let 2° € E we consider the series of iterates defined by:

o1 [ o2} if k¢ s(p)
Vpe N, Vk € {1,...,m}, z}"" = { Fu(w) if ke s(p) (I1.1.5)

ce (P))

where w = (z, t=1,m ,w € E.

The policy series s(p) enables to define the components of the iterate that will be updated at
iteration p, the series d(p) enables to model the asynchronism and ¢,(p) indicates the iteration when
the £** component just read to perform the p™ iteration was computed. The hypothesis (I1.1.3)
indicates that all the components in s(p) will be updated at the pt" iteration, (II.1.4) indicates
that the computation proceeds and (I1.1.2) that no components fails to be updated as time goes
on. Finally the non decreasing property of the application cg(.) tells that one always consider the
latest computed entries available to perform the update given by (II.1.5).

In the sequel we will only consider the situation where Fj(w) defines a relaxation update like
Gauss-Seidel or SOR (Successive Over Relaxation). Note that Definition I1.1.3 includes as special
case the classical sequential or synchronous stationary methods. For linear relaxation schemes,
Vp s(p) = {1,...,m} models the block-Jacobi algorithm, while Vp s(p) = { mod (p,m) + 1}
corresponds to the block Gauss-Seidel method.

1.2.2 A convergence analysis framework

A general convergence theorem for the asynchronous iterations is the following [128, 138].

Theorem I1.1.1 Let F be an application from D(F) C E, D(F) # 0 into D(F).
Let assume that
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F has a fized point z* € D(F),

F is a J-contraction with respect to the fixed point x*, that is there exists a monnegative
matriz J € R™*™ with p(J) < 1 such that Yz € D(F')

|F(z1) — F(z7)]x |1 = 2[lx
: <J : ,
1 (zm) = F(27,)]Im |z2m = 23] lm
where the inequality in IR™ is componentwise, p(J) is the spectral radius of the matriz J and ||.||;
is the norm defined on the Banach space E;.

Then (11.1.5) defines xP for all p € IN such that P € D(F') and the iterates zP converge to z*
the fized point of F'.

To establish a convergence theorem for asynchronous iterations we consider in the sequel
nonlinear algebraic problems of the form:

Az +A(z)—b=0 (T1.1.6)

where A is a n X n matrix, z and b are vectors and A is a diagonal operator possibly multivoque.
We now consider a decomposition of (II.1.6) into m blocks, that is

Vk € {1, ,m} Aprzr + Ak(xk) — b + ZAkjaZj =0.
J#k
Theorem 11.1.2 Let

- Vk € {1,...,m} the matriz Ay be strongly accretive with constant myy, that is for all x) €
E; = R™ there exists a dual lx(z) of zi such that

(Arkzr, be(z)) > mu ||z [3-

Here (.) denotes the bilinear form between (IR™,||.||x) as a Banach space and its dual
(R™,||.1lx)* where li(zx) is an element of (IR™ ,||.||x)* with
e (i)llx = llzelle and (e (zr), z2) = ||lza]]i-

- V{4, k) € {1,...,m}%, j #k, mji, be the norm of the matriz Ay,

- V(5 k) € {1,....,m}2, Ay, be an increasing application,

MEj
Mk

- the matriz J be the matriz with zero diagonal entries and off-diagonal entries equal to
and suppose that J is a contraction matrix.

Then the parallel synchronous and asynchronous block algorithms associated with the m x m de-
composition defined by (11.1.5) converge to z* solution of (11.1.6).

Proof See [85].

Remark I1.1.1 In practice for J it is enough to show that p(J) < 1 since it is clearly a nonnegative
matriz. The contraction property is true in particular if the related matrix M whose diagonal entries
are myy, and off-diagonal entries —mji. is a M-matriz (see [131]).

Remark I1.1.2 Notice that if A in (I1.1.6) is a M-matriz and A is an increasing diagonal operator,
then the choice of the point wise decomposition, i.e. m = n, enables to show that the point
wise asynchronous algorithm converges and consequently any block asynchronous algorithm also
converges.
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1.3 Numerical experiments

To illustrate the numerical behavior of asynchronous iterations we consider the discretized and
linearized Hamilton-Jacobi-Bellman problem and refer to [85] where results on other nonlinear
problems like the obstacle problem and a nonlinear diffusion problem are reported. We recall that
the Hamilton-Jacobi-Bellman equations appears in different area like economics, stochastic control,

In this section we consider the following discretized Hamilton-Jacobi-Bellman equation:

Find x such that max(A4;z —b;) =0. (IL.1.7)

=1,

where the matrices A; are the discretization of the following elliptic operators defined on the unit
square with homogeneous Dirichlet boundary conditions:

_(8_2 + 8_2 + 18—2)
0r2 0y  20zdy’’
_(18_2 + 8_2 + ia_z)
20x2  0y? 10 0z0y

A =

Ay =

The discretized problem (I1.1.7) is solved using the Howard iterative scheme [104] that consists
in computing the new iterate P! such that it is the solution of the linear system

A(zP)zPT = b(aP), (I1.1.8)

where the i row of A(zP) and the i*" entry of the vector b(z?) are defined by the i*" row of the
matrix Ay, respectively the i*® entry of the vector by if k is such that (ApzP —bg); > (AjzP —bj);.

If the operator A; are discretized using finite differences on a uniform grid, the discretization
matrices A; are M-matrices then VzP A(zP) is also a M-matrix and Remark I1.1.2 enables to estab-
lish the convergence of asynchronous iterations on the linear system (II.1.8) for any decomposition
of the unit square into subdomains.

The purpose of the reported experiments is to illustrate that introducing some asynchronism in
the relaxation schemes does not deteriorate, and in some cases even improve, the numerical behavior
of the sequential code in terms of number of iterations. Asynchronous iterations were implemented
on shared and distributed memory computers. For all the experimental results reported in this
section, the convergence of the relaxation schemes is attained when the 2-norm of the residual is
less than 1079, the initial guess zg for the relaxation iterations was the null vector. In Table I1.1.1
we report the number of iterations observed on a network of Transputer (a loosely coupled parallel
platform), and depict in Table I1.1.2 the numerical behavior observed on an Alliant FX/80, a
vectorial shared memory computer. The linear solver for (II.1.8) is a block SOR method, where
each block is associated with one line of the grid. The asynchronism is obtained by decomposing the
linear system (I1.1.8) into m blocks of rows and allocating one of these m blocks to each processor.
Notice that in terms of mesh decomposition this corresponds to a partition of the grid points into
strips, i.e. 1 D decomposition. Because we consider asynchronous algorithms for each run we give
both the minimum and the maximum number of iterations performed by the processors.

Two parameters play an important role in the numerical behavior of the asynchronous re-
laxation schemes that are the subdomain decomposition, that might give rise to unbalance, and
the over-relaxation parameter of the SOR, scheme. There are no theoretical study nor heuristic
that enable to define their optimal values. In this respect all the number of iterations reported in
the above tables are the optimal we observed for a given number of processors varying both the
decomposition and the relaxation parameter. Although no numerical experiments are reported to
illustrate this fact, we mention that the convergence rate of the asynchronous SOR relaxations is
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| Number of processors || Number of iterations (min/Max) |

1 241
2 244/247
4 241/247
8 145/239

TABLE II.1.1: Number of iterations of the asynchronous iterations on a network of Transputer.

| Number of processors || Number of iterations (min/Max) |

1 241

2 255/258
4 238/271
8 144/228

TABLE I1.1.2: Number of iterations of the asynchronous iterations on an Alliant FX/80.

often very sensitive to those two parameters. In addition we mention that the best combination of
those parameters is also dependent on the target computer as the communication speed depends
on the computer influences the numerical behavior. Nevertheless it is amusing to notice that on
8 processors for both computers the sequence of iterates generates by the asynchronous iterations
enables to converge in less iterations than the sequential code.
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Chapter 2

Non-overlapping domain
decomposition methods

2.1 Introduction

In the recent years, there has been an important development of domain decomposition algorithms
for solving numerically elliptic partial differential equations. Elliptic problems are challenging since
their Green’s functions are global: the solution at each point depends upon the data at all other
points. Nowadays some methods possess optimal convergence rates for given classes of elliptic
problems. It can be shown that the condition number of the associated preconditioned systems is
independent of the number of subdomains and either independent of or logarithmically dependent
on the size of the subdomains. That optimality and this quasi-optimality properties are often
achieved thanks to the solution of a coarse problem defined on the whole physical domain. Through
the use of coarse spaces, this approach captures the global behavior of the elliptic equations.
Various domain decomposition techniques, from the eighties and nineties, have suggested different
global coupling mechanisms and various combinations between them and the local preconditioners.
In the framework of non-overlapping domain decomposition techniques, we refer for instance to
BPS (Bramble, Pasciak and Schatz) [26], Vertex Space [60, 146], and to some extend Balancing
Neumann-Neumann [116, 118, 120], as well as FETI [66, 122], for the presentation of major two-
level preconditioners. We refer to [44, 147] and [136] for a more exhaustive overview of domain
decomposition techniques.

This global coupling is critical for the numerical scalability of the preconditioners. In par-
ticular, it has been shown in [26] that, when applying the original BPS technique to a uniformly
elliptic operator, the preconditioned system has a condition number

k(MppsS) = O(1 + log?(H/h)), (IL.2.1)

where h is the mesh size, H largest diameter of the subdomains and «(A) is the condition number
of the matrix A. This implies that the condition number depends only weakly on the mesh spacing
and on the number of subdomains. Therefore, such a preconditioner is numerically scalable and
appropriate for large systems of equations solved on large processor systems.

Similarly to BPS, we consider a class of preconditioners described in a generic way as:

M = Mlocal + Mglobal- (1122)

In Section 2.2 we describe several alternatives to define Mj,.,; and in Section 2.3 we propose a set
of coarse components to be used for Mgiopar.

25
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In this chapter, we consider the following 2" order self-adjoint elliptic problem on an open
polygonal domain Q included in R*:

~F @) - L@ yF) = Fay) in 9 @23)

v = 0 on o9,
where a(z,y), b(z,y) € R® are bounded positive functions on Q. We assume that the domain
Q is partitioned into N non-overlapping subdomains €1, ...,Qy with boundaries 9Q4,... ,0QnN;
this defines a coarse mesh, 75, with mesh size H being the largest diameter of the subdomains.

We discretize (I1.2.3) either by finite differences or finite elements resulting in a symmetric and
positive definite linear system with sparse possibly unstructured matrix

Au = f.

Let B be the set of all the indices of the discretized points which belong to the interfaces
between the subdomains. Grouping the points corresponding to B in the vector up and the ones
corresponding to the interior I of the subdomains in uy, we get the reordered problem:

A Ars ur f1>
= . I1.24
<A}FB ABB) (UB> (fB (124)
Eliminating u; from the second block row of (II.2.4) leads to the following reduced equation for
up:

Sup = fg — ATz A7 fr, where S =App— AT A7} Arp (IL.2.5)

is the Schur complement of the matrix Ay in A, and is usually referred to as the Schur complement
matrix.

The matrix S inherits from A the symmetric positive definiteness property. Therefore we use
preconditioned conjugate gradient iterations for solving (I1.2.5).

2.2 Local preconditioners

To describe the preconditioners, we need to define a partition of B, the set of interface points. Let
{vi} be the singleton sets that contain one index related to one cross point and let V' = J,;{v;} be
the set with all those indices.

Ifi # 4, (i,7) € {1,2,...,N}? and i and j are such that ©; and ; are neighboring subdomains
(i.e. 09; and 99, share at least one edge of the mesh), then we can define each edge Ej by

E, = (BQZ n 8QJ)\V
We can thus describe the set B as
B=(JEyuV, (I1.2.6)
k
that is a partition of the interface B into edges E; and the set of vertices V.
In Figure II.2.1, we depict an internal subdomain 2; with its edge interfaces E,,, E,;, Ex, E;

and vertex points as v; that define I'; = 9Q;\09Q. Let Rr, : I' = I'; be the canonical pointwise
restriction which maps full vectors defined on I'" into vectors defined on T';, and let RITZ, : I, - T
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be its transpose. For a stiffness matrix A arising from a finite element discretization, the Schur
complement matrix (I1.2.5) can also be written as:

N
S=> RLSYRr,
i=1
where

S0 =AY _ AT AT Ay, (I1.2.7)

is referred to as the local Schur complement associated with the subdomain ;. S involves
submatrices from the local stiffness matrix A, defined by

i Ay A,
Al) = <A’11: Ag)) . (H.Q.S)

The matrix A corresponds to the discretization of Equation (II.2.3) on the subdomain ©; with

FIGURE I1.2.1: An internal subdomain.

Neumann boundary condition on I'; and A;; corresponds to the discretization of Equation (I1.2.3)
on the subdomain Q; with homogeneous Dirichlet boundary conditions on I';. In a parallel dis-
tributed memory environment, where each subdomain is assigned to one processor, all the local
Schur complement matrices can be computed simultaneously by all the processors and the com-
plete Schur matrix S defined by (II.2.5) is never fully assembled.

The local Schur complement matrix, associated with the subdomain ; depicted in Figure I1.2.1,
is dense and has the following block structure:

Sg)rn Smg Sk Sml ST:;)V
ng Sz%) Syk Sgl Sé
SO =1 Spm Shkg 5;(;;3 Shke 5,(;‘)/ )
Stm  Seg Su SN Sy
s s st sl st

where V is the set of vertices v; of ;. The first four diagonal blocks represent the local coupling
between nodes on an edge interface introduced by the subdomain 2; and are only contributions to
the diagonal blocks of the complete Schur complement matrix S. For instance, the diagonal block

of the complete matrix S associated with the edge interface Ej in Figure I1.2.1 is Si = S,(czk) + S,(CJ,'C).
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Assembling each diagonal block of the local Schur complement matrices and the blocks associated
with the vertices, we obtain the local assembled Schur complement, that is:

Smm Smg Smk Smﬁ SmV
. ng Syg Syk Sgl SyV
SO = | Spn Sky Skr Sk Swv |,
Stm  Stg Ser S Sev
Svm Svg Sve Sve Svv
which corresponds to the restriction of S to the unknowns associated with the interface I'; of ;.
The new local preconditioners can be described using a set of canonical restriction operators.

Let U be the algebraic space of nodal vectors where the Schur complement matrix is defined and
(U;)i=1,p a set of subspaces of U such that:

U=U1+...—|—Up.

Let R; be the canonical pointwise restriction of nodal values defined on U;. Its transpose extends
grid functions in U; by zero to the rest of U. Using the above notation, we can define a wide class
of block preconditioners by

p
Mipe =Y  RTM;'R;, (I1.2.9)
i=1
where
M; = R;SRT . (11.2.10)
The properties of the operators (I11.2.9) and (I1.2.10) are given by the following lemma:

Lemma I1.2.1 If the operator RT is of full rank and if S is symmetric and positive definite, then
the matriz M;, defined in Equation (I1.2.10), and the matriz M. defined in Equation (I1.2.9) are
symmetric and positive definite.

Proof

The proof can be done in two steps. We first show that M; ' is symmetric positive definite (SPD)
then that M. is SPD.

Let < .,. > denotes the scalar product associated with the 2-norm.

e M;!is SPD is equivalent to show that M; is SPD.
By definition M; is symmetric:

Ve #0 <z, Mz >=< z,R;SRI z >=< Rz, SR z >
In addition

R; is full rank = RTz #0

S is SPD } =>< R;?Fa:, SR;?F:L" > is strictly positive.

e Mj,. is SPD.
Let x € U.

P P
<z, Mpex >=< z, ZR?M[IRM >= Z < Rix,Mi_lRix >, (I1.2.11)
i=1 i=1
where Vi < Rz, M 'R;z >> 0 since M; " is SPD. So the expression (I1.2.11) can be zero
if and only if Vi < Rim,Mi_lRix >= 0 which implies that x = 0 since R; are canonical
restrictions such that U; = Im(R;) and U = Uy + ... + U),.
|
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Remark I1.2.3 If U = U; & .... ® U, then M. is a block Jacobi preconditioner. Otherwise,
Mioc is a block diagonal preconditioner with an overlap between the blocks as U; NU; # 0. In
this case, the preconditioner can be viewed as an algebraic additive Schwarz preconditioner for the
Schur complement.

The preconditioners are requested to be efficient on parallel distributed memory platforms.
Therefore, we do mainly consider subspaces U; that involve information mainly stored in the
local memory of the processors; that is information associated with only one subdomain and its
closest neighbors. We present four different decompositions of U. The first three are applicable on
structured or unstructured discretizations and are defined by associating each subspace respectively
with:

1. each edge Ej and each vertex v; of the decomposition giving rise to the edge preconditioner
described in Section 2.2.1,

2. each edge Ej enlarged with neighbors of its ended points v, resulting in the vertex-edge
preconditioner presented in Section 2.2.2,

3. each interface I'; of the subdomains giving the subdomain preconditioner presented in Sec-
tion 2.2.3.

The last proposed preconditioner exploited the underlying structure of the regular meshes and
is similar to the alternating line relaxation on Cartesian grids. Section 2.2.4 is devoted to its
description.

2.2.1 Edge preconditioners

For each edge F; we define R; = Rp, as the standard pointwise restriction of nodal values on
E;. Tts transpose extends grid functions in E; by zero to the rest of the interface. Thus, S;; =
REZ,SRTi = M;. Similarly, we consider R,, the restriction operator for each vertex of the coarse
mesh 77 defined by the decomposition. Using the above notation we define the edge-based local
preconditioner by

Mipe = Mg = RES;'Rg, + Y RLS,L Ry, (11.2.12)
E; vy

This preconditioner aims at capturing the interaction between neighboring nodes within the
same edge interface. Notice that S,,,, in (I[.2.12) is just a scalar which is the diagonal coefficient
of the equation associated with the vertex v;; this only corresponds to a diagonal scaling at the
vertices of 7. This preconditioner is the straightforward block Jacobi that is well-known to be
efficiently parallelizable. The main criticism against Mg is that it does not manage consistently
neighbor nodes that are close to a vertex but belong to different edges, see Figure I1.2.1. We

describe in the next section a preconditioner that intends to address this deficiency.

2.2.2 Vertex-edge preconditioners

The vertex-edge preconditioner is similar to the Vertex-Space preconditioner introduced in [146],
for which we merge into a single subspace the edge and vertex subspaces that appear in an additive
way in [60, 146].

In Figure I1.2.2, we depict Uy, the image of the restriction operator R, = Ry g, associated
with the vertex-edge Ej. With this notation the vertex-edge preconditioner is defined by

Mipe = Myg = ZRaEiM‘;EiRVEi with Myg, = RVEISREEZ
E;
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Ficure I1.2.2: U associated to the vertex-edge preconditioner.

In that case, two neighbor vertex-edges (for instance, Ej and E, in Figure I1.2.2) intercept
each other, then the associated space splitting (U;); does not define a direct sum of the space U and
the number of nodes in the neighborhood of the vertex v; defines the amount of overlap between
the blocks M; of the preconditioner.

2.2.3 Subdomain preconditioner

In this alternative, we try to exploit all the information available on each subdomain and we
associate each subspace U; with the entire boundary I'; of subdomain ;. Here, we have R; = Rr,.
Consequently M; = S() is the assembled local Schur complement. This splitting (U;); is not a
direct sum of the space U and we have introduced some overlap between the blocks defining the
subdomain preconditioner Mg.

We should notice the similitude between Mg and the Neumann-Neumann preconditioner,
denoted My, that was originally proposed in [25] and [52].

Mg can be written as:

N
MS = ZREZ(S(z))ilRFZ ’
=1

while the Neumann-Neumann preconditioner is

N
Myy =) BRI, (Di(S")* DRy, (I1.2.13)

i=1

N

In Equation (I1.2.13) the matrices D; are weighted matrices such that Z R D;Rr, = 1. T de-
i=1

notes the identity matrix and (S(?)* is the Moore-Penrose pseudo-inverse [94] since the local Schur

complement matrices S are singular for internal subdomains. Notice that assembling the local

Schur complement S; removes these singularities.

2.2.4 Alternating line preconditioner

The special structures of the 2D decomposition of structured meshes can be exploited to design a
preconditioner similar to the alternating line relaxation. Specifically, we consider the restriction
of the Schur complement operator to each grid line. In that case the definition of the restriction
operator R; differs depending on
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whether the grid line is aligned with a set of domain interfaces, we denote R™¢ the restriction
operator enabling to define My, the restriction of the Schur complement to Uj, depicted in
Figure I1.2.3 for a vertical interface;

or whether the grid line crosses a set of domains. In this later situation we note R{°"°°* the
restriction operator enabling to define Mj;y., the restriction of the Schur complement to Uy,
depicted in Figure I1.2.4 for a horizontal grid line.

The resulting alternating line preconditioner can be written:

Map, = Map—o + Mag,—y,

where
_ line\T —1 line across\T —1 accross
MAL—I - E (Rk ) MlinekRk + E (Rk ) Maccrosk, Rk ’
horizontal grid horizontal grid
ke lines aligned ke lines not aligned
with an interface with an interface
and a similar definition for M 4r_, but for the vertical grid lines.
¢
¢
b
b b O b b
b
b
FiGURE 11.2.3: Uy, associated with a grid FIGURE I1.2.4: U, associated with an
line aligned with a vertical interface. horizontal grid line that crosses the

subdomains.

On a uniform grid with n, grid points in the z direction partitioned among N, equi-sized
rectangles, a horizontal grid line that is aligned with the interfaces has n, points while a line
between the interfaces has N, — 1 points. For a grid line aligned with an interface, Mjine, the
restriction of the Schur complement matrix to this line is almost a block diagonal matrix (actually
the matrix is block diagonal with blocks that overlap at the vertices v;). For a grid line that crosses
the subdomains, Meross, the restriction of the Schur complement to this line is a tridiagonal
matrix.

2.2.5 Computing alternatives

The construction of the proposed local preconditioners can be computationally expensive because
the exact local Schur complement S() needs to be formed explicitly and then dense matrices
M; should be factorized. To alleviate these costs we propose several alternatives that can be
combined. The first intends to reduce the construction cost of S(9) by using approximated solution
of the local Dirichlet problems A;;; the second intends to reduce the storage and the computational
cost to apply the preconditioner by using sparse approximation of the M; obtained by dropping the
smallest entries. Finally the probing technique proposed by [43] for the edge preconditioner can
be adapted to vertex-edge following [45] and extended to the alternating line preconditioner [89].
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Local Schur with inexact local solvers

Using the up-to-date sparse direct technology of efficient sparse direct solver, A;; is factorized
and S can be computed via many forward /backward substitutions. Nonetheless, this procedure
remains computationally expensive. To alleviate this cost, the exact solution of the local Dirichlet
problems A;;! (see Equation (I1.2.7)) can be replaced by some cheap approximations. For symmet-
ric positive definite problems, approximations can be efficiently computed either by approximate
inverses like AINV [17] or FSPAI [114], or by an Incomplete Cholesky factorization, I LLT resulting
in an approximate Schur complement S.

Arr A
\Afr  Arr
Cholesky factorization of Arr then S = Arr — A}"F(LLT)*lAIF is also an Stieltjes matriz.

Lemma I1.2.2 If the matriz A = ( ) is a Stieltjes matriz and (LLT) is an incomplete

Proof
It is enough to show that
0 < (LLT)™ < A7y,

since Theorem 7.1 in [7] will then insure that the resulting approximate Schur is a M-matrix. By
construction S is symmetric then is a Stieltjes matrix consequently SPD.

Arr is a symmetric M-Matrix, so by Theorem 2.4 in [123], Arr = (LLT) — R is a regular splitting
(i.e. (LLT)"* >0 and R > 0).

A= (LLT) =R = (LLT) Ay =T — (LLT)T'R< I.
Since Asr is a M-matrix, A7} > 0 then
0 < (LLT)™" < A
]

We note that the same property holds for approximate Schur complement computed with
AINV. In [18] it is shown that the approximate inverse G of a M-matrix A computed by AINV
also satisfies the inequality 0 < G < A~1.

Notice that Lemma, I1.2.1 and I1.2.2 insure that for M-matrices the local preconditioners built
using either ILLT or AINV are SPD.

Sparse approximation of the local Schur complement

Another possible alternative to get a cheaper preconditioner is to consider a sparse approximation
for S in (I1.2.10) which results in a saving of memory to store the preconditioner and saving of
computation to factorize and apply the preconditioner. This approximation S can be constructed
by dropping the elements of S that are smaller than a given threshold. More precisely the following
dropping strategy can be applied:

5= 10 if s <nllsal + sg50), (11.2.14)
Y si;  else. -
Arr A

Lemma I1.2.3 If the matriz A = < > is a Stieltjes matriz then the sparse approximation

Afr Arr
S computed by (11.2.14) applied to S = Arr — A?FA;IlAzp is also an Stieltjes matriz.
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Proof
Tt is well-known that S is a Stieltjes matrix (see [7] for instance), then it is easy to see that remov-
ing off diagonal entries while preserving symmetry preserves this property.

|

We note that these first two alternatives can be combined, that is dropping the smallest entries
of approximate M;, to produce preconditioner cheap to compute and to store. We mention that,
for M-matrices, this combination still gives rise to preconditioners that are SPD.

The probing approximation

The probing technique proposed by [43] can be followed to cheaply construct approximations for
the edge and vertex-edge preconditioners. In addition this technique can also be extended to
construct cheap approximation of the alternative line preconditioner, but special attention should
be paid for anisotropic problems [89)].

To simplify the presentation, we first consider two subdomains divided by one interface and
refer to [43] for a complete analysis of this technique. The main idea is to approximate the interface
matrix by a matrix having a prescribed sparsity pattern. This sparsity pattern is usually chosen
as a band matrix and is motivated by the observation that the entries of S decay rapidly from
the diagonal; it can be shown [93] that |s;;| = O(;=5). A banded approximation is built with
matrix-vector products between S and a few carefully chosen vectors. The choice of these vectors
is based on the fact that it is possible to recover the entries of an implicit band matrix having
upper and lower bandwidth d from its action on 2d + 1 probe vectors defined by
(,d) { 1 if k modl2d+1) = j

¢ 0 se (I1.2.15)

where the index k is used to denote the specific entries of the j** probe vector p(j’d). To illustrate
the idea, the case d = 1 is considered. Specifically, it is possible to obtain all the coefficients of
a tridiagonal matrix, C, using p(®" = (0,0,1,0,0,1,0,0,---)T, p(t1) = (1,0,0,1,0,0,---)7, and
pY =(0,1,0,0,1,0,0,---)T:
c11  C12 ci1 c2 0

C21  C22 C23

C32 (€33 C3q

C43 C44 C45

C21 C22 C23
— | €3¢ C32 C33
C44 C45 C43

SO = O O =
_— o O = O
O O = OO

In the two subdmain case the Schur complement is not tridiagonal but is full with entries decaying
rapidly from the diagonal. In this case, the probe is not exact but gives rise to a good approxima-
tion. To generalize the probing technique to multiple domains, a band matrix must be generated
for each subdomain edge. To do this, [45] defines composite probe vectors using the individual
edge probes, pl&9)  defined by (I1.2.15) for the two domain case. Specifically, they construct 2d + 1
composite vectors using the p(:?’s on all the vertical edges and 0’s on the horizontal edges. Then,
another 2d 4+ 1 composite vectors are constructed using the p(7*¥’s on the horizontal edges and 0’s
on the vertical edges (see Figure I1.2.5). We refer to this procedure as vertical/horizontal probing
and use the notation Mgh(d) to denote the local preconditioning operator.

The primary problem when probing is to avoid interference between edges that are probed
simultaneously. That is, all edges which border the same subdomain influence each other. The
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j,d j.d j,d

j,d jd j.d j,d
j,d j,d j,d

j.d j,d j.d j.d
j,d j.d j,d

j,d j,d j.d j.d
j,d j.d j,d

FiGure I1.2.5: Vertical/horizontal probe vectors.

vertical /horizontal probing eliminates approximation errors arising from coupling between vertical
and horizontal edges. However, it does not eliminate coupling errors between the vertical edges or
between the horizontal edges. In the case of isotropic problems, this coupling is usually much weaker
than the coupling within an edge and so the vertical /horizontal probing is sufficient. However, for
2D anisotropic problem as
2 2
5% + g—yZ = fwith e <1, (11.2.16)
there exists a sufficiently small € such that the coupling between two horizontal edges that border
the same subdomain is actually stronger than the coupling within the horizontal edges. In this
case, the use of the composite ‘horizontal’ probe vectors defined in Figure I1.2.5 (used to construct
approximations to coupling within each horizontal edge) will give rise to inaccurate approximations
of the associated S;; due to the large coupling between these horizontal edges.
To alleviate this interference problem we propose to further subdivide both horizontal and
vertical edges into ‘red’ and ‘black’ sets to minimize the approximation errors arising from coupling
between vertical (or horizontal) interfaces (see Figure I1.2.6 for the vertical interfaces). We refer to

5 09 0| p09 0| p09 0
o 09 0| p09 0| p09 0
NE 0| p09 0| 09 0
5 09 0| p09 0| 09 0

FIGURE I1.2.6: Red/black vertical probe vectors.

this procedure as red/black probing and use the notation Mgb(d) to denote the local component of
the preconditioner. The important aspect of red/black probing is that the probe approximation on
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a particular edge is not distorted by other edges as there is no coupling in the Schur complement
matrix between edges within the same line and between two edges on parallel non-neighboring
interfaces. We note that while this procedure is for regular grids, nonuniform grids can use the
same idea via multicoloring. Essentially, two edges belonging to the same subdomain must be
assigned to different colors. To summarize, the overall costs of building Mgh(d) and Mgb(d) are
2(2d + 1) and 4(2d + 1) matrix-vector products respectively. For d = 1, this corresponds to 6
and 12 matrix-vector products. Though the vertical/horizontal probing is the least expensive, the
difference in the convergence rate is often large enough for anisotropic problems to offset the extra
cost.

The probing technique can also be adapted to construct cheap approximation of the submatri-
ces of the Schur complement involved in the alternating line preconditioner M 41,. The construction
of this preconditioner consists of probing the Schur complement along the following:

1. vertical grid lines aligned with interfaces using the p{:¥ probe vectors over each entire inter-
face as shown in Figure I1.2.7 in the case of vertical grid lines aligned with vertical interfaces,

2. horizontal grid lines not aligned with interfaces using probe vectors, ¢(»!), defined over each
element of the interfaces that lies on that line. Such a vector is depicted in Figure I1.2.8 for
a horizontal grid line,

3. horizontal grid lines aligned with interfaces, and

4. vertical grid lines not aligned with interfaces.

o-d-6
SO P-O@

cogrodqooH{oodqo~
o-BH-0-O

O-OP- OO0
—_
@

4 0p 00 1e
{
q
FiGURE I1.2.7: Example of a FIGURE I1.2.8: Example of a ¢(-1)
p(4,2) vector. vector.

To reduce the cost of the building of these matrices, steps 1) and 2) can be combined as well
as steps 3) and 4). For example, for steps 1) and 2) the probe vectors on all the vertical interfaces
are defined by

¢ @plid  j=0,.,2
j=0,..2d;

we recall that (A ® B)gm = agmB. This scheme is depicted in Figure I1.2.9 for the case d = 2
for points on vertical interfaces. After steps 1) and 2) we repeat the same procedure for the
horizontal interface points. It is important to note that combining steps 1) and 2) introduces small
approximation errors. For example, the tridiagonals constructed for lines that are not aligned
with interfaces are no longer exact. However, the advantage of this process is that only 6(2d + 1)
matrix-vector products are needed to build the probe (as compared with 4(2d + 1) for red/black
probing). We refer to this procedure as alternating line probing and use the notation M}&dL) to
denote the associated local preconditioning operator.
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~FQooorooOoOgd~roOgo
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FIGURE I1.2.9:  Sample of (¢(*V) @ p(9:2)).

It can be shown (see for instance [44]) that the local preconditioners alone are not numerically
scalable for elliptic problems in the sense that

k(MioeS) = O(H™2). (11.2.17)

This means that when the number of subdomains increases the number of conjugate gradient itera-
tions increases as well. To ensure the numerical scalability of the preconditioners a quasi-optimality
property should be satisfied; that is, the condition number of the associated preconditioned systems
is independent from the number of subdomains and only logarithmically dependent on the size of
the subdomains. In this respect, a coarse problem defined on the whole physical domain must be
incorporated into the preconditioner.

2.3 Coarse space preconditioners

Various domain decomposition techniques, from the eighties and nineties, have suggested different
global coupling mechanisms and various combinations between them and the local precondition-
ers. In this section, we present a contribution in the area of two-level domain decomposition
methods using algebraic constructions of the coarse space for solving heterogeneous, anisotropic
two-dimensional elliptic problems on structured or unstructured discretizations. They are closely
related to BPS [26], although we propose different coarse spaces to construct their coarse compo-
nents.

The classical BPS preconditioner [26] can be briefly described as follows. Let assume that
Q1, ..., Qx form the elements of a coarse grid mesh, 77, with mesh size H. We then define grid
transfer operators between the interface and the coarse grid. R” is an interpolation operator which
corresponds to using linear interpolation between two adjacent cross points v;, vi, (i-e. adjacent
points in 7# connected by an edge E;) to define values on the edge E;. Finally, A is the Galerkin
coarse grid operator Ay = RART defined on 7.

With these notations a very close variant of the BPS preconditioner is defined by

Mpps =Y  Rp.S;'Rp, + RTAY'R, (I1.2.18)
E;

as described, for instance, in this algebraic form in [44]. It can be interpreted as a generalized
block Jacobi preconditioner for the Schur complement system (II.2.5) where the block diagonal
preconditioning for Sy is omitted and a residual correction is used on a coarse grid. The coarse
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grid term RTAI?R allows to incorporate a global coupling between the interfaces, which enables to
get the condition number given in Equation I.2.1 that is independent of the number of subdomains.

In the rest of this section, we will define various preconditioners that only differ in the def-
inition of Miohe that appears in (I1.2.2). Our goal is to obtain performance similar to those of
the original BPS preconditioner even in presence of anisotropy or heterogeneity, with a simple
algebraic structure and a parallel implementation strategy. In particular, for practical implemen-
tation purposes within a general purpose computer code, we do not want to refer explicitly to an
underlying coarse grid, or to underlying basis functions, since these notions are always hard to
identify in practice when using general grids, finite elements or mixed finite elements.

Let U be the algebraic space of nodal vectors where the Schur complement matrix is defined
and Uy be a g-dimensional subspace of U. Elements of Uy are characterized by the set of nodal
values that they can achieve that will be referred to as the support of the vectors. This subspace
will be called coarse space. Let Ry : U — Uy be a restriction operator which maps full vectors of
U into vectors in Uy, and let RT : Uy — U be the transpose of Ry, an extension operator which
extends vectors from the coarse space Uy to full vectors in the fine space U. The Galerkin coarse
space operator

Ao = RySRY, (11.2.19)

in some way, represents the Schur complement on the coarse space Uy. The global coupling
mechanism is introduced by the coarse component of the preconditioner which can thus be defined
as Mglobal = RgAalRo.

The following lemma ensures the correctness of the operators we work with:

Lemma I1.2.4 If the operator RY is of full rank and if S is non-singular, symmetric and positive
definite, then the matriz Ao, defined in Equation (I1.2.19), is non-singular, symmetric and positive
definite.

The coarse-space preconditioners will only differ in the choice of the coarse space Uy and the
interpolation operator RI. For convergence reasons, and similarly to the Neumann-Neumann and
Balancing Neumann-Neumann preconditioner [116, 118], RT must be a partition of the unity in U
in the sense that

RT1 =1, (I1.2.20)

where the symbol 1 denotes the vectors of all 1’s that have different size in the right and left hand
side of (I1.2.20).

With these notations and definitions, all the preconditioners presented in the sequel of this
section can be written as follows:

M =Y RlIS;'R; + RJ A, 'Ry, (I1.2.21)
E;

where we usually replace S;; in (I1.2.18) by an approximation S;; computed using a multicolouring
probing technique.

In the next section, we define various coarse spaces and restrictions operators which can be
used in a very general framework. The support of the basis vectors Z has inspired the name of
the coarse spaces. Although a large number of different preconditioners can then be proposed, we
restrict our study to five combinations of coarse spaces and restriction operators.
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2.3.1 Vertex based coarse space

The first coarse space we consider is similar to the one of BPS. Each degree of freedom of Uy is
associated with one vertex v;, and the basis vectors generating the nodal values of the elements of
Up can be defined as follows. Let {v} C V be a singleton set that contains the index associated
with a cross point and (E;) be the adjacent edges to v;. Let m. denote the number of vertex
points then

fk = UEj U {’Uk}

is the set of indices we associate with the cross point v to define the support of the basis vectors.

Let Zj, be a vector defined on B and Zj(i) its i-th component. Then, the vertex based coarse
space Uy can be defined as

1 ifiey,
Up =span[Zy : k=1,...,m.], where Z.(i) = Bre S
0 elsewhere.
The set fk associated with a cross point Vj is depicted in Figure I1.2.10. The set of vectors

B={Z1,2Z5,...,Zy,} forms a basis for the subspace Uy, as these vectors span Uy by construction
and they are linearly independent.

s
R

FI1GURE I1.2.10: Support of one basis vector of the “vertex” coarse space.

For this coarse space, we consider three different restriction operators Ry and their associated
prolongation operator RY .

Flat restriction operator

This operator returns for each set fk the weighted sum of values of all the nodes in fk The
weights are determined by the inverse of the number of sets Zy, k € {1,2,...,m.}, that a given
node belongs to. For 2D problem discretized by finite differences, the weight for the cross points
is 1 and for an edge point is 1/2.

Linear interpolation operator

The interpolation operators in this section and the next one are basically 1D interpolations on
the edges E; of values defined at the cross points that are its end-points. In this respect, let us
describe them in the 1D framework obtained by mapping the edge E; on the interval (0,1) through
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| Pr_1 P,
the map ¢(P;) = M We consider the following 1D model problem
Y Yker: [P Pl
d d .
_%(a(m)%u(m)) = f in(0.1), (11.2.22)
u(z) = 0 atz=0and 1.

Let H'(0,1) be the standard Sobolev space on the interval (0,1) and H}(0,1) its subspace whose
functions vanish at z = 0 and z = 1. Given a grid x;"” = jh,7 =0,...,n on (0,1) as the image of
the original discretization of F;, define the fine grid linear finite element space to be

Vh = {o" € H}(0,1) : v" is linear on [a:;-‘,:L'?+1],j =0,..,n—1},

and denote the set of nodal basis by {(ﬁ? —o-

Let (zf);—1. be the set of coarse grid points defined by the vertices of the partitioning of
(0,1) into non-overlapping subdomains. Now, we define the coarse subspace VH = span{¢F :i =
1,...,m} where ¢ are the coarse grid nodal basis functions.

Since {¢H} is a basis of VH, which is a subspace of V", there exists a unique matrix RI of
size n — 1 x m such that

b1 ..om] = [61 ¢ 1 ]R3
that is usually referred to as the local interpolation matrix. We depict in Figure I1.2.11 an example
of a coarse grid basis functions that defines the linear interpolation.

FIGURE I1.2.11: coarse grid basis function ¢£ associated with the linear interpolation.

When using block Jacobi as the local preconditioner combined with the vertex coarse space
using this linear prolongation operator, the resulting preconditioner is equivalent to the genuine
BPS [26].

Let A be the matrix defined in Equation (I1.2.4). Let Ay be the Galerkin coarse grid operator
associated with of A defined by

Ay = RyART (11.2.23)

where EO is a restriction operator from € to the coarse space Up. It has been shown [26, 147] that
in general for elliptic problems the operator Ay is spectrally equivalent to

RoSRY (11.2.24)

and for a few cases these coarse operators are even equal.

If we have used the approach defined by (I1.2.23), the construction of the coarse space would
have been reduced to some matrix-vector multiplications with A, and the factorization of Ay .
Nevertheless, we deal with problems for which only the spectral equivalence between (I1.2.23)
and (I1.2.24) is ensured. For this reason, we have preferred to use the Galerkin coarse grid correction
with the Schur complement matrix as described in (I1.2.24) rather than the one proposed in a
similar matrix form in [44] that used Ay defined by (I1.2.23).
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Operator-dependent restriction operator

The origin of the operator-dependent restriction is the operator-dependent transfer operator pro-
posed in the framework of multigrid methods, see [156] and references therein. In [87], we proposed
an extension of these operators for two-dimensional non-overlapping domain decomposition meth-
ods. The general purpose of these operators is to construct from u defined on V' an interpolation

4 defined on B that is piecewise linear so that a% and bg—g are continuous even when either a or

b in (I1.2.3) are discontinuous along an edge E;.
Similarly to the linear interpolation, we can define the operator-dependent interpolation in

1D through the definition of the coarse grid basis functions ¢Z. In that case those basis functions

are constructed by solving the following local problem in [zZ |, zH] :

L ala) ) =0 infally, 0,

(11.2.25)
o (zfL)) = 0,97 (zf) = L.

In Figure 11.2.12, we depict the basis function ¢ when the function a(z) is piecewise constant

with some discontinuities at % and z%.
1
N a(z)

FIGURE I1.2.12: coarse grid basis function ¢ associated with the operator-dependent
interpolation.

We omit the computational details, and only notice that such operators

- can be constructed by solving one tridiagonal linear system for each E;, that corresponds to the
solution of (I1.2.25). The size of the tridiagonal matrices is the number of nodes on FE;,

- reduce to a linear interpolation when a() = 1 and b() =1,

- in 1D reduce to the multigrid energy minimization approach [154, 155] or to the multigrid
operator-dependent interpolation with harmonic averaging [87], when every other point is a
coarse point (i.e. each subdomain contains only one point).

2.3.2 Subdomain based coarse space

With this coarse space, we associate one degree of freedom with each subdomain. Let B be as
defined in Equation (I1.2.6). Let Q be a subdomain and 99y, its boundary. Then

Tk:anﬂB

is the set of indices we associate with the domain Q. Figure I1.2.13 shows the elements of a certain
set Zy.
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Let Z, a vector defined on B and Zj () its é-th component. Then, the subdomain-based coarse
space Uy can be defined as

1, ifi € Zrand

Up =span[Z; : k=1,... ,N], where Z(i) = :
0, otherwise.

H

F1GURE 1I1.2.13: Support of one basis vector of the “subdomain” coarse space.

Notice that for the example depicted in Figure 11.2.13, [Z;] is rank deficient. Indeed, if we

consider v = Zfil «a;Z; where the a; are , in a checker-board pattern, equal to —1 and +1, it is
easy to see that © = 0. Nevertheless, this rank deficiency can be easily removed by discarding one
of the vectors of [Z;]. In this particular situation, the set of vectors B = {Z1, Z»,... , Zy—_1} forms
a basis for the subspace Uyp.
The considered restriction operator Ry returns for each subdomain (€;);=1,n_1 the weighted sum
of the values at all the nodes on the boundary of that subdomain. The weights are determined by
the inverse of the number of subdomains in (€2;);=1,8—-1 each node belongs to. For all the nodes
but the ones on Ny (in our particular example) this weight is: 1/2 for the points on an edge and
1/4 for the cross points. These weights can be replaced as in [116] by operator dependent weights
Ro(i,k) = ai/(a; + a;j) on the edge separating ; from Q; , but this choice has not been tested
numerically in the present work.

Remark I1.2.4 Although used in a completely different context, this coarse space is similar to
the one used in the Balancing Neumann-Neumann preconditioner for Poisson-type problems [118].
We use one basis vector for each subdomain, whereas in Balancing Neumann-Neumann the basis
vectors are only defined for interior subdomains for solving the Dirichlet problem (I11.2.3), that are
the subdomains where the local Neumann problems are singular.

2.3.3 Edge based coarse space

We refine the coarse space based on the subdomains and we introduce one degree of freedom per
interface between two neighboring subdomains, that is, when 9€; and 012; share at least one edge
of the mesh.

Let Ej be an edge and v; and v; its adjacent cross points then

ik =Fk,U {’Uj} @] {’Ul}

is the set of indices we associate with the edge Fj,.
Let Zj, defined on B and Z(i) its i-th component. Let m. denote the number of edges E; C B,
then, the edge based coarse space Uy can be defined as:
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1 ’L.Gfk,

Up =span[Zy : k=1,... ,m.], where Zy(i) = )
0 otherwise.

F1cure I1.2.14: Support of one basis vector of the “edge” coarse space.

The set 7, associated with an element of the coarse space Uy is depicted in Figure I1.2.14. The
set of vectors B = {Z1,25,... ,Z,,} forms a basis for the subspace Uy, as before, these vectors
span Uy by construction and they are linearly independent.

The considered restriction operator Ry returns for each edge the weighted sum of the values at
all the nodes on that edge. The weights are determined by the inverse of the number of edges each
node belongs to. For 2D problems discretized by finite differences the weights for the restriction
operator are 1 for points belonging to an edge and one fourth for the internal cross points.

2.4 Numerical experiments

We consider the solution of Equation (I1.2.3) discretized by a five-point central finite difference
scheme on a uniform mesh using a preconditioned Schur complement method. The background
of our study is the numerical solution of the 2D drift-diffusion equations for the simulation of
semi-conductor devices [88]. In this respect, we intend to evaluate the sensitivity of the precondi-
tioners to anisotropy and to discontinuity. We illustrate the numerical scalability of the proposed
preconditioners on academic two-dimensional model test cases that have both anisotropy and dis-
continuity.

2.4.1 Local preconditioners
Model problems

In Figure 11.2.15, we represent the unit square divided into five regions where piecewise constant
functions are used to define a first set of test problems. In addition, we have performed experiments
with the problem defined by piecewise constant functions as depicted in Figure I1.2.16. Let a()
and b() be the diffusion coefficients of the elliptic problem as described in Equation (11.2.3).

Using this notation and Figure 11.2.15, we define the first set of model problems with different
degrees of difficulty:

e Poisson problem: a() =1 and b() =1,

e anisotropic and discontinuous problems with a() = 1 and b() = ¢,d or f which depend on z
and y.

— AD-F1: c=1, d= 102 and f=10"2.



I1.2 NON-OVERLAPPING DOMAIN DECOMPOSITION 43

d c d
d
f
Ficure I1.2.15: Example 1 - Flag. FiGURE I1.2.16: Example 2 - Region.

— AD-F2: ¢=1, d= 10® and f=1073.
e discontinuous problems with a() = b() = ¢,d, f.

— D-F1: c=1, d= 10% and f= 1072.
— D-F2: ¢c=1, d= 10% and f= 1073.

Using piecewise constant functions on the regions depicted in Figure I1.2.16, we define a second
set, of test problems:

e anisotropic and discontinuous problems: a() = 1 and b() = ¢,d or f.
— AD-R: c=10' , d= 1072 and f=10"1.

e discontinuous problems: a() = b() = ¢, d, f.
— D-R: c=10' ,d=10"2 and f=10"".

We have also considered a last set of problems associated with (I1.2.3). We have introduced
anisotropy not necessarily aligned with the axis but making an angle § with the z-direction. For
6 = 0, this corresponds to the classical model anisotropic problem defined by Equation (I1.2.16).

Experimental results

For the experimental results related to My g, we have considered two extra edge points in the
neighborhood of the vertices v; in each direction. For a more detailed study about the influence
of the size of the overlap in the neighborhood of the vertices v; on the convergence rate, we refer
to [36] and [37]. We just state here that a very small overlap is usually enough to improve the
behavior of My g with respect to Mg.

For all the experimental results reported in the next section, the convergence of the precon-
ditioned conjugate gradient method is attained when the 2-norm of the residual of the current
iteration normalized by the 2-norm of the right hand side is less than 1079, the initial guess z
for the conjugate gradient iterations was the null vector. All the experiments were performed in
double precision arithmetic. When results with a two-level preconditioner are reported the coarse
component is vertex operator dependent. The resulting variants of the BPS preconditioner will be
denoted:

- Mpps_g for Mj,. = MEg. Notice that this local preconditioner is the one used in the genuine
BPS; in this respect Mpps_ g is the closest variant to regular BPS. It is a slight improvement
of regular BPS as the coarse component does not rely on the spectral equivalence property
between A and S for uniformly elliptic operators.
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- Mpps—vE for Mijoe = MvE.
- Mpps—s for Mj,c = Ms.
- MBps—ar for Mo = Myy,.

For comparison purpose we also consider the balanced Neumann-Neumann preconditioner that
has proven to be an efficient domain decomposition preconditioner for some fairly difficult prob-
lems [116], such as linear systems arising from structural analysis. In the sequel this preconditioner
will be denoted Mpn -

To study the behavior of the preconditioners, we fix the ratio H/h that appears in Equa-
tion (I[.2.1) while varying the number of subdomains. For all the experiments reported in the
following tables, the number of subdomains varies from 16 (4 x 4 decomposition) up-to 256 (16 x 16
decomposition) keeping the size of each subdomain constant (i.e. 16 x 16 mesh for each subdomain,
that is & = 16).

In Table II.2.1, we report results observed on the Poisson equation using the preconditioners
with and without the coarse space component. When only local preconditioners are implemented,
it can be seen that when the local information is more represented in the preconditioner, the con-
vergence is better. These results also show that without a coarse space component the number of
iterations required by the preconditioned conjugate gradient grows with the number of subdomains
as predicted by the estimated condition number given by Equation (I1.2.17). Using the two-level
preconditioners, these observations are no longer true. The coarse space component somehow
smoothes the effect of the local component. Accordingly to the theoretical bound given by Equa-
tion (I1.2.1), the number of preconditioned conjugate gradient iterations becomes independent of
the number of domains. Finally, we note that for the two-level preconditioners Mpps_g and
Mpn N, the results are similar to those of other authors [45, 118].

| # subdomains [[ 4x4 [ 8x8 | 16 x 16 |

Mg 13 28 51
My g 12 | 22 40
Ms 11 19 32
Mpps_E 9 11 11
Mpps—vE 10 12 12
Mpps_s 10 | 10 11
MpnN 11 12 12

TABLE I1.2.1: Number of iterations on the Poisson problem.

In Table I1.2.2, we depict the numerical behavior of the preconditioners on the model problems
that only exhibit anisotropy not aligned with the axes. When no coarse space component is imple-
mented My g still outperforms Mg; Mg is the most efficient and the number of iterations of all the
preconditioners grows with the number of subdomains. For the two-level preconditioners, we first
observe that the anisotropy prevents them to have an optimal convergence behavior independent
of the number of subdomains, even though the number of iterations is quite decreased by the
coarse space component. Furthermore, for some problems Mpps_yv g becomes less efficient than
the simpler Mpps_g while Mpps_gs always ensures the fastest convergence. So the conjecture,
“the richer the local preconditioner, the more efficient the preconditioner”, is only true when the
local preconditioners run alone.

In Tables I1.2.3 and II.2.4, we study the numerical behavior of the two-level preconditioners
on model problems arising from the discretization of (I1.2.3) that exhibit either discontinuity
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# subdomains 4 x4 8 x8 16 x 16

6 0 |n/8[m/a]l 0 |x/8][m/a]l O | /8] /4

Mg 21 | 34 30 || 47 | 67 77 || 88 | 132 | 164
Myg 21 | 22 23 44 | 42 59 72 | 81 141
Mg 14 | 20 20 || 25| 40 41 53 | 75 88
Mpps_ g 27 | 24 20 || 58 | 34 28 || 81 | 43 35
Mpps—vE 25 | 21 21 || 48 | 33 35 || 85 | 43 49
Mpps—s 20 | 19 17 || 33 | 26 21 || 47 | 33 26

TABLE I1.2.2: Number of iterations - Anisotropy (¢ = 1073) with several angles.

(Table 11.2.3) or both discontinuity and anisotropy (Table I1.2.4). For the problems with only
discontinuity, all the variants Mpps_. have comparable convergence behaviors.

# subdom. 4 x4 8 x8 16 x 16

D-F1  D-F2 D-R D-F1  D-F2 D-R D-F1  D-F2 D-R
Mpps g 12 11 10 11 11 11 14 15 11
Mpps vE 13 12 11 13 12 12 16 16 12
Mpps_s 12 10 10 11 11 11 14 14 11
MpnN 25 27 21 29 28 38 48 65 52

TABLE I1.2.3: Number of iterations for problems with discontinuity.

As it can be seen in Table I1.2.4, problems with anisotropy and discontinuity are more difficult
to solve. Again Mpps_vg does not outperform the basic Mpps_g. For those examples, similarly
to the pure anisotropic situation reported in Table I1.2.2, Mpps_g exhibits once again the best
convergence behavior.

# subdom. 4 x4 8 x8 16 x 16

AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R || AD-F1 AD-F2 AD-R
Mpps_ g 18 24 25 29 65 35 42 103 39
Mpps vE 18 23 24 33 80 40 56 141 55
Mpps_s 16 20 18 22 43 22 33 79 26
MpNN 37 52 147 60 158 644 97 311 *1

TABLE I1.2.4: Number iterations for problems with discontinuity and anisotropy.

The relative poor performance of Mpgyn, reported in Table I1.2.3 and II.2.4, could be im-
proved. An alternative way, as suggested in [52, 116], should be a better choice of the weight
matrices D;, involved in Equation (IT.2.13), when the diagonal entries of S are available. With this
appropriated choice of the weights, it can be expected a reduction of the gap between Mpyn and
Mpps—. for discontinuous problems, as suggested by the results reported in [119]. In Table 11.2.5
we report the numerical behavior of Mpps_s and Mpyn for the anisotropic problems defined by
Equation (I1.2.16) for different values of the anisotropic coefficient ¢ is varied. For those problems,
the choice of the weighted matrices used in [119] for Mpnn would reduce to the simple ones we

1

“* 'means no convergence after 1000 iterations.
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[« [10 10" 102 107
Mpny || 12 20 40 98
Mpps-s || 12 15 22 33

TABLE I1.2.5: Number of iterations varying the anisotropy with a 8 x 8 subdomain
decomposition.

have considered; that is, % for the nodes on the edges and i for the vertex points v;. For anisotropic
problems, we cannot expect Mpnyn to become competitive with Mpps_g for € lower than 1071,

Local Schur with inexact local solvers To alleviate the cost of the preconditioners construc-
tion, the factorization of the local Dirichlet problem can be replaced by an incomplete Cholesky
factorization without fill-in, i.e. TLLT(0), or with some fill-in controlled through a threshold, i.e.
ILLT(t) [141]. In this later situation the amount of fill-in can be defined by the fill-in ratio that is
the number of non-zeros in the incomplete factors divided by the number of non-zeros in the lower
part of the original matrices; by definition this fill-in ratio is equal to one for ILLT(0).

In Table I1.2.6 and II.2.7, we denote by MBPS E, MBpg vE and MBPS s the preconditioners
computed using those inexact local solves. More precisely, we report in Table I1.2.6 the number
of iterations when ILLT (0) is used and in Table I1.2.7 those observed when some fill-in is enabled
with a fill-in ratio lower than 3.5.

# subdom. 4x4 8 x8 16 x 16

D-FI D-F2 D-R || D-F1 D-F2 D-R || D-F1T D-F2 DR
Mpps_&g 14 13 14 13 13 14 17 17 14
Mgpps_vE 20 18 20 19 19 19 24 26 20
Mpps_s 14 13 15 13 13 12 17 18 13

AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R AD-F1  AD-F2 AD-R
Mpps_g 24 30 28 36 67 37 50 112 45
Mgps_vE 27 34 31 40 84 48 64 143 64
Mpps_s 24 26 23 30 53 31 47 80 41

TABLE I1.2.6: Number of iterations using inexact local solvers ILLT(0) to build the
preconditioners.

The comparison of the results given in Table 11.2.6 and I1.2.7 and those in Tables I1.2.3 and
I1.2.4 shows that, as it could have been expected, the approximation of the local Schur complement
used to build the preconditioners generally deteriorates the numerical behaviors of the precondi-
tioner. This approximation does not affect significantly the numerical behavior of Mpps_g and
Mpgps—_s but deteriorates noticeably the one of Mgpps—vE. In addition, enabling some fill-in in the
incomplete factorizations generally improves the convergence rate; the most significant improve-
ments are observed on anisotropic and discontinuous problems with M BPS—_vE and M BPS—S-

Sparse approximation of the Schur complement In Table I1.2.8 we report the number of
iterations using an approximate Schur complement S with 7 in (I1.2.14) such that we only retains
around 5 % of the entries in S. The resulting preconditioners are denoted respectively by Mpps_ E,
Mpps-vE and Mpps—s.
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# subdom. 4x4 8 x8 16 x 16

D-F1 D-F2 D-R D-F1 D-F2 D-R D-F1 D-F2 D-R
Mpps_g 13 12 12 13 14 12 16 19 11
Mpps_vE 15 17 12 17 19 13 22 27 12
MBpsfs 12 12 10 11 12 11 16 18 11

AD-F1 AD-F2 AD-R || AD-F1 AD-F2 AD-R || AD-F1 AD-F2 AD-R
Mpps_E 23 31 28 35 70 37 48 114 40
Mpps_vE 21 33 26 36 85 44 59 147 56
Mpps_s 19 27 20 27 54 24 39 81 29

TABLE I1.2.7:  Number of iterations using inexact local solvers ILLT(t) to build the
preconditioners.

# subdom. 4 x4 8 x8 16 x 16

D-F1 D-F2 D-R D-F1 D-F2 D-R D-F1 D-F2 D-R
Mpps_g 13 12 12 11 11 13 14 15 12
Mpps_vE 16 16 18 16 16 18 20 20 18
MBpsfs 12 11 12 12 12 11 15 16 11

AD-F1 AD-F2 AD-R || AD-F1 AD-F2 AD-R || AD-F1 AD-F2 AD-R
Mpps_E 18 25 27 29 65 35 43 111 40
Mgpps_vE 24 30 26 36 81 42 57 142 57
MBpsfs 18 21 18 23 44 23 36 79 27

TABLE I1.2.8: Number of iterations using sparse Schur to build the preconditioners.

The comparison of these results with those displayed in Table 11.2.3 and I1.2.4 indicates that,
except for M Bps—vE on discontinuous problems, only retaining very few entries in the Schur
complement is enough to ensure the numerical quality of these preconditioners since the number of
iterations are roughly the same in both cases (except for MBP57VE on discontinuous problems).

In addition, as mentioned in Section 2.2.5, the inexact local solvers and dropping strategies
can be combined to build variants of the preconditioners. The resulting preconditioners are respec-
tively denoted by M pps_ g, M pps_vgy and M ppg_g. Numerical experiments where we dropped
the smallest entries of the local preconditioners built using ILLT(t) are reported in Table I1.2.9.
Comparing these results with those of Tables I1.2.8 and I1.2.7 indicates that the numerical quality
of the resulting preconditioners are mainly governed by the use ability of ILLT to well approximate
the local Dirichlet problems.

Probing techniques In this section we only report numerical experiments conduced to construct
approximation to Mg and M 45, using the probing technique. The probing idea can also be applied
to build effective approximations to My g, we refer to [35] and [37] were experiments are reported.
The resulting two-level preconditioner are denoted

- M;’},(g)_E when M;,. = MM,

- Ngb,ﬁ?_E when Mj,. = M),

~r(d ~(d
- e, when My, = M.
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# subdom. 4x4 8 x8 16 x 16

D-F1 D-F2 D-R D-F1 D-F2 D-R D-F1 D-F2 D-R
Mpps_g 14 13 12 13 13 16 18 13
Mpps_vE 19 18 18 22 18 26 29 18
Mpps_gs 12 12 12 13 11 17 19 11

AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R AD-F1  AD-F2 AD-R
Mgpps_E 22 32 29 70 36 47 113 41
Mgpps_vE 26 38 27 86 45 61 150 58
Mgpps_s 19 29 21 28 55 28 42 81 31

TABLE I1.2.9: Number of iterations using preconditioner based on sparse Schur built using
inexact local solvers ILLT(t).

In Table I1.2.10, we display the iteration numbers required for the solution of the model
Problem (I1.2.16). For the ¢ = 1 case, the results are similar to those of other authors [45].

| e=1.0 |
# domains
Preconditioner || 4x4 | 8x8 | 16 x 16 | 32 x 32
iy 10 | 1 11 10
M 10 | 10 10 10
sy . 10 | 11 11 10
Y 10 | 10 10 10
e=10"* |
# domains
Preconditioner || 4x4 | 8x8 | 16 x 16 | 32 x 32
My 105 | 394 | 606 765
Y 105 | 394 | 606 765
s 28 | 49 81 96
M 28 | 49 81 96

TABLE I1.2.10: Number of iterations varying the number of domains which size 16 x 16.

Namely, the number of iterations of the preconditioned conjugate gradient is independent of the
number of domains as predicted by the theoretical estimation of the condition number given by
Equation (I1.2.1). Further, all the different approaches give nearly identical behavior and the
bandwidth of the probing matrices does not greatly affect the convergence behavior.

For ¢ = 10~*, however, these observations are no longer true. In particular, the number of
iterations required to solve the anisotropic problem is significantly greater than that required for
the Poisson problem. Further, the number of iterations increases for all the preconditioners as the
number of subdomains is increased. While none of these methods is ‘optimal’, the BPS-red/black
probing method clearly outperforms the other in terms of iterations.
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To see the convergence degradation as a function of €, we fix the number of domains at 8 x 8
and vary €. The results given in Table I1.2.11 illustrate the degradation as a function of e. From

€
Preconditioner || 1.0 [ 101 [ 102|103 [10* ]| 10°®
iy 12| 30 | 80 | 171 | 390 | 1069
Y. 12| 25 | 65 | 161 | 388 | 1066
M) 12| 17 | 25 | 40 | 55 | 55
Y 11| 16 | 25 | 40 | 55 | 55

TABLE I1.2.11: Number of iterations varying the anisotropic behavior on a 257 x 257 grid
with a 8 x 8 decomposition.

an iteration point of view, it is apparent that the red/black probing is significantly better than the
other technique for e < 1073.

The alternating line probing scheme was implemented and tested first on Problem (I1.2.16).
In Table I1.2.12 we illustrate the convergence for a box decomposition. For the ¢ = 1 case, there is

e=1.0
# domains
Preconditioner || 4 x4 | 8 x 8 | 16 x 16 | 32 x 32
MPs) . 10 | 1 11 10
MY 10 | 10 10 10
e=10"*
# domains
Preconditioner || 4 x4 | 8 x 8 | 16 x 16 | 32 x 32
Y 28 | 49 81 96
S 11 | 13 16 20

TABLE I1.2.12: Number of iterations varying the number of domains which size 16 x 16.

virtually no advantage to using the alternating line probing technique. However, when & = 10™%,
this technique converges much faster than the other scheme (4 times faster for 1024 domains) with a
convergence rate that is relatively independent of the number of domains. Similar results are given
for a fixed domain size and varying e in Table I1.2.13. More specifically, the method is relatively
insensitive to variations in e though there is a peak which occurs between 1072 and 103, This
peak can be predicted by applying Fourier analysis techniques to a closely related model problem.
Essentially, alternating line probing is least effective when horizontal and vertical coupling among
horizontal interfaces in the Schur complement stencil is approximately the same. This gives rise
to a convergence peak as the anisotropic strength is varied (see [86] for details).

We conclude with two nonconstant coefficient examples where the direction of the anisotropic
behavior changes within the domain. Specifically, we consider the following problem

€z (xay)a(xay)uzz + Ey(xay)b(xay)uyy =f
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g
Preconditioner || 1.0 | 101 [ 10=> | 103 [ 10~* | 10
s 12| 17 | 25 | 40 | 55 | 55
MY . 10| 14 | 23 | 23| 15 | 12

TABLE I1.2.13: Number of iterations varying the anisotropic behavior on a 257 x 257 grid
with a 8 x 8 decomposition.

defined on the unit square with Dirichlet boundary conditions. The functions e, () and &,() are
depicted in Figure I1.2.17 and I1.2.18 for two different examples.

£x=1.0 SXZS sy:]'0
€ =€ _
€ - ¢ y € « = 1.0
X
e =10 e, =10 e, = ¢
y
€ =10
y
FiGure I1.2.17: Example (1). Ficure 11.2.18: Example (2).

| Ezample (1) |

# domains
Coefficients 4x4|8x8|16x16 | 32x 32
a() =1+ 4sin’(n(z + y))
14 22 22 25
b() = 1 + cos?(m(z + y))
a() =1
b() =1 14 18 20 20
| Example (2) |
# domains
Coefficients 4x4 | 8x8 | 16x16 | 32 x 32
a() =1+ 4sin’(n(z + y))
22 4
b() = 1+ cos?(m(z +y)) 35 o 77
a() =1
b() = 1 22 31 40 53

TABLE 11.2.14:  Number of iterations of M](;},S_AL on Example (1) and (2) varying the number
of subdomains which size 16 x 16 - ¢ = 1.07%.

The results obtained for e = 10~* and two different choices of a() and b() are given in Ta-
ble I1.2.14. Similar to the model problem, it is clear that the alternating line probing method is
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superior in iterations. On Example (1) the general behavior of MBPS;AL is similar to that of the
Poisson equation on a uniform grid in that the number of iterations does not depend strongly on
the number of domains.

2.4.2 Two level preconditioners
Model problems

For the numerical experiments with the various coarse components, we consider model problems
that have both discontinuous and anisotropic phenomena. Figure I1.2.19 represents a unit square
divided into six regions with piecewise constant functions g;, 7 = 1 or 3. We consider the problems
as having low intensity if j = 1 and high intensity if j = 3. Let a and b be the functions of
the elliptic problem as described in Equation (I1.2.3). Using this notation, we can define different
problems with different degrees of difficulty. In the following description, the acronyms in capital
letters are used to refer to the problems in Tables I1.2.16 and I1.2.17.

e high discontinuity (HD): a() = b() = g3,

e low discontinuity (LD): a() = b() = g1,

e high anisotropy (HA): a() = 10% and b() = 1,

e low anisotropy (LA): a() = 10 and b() =1,

e high discontinuity and high anisotropy (HDA): a() = g3 and b() =1,

low discontinuity and low anisotropy (LDA): a() = g1 and b() = 1.

9; =10/ | gj=1 | g; =10/

9;i=1 |g=100| g;=1

FIGURE I1.2.19: Definition of two discontinuous functions on €, the unit square of IR?.

For sake of comparison with classical BPS, we consider Mj,.q; = Mg for all the experiments
reported in the study of the proposed coarse components. The resulting two-level preconditioners
are denoted in the tables:

sd: subdomain defined in Section 2.3.2,

vl: vertex-linear defined in Section 2.3.1 with the linear interpolation,

vo: vertex-operator-dependent defined in Section 2.3.1 with the operator-dependent interpola-
tion,

vf: vertex-flat defined in Section 2.3.1 with the flat interpolation,

ed: edge defined in Section 2.3.3,

no: without coarse space in this case we only use the local preconditioner (block diagonal).
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Experimental results

We study the numerical scalability of the preconditioners, by investigating the dependence of the
convergence on the number and on the size of the subdomains. We remind our goal that is to obtain
performance similar to those of the original BPS preconditioner even in presence of anisotropy or
heterogeneity, with a simple algebraic structure. Firstly, in Table I1.2.15, we give the figures for
the five coarse spaces when solving the Poisson’s problem using box decomposition. As we could
expect, the behavior of all coarse-space options does not depend on the number of subdomains.

| # subdomains || 16 64 256 1024 |

no 15 28 48 90
sd 15 19 19 18
vf 15 18 18 18
vl 10 10 10 10
(o) 10 10 10 10
ed 15 18 18 18

TABLE I1.2.15: Number of PCG iterations varying the number of subdomains with 16 x 16
points per subdomain for Poisson’s problem.

Dependency of the coarse preconditioners on H In Table I1.2.16, we report the number
of preconditioned conjugate gradient iterations for each model problem. For these tests, we vary
the number of subdomains while keeping constant their sizes (i.e. H variable with % constant).
In this table each subdomain is a 16 x 16 grid and the number of subdomains goes from 16 up to
1024 using a box decomposition; that is 4 x 4 decomposition up to 32 x 32 decomposition.

LA LD LDA
# subdom. || 16 64 256 1024 | 16 64 256 1024 | 16 64 256 1024
no 17 33 59 114 | 25 47 83 158 |29 55 104 194
sd 18 25 27 28 19 19 19 19 |22 30 33 34
vi 19 24 29 31 20 21 21 21 23 28 31 32
vl 15 17 17 17 |13 13 12 12 14 16 17 17
VO 15 17 17 17 |11 11 11 11 14 16 17 17
ed 19 26 27 28 | 20 20 18 18 |21 26 27 28
HA HD HDA
# subdom. || 16 64 256 1024 | 16 64 256 1024 | 16 64 256 1024
no 19 42 69 127 | 25 50 87 172 | 37 149 302 629
sd 30 64 75 86 18 19 19 19 |30 64 81 83
vi 27 52 72 85 21 22 22 21 |31 76 86 99
vl 26 45 66 73 16 18 18 16 |21 63 81 89
VO 26 45 66 73 1 11 11 11 20 60 81 88
ed 24 43 57 69 17 19 19 18 |31 62 70 7

TABLE I1.2.16: Number of PCG iterations varying the number of subdomains with 16 x 16
points per subdomain.

In the first row, we see the growth of the number of iterations of a block Jacobi preconditioner
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without using any coarse grid correction. Its numerical behavior is well known and is governed by
the theoretical bound for its condition number (I1.2.17).

For HD and LD the behavior of all coarse alternatives are similar to the one observed for
Poisson’s problem in Table I1.2.15, that is, the number of iterations is independent of the number
of subdomains. For LA and LDA, this similarity is still true for vertex-linear and vertex-operator-
dependent, the three others exhibit a slight insignificant increase in the number of iterations.

For HA, the coarse spaces subdomain-based and vertex-flat do not improve the convergence
for a number of subdomains less than 1024. For vertex-linear and vertex-operator the improvement
is modest for 256 subdomains. It appears that on this example the condition numbers of the pre-
conditioned linear systems with and without the coarse components are comparable, for instance,
2 x 102 with and 6 x 102 without the vertex-linear coarse component using 256 subdomains. More
precisely, the smallest eigenvalue is not that affected by the use of the coarse component as it is
for the other model problems. In the presence of high anisotropy (HA and HDA), the convergence
rate of all the alternatives is comparable and depends on the number of subdomains, while an
asymptotic behavior tends to appear when the number of subdomains increases.

Dependency of the coarse preconditioners on % To study the sensitivity of the precondi-
tioners to the size of the subdomains (i.e. % variable with H constant), we report in Table I1.2.17,

the experiments observed with 256 subdomains (16 x 16 box decomposition) when the size of the
subdomains varies from 8 x 8 up to 32 x 32.

LA LD LDA
size || 64 256 1024 4096 | 64 256 1024 4096 | 64 256 1024 4096

no || 66 69 78 96 73 83 106 133 | 97 104 119 150
sd 30 27 36 42 16 19 23 30 29 33 36 45
vf 25 29 32 35 18 21 24 31 27 31 34 40
vl 15 17 19 21 12 14 15 19 15 18 19 22
(o) 15 17 19 21 9 11 12 16 15 17 19 22
ed 24 27 32 34 16 18 22 29 24 27 31 36

HA HD HDA
size || 64 256 1024 4096 | 64 256 1024 4096 | 64 256 1024 4096

no || 66 69 73 76 | 78 87 116 141 | 280 302 297 389
sd 65 75 76 76 17 19 23 31 65 81 87 96
v || 66 72 75 76 | 20 22 25 31 80 86 89 91
vl 60 64 64 63 16 18 18 23 79 81 80 7
vo || 60 66 64 63 10 11 13 16 77 81 79 80
ed 51 57 59 63 16 19 22 29 63 70 79 86

TABLE I1.2.17:  Number of PCG iterations varying the grid size of the subdomains from (8 x 8)
up-to (64 x 64) using a (16x16) decomposition.

We observe that the convergence of all the preconditioners depend slightly on the size of
the subdomains. Furthermore, in the anisotropic experiments (HA and HDA), this dependence
is surprisingly negligible for the vertex-linear and for the vertex-operator-dependent alternatives.
The number of iterations of those two preconditioners tends to be stable around 64 and 80 for the
problems HA and HDA, respectively.

On problems that are not highly anisotropic, all the coarse-components give rise to precondi-
tioners that are independent of on weakly dependent on the number of subdomains and that have
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a mildly dependence on the size of the subdomains.

If we compare the LD and HD columns, we see that all the preconditioners but vertex-linear are
quite insensitive to discontinuity. Further, the vertex-operator-dependent alternative, specifically
designed to handle interfaces that cross a discontinuity, has the best performance.

The numerical experiments tend to show that the most dominating component is not the gran-
ularity of the coarse-space (the finest is not necessarily the best) but the restriction/interpolation
operator Ry as show the experiments with vertex. The restriction operator governs, in most cases,
the quality of the coarse representation of the complete equation. The flat interpolation operator
is always the worst and operator-dependent behaves the best on problems with discontinuities for
whose it was designed. For discontinuous problems, LD and HD, vertex-operator-dependent is the
most efficient while for highly anisotropic problems, HA and HDA, edge is the most efficient for all
cases but one. For LA and LDA operator-dependent and vertex-linear had the same behavior. The
good performance of edge on anisotropic problems can be explained by the fact that we consider
anisotropies aligned with the discretization and because we use regular box decompositions, two
opposite edges F; of a subdomain are strongly coupled. The edge coarse space captures the strong
coupling while the other alternatives mix, therefore miss, this information. This latter behavior
is related to the fact that the supports of the basis vectors of all coarse spaces, but edge, contain
at least two weakly coupled edges. So, the transfer operators are not able, in this specific case, to
retrieve and to spread the most appropriate information.

2.5 Concluding remarks

We have introduced three new local preconditioners and a set of coarse space components to build
two-level preconditioners. The local preconditioners are based on an explicit computation of the
local Schur complement matrices but computing alternatives have been proposed to overcome this
possible drawback.

The first local preconditioner, My g, aims at recovering some information relative to the in-
terface nodes close to the vertices of the coarse mesh 7 defined by the decomposition. This
preconditioner shows some advantages over the simple block Jacobi preconditioner Mg for the so-
lution of linear systems arising in the solution of parabolic problems where one-level preconditioners
might be scalable [38, 126]. For the solution of such linear systems, My g is a cheap alternative to
improve the simple block Jacobi preconditioner. Both have similar computational complexity and
parallel performance [35]. In addition, the use of approximate local Schur complement does not
penalize significantly the numerical behavior of My g. These advantages vanish for the solution of
elliptic problems when, to ensure the numerical scalability, the coarse space preconditioner com-
ponent smoothes its effect compared to Mg. For those elliptic problems, the use of approximate
local solvers affect significantly the numeriacl behavior of the resulting preconditioner M BPS—_VE-

The second local preconditioner, closely related to the Neumann-Neumann preconditioner,
demonstrates a very attractive numerical behavior on heterogeneous and anisotropic equations.
These problems appear, for instance, in the solution of the drift-diffusion equations involved in
semi-conductor device modeling. An efficient implementation of the local Schur complement con-
struction directly benefit from the ongoing development of advanced sparse direct solvers like
MUMPS [4]. One of the new capability of this sparse direct solver is to compute the Schur
complement of a given list of variables in a given matrix; this coincide exactly with our need in
non-overlaping domain decomposition. However, we propose an alternative based on approximated
local Schur complements built thanks to incomplete Cholesky factorizations. Based on an extensive
benchmarking, we show that the resulting preconditioner, with a cheap construction, retains the
main numerical features of Mpps_s.

We have adapted the domain decomposition probing method for highly anisotropic equations.
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Specifically, we have considered two variants of the probing BPS type preconditioner in [45]. One
variant, BPS-red/black probing, uses a multicolor ordering of the edges to obtain suitable probe
vectors to construct good approximations to the diagonal blocks of the Schur complement. The pri-
mary idea is to avoid mixing information between neighboring interfaces, which are often strongly
coupled for anisotropic problems when forming probe approximations. Though described for struc-
tured meshes, the same coloring technique can be easily extended to unstructured meshes. We have
shown through experimental results that the BPS-red/black probing preconditioner significantly
outperforms the BPS-probing, BPS-Fourier [45], and balanced Neumann-Neumann precondition-
ers on anisotropic problems [89]. Despite these improvements, the convergence associated with
all these methods including the BPS-red/black probing scheme still deteriorates when either the
anisotropy or the number of subdomains is increased. To overcome this drawback, we have pro-
posed a variant for structured meshes, MBPS%AL, that introduces a series of band matrices. Each
band matrix corresponds to the restriction of the Schur complement to a line of the original dis-
cretization grid. The M4y, probing looks somewhat-like an alternating line relaxation procedure
and was designed to approximate the coupling between neighboring interfaces properly. Experi-
mental results show that with this new preconditioner,]\?[ BPS_ AL, the number of iterations only
weakly depends on the number of subdomains (when the number of points per subdomain is fixed)
as well as on the anisotropy. Though this preconditioner costs a bit more to construct and apply,
it often requires significantly less iterations than the BPS-red/black probing method.

Finally we have presented two-level preconditioners for Schur complement domain decompo-
sition methods in two dimensions built by combining a variant of the of the local component of
the BPS preconditioner with a set of new algebraic coarse space components. They are defined
using the mesh partitioning information and simple interpolation operators that follow a parti-
tion of unity principle. We have illustrated their numerical behaviour on a set of two-dimensional
model problems that have both anisotropy and discontinuity. Those experiments tend to show
that the most dominating component is not the the granularity of the coarse-space (the finest is
not necessarily the best) but the restriction/interpolation operator Ry. This operator governs, in
most cases, the quality of the coarse representation of the complete equation. The experiments
have been performed on regular meshes but there is no limitation for the implementation of the
proposed two-level preconditioners on unstructured grids, whereas the possible rank deficiency,
that appears in the domain-coarse alternative, could be more tricky to discard.
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Chapter 3

Some investigations of overlapping
domain decomposition method in
computational fluid dynamics

3.1 Introduction

In the past years domain decomposition for linear partial differential equations have graduated from
theory into practice in many applications as shown by the evolution of the papers in the proceedings
of the series of conferences dedicated to that topic [21, 41, 42, 90, 91, 92, 111, 112, 115, 121, 135].
In particular the Newton-Krylov and Krylov-Schwarz schemes have begun to become established
techniques in computational fluid dynamics over the past decade. On the one hand Newton-Krylov
methods [27, 28] are potentially well suited and increasingly popular for the implicit solution of
nonlinear problems whenever the computation of the true Jacobian is too expensive; on the other
hand the Krylov-Schwarz methods are robust domain decomposition algorithms for solving linear
partial differential equations [60, 61]. Combining the two above algorithms leads to a family of
algorithms called Newton-Krylov-Schwarz methods that are general purpose parallel solvers for
nonlinear partial differential equations. This technique and closely related variants have been
applied to computational fluid dynamics applications [29, 30, 31, 132].

In this chapter we present some investigations on additive Schwarz preconditioners for a
Krylov-Schwarz domain decomposition algorithm for the finite element solution of the nonlin-
ear Navier-Stokes equations. The nonlinear part is tackled with a variant of the Newton-Krylov
method. We omit the description of the fluid dynamics equations, discretization and numerical
schemes, that are out of the scope of this study, and refer the reader to [106, 107, 157] for a complete
description of these computational fluid dynamics aspects. We rather focus on the description of
the preconditioners to solve the linear systems involved at each step of the nonlinear iterations.

This study was conducted in the framework of an industrial collaboration with Dassault-
Aviation that aimed at introducing efficient preconditioners in an existing parallel code that com-
putes the steady state solution of the Navier-Stokes equations on large 3D unstructured finite
element meshes. In the original code the linear systems are first preconditioned by a symmetric
block diagonal scaling which purpose is to a-dimension the variables associated with each vertex
of the discretization (5 degrees of freedom per vertex); the preconditioned system is explicitly
formed and a restarted GMRES [142] is applied for its solution. The parallelism implemented in
the code exploited an element-based partition of the finite element mesh. In this context, domain
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decomposition algorithms are natural candidates to precondition the linear systems and Schwarz
methods are particularly well suited. Indeed the constraints imposed by the size of the local sub-
domain make them too large to afford direct methods for solving the local problems. Therefore
this prevents us to envisage any Schur complement approach. However Schwarz techniques with
inexact local solves can be considered.

This chapter is organized as follows. In the next section we briefly present the classical Schwarz
methods. In Section 3.3, we describe the variant of the additive Schwarz we have considered and
report numerical experiments in Section 3.4.

3.2 The Schwarz procedure

The earliest known domain decomposition method was introduced by H. A. Schwarz in 1890 [145]
to prove the existence of harmonic functions on irregular regions which are the union of overlapping
subregions. The interest in this method was renewed because many of its variants enable to express
a coarse grain parallel algorithms suitable for modern distributed memory computers. To describe
the classical alternating Schwarz procedure let us consider the classical 2D Poisson equation:
—Au f in Q,
{ U 0 on 99,

(I1.3.1)

and note
Ax = b, (I1.3.2)

the linear system resulting from the discretization of (II.3.1) by either finite differences or finite
elements.

We consider two overlapping subregions {Q1,2} such that Q; UQy = Q, Ty = 9Q; N Qo,
[y = 905 N, and denote u; = u|o,. Given an initial guess u® the iterate u"*! is determined
from 4™ by sequentially updating the approximated solution in the two subregions:

—Autt = f in 1,
ul™ = wflp, onTy,
u?“ = 0 on 004 \I'y,
and
—Auptt = f in Q,
upg™ = wtp, onTy,
ugﬂ = 0 on Qs \s.

The iterate 4t is then defined by:

n+41 :
n+1 _ Uy (xay) if (xay) € 927
Wt @y) = { Wz, y) if (2,y) € Q\D.

It is straightforward to extend the above alternating Schwarz procedure to discretization
of (I1.3.1). To simplify the exposure, we will mix in the sequel continuous surfaces and curves
with sets of indices. This ambiguity can be disregarded if we consider that, in order to minimize
notation, the symbols Q; and 952; represent either continuous sets or discrete sets of indices associ-
ated with the grid points. We shall describe the discrete algorithm in matrix notation and denotes
RY the extension operator which extends by zero in Q\(2; a vector of nodal values in ;. The
transpose R; of this extension map is a canonical restriction whose action restricts a full vector
of nodal values in £ to a vector whose entries are those associated with the nodes in Q;. The
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discretization of (I1.3.1) on €2; with Dirichlet boundary conditions on 99Q;\0 defines the local
Dirichlet matrices:
A; = R;ART.

The discrete version of the alternating Schwarz method to solve (I1.3.2) starts from an initial
guess ¥ and generates the sequence of iterates:

"t/ =7 + RTAT'R, (b — Az™),
Tl = 2"1/2 4 RTAT Ry (b — Az"t1/2),

This can be interpreted as a generalization of a block Gauss-Seidel iteration for solving (I1.3.2)
with overlapping blocks. Defining
P;=RTA;'R;,

it can be shown [117] that the iteration matrix is (I — P»)(I — P;) hence this scheme is usually
called a multiplicative Schwarz iteration.
An analogous block Jacobi scheme can be defined by

z"t1/?2 =g 4 RTAT'R, (b — Az™),
et =g t/2 L RT AT Ry (b — Az™).

Notice that eliminating z"t1/2 gives rise to
2" =g + (RFAT'Ry + RTAS'R,) (b — Az™)

that is a preconditioned Richardson method, where the preconditioner P; + P, is referred to as
additive Schwarz preconditioner.

It can be remarked that for many subdomains and similarly to the block Gauss-Seidel and block
Jacobi methods, the additive Schwarz iteration is naturally parallelizable while coloring techniques
should be used to parallelize the multiplicative Schwarz method. In addition both techniques are
usually not implemented as stationary methods but are rather accelerated by Krylov iterations.
Unfortunately for elliptic problems the two resulting preconditioners are not scalable in the sense
that the condition number of the precondition matrices increases when the number of subdomains
is increased. Similarly to preconditioners for the Schur complement, the numerical scalability can
be obtained thanks to the use of additional coarse space components. We refer to [44, 61, 147] and
the references therein for a more detailed presentation of the Schwarz methods.

3.3 Some variants of additive Schwarz preconditioner

Recently a non-symmetric variant of the additive Schwarz preconditioner has been introduced
in [32] and applied to 3D flow simulations in [29]. It is referred to as restricted additive Schwarz
preconditioner and can be described as follows. Let M be an unstructured finite element mesh.
Using an element-based partitioning, the mesh M can be decomposed into N disjoint sets of
elements, that define the subdomains, or equivalently into N overlapping sets of vertices. The
elements on the border between subdomains share some vertices with their neighbors, these nodes
are called “interface vertices”. Let denote {€;};,=1 n the overlapping subsets of vertices and €
the complete set of vertices over the entire mesh. We have Q = Ufil Q;, which can be called a
“partition with a minimum overlap” of 2 with respect to the fact that {Q;} is a partition of the
elements of 2. From the element partitioning, we can obtain a vertex partitioning by allocating

each interface vertex to a single subset of elements. The resulting partitioning of the vertices is
denoted Q0 C Q;, with @ = J¥, Q0 and Q0N Q0 = 0 for i # j. Let R define the canonical
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restriction whose action restricts a full vector of nodal values in Q to a vector whose entries are
those associated with the nodes in Q9. With these notations we can define the classical additive
Schwarz preconditioner

N
Mas =Y RIAT'R;, (IL3.3)

=1
and the restricted additive Schwarz preconditioner

N
Mpas =Y (R)TAT'R; . (IL.3.4)

i=1

Because the exact solution of the local problems that appear in Mg (11.3.3) and Mpgag (I1.3.4)
cannot be afforded in time and memory for 3D industrial problems, we replace them by approximate
solution obtained from block ILU(0). In addition, to reduce the redundant computation and the
amount of data to exchange, we only consider one element overlap between the subdomains. In this
respect the local Dirichlet matrices are simply built by assembling the local stiffness matrices at
the vertices on the interface between the subdomains. On unstructured meshes with one element
overlap, the local stiffness matrix built from the local subdomain elements have often the same
pattern as the local Dirichlet matrix. This is particularly convenient as the data structure to
represent the connectivity of both matrices are the same. Unfortunately when the interface is not
smooth the two patterns differ. This is illustrated in 2D by Figure I1.3.1, where the connectivity
between vertex 1 and 2 does not exist in the stiffness matrix computed on ; but is present in
the local Dirichlet matrix resulting from an one element overlap between Q; and €25. In that case
building the local Dirichlet matrix becomes more complex as the connectivity on the overlap region
should be built first and more memory consuming as a complete separate data structure should be
set-up to represent the Dirichlet problem A;. To overcome this difficulty, we consider variants of
Mys and Mgrags, where we only assemble the diagonal blocks associated with the vertices on the
interface and not the off-diagonal blocks that represent the coupling between the interface vertices.

AN <
> <
<
<

<

FiGURE I1.3.1: A 2D example of non-smooth interface.

Ql 92
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In the next section we report experiments with three preconditioners:
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- Mrru)-as : Additive Schwarz with an inexact local solution using ILU(0),

- Mrru)-das = Additive Schwarz with inexact local solution using ILU(0) and only assem-
bling of the diagonal block of the interface vertices,

- Mrru)-dras : Restricted Additive Schwarz with inexact local solution using ILU(0) and
only assembling the diagonal block of the interface vertices.

These preconditioners have been implemented to precondition the restarted GMRES Krylov
solver that is applied to the linear systems involved in the nonlinear steps.

3.4 Numerical experiments

In this section we only report some numerical experiments with the ONERA M6 wing to test
3D turbulent flows. The mesh is composed by 77000 vertices and decomposed into 4, 8, 16 or
32 subdomains. The size of the global problem prevents us to perform the sequential simulation
to use it as reference. The restart for GMRES was equal to 20. The tolerance for the stopping
criterion is defined by the ratio of the 2-norm of the residual divided by the 2-norm of the right
hand side and is set to 10~!. All the experiments were performed in double precision arithmetic.

The time constraints to perform this industrial collaboration did not enable us to perform
exhaustive experiments but rather incremental comparisons between the various Schwarz variants.
In this section we do not report any result with M7y (9)—as because the code we have implemented
was not robust enough to handle non-smooth interfaces. However for smooth interfaces we observed
that Mrry0)—as was slightly more efficient than Mypy0)—445- The gap was not big enough to
justify neither the significant manpower effort to develop a code able to handle completely the
overlap connectivity, nor to afford for the extra memory required to store the local Dirichlet
matrices in fully separate data structures.

In Figure I1.3.2 we depict the 2-norm of the nonlinear residual as a function of the nonlinear
iteration for a run with 4 subdomains without preconditioner and with M;py0)—das. As it can
be seen a significant gain is introduced by Mjri(0)—44s- The main improvement is due to the
reduction of the number of nonlinear iterations required to compute the steady state solution. This
is due to the fact that it permits to use a larger CFL, enabling to quickly compute the steady state
solution, as for both simulations we use the maximum acceptable CFL.

Figure I1.3.3 illustrates the reasonable scalability of the preconditioner. Although the total
number of Krylov iterations increases when the number of subdomains is increased, the increase is
still moderate when moving from 4 to 16 subdomains. On a pure elliptic problem the number of
iterations with 16 subdomains would be twice larger than with 4 subdomains.

In Figure I1.3.4 we compare the behavior Mrpy(0)—d4s and My o)—aras for a 4 subdomain
decomposition. The same trend is observed on other decompositions, that is, Mrry(0)—dras
exhibits a better convergence rate than My (g)—aas for the solution of the linear systems. We
mention that both preconditioners enable to use the same CFL condition and follow the same
nonlinear convergence path. It should also be mentioned that the decision algorithm to build Q9
from ; by logically assigning an vertex interface to a subdomain does not use any numerical
information. We arbitrary allocates an interface vertex to the subdomain that has the larger
number in the ordering of the subdomains.

Finally in Figure I1.3.5 we show the numerical scalability of M;py(o)—qras- Surprisingly
on that example the number of iterations does not increase when we increase the number of
subdomains from 4 to 16 but even decreases. This decrease is not longer observed when we
go from 16 to 32 subdomains. Although this behavior is not fully representative from the set
of experiments we have performed, we observed that My (0)—aras exhibits a better numerical
scalability than Mrry(0)—das-
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3.5 Concluding remarks

It is important to notice that during this study performed in a relative short elapsed time it was
possible to adapt a semi-industrial aerodynamic code in order to quickly investigate some domain
decomposition ideas and preconditioners for practical simulation using coarse grained parallelizable
techniques. We are aware that adding a coarse space component to the considered preconditioners
should improve the convergence rate of the preconditioned GMRES as shown in [1, 30]. Un-
fortunately we did not have the time to investigate such a possibility in the framework of this
collaboration.



Chapter 4

Sparse approximate inverse for
boundary element methods in
electromagnetism

4.1 Introduction

In recent years, there has been a significant amount of work on the simulation of electromagnetic
wave propagation phenomena, addressing various topics ranging from radar cross section to elec-
tromagnetic compatibility, to absorbing materials, and antenna design. To address these problems
the Maxwell equations are often solved in the frequency domain leading to singular integral equa-
tions of the first kind. The discretization by the boundary element method (BEM) results in linear
systems with dense complex matrices which are very challenging to solve. With the advent of
parallel processing, this approach has become viable for large problems and the typical problem
size in the electromagnetics industry is continually increasing.
In this chapter, we consider the solution of linear systems of the form

Az =10

where the coefficient matrix A = [a;;] is a large, dense, complex matrix of order n arising from the
discretization. The coefficient matrix can be symmetric non-Hermitian in the EFIE (Electric Field
Integral Equation) formulation, or unsymmetric in the CFIE (Combined Field Integral Equation)
formulation. The unknowns in the vector x are associated with the edges of an underlying mesh
on the surface of the object. In this chapter, we will only consider numerical examples where A
is symmetric because EFIE usually gives rise to linear systems that are more difficult to solve
with iterative methods. The techniques considered here can be applied equally well to unsym-
metric matrices. In fact in the numerical experiments we use non-symmetric solvers because the
preconditioners that we construct are unsymmetric. We can, of course, construct either only the
lower or only the upper part of the preconditioner and use a symmetric preconditioner obtained
by reflecting this in the diagonal. One problem is that the resulting preconditioner depends on
the ordering of the matrix. In previous tests [34], we investigated the effect of symmetrizing the
preconditioner by averaging the off-diagonal entries after its construction and using such a sym-
metrized preconditioner with symmetric QMR but found that this caused a marked deterioration
in the quality of the preconditioner leading to far more iterations of the iterative method. We plan
to further investigate symmetric strategies in future work but, in this present study, we will stick
with unsymmetric techniques and preconditioners.

65
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Direct dense methods based on Gaussian elimination are often the method of choice because
they are reliable and predictable both in terms of accuracy and cost. However, for large-scale
problems, they become impractical even on large parallel platforms because they require storage of
n? double precision complex entries of the coefficient matrix and O(n?) floating-point operations to
compute the factorization, where n denotes the size of the linear system. Iterative Krylov subspace
based solvers are a promising alternative provided we have fast matrix-vector multiplications and
robust preconditioners. There are active research efforts on multipole techniques to perform fast
matrix-vector products with O(nlog(n)) computational complexity including strategies for parallel
distributed memory implementations (see [55, 56, 57]). In this chapter, we focus on the other key
component of Krylov methods in this context; that is, we study the design of robust preconditioning
techniques.

The parallel framework suggests that sparse approximate inverses based on Frobenius-norm
minimization techniques are promising candidates for the efficient preconditioning of these sys-
tems. Such techniques exhibit a good level of numerical efficiency on this class of applications
when compared with the implicit approach based on incomplete factorization (see [34], [47]). The
normal requirement for a good preconditioner is that it is easy to construct, cheap to store and
to apply, is parallelizable and, of course, is effective in accelerating the convergence of Krylov
solvers. To be computationally affordable on dense linear systems, Frobenius-norm minimization
preconditioning techniques require a suitable strategy to identify the relevant entries to consider
in the original matrix A, in order to define small least-squares problems, as well as an appropriate
sparsity structure for the approximate inverse.

For sparse matrices, two strategies can be used to define the sparsity structure of the precon-
ditioner. A dynamic approach constructs the nonzero pattern of the preconditioner by monitoring
the residual in the least-squares problems during the computation. This is generally effective but
is usually very expensive. A static approach that requires an a priori nonzero pattern for the pre-
conditioner, introduces significant scope for parallelism and has the advantage that the memory
storage requirements and computational cost for the setup phase are known in advance. However,
it can be very problem dependent.

In this chapter, we propose some new efficient static nonzero pattern selection strategies
both for the preconditioner and for the selection of the entries of A in order to develop robust
preconditioners for applications in electromagnetism. In this chapter we consider a set of test
examples, arising from both academic and industrial applications that are representative of the
general numerical behavior that we observed. Those examples are similar to those considered
in [34], where all test problems are of the same order or even smaller; larger problems will be
examined when we will move to multipole method. More specifically, we here consider the following
geometries where, for physical consistency, we have set the frequency of the wave so that there are
about ten discretization points per wavelength [12]:

Example 1: a cylinder with a hollow inside, a matrix of order n = 1080, see Figure 4.1(a);
Example 2: a cylinder with a break on the surface, a matrix of order n = 1299, see Figure 4.1(b);
Example 3: a satellite, a matrix of order n = 1701, see Figure 4.1(c);
Example 4: a parallelepiped, a matrix of order n = 2016; and
Example 5: a sphere, a matrix of order n = 2430.
We perform experiments with the following Krylov solvers:

e restarted GMRES [142];

e Bi-CGSTAB [152];
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e symmetric and unsymmetric QMR [75];

e TFQMR [73].

In Section 4.2, we describe the construction of the preconditioner using our proposed static
pattern strategies and report on the associated numerical experiments. Finally, in Section 4.3, we
present some remarks arising from the work.
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FIGURE I1.4.1: Mesh associated with test examples.

4.2 Static pattern selection and dropping strategies

Frobenius-norm minimization is one of the most natural approaches for building explicit precondi-
tioners. The idea is to compute the sparse approximate inverse as the matrix M which minimizes
[ — MA||p (or ||[I — AM||F for right preconditioning) subject to certain sparsity constraints. The
Frobenius-norm is usually chosen since it allows the decoupling of the constrained minimization
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problem into n independent linear least-squares problems, one for each column of M (when pre-
conditioning from the right) or row of M (when preconditioning from the left). In our present
applications, these least-squares problems are small enough to be solved using a dense QR decom-
position. The independence of these least-squares problems follows immediately from the identity:

1T = MA|3 = |IT = AMT|% = Y [le; — Amj.|l3 (IL.4.1)

i=1

where e; is the jth unit vector and m; . is the column vector representing the jth row of M.
In the case of right preconditioning, the analogous relation

1T = AM|[z = llej — Ama i3 (IL.4.2)

Jj=1

holds, where m, ; is the column vector representing the jth column of M. Clearly, there is
considerable scope for parallelism in this approach.

The main issue is the selection of the nonzero pattern of M. The idea is to keep M reasonably
sparse while trying to capture the “large” entries of the inverse, which are expected to contribute
the most to the quality of the preconditioner. For this purpose, two approaches can be followed:
an adaptive technique that dynamically tries to identify the best structure for M; and a static
technique, where the pattern of M is prescribed a priori based on some heuristics. Some early
references to this latter class can be found in [13, 14, 15, 72] and in [2] for some applications to
boundary element matrices in electromagnetism.

In addition, when the coefficient matrix is dense, the preconditioner should be constructed
from a sparse approximation of A in order to reduce the computational cost of the least-squares
solutions.

4.2.1 Strategies for the preconditioner

When the coefficient matrix has a special structure or special properties, for instance a banded
matrix with a good degree of diagonal dominance or a banded SPD matrix, efforts have been
devoted to find a pattern that can retain the entries of A~ having large modulus, see [48] and [58]
for example. Unfortunately, for general unstructured matrices, it is very difficult to predict a good
pattern for the inverse in advance. Adaptive strategies that compute the pattern dynamically can
provide very good preconditioners, even on hard problems, but at the cost of a very large amount
of computing time and memory. In some cases it is possible to take advantage of special features of
the underlying physical problem and compute a good a priori pattern for the approximate inverse.

Algebraic strategy

The boundary element method discretizes integral equations on the surface of the scattering object,
generally introducing a very localized strong coupling among the edges in the underlying mesh.
Each edge is strongly connected to only a few neighbors, while, although not null, far-away con-
nections are much weaker. This means that a very sparse matrix can still retain the most relevant
contributions from the singular integrals that give rise to dense matrices. Due to the decay of
the Green’s function, the inverse of A may exhibit a very similar structure to A as illustrated in
Figure I1.4.2 where we display the pattern of A and A~! when the smallest entries are dropped.
Thus, in this case, a good pattern for the sparse approximate inverse is likely to be the nonzero
pattern of a sparse approximation of A, constructed by dropping all the entries lower than a pre-
scribed threshold, as suggested for instance in [113]. We refer to this approach as the algebraic
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N,

(a) sparsified(A) (b) sparsified(A™1)

FIGURE I1.4.2: Nonzero pattern for A (left) and A~! (right) when the smallest entries are
discarded. The test problem is Example 1.

approach. Several heuristics can be used to define the sparsity pattern based on the magnitude
of the entries; all of them result in similar numerical behavior [2] but some are particularly well
suited for parallel implementation. In the numerical experiments, we have selected the strategy
where, for each column of A, the k entries (k <« n is a positive integer) of largest modulus are
retained.

This strategy generally works well and competes with the approach that adaptively defines
the nonzero pattern as implemented in the SPAI preconditioner described in [98]. Nevertheless it
suffers some drawbacks that put severe limits on its use in practical applications. For large prob-
lems, accessing all the entries of the matrix A becomes too expensive or even impossible. This is
the case in the fast multipole framework, where all the entries of the matrix A are not available. In
addition on complex geometries, a pattern for the sparse approximate inverse computed by using
information solely from A may lead to a poor preconditioner. These two main drawbacks motivate
the investigation of more appropriate techniques to define a sparsity pattern for the preconditioner.

Because we work in an integral equation context, we can use more information than just the
entries of the matrix of the discretized problem. In particular, we can exploit the underlying mesh
and extract further relevant information to construct the preconditioner. Two types of information
are available from the mesh:

the connectivity graph, describing the topological neighborhood among the edges, and

the coordinates of the nodes in the mesh, describing geometric neighborhoods among the edges.

Topological strategy

When the object geometries are smooth, only the neighboring edges can have a strong interaction
with each other, while far-away connections are generally much weaker. Thus an effective pattern
for the sparse approximate inverse can be prescribed by exploiting topological information related
to the near field. In the integral equation context, the surface of the object is discretized using a
triangular mesh. Each degree of freedom (DOF), representing an unknown in the linear system,
corresponds to an edge. The sparsity pattern for any row of the preconditioner can be defined
according to the concept of level k neighbors, as introduced in [137]. Level 1 neighbors of a DOF
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are the DOF plus the four DOFs belonging to the two triangles that share the edge corresponding
to the DOF itself. Level 2 neighbors are all the level 1 neighbors plus the DOFs in the triangles
that are neighbors of the two triangles considered at level 1, and so forth. In Figure 11.4.3 we
plot, for each DOF of the mesh for Example 1, the magnitude of the associated entry in A (the
graph on the left) and in A~! (the graph on the right) with respect to the level of its neighbors.
The large entries in A~! derive from the interaction of a very localized set of edges in the mesh so
that by retaining a few levels of neighbors for each DOF an effective preconditioner is likely to be
constructed. Three levels can generally provide a good pattern for constructing an effective sparse
approximate inverse. Using more levels increases the computational cost but does not improve
substantially the quality of the preconditioner. In Figure I1.4.4 we show how the density of non-
zeros in the preconditioner evolves when the number of level is increased. It can be seen that up-to
five levels the preconditioner is still sparse with a density lower than 10 %. We will refer to this
pattern selection strategy as the topological strategy.
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FIGURE I1.4.3: Topological localization in the mesh for the large entries of A (left) and A~!
(right). The test problem is Example 1 and is representative of the general behavior.

Geometric strategy

When the object geometries are not smooth, two far-away edges in the topological sense can
have a strong interaction with each other so that they are strongly coupled in the inverse matrix.
For the scattering problem on Example 1, we plot in Figure I1.4.5, for each pair of edges in the
mesh, the magnitude of the associated entry in A (the graph on the left) and A~! (the graph on
the right) with respect to their distance in terms of wavelength. The largest entries of A~! are
localized similarly to those of A, but, in many cases, small entries in A correspond to large entries
in the inverse and vice-versa. This means that if we construct the sparse pattern for the inverse
by only using information related to A, we may retain many small entries in the preconditioner,
contributing marginally to its quality, but may neglect some of the large ones potentially damaging
the quality of the preconditioner. Also, the surface of the object is very non-smooth, these large
entries may come from the interaction of far-away or non-connected edges in a topological sense,
which are neighbors in a geometric sense. Thus they cannot be detected by using only topological
information related to the near field. Figure I1.4.5(b) suggests that we can select the pattern for
the preconditioner using physical information, that is: for each edge we select all those edges within
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FIGURE I1.4.4: Density of the preconditioner v.s. number of selected levels for Example 1.

a sufficiently large sphere that defines our geometric neighborhood. By using a suitable size for
this sphere, we hope to include the most relevant contributions to the inverse and consequently
to obtain an effective sparse approximate inverse. In Figure I1.4.6 we show how the density of
non-zeros in the preconditioner evolves when the radius of the sphere is increased. This selection
strategy will be referred to as the geometric strategy.
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FIGURE I1.4.5: Geometric localization in the mesh for the large entries of A (left) and A~!
(right). The test problem is Example 1. This is representative of the general behavior.

Numerical experiments

In this section, we compare the different strategies described above in the solution of our test
problems.
Using the three pattern selection strategies for M, we denote by
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e M,, the preconditioner computed by using the algebraic strategy,

e M;, the preconditioner computed by using the topological strategy,

e M,, the preconditioner computed by using the geometric strategy,

e SPAI, the preconditioner constructed by using the dynamic strategy implemented by [97].

To evaluate the effectiveness of the proposed strategies, we first consider using the dense
matrix A to construct the preconditioners M,, M;, M, and SPAI. This requires the solution of
large dense least-squares problems. The adaptive technique implemented in SPAI computes the
pattern of the preconditioner starting with a simple initial guess, like a diagonal matrix, and then
improves it until a criterion of the form |[Am,; . —e;||2 < e (for each j) is satisfied for a given e > 0,
e; being the jth column of the identity matrix, and m; . being the column vector for the jth row
of M according to the notation previously introduced, or until a maximum number & of nonzeros
in the jth row of M has been generated (we refer the reader to [97] and [98] for further details).

The density of the preconditioner varies from one problem to another for the same value
of the distance parameter chosen to define M,. As Figure I1.4.5(b) shows, and tests on all the
other examples confirm, those entries corresponding to edges contained within a sphere of radius
0.12 times the wavelength can retain many of the large entries of the inverse while giving rise to
quite a sparse preconditioner. For all our numerical experiments, we choose a value for k in the
construction of M, and SPAI, and for the level of neighbors used to generate M; so that they
have the same density as M,, when necessary discarding some small entries of the preconditioner
so that all have the same number of entries.

For all the numerical experiments reported in this chapter, for GMRES we use the implementa-
tion described in [69]. For the tests with Bi-CGSTAB, we derived a version for complex arithmetic
from the Harwell Subroutine Library (HSL, [105]) routine MI06 and for those with unsymmetric
QMR (referred to as UQMR in the forthcoming tables) and TFQMR, we used, respectively, the
ZUCPL and ZUTFX routines available in QMRPACK [76]. The stopping criteria in all cases
just consists in reducing the original residual by 107°. The symbol “-” means that convergence
was not obtained after 500 iterations. In each case, we took as the initial guess xg = 0, and the
right-hand side was such that the exact solution of the system was known. We performed different
tests with different known solutions, observing identical results. All the numerical experiments
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were performed in double precision complex arithmetic on a SGI Origin 2000 and the number of
iterations reported in this chapter are for left preconditioning. Very similar results were obtained
when preconditioning from the right.

Example 1 - Density of M = 5.03%
GMRES(m) Bi -
Precond. CGStab UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
Unprec. - - - 251 202 223 231 175
M; - - 465 222 174 239 210 169
M, 219 135 96 72 72 86 107 72
M, 100 49 36 36 36 35 42 32
M, 124 68 46 46 46 44 58 38
SPAI - 67 44 44 44 48 50 43
Example 2 - Density of M = 1.59%
GMRES(m) Bi -
Precond. CGStab UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
Unprec. - - - 398 289 359 403 249
M; - - 473 330 243 257 354 228
M, 472 273 239 207 184 330 313 141
M, - 470 346 243 195 187 275 158
M, 90 72 55 52 52 44 82 40
SPAI - - 99 61 61 168 97 111
Example 4 - Density of M = 1.04%
GMRES(m) Bi -
Precond. CGStab UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
Unprec. - 224 191 158 147 177 170 118
M; 350 211 178 153 140 188 152 110
M, 212 157 141 132 123 131 145 115
M, 288 187 160 146 139 145 156 98
M, 63 51 41 41 41 37 47 32
SPAI - 370 184 112 84 256 96 85

TABLE I1.4.1: Number of iterations using the preconditioners based on dense A.

From the results shown in Table I1.4.1, we first note that all the preconditioners accelerate
the convergence of the Krylov solvers, and in some cases enable convergence when the unpre-
conditioned solver diverges or converges very slowly. These numerical experiments also highlight
the advantages of the geometric strategy. It not only outperforms the algebraic approach and is
more robust than the topological approach, which has a similar computational complexity, but
it also generally outperforms the adaptive approach implemented in SPAI which is much more
sophisticated and more expensive in execution time and memory. SPAI competes with M, only
on Example 1 where the density of the preconditioner is higher. This trend, namely the denser the
preconditioner the more efficient SPAI is, has been observed on many other examples. However, for
sparse preconditioners, SPAI may be quite poor as illustrated on Example 4, where preconditioned
GMRES(30) or Bi-CGStab are slower than without a preconditioner and the iteration diverges for
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GMRES(10) with the SPAT preconditioner while it converges for the other three preconditioners.
On the non-smooth geometry, that is Example 2, an explanation of why the geometric approach
should lead to a better sparse preconditioner can be suggested by Figure 4.1(b). Some far-away
edges in the connectivity graph, those from each side of the break, are weakly connected in the
mesh but can have a strong interaction with each other, and can lead to large entries in the inverse
matrix.

4.2.2 Strategies for the coefficient matrix

When the coefficient matrix of the linear system is dense, the construction of even a very sparse
preconditioner may become too expensive in execution time as the problem size increases. Both
memory and execution time are significantly reduced by replacing A with a sparse approximation.
On general problems, this approach can cause a severe deterioration of the quality of the precondi-
tioner; in the BEM context, since a very sparse matrix can retain the most relevant contributions
to the singular integrals, it is likely to be more effective. The use of a sparse matrix substantially
reduces the size of the least-squares problems that can then be efficiently solved by direct methods.
The algebraic heuristic described in the previous sections is well suited for sparsifying A. In [2]
the same nonzero sparsity pattern is selected both for A and M; in that case, especially when the
pattern is very sparse, the computed preconditioner may be poor on some geometries. The effect
of replacing A with its sparse approximation on some problems is highlighted in Figure I11.4.7
where we display the sparsified pattern of the inverse of the sparsified A. We see that the resulting
pattern is very different from the sparsified pattern of the inverse of A shown in Figure 11.4.2.

ZLRLERLIUE

Fi1GURE 11.4.7: Sparsity pattern of the inverse of sparse A associated with Example 1. The
pattern has been sparsified with the same value of threshold used to sparsify A displayed in
Figure 11.4.2.

A possible remedy is to increase the density in the patterns for both A and M. To a certain
extent, we can improve the convergence, but the computational cost of generating the precondi-
tioner grows almost cubicly with respect to density. A cheaper remedy is to choose a different
number of nonzeros to construct the patterns for A and M, with less entries in the preconditioner
than in the sparse approximation of A. To illustrate this effect, we report in Table I1.4.2 on the
number of iterations of preconditioned GMRES(50), where the preconditioners are built by using
either the same sparsity pattern for A or a two, three or five times denser pattern for A. Except
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|| Example 1 ||

Percentage density of M

Density strategy ) 5 5 A . 6 . N o | 10
Same - - 299 | 146 | 68 | 47 | 47 | 42 | 37 | 39
2 times - - 248 | 155 | 76 | 46 | 40 | 39 | 39 | 38
3 times - 253 | 207 | 109 | 49 |39 (39| 37| 35| 34
5 times - 258 | 213 | 99 | 48 | 37 | 38 | 34 | 33 | 33
Full A 364 | 359 | 144 | 96 | 46 | 35 | 35 | 34 | 32 | 31

TABLE 11.4.2: Number of iterations for GMRES(50) preconditioned with different values for the
density of M using the same pattern for A and larger patterns. A geometric approach is adopted
to construct the patterns. The test problem is Example 1. This is representative of the general
behavior observed.

when the preconditioner is very sparse, increasing the density of the pattern imposed on A for a
given density of M accelerates the convergence as expected, getting quite rapidly very close to the
number of iterations required when using a full A. The additional cost in terms of CPU time is
negligible as can be seen in Figure I1.4.8 for experiments on Example 1. This is due to the fact that
the complexity of the QR factorization used to solve the least-squares problems is the square of
the number of columns times the number of rows. Thus, increasing the number of rows, that is the
number of entries of A, does not penalize significantly the construction of the preconditioner. On
the other hand, reducing the density of the preconditioner, that is the number of columns in the
least-squares problems, can significantly reduce the overall CPU time. Notice that this observation
is true for both left and right preconditioning because, according to (I1.4.1) and (I1.4.2) the smaller
dimension of the matrices involved in the least-squares problems always corresponds to the entries
of M to be computed, and the larger to the entries of the sparsified matrix from A.
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CPU-time for the construction of the preconditioner
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3
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Density of the preconditioning matrix

Fi1cUrE I1.4.8: CPU time for the construction of the preconditioner using a different number of
nonzeros in the patterns for A and M. The test problem is Example 1. This is representative of
the other examples.
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Numerical experiments

We report in this section on the numerical results obtained by replacing A with its sparse approx-
imation in the construction of the preconditioner. In Table 3 we use the following notation:

e M,_,, introduced in [2] and computed by using algebraic information from A. The same
pattern is used for the preconditioner;

e M, ¢, constructed by using the algebraic strategy to sparsify A and the topological strategy
to prescribe the pattern for the preconditioner;

e M, g4, constructed by using the geometric approach and an algebraic heuristic for A with
the same density as for the preconditioner;

o Ms, ¢, similar to M, ¢, but the density of the pattern imposed on A is twice as dense as
that imposed M,_4;

® Msq_g4, similar to M,_, but, as in the previous case, the density of the pattern imposed on
A is twice as dense as that imposed on M,_,.

For the sake of comparison we also report the number of iterations without using a precondi-
tioner and with only a diagonal scaling, denoted by M;.

Other combinations are possible for defining the selection strategies for the patterns of A and
M. Here we focus on the most promising ones, that use information from the mesh to retain
the large entries of the inverse, and the algebraic strategy for A to capture the most relevant
contributions to the singular integrals. We also consider the preconditioner M,_, to compare
with previous tests [2], that were performed on different geometries from those considered here.
Although sparsifying A using an algebraic dropping strategy seems to be the most natural approach
to get a sparse approximation of A when all its entries are available, either the topological or the
geometric criterion can be used to define the sparse approximation of A. Those alternatives are
attractive in a multipole framework where all the entries of A are not computed and some results
using these strategies are reported in Section 4.3. We show, in Table I1.4.4, the results of our
numerical experiments. For each example, we give the number of iterations required by each
preconditioned solver.

Example 1 - Density of M = 5.03%

GMRES(m) Bi -
Precond. CGStab UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
Unprec. - - - 251 202 223 231 175
M; - - 465 222 174 239 210 169
M,_q 284 170 138 114 92 120 156 94
M, 179 61 45 45 45 43 58 36
M,_gq 147 93 68 59 59 55 73 53
Moyt 128 56 40 40 40 37 50 36
Msq_g 131 79 52 51 51 59 65 44

Continued on next page
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Continued from previous page
Example 2 - Density of M = 1.59%
GMRES(m) Bi -
Precond. CGStab UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
Unprec. - - - 398 289 359 403 249
M; - - 473 330 243 257 354 228
M,_, - 319 255 221 203 181 319 135
M,_; - 261 213 174 169 128 251 121
M, 251 178 150 138 117 106 256 116
Mot - 370 284 202 182 176 276 127
Moo g 100 73 61 55 55 48 93 40
Example 3 - Density of M = 2.35%
GMRES(m) Bi -
Precond. CGStab UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
Unprec. - - - - 488 - 444 308
M; - - - 491 427 375 356 306
M,_, 436 316 240 193 125 144 166 135
M,_; 137 108 93 71 71 64 93 66
M,_, - 464 296 203 108 240 166 144
Moq_¢ 113 78 59 53 53 41 61 44
Mso_g 122 84 72 59 59 53 67 50
Example 4 - Density of M = 1.04%
GMRES(m) Bi -
Precond. CGStab UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
Unprec. - 224 191 158 147 177 170 118
M; 350 211 178 153 140 188 152 110
M,_, 299 205 172 146 133 162 180 103
M,_; 266 152 130 114 99 92 127 83
M, 4 81 67 66 63 63 39 79 41
Mot 269 167 143 136 116 107 137 93
Msq_g 71 60 47 47 47 43 61 41
Example 5 - Density of M = 0.63%
GMRES(m) Bi -
Precond. CGStab UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
Unprec. - 344 233 146 125 152 170 109
M; - 326 219 140 131 183 173 107
M,_, - 352 249 154 134 202 183 107
M,_4 360 66 64 60 60 34 76 46
M, 4 313 81 68 61 61 36 74 40
Mot 71 48 47 47 47 25 54 30
Moo g 88 42 39 39 39 21 45 25

TABLE I1.4.4: Number of iterations to solve the set of test problems.



78 NUMERICAL TECHNIQUES

Example 1 - Density of M = 5.03%
Ma—a Ma—t M2a—t Ma—g M2a—g
83.42 | 91.07 | 91.78 79.47 80.18

Example 2 - Density of M = 1.59%
Mafa Maft M2a7t Mafg M2a7g
13.98 | 16.45 16.73 13.53 13.67

Example 3 - Density of M = 2.35%
Mafa Maft M2a7t Mafg M2a7g
83.59 | 146.44 | 147.79 | 109.45 | 110.30

Example 4 - Density of M = 1.04%
Ma—a Ma—t M2a—t Ma—g M2a—g
31.75 | 38.05 38.23 31.12 31.24

Example 4 - Density of M = 0.63%
Mafa Maft M2a7t Mafg M2a7g
27.66 | 70.93 71.29 26.04 26.13

TaBLE I1.4.5: CPU time to compute the preconditioners.

In Table 11.4.5 we report the CPU time required to compute the preconditioners when the
least-squares problems are solved using LAPACK routines. The CPU time for constructing M, _;
and My, is in some cases much larger than that needed for M,_, and Ms,_,. The reason is that,
in the topological strategy, it is not possible to prescribe exactly a value for the density. Thus, for
each problem, we select a suitable number of levels of neighbors, to obtain the closest number of
nonzeros to that retained in the pattern based on the geometric approach. After the construction
of the preconditioner, we drop its smallest entries to ensure an identical number of nonzeros for
the two strategies. The results illustrate that considering twice as dense a pattern for A as for M
does not cause a significant growth in the computational time although it enables us to construct
a more robust preconditioner.

We first observe that using a sparse approximation of A reduces the convergence rate of the
preconditioned iterations when the nonzero pattern imposed on the preconditioner is very sparse.
However if we adopt the geometric strategy to define the sparsity pattern for the approximate
inverse, the convergence rate is not affected very much. For even larger values of density, the
difference in the number of iterations between using full A or an algebraic sparse approximation
becomes negligible. For all the experiments, M,_, still outperforms M,_, and is generally more
robust than M, ; the most efficient and robust preconditioner is Ms, 4. The multiple density
strategy allows us to improve the efficiency and the robustness of the Frobenius-norm precon-
ditioner on this class of problems without requiring any more time for the construction of the
preconditioner. For all the test examples, it enables us to get the fastest convergence even for
GMRES with a low restart parameter on problems where neither M,_, nor M,_, converge.

The effectiveness of this multiple density heuristic is illustrated in Figure I1.4.9 where we see
the effect of preconditioning on the clustering of the eigenvalues of A for the most difficult problem,
Example 2. The eigenvalues of the preconditioned matrices are in both cases well clustered around
1 (with a more effective clustering for Ms,_4), but those obtained by using the multiple density
strategy are further from the origin. This is highly desirable when trying improve the convergence
of Krylov solvers.

Another advantage of this multiple density heuristic is that it generally allows us to reduce
the density of the preconditioner (and thus its construction cost), while preserving its numerical
quality. Although no specific results are reported to illustrate this aspect, this behavior may be



II.4 SPARSE APPROXIMATE INVERSE PRECONDITIONERS 79

Imaginary axis
.
Imaginary axis
.

L L L . L L L
-05 05 1 15 -05 05 1 15
is is

F1cURreE I1.4.9: Eigenvalue distribution for the coefficient matrix preconditioned by using a
single (on the left) and a multiple (on the right) density strategy on Example 2.

partially observed in Table I1.4.2.

Example 1 - Density of M = 5.03%
GMRES(m) Bi -
Precond. CGStab UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
M; - - 465 222 174 239 210 169
SSOR - - 216 136 98 147 177 135
ILU(0) - - - - - - 479 -
SPAI - - 192 68 68 150 83 94
SLU 160 53 38 38 38 46 50 39
Mso_g 131 79 52 51 51 59 65 44
Example 2 - Density of M = 1.59%
GMRES(m) Bi -
Precond. CGStab UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
M; - - 473 330 243 257 354 228
SSOR - 413 245 164 134 185 281 266
ILU(0) - - - - 322 385 394 439
SPAI - - - - - - - -
SLU - - - - 282 - - -
Msq_g 100 73 61 55 55 48 93 40

TABLE I1.4.6: Number of iterations with some classical preconditioners computed using sparse A
(algebraic).

Finally, to assess the performance of the proposed Frobenius-norm minimization approach
described in this chapter, we show, in Table I1.4.6, the numerical results observed on Examples 1
and 2 with some classical preconditioners, of both explicit and implicit form. These are: diagonal
scaling, SSOR, ILU(0) and SPAI applied to a sparse approximation of A constructed using the
algebraic approach. The method referred to as SLU in that table uses the sparsified matrix A
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as an implicit preconditioner; that is, the sparsified matrix is factorized using ME47, a sparse
direct solver from HSL, and those exact factors are used as the preconditioner. Thus it represents
an extreme case with respect to ILU(0), since a complete fill-in is allowed in the factors. This
approach, although not easily parallelizable, is generally quite effective on this class of applications
for dense enough sparse approximations of A. However, as shown in this table, when the precondi-
tioner is very sparse, the numerical quality of this approach deteriorates and the Frobenius-norm
minimization method is more robust. All these preconditioners, except SLU on Example 1, exhibit
much poorer acceleration capabilities than that provided by Ms,_4. If we reduce the density of
the preconditioner in Example 1, M>,_4 converges slowly but becomes the most efficient. It should
also be noted that SPATI works reasonably well when computed using dense A (see Table I1.4.1) but
with sparse A it does not converge on Example 2 (see Table I1.4.6). In addition, following [49], we
performed some numerical experiments where we obtained an approximate m, ; from (I[.4.2) by
dropping the smallest entries of the iterates computed by few steps of either the Minimum Residual
method or GMRES. Unfortunately, the performance of these approaches for dynamically defining
the pattern of the preconditioner was disappointing. They only improved the unpreconditioned
case when a relative large number of iterations was used to build the preconditioner making them
unaffordable for our problems.

Our purpose in this chapter is to study the numerical behavior of the preconditioners. Nev-
ertheless, we do recognize that some of the simple strategies have a much lower cost to build the
preconditioner and so could result in a faster solution. When SSOR, converges, it is often the fastest,
in terms of the overall CPU time for the overall solution of the linear system. When the solution is
performed for only one right-hand side, the construction cost of the other preconditioners cannot
be compensated for by the reduction in the number of iterations; the matrix-vector product is per-
formed using BLAS kernels that make the iteration cost quite cheap for the problem sizes we have
considered. For instance, when solving Example 1 with GMRES(50) on a SUN Enterprise, SSOR
converges in 31.4 seconds and Ms,_4 requires 190 seconds for the construction and 7.6 seconds
for the iterations. However, in electromagnetism applications, the same linear system has to be
solved with many right-hand sides when illuminating an object with various waves corresponding
to different angles of incidence. For that example, if we have more than eight right-hand sides, the
construction of Ms,_4 is overcome by the time saved in the iterations and My, , becomes more
efficient than SSOR. In addition, the construction and the application of Ms,_, is fully paralleliz-
able while the parallelization of SSOR requires some reordering of equations that may be difficult
to implement efficiently on a distributed memory platform.

4.3 Concluding remarks

We have presented some a priori pattern selection strategies for the construction of a robust sparse
Frobenius-norm minimization preconditioner for electromagnetic scattering problems expressed in
integral formulation. We have shown that, by using additional geometric information from the
underlying mesh, it is possible to construct robust sparse preconditioners at an affordable compu-
tational and memory cost. The topological strategy requires less computational effort to construct
the pattern, but since the density is a step function of the number of levels, the construction of
the preconditioner can require some additional computation. Also it may not handle very well
complex geometries where some parts of the object are not connected, as in Example 3 (see Fig-
ure 4.1(c)). By retaining two different densities in the patterns of A and M we can decrease very
much the computational cost for the construction of the preconditioner, usually a bottleneck for
this family of methods; preserving the efficiency while increasing the robustness of the resulting
preconditioner. The numerical experiments have shown that, using this pattern selection strategy,
we can compute a very sparse but effective preconditioner. With the same low density, none of
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the classical preconditioners that we considered can compete with it. An additional major feature
of this pattern selection strategy is that it does not require access to all the entries of the matrix
A, so that it is promising for an implementation in a fast multipole setting where A is not directly
available but where only the near field entries are computed.

H M2gfg ||
GMRES(m) Bi -
Example CGStab UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
1 165 103 75 60 60 66 71 61
2 145 110 95 76 76 68 140 64
3 129 89 70 57 57 49 69 52
4 71 57 48 48 48 38 52 34
5 110 46 42 42 42 24 50 27

TABLE I1.4.7: Number of iterations to solve the set of test models by using a multiple density
geometric strategy to construct the preconditioner. The pattern imposed on M is twice as dense
as that imposed on A.

[ M 4 |
GMRES(m) Bi-
Example CGStab UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
1 197 87 49 49 49 50 66 50
2 103 82 72 61 61 49 111 50
3 143 98 84 60 60 56 70 53
4 70 58 49 49 49 39 65 37
5 143 50 47 47 47 29 57 28

TABLE I1.4.8: Number of iterations to solve the set of test models by using a topological
strategy to sparsify A and a geometric strategy for the preconditioner. The pattern imposed on
M is twice as dense as that imposed on A.

The geometric approach can be also used to sparsify A, without noticeably deteriorating the
quality of the preconditioner. This is showed in Table I1.4.7, where My, , is constructed by
exploiting geometric information in the patterns of both A and M, but choosing twice as dense a
pattern for A as for M. As suggested by Figure 11.4.3(a), due to the strongly localized coupling
introduced by the discretization of the integral equations, the topological approach can also provide
a good sparse approximation of A, by retaining just a few levels of neighboring edges for each DOF
in the mesh. The numerical behavior of this approach is illustrated in Table I1.4.8. In both cases
the resulting preconditioner is still robust and better suited for a fast multipole framework since
it does not require knowledge of the location of the largest entries in A.
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Parallel performance of partial
differential equation solvers
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Chapter 1

Parallel performance of
asynchronous iterations

1.1 Introduction

Asynchronous iterations by essence remove most of the synchronization points that usually are the
critical aspects where particular attention should be paid on when implementing algorithms on
parallel computers. In consequence their parallel implementation both on shared and distributed
memory computers are straightforward. On a distributed memory computer this observation is
only true if asynchronous communication are supported by the message passing library available
on the target platform.

Unfortunately at the time the numerical experiments reported in this chapter were performed
no standard like PVM [11] or MPT [124] for message passing existed. Even worse the target parallel
distributed platform was a network of Transputer that only supported the OCCAM language [59].
This parallel computing environment had strong impact on the parallel implementation design of
asynchronous algorithms because:

1. the OCCAM language only implements synchronous communication through blocking send
and receive, based on rendez-vous C.S.P. [103],

2. the Transputer chip is composed by a processor plus its memory for the computation and
four links to be physically connected to at most four other Transputer enabling a Transputer
to have point to point communication with only its four neighbors. This means that a
Transputer network is not a fully connected distributed architecture and consequently the
topology of the network should be tuned to the particular algorithm to be implemented.

The main consequences on the design of asynchronous algorithms are:

1. an additional layer of communication protocol should be implemented to enable asynchronous
communication among processors that perform the relaxation iterations,

2. only 1D decomposition (strips) of the 2D domain can be considered, since box decomposi-
tion would have required more than four links per Transputer when using our asynchronous
communication protocol or would have required to use more Transputer for managing com-
munication than for the actual computation.

This chapter is organized as follows. In Section 1.2 we describe the implementation of asyn-
chronous iterations on a Transputer network and report in Section 1.3 comparisons of performance
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between parallel synchronous and asynchronous SOR iterations for the solution of the discretized
and linearized Hamilton-Jacobi-Bellman equations (IL.1.7).

1.2 An implementation of asynchronous iterations on a Trans-
puter network

To implement asynchronous linear relaxations using the blocking communication available in the
OCCAM language, we consider a ring topology and split the set of Transputer in two subsets.
One subset performs the actual computation, the other subset manages the communication. Asyn-
chronous relaxations are then performed in such a way that each computing Transputer solves
a local problem for which the boundary conditions on the interfaces with its neighbors change
asynchronously while the iterations progress.

For 2D meshes this approach only enables to consider strip decompositions and the mapping
of the non-overlapping subdomains on the Transputer ring is depicted in Figure II1.1.1 for a de-
composition of the physical domain € into three subdomains (1, Qs,Q3); (11,73, T5) is the subset
of computing nodes, (T»,T4) is the subset of Transputer that manage the communication and
finally T is in charge of monitoring the convergence as it will be described later on. The commu-

] —C
" ]— OO
] —Q

Figure III.1.1: Ring topology and mapping of the subdomains on the Transputer.

nication protocol that has been implemented is such that computing Transputer send read/write
requests to their neighboring communication Transputer to get updated boundary conditions on
the corresponding interface or to provide their neighbors with up-to-date boundary conditions.
The asynchronous behavior is obtained thanks to a feature of the OCCAM language that en-
ables to wait simultaneously for several messages and as soon as a message has arrived a specific
task can be started. This feature is very similar to the interruptions management using handlers
on microprocessors. Then handling the first received requests enables to simulate asynchronous
communication between two computing Transputer using blocking send and receive, the price to
pay is to only have half of the computing resource actually used for real computation. The last
Transputer, Tg in Figure II1.1.1 that closes the loop, only performs the evaluation of the stopping
criterion using a token that circulates in a prescribed order among the Transputer. The token is
composed by two slots,
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a boolean describing the convergence status that informs the computing Transputer that they
have to stop to iterate,

and a real enabling to evaluate the 2-norm of the residual.

The token evolves through the ring each time a read or write request is made by the computing
Transputer to the communication node that holds the token. The slot containing the real value is
updated by the computing Transputer that accumulate in this variable the 2-norm of the residual
computed locally on the sub-domain it is in charge of. In this way when the token comes back to
the Transputer evaluating the stopping criterion, the real slot contains an estimation of the 2-norm
of the overall residual.

Using strip decomposition and lexicographical ordering of the finite difference grid, the classical
SOR relaxations can be parallelized using a pipelined approach. The parallel algorithm starts with
only the processor working on ; that performs its first relaxation on its points; once completed,
it sends the values of the first iterates on its interface with Qs to the processor in charge of Qo
that may starts its first iteration while processor one performs its second iterations, and so one
and so forth for the other processors. At a given time all the processors compute what are the
iterates produced by a sequential SOR method but each processor have the iterates at a different
iteration step. The SPMD pseudo code of this parallel synchronous block SOR. implementation
can be described as follows:

nbiter = 0
REPEAT

recvfrom(iproc-1)
Relax first discretization line
sendto(iproc-1)

Relax other discretization lines except the last

if (nbiter.ne.0) then
recvfrom(iproc+1)
Relax last discretization line
endif

sendto(iproc+1)
UNTIL convergence

In the sequel this parallel implementation is referred to as the synchronous parallel SOR
method.

1.3 A comparison of synchronous and asynchronous parallel
iterations

In this section we compare the behavior of parallel asynchronous iterations versus parallel syn-
chronous iterations on the Hamilton-Jacobi-Bellman problem described in the previous part. In
Table III.1.1 we report the best observed performance on a network on Transputer for which both
the partitioning and the over-relaxation parameter were tuned. The speed-up is classically com-
puted as the ratio of the sequential elapsed time divided by the parallel elapsed time. The domain
is discretized using a uniform and regular 143 x 143 grid. The super-linear speed-ups observed on
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| # subdomains | mode || min/Max iterations | Speed-up |
1 sequential 241 1.00
2 synchronous 241 2.07
asynchronous 244 /247 2.05
4 synchronous 241 4.10
asynchronous 241/291 3.88
8 synchronous 241 7.89
asynchronous 145/239 10.89

TABLE III.1.1: Performance observed on a Transputer network.

two subdomains and with four subdomains with the synchronous method are due to cache effects.
But the super-linear speed-up with eight subdomains and asynchronous iterations is introduced by
the smaller iterations required by this method with respect to the sequential execution.

Both the synchronous and asynchronous parallel algorithms described in the previous section
can be implemented on a shared memory multiprocessor using only simple parallelization directives.
In Table III1.1.2, we depict performance observed on a Alliant FX/80, that we used in dedicated
mode to run those experiments.

| # subdomains | mode || min/Max iterations | Speed-up |
1 sequential 241 1.00
2 synchronous 241 1.95
asynchronous 255/258 1.83
4 synchronous 241 3.64
asynchronous 238/271 3.51
8 synchronous 241 6.39
asynchronous 144/228 9.05

TaBLE II1.1.2: Performance observed on a Alliant FX/80.

These results show that the asynchronous iterations are potentially as fast and sometimes even
faster that the corresponding synchronous implementations. However their numerical behavior is
very difficult and complex to predict; it changes from one computer to another and even sometimes
two successive executions in a dedicated mode give different convergence behavior. In particular
the optimal over-relaxation parameter on the Alliant and on the Transputer network for a given
decomposition are different and changes when the number of subdomains is changed.

1.4 Concluding remarks

Extensive theoretical works have been done to analyze the convergence of these methods and
recently new asynchronous schemes with “flexible communication” have been introduced [130] to
enable more asynchronism in block algorithms. Nevertheless a challenging study targeting a better
understanding and prediction of their parallel numerical behavior would deserve to be developed to
make these methods more reliable for an usage in large simulation codes. For parallel linear algebra
solvers, it can also be though to use these asynchronous relaxation iterations as smoother in multi-
grid or to consider few steps of asynchronous relaxations as a preconditioner of FGMRES [140] or
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GMRESR [153], that are Krylov solvers in which it is allowed to take a different preconditioner in
each step.
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Chapter 2

Parallel performance of two level
non-overlapping domain
decomposition methods

2.1 Introduction

The full exploitation of the new computer architecture with large processor numbers requires
parallel scalable implementations of numerically scalable numerical techniques. The numerical
scalability of a numerical algorithm is characterized by the independence of its numerical behavior
with respect to the problem size it enables to solve. For elliptic partial differential equations
solution, multigrid on smooth problems is numerically scalable [100] and for general matrices clearly
direct methods are (when they are affordable). Multi-level domain decomposition methods quasi
satisfy this criterion in the sense that their numerical behavior is independent from the number
of subdomains and only weakly depends on the subdomain size. On the other hand, parallel
scalable implementations are characterized by quasi constant elapsed time for performing one step
of the numerical algorithm when the overall problem size is increased linearly with the number
of processors used. Straightforward parallel implementations of explicit schemes for the solution
of time dependent problems, Jacobi/Richardson stationary methods and unpreconditioned Krylov
method for solving discretized problem are scalable (some attention should be paid to perform
the scalar products on large processor number in this later case, see for instance [125, 53, 71]).
Variants of multigrid can give rise to scalable parallel implementation and multi-level domain
decomposition technique are also good candidate for parallel scalable implementations. In this
chapter, we describe the implementation of a parallel scalable two-level Schur complement domain
decomposition. In Section 2.2 the parallel implementation of some of two-level preconditioners we
have described in Part II Chapter 2 is presented. The parallel performance observed on a Cray
T3D is reported in Section 2.3.

2.2 Parallel implementation
The independent solution of local PDE problems expressed by the domain decomposition tech-
niques are particularly suitable for parallel distributed computation. In a parallel distributed

memory environment each subdomain can be assigned to a different processor. With this map-
ping, all the basic linear algebra operations but two in the preconditioned conjugate gradient can
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be implemented either without or with only neighbor-to-neighbor communication. The only two
steps that require global communication are the dot product computation and the solution of the
coarse problem performed at each iteration. In the sequel, we will describe how the preconditioner
composed by edge multicolor probed as local preconditioner and any of the coarse component
described in Section 2.3 can be efficiently implemented on distributed memory platforms. We
will also describe how the coarse problem solution can be implemented without any extra global
communication within the iteration loop.

A time consuming kernel involved at each step of the preconditioned conjugate gradient is
the matrix vector product when the Schur complement is not built explicitly, that is when only
the local Dirichlet matrices are factorized and forward /backward substitution steps are required at
each iterations. To perform the Cholesky factorization we have performed experiments with several
direct solvers. Form the simplest to the more sophisticated we have considered the band solver
from LAPACK [6], a skyline solver [79] and MA27 [62] from Harwell Subroutine Library [105].

The results observed on one processor of the Cray T3D and reported in Table I11.2.1 show
the clear superiority of MA27 with respect to the other two solvers both in term of memory
requirements and in term of computational time.

Memory requirement | Factorization Solve

| solver (in Mbytes) times (in sec) | times (in sec)
Band 2.12 0.875 0.103
Skyline 1.31 1.034 0.061
MA27 0.70 0.409 0.027

TABLE II1.2.1: Performance of the different linear solvers on one 64 x 64 subdomain.

In the sequel we will only report experiments with MA27 as local direct solver.

2.2.1 Parallel edge probing implementation

A straightforward implementation of the multicoloring probing technique is to perform a sequence
of matrix-vector product between the implicit Schur complement matrix and each set of (2d + 1)
probing vectors associated with each interface of the subdomains. This approach involved neighbor
to neighbor communication between processors for each of the probing vectors on the shared
interface and is referred to as the matrix-vector approach. In order to reduce the number of
communication, the communication involved for each matrix-vector product can be postponed
until each processor has completed the computation of its local Schur complement times all the
probing vectors defined on its interface. With this approach only one communication between
neighbors is required to communicate a matrix which columns are composed by the local matrix-
probing vector results. This second approach is referred to as the matrix-matrix implementation.
In both cases the amount of exchanged data is the same, but the second one minimize the network
latency overhead since only one communication is performed. In counterpart the price to pay is to
store all the partial vector resulting from the local Schur complement matrix applied to the set of
probing vectors.

The advantage of the matrix-matrix implementation is illustrated in Table II1.2.2 where we
report both the synchronization and communication elapsed time in the column “comm”, the
total elapsed time to construct the probed edge local preconditioner and the percentage of the
communication/synchronization with respect to the overall construction.
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matrix-matrix matrix-vector
#pprocessors || coma. total % comm. total %
2x2 32 235 134 42 256 164
2x4 62 319 194 111 382  29.0
4x4 67 373 179 163 484  33.6
4x8 51 390 13.0 138 486 28.4

TaBLE I11.2.2: Elapsed time in milliseconds for communication/synchronization and
computation during the construction of a preconditioner using matrix-matrix and matrix-vector
approaches, each subdomain is a 64 x 64 grid.

2.2.2 Parallel coarse component construction and application

The linear systems associated with the coarse spaces are much smaller than the linear systems
associated with the local Dirichlet problems, which have to be solved when computing the matrix
vector product by S. In this respect, we construct the coarse matrix Ay once and assemble it on all
the processors so that we can redundantly perform in parallel its solution at each preconditioned
conjugate gradient iteration. Furthermore, we can take advantage of the structure of S and Ry to
construct Ag in parallel. Without any communication each processor can compute the contribution
of its subdomain to the entries of Ay via matrix-vector and scalar products that only involve its
local Schur complement and the vectors whose support intercept the boundary of its subdomain.
At this stage, all the processors have some non-assembled entries of Ap, a global sum reduction
(MPI_Allreduce) enables them to assemble Aj on all the processors that can then factorize it.

As the Schur complement matrix is not assembled, the most expensive part of the construction
is the matrix vector product with the local Schur complement that requires the solution of the
Dirichlet problems. For each processor, the number of solutions is equal to the number of basis
vector supports that intercept the boundary of the subdomain the processor is in charge of. For a
box-decomposition of a uniform finite elements or finite differences mesh, the number of Dirichlet
problem solutions to be performed by an internal subdomain is:

e four for the vertex-based coarse-component,

e cight for the subdomain based coarse-component (that can reduce to four for a five point
finite difference scheme as the row in A associated to the cross points is unchanged in S),

e four for the edge based coarse-component.

Having made the choice of a redundant solution of the coarse component on each processor,
we can exploit further this formulation to avoid introducing any new global synchronization in the
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preconditioned conjugate gradient (PCG) iterations described below.

2 =0, r® =p

repeat
LB=1) — ppp(k=1) (TI1.2.1)
if k =1 then
p) = 2O
else
Bl=1) (k=) (=2) (IT.2.2)
pk) = (k=1) | glk=1) (k1) (II1.2.3)
endif
qg*® = sp®)

o) = H(E=DT W (k=1) )7 (k)

2 = gE=1) | () (E)
P(8) = (k=) _ (k) g (b)

until convergence

The steps involving a potential global synchronization are boxed, while the calculation of Mr
and Sp only involve neighbor to neighbor communication.

If we now unroll Equation (III.2.1) in the PCG algorithm using the general definition of the
preconditioner, we have

2 = () RI'S;'Ri + R AT  Ro)ry,
E;
=Y (RTS;'Riry) + Rj Ay ' Ror. (I11.2.4)
E;

Each term of the summation in Equation (II1.2.4) is computed by one processor with possible
one neighbor-to-neighbor communication. Furthermore, the numerator of Equation (I11.2.2) can
also be rewritten as

(i, 21) = (Tg, Mry,)
= (rg, (Z R;Tgllel + RgAalRo)Tk)
E;
= (Rirg, S;;  Riri) + (Rork, Ag ' Rory.). (II1.2.5)
E;

The right-hand side of (II1.2.5) has two parts. The first is naturally local because it is related to
the diagonal block preconditioner. The second, with the presented formulation, is global but does
not require any new global reduction. Rory is actually composed of entries that are calculated
in each subdomain (“interface” coarse space) or group of neighboring subdomains (“vertex” and
“domain” coarse spaces). After being locally computed, the Rory entries are gathered on all the
processors thanks to the reduction used to assemble each local partial dot product (R;7, S‘i; 1Rmc).
At this stage the solution Aj L Rori, can be performed redundantly on each processor as well as 3
in Equation (II1.2.2) can be computed by each processor.

Rewriting these steps in the iteration loop allows us to introduce the coarse component without
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any extra global synchronization. With this approach, we avoid a well-known bottleneck when
using Krylov methods on parallel distributed memory computers.

2.3 Parallel experiments

We investigate the parallel scalability of the proposed implementation of the preconditioners. For
each experiment, we map one subdomain on each processor of the parallel computer. In the
sequel, the number of subdomains and the number of processors will be always the same. The
target computer is a 128-node T3D located at CERFACS, using MPI as message passing library.
The factorization of the tridiagonal probed matrices, used in the local part of the preconditioners
is performed using a LAPACK [6] band solver. For all the experimental results reported in the
next section, the convergence of the preconditioned conjugate gradient method is attained when
the 2-norm of the residual of the current iteration normalized by the 2-norm of the right hand side
is less than 1079, the initial guess o for the conjugate gradient iterations was the null vector. All
the experiments were performed in double precision arithmetic.

To study the parallel behavior of the code, we report the maximum elapsed time (in seconds)
spent by one of the processors in each of the main steps of the domain decomposition method
when the number of processors is varied for solving the standard Poisson’s equation. The first row,
entitled “init.”, corresponds mainly to the time for factorizing the matrix associated with the local
Dirichlet problems; “setup local” is the time to construct and factorize the probing approxima-
tions S;; ; “setup coarse” is the time required to construct and factorize the matrix associated with
the coarse problem; “iter” is the time spent in the iteration loop of the preconditioned conjugate
gradient. Finally, the row “total” permits to evaluate the parallel scalability of the complete meth-
ods (i.e. numerical behavior and parallel implementation), while “time per iter.” only illustrates
the scalability of the parallel implementation of the preconditioned conjugate gradient iterations.
The elapsed time corresponds to a maximum and there is some unbalance among the processors
in different kernels. Therefore the reported total time differs from the sum of the time for each
individual kernel.

To illustrate the extra cost introduced by the construction and the solution of the coarse
problem at each iteration, we give in Tables I11.2.3 and II1.2.4 the time spent in each step of the
algorithm with (left column) and without (right column) the considered coarse component of the
preconditioner.

We report experiments with the domain-based coarse space in Table III1.2.3. Results with the
vertex-based coarse space are displayed in Table II1.2.4. For those experiments, we use MA27 to
solve the local Dirichlet problems defined on 100 x 100 grids. That subdomain size was the largest
we could use according to the 128 MB memory available on each node of the target computer.

| #procs | 4 | 8 | 16 | 32 | 64 | 128

init. 2.58 2.58 | 2,57 2.57 | 2,57 2,57 | 2,57  2.57 | 2.57  2.57 | 2.57  2.57
setup local 099 080|100 101|140 1.31|140 130 |1.40 1.31 | 140 1.32
setup coarse || 0.25 0.00 | 0.48 0.00 | 0.86 0.00 | 0.85 0.00 | 0.87 0.00 | 0.93 0.00

iter. 1.84 198 | 255 3931|301 5.14 412 7.16 |3.79 9.80 | 491 13.26
total 5.33 565|623 7.26| 714 850 | 825 10.51 | 7.93 13.13 | 9.14 16.60
# iter. 16 20 22 33 26 41 35 o8 32 80 40 109

time per iter. || 0.12 0.12 | 0.12 0.12 | 0.12 0.13 | 0.12 0.12 | 0.12 0.12 | 0.12 0.12

TaBLE I11.2.3: Elapsed time in each main numerical step varying the number of processors with
100 x 100 points per subdomain using the domain based coarse space.
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| # procs || 4 | 8 | 16 | 32 | 64 | 128

init. 2.58 2.58 | 2.57 2.57 | 2.57 2.57 | 2.57 2.57 | 2.57 2.57 | 2,57  2.57
setup local 0.66 080|094 101|124 131|124 130 |124 131 |1.25 1.32
setup coarse || 0.72 0.00 | 0.74 0.00 | 0.90 0.00 | 0.90 0.00 | 0.92 0.00 | 1.07 0.00

iter. 1.85 231|197 393|210 5.14 | 236 7.16 | 2.03 9.80 | 245 13.26
total 5.61 5.65 | 6.09 7.26 | 6.65 850|691 10.51 | 6.59 13.13 | 7.16 16.60
# iter. 16 20 17 33 18 41 20 o8 17 80 20 109

time per iter. || 0.12 0.12 | 0.12 0.12 | 0.12 0.13 | 0.12 0.12 | 0.12 0.12 | 0.12 0.12

TABLE II1.2.4: Elapsed time in each main numerical step varying the number of processors with
100 x 100 points per subdomain using the vertex based coarse space.

We can first observe that the numerical behavior of those preconditioners is again independent
of the number of subdomains. It can be seen that the parallel implementation of the Schur
complement method with only a local preconditioner scales perfectly as the time per iterations
is constant and does not depend on the number of processors (i.e. 0.115 seconds on 4 processors
and 0.118 on 128 nodes both figures were rounded to 0.12 seconds when reported in Table I11.2.3
and I11.2.4).

The above scalable behavior is also observed when the coarse components, vertex or subdo-
main, are introduced. For instance, with the vertex-based preconditioner, the time per iteration
grows from 0.116 seconds on 4 processors up to 0.122 seconds on 128 processors (again rounded
to 0.12 seconds in Table I11.2.4). There are two main reasons for this scalable behavior. First,
the solution of the coarse problems is negligible compared to the solution of the local Dirichlet
problems. Second, the parallel implementation of the coarse components does not introduce any
extra global communication.

In any case the methods scale fairly well, when the number of processors grows from 8 (to
solve a problem with 80 000 unknowns) up to 128 (to solve a problem with 1.28 million unknowns).
The ratios between the total elapsed time expended for running on 128 and on 8 processors are
1.18, with the vertex-based coarse preconditioner, and 1.47, with the domain-based one. That
latter larger value is only due to an increase of the number of iterations.

One of the most expensive kernels of this method is the factorization of the local Dirichlet
problems. Therefore, the tremendous reduction in the number of iterations induced by the use
of the coarse alternatives - five times less iterations for the vertex-based preconditioner - is not
reflected directly on a reduction of the total time. The total time is an affine function of the
number of iterations with an incompressible overhead due to the Cholesky factorization at the
very beginning of the domain decomposition method.

2.4 Concluding remarks

We have presented two-level preconditioners for Schur complement domain decomposition meth-
ods in two dimensions built by combining a variant of the of the local component of the BPS
preconditioner with a set of new algebraic coarse space components.

Those numerical methods are targeted for parallel distributed memory computers. In this
respect, we have proposed a message passing implementation that does not require any new global
synchronization in the preconditioned conjugate gradient iterations, which is a well-known bottle-
neck for Krylov methods in distributed memory environments. We illustrated that the numerical
scalability of the preconditioners combined with the parallel scalability of the implementation result
in a set of parallel scalable numerical methods.



Chapter 3

Preliminary performance of
overlapping domain decomposition
in computational fluid dynamics

3.1 Introduction

The motivations to move from sequential to parallel computing are mainly twofold, that are either
computing faster or computing larger. Depending on the objectives, the criterion to evaluate the
quality of the parallel implementation is either the classical speed-up or the scaled speed-up [99].
The speed-up is usually defined by %, where T; denotes the elapsed time on % processors to solve
the target problem. It measures the gain introduced by the parallelization for solving a fixed size
problem when the number of processors is varied. Using this definition, the speed-up is theoretically
bounded by p when p processors are used. However super-linear speed-ups may be observed since
increasing the number of processors usually implies decreasing the amount of data handled by
each processor. This smaller amount of data better fit into the memory hierarchy of the processors
resulting in faster computation. To overcome this drawback, the scaled speed-up can be considered.

It is defined by pff where T} is the time required to solve a problem which size is proportional
to the number of 5rocessors p. This latter criterion is usually preferred to evaluate the gain when
parallel computing is considered to solve problems whose size is bounded by the memory available
on the target parallel platform. The ideal situation is to have 77" ~ T}, that is the case when a
numerically scalable algorithm can be efficiently implement on a parallel computer platform. It
can be mentioned that some parallel numerical algorithms are perfectly scalable in term of speed-
up and poorly scalable in term of scaled speed-up. A class of such algorithms that exhibit this
property are the explicit schemes for solving time dependent problems. They are straightforward
to parallelize efficiently and linear speed-ups can be observed. Unfortunately in order to ensure
the convergence stability of the numerical scheme the discretization time step should be reduced
when the problem size is increased to evaluate the scaled speed-ups. This implies to perform more
time steps to compute the solution at a given time and then leads to poor scaled speed-ups [84].
This fact mainly highlight the non numerical scalability of the explicit schemes when the mesh is
refined.

In this chapter we mainly address the first situation that is computing faster the solution
of a fixed size problem. As already mentioned, this study was developed in the framework on
an industrial collaboration. The primary objective of this work was to reduce the elapsed time
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required to compute the steady state solution of the Navier-Stokes equations on a set of large,
but not huge problems, that might be tackled on a moderate number of processors. Therefore we
only consider the classical speed-up to evaluate the efficiency of the parallel implementation. In
addition, since this study was developed in a limited time period, the experimental results reported
here should be considered as preliminary results and further investigations would deserve to be
performed.

3.2 Parallel performance

In the sequel we report the speed-ups observed on the a IBM-SP2 using MPI as message passing
library where we always assign one processor per subdomain. The test problem is the ONERA M6
wing, with a mesh composed by 77000 vertices and decomposed into 4, 8, 16 or 32 subdomains.
The restart for GMRES was equal to 20. The tolerance for the stopping criterion is defined by the
ratio of the 2-norm of the residual divided by the 2-norm of the right hand side and is set to 107?.
All the experiments were performed in double precision arithmetic. Finally, because the problem
was too large to fit into the memory of a single node of the SP2 we use the elapsed time on four
processors to define the speed-up. That is the speed-up on p processors is evaluated by %

The implementation of the additive Schwarz variants as preconditioner induced a significant
reduction of the number of iterations but makes the iteration more costly both in term of memory
space and CPU time. The preconditioner should be built prior the beginning of the GMRES
iterations and applied at each step of the construction of the Krylov basis. If we consider the 4
processor example which history convergence is depicted in Figure I1.3.2, Mrrr7(0)—44s enables to
converge in about five times less iterations than the original code that does not implement any
preconditioner. However the overall computational time is only reduced by a factor of about four,
decreasing from 7500 time units down to 2000.

| # subdomains || 4 8 16|
| Speed-up || 1 186 3.44 |

TABLE IIL.3.1:  speed-up using Mrry(0)—dgas - CFL=50.

# subdomains || 4 8 16 32
Speed-up 1 199 397 7.02

TABLE II1.3.2:  speed-up using Mrry(0)—aras - CFL=50.

Table III.3.1 displays the speed-ups observed using the Mrr17(0)—44s variant as preconditioner.
The parallel performance of M;ri7(0)—dras are depicted in Table II1.3.2. For both preconditioners,
the good scalability of the speed-ups is partially due to a better memory/cache access resulting
from the reduction of the local problem size handled by the processors. For Mppy(o)—qas, this
memory effect partly alleviates the extra cost due to the slight increase of the number of itera-
tions when the number of processors is increased; as it can be seen in Figure I1.3.3. In contrast
with Mrru(0)-dras, where the surprising decrease of the overall number of Krylov steps (see Fig-
ure I1.3.5) combined with the better memory access leads to remarkable observed speed-ups on
eight and sixteen processors and reasonable good speed-up on thirty two processors.
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3.3 Concluding remarks

The results presented in this chapter show that in a relative short period of time and moderate man-
month effort, domain decomposition techniques can be implemented in an industrial code. These
preconditioners enable to reduce the elapsed time required to perform numerical simulations.
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Part IV

Conclusions and future work
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At the time of the writing, this document is a snapshot of ongoing works that are still con-
tinuing to evolve and be developed. We review now the research directions that naturally emerge
from this work.

In the framework of Jean-Christophe Rioual PhD thesis at CERFACS, that takes place within
a joint collaboration with INRIA, non-overlapping domain decomposition techniques are used to
parallelize a 2D device modeling code based on unstructured mixed finite element meshes [101].
Two-level preconditioners, including some of those described in this document, are investigating to
design a scalable parallel simulation code. This work intensively uses the MUMPS code [4] since
preliminary results indicate that the only local preconditioner that is robust enough in that context
is the subdomain based that requires the explicit computation of the local Schur complement
matrices.

It becomes more and more common now that one iterative solver has to be embedded in an
outer one: this is the case, for instance, for solving eigenproblems with inverse iterations or with
a Krylov method with invert. The question then arises: what is the best strategy for stopping
the inner iterations to ensure the convergence of the outer iterations while minimizing the global
computational cost ? Recently in the late nineties, the astonishing behavior of embedded solvers
involving a Krylov outer process has been emphasized [22, 23, 95, 96]. Surprisingly, it is observed
that the first Krylov vectors need to be known with full accuracy, and this accuracy can be
significantly relaxzed as the convergence proceeds. In [95], inner-outer iterations for the Conjugate
Gradient are studied and applications are suggested such as saddle point problems. The work done
in [22] on Krylov methods with inexact matrix-vector products has been extended to the context of
Schur complement domain decomposition techniques where the local Dirichlet problems are solved
with conjugate gradient iterations. Some further investigations would deserve to be performed to
better understand this behavior and make the preliminary results reported in [24] applicable in a
simulation code.

The numerical scalability of the CFD solver considered in this document should benefit from
the use of an additional coarse space component in the preconditioner. Another alternative could
be to use a non-overlapping Schur complement technique with inexact local solvers to design a
scalable preconditioner. The idea is similar to the one presented in [143] but tuned to the finite
element context. Some encouraging preliminary experiments have been performed on a scalar
equation using this inexact Schur complement preconditioner for FGMRES, but its adequation in
a CFD context needs to be assessed.

For the electromagnetism application, we intend to study the numerical scalability of the
Frobenius norm minimization preconditioner when the size of the scaterred object is increased or
when the wavelength of the illuminating wave is decreased resulting in larger linear systems. In this
respect, we are implementing this preconditioner within a computational electromagnetism code
that uses a fast multipole technique to perform the matrix-vector product. This work is continuing
to be developed within the PhD thesis of Bruno Carpentieri at CERFACS. The combination of
the fast multipole technique and the Frobenius norm minimization preconditioner should result in
an efficient parallel code for solving huge problems.

The next improvement stems from addressing an emerging concern in computational electro-
magnetism. The objective is to solve linear systems with multiple right-hand sides using iterative
schemes. Each right-hand side corresponds to illuminating an object with various waves that have
the same wavelength but correspond to different angles of incidence. For this purpose, block Krylov
techniques will be studied. This work is being developed in the context of a joint collaboration
with Aerospatiale through the PhD thesis of Julien Langou at CERFACS. One of the numerical
difficulties in this context is to be able to detect and manage the situation where one right-hand
side or a linear combination of right-hand sides have converged before the others.

Those subjects will certainly constitute most of my near future research activities that will
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probably be developed on the emerging parallel platforms that are the clusters of symmetric multi-
processors (SMP). On these parallel platforms it is not clear whether one should mix the two
parallel paradigms, that are shared memory programming, through OpenMP directives, and mes-
sage passing, via MPI, or if a complete distribute memory approach will still enable to fully exploit
the capabilities of those architectures for the class of algorithms discussed in this document.
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laboration avec V. Frayssé.

1998 “A Set of Flexible-GMRES Routines for Real and Complex Arithmetics” réalisé en collab-
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(parallélisme et optimisation).

1995 M.M. Magolu, qui, en tant que post-doctorant, a travaillé sur la parallélisation du
solveur linéaire du code N3S dans le cadre du projet Esprit HPCN3S.

Doctorants

Depuis Octobre 1999 grace a une dérogation de I’école doctorale de Mathématiques ap-
pliquées de Toulouse j’assure la direction scientifique de la thése de J. Langou. Le sujet
de cette these financée par Aerospatiale est le développement de solveur iteratifs multi-
second membres pour la résolution de systemes linéaires en acoustique et électromagné-
tisme issus d’une formulation par équation intégrale.

Depuis Février 1999 j’assure la direction scientifique de la thése de J.-C. Rioual en col-
laboration avec P. Amestoy (ENSEEIHT). Le sujet de cette these est le développement
de préconditionneurs paralleles et robustes pour les systémes linéaires en simulation de
semi-conducteurs. Ce travail de these s’inscrit dans le cadre de la collaboration avec
I'INRIA.
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Depuis 1998 conjointement avec I. S. Duff, j’assure ’encadrement scientifique des travaux
de B. Carpentieri qui travaille sur des techniques de préconditionnement pour la résolution
itérative de systemes linéaires complexes denses de grande taille.

1994-1997 j’ai assuré la direction scientifique de la these de L. Carvalho qui était con-
sacrée a 1’étude et 'implantation parallele de préconditionneurs & deux niveaux pour
des méthodes de décomposition de domaines sans recouvrement. L. Carvalho a soutenu
sa theése en Octobre 1997 devant le jury composé de P. Le Tallec (Président et rappor-
teur), G. Meurant (Rapporteur), I.S. Duff, N. Maculan, J. Noailles, et moi-méme.

Stagiaires 3°™° cycle

1999-2000 F. Guevara, éléve 3°™¢ année ENSEEIHT + DEA, travaille sur des techniques
de préconditionnement multi-niveau pour les techniques de décomposition de domaines
sans-recouvrement.

1997-1998 D. Lugato, éleve 3°™° année ENSEEIHT, qui a été intégré dans 1’équipe travail-
lant sur le développement de la bibliotheque de gestion du parallélisme pour le projet
Méso-NH.

1997-1998 G. Torres, éleve 3°™¢ année ENSEEIHT + DEA, qui a parallélisé, via des tech-
niques de sous-domaines sans recouvrement, un code INRIA de simulation de semi-
conducteurs (éléments finis mixtes non-struturés). Il a en particulier étudié le comporte-
ment numérique de différents préconditionneurs locaux pour le complément de Schur.
Ses réalisations ont servi de point de départ pour le travail de these de J.-C. Rioual.

1997-1998 B. Thomas, éleve 3*™° année ENSEEIHT, a travaillé sur le portage sur PC
sous Windows-NT et sur ’amélioration du gestionnaire de taches paralleles écrit par
L. Hamel. Ces travaux ont été en partie présentés au cours d’une communication a
EuroPar’99.

1997-1998 Y. Thiaudiere, éleve 3°™¢ année ENSEEIHT, a enrichi le gestionnaire de taches
paralleles sur réseau de stations Unix en intégrant la possibilité de gérer deux niveaux
de parallélisme (taches principales générant des sous-taches). Ces travaux ont été en
partie présentés au cours d’'une communication & FEuroPar’99.

1996-1997 F. Saab, éleve 3°™¢ année ENSEEIHT, qui a travaillé sur différentes stratégie de
parallélisation d’un solveur de Poisson rapide sur machines & mémoire distribuée.

1995-1996 L. Hamel, éleve 3°™° année ENSEEIHT + DEA qui a travaillé sur un sujet
traitant de calcul hétérogene sur réseau de stations Unix et a réalisé un gestionnaire de
taches paralleles. Ces travaux ont été en partie présentés au cours d’une communication
a HPCN’96.

Stagiaires 2" cycle

Juillet - Septembre 1999 J.M. Donaville a effectué son stage de 2°™° année ENSIMAG sur
I’étude d’une variante de la méthode alternée de Schwarz utilée comme préconditionneur.

Juillet - Septembre 1999 G. Lartigue a effectué son stage de 2°™° année ENSEEIHT,
filiere hydraulique sur un sujet que j’ai proposé et dont I’encadrement était assuré en
collaboration avec un post-doctorant de ’équipe CFD du CERFACS. Ce sujet portait
sur un maquettage d’une variante de la méthode de Schur avec solveurs locaux inexacts
en vue de son implantation dans un code industriel Navier-Stokes 3D non-structuré.

ORGANISATION DE CONFERENCES
- Membre du comité scientifique des conférences VecPar’96, VecPar’98 et VecPar’2000.
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- 2000 Membre du comité scientifique de la conférence HPCN’2000.

- 1999 Membre du comité d’organisation d’EuroPar’99 conjointement organisé par le CERFACS
et 'TENSEEIHT. Local-chair d’un topic dédié aux projets européens et co-éditeur des pro-
ceedings de la conférence publié par Springer Verlag dans la série “Lecture notes in computer
science”.

- 1997 Membre du comité scientifique de la conférence PVM-MPI Europe’97.

Sept. 1995 - Sept. 1996 Membre du comité d’organisation de 1“International Linear Algebra
Year” (série de 4 workshops) organisée par le CERFACS.

Juin 96 Co-organisation avec C. Douglas (IBM Yorktown et Yale University) du workshop “It-
erative Methods” dans le cadre de I’“International Linear Algebra Year” et “guest editor” de
la sélection des papiers de ce workshop publiés dans BIT.

- Mai 1996 Organisation du workshop ODESIM auquel étaient invités les industriels potentielle-
ment intéressés par ’outil logiciel résultant du projet.

- Sept. 1996 Co-organisation avec I.S. Duff d’un mini-symposium & ECCOMAS’96 intitulé “Sci-
entific computing at CERFACS”.
REFEREE

Pour des revues scientifiques internationales : Computer Physics Communications, Journal
of Computational Physics, Int. J. of Supercomputer Applic. and High Perf. Comp., STAM
J. Sci. Comp., BIT.

Pour des conférences internationales : VecPar, PVM-MPI, Copper Mountain, HPCN, Con-
Par V, Civil-Comp, Leslie Fox Price.

Expert auprés de la Commission Européenne pour les projets “Long Term Research” du
4°me PCRD et les projets “Technologie de 'Information” du 5°™¢ PCRD.

ACTIVITES CONTRACTUELLES

La recherche de financements, et le suivi technique, administratif et budgétaire de collabora-
tions contractuelles avec 'industrie sont des activités fortement encouragées au CERFACS, dans
le but d’obtenir des ressources extérieures permettant d’accroitre le potentiel humain et matériel
consacré aux recherches plus amont. Dans la mesure du possible, nous nous efforcons de concevoir
des collaborations industrielles dont le contenu scientifique exploite et voire fait progresser 1’état
de nos recherches.

1999-2002 Responsable scientifique de la collaboration Aerospatiale CCR (Centre Commun de
Recherches) sur “I’étude de solveurs paralleles robustes et efficaces pour la résolution de
systemes linéaires avec seconds membres multiples en électromagnétisme et acoustique ex-
ploitant la méthode multipole”. Cette collaboration est mise en place au travers d’une these
financée par Aerospatiale et encadrée conjointement par le CERFACS et Aerospatiale.
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1996-2000 Responsable scientifique et animateur du groupe de travail CERFACS dans le cadre de
la collaboration avec Météo-France pour la “Parallélisation du code Méso-NH sur machines
& mémoire distribuée”. Ce code de recherche en météorologie méso-échelle est développé
conjointement par le CNRM (Centre National de Recherches de Météo-France) et le Labora-
toire d’Aérologie. Dans ce contexte une bibliotheque encapsulant les échanges de messages
et masquant 'utilisation du parallélisme & été spécifée puis implantée. Par ailleurs, diverses
stratégies de parallélisation ont été étudiées afin de porter le solveur de Poisson rapide im-
planté comme préconditionneur dans le solveur de Pression.
Les résultats de ces travaux ont fait ’objet de deux communications & Euro-Par’99 et d’une
communication au colloque d’analysse numérque CANUM’99.

1998-1999 Co-ordinateur du projet Esprit PST intitulé MYSHANET pour “Parallel Multi-
body simulation for shock absorber design on PC network”. Co-ordonné par le CERFACS,
ce projet s’inscrivait dans le cadre des projets européens de transfert de technologie vers les
PME/PMI. L’objectif de ce projet était de porter sur réseau de PC sous windows le code
HIPERCOMBATS en vue de son utilisation pour le conception d’amortisseurs. Les autres
partenaires de ce consortium étaient : le CEIT (centre de recherches, Espagne), Donerre
Amortisseur (industriel, France) et Marzocchi (industriel, Italie).

Les résultats de ces travaux ont fait I’objet d’une communication a Euro-Par’99.

1998-1999 Participant a une collaboration avec Dassault Aviation dont le but était d’étudier des
préconditioneurs paralléles pour accélérer la convergence des systémes linéaires intervenant
dans le schéma, implicite implanté dans un code Navier-Stokes tridimensionnel éléments finis
non-structurés. Cette étude a été réalisée en collaboration avec ’équipe CFD (Computational
Fluid Dynamic) du CERFACS qui en avait la responsabilité.

Les résultats de ces travaux ont fait 'objet de deux communications, une a Euro-Par’99 et
une a Parallel CFD’99.

1996-1998 Responsable CERFACS du projet Esprit HPCN intitulé ODESIM signifiant “Op-
timum DESIgn of Multi-body sytems”. Ce projet était coordonné par le CEIT avec la
participation de CASA (industriel, Espagne), CR Fiat (industriel, Italie), CERFACS, Matra-
Datavision (industriel, France) et Siemens (industriel, Allemagne). Le but de ce projet était
de montrer que des outils de simulation multi-corps et de CAO pouvaient étre intégrés afin
de permettre de 'optimisation de mécanismes multicorps en utilisant les ressources de calcul
de réseaux hétérogenes de stations de travail. La contribution du CERFACS concernait & la
fois dans le choix des techniques numériques en optimisation ainsi que la gestion de taches
paralleles sur réseau hétérogene de stations de travail en mode non-dédié.

1997 Responsable CERFACS du contrat Aerospatiale CCR portant sur I’“étude et I'implantation
d’une variante de la méthode Block-QMR. pour matrices J-symétriques”.

1996 Responsable CERFACS du contrat Aerospatiale CCR: “Acquisition d’une méthode pour
la résolution des systémes linéaires issus des probléemes d’électromagnétisme”. L’objectif
de cet contrat était d’étudier I'utilisation de technique de préconditionnement par inverse
approchée appliquées & des systemes linéaires denses complexe symétriques non-hermitiens
pour la résolution de problemes d’électromagnétisme en formulation intégrale.

Les résultats de ce travail a fait I’objet d’un article publié dans Numerical Algorithms.

1996 Participant au contrat CNES: “Solveurs linéaires itératifs pour la résolution de systémes
complexes non hermitiens creux de grande taille”. Ce projet visait & développer un solveur
de type GMRES en arithmétique complexe.
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1995-1996 Responsable CERFACS du projet Esprit CAPRI intitulé HIPERCOMBATS sig-
nifiant “HIgh PERformance COmputing in Multi-Body Analysis for Two-wheeler Suspension
design”. Ce projet était coordonné par Piaggio (industriel, Italie) avec la participation du
CERFACS et du CEIT. L’objectif de ce projet était de développer un outil parallele sur réseau
de stations Unix pour la simulation paramétrique de multi-corps articulés. Le role du CER-
FACS était de développer un module de gestion de taches paralleles sur réseau hétérogene
non-dédié ayant des fonctionalités de gestion dynamique de la charge et de tolérance aux
pannes.

Les résultats de ces travaux ont fait ’objet de deux communications, la premiere & HPCN’96,
la seconde une a Multi-Body Dynamics: Monitoring and Simulation Techniques’97.

1995 Responsable CERFACS du contrat avec Thomson LCR : “Résolution des équations de
Maxwell tridimensionnelles dans le domaine fréquentiel sur réseaux hétérogenes de calcu-
lateurs”. Cette étude portait sur la résolution itérative de systemes linéaires issus de discré-
tisation par éléments finis pour la résolution paralleles des equations de Maxwell.

1994-1996 Responsable CERFACS du projet Esprit HPCN intitulé HPCN3S signifiant “High
Perfomance Computing and Networking with N3S”. Ce projet était coordonné par Simulog
(industriel, France) avec la participation du CERFACS, CISE (industriel, Italie), EDF (cen-
tre de recherche, France), IFP (industriel, France), VKI (centre de recherche, Belgique) et
visait a porter, sur machines & mémoire distribuée, le code de mécanique des fluides com-
pressible et incompressible N3S développé par EDF et P'INRIA. La contribution CERFACS
était principalement la parallélisation du solveur linéaire du code incompressible.

Les résultats de ces travaux ont fait I’objet de deux communications 'une & HPCN’95 et
I’autre & HPCN’96.

1993-1994 Responsable CERFACS du contrat CNES intitulé “Parallelisation d’un programme
CNES dans le cadre du développement de ’activité calcul parallele au CNES”. Cette étude
était composée d’une partie expertise d’'un code d’acoustique en vue de sa parallélisation et
d’une composante formation des ingénieurs du CNES appelés a developper 'activité calcul
parallele au sein du CNES.

Ces travaux ont été présentés lors d’une communication a CETIM’95.

1991-1992 Participant & la réalisation du contrat avec Aerospatiale Division Avions: “Evaluation
d’ordinateurs vectoriels et paralleles sur un jeu de programmes représentatifs des calculs
intensifs a la division avions d’Aerospatiale”. Dans le cadre de ce travail, nous avons été
amené & adapter puis évaluer les performances de certains codes représentatifs de 'activité
calcul scientifique Aerospatiale sur une large gamme de calculateurs hautes performances
incluant des machines paralléles vectorielles & mémoire partagée, les premieres machines &
mémoire distribuée virtuellement partagée ainsi que des réseaux de stations de travail.

ACTIVITES D’ENSEIGNEMENT ET DE FORMATION

L’ensemble des formations et enseignements que j’ai pu dispenser ’ont été essentiellement sur le
calcul scientifique parallele autour de deux grands thémes qui sont le calcul hautes performances et
Palgebre linéaire sur calculateurs paralleles. Les formations/cours sur le calcul hautes performances
couvrent des aspects principalement informatiques incluant la présentation des architectures des
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calculateurs scientifiques et les mécanismes de base mis en ceuvre au niveau matériel, ainsi que la
présentation des outils et environnements de programmations disponibles sur ces plateformes. Ces
notions sont également présentes dans les cours relatifs a l’algebre linéaire, qui sont & dominantes
numériques et visent a illustrer comment le choix d’une méthode numérique et son comportement
sont intimement liés aux spécificités du calculateur cible sur lequel elle sera exploitée. Ci-dessous
est listé 'ensemble des cours/formations auxquelles j’ai participé.

Mars 2000 Co-organisation avec V. Frayssé d’une formation de trois jours intitulée ” Outils de
programmation efficace et robuste pour le logiciel scientifique” dispensée a un groupe d’ingé-
nieurs et chercheurs du CNES.

Depuis 1994 Cours (12 h) dans le module Calcul Paralléle de 'option de troisieme année ENSICA
(Ecole Nationale Supérieure d’Ingénieurs en Construction Aéronautique - Toulouse). Dans ce
cours je traite essentiellement des méthodes itératives pour la résolution de problémes d’EDP
ainsi que de leur mise en ceuvre sur des multiprocesseurs & mémoire partagée et distribuée.

1996 Cours (3 h) d’introduction au calcul hautes performances dans le cadre du Mastére de
Météorologie de Météo-France.

Depuis 1997, j’interviens chaque année dans le Mastere de Météorologie de Météo-France. Avec
V. Frayssé et B. Cuenot, nous avons congu un enseignement de calcul scientifique (cours
et travaux pratiques) qui part de 1’équation différentielle discrétisée par éléments finis pour
arriver & sa résolution parallele. J'interviens dans cette formation pour 5 heures de cours et
3 heures de travaux pratiques.

Depuis 1996 Co-organisation d’une formation interne au CERFACS a l'intention des nouveaux
thésitifs et post-doctorants. Le but de cette formation est de leur présenter les architectures
des calculateurs hautes performances ainsi que les outils logiciels (bibiothéques d’échange de
messages et OpenMP) permettant de les programmer efficacement.

Sept. 1999 Conférencier invité dans le cadre de la “Premiere école d’été en calcul numérique et
symbolique de Rabat”. Le théme de ’exposé (2 h) était la résolution parallele de systemes
linéaires via des méthodes itératives.

Sept. 1999 Intervenant et organisateur avec F. Desprez (ENSL-INRIA) dans le tutorial MPI-
OpenMP organisé dans le cadre d’EuroPar’99.

1995-1999 Cours (16 h) de tronc commun dans le cadre du DEA de mathématiques appliquées de
PENSAE/INSA/UPS. Dans ce cours je traitais essentiellement des méthodes itératives pour
la résolution de problémes d’EDP ainsi que de leur mise en ceuvre sur des multiprocesseurs
& mémoire partagée et distribuée.

Le mode de fonctionnement de ce DEA est tel que les themes des cours sont renouvelés tous
les 5 ans. A l'issu de cette période et & compter de la rentrée 1999-2000, ce cours a été intégré
dans le cursus de la derniere année INSA spécialité ” Génie Mathématique et Modélisation”.

Juillet 1998 Assistant & I’école d’été CEA /EDF/INRIA consacré au calcul parallele.

Juin 1994 Conférencier invité dans le cadre du cours intitulé “Parallélisation de grands codes,
applications industrielles et & la recherche” organisé conjointement par la SMAI et le CNRS
a I'IDRIS.

Avril 1994 Co-organisateur de deux journées de formation au CERFACS intitulées “Calcul Dis-
tribué sur Réseaux de Station de Travail” avec le support d’Aerospatiale Division Avions.
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Les cours dispensés durant de ces deux journées étaient destinés aux ingénieurs des organ-
ismes partenaires du CERFACS ou ayant des collaborations avec le CERFACS. En plus de
la définition et de ’encadrement de la journée consacrée aux travaux pratiques j’ai fait deux
présentations 'une sur les outils logiciels disponible (PVM, P4, ...), autre sur des exemples
de mise en ceuvre dans des codes industriels.

1992-1993 Cours COMETT CERFACS/EPFL/INPT intitulé “Computation in Sciences, Meth-
ods and Algorithms on Supercomputing for Engineering (COSMASE)”. Les diffférents cours
portaient sur les concepts de base pour les machines hautes performances, les architectures
des machines & mémoire distribuée, les bibliotheques d’échanges de messages, des expériences
de parallélisation de codes industriels.

1992-1993 Formation (introduction aux architectures distribuées et bibliotheques d’échanges de
messages) dans le cadre du projet européen RECITE du programme FEDER (Toulouse,
Bilbao, 1992 - Valence, 1993)

1991 Cours (12 h) & P’ESSI (Sophia-Antipolis) sur des algorithmes paralléles en algebre linéaire.
1991 TD et TP en 3°™° Année Informatique, Section Parallélisme, 4 'ENSEEIHT.

1989-1990 En tant que moniteur de l’enseignement supérieur & 1’Université Paul Sabatier de
Toulouse, j’ai effectué mon service d’enseignement & TENSEETHT. En année Spéciale Infor-
matique, j’ai assuré des travaux dirigés de compilation, théorie des langages et de systemes
opératoires, ainsi que les travaux pratiques associés.

1989-1990 TP d’informatique en classes préparatoires, Mathématiques supérieures, au lycée Pierre
de Fermat & Toulouse.

RESPONSABILITES ADMINISTRATIVES

Une des caractéristiques originales du CERFACS est d’avoir choisi des Chefs de Projet dont

I’activité principale n’est pas au CERFACS, et qui ne sont donc présents qu’a temps partiel. Les
chercheurs seniors ont donc un réle tres important & jouer dans l'organisation et la gestion des
équipes de recherche.
Depuis Octobre 1993, je suis 'un des deux chercheurs seniors (permanents) dans le Projet Al-
gorithmiques Paralleles dirigée par I. S. Duff et qui comprend une quinzaine de chercheurs non-
permanents (thésitifs et post-doctorants). Mes responsabilités au sein de cette équipe comprennent
la gestion administrative et budgétaire au quotidien incluant la gestion de contrats industriels,
achat/renouvellement de ’équipement informatique, la rédaction de demandes d’heures de calcul
dans différents centres francais ou européens, le recrutement, la représentation de 1’équipe, le suivi
des collaborations avec les autres projets de recherche du CERFACS, la participation & la rédaction
de propositions de réponse a différents appels d’offres européens, ...



