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Fr�ed�eri Mistral

8 Septembre 1860 (Maillane)

25 Mars 1914 (Maillane)

Bast�o, p�er i�eu, sus la mar de l'ist�ori,

Fugu�eres tu, Prov�en�o, un pur simb�eu,

Un miramen de gl�ori e de vit�ori

Que, dins l'oumbrun di si�ele transit�ori,

Nous laisso v�eire un esl�ui d�ou B�eu.

Il suÆt, pour moi, sur la mer de l'histoire,

Tu fus, Provene, un pur symbole,

Un mirage de gloire et de vitoire

Qui, dans la transition t�en�ebreuse des si�eles,

Nous laisse voir un �elair de Beaut�e.

Extrait de Lis �oulivado - 1912

Qu gagno te �ms, gagno tout.

Celui qui gagne du temps, gagne tout.

Te �ms, fa hanja, madura, �oublida e mouri.

Le temps fait hanger, mûrir, oublier et mourir.

Proverbes proven�aux sur le temps extraits de

Lou Tresor d�ou F�elibrige - 1886
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On the Numerial Solution of Partial Di�erential Equations:

Iterative Solvers for Parallel Computers

Abstrat

Numerial simulations of omplex physial phenomena often require the use of parallel omputers.

In order to fully bene�t from the apabilities of those omputers, new algorithms have to be

designed. In addition to the mathematial properties of the problems to be solved, the features

of the target omputers should be taken into aount when designing those algorithms. We fous

on algorithms for the numerial solution of linear systems arising from the disretization of PDEs

and on their eÆient implementations on parallel distributed platforms. In partiular we onsider

domain deomposition tehniques with and without overlap for �nite element disretization and

present some results using sparse approximate inverse approahes for dense linear systems arising

from boundary element method in eletromagnetism.

Keywords: domain deomposition, two-level preonditioner, sparse approximate inverse preon-

ditioner, Krylov methods, parallel distributed omputing.

Sur la R�esolution Num�erique d'Equations aux D�eriv�ees Par-

tielles: Solveurs It�eratifs pour Calulateurs Parall�eles

R�esum�e

Les besoins roissants en puissane de alul pour la simulation num�erique de ph�enom�enes om-

plexes ont onduit �a l'utilisation quasi syst�ematique de alulateurs parall�eles. A�n d'exploiter

eÆaement les apait�es de es ordinateurs une nouvelle algorithmique a dû être d�evelopp�ee. En

plus des arat�eristques du probl�eme math�ematique �a r�esoudre les nouvelles m�ethodes num�eriques

doivent prendre en ompte les partiularit�es arhiteturales des alulateurs sur lesquels elles seront

inplant�ees. Ce doument est onsar�e �a la pr�esentation de m�ethodes it�eratives pour la r�esolution

de syst�emes lin�eaires issus de la disr�etisation de probl�emes aux d�eriv�ees partielles ainsi qu'�a la

desription de leur implantation sur mahines parall�eles �a m�emoire distribu�ee. Nous onsid�erons

en partiulier des m�ethodes de d�eomposition de domaines ave ou sans reouvrement pour des

disr�etisations de type �el�ements �nis et pr�esentons quelques r�esultats obtenus en utilisant des teh-

niques d'inverse approh�ee pour la r�esolution de syst�emes lin�eaires denses issus de disr�etisation

par �el�ements fronti�eres en �eletromagn�etisme.

Mots-l�es : m�ethodes de d�eomposition de domaine, pr�eonditionneurs �a deux niveaux, pr�eondi-

tionneurs reux par inverse approh�ee, m�ethodes de Krylov, alul parall�ele distribu�e.
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Introdution 13

\With the development of new kinds of equipment of greater apaity, and partiularly of

greater speed, it is almost ertain that new methods will have to be developed in order to make

fullest use of the new equipment. It is neessary not only to design mahines for the mathematis,

but also to develop a new mathematis for the mahines" delared D. Hartree in 1952 when ENIAC

(Eletroni Numerial Integrator and Computer) was just built. This vision has been the sope of

an extensive researh work in the last deades and further extended to inlude parallel omputers.

The study and development of algorithms for high performane omputers has been my researh

topi �rst as a PhD student in the ENSSEIHT-IRIT Lab, then as Post-Do and Senior researher

at CERFACS in the Parallel Algorithms Projet.

CERFACS is a quite unique plae where basi researh and applied researh through industrial

ollaborations o-exist and interat, enabling ross fertilization between aademi and industrial

ommunities. The CERFACS researhers time is split between those two ativities enabling to

work on several topis that, although onneted, are sometimes only loosely oupled. Let me

illustrate this feature through my own experiene where the links among all the ativities are high

performane omputing or linear algebra. Within these ollaborations, my work addresses various

topis ranging from omputer siene onerns suh as

� the impat evaluation of the new omputer arhiteture on sienti� omputing odes from

Aerospatiale [51℄ or CNES [3, 82℄,

� the development of a parallel distributed fast Poisson solver and the de�nition of a paralleliza-

tion strategy for a meso-sale weather foreasting vetorial ode for M�et�eo-Frane [81, 108℄,

� the porting on distributed memory platforms of the Computational Fluid Dynami (CFD)

ode N3S in the framework of an EC HPCN-ESPRIT projet [54, 83℄,

� or the development of an objet oriented software to manage a pool of parallel tasks on hetero-

geneous networks of omputers addressing the load balaning and fault tolerane apabilities

in few european ESPRIT projets [8, 9, 109℄;

to more numerial analysis issues inluding

� the study of eÆient parallel preonditioners for impliit shemes in CFD in a joint work

with Dassault-Aviation [40℄,

� the study of various Krylov solvers for omplex symmetri non Hermitian matries with

Thomson-LCR [50℄,

� the development of the Blok-QMR [74℄ variant for J-symmetri matries to handle multiple

right hand sides in eletromagneti appliations with Aerospatiale [67℄,

� the study of parallelizable preonditioners for dense linear systems in a joint work with

Aerospatiale [16℄.

To illustrate how ross fertilization sometimes goes beyond the simple ollaboration between

the two ommunities, let me desribe the following example. In a joint work with CNES [68℄,

we have developed a GMRES implementation for omplex matries. This ode was then further

improved to deal with any type of arithmetis and to satisfy some software quality requirements

enabling its eÆient use on sequential and shared or distributed memory parallel omputers. The

resulting pakages [69, 70℄ have been put in the publi domain, www.erfas.fr/algor/Softs/,

with a non-ommerial liense agreement. It is regularly downloaded by many researhers working

in various areas ranging from geophysis or oean modeling to theoretial physis. In partiular, the

omplex version has been reently integrated in a publi domain iruit simulator developed by [℄ at
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Researh Bell Lab. In addition to the enjoyable researh aspets related to these various projets,

learning about their management is also a valuable omponent as any suessful ollaboration not

only requires intensive sienti� work but also some administrative management.

In this manusript, we will partially illustrate those two aspets of the researh at CER-

FACS but we only report studies onduted on some parallel and parallelizable numerial iterative

tehniques for the solution of linear systems arising from the disretization of partial di�erential

equations (PDE). These linear systems are sparse for �nite di�erene or �nite element disretiza-

tions. Their parallel solution is often takled via domain deomposition tehniques that are well

adapted for distributed memory omputers. When boundary elements disretization are preferred,

beause they are better suited to represent the physial problems as in some eletromagneti or

aousti appliations, the resulting linear system is dense. In this latter situation preonditioned

Krylov solvers are a promising alternative to the lassial method of hoie, that is the Gaussian

elimination, provided we have fast matrix-vetor multipliations and robust and e�ient preondi-

tioners.

When dealing with linear systems arising from PDE the salability of the numerial method

and the salability of its parallel implementation are key aspets to address when targeting the

solution of large problems. In this respet, we onsider those two aspets in separate parts of this

doument. Part II desribes the numerial behavior of the numerial tehniques we are interested

in and the performane of their parallel implementation is disussed in Part III.

This doument is organized as follows. In Part II, we desribe in Chapter 1 the numerial

behavior of asynhronous iterations that might onstitute an original alternative to load balaning

in order to minimize the idle time of proessors for optimizing the throughput of parallel omputing

resoures. Chapter 2 is devoted to two-level non-overlapping domain deomposition for ellipti self

adjoint operators. We desribe parallel preonditioners that an be written as the sum of a sym-

metri positive de�nite matrix, aiming at apturing the loal behavior of the operator plus a low

rank update involving a oarse problem, that intends to represent the global behavior of the ellipti

equation. To illustrate the industrial and inter-disiplinary ollaborations at CERFACS we present

in Chapter 3 some investigations using overlapping domain deomposition methods in an industrial

ode for CFD. Finally, Chapter 4 presents some sparse approximate inverse preonditioners for the

solution of dense matries arising in omputational eletromagnetis. This work is motivated by

the observation that sine the inverse of the inverse of a sparse matrix is sparse, then there are

lasses of dense matries for whih a sparse approximate inverse might be an appropriate preon-

ditioner. Part III is devoted to the parallel implementation and performane of all the numerial

methods studied in Part II, exept the parallelization of the approximate inverse preonditioner

whih we plan to address in a near future. In partiular a study of the numerial salability of

the approximate inverse preonditioner in the ontext of eletromagnetism appliations, that is

mandatory before addressing the parallel implementation issues, is presented in Part IV whih is

devoted to onlusions and future works.

All the work presented in this doument was, and in some ase is still, developed in ollab-

oration with other researhers. The asynhronous iterations work [80, 85℄ was performed with

P. Spit�eri (ENSEEIHT-IRIT) during my PhD; the domain deomposition in part with R. S. Tumi-

naro (Sandia National Lab.) [89℄, with L. M. Carvalho (University of Rio Janeiro) and P. Le Talle

(Universit�e Paris IX Dauphine) [39℄, with L. M. Carvalho and G. Meurant (CEA) [38℄. Part of this

work was arried out in the framework of L. M. Carvalho's PhD thesis [35℄ at CERFACS. The inves-

tigations on overlapping domain deomposition were onduted in ollaboration with G. Chevalier

(CERFACS), F. Chalot and Q. V. Dinh (Dassault Aviation) [40℄. Lastly the approximate inverse

preonditioners for dense matries were �rst studied in the framework of an industrial ollabora-

tion in a joint work with G. All�eon (CCR Aerospatiale) and M. Benzi (formerly at CERFACS and

now Los Alamos National Lab.) [2, 16℄ and further developed with B. Carpentieri (CERFACS)
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and I. S. Du� (CERFACS - RAL) [33, 34℄. B. Carpentieri is urrently ompleting his PhD on this

latter subjet.
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Chapter 1

Asynhronous methods

1.1 Introdution

With the advent of parallel omputers, many new algorithms were designed or redisovered to fully

exploit the new arhitetures. An dominating onept in the design of parallel algorithms is that

the work should be equally spread among the proessors in order to redue the idle time resulting

from unbalane granularity of the onurrent tasks. This onstraint is widely integrated as a

requirement to design eÆient parallel algorithms and governs for instane the graph partitioning

algorithms [102, 110℄ used for parallel sparse matrix omputation or domain deomposition. In

ontrast to load balaning, the idea of asynhronous methods is to avoid proessor idle time by

eliminating as muh as possible synhronization points. The prie to pay for this freedom is that

some proessors will perform extra omputations that are expeted to be bene�ial when the load

is unbalaned or when the ommuniation between the proessors is slow.

Sine the pioneer paper on this method [46℄ many authors have intensively studied the theory

and the appliations of asynhronous iterations. The onvergene analysis of the asynhronous

iterations an be done using di�erent tehniques; we mention for instane the analysis based on

some ontration properties in appropriate vetorial norm [46, 128, 139℄ or the one using order

intervals [65, 129℄.

Let us also mention some papers where the appliation of asynhronous iterations to di�erent

areas is disussed: the solution of partial di�erential equations [5℄; to overlapping domain deom-

position [77, 148℄; to inverse problems in geophysis and oil exploration [133℄; to eletrial power

network [10℄; to network ow [151℄; to onvex programming [149℄, and other optimization [64℄ and

nonlinear problems [150℄ and to singular systems of linear equations [134℄. In addition notie that

beause of the asynhronous behavior of the algorithms speial attention should be paid to the

implementation of the stopping riteria [63, 144℄. Finally for surveys of asynhronous iterative

methods we refer to [19, 20℄ and [78℄ where part of the above list was found.

This hapter is organized as follows. In Setion 1.2 we �rst reall the mathematial model om-

monly used to desribe the asynhronous iterations and reall a general onvergene theorem based

on vetorial norm ontration properties. We also give a haraterization of the ontration ma-

trix using aretive properties of the submatries that naturally appears when blok asynhronous

algorithms are onsidered [85℄.

19
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1.2 Mathematial model and theoretial framework

1.2.1 Mathematial models

Consider the following �xed point equation x

�

= F (x

�

) de�ned on E a produt of Banah spaes,

i.e. E = E

1

� :::�E

m

.

To desribe asynhronous iterations we follow [19, 46, 128℄ and �rst de�ne the poliy s(p) and

a series of delays d(p).

De�nition II.1.1 A poliy is de�ned by a series s(p) suh that:

8p 2 IN; s(p) � f1; :::;mg; s(p) 6= ;; (II.1.1)

8k 2 f1; :::;mg the set fp 2 IN s.t. k 2 s(p)g is in�nite: (II.1.2)

De�nition II.1.2 A series of delays d(p) is de�ned by

8p 2 IN; r(p) = (r

i

(p))

i=1;m

2 IN

m

8p 2 IN;8k 2 f1; :::;mg the appliation: p! 

k

(p) = p� r

k

(p) is a non-dereasing funtion of

p and satis�es:



k

(p) � 0 and 

k

(p) = p 8k 2 s(p); (II.1.3)

lim 

k

(p) =1: (II.1.4)

Using the two above de�nitions the asynhronous iterations an be de�ned as follows.

De�nition II.1.3 Let x

0

2 E we onsider the series of iterates de�ned by:

8p 2 IN; 8k 2 f1; :::;mg; x

p+1

k

=

�

x

p

k

if k 62 s(p)

F

k

(w) if k 2 s(p)

(II.1.5)

where w = (x



`

(p)

`

)

`=1;m

, w 2 E.

The poliy series s(p) enables to de�ne the omponents of the iterate that will be updated at

iteration p, the series d(p) enables to model the asynhronism and 

`

(p) indiates the iteration when

the `

th

omponent just read to perform the p

th

iteration was omputed. The hypothesis (II.1.3)

indiates that all the omponents in s(p) will be updated at the p

th

iteration, (II.1.4) indiates

that the omputation proeeds and (II.1.2) that no omponents fails to be updated as time goes

on. Finally the non dereasing property of the appliation 

k

(:) tells that one always onsider the

latest omputed entries available to perform the update given by (II.1.5).

In the sequel we will only onsider the situation where F

k

(w) de�nes a relaxation update like

Gauss-Seidel or SOR (Suessive Over Relaxation). Note that De�nition II.1.3 inludes as speial

ase the lassial sequential or synhronous stationary methods. For linear relaxation shemes,

8p s(p) = f1; :::;mg models the blok-Jaobi algorithm, while 8p s(p) = f mod (p;m) + 1g

orresponds to the blok Gauss-Seidel method.

1.2.2 A onvergene analysis framework

A general onvergene theorem for the asynhronous iterations is the following [128, 138℄.

Theorem II.1.1 Let F be an appliation from D(F ) � E, D(F ) 6= ; into D(F ).

Let assume that
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F has a �xed point x

�

2 D(F ),

F is a J-ontration with respet to the �xed point x

�

, that is there exists a nonnegative

matrix J 2 IR

m�m

with �(J) < 1 suh that 8x 2 D(F )

0

B

�

jjF (x

1

)� F (x

�

1

)jj

1

.

.

.

jjF (x

m

)� F (x

�

m

)jj

m

1

C

A

< J:

0

B

�

jjx

1

� x

�

1

jj

1

.

.

.

jjx

m

� x

�

m

jj

m

1

C

A

;

where the inequality in IR

m

is omponentwise, �(J) is the spetral radius of the matrix J and jj:jj

i

is the norm de�ned on the Banah spae E

i

.

Then (II.1.5) de�nes x

p

for all p 2 IN suh that x

p

2 D(F ) and the iterates x

p

onverge to x

�

the �xed point of F .

To establish a onvergene theorem for asynhronous iterations we onsider in the sequel

nonlinear algebrai problems of the form:

Ax+�(x)� b = 0 (II.1.6)

where A is a n� n matrix, x and b are vetors and � is a diagonal operator possibly multivoque.

We now onsider a deomposition of (II.1.6) into m bloks, that is

8k 2 f1; :::;mg A

kk

x

k

+�

k

(x

k

)� b

k

+

X

j 6=k

A

kj

x

j

= 0:

Theorem II.1.2 Let

- 8k 2 f1; :::;mg the matrix A

kk

be strongly aretive with onstant m

kk

, that is for all x

k

2

E

k

� IR

n

k

there exists a dual l

k

(x

k

) of x

k

suh that

hA

kk

x

k

; l

k

(x

k

)i � m

kk

jjx

k

jj

2

k

:

Here h:i denotes the bilinear form between (IR

n

k

; jj:jj

k

) as a Banah spae and its dual

(IR

n

k

; jj:jj

k

)

�

where l

k

(x

k

) is an element of (IR

n

k

; jj:jj

k

)

�

with

jjl

k

(x

k

)jj

�

k

= jjx

k

jj

k

and hl

k

(x

k

); x

k

i = jjx

k

jj

2

k

:

- 8(j; k) 2 f1; :::;mg

2

, j 6= k, m

jk

be the norm of the matrix A

jk

,

- 8(j; k) 2 f1; :::;mg

2

, �

k

be an inreasing appliation,

- the matrix J be the matrix with zero diagonal entries and o�-diagonal entries equal to

m

kj

m

kk

and suppose that J is a ontration matrix.

Then the parallel synhronous and asynhronous blok algorithms assoiated with the m �m de-

omposition de�ned by (II.1.5) onverge to x

�

solution of (II.1.6).

Proof See [85℄.

Remark II.1.1 In pratie for J it is enough to show that �(J) < 1 sine it is learly a nonnegative

matrix. The ontration property is true in partiular if the related matrix

�

M whose diagonal entries

are m

kk

and o�-diagonal entries �m

jk

is a M-matrix (see [131℄).

Remark II.1.2 Notie that if A in (II.1.6) is a M-matrix and � is an inreasing diagonal operator,

then the hoie of the point wise deomposition, i.e. m = n, enables to show that the point

wise asynhronous algorithm onverges and onsequently any blok asynhronous algorithm also

onverges.
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1.3 Numerial experiments

To illustrate the numerial behavior of asynhronous iterations we onsider the disretized and

linearized Hamilton-Jaobi-Bellman problem and refer to [85℄ where results on other nonlinear

problems like the obstale problem and a nonlinear di�usion problem are reported. We reall that

the Hamilton-Jaobi-Bellman equations appears in di�erent area like eonomis, stohasti ontrol,

...

In this setion we onsider the following disretized Hamilton-Jaobi-Bellman equation:

Find x suh that max

i=1;2

(A

i

x� b

i

) = 0: (II.1.7)

where the matries A

i

are the disretization of the following ellipti operators de�ned on the unit

square with homogeneous Dirihlet boundary onditions:

8

>

>

<

>

>

:

A

1

= �(

�

2

�x

2

+

�

2

�y

2

+

1

2

�

2

�x�y

);

A

2

= �(

1

2

�

2

�x

2

+

�

2

�y

2

+

1

10

�

2

�x�y

):

The disretized problem (II.1.7) is solved using the Howard iterative sheme [104℄ that onsists

in omputing the new iterate x

p+1

suh that it is the solution of the linear system

A(x

p

)x

p+1

= b(x

p

); (II.1.8)

where the i

th

row of A(x

p

) and the i

th

entry of the vetor b(x

p

) are de�ned by the i

th

row of the

matrix A

k

, respetively the i

th

entry of the vetor b

k

if k is suh that (A

k

x

p

� b

k

)

i

> (A

j

x

p

� b

j

)

i

.

If the operator A

i

are disretized using �nite di�erenes on a uniform grid, the disretization

matries A

i

are M-matries then 8x

p

A(x

p

) is also a M-matrix and Remark II.1.2 enables to estab-

lish the onvergene of asynhronous iterations on the linear system (II.1.8) for any deomposition

of the unit square into subdomains.

The purpose of the reported experiments is to illustrate that introduing some asynhronism in

the relaxation shemes does not deteriorate, and in some ases even improve, the numerial behavior

of the sequential ode in terms of number of iterations. Asynhronous iterations were implemented

on shared and distributed memory omputers. For all the experimental results reported in this

setion, the onvergene of the relaxation shemes is attained when the 2-norm of the residual is

less than 10

�6

, the initial guess x

0

for the relaxation iterations was the null vetor. In Table II.1.1

we report the number of iterations observed on a network of Transputer (a loosely oupled parallel

platform), and depit in Table II.1.2 the numerial behavior observed on an Alliant FX/80, a

vetorial shared memory omputer. The linear solver for (II.1.8) is a blok SOR method, where

eah blok is assoiated with one line of the grid. The asynhronism is obtained by deomposing the

linear system (II.1.8) into m bloks of rows and alloating one of these m bloks to eah proessor.

Notie that in terms of mesh deomposition this orresponds to a partition of the grid points into

strips, i.e. 1 D deomposition. Beause we onsider asynhronous algorithms for eah run we give

both the minimum and the maximum number of iterations performed by the proessors.

Two parameters play an important role in the numerial behavior of the asynhronous re-

laxation shemes that are the subdomain deomposition, that might give rise to unbalane, and

the over-relaxation parameter of the SOR sheme. There are no theoretial study nor heuristi

that enable to de�ne their optimal values. In this respet all the number of iterations reported in

the above tables are the optimal we observed for a given number of proessors varying both the

deomposition and the relaxation parameter. Although no numerial experiments are reported to

illustrate this fat, we mention that the onvergene rate of the asynhronous SOR relaxations is



II.1 Asynhronous methods 23

Number of proessors Number of iterations (min/Max)

1 241

2 244/247

4 241/247

8 145/239

Table II.1.1: Number of iterations of the asynhronous iterations on a network of Transputer.

Number of proessors Number of iterations (min/Max)

1 241

2 255/258

4 238/271

8 144/228

Table II.1.2: Number of iterations of the asynhronous iterations on an Alliant FX/80.

often very sensitive to those two parameters. In addition we mention that the best ombination of

those parameters is also dependent on the target omputer as the ommuniation speed depends

on the omputer inuenes the numerial behavior. Nevertheless it is amusing to notie that on

8 proessors for both omputers the sequene of iterates generates by the asynhronous iterations

enables to onverge in less iterations than the sequential ode.
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Chapter 2

Non-overlapping domain

deomposition methods

2.1 Introdution

In the reent years, there has been an important development of domain deomposition algorithms

for solving numerially ellipti partial di�erential equations. Ellipti problems are hallenging sine

their Green's funtions are global: the solution at eah point depends upon the data at all other

points. Nowadays some methods possess optimal onvergene rates for given lasses of ellipti

problems. It an be shown that the ondition number of the assoiated preonditioned systems is

independent of the number of subdomains and either independent of or logarithmially dependent

on the size of the subdomains. That optimality and this quasi-optimality properties are often

ahieved thanks to the solution of a oarse problem de�ned on the whole physial domain. Through

the use of oarse spaes, this approah aptures the global behavior of the ellipti equations.

Various domain deomposition tehniques, from the eighties and nineties, have suggested di�erent

global oupling mehanisms and various ombinations between them and the loal preonditioners.

In the framework of non-overlapping domain deomposition tehniques, we refer for instane to

BPS (Bramble, Pasiak and Shatz) [26℄, Vertex Spae [60, 146℄, and to some extend Balaning

Neumann-Neumann [116, 118, 120℄, as well as FETI [66, 122℄, for the presentation of major two-

level preonditioners. We refer to [44, 147℄ and [136℄ for a more exhaustive overview of domain

deomposition tehniques.

This global oupling is ritial for the numerial salability of the preonditioners. In par-

tiular, it has been shown in [26℄ that, when applying the original BPS tehnique to a uniformly

ellipti operator, the preonditioned system has a ondition number

�(M

BPS

S) = O(1 + log

2

(H=h)); (II.2.1)

where h is the mesh size, H largest diameter of the subdomains and �(A) is the ondition number

of the matrix A. This implies that the ondition number depends only weakly on the mesh spaing

and on the number of subdomains. Therefore, suh a preonditioner is numerially salable and

appropriate for large systems of equations solved on large proessor systems.

Similarly to BPS, we onsider a lass of preonditioners desribed in a generi way as:

M =M

loal

+M

global

: (II.2.2)

In Setion 2.2 we desribe several alternatives to de�ne M

loal

and in Setion 2.3 we propose a set

of oarse omponents to be used for M

global

.
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In this hapter, we onsider the following 2

nd

order self-adjoint ellipti problem on an open

polygonal domain 
 inluded in IR

2

:

(

�

�

�x

(a(x; y)

�v

�x

)�

�

�y

(b(x; y)

�v

�y

) = F (x; y) in 
;

v = 0 on �
;

(II.2.3)

where a(x; y); b(x; y) 2 IR

2

are bounded positive funtions on 
. We assume that the domain


 is partitioned into N non-overlapping subdomains 


1

; : : : ;


N

with boundaries �


1

; : : : ; �


N

;

this de�nes a oarse mesh, �

H

, with mesh size H being the largest diameter of the subdomains.

We disretize (II.2.3) either by �nite di�erenes or �nite elements resulting in a symmetri and

positive de�nite linear system with sparse possibly unstrutured matrix

Au = f:

Let B be the set of all the indies of the disretized points whih belong to the interfaes

between the subdomains. Grouping the points orresponding to B in the vetor u

B

and the ones

orresponding to the interior I of the subdomains in u

I

, we get the reordered problem:

�

A

II

A

IB

A

T

IB

A

BB

� �

u

I

u

B

�

=

�

f

I

f

B

�

: (II.2.4)

Eliminating u

I

from the seond blok row of (II.2.4) leads to the following redued equation for

u

B

:

Su

B

= f

B

�A

T

IB

A

�1

II

f

I

; where S = A

BB

�A

T

IB

A

�1

II

A

IB

(II.2.5)

is the Shur omplement of the matrix A

II

in A, and is usually referred to as the Shur omplement

matrix.

The matrix S inherits from A the symmetri positive de�niteness property. Therefore we use

preonditioned onjugate gradient iterations for solving (II.2.5).

2.2 Loal preonditioners

To desribe the preonditioners, we need to de�ne a partition of B, the set of interfae points. Let

fv

l

g be the singleton sets that ontain one index related to one ross point and let V =

S

j

fv

j

g be

the set with all those indies.

If i 6= j, (i; j) 2 f1; 2; : : : ; Ng

2

and i and j are suh that 


i

and 


j

are neighboring subdomains

(i.e. �


i

and �


j

share at least one edge of the mesh), then we an de�ne eah edge E

k

by

E

k

= (�


i

\ �


j

)nV:

We an thus desribe the set B as

B = (

[

k

E

k

) [ V; (II.2.6)

that is a partition of the interfae B into edges E

`

and the set of verties V .

In Figure II.2.1, we depit an internal subdomain 


i

with its edge interfaes E

m

, E

g

, E

k

, E

`

and vertex points as v

l

that de�ne �

i

= �


i

n�
. Let R

�

i

: � ! �

i

be the anonial pointwise

restrition whih maps full vetors de�ned on � into vetors de�ned on �

i

, and let R

T

�

i

: �

i

! �
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be its transpose. For a sti�ness matrix A arising from a �nite element disretization, the Shur

omplement matrix (II.2.5) an also be written as:

S =

N

X

i=1

R

T

�

i

S

(i)

R

�

i

;

where

S

(i)

= A

(i)

�

i

�A

T

i�

i

A

�1

ii

A

i�

i

(II.2.7)

is referred to as the loal Shur omplement assoiated with the subdomain 


i

. S

(i)

involves

submatries from the loal sti�ness matrix A

(i)

, de�ned by

A

(i)

=

�

A

ii

A

i�

i

A

T

i�

i

A

(i)

�

i

�

: (II.2.8)

The matrix A

(i)

orresponds to the disretization of Equation (II.2.3) on the subdomain 


i

with




i




j

E

k

E

g

E

m

E

`

v

l

Figure II.2.1: An internal subdomain.

Neumann boundary ondition on �

i

and A

ii

orresponds to the disretization of Equation (II.2.3)

on the subdomain 


i

with homogeneous Dirihlet boundary onditions on �

i

. In a parallel dis-

tributed memory environment, where eah subdomain is assigned to one proessor, all the loal

Shur omplement matries an be omputed simultaneously by all the proessors and the om-

plete Shur matrix S de�ned by (II.2.5) is never fully assembled.

The loal Shur omplement matrix, assoiated with the subdomain 


i

depited in Figure II.2.1,

is dense and has the following blok struture:

S

(i)

=

0

B

B

B

B

B

B

�

S

(i)

mm

S

mg

S

mk

S

m`

S

(i)

mV

S

gm

S

(i)

gg

S

gk

S

g`

S

(i)

gV

S

km

S

kg

S

(i)

kk

S

k`

S

(i)

kV

S

`m

S

`g

S

`k

S

(i)

``

S

(i)

`V

S

(i)

V m

S

(i)

V g

S

(i)

V k

S

(i)

V `

S

(i)

V V

1

C

C

C

C

C

C

A

;

where V is the set of verties v

l

of 


i

. The �rst four diagonal bloks represent the loal oupling

between nodes on an edge interfae introdued by the subdomain 


i

and are only ontributions to

the diagonal bloks of the omplete Shur omplement matrix S. For instane, the diagonal blok

of the omplete matrix S assoiated with the edge interfae E

k

in Figure II.2.1 is S

kk

= S

(i)

kk

+S

(j)

kk

.
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Assembling eah diagonal blok of the loal Shur omplement matries and the bloks assoiated

with the verties, we obtain the loal assembled Shur omplement, that is:

�

S

(i)

=

0

B

B

B

B

�

S

mm

S

mg

S

mk

S

m`

S

mV

S

gm

S

gg

S

gk

S

g`

S

gV

S

km

S

kg

S

kk

S

k`

S

kV

S

`m

S

`g

S

`k

S

``

S

`V

S

V m

S

V g

S

V k

S

V `

S

V V

1

C

C

C

C

A

;

whih orresponds to the restrition of S to the unknowns assoiated with the interfae �

i

of 


i

.

The new loal preonditioners an be desribed using a set of anonial restrition operators.

Let U be the algebrai spae of nodal vetors where the Shur omplement matrix is de�ned and

(U

i

)

i=1;p

a set of subspaes of U suh that:

U = U

1

+ :::+ U

p

:

Let R

i

be the anonial pointwise restrition of nodal values de�ned on U

i

. Its transpose extends

grid funtions in U

i

by zero to the rest of U . Using the above notation, we an de�ne a wide lass

of blok preonditioners by

M

lo

=

p

X

i=1

R

T

i

M

�1

i

R

i

; (II.2.9)

where

M

i

= R

i

SR

T

i

: (II.2.10)

The properties of the operators (II.2.9) and (II.2.10) are given by the following lemma:

Lemma II.2.1 If the operator R

T

i

is of full rank and if S is symmetri and positive de�nite, then

the matrix M

i

, de�ned in Equation (II.2.10), and the matrix M

lo

de�ned in Equation (II.2.9) are

symmetri and positive de�nite.

Proof

The proof an be done in two steps. We �rst show that M

�1

i

is symmetri positive de�nite (SPD)

then that M

lo

is SPD.

Let < :; : > denotes the salar produt assoiated with the 2-norm.

� M

�1

i

is SPD is equivalent to show that M

i

is SPD.

By de�nition M

i

is symmetri:

8x 6= 0 < x;M

i

x >=< x;R

i

SR

T

i

x >=< R

T

i

x; SR

T

i

x >

In addition

R

i

is full rank) R

T

i

x 6= 0

S is SPD

�

)< R

T

i

x; SR

T

i

x > is stritly positive.

� M

lo

is SPD.

Let x 2 U .

< x;M

lo

x >=< x;

p

X

i=1

R

T

i

M

�1

i

R

i

x >=

p

X

i=1

< R

i

x;M

�1

i

R

i

x >; (II.2.11)

where 8i < R

i

x;M

�1

i

R

i

x >� 0 sine M

�1

i

is SPD. So the expression (II.2.11) an be zero

if and only if 8i < R

i

x;M

�1

i

R

i

x >= 0 whih implies that x = 0 sine R

i

are anonial

restritions suh that U

i

= Im(R

i

) and U = U

2

+ :::+ U

p

.

�
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Remark II.2.3 If U = U

1

� :::: � U

n

, then M

lo

is a blok Jaobi preonditioner. Otherwise,

M

lo

is a blok diagonal preonditioner with an overlap between the bloks as U

i

\ U

j

6= ;. In

this ase, the preonditioner an be viewed as an algebrai additive Shwarz preonditioner for the

Shur omplement.

The preonditioners are requested to be eÆient on parallel distributed memory platforms.

Therefore, we do mainly onsider subspaes U

i

that involve information mainly stored in the

loal memory of the proessors; that is information assoiated with only one subdomain and its

losest neighbors. We present four di�erent deompositions of U . The �rst three are appliable on

strutured or unstrutured disretizations and are de�ned by assoiating eah subspae respetively

with:

1. eah edge E

k

and eah vertex v

l

of the deomposition giving rise to the edge preonditioner

desribed in Setion 2.2.1,

2. eah edge E

k

enlarged with neighbors of its ended points v

`

resulting in the vertex-edge

preonditioner presented in Setion 2.2.2,

3. eah interfae �

i

of the subdomains giving the subdomain preonditioner presented in Se-

tion 2.2.3.

The last proposed preonditioner exploited the underlying struture of the regular meshes and

is similar to the alternating line relaxation on Cartesian grids. Setion 2.2.4 is devoted to its

desription.

2.2.1 Edge preonditioners

For eah edge E

i

we de�ne R

i

� R

E

i

as the standard pointwise restrition of nodal values on

E

i

. Its transpose extends grid funtions in E

i

by zero to the rest of the interfae. Thus, S

ii

=

R

E

i

SR

T

E

i

= M

i

. Similarly, we onsider R

v

l

the restrition operator for eah vertex of the oarse

mesh �

H

de�ned by the deomposition. Using the above notation we de�ne the edge-based loal

preonditioner by

M

lo

=M

E

=

X

E

i

R

T

E

i

S

�1

ii

R

E

i

+

X

v

l

R

T

v

l

S

�1

v

l

v

l

R

v

l

: (II.2.12)

This preonditioner aims at apturing the interation between neighboring nodes within the

same edge interfae. Notie that S

v

l

v

l

in (II.2.12) is just a salar whih is the diagonal oeÆient

of the equation assoiated with the vertex v

l

; this only orresponds to a diagonal saling at the

verties of �

H

. This preonditioner is the straightforward blok Jaobi that is well-known to be

eÆiently parallelizable. The main ritiism against M

E

is that it does not manage onsistently

neighbor nodes that are lose to a vertex but belong to di�erent edges, see Figure II.2.1. We

desribe in the next setion a preonditioner that intends to address this de�ieny.

2.2.2 Vertex-edge preonditioners

The vertex-edge preonditioner is similar to the Vertex-Spae preonditioner introdued in [146℄,

for whih we merge into a single subspae the edge and vertex subspaes that appear in an additive

way in [60, 146℄.

In Figure II.2.2, we depit U

k

, the image of the restrition operator R

k

� R

V E

k

assoiated

with the vertex-edge E

k

. With this notation the vertex-edge preonditioner is de�ned by

M

lo

=M

V E

=

X

E

i

R

T

V E

i

M

�1

V E

i

R

V E

i

with M

V E

i

= R

V E

i

SR

T

V E

i

:
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i




j

E

k

E

g

E

m

E

`

v

l

Figure II.2.2: U

k

assoiated to the vertex-edge preonditioner.

In that ase, two neighbor vertex-edges (for instane, E

k

and E

g

in Figure II.2.2) interept

eah other, then the assoiated spae splitting (U

i

)

i

does not de�ne a diret sum of the spae U and

the number of nodes in the neighborhood of the vertex v

l

de�nes the amount of overlap between

the bloks M

i

of the preonditioner.

2.2.3 Subdomain preonditioner

In this alternative, we try to exploit all the information available on eah subdomain and we

assoiate eah subspae U

i

with the entire boundary �

i

of subdomain 


i

. Here, we have R

i

� R

�

i

.

Consequently M

i

=

�

S

(i)

is the assembled loal Shur omplement. This splitting (U

i

)

i

is not a

diret sum of the spae U and we have introdued some overlap between the bloks de�ning the

subdomain preonditioner M

S

.

We should notie the similitude between M

S

and the Neumann-Neumann preonditioner,

denoted M

NN

, that was originally proposed in [25℄ and [52℄.

M

S

an be written as:

M

S

=

N

X

i=1

R

T

�

i

(

�

S

(i)

)

�1

R

�

i

;

while the Neumann-Neumann preonditioner is

M

NN

=

N

X

i=1

R

T

�

i

(D

i

(S

(i)

)

+

D

i

)R

�

i

: (II.2.13)

In Equation (II.2.13) the matries D

i

are weighted matries suh that

N

X

i=1

R

T

�

i

D

i

R

�

i

= I . I de-

notes the identity matrix and (S

(i)

)

+

is the Moore-Penrose pseudo-inverse [94℄ sine the loal Shur

omplement matries S

(i)

are singular for internal subdomains. Notie that assembling the loal

Shur omplement

�

S

i

removes these singularities.

2.2.4 Alternating line preonditioner

The speial strutures of the 2D deomposition of strutured meshes an be exploited to design a

preonditioner similar to the alternating line relaxation. Spei�ally, we onsider the restrition

of the Shur omplement operator to eah grid line. In that ase the de�nition of the restrition

operator R

i

di�ers depending on
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whether the grid line is aligned with a set of domain interfaes, we denote R

line

k

the restrition

operator enabling to de�ne M

line

k

the restrition of the Shur omplement to U

k

depited in

Figure II.2.3 for a vertial interfae;

or whether the grid line rosses a set of domains. In this later situation we note R

aross

k

the

restrition operator enabling to de�ne M

line

k

the restrition of the Shur omplement to U

k

depited in Figure II.2.4 for a horizontal grid line.

The resulting alternating line preonditioner an be written:

M

AL

=M

AL�x

+M

AL�y

;

where

M

AL�x

=

X

k2

8

>

>

<

>

>

:

horizontal grid

lines aligned

with an interfae

9

>

>

=

>

>

;

(R

line

k

)

T

M

�1

line

k

R

line

k

+

X

k2

8

>

>

<

>

>

:

horizontal grid

lines not aligned

with an interfae

9

>

>

=

>

>

;

(R

aross

k

)

T

M

�1

aros

k

R

aross

k

;

and a similar de�nition for M

AL�y

but for the vertial grid lines.





























Figure II.2.3: U

k

assoiated with a grid

line aligned with a vertial interfae.

  

Figure II.2.4: U

k

assoiated with an

horizontal grid line that rosses the

subdomains.

On a uniform grid with n

x

grid points in the x diretion partitioned among N

x

equi-sized

retangles, a horizontal grid line that is aligned with the interfaes has n

x

points while a line

between the interfaes has N

x

� 1 points. For a grid line aligned with an interfae, M

line

k

the

restrition of the Shur omplement matrix to this line is almost a blok diagonal matrix (atually

the matrix is blok diagonal with bloks that overlap at the verties v

l

). For a grid line that rosses

the subdomains, M

aross

k

the restrition of the Shur omplement to this line is a tridiagonal

matrix.

2.2.5 Computing alternatives

The onstrution of the proposed loal preonditioners an be omputationally expensive beause

the exat loal Shur omplement S

(i)

needs to be formed expliitly and then dense matries

M

i

should be fatorized. To alleviate these osts we propose several alternatives that an be

ombined. The �rst intends to redue the onstrution ost of S

(i)

by using approximated solution

of the loal Dirihlet problems A

ii

; the seond intends to redue the storage and the omputational

ost to apply the preonditioner by using sparse approximation of theM

i

obtained by dropping the

smallest entries. Finally the probing tehnique proposed by [43℄ for the edge preonditioner an

be adapted to vertex-edge following [45℄ and extended to the alternating line preonditioner [89℄.
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Loal Shur with inexat loal solvers

Using the up-to-date sparse diret tehnology of eÆient sparse diret solver, A

ii

is fatorized

and S

(i)

an be omputed via many forward/bakward substitutions. Nonetheless, this proedure

remains omputationally expensive. To alleviate this ost, the exat solution of the loal Dirihlet

problems A

�1

ii

(see Equation (II.2.7)) an be replaed by some heap approximations. For symmet-

ri positive de�nite problems, approximations an be eÆiently omputed either by approximate

inverses like AINV [17℄ or FSPAI [114℄, or by an Inomplete Cholesky fatorization, ILL

T

resulting

in an approximate Shur omplement

~

S.

Lemma II.2.2 If the matrix A =

�

A

II

A

I�

A

T

I�

A

��

�

is a Stieltjes matrix and (LL

T

) is an inomplete

Cholesky fatorization of A

II

then

~

S = A

��

�A

T

I�

(LL

T

)

�1

A

I�

is also an Stieltjes matrix.

Proof

It is enough to show that

0 � (LL

T

)

�1

� A

�1

II

;

sine Theorem 7.1 in [7℄ will then insure that the resulting approximate Shur is a M-matrix. By

onstrution

~

S is symmetri then is a Stieltjes matrix onsequently SPD.

A

II

is a symmetri M-Matrix, so by Theorem 2.4 in [123℄, A

II

= (LL

T

)�R is a regular splitting

(i.e. (LL

T

)

�1

� 0 and R � 0).

A

II

= (LL

T

)�R) (LL

T

)

�1

A

II

= I � (LL

T

)

�1

R � I:

Sine A

II

is a M-matrix, A

�1

II

� 0 then

0 � (LL

T

)

�1

� A

�1

II

:

�

We note that the same property holds for approximate Shur omplement omputed with

AINV. In [18℄ it is shown that the approximate inverse G of a M-matrix A omputed by AINV

also satis�es the inequality 0 � G � A

�1

.

Notie that Lemma II.2.1 and II.2.2 insure that for M-matries the loal preonditioners built

using either ILL

T

or AINV are SPD.

Sparse approximation of the loal Shur omplement

Another possible alternative to get a heaper preonditioner is to onsider a sparse approximation

for S in (II.2.10) whih results in a saving of memory to store the preonditioner and saving of

omputation to fatorize and apply the preonditioner. This approximation

^

S an be onstruted

by dropping the elements of S that are smaller than a given threshold. More preisely the following

dropping strategy an be applied:

ŝ

ij

=

�

0 if s

ij

� �(js

ii

j+ js

jj

j);

s

ij

else.

(II.2.14)

Lemma II.2.3 If the matrix A =

�

A

II

A

I�

A

T

I�

A

��

�

is a Stieltjes matrix then the sparse approximation

^

S omputed by (II.2.14) applied to S = A

��

�A

T

I�

A

�1

II

A

I�

is also an Stieltjes matrix.
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Proof

It is well-known that S is a Stieltjes matrix (see [7℄ for instane), then it is easy to see that remov-

ing o� diagonal entries while preserving symmetry preserves this property.

�

We note that these �rst two alternatives an be ombined, that is dropping the smallest entries

of approximate M

i

, to produe preonditioner heap to ompute and to store. We mention that,

for M-matries, this ombination still gives rise to preonditioners that are SPD.

The probing approximation

The probing tehnique proposed by [43℄ an be followed to heaply onstrut approximations for

the edge and vertex-edge preonditioners. In addition this tehnique an also be extended to

onstrut heap approximation of the alternative line preonditioner, but speial attention should

be paid for anisotropi problems [89℄.

To simplify the presentation, we �rst onsider two subdomains divided by one interfae and

refer to [43℄ for a omplete analysis of this tehnique. The main idea is to approximate the interfae

matrix by a matrix having a presribed sparsity pattern. This sparsity pattern is usually hosen

as a band matrix and is motivated by the observation that the entries of S deay rapidly from

the diagonal; it an be shown [93℄ that js

ij

j = O(

1

ji�jj

2

). A banded approximation is built with

matrix-vetor produts between S and a few arefully hosen vetors. The hoie of these vetors

is based on the fat that it is possible to reover the entries of an impliit band matrix having

upper and lower bandwidth d from its ation on 2d+ 1 probe vetors de�ned by

p

(j;d)

k

�

1 if k mod(2d+ 1) = j

0 else

(II.2.15)

where the index k is used to denote the spei� entries of the j

th

probe vetor p

(j;d)

. To illustrate

the idea, the ase d = 1 is onsidered. Spei�ally, it is possible to obtain all the oeÆients of

a tridiagonal matrix, C, using p

(0;1)

= (0; 0; 1; 0; 0; 1; 0; 0; � � �)

T

, p

(1;1)

= (1; 0; 0; 1; 0; 0; � � � )

T

, and

p

(2;1)

= (0; 1; 0; 0; 1; 0; 0; � � �)

T

:
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In the two subdmain ase the Shur omplement is not tridiagonal but is full with entries deaying

rapidly from the diagonal. In this ase, the probe is not exat but gives rise to a good approxima-

tion. To generalize the probing tehnique to multiple domains, a band matrix must be generated

for eah subdomain edge. To do this, [45℄ de�nes omposite probe vetors using the individual

edge probes, p

(j;d)

, de�ned by (II.2.15) for the two domain ase. Spei�ally, they onstrut 2d+1

omposite vetors using the p

(j;d)

's on all the vertial edges and 0's on the horizontal edges. Then,

another 2d+1 omposite vetors are onstruted using the p

(j;d)

's on the horizontal edges and 0's

on the vertial edges (see Figure II.2.5). We refer to this proedure as vertial/horizontal probing

and use the notation

~

M

vh(d)

E

to denote the loal preonditioning operator.

The primary problem when probing is to avoid interferene between edges that are probed

simultaneously. That is, all edges whih border the same subdomain inuene eah other. The
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p
(j,d)

p
(j,d)

p
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p
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p
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p
(j,d)

p
(j,d)

Figure II.2.5: Vertial/horizontal probe vetors.

vertial/horizontal probing eliminates approximation errors arising from oupling between vertial

and horizontal edges. However, it does not eliminate oupling errors between the vertial edges or

between the horizontal edges. In the ase of isotropi problems, this oupling is usually muh weaker

than the oupling within an edge and so the vertial/horizontal probing is suÆient. However, for

2D anisotropi problem as

"

�

2

u

�x

2

+

�

2

u

�y

2

= f with "� 1; (II.2.16)

there exists a suÆiently small " suh that the oupling between two horizontal edges that border

the same subdomain is atually stronger than the oupling within the horizontal edges. In this

ase, the use of the omposite `horizontal' probe vetors de�ned in Figure II.2.5 (used to onstrut

approximations to oupling within eah horizontal edge) will give rise to inaurate approximations

of the assoiated S

ii

due to the large oupling between these horizontal edges.

To alleviate this interferene problem we propose to further subdivide both horizontal and

vertial edges into `red' and `blak' sets to minimize the approximation errors arising from oupling

between vertial (or horizontal) interfaes (see Figure II.2.6 for the vertial interfaes). We refer to

p
(j,d)

p
(j,d)

p
(j,d)

p
(j,d)

0

0

0

0

0

0

0

0

0

0

0

0

p
(j,d)

p
(j,d)

p
(j,d)

p
(j,d)

p
(j,d)

p
(j,d)

p
(j,d)

p
(j,d)

Figure II.2.6: Red/blak vertial probe vetors.

this proedure as red/blak probing and use the notation

~

M

rb(d)

E

to denote the loal omponent of

the preonditioner. The important aspet of red/blak probing is that the probe approximation on
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a partiular edge is not distorted by other edges as there is no oupling in the Shur omplement

matrix between edges within the same line and between two edges on parallel non-neighboring

interfaes. We note that while this proedure is for regular grids, nonuniform grids an use the

same idea via multioloring. Essentially, two edges belonging to the same subdomain must be

assigned to di�erent olors. To summarize, the overall osts of building

~

M

vh(d)

E

and

~

M

rb(d)

E

are

2(2d + 1) and 4(2d + 1) matrix-vetor produts respetively. For d = 1, this orresponds to 6

and 12 matrix-vetor produts. Though the vertial/horizontal probing is the least expensive, the

di�erene in the onvergene rate is often large enough for anisotropi problems to o�set the extra

ost.

The probing tehnique an also be adapted to onstrut heap approximation of the submatri-

es of the Shur omplement involved in the alternating line preonditionerM

AL

. The onstrution

of this preonditioner onsists of probing the Shur omplement along the following:

1. vertial grid lines aligned with interfaes using the p

(j;d)

probe vetors over eah entire inter-

fae as shown in Figure II.2.7 in the ase of vertial grid lines aligned with vertial interfaes,

2. horizontal grid lines not aligned with interfaes using probe vetors, q

(i;1)

, de�ned over eah

element of the interfaes that lies on that line. Suh a vetor is depited in Figure II.2.8 for

a horizontal grid line,

3. horizontal grid lines aligned with interfaes, and

4. vertial grid lines not aligned with interfaes.

s

s

s























1

1

1
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0

Figure II.2.7: Example of a

p

(4;2)

vetor.



0

s

1



0

s

1

Figure II.2.8: Example of a q

(1;1)

vetor.

To redue the ost of the building of these matries, steps 1) and 2) an be ombined as well

as steps 3) and 4). For example, for steps 1) and 2) the probe vetors on all the vertial interfaes

are de�ned by

q

(i;1)


 p

(j;d)

i = 0; :::; 2

j = 0; :::; 2d ;

we reall that (A 
 B)

km

= a

km

B. This sheme is depited in Figure II.2.9 for the ase d = 2

for points on vertial interfaes. After steps 1) and 2) we repeat the same proedure for the

horizontal interfae points. It is important to note that ombining steps 1) and 2) introdues small

approximation errors. For example, the tridiagonals onstruted for lines that are not aligned

with interfaes are no longer exat. However, the advantage of this proess is that only 6(2d+ 1)

matrix-vetor produts are needed to build the probe (as ompared with 4(2d + 1) for red/blak

probing). We refer to this proedure as alternating line probing and use the notation

~

M

(d)

AL

to

denote the assoiated loal preonditioning operator.
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Figure II.2.9: Sample of (q

(i;1)


 p

(j;2)

).

It an be shown (see for instane [44℄) that the loal preonditioners alone are not numerially

salable for ellipti problems in the sense that

�(M

lo

S) = O(H

�2

): (II.2.17)

This means that when the number of subdomains inreases the number of onjugate gradient itera-

tions inreases as well. To ensure the numerial salability of the preonditioners a quasi-optimality

property should be satis�ed; that is, the ondition number of the assoiated preonditioned systems

is independent from the number of subdomains and only logarithmially dependent on the size of

the subdomains. In this respet, a oarse problem de�ned on the whole physial domain must be

inorporated into the preonditioner.

2.3 Coarse spae preonditioners

Various domain deomposition tehniques, from the eighties and nineties, have suggested di�erent

global oupling mehanisms and various ombinations between them and the loal preondition-

ers. In this setion, we present a ontribution in the area of two-level domain deomposition

methods using algebrai onstrutions of the oarse spae for solving heterogeneous, anisotropi

two-dimensional ellipti problems on strutured or unstrutured disretizations. They are losely

related to BPS [26℄, although we propose di�erent oarse spaes to onstrut their oarse ompo-

nents.

The lassial BPS preonditioner [26℄ an be briey desribed as follows. Let assume that




1

, ..., 


N

form the elements of a oarse grid mesh, �

H

, with mesh size H . We then de�ne grid

transfer operators between the interfae and the oarse grid. R

T

is an interpolation operator whih

orresponds to using linear interpolation between two adjaent ross points v

j

, v

k

(i.e. adjaent

points in �

H

onneted by an edge E

i

) to de�ne values on the edge E

i

. Finally, A

H

is the Galerkin

oarse grid operator A

H

= RAR

T

de�ned on �

H

.

With these notations a very lose variant of the BPS preonditioner is de�ned by

M

BPS

=

X

E

i

R

T

E

i

S

�1

ii

R

E

i

+R

T

A

�1

H

R; (II.2.18)

as desribed, for instane, in this algebrai form in [44℄. It an be interpreted as a generalized

blok Jaobi preonditioner for the Shur omplement system (II.2.5) where the blok diagonal

preonditioning for S

V

is omitted and a residual orretion is used on a oarse grid. The oarse
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grid term R

T

A

�1

H

R allows to inorporate a global oupling between the interfaes, whih enables to

get the ondition number given in Equation II.2.1 that is independent of the number of subdomains.

In the rest of this setion, we will de�ne various preonditioners that only di�er in the def-

inition of M

global

that appears in (II.2.2). Our goal is to obtain performane similar to those of

the original BPS preonditioner even in presene of anisotropy or heterogeneity, with a simple

algebrai struture and a parallel implementation strategy. In partiular, for pratial implemen-

tation purposes within a general purpose omputer ode, we do not want to refer expliitly to an

underlying oarse grid, or to underlying basis funtions, sine these notions are always hard to

identify in pratie when using general grids, �nite elements or mixed �nite elements.

Let U be the algebrai spae of nodal vetors where the Shur omplement matrix is de�ned

and U

0

be a q-dimensional subspae of U . Elements of U

0

are haraterized by the set of nodal

values that they an ahieve that will be referred to as the support of the vetors. This subspae

will be alled oarse spae. Let R

0

: U ! U

0

be a restrition operator whih maps full vetors of

U into vetors in U

0

, and let R

T

0

: U

0

! U be the transpose of R

0

, an extension operator whih

extends vetors from the oarse spae U

0

to full vetors in the �ne spae U . The Galerkin oarse

spae operator

A

0

= R

0

SR

T

0

; (II.2.19)

in some way, represents the Shur omplement on the oarse spae U

0

. The global oupling

mehanism is introdued by the oarse omponent of the preonditioner whih an thus be de�ned

as M

global

= R

T

0

A

�1

0

R

0

:

The following lemma ensures the orretness of the operators we work with:

Lemma II.2.4 If the operator R

T

0

is of full rank and if S is non-singular, symmetri and positive

de�nite, then the matrix A

0

, de�ned in Equation (II.2.19), is non-singular, symmetri and positive

de�nite.

The oarse-spae preonditioners will only di�er in the hoie of the oarse spae U

0

and the

interpolation operator R

T

0

. For onvergene reasons, and similarly to the Neumann-Neumann and

Balaning Neumann-Neumann preonditioner [116, 118℄, R

T

0

must be a partition of the unity in U

in the sense that

R

T

0

1 = 1; (II.2.20)

where the symbol 1 denotes the vetors of all 1's that have di�erent size in the right and left hand

side of (II.2.20).

With these notations and de�nitions, all the preonditioners presented in the sequel of this

setion an be written as follows:

M =

X

E

i

R

T

i

~

S

�1

ii

R

i

+R

T

0

A

�1

0

R

0

; (II.2.21)

where we usually replae S

ii

in (II.2.18) by an approximation

~

S

ii

omputed using a multiolouring

probing tehnique.

In the next setion, we de�ne various oarse spaes and restritions operators whih an be

used in a very general framework. The support of the basis vetors Z

k

has inspired the name of

the oarse spaes. Although a large number of di�erent preonditioners an then be proposed, we

restrit our study to �ve ombinations of oarse spaes and restrition operators.



38 Numerial tehniques

2.3.1 Vertex based oarse spae

The �rst oarse spae we onsider is similar to the one of BPS. Eah degree of freedom of U

0

is

assoiated with one vertex v

j

, and the basis vetors generating the nodal values of the elements of

U

0

an be de�ned as follows. Let fv

k

g � V be a singleton set that ontains the index assoiated

with a ross point and (E

j

) be the adjaent edges to v

k

. Let m



denote the number of vertex

points then

e

I

k

=

[

j

E

j

[ fv

k

g

is the set of indies we assoiate with the ross point v

k

to de�ne the support of the basis vetors.

Let Z

k

be a vetor de�ned on B and Z

k

(i) its i-th omponent. Then, the vertex based oarse

spae U

0

an be de�ned as

U

0

= span[Z

k

: k = 1; : : : ;m



℄; where Z

k

(i) =

(

1 if i 2

e

I

k

;

0 elsewhere:

The set

e

I

k

assoiated with a ross point V

k

is depited in Figure II.2.10. The set of vetors

B = fZ

1

; Z

2

; : : : ; Z

m



g forms a basis for the subspae U

0

, as these vetors span U

0

by onstrution

and they are linearly independent.

Figure II.2.10: Support of one basis vetor of the \vertex" oarse spae.

For this oarse spae, we onsider three di�erent restrition operators R

0

and their assoiated

prolongation operator R

T

0

.

Flat restrition operator

This operator returns for eah set

e

I

k

the weighted sum of values of all the nodes in

e

I

k

. The

weights are determined by the inverse of the number of sets

e

I

k

; k 2 f1; 2; : : : ;m



g, that a given

node belongs to. For 2D problem disretized by �nite di�erenes, the weight for the ross points

is 1 and for an edge point is 1/2.

Linear interpolation operator

The interpolation operators in this setion and the next one are basially 1D interpolations on

the edges E

i

of values de�ned at the ross points that are its end-points. In this respet, let us

desribe them in the 1D framework obtained by mapping the edge E

i

on the interval (0,1) through
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the map �(P

j

) =

P

k�j

jP

k�1

P

k

j

P

k2E

i

jP

k�1

P

k

j

. We onsider the following 1D model problem

(

�

d

dx

(a(x)

d

dx

u(x)) = f in (0.1);

u(x) = 0 at x=0 and 1.

(II.2.22)

Let H

1

(0; 1) be the standard Sobolev spae on the interval (0,1) and H

1

0

(0; 1) its subspae whose

funtions vanish at x = 0 and x = 1. Given a grid x

h

j

= jh; j = 0; :::; n on (0,1) as the image of

the original disretization of E

i

, de�ne the �ne grid linear �nite element spae to be

V

h

= fv

h

2 H

1

0

(0; 1) : v

h

is linear on [x

h

j

; x

h

j+1

℄; j = 0; :::; n� 1g;

and denote the set of nodal basis by f�

h

j

g

n

j=0

.

Let (x

H

i

)

i=1;m

be the set of oarse grid points de�ned by the verties of the partitioning of

(0; 1) into non-overlapping subdomains. Now, we de�ne the oarse subspae V

H

= spanf�

H

i

: i =

1; :::;mg where �

H

i

are the oarse grid nodal basis funtions.

Sine f�

H

i

g is a basis of V

H

, whih is a subspae of V

h

, there exists a unique matrix R

T

0

of

size n� 1�m suh that

[�

H

1

:::�

H

m

℄ = [�

h

1

:::�

h

n�1

℄R

T

0

;

that is usually referred to as the loal interpolation matrix. We depit in Figure II.2.11 an example

of a oarse grid basis funtions that de�nes the linear interpolation.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

s s s s s,

,

,

,

,

,

,

,

b

b

b

b

b

b

b

b

b

b

b
b

1

x

H

1

x

H
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Figure II.2.11: oarse grid basis funtion �

H

2

assoiated with the linear interpolation.

When using blok Jaobi as the loal preonditioner ombined with the vertex oarse spae

using this linear prolongation operator, the resulting preonditioner is equivalent to the genuine

BPS [26℄.

Let A be the matrix de�ned in Equation (II.2.4). Let A

V

be the Galerkin oarse grid operator

assoiated with of A de�ned by

A

V

=

e

R

0

A

e

R

T

0

; (II.2.23)

where

e

R

0

is a restrition operator from 
 to the oarse spae U

0

. It has been shown [26, 147℄ that

in general for ellipti problems the operator A

V

is spetrally equivalent to

R

0

SR

T

0

(II.2.24)

and for a few ases these oarse operators are even equal.

If we have used the approah de�ned by (II.2.23), the onstrution of the oarse spae would

have been redued to some matrix-vetor multipliations with A, and the fatorization of A

V

.

Nevertheless, we deal with problems for whih only the spetral equivalene between (II.2.23)

and (II.2.24) is ensured. For this reason, we have preferred to use the Galerkin oarse grid orretion

with the Shur omplement matrix as desribed in (II.2.24) rather than the one proposed in a

similar matrix form in [44℄ that used A

V

de�ned by (II.2.23).
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Operator-dependent restrition operator

The origin of the operator-dependent restrition is the operator-dependent transfer operator pro-

posed in the framework of multigrid methods, see [156℄ and referenes therein. In [87℄, we proposed

an extension of these operators for two-dimensional non-overlapping domain deomposition meth-

ods. The general purpose of these operators is to onstrut from u de�ned on V an interpolation

~u de�ned on B that is pieewise linear so that a

�~u

�x

and b

�~u

�y

are ontinuous even when either a or

b in (II.2.3) are disontinuous along an edge E

i

.

Similarly to the linear interpolation, we an de�ne the operator-dependent interpolation in

1D through the de�nition of the oarse grid basis funtions �

H

i

. In that ase those basis funtions

are onstruted by solving the following loal problem in [x

H

i�1

; x

H

i

℄ :

8

<

:

�

d

dx

(a(x)

d

dx

�

H

i

) = 0 in [x

H

i�1

; x

H

i

℄;

�

H

i

(x

H

i�1

) = 0; �

H

i

(x

H

i

) = 1:

(II.2.25)

In Figure II.2.12, we depit the basis funtion �

H

2

when the funtion a(x) is pieewise onstant

with some disontinuities at x

h

5

and x

h

7
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Figure II.2.12: oarse grid basis funtion �

H

2

assoiated with the operator-dependent

interpolation.

We omit the omputational details, and only notie that suh operators

- an be onstruted by solving one tridiagonal linear system for eah E

i

, that orresponds to the

solution of (II.2.25). The size of the tridiagonal matries is the number of nodes on E

i

,

- redue to a linear interpolation when a() = 1 and b() = 1,

- in 1D redue to the multigrid energy minimization approah [154, 155℄ or to the multigrid

operator-dependent interpolation with harmoni averaging [87℄, when every other point is a

oarse point (i.e. eah subdomain ontains only one point).

2.3.2 Subdomain based oarse spae

With this oarse spae, we assoiate one degree of freedom with eah subdomain. Let B be as

de�ned in Equation (II.2.6). Let 


k

be a subdomain and �


k

its boundary. Then

I

k

= �


k

\B

is the set of indies we assoiate with the domain 


k

. Figure II.2.13 shows the elements of a ertain

set I

k

.
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Let Z

k

a vetor de�ned on B and Z

k

(i) its i-th omponent. Then, the subdomain-based oarse

spae U

0

an be de�ned as

U

0

= span[Z

k

: k = 1; : : : ; N ℄; where Z

k

(i) =

(

1; if i 2 I

k

and

0; otherwise:

Figure II.2.13: Support of one basis vetor of the \subdomain" oarse spae.

Notie that for the example depited in Figure II.2.13, [Z

k

℄ is rank de�ient. Indeed, if we

onsider ~v =

P

N

i=1

�

i

Z

i

where the �

i

are , in a heker-board pattern, equal to �1 and +1, it is

easy to see that ~v = 0. Nevertheless, this rank de�ieny an be easily removed by disarding one

of the vetors of [Z

k

℄. In this partiular situation, the set of vetors B = fZ

1

; Z

2

; : : : ; Z

N�1

g forms

a basis for the subspae U

0

.

The onsidered restrition operator R

0

returns for eah subdomain (


i

)

i=1;N�1

the weighted sum

of the values at all the nodes on the boundary of that subdomain. The weights are determined by

the inverse of the number of subdomains in (


i

)

i=1;N�1

eah node belongs to. For all the nodes

but the ones on �


N

(in our partiular example) this weight is: 1=2 for the points on an edge and

1=4 for the ross points. These weights an be replaed as in [116℄ by operator dependent weights

R

0

(i; k) = a

i

=(a

i

+ a

j

) on the edge separating 


i

from 


j

, but this hoie has not been tested

numerially in the present work.

Remark II.2.4 Although used in a ompletely di�erent ontext, this oarse spae is similar to

the one used in the Balaning Neumann-Neumann preonditioner for Poisson-type problems [118℄.

We use one basis vetor for eah subdomain, whereas in Balaning Neumann-Neumann the basis

vetors are only de�ned for interior subdomains for solving the Dirihlet problem (II.2.3), that are

the subdomains where the loal Neumann problems are singular.

2.3.3 Edge based oarse spae

We re�ne the oarse spae based on the subdomains and we introdue one degree of freedom per

interfae between two neighboring subdomains, that is, when �


i

and �


j

share at least one edge

of the mesh.

Let E

k

be an edge and v

j

and v

l

its adjaent ross points then

^

I

k

= E

k

[ fv

j

g [ fv

l

g

is the set of indies we assoiate with the edge E

k

.

Let Z

k

de�ned on B and Z

k

(i) its i-th omponent. Letm

e

denote the number of edges E

i

� B,

then, the edge based oarse spae U

0

an be de�ned as:



42 Numerial tehniques

U

0

= span[Z

k

: k = 1; : : : ;m

e

℄; where Z

k

(i) =

(

1 i 2

^

I

k

;

0 otherwise:

Figure II.2.14: Support of one basis vetor of the \edge" oarse spae.

The set

^

I

k

assoiated with an element of the oarse spae U

0

is depited in Figure II.2.14. The

set of vetors B = fZ

1

; Z

2

; : : : ; Z

m

e

g forms a basis for the subspae U

0

, as before, these vetors

span U

0

by onstrution and they are linearly independent.

The onsidered restrition operator R

0

returns for eah edge the weighted sum of the values at

all the nodes on that edge. The weights are determined by the inverse of the number of edges eah

node belongs to. For 2D problems disretized by �nite di�erenes the weights for the restrition

operator are 1 for points belonging to an edge and one fourth for the internal ross points.

2.4 Numerial experiments

We onsider the solution of Equation (II.2.3) disretized by a �ve-point entral �nite di�erene

sheme on a uniform mesh using a preonditioned Shur omplement method. The bakground

of our study is the numerial solution of the 2D drift-di�usion equations for the simulation of

semi-ondutor devies [88℄. In this respet, we intend to evaluate the sensitivity of the preondi-

tioners to anisotropy and to disontinuity. We illustrate the numerial salability of the proposed

preonditioners on aademi two-dimensional model test ases that have both anisotropy and dis-

ontinuity.

2.4.1 Loal preonditioners

Model problems

In Figure II.2.15, we represent the unit square divided into �ve regions where pieewise onstant

funtions are used to de�ne a �rst set of test problems. In addition, we have performed experiments

with the problem de�ned by pieewise onstant funtions as depited in Figure II.2.16. Let a()

and b() be the di�usion oeÆients of the ellipti problem as desribed in Equation (II.2.3).

Using this notation and Figure II.2.15, we de�ne the �rst set of model problems with di�erent

degrees of diÆulty:

� Poisson problem: a() = 1 and b() = 1,

� anisotropi and disontinuous problems with a() = 1 and b() = ; d or f whih depend on x

and y.

{ AD-F1: =1, d= 10

2

and f= 10

�2

.
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f

cd

f

d

Figure II.2.15: Example 1 - Flag.

cc c c

d

f

Figure II.2.16: Example 2 - Region.

{ AD-F2: =1, d= 10

3

and f= 10

�3

.

� disontinuous problems with a() = b() = ; d; f .

{ D-F1: =1, d= 10

2

and f= 10

�2

.

{ D-F2: =1, d= 10

3

and f= 10

�3

.

Using pieewise onstant funtions on the regions depited in Figure II.2.16, we de�ne a seond

set of test problems:

� anisotropi and disontinuous problems: a() = 1 and b() = ; d or f .

{ AD-R: = 10

1

, d= 10

�2

and f= 10

�1

.

� disontinuous problems: a() = b() = ; d; f .

{ D-R: = 10

1

, d= 10

�2

and f= 10

�1

.

We have also onsidered a last set of problems assoiated with (II.2.3). We have introdued

anisotropy not neessarily aligned with the axis but making an angle � with the x-diretion. For

� = 0, this orresponds to the lassial model anisotropi problem de�ned by Equation (II.2.16).

Experimental results

For the experimental results related to M

V E

, we have onsidered two extra edge points in the

neighborhood of the verties v

l

in eah diretion. For a more detailed study about the inuene

of the size of the overlap in the neighborhood of the verties v

l

on the onvergene rate, we refer

to [36℄ and [37℄. We just state here that a very small overlap is usually enough to improve the

behavior of M

V E

with respet to M

E

.

For all the experimental results reported in the next setion, the onvergene of the preon-

ditioned onjugate gradient method is attained when the 2-norm of the residual of the urrent

iteration normalized by the 2-norm of the right hand side is less than 10

�6

, the initial guess x

0

for the onjugate gradient iterations was the null vetor. All the experiments were performed in

double preision arithmeti. When results with a two-level preonditioner are reported the oarse

omponent is vertex operator dependent. The resulting variants of the BPS preonditioner will be

denoted:

- M

BPS�E

forM

lo

=M

E

. Notie that this loal preonditioner is the one used in the genuine

BPS; in this respetM

BPS�E

is the losest variant to regular BPS. It is a slight improvement

of regular BPS as the oarse omponent does not rely on the spetral equivalene property

between A and S for uniformly ellipti operators.
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- M

BPS�V E

for M

lo

=M

V E

.

- M

BPS�S

for M

lo

=M

S

.

- M

BPS�AL

for M

lo

=M

AL

.

For omparison purpose we also onsider the balaned Neumann-Neumann preonditioner that

has proven to be an eÆient domain deomposition preonditioner for some fairly diÆult prob-

lems [116℄, suh as linear systems arising from strutural analysis. In the sequel this preonditioner

will be denoted M

BNN

.

To study the behavior of the preonditioners, we �x the ratio H=h that appears in Equa-

tion (II.2.1) while varying the number of subdomains. For all the experiments reported in the

following tables, the number of subdomains varies from 16 (4�4 deomposition) up-to 256 (16�16

deomposition) keeping the size of eah subdomain onstant (i.e. 16�16 mesh for eah subdomain,

that is

H

h

= 16).

In Table II.2.1, we report results observed on the Poisson equation using the preonditioners

with and without the oarse spae omponent. When only loal preonditioners are implemented,

it an be seen that when the loal information is more represented in the preonditioner, the on-

vergene is better. These results also show that without a oarse spae omponent the number of

iterations required by the preonditioned onjugate gradient grows with the number of subdomains

as predited by the estimated ondition number given by Equation (II.2.17). Using the two-level

preonditioners, these observations are no longer true. The oarse spae omponent somehow

smoothes the e�et of the loal omponent. Aordingly to the theoretial bound given by Equa-

tion (II.2.1), the number of preonditioned onjugate gradient iterations beomes independent of

the number of domains. Finally, we note that for the two-level preonditioners M

BPS�E

and

M

BNN

, the results are similar to those of other authors [45, 118℄.

# subdomains 4� 4 8� 8 16� 16

M

E

13 28 51

M

V E

12 22 40

M

S

11 19 32

M

BPS�E

9 11 11

M

BPS�V E

10 12 12

M

BPS�S

10 10 11

M

BNN

11 12 12

Table II.2.1: Number of iterations on the Poisson problem.

In Table II.2.2, we depit the numerial behavior of the preonditioners on the model problems

that only exhibit anisotropy not aligned with the axes. When no oarse spae omponent is imple-

mented M

V E

still outperformsM

E

; M

S

is the most eÆient and the number of iterations of all the

preonditioners grows with the number of subdomains. For the two-level preonditioners, we �rst

observe that the anisotropy prevents them to have an optimal onvergene behavior independent

of the number of subdomains, even though the number of iterations is quite dereased by the

oarse spae omponent. Furthermore, for some problems M

BPS�V E

beomes less eÆient than

the simpler M

BPS�E

while M

BPS�S

always ensures the fastest onvergene. So the onjeture,

\the riher the loal preonditioner, the more eÆient the preonditioner", is only true when the

loal preonditioners run alone.

In Tables II.2.3 and II.2.4, we study the numerial behavior of the two-level preonditioners

on model problems arising from the disretization of (II.2.3) that exhibit either disontinuity
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# subdomains 4� 4 8� 8 16� 16

� 0 �=8 �=4 0 �=8 �=4 0 �=8 �=4

M

E

21 34 30 47 67 77 88 132 164

M

V E

21 22 23 44 42 59 72 81 141

M

S

14 20 20 25 40 41 53 75 88

M

BPS�E

27 24 20 58 34 28 81 43 35

M

BPS�V E

25 21 21 48 33 35 85 43 49

M

BPS�S

20 19 17 33 26 21 47 33 26

Table II.2.2: Number of iterations - Anisotropy (" = 10

�3

) with several angles.

(Table II.2.3) or both disontinuity and anisotropy (Table II.2.4). For the problems with only

disontinuity, all the variants M

BPS��

have omparable onvergene behaviors.

# subdom. 4� 4 8� 8 16� 16

D-F1 D-F2 D-R D-F1 D-F2 D-R D-F1 D-F2 D-R

M

BPS�E

12 11 10 11 11 11 14 15 11

M

BPS�V E

13 12 11 13 12 12 16 16 12

M

BPS�S

12 10 10 11 11 11 14 14 11

M

BNN

25 27 21 29 28 38 48 65 52

Table II.2.3: Number of iterations for problems with disontinuity.

As it an be seen in Table II.2.4, problems with anisotropy and disontinuity are more diÆult

to solve. Again M

BPS�V E

does not outperform the basi M

BPS�E

. For those examples, similarly

to the pure anisotropi situation reported in Table II.2.2, M

BPS�S

exhibits one again the best

onvergene behavior.

# subdom. 4� 4 8� 8 16� 16

AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R

M

BPS�E

18 24 25 29 65 35 42 103 39

M

BPS�V E

18 23 24 33 80 40 56 141 55

M

BPS�S

16 20 18 22 43 22 33 79 26

M

BNN

37 52 147 60 158 644 97 311 *

1

Table II.2.4: Number iterations for problems with disontinuity and anisotropy.

The relative poor performane of M

BNN

, reported in Table II.2.3 and II.2.4, ould be im-

proved. An alternative way, as suggested in [52, 116℄, should be a better hoie of the weight

matries D

i

, involved in Equation (II.2.13), when the diagonal entries of S are available. With this

appropriated hoie of the weights, it an be expeted a redution of the gap between M

BNN

and

M

BPS��

for disontinuous problems, as suggested by the results reported in [119℄. In Table II.2.5

we report the numerial behavior of M

BPS�S

and M

BNN

for the anisotropi problems de�ned by

Equation (II.2.16) for di�erent values of the anisotropi oeÆient " is varied. For those problems,

the hoie of the weighted matries used in [119℄ for M

BNN

would redue to the simple ones we

1

`* 'means no onvergene after 1000 iterations.
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" 1.0 10

�1

10

�2

10

�3

M

BNN

12 20 40 98

M

BPS�S

12 15 22 33

Table II.2.5: Number of iterations varying the anisotropy with a 8� 8 subdomain

deomposition.

have onsidered; that is,

1

2

for the nodes on the edges and

1

4

for the vertex points v

l

. For anisotropi

problems, we annot expet M

BNN

to beome ompetitive with M

BPS�S

for " lower than 10

�1

.

Loal Shur with inexat loal solvers To alleviate the ost of the preonditioners onstru-

tion, the fatorization of the loal Dirihlet problem an be replaed by an inomplete Cholesky

fatorization without �ll-in, i.e. ILL

T

(0), or with some �ll-in ontrolled through a threshold, i.e.

ILL

T

(t) [141℄. In this later situation the amount of �ll-in an be de�ned by the �ll-in ratio that is

the number of non-zeros in the inomplete fators divided by the number of non-zeros in the lower

part of the original matries; by de�nition this �ll-in ratio is equal to one for ILL

T

(0).

In Table II.2.6 and II.2.7, we denote by

~

M

BPS�E

,

~

M

BPS�V E

and

~

M

BPS�S

the preonditioners

omputed using those inexat loal solves. More preisely, we report in Table II.2.6 the number

of iterations when ILL

T

(0) is used and in Table II.2.7 those observed when some �ll-in is enabled

with a �ll-in ratio lower than 3.5.

# subdom. 4� 4 8� 8 16� 16

D-F1 D-F2 D-R D-F1 D-F2 D-R D-F1 D-F2 D-R

~

M

BPS�E

14 13 14 13 13 14 17 17 14

~

M

BPS�V E

20 18 20 19 19 19 24 26 20

~

M

BPS�S

14 13 15 13 13 12 17 18 13

AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R

~

M

BPS�E

24 30 28 36 67 37 50 112 45

~

M

BPS�V E

27 34 31 40 84 48 64 143 64

~

M

BPS�S

24 26 23 30 53 31 47 80 41

Table II.2.6: Number of iterations using inexat loal solvers ILL

T

(0) to build the

preonditioners.

The omparison of the results given in Table II.2.6 and II.2.7 and those in Tables II.2.3 and

II.2.4 shows that, as it ould have been expeted, the approximation of the loal Shur omplement

used to build the preonditioners generally deteriorates the numerial behaviors of the preondi-

tioner. This approximation does not a�et signi�antly the numerial behavior of

~

M

BPS�E

and

~

M

BPS�S

but deteriorates notieably the one of

~

M

BPS�V E

. In addition, enabling some �ll-in in the

inomplete fatorizations generally improves the onvergene rate; the most signi�ant improve-

ments are observed on anisotropi and disontinuous problems with

~

M

BPS�V E

and

~

M

BPS�S

.

Sparse approximation of the Shur omplement In Table II.2.8 we report the number of

iterations using an approximate Shur omplement

^

S with � in (II.2.14) suh that we only retains

around 5 % of the entries in S. The resulting preonditioners are denoted respetively by

^

M

BPS�E

,

^

M

BPS�V E

and

^

M

BPS�S

.
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# subdom. 4� 4 8� 8 16� 16

D-F1 D-F2 D-R D-F1 D-F2 D-R D-F1 D-F2 D-R

~

M

BPS�E

13 12 12 13 14 12 16 19 11

~

M

BPS�V E

15 17 12 17 19 13 22 27 12

~

M

BPS�S

12 12 10 11 12 11 16 18 11

AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R

~

M

BPS�E

23 31 28 35 70 37 48 114 40

~

M

BPS�V E

21 33 26 36 85 44 59 147 56

~

M

BPS�S

19 27 20 27 54 24 39 81 29

Table II.2.7: Number of iterations using inexat loal solvers ILL

T

(t) to build the

preonditioners.

# subdom. 4� 4 8� 8 16� 16

D-F1 D-F2 D-R D-F1 D-F2 D-R D-F1 D-F2 D-R

^

M

BPS�E

13 12 12 11 11 13 14 15 12

^

M

BPS�V E

16 16 18 16 16 18 20 20 18

^

M

BPS�S

12 11 12 12 12 11 15 16 11

AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R

^

M

BPS�E

18 25 27 29 65 35 43 111 40

^

M

BPS�V E

24 30 26 36 81 42 57 142 57

^

M

BPS�S

18 21 18 23 44 23 36 79 27

Table II.2.8: Number of iterations using sparse Shur to build the preonditioners.

The omparison of these results with those displayed in Table II.2.3 and II.2.4 indiates that,

exept for

^

M

BPS�V E

on disontinuous problems, only retaining very few entries in the Shur

omplement is enough to ensure the numerial quality of these preonditioners sine the number of

iterations are roughly the same in both ases (exept for

^

M

BPS�V E

on disontinuous problems).

In addition, as mentioned in Setion 2.2.5, the inexat loal solvers and dropping strategies

an be ombined to build variants of the preonditioners. The resulting preonditioners are respe-

tively denoted by M

BPS�E

, M

BPS�V E

and M

BPS�S

. Numerial experiments where we dropped

the smallest entries of the loal preonditioners built using ILL

T

(t) are reported in Table II.2.9.

Comparing these results with those of Tables II.2.8 and II.2.7 indiates that the numerial quality

of the resulting preonditioners are mainly governed by the use ability of ILL

T

to well approximate

the loal Dirihlet problems.

Probing tehniques In this setion we only report numerial experiments ondued to onstrut

approximation toM

E

andM

AL

using the probing tehnique. The probing idea an also be applied

to build e�etive approximations to M

V E

, we refer to [35℄ and [37℄ were experiments are reported.

The resulting two-level preonditioner are denoted

-

~

M

vh(d)

BPS�E

when M

lo

=

~

M

vh(d)

,

-

~

M

rb(d)

BPS�E

when M

lo

=

~

M

rb(d)

,

-

~

M

(d)

BPS�AL

when M

lo

=

~

M

(d)

AL

.
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# subdom. 4� 4 8� 8 16� 16

D-F1 D-F2 D-R D-F1 D-F2 D-R D-F1 D-F2 D-R

M

BPS�E

14 13 12 13 13 13 16 18 13

M

BPS�V E

19 18 18 20 22 18 26 29 18

M

BPS�S

12 12 12 12 13 11 17 19 11

AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R

M

BPS�E

22 32 29 35 70 36 47 113 41

M

BPS�V E

26 38 27 39 86 45 61 150 58

M

BPS�S

19 29 21 28 55 28 42 81 31

Table II.2.9: Number of iterations using preonditioner based on sparse Shur built using

inexat loal solvers ILL

T

(t).

In Table II.2.10, we display the iteration numbers required for the solution of the model

Problem (II.2.16). For the " = 1 ase, the results are similar to those of other authors [45℄.

" = 1:0

# domains

Preonditioner 4� 4 8� 8 16� 16 32� 32

~

M

vh(1)

BPS�E

10 11 11 10

~

M

vh(2)

BPS�E

10 10 10 10

~

M

rb(1)

BPS�E

10 11 11 10

~

M

rb(2)

BPS�E

10 10 10 10

" = 10

�4

# domains

Preonditioner 4� 4 8� 8 16� 16 32� 32

~

M

vh(1)

BPS�E

105 394 606 765

~

M

vh(2)

BPS�E

105 394 606 765

~

M

rb(1)

BPS�E

28 49 81 96

~

M

rb(2)

BPS�E

28 49 81 96

Table II.2.10: Number of iterations varying the number of domains whih size 16 � 16.

Namely, the number of iterations of the preonditioned onjugate gradient is independent of the

number of domains as predited by the theoretial estimation of the ondition number given by

Equation (II.2.1). Further, all the di�erent approahes give nearly idential behavior and the

bandwidth of the probing matries does not greatly a�et the onvergene behavior.

For " = 10

�4

, however, these observations are no longer true. In partiular, the number of

iterations required to solve the anisotropi problem is signi�antly greater than that required for

the Poisson problem. Further, the number of iterations inreases for all the preonditioners as the

number of subdomains is inreased. While none of these methods is `optimal', the BPS-red/blak

probing method learly outperforms the other in terms of iterations.
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To see the onvergene degradation as a funtion of ", we �x the number of domains at 8� 8

and vary ". The results given in Table II.2.11 illustrate the degradation as a funtion of ". From

"

Preonditioner 1.0 10

�1

10

�2

10

�3

10

�4

10

�5

~

M

vh(1)

BPS�E

12 30 80 171 390 1069

~

M

vh(2)

BPS�E

12 25 65 161 388 1066

~

M

rb(1)

BPS�E

12 17 25 40 55 55

~

M

rb(2)

BPS�E

11 16 25 40 55 55

Table II.2.11: Number of iterations varying the anisotropi behavior on a 257� 257 grid

with a 8� 8 deomposition.

an iteration point of view, it is apparent that the red/blak probing is signi�antly better than the

other tehnique for " � 10

�3

.

The alternating line probing sheme was implemented and tested �rst on Problem (II.2.16).

In Table II.2.12 we illustrate the onvergene for a box deomposition. For the " = 1 ase, there is

" = 1:0

# domains

Preonditioner 4� 4 8� 8 16� 16 32� 32

~

M

rb(1)

BPS�E

10 11 11 10

~

M

(1)

BPS�AL

10 10 10 10

" = 10

�4

# domains

Preonditioner 4� 4 8� 8 16� 16 32� 32

~

M

rb(1)

BPS�E

28 49 81 96

~

M

(1)

BPS�AL

11 13 16 20

Table II.2.12: Number of iterations varying the number of domains whih size 16 � 16.

virtually no advantage to using the alternating line probing tehnique. However, when " = 10

�4

,

this tehnique onverges muh faster than the other sheme (4 times faster for 1024 domains) with a

onvergene rate that is relatively independent of the number of domains. Similar results are given

for a �xed domain size and varying " in Table II.2.13. More spei�ally, the method is relatively

insensitive to variations in " though there is a peak whih ours between 10

�2

and 10

�3

. This

peak an be predited by applying Fourier analysis tehniques to a losely related model problem.

Essentially, alternating line probing is least e�etive when horizontal and vertial oupling among

horizontal interfaes in the Shur omplement stenil is approximately the same. This gives rise

to a onvergene peak as the anisotropi strength is varied (see [86℄ for details).

We onlude with two nononstant oeÆient examples where the diretion of the anisotropi

behavior hanges within the domain. Spei�ally, we onsider the following problem

"

x

(x; y)a(x; y)u

xx

+ "

y

(x; y)b(x; y)u

yy

= f
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"

Preonditioner 1.0 10

�1

10

�2

10

�3

10

�4

10

�5

~

M

rb(1)

BPS

12 17 25 40 55 55

~

M

(1)

BPS�AL

10 14 23 23 15 12

Table II.2.13: Number of iterations varying the anisotropi behavior on a 257� 257 grid

with a 8� 8 deomposition.

de�ned on the unit square with Dirihlet boundary onditions. The funtions "

x

() and "

y

() are

depited in Figure II.2.17 and II.2.18 for two di�erent examples.

ε 
x

= ε 

=  1.0ε 
y

=  1.0ε 
x

ε 
y

= ε 

=  1.0ε 
x

=  1.0ε 
y

Figure II.2.17: Example (1).

=  1.0ε 
x

ε 
y

= ε 

ε 
x

= ε =  1.0ε 
y

Figure II.2.18: Example (2).

Example (1)

# domains

CoeÆients 4� 4 8� 8 16� 16 32� 32

a() = 1 + 4 sin

2

(�(x + y))

b() = 1 + os

2

(�(x+ y))

14 22 22 25

a() = 1

b() = 1

14 18 20 20

Example (2)

# domains

CoeÆients 4� 4 8� 8 16� 16 32� 32

a() = 1 + 4 sin

2

(�(x + y))

b() = 1 + os

2

(�(x+ y))

22 35 49 77

a() = 1

b() = 1

22 31 40 53

Table II.2.14: Number of iterations of

~

M

(1)

BPS�AL

on Example (1) and (2) varying the number

of subdomains whih size 16� 16 - " = 1:0

�4

.

The results obtained for " = 10

�4

and two di�erent hoies of a() and b() are given in Ta-

ble II.2.14. Similar to the model problem, it is lear that the alternating line probing method is
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superior in iterations. On Example (1) the general behavior of

~

M

BPS�AL

is similar to that of the

Poisson equation on a uniform grid in that the number of iterations does not depend strongly on

the number of domains.

2.4.2 Two level preonditioners

Model problems

For the numerial experiments with the various oarse omponents, we onsider model problems

that have both disontinuous and anisotropi phenomena. Figure II.2.19 represents a unit square

divided into six regions with pieewise onstant funtions g

j

, j = 1 or 3. We onsider the problems

as having low intensity if j = 1 and high intensity if j = 3. Let a and b be the funtions of

the ellipti problem as desribed in Equation (II.2.3). Using this notation, we an de�ne di�erent

problems with di�erent degrees of diÆulty. In the following desription, the aronyms in apital

letters are used to refer to the problems in Tables II.2.16 and II.2.17.

� high disontinuity (HD): a() = b() = g

3

,

� low disontinuity (LD): a() = b() = g

1

,

� high anisotropy (HA): a() = 10

3

and b() = 1,

� low anisotropy (LA): a() = 10 and b() = 1,

� high disontinuity and high anisotropy (HDA): a() = g

3

and b() = 1,

� low disontinuity and low anisotropy (LDA): a() = g

1

and b() = 1.

g

j

= 10

j

g

j

= 1 g

j

= 10

j

g

j

= 1 g

j

= 10

j

g

j

= 1

Figure II.2.19: De�nition of two disontinuous funtions on 
, the unit square of IR

2

.

For sake of omparison with lassial BPS, we onsider M

loal

= M

E

for all the experiments

reported in the study of the proposed oarse omponents. The resulting two-level preonditioners

are denoted in the tables:

sd: subdomain de�ned in Setion 2.3.2,

vl: vertex-linear de�ned in Setion 2.3.1 with the linear interpolation,

vo: vertex-operator-dependent de�ned in Setion 2.3.1 with the operator-dependent interpola-

tion,

vf: vertex-at de�ned in Setion 2.3.1 with the at interpolation,

ed: edge de�ned in Setion 2.3.3,

no: without oarse spae in this ase we only use the loal preonditioner (blok diagonal).
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Experimental results

We study the numerial salability of the preonditioners, by investigating the dependene of the

onvergene on the number and on the size of the subdomains. We remind our goal that is to obtain

performane similar to those of the original BPS preonditioner even in presene of anisotropy or

heterogeneity, with a simple algebrai struture. Firstly, in Table II.2.15, we give the �gures for

the �ve oarse spaes when solving the Poisson's problem using box deomposition. As we ould

expet, the behavior of all oarse-spae options does not depend on the number of subdomains.

# subdomains 16 64 256 1024

no 15 28 48 90

sd 15 19 19 18

vf 15 18 18 18

vl 10 10 10 10

vo 10 10 10 10

ed 15 18 18 18

Table II.2.15: Number of PCG iterations varying the number of subdomains with 16� 16

points per subdomain for Poisson's problem.

Dependeny of the oarse preonditioners on H In Table II.2.16, we report the number

of preonditioned onjugate gradient iterations for eah model problem. For these tests, we vary

the number of subdomains while keeping onstant their sizes (i.e. H variable with

H

h

onstant).

In this table eah subdomain is a 16� 16 grid and the number of subdomains goes from 16 up to

1024 using a box deomposition; that is 4� 4 deomposition up to 32� 32 deomposition.

LA LD LDA

# subdom. 16 64 256 1024 16 64 256 1024 16 64 256 1024

no 17 33 59 114 25 47 83 158 29 55 104 194

sd 18 25 27 28 19 19 19 19 22 30 33 34

vf 19 24 29 31 20 21 21 21 23 28 31 32

vl 15 17 17 17 13 13 12 12 14 16 17 17

vo 15 17 17 17 11 11 11 11 14 16 17 17

ed 19 26 27 28 20 20 18 18 21 26 27 28

HA HD HDA

# subdom. 16 64 256 1024 16 64 256 1024 16 64 256 1024

no 19 42 69 127 25 50 87 172 37 149 302 629

sd 30 64 75 86 18 19 19 19 30 64 81 83

vf 27 52 72 85 21 22 22 21 31 76 86 99

vl 26 45 66 73 16 18 18 16 21 63 81 89

vo 26 45 66 73 11 11 11 11 20 60 81 88

ed 24 43 57 69 17 19 19 18 31 62 70 77

Table II.2.16: Number of PCG iterations varying the number of subdomains with 16� 16

points per subdomain.

In the �rst row, we see the growth of the number of iterations of a blok Jaobi preonditioner
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without using any oarse grid orretion. Its numerial behavior is well known and is governed by

the theoretial bound for its ondition number (II.2.17).

For HD and LD the behavior of all oarse alternatives are similar to the one observed for

Poisson's problem in Table II.2.15, that is, the number of iterations is independent of the number

of subdomains. For LA and LDA, this similarity is still true for vertex-linear and vertex-operator-

dependent, the three others exhibit a slight insigni�ant inrease in the number of iterations.

For HA, the oarse spaes subdomain-based and vertex-at do not improve the onvergene

for a number of subdomains less than 1024. For vertex-linear and vertex-operator the improvement

is modest for 256 subdomains. It appears that on this example the ondition numbers of the pre-

onditioned linear systems with and without the oarse omponents are omparable, for instane,

2� 10

2

with and 6� 10

2

without the vertex-linear oarse omponent using 256 subdomains. More

preisely, the smallest eigenvalue is not that a�eted by the use of the oarse omponent as it is

for the other model problems. In the presene of high anisotropy (HA and HDA), the onvergene

rate of all the alternatives is omparable and depends on the number of subdomains, while an

asymptoti behavior tends to appear when the number of subdomains inreases.

Dependeny of the oarse preonditioners on

H

h

To study the sensitivity of the preondi-

tioners to the size of the subdomains (i.e.

H

h

variable with H onstant), we report in Table II.2.17,

the experiments observed with 256 subdomains (16� 16 box deomposition) when the size of the

subdomains varies from 8� 8 up to 32� 32.

LA LD LDA

size 64 256 1024 4096 64 256 1024 4096 64 256 1024 4096

no 66 69 78 96 73 83 106 133 97 104 119 150

sd 30 27 36 42 16 19 23 30 29 33 36 45

vf 25 29 32 35 18 21 24 31 27 31 34 40

vl 15 17 19 21 12 14 15 19 15 18 19 22

vo 15 17 19 21 9 11 12 16 15 17 19 22

ed 24 27 32 34 16 18 22 29 24 27 31 36

HA HD HDA

size 64 256 1024 4096 64 256 1024 4096 64 256 1024 4096

no 66 69 73 76 78 87 116 141 280 302 297 389

sd 65 75 76 76 17 19 23 31 65 81 87 96

vf 66 72 75 76 20 22 25 31 80 86 89 91

vl 60 64 64 63 16 18 18 23 79 81 80 77

vo 60 66 64 63 10 11 13 16 77 81 79 80

ed 51 57 59 63 16 19 22 29 63 70 79 86

Table II.2.17: Number of PCG iterations varying the grid size of the subdomains from (8� 8)

up-to (64� 64) using a (16�16) deomposition.

We observe that the onvergene of all the preonditioners depend slightly on the size of

the subdomains. Furthermore, in the anisotropi experiments (HA and HDA), this dependene

is surprisingly negligible for the vertex-linear and for the vertex-operator-dependent alternatives.

The number of iterations of those two preonditioners tends to be stable around 64 and 80 for the

problems HA and HDA, respetively.

On problems that are not highly anisotropi, all the oarse-omponents give rise to preondi-

tioners that are independent of on weakly dependent on the number of subdomains and that have
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a mildly dependene on the size of the subdomains.

If we ompare the LD and HD olumns, we see that all the preonditioners but vertex-linear are

quite insensitive to disontinuity. Further, the vertex-operator-dependent alternative, spei�ally

designed to handle interfaes that ross a disontinuity, has the best performane.

The numerial experiments tend to show that the most dominating omponent is not the gran-

ularity of the oarse-spae (the �nest is not neessarily the best) but the restrition/interpolation

operator R

0

as show the experiments with vertex. The restrition operator governs, in most ases,

the quality of the oarse representation of the omplete equation. The at interpolation operator

is always the worst and operator-dependent behaves the best on problems with disontinuities for

whose it was designed. For disontinuous problems, LD and HD, vertex-operator-dependent is the

most eÆient while for highly anisotropi problems, HA and HDA, edge is the most eÆient for all

ases but one. For LA and LDA operator-dependent and vertex-linear had the same behavior. The

good performane of edge on anisotropi problems an be explained by the fat that we onsider

anisotropies aligned with the disretization and beause we use regular box deompositions, two

opposite edges E

i

of a subdomain are strongly oupled. The edge oarse spae aptures the strong

oupling while the other alternatives mix, therefore miss, this information. This latter behavior

is related to the fat that the supports of the basis vetors of all oarse spaes, but edge, ontain

at least two weakly oupled edges. So, the transfer operators are not able, in this spei� ase, to

retrieve and to spread the most appropriate information.

2.5 Conluding remarks

We have introdued three new loal preonditioners and a set of oarse spae omponents to build

two-level preonditioners. The loal preonditioners are based on an expliit omputation of the

loal Shur omplement matries but omputing alternatives have been proposed to overome this

possible drawbak.

The �rst loal preonditioner, M

V E

, aims at reovering some information relative to the in-

terfae nodes lose to the verties of the oarse mesh �

H

de�ned by the deomposition. This

preonditioner shows some advantages over the simple blok Jaobi preonditioner M

E

for the so-

lution of linear systems arising in the solution of paraboli problems where one-level preonditioners

might be salable [38, 126℄. For the solution of suh linear systems, M

V E

is a heap alternative to

improve the simple blok Jaobi preonditioner. Both have similar omputational omplexity and

parallel performane [35℄. In addition, the use of approximate loal Shur omplement does not

penalize signi�antly the numerial behavior of M

V E

. These advantages vanish for the solution of

ellipti problems when, to ensure the numerial salability, the oarse spae preonditioner om-

ponent smoothes its e�et ompared to M

E

. For those ellipti problems, the use of approximate

loal solvers a�et signi�antly the numerial behavior of the resulting preonditioner

~

M

BPS�V E

.

The seond loal preonditioner, losely related to the Neumann-Neumann preonditioner,

demonstrates a very attrative numerial behavior on heterogeneous and anisotropi equations.

These problems appear, for instane, in the solution of the drift-di�usion equations involved in

semi-ondutor devie modeling. An eÆient implementation of the loal Shur omplement on-

strution diretly bene�t from the ongoing development of advaned sparse diret solvers like

MUMPS [4℄. One of the new apability of this sparse diret solver is to ompute the Shur

omplement of a given list of variables in a given matrix; this oinide exatly with our need in

non-overlaping domain deomposition. However, we propose an alternative based on approximated

loal Shur omplements built thanks to inomplete Cholesky fatorizations. Based on an extensive

benhmarking, we show that the resulting preonditioner, with a heap onstrution, retains the

main numerial features of M

BPS�S

.

We have adapted the domain deomposition probing method for highly anisotropi equations.
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Spei�ally, we have onsidered two variants of the probing BPS type preonditioner in [45℄. One

variant, BPS-red/blak probing, uses a multiolor ordering of the edges to obtain suitable probe

vetors to onstrut good approximations to the diagonal bloks of the Shur omplement. The pri-

mary idea is to avoid mixing information between neighboring interfaes, whih are often strongly

oupled for anisotropi problems when forming probe approximations. Though desribed for stru-

tured meshes, the same oloring tehnique an be easily extended to unstrutured meshes. We have

shown through experimental results that the BPS-red/blak probing preonditioner signi�antly

outperforms the BPS-probing, BPS-Fourier [45℄, and balaned Neumann-Neumann preondition-

ers on anisotropi problems [89℄. Despite these improvements, the onvergene assoiated with

all these methods inluding the BPS-red/blak probing sheme still deteriorates when either the

anisotropy or the number of subdomains is inreased. To overome this drawbak, we have pro-

posed a variant for strutured meshes,

~

M

BPS�AL

, that introdues a series of band matries. Eah

band matrix orresponds to the restrition of the Shur omplement to a line of the original dis-

retization grid. The

~

M

AL

probing looks somewhat-like an alternating line relaxation proedure

and was designed to approximate the oupling between neighboring interfaes properly. Experi-

mental results show that with this new preonditioner,

~

M

BPS�AL

, the number of iterations only

weakly depends on the number of subdomains (when the number of points per subdomain is �xed)

as well as on the anisotropy. Though this preonditioner osts a bit more to onstrut and apply,

it often requires signi�antly less iterations than the BPS-red/blak probing method.

Finally we have presented two-level preonditioners for Shur omplement domain deompo-

sition methods in two dimensions built by ombining a variant of the of the loal omponent of

the BPS preonditioner with a set of new algebrai oarse spae omponents. They are de�ned

using the mesh partitioning information and simple interpolation operators that follow a parti-

tion of unity priniple. We have illustrated their numerial behaviour on a set of two-dimensional

model problems that have both anisotropy and disontinuity. Those experiments tend to show

that the most dominating omponent is not the the granularity of the oarse-spae (the �nest is

not neessarily the best) but the restrition/interpolation operator R

0

. This operator governs, in

most ases, the quality of the oarse representation of the omplete equation. The experiments

have been performed on regular meshes but there is no limitation for the implementation of the

proposed two-level preonditioners on unstrutured grids, whereas the possible rank de�ieny,

that appears in the domain-oarse alternative, ould be more triky to disard.
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Chapter 3

Some investigations of overlapping

domain deomposition method in

omputational uid dynamis

3.1 Introdution

In the past years domain deomposition for linear partial di�erential equations have graduated from

theory into pratie in many appliations as shown by the evolution of the papers in the proeedings

of the series of onferenes dediated to that topi [21, 41, 42, 90, 91, 92, 111, 112, 115, 121, 135℄.

In partiular the Newton-Krylov and Krylov-Shwarz shemes have begun to beome established

tehniques in omputational uid dynamis over the past deade. On the one hand Newton-Krylov

methods [27, 28℄ are potentially well suited and inreasingly popular for the impliit solution of

nonlinear problems whenever the omputation of the true Jaobian is too expensive; on the other

hand the Krylov-Shwarz methods are robust domain deomposition algorithms for solving linear

partial di�erential equations [60, 61℄. Combining the two above algorithms leads to a family of

algorithms alled Newton-Krylov-Shwarz methods that are general purpose parallel solvers for

nonlinear partial di�erential equations. This tehnique and losely related variants have been

applied to omputational uid dynamis appliations [29, 30, 31, 132℄.

In this hapter we present some investigations on additive Shwarz preonditioners for a

Krylov-Shwarz domain deomposition algorithm for the �nite element solution of the nonlin-

ear Navier-Stokes equations. The nonlinear part is takled with a variant of the Newton-Krylov

method. We omit the desription of the uid dynamis equations, disretization and numerial

shemes, that are out of the sope of this study, and refer the reader to [106, 107, 157℄ for a omplete

desription of these omputational uid dynamis aspets. We rather fous on the desription of

the preonditioners to solve the linear systems involved at eah step of the nonlinear iterations.

This study was onduted in the framework of an industrial ollaboration with Dassault-

Aviation that aimed at introduing eÆient preonditioners in an existing parallel ode that om-

putes the steady state solution of the Navier-Stokes equations on large 3D unstrutured �nite

element meshes. In the original ode the linear systems are �rst preonditioned by a symmetri

blok diagonal saling whih purpose is to a-dimension the variables assoiated with eah vertex

of the disretization (5 degrees of freedom per vertex); the preonditioned system is expliitly

formed and a restarted GMRES [142℄ is applied for its solution. The parallelism implemented in

the ode exploited an element-based partition of the �nite element mesh. In this ontext, domain

57



58 Numerial tehniques

deomposition algorithms are natural andidates to preondition the linear systems and Shwarz

methods are partiularly well suited. Indeed the onstraints imposed by the size of the loal sub-

domain make them too large to a�ord diret methods for solving the loal problems. Therefore

this prevents us to envisage any Shur omplement approah. However Shwarz tehniques with

inexat loal solves an be onsidered.

This hapter is organized as follows. In the next setion we briey present the lassial Shwarz

methods. In Setion 3.3, we desribe the variant of the additive Shwarz we have onsidered and

report numerial experiments in Setion 3.4.

3.2 The Shwarz proedure

The earliest known domain deomposition method was introdued by H. A. Shwarz in 1890 [145℄

to prove the existene of harmoni funtions on irregular regions whih are the union of overlapping

subregions. The interest in this method was renewed beause many of its variants enable to express

a oarse grain parallel algorithms suitable for modern distributed memory omputers. To desribe

the lassial alternating Shwarz proedure let us onsider the lassial 2D Poisson equation:

�

��u = f in 
;

u = 0 on �
;

(II.3.1)

and note

Ax = b; (II.3.2)

the linear system resulting from the disretization of (II.3.1) by either �nite di�erenes or �nite

elements.

We onsider two overlapping subregions f
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;


2

g suh that 


1

[ 


2

= 
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1
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1
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2

,
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, and denote u

i

= uj




i

. Given an initial guess u

0

the iterate u

n+1

is determined

from u

n

by sequentially updating the approximated solution in the two subregions:
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:

��u
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1

j

�

2

on �

1

;

u

n+1

2

= 0 on �


2

n�

2

:

The iterate u

n+1

is then de�ned by:

u

n+1

(x; y) =

�

u

n+1

2

(x; y) if (x; y) 2 


2

;

u

n+1

1

(x; y) if (x; y) 2 
n


2

:

It is straightforward to extend the above alternating Shwarz proedure to disretization

of (II.3.1). To simplify the exposure, we will mix in the sequel ontinuous surfaes and urves

with sets of indies. This ambiguity an be disregarded if we onsider that, in order to minimize

notation, the symbols 


i

and �


i

represent either ontinuous sets or disrete sets of indies assoi-

ated with the grid points. We shall desribe the disrete algorithm in matrix notation and denotes

R

T

i

the extension operator whih extends by zero in 
n


i

a vetor of nodal values in 


i

. The

transpose R

i

of this extension map is a anonial restrition whose ation restrits a full vetor

of nodal values in 
 to a vetor whose entries are those assoiated with the nodes in 


i

. The
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disretization of (II.3.1) on 


i

with Dirihlet boundary onditions on �


i

n�
 de�nes the loal

Dirihlet matries:

A

i

= R

i

AR

T

i

:

The disrete version of the alternating Shwarz method to solve (II.3.2) starts from an initial

guess x

0

and generates the sequene of iterates:

x

n+1=2

= x

n

+R

T

1

A

�1

1

R

1

(b�Ax

n

);

x

n+1

= x

n+1=2

+R

T

2

A

�1

2

R

2

(b�Ax

n+1=2

):

This an be interpreted as a generalization of a blok Gauss-Seidel iteration for solving (II.3.2)

with overlapping bloks. De�ning

P

i

� R

T

i

A

�1

i

R

i

;

it an be shown [117℄ that the iteration matrix is (I � P

2

)(I � P

1

) hene this sheme is usually

alled a multipliative Shwarz iteration.

An analogous blok Jaobi sheme an be de�ned by

x

n+1=2

= x

n

+R

T

1

A

�1

1

R

1

(b�Ax

n

);

x

n+1

= x

n+1=2

+R

T

2

A

�1

2

R

2

(b�Ax

n

):

Notie that eliminating x

n+1=2

gives rise to

x

n+1

= x

n

+ (R

T

1

A

�1

1

R

1

+R

T

2

A

�1

2

R

2

)(b�Ax

n

)

that is a preonditioned Rihardson method, where the preonditioner P

1

+ P

2

is referred to as

additive Shwarz preonditioner.

It an be remarked that for many subdomains and similarly to the blok Gauss-Seidel and blok

Jaobi methods, the additive Shwarz iteration is naturally parallelizable while oloring tehniques

should be used to parallelize the multipliative Shwarz method. In addition both tehniques are

usually not implemented as stationary methods but are rather aelerated by Krylov iterations.

Unfortunately for ellipti problems the two resulting preonditioners are not salable in the sense

that the ondition number of the preondition matries inreases when the number of subdomains

is inreased. Similarly to preonditioners for the Shur omplement, the numerial salability an

be obtained thanks to the use of additional oarse spae omponents. We refer to [44, 61, 147℄ and

the referenes therein for a more detailed presentation of the Shwarz methods.

3.3 Some variants of additive Shwarz preonditioner

Reently a non-symmetri variant of the additive Shwarz preonditioner has been introdued

in [32℄ and applied to 3D ow simulations in [29℄. It is referred to as restrited additive Shwarz

preonditioner and an be desribed as follows. Let M be an unstrutured �nite element mesh.

Using an element-based partitioning, the mesh M an be deomposed into N disjoint sets of

elements, that de�ne the subdomains, or equivalently into N overlapping sets of verties. The

elements on the border between subdomains share some verties with their neighbors, these nodes

are alled \interfae verties". Let denote f


i

g

i=1;N

the overlapping subsets of verties and 


the omplete set of verties over the entire mesh. We have 
 =

S

N

i=1




i

, whih an be alled a

\partition with a minimum overlap" of 
 with respet to the fat that f


i

g is a partition of the

elements of 
. From the element partitioning, we an obtain a vertex partitioning by alloating

eah interfae vertex to a single subset of elements. The resulting partitioning of the verties is

denoted 


0

i

� 


i

, with 
 =

S

N

i=1




0

i

and 


0

i

\ 


0

j

= ; for i 6= j. Let R

0

i

de�ne the anonial
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restrition whose ation restrits a full vetor of nodal values in 
 to a vetor whose entries are

those assoiated with the nodes in 


0

i

. With these notations we an de�ne the lassial additive

Shwarz preonditioner

M

AS

=

N

X

i=1

R

T

i

A

�1

i

R

i

; (II.3.3)

and the restrited additive Shwarz preonditioner

M

RAS

=

N

X

i=1

(R

0

i

)

T

A

�1

i

R

i

: (II.3.4)

Beause the exat solution of the loal problems that appear inM

AS

(II.3.3) andM

RAS

(II.3.4)

annot be a�orded in time and memory for 3D industrial problems, we replae them by approximate

solution obtained from blok ILU(0). In addition, to redue the redundant omputation and the

amount of data to exhange, we only onsider one element overlap between the subdomains. In this

respet the loal Dirihlet matries are simply built by assembling the loal sti�ness matries at

the verties on the interfae between the subdomains. On unstrutured meshes with one element

overlap, the loal sti�ness matrix built from the loal subdomain elements have often the same

pattern as the loal Dirihlet matrix. This is partiularly onvenient as the data struture to

represent the onnetivity of both matries are the same. Unfortunately when the interfae is not

smooth the two patterns di�er. This is illustrated in 2D by Figure II.3.1, where the onnetivity

between vertex 1 and 2 does not exist in the sti�ness matrix omputed on 


1

but is present in

the loal Dirihlet matrix resulting from an one element overlap between 


1

and 


2

. In that ase

building the loal Dirihlet matrix beomes more omplex as the onnetivity on the overlap region

should be built �rst and more memory onsuming as a omplete separate data struture should be

set-up to represent the Dirihlet problem A

i

. To overome this diÆulty, we onsider variants of

M

AS

and M

RAS

, where we only assemble the diagonal bloks assoiated with the verties on the

interfae and not the o�-diagonal bloks that represent the oupling between the interfae verties.
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Figure II.3.1: A 2D example of non-smooth interfae.

In the next setion we report experiments with three preonditioners:
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- M

ILU(0)�AS

: Additive Shwarz with an inexat loal solution using ILU(0),

- M

ILU(0)�dAS

: Additive Shwarz with inexat loal solution using ILU(0) and only assem-

bling of the diagonal blok of the interfae verties,

- M

ILU(0)�dRAS

: Restrited Additive Shwarz with inexat loal solution using ILU(0) and

only assembling the diagonal blok of the interfae verties.

These preonditioners have been implemented to preondition the restarted GMRES Krylov

solver that is applied to the linear systems involved in the nonlinear steps.

3.4 Numerial experiments

In this setion we only report some numerial experiments with the ONERA M6 wing to test

3D turbulent ows. The mesh is omposed by 77000 verties and deomposed into 4, 8, 16 or

32 subdomains. The size of the global problem prevents us to perform the sequential simulation

to use it as referene. The restart for GMRES was equal to 20. The tolerane for the stopping

riterion is de�ned by the ratio of the 2-norm of the residual divided by the 2-norm of the right

hand side and is set to 10

�1

. All the experiments were performed in double preision arithmeti.

The time onstraints to perform this industrial ollaboration did not enable us to perform

exhaustive experiments but rather inremental omparisons between the various Shwarz variants.

In this setion we do not report any result withM

ILU(0)�AS

beause the ode we have implemented

was not robust enough to handle non-smooth interfaes. However for smooth interfaes we observed

that M

ILU(0)�AS

was slightly more eÆient than M

ILU(0)�dAS

. The gap was not big enough to

justify neither the signi�ant manpower e�ort to develop a ode able to handle ompletely the

overlap onnetivity, nor to a�ord for the extra memory required to store the loal Dirihlet

matries in fully separate data strutures.

In Figure II.3.2 we depit the 2-norm of the nonlinear residual as a funtion of the nonlinear

iteration for a run with 4 subdomains without preonditioner and with M

ILU(0)�dAS

. As it an

be seen a signi�ant gain is introdued by M

ILU(0)�dAS

. The main improvement is due to the

redution of the number of nonlinear iterations required to ompute the steady state solution. This

is due to the fat that it permits to use a larger CFL, enabling to quikly ompute the steady state

solution, as for both simulations we use the maximum aeptable CFL.

Figure II.3.3 illustrates the reasonable salability of the preonditioner. Although the total

number of Krylov iterations inreases when the number of subdomains is inreased, the inrease is

still moderate when moving from 4 to 16 subdomains. On a pure ellipti problem the number of

iterations with 16 subdomains would be twie larger than with 4 subdomains.

In Figure II.3.4 we ompare the behaviorM

ILU(0)�dAS

and M

ILU(0)�dRAS

for a 4 subdomain

deomposition. The same trend is observed on other deompositions, that is, M

ILU(0)�dRAS

exhibits a better onvergene rate than M

ILU(0)�dAS

for the solution of the linear systems. We

mention that both preonditioners enable to use the same CFL ondition and follow the same

nonlinear onvergene path. It should also be mentioned that the deision algorithm to build 


0

i

from 


i

by logially assigning an vertex interfae to a subdomain does not use any numerial

information. We arbitrary alloates an interfae vertex to the subdomain that has the larger

number in the ordering of the subdomains.

Finally in Figure II.3.5 we show the numerial salability of M

ILU(0)�dRAS

. Surprisingly

on that example the number of iterations does not inrease when we inrease the number of

subdomains from 4 to 16 but even dereases. This derease is not longer observed when we

go from 16 to 32 subdomains. Although this behavior is not fully representative from the set

of experiments we have performed, we observed that M

ILU(0)�dRAS

exhibits a better numerial

salability than M

ILU(0)�dAS

.
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Figure II.3.2: 4 subdomains deomposition

dashed: Unpreond. , CFL=5 - solid: M
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Figure II.3.3: 2-norm of the nonlinear residual v.s. sum of Krylov iterations with M

ILU(0)�dAS

varying the number of subdomains, CFL=50.
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Figure II.3.4: 4 subdomains deomposition, CFL = 50

M

ILU(0)�dAS

(solid) - M

ILU(0)�dRAS

(dashed).
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Figure II.3.5: 2-norm of the nonlinear residual v.s. sum of Krylov iterations with
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ILU(0)�dRAS

varying the number of subdomains, CFL=50.
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3.5 Conluding remarks

It is important to notie that during this study performed in a relative short elapsed time it was

possible to adapt a semi-industrial aerodynami ode in order to quikly investigate some domain

deomposition ideas and preonditioners for pratial simulation using oarse grained parallelizable

tehniques. We are aware that adding a oarse spae omponent to the onsidered preonditioners

should improve the onvergene rate of the preonditioned GMRES as shown in [1, 30℄. Un-

fortunately we did not have the time to investigate suh a possibility in the framework of this

ollaboration.



Chapter 4

Sparse approximate inverse for

boundary element methods in

eletromagnetism

4.1 Introdution

In reent years, there has been a signi�ant amount of work on the simulation of eletromagneti

wave propagation phenomena, addressing various topis ranging from radar ross setion to ele-

tromagneti ompatibility, to absorbing materials, and antenna design. To address these problems

the Maxwell equations are often solved in the frequeny domain leading to singular integral equa-

tions of the �rst kind. The disretization by the boundary element method (BEM) results in linear

systems with dense omplex matries whih are very hallenging to solve. With the advent of

parallel proessing, this approah has beome viable for large problems and the typial problem

size in the eletromagnetis industry is ontinually inreasing.

In this hapter, we onsider the solution of linear systems of the form

Ax = b

where the oeÆient matrix A = [a

ij

℄ is a large, dense, omplex matrix of order n arising from the

disretization. The oeÆient matrix an be symmetri non-Hermitian in the EFIE (Eletri Field

Integral Equation) formulation, or unsymmetri in the CFIE (Combined Field Integral Equation)

formulation. The unknowns in the vetor x are assoiated with the edges of an underlying mesh

on the surfae of the objet. In this hapter, we will only onsider numerial examples where A

is symmetri beause EFIE usually gives rise to linear systems that are more diÆult to solve

with iterative methods. The tehniques onsidered here an be applied equally well to unsym-

metri matries. In fat in the numerial experiments we use non-symmetri solvers beause the

preonditioners that we onstrut are unsymmetri. We an, of ourse, onstrut either only the

lower or only the upper part of the preonditioner and use a symmetri preonditioner obtained

by reeting this in the diagonal. One problem is that the resulting preonditioner depends on

the ordering of the matrix. In previous tests [34℄, we investigated the e�et of symmetrizing the

preonditioner by averaging the o�-diagonal entries after its onstrution and using suh a sym-

metrized preonditioner with symmetri QMR but found that this aused a marked deterioration

in the quality of the preonditioner leading to far more iterations of the iterative method. We plan

to further investigate symmetri strategies in future work but, in this present study, we will stik

with unsymmetri tehniques and preonditioners.

65
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Diret dense methods based on Gaussian elimination are often the method of hoie beause

they are reliable and preditable both in terms of auray and ost. However, for large-sale

problems, they beome impratial even on large parallel platforms beause they require storage of

n

2

double preision omplex entries of the oeÆient matrix and O(n

3

) oating-point operations to

ompute the fatorization, where n denotes the size of the linear system. Iterative Krylov subspae

based solvers are a promising alternative provided we have fast matrix-vetor multipliations and

robust preonditioners. There are ative researh e�orts on multipole tehniques to perform fast

matrix-vetor produts with O(n log(n)) omputational omplexity inluding strategies for parallel

distributed memory implementations (see [55, 56, 57℄). In this hapter, we fous on the other key

omponent of Krylov methods in this ontext; that is, we study the design of robust preonditioning

tehniques.

The parallel framework suggests that sparse approximate inverses based on Frobenius-norm

minimization tehniques are promising andidates for the eÆient preonditioning of these sys-

tems. Suh tehniques exhibit a good level of numerial eÆieny on this lass of appliations

when ompared with the impliit approah based on inomplete fatorization (see [34℄, [47℄). The

normal requirement for a good preonditioner is that it is easy to onstrut, heap to store and

to apply, is parallelizable and, of ourse, is e�etive in aelerating the onvergene of Krylov

solvers. To be omputationally a�ordable on dense linear systems, Frobenius-norm minimization

preonditioning tehniques require a suitable strategy to identify the relevant entries to onsider

in the original matrix A, in order to de�ne small least-squares problems, as well as an appropriate

sparsity struture for the approximate inverse.

For sparse matries, two strategies an be used to de�ne the sparsity struture of the preon-

ditioner. A dynami approah onstruts the nonzero pattern of the preonditioner by monitoring

the residual in the least-squares problems during the omputation. This is generally e�etive but

is usually very expensive. A stati approah that requires an a priori nonzero pattern for the pre-

onditioner, introdues signi�ant sope for parallelism and has the advantage that the memory

storage requirements and omputational ost for the setup phase are known in advane. However,

it an be very problem dependent.

In this hapter, we propose some new eÆient stati nonzero pattern seletion strategies

both for the preonditioner and for the seletion of the entries of A in order to develop robust

preonditioners for appliations in eletromagnetism. In this hapter we onsider a set of test

examples, arising from both aademi and industrial appliations that are representative of the

general numerial behavior that we observed. Those examples are similar to those onsidered

in [34℄, where all test problems are of the same order or even smaller; larger problems will be

examined when we will move to multipole method. More spei�ally, we here onsider the following

geometries where, for physial onsisteny, we have set the frequeny of the wave so that there are

about ten disretization points per wavelength [12℄:

Example 1: a ylinder with a hollow inside, a matrix of order n = 1080, see Figure 4.1(a);

Example 2: a ylinder with a break on the surfae, a matrix of order n = 1299, see Figure 4.1(b);

Example 3: a satellite, a matrix of order n = 1701, see Figure 4.1();

Example 4: a parallelepiped, a matrix of order n = 2016; and

Example 5: a sphere, a matrix of order n = 2430.

We perform experiments with the following Krylov solvers:

� restarted GMRES [142℄;

� Bi-CGSTAB [152℄;
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� symmetri and unsymmetri QMR [75℄;

� TFQMR [73℄.

In Setion 4.2, we desribe the onstrution of the preonditioner using our proposed stati

pattern strategies and report on the assoiated numerial experiments. Finally, in Setion 4.3, we

present some remarks arising from the work.

(a) Example 1 (b) Example 2

() Example 3

Figure II.4.1: Mesh assoiated with test examples.

4.2 Stati pattern seletion and dropping strategies

Frobenius-norm minimization is one of the most natural approahes for building expliit preondi-

tioners. The idea is to ompute the sparse approximate inverse as the matrix M whih minimizes

kI �MAk

F

(or kI �AMk

F

for right preonditioning) subjet to ertain sparsity onstraints. The

Frobenius-norm is usually hosen sine it allows the deoupling of the onstrained minimization
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problem into n independent linear least-squares problems, one for eah olumn of M (when pre-

onditioning from the right) or row of M (when preonditioning from the left). In our present

appliations, these least-squares problems are small enough to be solved using a dense QR deom-

position. The independene of these least-squares problems follows immediately from the identity:

kI �MAk

2

F

= kI �AM

T

k

2

F

=

n

X

j=1

ke

j

�Am

j;�

k

2

2

(II.4.1)

where e

j

is the jth unit vetor and m

j;�

is the olumn vetor representing the jth row of M .

In the ase of right preonditioning, the analogous relation

kI � AMk

2

F

=

n

X

j=1

ke

j

�Am

�;j

k

2

2

(II.4.2)

holds, where m

�;j

is the olumn vetor representing the jth olumn of M . Clearly, there is

onsiderable sope for parallelism in this approah.

The main issue is the seletion of the nonzero pattern ofM . The idea is to keepM reasonably

sparse while trying to apture the \large" entries of the inverse, whih are expeted to ontribute

the most to the quality of the preonditioner. For this purpose, two approahes an be followed:

an adaptive tehnique that dynamially tries to identify the best struture for M ; and a stati

tehnique, where the pattern of M is presribed a priori based on some heuristis. Some early

referenes to this latter lass an be found in [13, 14, 15, 72℄ and in [2℄ for some appliations to

boundary element matries in eletromagnetism.

In addition, when the oeÆient matrix is dense, the preonditioner should be onstruted

from a sparse approximation of A in order to redue the omputational ost of the least-squares

solutions.

4.2.1 Strategies for the preonditioner

When the oeÆient matrix has a speial struture or speial properties, for instane a banded

matrix with a good degree of diagonal dominane or a banded SPD matrix, e�orts have been

devoted to �nd a pattern that an retain the entries of A

�1

having large modulus, see [48℄ and [58℄

for example. Unfortunately, for general unstrutured matries, it is very diÆult to predit a good

pattern for the inverse in advane. Adaptive strategies that ompute the pattern dynamially an

provide very good preonditioners, even on hard problems, but at the ost of a very large amount

of omputing time and memory. In some ases it is possible to take advantage of speial features of

the underlying physial problem and ompute a good a priori pattern for the approximate inverse.

Algebrai strategy

The boundary element method disretizes integral equations on the surfae of the sattering objet,

generally introduing a very loalized strong oupling among the edges in the underlying mesh.

Eah edge is strongly onneted to only a few neighbors, while, although not null, far-away on-

netions are muh weaker. This means that a very sparse matrix an still retain the most relevant

ontributions from the singular integrals that give rise to dense matries. Due to the deay of

the Green's funtion, the inverse of A may exhibit a very similar struture to A as illustrated in

Figure II.4.2 where we display the pattern of A and A

�1

when the smallest entries are dropped.

Thus, in this ase, a good pattern for the sparse approximate inverse is likely to be the nonzero

pattern of a sparse approximation of A, onstruted by dropping all the entries lower than a pre-

sribed threshold, as suggested for instane in [113℄. We refer to this approah as the algebrai
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(a) sparsified(A) (b) sparsified(A

�1

)

Figure II.4.2: Nonzero pattern for A (left) and A

�1

(right) when the smallest entries are

disarded. The test problem is Example 1.

approah. Several heuristis an be used to de�ne the sparsity pattern based on the magnitude

of the entries; all of them result in similar numerial behavior [2℄ but some are partiularly well

suited for parallel implementation. In the numerial experiments, we have seleted the strategy

where, for eah olumn of A, the k entries (k � n is a positive integer) of largest modulus are

retained.

This strategy generally works well and ompetes with the approah that adaptively de�nes

the nonzero pattern as implemented in the SPAI preonditioner desribed in [98℄. Nevertheless it

su�ers some drawbaks that put severe limits on its use in pratial appliations. For large prob-

lems, aessing all the entries of the matrix A beomes too expensive or even impossible. This is

the ase in the fast multipole framework, where all the entries of the matrix A are not available. In

addition on omplex geometries, a pattern for the sparse approximate inverse omputed by using

information solely from A may lead to a poor preonditioner. These two main drawbaks motivate

the investigation of more appropriate tehniques to de�ne a sparsity pattern for the preonditioner.

Beause we work in an integral equation ontext, we an use more information than just the

entries of the matrix of the disretized problem. In partiular, we an exploit the underlying mesh

and extrat further relevant information to onstrut the preonditioner. Two types of information

are available from the mesh:

the onnetivity graph, desribing the topologial neighborhood among the edges, and

the oordinates of the nodes in the mesh, desribing geometri neighborhoods among the edges.

Topologial strategy

When the objet geometries are smooth, only the neighboring edges an have a strong interation

with eah other, while far-away onnetions are generally muh weaker. Thus an e�etive pattern

for the sparse approximate inverse an be presribed by exploiting topologial information related

to the near �eld. In the integral equation ontext, the surfae of the objet is disretized using a

triangular mesh. Eah degree of freedom (DOF), representing an unknown in the linear system,

orresponds to an edge. The sparsity pattern for any row of the preonditioner an be de�ned

aording to the onept of level k neighbors, as introdued in [137℄. Level 1 neighbors of a DOF
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are the DOF plus the four DOFs belonging to the two triangles that share the edge orresponding

to the DOF itself. Level 2 neighbors are all the level 1 neighbors plus the DOFs in the triangles

that are neighbors of the two triangles onsidered at level 1, and so forth. In Figure II.4.3 we

plot, for eah DOF of the mesh for Example 1, the magnitude of the assoiated entry in A (the

graph on the left) and in A

�1

(the graph on the right) with respet to the level of its neighbors.

The large entries in A

�1

derive from the interation of a very loalized set of edges in the mesh so

that by retaining a few levels of neighbors for eah DOF an e�etive preonditioner is likely to be

onstruted. Three levels an generally provide a good pattern for onstruting an e�etive sparse

approximate inverse. Using more levels inreases the omputational ost but does not improve

substantially the quality of the preonditioner. In Figure II.4.4 we show how the density of non-

zeros in the preonditioner evolves when the number of level is inreased. It an be seen that up-to

�ve levels the preonditioner is still sparse with a density lower than 10 %. We will refer to this

pattern seletion strategy as the topologial strategy.

(a) Magnitude v.s. levels for A (b) Magnitude v.s. levels for A

�1

Figure II.4.3: Topologial loalization in the mesh for the large entries of A (left) and A

�1

(right). The test problem is Example 1 and is representative of the general behavior.

Geometri strategy

When the objet geometries are not smooth, two far-away edges in the topologial sense an

have a strong interation with eah other so that they are strongly oupled in the inverse matrix.

For the sattering problem on Example 1, we plot in Figure II.4.5, for eah pair of edges in the

mesh, the magnitude of the assoiated entry in A (the graph on the left) and A

�1

(the graph on

the right) with respet to their distane in terms of wavelength. The largest entries of A

�1

are

loalized similarly to those of A, but, in many ases, small entries in A orrespond to large entries

in the inverse and vie-versa. This means that if we onstrut the sparse pattern for the inverse

by only using information related to A, we may retain many small entries in the preonditioner,

ontributing marginally to its quality, but may neglet some of the large ones potentially damaging

the quality of the preonditioner. Also, the surfae of the objet is very non-smooth, these large

entries may ome from the interation of far-away or non-onneted edges in a topologial sense,

whih are neighbors in a geometri sense. Thus they annot be deteted by using only topologial

information related to the near �eld. Figure II.4.5(b) suggests that we an selet the pattern for

the preonditioner using physial information, that is: for eah edge we selet all those edges within
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Figure II.4.4: Density of the preonditioner v.s. number of seleted levels for Example 1.

a suÆiently large sphere that de�nes our geometri neighborhood. By using a suitable size for

this sphere, we hope to inlude the most relevant ontributions to the inverse and onsequently

to obtain an e�etive sparse approximate inverse. In Figure II.4.6 we show how the density of

non-zeros in the preonditioner evolves when the radius of the sphere is inreased. This seletion

strategy will be referred to as the geometri strategy.

(a) Magnitude v.s. distane for A

(b) Magnitude v.s. distane for A

�1

Figure II.4.5: Geometri loalization in the mesh for the large entries of A (left) and A

�1

(right). The test problem is Example 1. This is representative of the general behavior.

Numerial experiments

In this setion, we ompare the di�erent strategies desribed above in the solution of our test

problems.

Using the three pattern seletion strategies for M , we denote by
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Figure II.4.6: Density of the preonditioner v.s. number of seleted levels for Example 1.

� M

a

, the preonditioner omputed by using the algebrai strategy,

� M

t

, the preonditioner omputed by using the topologial strategy,

� M

g

, the preonditioner omputed by using the geometri strategy,

� SPAI , the preonditioner onstruted by using the dynami strategy implemented by [97℄.

To evaluate the e�etiveness of the proposed strategies, we �rst onsider using the dense

matrix A to onstrut the preonditioners M

a

, M

t

, M

g

and SPAI . This requires the solution of

large dense least-squares problems. The adaptive tehnique implemented in SPAI omputes the

pattern of the preonditioner starting with a simple initial guess, like a diagonal matrix, and then

improves it until a riterion of the form kAm

j;�

�e

j

k

2

< " (for eah j) is satis�ed for a given " > 0,

e

j

being the jth olumn of the identity matrix, and m

j;�

being the olumn vetor for the jth row

of M aording to the notation previously introdued, or until a maximum number k of nonzeros

in the jth row of M has been generated (we refer the reader to [97℄ and [98℄ for further details).

The density of the preonditioner varies from one problem to another for the same value

of the distane parameter hosen to de�ne M

g

. As Figure II.4.5(b) shows, and tests on all the

other examples on�rm, those entries orresponding to edges ontained within a sphere of radius

0:12 times the wavelength an retain many of the large entries of the inverse while giving rise to

quite a sparse preonditioner. For all our numerial experiments, we hoose a value for k in the

onstrution of M

a

and SPAI , and for the level of neighbors used to generate M

t

so that they

have the same density as M

g

, when neessary disarding some small entries of the preonditioner

so that all have the same number of entries.

For all the numerial experiments reported in this hapter, for GMRES we use the implementa-

tion desribed in [69℄. For the tests with Bi-CGSTAB, we derived a version for omplex arithmeti

from the Harwell Subroutine Library (HSL, [105℄) routine MI06 and for those with unsymmetri

QMR (referred to as UQMR in the forthoming tables) and TFQMR, we used, respetively, the

ZUCPL and ZUTFX routines available in QMRPACK [76℄. The stopping riteria in all ases

just onsists in reduing the original residual by 10

�5

. The symbol \-" means that onvergene

was not obtained after 500 iterations. In eah ase, we took as the initial guess x

0

= 0, and the

right-hand side was suh that the exat solution of the system was known. We performed di�erent

tests with di�erent known solutions, observing idential results. All the numerial experiments
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were performed in double preision omplex arithmeti on a SGI Origin 2000 and the number of

iterations reported in this hapter are for left preonditioning. Very similar results were obtained

when preonditioning from the right.

Example 1 - Density of M = 5.03%

Preond.

GMRES(m)

Bi -

CGStab

UQMR TFQMR

m=10 m=30 m=50 m=80 m=110

Unpre. - - - 251 202 223 231 175

M

j

- - 465 222 174 239 210 169

M

a

219 135 96 72 72 86 107 72

M

t

100 49 36 36 36 35 42 32

M

g

124 68 46 46 46 44 58 38

SPAI - 67 44 44 44 48 50 43

Example 2 - Density of M = 1.59%

Preond.

GMRES(m)

Bi -

CGStab

UQMR TFQMR

m=10 m=30 m=50 m=80 m=110

Unpre. - - - 398 289 359 403 249

M

j

- - 473 330 243 257 354 228

M

a

472 273 239 207 184 330 313 141

M

t

- 470 346 243 195 187 275 158

M

g

90 72 55 52 52 44 82 40

SPAI - - 99 61 61 168 97 111

Example 4 - Density of M = 1.04%

Preond.

GMRES(m)

Bi -

CGStab

UQMR TFQMR

m=10 m=30 m=50 m=80 m=110

Unpre. - 224 191 158 147 177 170 118

M

j

350 211 178 153 140 188 152 110

M

a

212 157 141 132 123 131 145 115

M

t

288 187 160 146 139 145 156 98

M

g

63 51 41 41 41 37 47 32

SPAI - 370 184 112 84 256 96 85

Table II.4.1: Number of iterations using the preonditioners based on dense A.

From the results shown in Table II.4.1, we �rst note that all the preonditioners aelerate

the onvergene of the Krylov solvers, and in some ases enable onvergene when the unpre-

onditioned solver diverges or onverges very slowly. These numerial experiments also highlight

the advantages of the geometri strategy. It not only outperforms the algebrai approah and is

more robust than the topologial approah, whih has a similar omputational omplexity, but

it also generally outperforms the adaptive approah implemented in SPAI whih is muh more

sophistiated and more expensive in exeution time and memory. SPAI ompetes with M

g

only

on Example 1 where the density of the preonditioner is higher. This trend, namely the denser the

preonditioner the more eÆient SPAI is, has been observed on many other examples. However, for

sparse preonditioners, SPAI may be quite poor as illustrated on Example 4, where preonditioned

GMRES(30) or Bi-CGStab are slower than without a preonditioner and the iteration diverges for
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GMRES(10) with the SPAI preonditioner while it onverges for the other three preonditioners.

On the non-smooth geometry, that is Example 2, an explanation of why the geometri approah

should lead to a better sparse preonditioner an be suggested by Figure 4.1(b). Some far-away

edges in the onnetivity graph, those from eah side of the break, are weakly onneted in the

mesh but an have a strong interation with eah other, and an lead to large entries in the inverse

matrix.

4.2.2 Strategies for the oeÆient matrix

When the oeÆient matrix of the linear system is dense, the onstrution of even a very sparse

preonditioner may beome too expensive in exeution time as the problem size inreases. Both

memory and exeution time are signi�antly redued by replaing A with a sparse approximation.

On general problems, this approah an ause a severe deterioration of the quality of the preondi-

tioner; in the BEM ontext, sine a very sparse matrix an retain the most relevant ontributions

to the singular integrals, it is likely to be more e�etive. The use of a sparse matrix substantially

redues the size of the least-squares problems that an then be eÆiently solved by diret methods.

The algebrai heuristi desribed in the previous setions is well suited for sparsifying A. In [2℄

the same nonzero sparsity pattern is seleted both for A and M ; in that ase, espeially when the

pattern is very sparse, the omputed preonditioner may be poor on some geometries. The e�et

of replaing A with its sparse approximation on some problems is highlighted in Figure II.4.7

where we display the sparsi�ed pattern of the inverse of the sparsi�ed A. We see that the resulting

pattern is very di�erent from the sparsi�ed pattern of the inverse of A shown in Figure II.4.2.

Figure II.4.7: Sparsity pattern of the inverse of sparse A assoiated with Example 1. The

pattern has been sparsi�ed with the same value of threshold used to sparsify A displayed in

Figure II.4.2.

A possible remedy is to inrease the density in the patterns for both A and M . To a ertain

extent, we an improve the onvergene, but the omputational ost of generating the preondi-

tioner grows almost ubily with respet to density. A heaper remedy is to hoose a di�erent

number of nonzeros to onstrut the patterns for A and M , with less entries in the preonditioner

than in the sparse approximation of A. To illustrate this e�et, we report in Table II.4.2 on the

number of iterations of preonditioned GMRES(50), where the preonditioners are built by using

either the same sparsity pattern for A or a two, three or �ve times denser pattern for A. Exept
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Example 1

Perentage density of M

Density strategy

1 2 3 4 5 6 7 8 9 10

Same - - 299 146 68 47 47 42 37 39

2 times - - 248 155 76 46 40 39 39 38

3 times - 253 207 109 49 39 39 37 35 34

5 times - 258 213 99 48 37 38 34 33 33

Full A 364 359 144 96 46 35 35 34 32 31

Table II.4.2: Number of iterations for GMRES(50) preonditioned with di�erent values for the

density of M using the same pattern for A and larger patterns. A geometri approah is adopted

to onstrut the patterns. The test problem is Example 1. This is representative of the general

behavior observed.

when the preonditioner is very sparse, inreasing the density of the pattern imposed on A for a

given density of M aelerates the onvergene as expeted, getting quite rapidly very lose to the

number of iterations required when using a full A. The additional ost in terms of CPU time is

negligible as an be seen in Figure II.4.8 for experiments on Example 1. This is due to the fat that

the omplexity of the QR fatorization used to solve the least-squares problems is the square of

the number of olumns times the number of rows. Thus, inreasing the number of rows, that is the

number of entries of A, does not penalize signi�antly the onstrution of the preonditioner. On

the other hand, reduing the density of the preonditioner, that is the number of olumns in the

least-squares problems, an signi�antly redue the overall CPU time. Notie that this observation

is true for both left and right preonditioning beause, aording to (II.4.1) and (II.4.2) the smaller

dimension of the matries involved in the least-squares problems always orresponds to the entries

of M to be omputed, and the larger to the entries of the sparsi�ed matrix from A.
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Figure II.4.8: CPU time for the onstrution of the preonditioner using a di�erent number of

nonzeros in the patterns for A and M . The test problem is Example 1. This is representative of

the other examples.
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Numerial experiments

We report in this setion on the numerial results obtained by replaing A with its sparse approx-

imation in the onstrution of the preonditioner. In Table 3 we use the following notation:

� M

a�a

, introdued in [2℄ and omputed by using algebrai information from A. The same

pattern is used for the preonditioner;

� M

a�t

, onstruted by using the algebrai strategy to sparsify A and the topologial strategy

to presribe the pattern for the preonditioner;

� M

a�g

, onstruted by using the geometri approah and an algebrai heuristi for A with

the same density as for the preonditioner;

� M

2a�t

, similar to M

a�t

, but the density of the pattern imposed on A is twie as dense as

that imposed M

a�t

;

� M

2a�g

, similar to M

a�g

but, as in the previous ase, the density of the pattern imposed on

A is twie as dense as that imposed on M

a�g

.

For the sake of omparison we also report the number of iterations without using a preondi-

tioner and with only a diagonal saling, denoted by M

j

.

Other ombinations are possible for de�ning the seletion strategies for the patterns of A and

M . Here we fous on the most promising ones, that use information from the mesh to retain

the large entries of the inverse, and the algebrai strategy for A to apture the most relevant

ontributions to the singular integrals. We also onsider the preonditioner M

a�a

to ompare

with previous tests [2℄, that were performed on di�erent geometries from those onsidered here.

Although sparsifying A using an algebrai dropping strategy seems to be the most natural approah

to get a sparse approximation of A when all its entries are available, either the topologial or the

geometri riterion an be used to de�ne the sparse approximation of A. Those alternatives are

attrative in a multipole framework where all the entries of A are not omputed and some results

using these strategies are reported in Setion 4.3. We show, in Table II.4.4, the results of our

numerial experiments. For eah example, we give the number of iterations required by eah

preonditioned solver.

Example 1 - Density of M = 5.03%

Preond.

GMRES(m)

Bi -

CGStab

UQMR TFQMR

m=10 m=30 m=50 m=80 m=110

Unpre. - - - 251 202 223 231 175

M

j

- - 465 222 174 239 210 169

M

a�a

284 170 138 114 92 120 156 94

M

a�t

179 61 45 45 45 43 58 36

M

a�g

147 93 68 59 59 55 73 53

M

2a�t

128 56 40 40 40 37 50 36

M

2a�g

131 79 52 51 51 59 65 44

Continued on next page
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Continued from previous page

Example 2 - Density of M = 1.59%

Preond.

GMRES(m)

Bi -

CGStab

UQMR TFQMR

m=10 m=30 m=50 m=80 m=110

Unpre. - - - 398 289 359 403 249

M

j

- - 473 330 243 257 354 228

M

a�a

- 319 255 221 203 181 319 135

M

a�t

- 261 213 174 169 128 251 121

M

a�g

251 178 150 138 117 106 256 116

M

2a�t

- 370 284 202 182 176 276 127

M

2a�g

100 73 61 55 55 48 93 40

Example 3 - Density of M = 2.35%

Preond.

GMRES(m)

Bi -

CGStab

UQMR TFQMR

m=10 m=30 m=50 m=80 m=110

Unpre. - - - - 488 - 444 308

M

j

- - - 491 427 375 356 306

M

a�a

436 316 240 193 125 144 166 135

M

a�t

137 108 93 71 71 64 93 66

M

a�g

- 464 296 203 108 240 166 144

M

2a�t

113 78 59 53 53 41 61 44

M

2a�g

122 84 72 59 59 53 67 50

Example 4 - Density of M = 1.04%

Preond.

GMRES(m)

Bi -

CGStab

UQMR TFQMR

m=10 m=30 m=50 m=80 m=110

Unpre. - 224 191 158 147 177 170 118

M

j

350 211 178 153 140 188 152 110

M

a�a

299 205 172 146 133 162 180 103

M

a�t

266 152 130 114 99 92 127 83

M

a�g

81 67 66 63 63 39 79 41

M

2a�t

269 167 143 136 116 107 137 93

M

2a�g

71 60 47 47 47 43 61 41

Example 5 - Density of M = 0.63%

Preond.

GMRES(m)

Bi -

CGStab

UQMR TFQMR

m=10 m=30 m=50 m=80 m=110

Unpre. - 344 233 146 125 152 170 109

M

j

- 326 219 140 131 183 173 107

M

a�a

- 352 249 154 134 202 183 107

M

a�t

360 66 64 60 60 34 76 46

M

a�g

313 81 68 61 61 36 74 40

M

2a�t

71 48 47 47 47 25 54 30

M

2a�g

88 42 39 39 39 21 45 25

Table II.4.4: Number of iterations to solve the set of test problems.
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Example 1 - Density of M = 5.03%

M

a�a

M

a�t

M

2a�t

M

a�g

M

2a�g

83.42 91.07 91.78 79.47 80.18

Example 2 - Density of M = 1.59%

M

a�a

M

a�t

M

2a�t

M

a�g

M

2a�g

13.98 16.45 16.73 13.53 13.67

Example 3 - Density of M = 2.35%

M

a�a

M

a�t

M

2a�t

M

a�g

M

2a�g

83.59 146.44 147.79 109.45 110.30

Example 4 - Density of M = 1.04%

M

a�a

M

a�t

M

2a�t

M

a�g

M

2a�g

31.75 38.05 38.23 31.12 31.24

Example 4 - Density of M = 0.63%

M

a�a

M

a�t

M

2a�t

M

a�g

M

2a�g

27.66 70.93 71.29 26.04 26.13

Table II.4.5: CPU time to ompute the preonditioners.

In Table II.4.5 we report the CPU time required to ompute the preonditioners when the

least-squares problems are solved using LAPACK routines. The CPU time for onstruting M

a�t

andM

2a�t

is in some ases muh larger than that needed forM

a�g

andM

2a�g

. The reason is that,

in the topologial strategy, it is not possible to presribe exatly a value for the density. Thus, for

eah problem, we selet a suitable number of levels of neighbors, to obtain the losest number of

nonzeros to that retained in the pattern based on the geometri approah. After the onstrution

of the preonditioner, we drop its smallest entries to ensure an idential number of nonzeros for

the two strategies. The results illustrate that onsidering twie as dense a pattern for A as for M

does not ause a signi�ant growth in the omputational time although it enables us to onstrut

a more robust preonditioner.

We �rst observe that using a sparse approximation of A redues the onvergene rate of the

preonditioned iterations when the nonzero pattern imposed on the preonditioner is very sparse.

However if we adopt the geometri strategy to de�ne the sparsity pattern for the approximate

inverse, the onvergene rate is not a�eted very muh. For even larger values of density, the

di�erene in the number of iterations between using full A or an algebrai sparse approximation

beomes negligible. For all the experiments, M

a�g

still outperforms M

a�a

and is generally more

robust than M

a�t

; the most eÆient and robust preonditioner is M

2a�g

. The multiple density

strategy allows us to improve the eÆieny and the robustness of the Frobenius-norm preon-

ditioner on this lass of problems without requiring any more time for the onstrution of the

preonditioner. For all the test examples, it enables us to get the fastest onvergene even for

GMRES with a low restart parameter on problems where neither M

a�a

nor M

a�g

onverge.

The e�etiveness of this multiple density heuristi is illustrated in Figure II.4.9 where we see

the e�et of preonditioning on the lustering of the eigenvalues of A for the most diÆult problem,

Example 2. The eigenvalues of the preonditioned matries are in both ases well lustered around

1 (with a more e�etive lustering for M

2a�g

), but those obtained by using the multiple density

strategy are further from the origin. This is highly desirable when trying improve the onvergene

of Krylov solvers.

Another advantage of this multiple density heuristi is that it generally allows us to redue

the density of the preonditioner (and thus its onstrution ost), while preserving its numerial

quality. Although no spei� results are reported to illustrate this aspet, this behavior may be
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Figure II.4.9: Eigenvalue distribution for the oeÆient matrix preonditioned by using a

single (on the left) and a multiple (on the right) density strategy on Example 2.

partially observed in Table II.4.2.

Example 1 - Density of M = 5.03%

Preond.

GMRES(m)

Bi -

CGStab

UQMR TFQMR

m=10 m=30 m=50 m=80 m=110

M

j

- - 465 222 174 239 210 169

SSOR - - 216 136 98 147 177 135

ILU(0) - - - - - - 479 -

SPAI - - 192 68 68 150 83 94

SLU 160 53 38 38 38 46 50 39

M

2a�g

131 79 52 51 51 59 65 44

Example 2 - Density of M = 1.59%

Preond.

GMRES(m)

Bi -

CGStab

UQMR TFQMR

m=10 m=30 m=50 m=80 m=110

M

j

- - 473 330 243 257 354 228

SSOR - 413 245 164 134 185 281 266

ILU(0) - - - - 322 385 394 439

SPAI - - - - - - - -

SLU - - - - 282 - - -

M

2a�g

100 73 61 55 55 48 93 40

Table II.4.6: Number of iterations with some lassial preonditioners omputed using sparse A

(algebrai).

Finally, to assess the performane of the proposed Frobenius-norm minimization approah

desribed in this hapter, we show, in Table II.4.6, the numerial results observed on Examples 1

and 2 with some lassial preonditioners, of both expliit and impliit form. These are: diagonal

saling, SSOR, ILU(0) and SPAI applied to a sparse approximation of A onstruted using the

algebrai approah. The method referred to as SLU in that table uses the sparsi�ed matrix A
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as an impliit preonditioner; that is, the sparsi�ed matrix is fatorized using ME47, a sparse

diret solver from HSL, and those exat fators are used as the preonditioner. Thus it represents

an extreme ase with respet to ILU(0), sine a omplete �ll-in is allowed in the fators. This

approah, although not easily parallelizable, is generally quite e�etive on this lass of appliations

for dense enough sparse approximations of A. However, as shown in this table, when the preondi-

tioner is very sparse, the numerial quality of this approah deteriorates and the Frobenius-norm

minimization method is more robust. All these preonditioners, exept SLU on Example 1, exhibit

muh poorer aeleration apabilities than that provided by M

2a�g

. If we redue the density of

the preonditioner in Example 1,M

2a�g

onverges slowly but beomes the most eÆient. It should

also be noted that SPAI works reasonably well when omputed using dense A (see Table II.4.1) but

with sparse A it does not onverge on Example 2 (see Table II.4.6). In addition, following [49℄, we

performed some numerial experiments where we obtained an approximate m

�;j

from (II.4.2) by

dropping the smallest entries of the iterates omputed by few steps of either the Minimum Residual

method or GMRES. Unfortunately, the performane of these approahes for dynamially de�ning

the pattern of the preonditioner was disappointing. They only improved the unpreonditioned

ase when a relative large number of iterations was used to build the preonditioner making them

una�ordable for our problems.

Our purpose in this hapter is to study the numerial behavior of the preonditioners. Nev-

ertheless, we do reognize that some of the simple strategies have a muh lower ost to build the

preonditioner and so ould result in a faster solution. When SSOR onverges, it is often the fastest,

in terms of the overall CPU time for the overall solution of the linear system. When the solution is

performed for only one right-hand side, the onstrution ost of the other preonditioners annot

be ompensated for by the redution in the number of iterations; the matrix-vetor produt is per-

formed using BLAS kernels that make the iteration ost quite heap for the problem sizes we have

onsidered. For instane, when solving Example 1 with GMRES(50) on a SUN Enterprise, SSOR

onverges in 31.4 seonds and M

2a�g

requires 190 seonds for the onstrution and 7.6 seonds

for the iterations. However, in eletromagnetism appliations, the same linear system has to be

solved with many right-hand sides when illuminating an objet with various waves orresponding

to di�erent angles of inidene. For that example, if we have more than eight right-hand sides, the

onstrution of M

2a�g

is overome by the time saved in the iterations and M

2a�g

beomes more

eÆient than SSOR. In addition, the onstrution and the appliation of M

2a�g

is fully paralleliz-

able while the parallelization of SSOR requires some reordering of equations that may be diÆult

to implement eÆiently on a distributed memory platform.

4.3 Conluding remarks

We have presented some a priori pattern seletion strategies for the onstrution of a robust sparse

Frobenius-norm minimization preonditioner for eletromagneti sattering problems expressed in

integral formulation. We have shown that, by using additional geometri information from the

underlying mesh, it is possible to onstrut robust sparse preonditioners at an a�ordable ompu-

tational and memory ost. The topologial strategy requires less omputational e�ort to onstrut

the pattern, but sine the density is a step funtion of the number of levels, the onstrution of

the preonditioner an require some additional omputation. Also it may not handle very well

omplex geometries where some parts of the objet are not onneted, as in Example 3 (see Fig-

ure 4.1()). By retaining two di�erent densities in the patterns of A and M we an derease very

muh the omputational ost for the onstrution of the preonditioner, usually a bottlenek for

this family of methods; preserving the eÆieny while inreasing the robustness of the resulting

preonditioner. The numerial experiments have shown that, using this pattern seletion strategy,

we an ompute a very sparse but e�etive preonditioner. With the same low density, none of
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the lassial preonditioners that we onsidered an ompete with it. An additional major feature

of this pattern seletion strategy is that it does not require aess to all the entries of the matrix

A, so that it is promising for an implementation in a fast multipole setting where A is not diretly

available but where only the near �eld entries are omputed.

M

2g�g

Example

GMRES(m)

Bi -

CGStab

UQMR TFQMR

m=10 m=30 m=50 m=80 m=110

1 165 103 75 60 60 66 71 61

2 145 110 95 76 76 68 140 64

3 129 89 70 57 57 49 69 52

4 71 57 48 48 48 38 52 34

5 110 46 42 42 42 24 50 27

Table II.4.7: Number of iterations to solve the set of test models by using a multiple density

geometri strategy to onstrut the preonditioner. The pattern imposed on M is twie as dense

as that imposed on A.

M

2t�g

Example

GMRES(m)

Bi -

CGStab

UQMR TFQMR

m=10 m=30 m=50 m=80 m=110

1 197 87 49 49 49 50 66 50

2 103 82 72 61 61 49 111 50

3 143 98 84 60 60 56 70 53

4 70 58 49 49 49 39 65 37

5 143 50 47 47 47 29 57 28

Table II.4.8: Number of iterations to solve the set of test models by using a topologial

strategy to sparsify A and a geometri strategy for the preonditioner. The pattern imposed on

M is twie as dense as that imposed on A.

The geometri approah an be also used to sparsify A, without notieably deteriorating the

quality of the preonditioner. This is showed in Table II.4.7, where M

2g�g

is onstruted by

exploiting geometri information in the patterns of both A and M , but hoosing twie as dense a

pattern for A as for M . As suggested by Figure II.4.3(a), due to the strongly loalized oupling

introdued by the disretization of the integral equations, the topologial approah an also provide

a good sparse approximation of A, by retaining just a few levels of neighboring edges for eah DOF

in the mesh. The numerial behavior of this approah is illustrated in Table II.4.8. In both ases

the resulting preonditioner is still robust and better suited for a fast multipole framework sine

it does not require knowledge of the loation of the largest entries in A.
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Part III

Parallel performane of partial

di�erential equation solvers
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Chapter 1

Parallel performane of

asynhronous iterations

1.1 Introdution

Asynhronous iterations by essene remove most of the synhronization points that usually are the

ritial aspets where partiular attention should be paid on when implementing algorithms on

parallel omputers. In onsequene their parallel implementation both on shared and distributed

memory omputers are straightforward. On a distributed memory omputer this observation is

only true if asynhronous ommuniation are supported by the message passing library available

on the target platform.

Unfortunately at the time the numerial experiments reported in this hapter were performed

no standard like PVM [11℄ or MPI [124℄ for message passing existed. Even worse the target parallel

distributed platform was a network of Transputer that only supported the OCCAM language [59℄.

This parallel omputing environment had strong impat on the parallel implementation design of

asynhronous algorithms beause:

1. the OCCAM language only implements synhronous ommuniation through bloking send

and reeive, based on rendez-vous C.S.P. [103℄,

2. the Transputer hip is omposed by a proessor plus its memory for the omputation and

four links to be physially onneted to at most four other Transputer enabling a Transputer

to have point to point ommuniation with only its four neighbors. This means that a

Transputer network is not a fully onneted distributed arhiteture and onsequently the

topology of the network should be tuned to the partiular algorithm to be implemented.

The main onsequenes on the design of asynhronous algorithms are:

1. an additional layer of ommuniation protool should be implemented to enable asynhronous

ommuniation among proessors that perform the relaxation iterations,

2. only 1D deomposition (strips) of the 2D domain an be onsidered, sine box deomposi-

tion would have required more than four links per Transputer when using our asynhronous

ommuniation protool or would have required to use more Transputer for managing om-

muniation than for the atual omputation.

This hapter is organized as follows. In Setion 1.2 we desribe the implementation of asyn-

hronous iterations on a Transputer network and report in Setion 1.3 omparisons of performane
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between parallel synhronous and asynhronous SOR iterations for the solution of the disretized

and linearized Hamilton-Jaobi-Bellman equations (II.1.7).

1.2 An implementation of asynhronous iterations on a Trans-

puter network

To implement asynhronous linear relaxations using the bloking ommuniation available in the

OCCAM language, we onsider a ring topology and split the set of Transputer in two subsets.

One subset performs the atual omputation, the other subset manages the ommuniation. Asyn-

hronous relaxations are then performed in suh a way that eah omputing Transputer solves

a loal problem for whih the boundary onditions on the interfaes with its neighbors hange

asynhronously while the iterations progress.

For 2D meshes this approah only enables to onsider strip deompositions and the mapping

of the non-overlapping subdomains on the Transputer ring is depited in Figure III.1.1 for a de-

omposition of the physial domain 
 into three subdomains (
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Figure III.1.1: Ring topology and mapping of the subdomains on the Transputer.

niation protool that has been implemented is suh that omputing Transputer send read/write

requests to their neighboring ommuniation Transputer to get updated boundary onditions on

the orresponding interfae or to provide their neighbors with up-to-date boundary onditions.

The asynhronous behavior is obtained thanks to a feature of the OCCAM language that en-

ables to wait simultaneously for several messages and as soon as a message has arrived a spei�

task an be started. This feature is very similar to the interruptions management using handlers

on miroproessors. Then handling the �rst reeived requests enables to simulate asynhronous

ommuniation between two omputing Transputer using bloking send and reeive, the prie to

pay is to only have half of the omputing resoure atually used for real omputation. The last

Transputer, T

6

in Figure III.1.1 that loses the loop, only performs the evaluation of the stopping

riterion using a token that irulates in a presribed order among the Transputer. The token is

omposed by two slots,
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a boolean desribing the onvergene status that informs the omputing Transputer that they

have to stop to iterate,

and a real enabling to evaluate the 2-norm of the residual.

The token evolves through the ring eah time a read or write request is made by the omputing

Transputer to the ommuniation node that holds the token. The slot ontaining the real value is

updated by the omputing Transputer that aumulate in this variable the 2-norm of the residual

omputed loally on the sub-domain it is in harge of. In this way when the token omes bak to

the Transputer evaluating the stopping riterion, the real slot ontains an estimation of the 2-norm

of the overall residual.

Using strip deomposition and lexiographial ordering of the �nite di�erene grid, the lassial

SOR relaxations an be parallelized using a pipelined approah. The parallel algorithm starts with

only the proessor working on 


1

that performs its �rst relaxation on its points; one ompleted,

it sends the values of the �rst iterates on its interfae with 


2

to the proessor in harge of 


2

that may starts its �rst iteration while proessor one performs its seond iterations, and so one

and so forth for the other proessors. At a given time all the proessors ompute what are the

iterates produed by a sequential SOR method but eah proessor have the iterates at a di�erent

iteration step. The SPMD pseudo ode of this parallel synhronous blok SOR implementation

an be desribed as follows:

nbiter = 0

REPEAT

*

revfrom(ipro-1)

Relax first disretization line

sendto(ipro-1)

*

Relax other disretization lines exept the last

*

if (nbiter.ne.0) then

revfrom(ipro+1)

Relax last disretization line

endif

*

sendto(ipro+1)

UNTIL onvergene

In the sequel this parallel implementation is referred to as the synhronous parallel SOR

method.

1.3 A omparison of synhronous and asynhronous parallel

iterations

In this setion we ompare the behavior of parallel asynhronous iterations versus parallel syn-

hronous iterations on the Hamilton-Jaobi-Bellman problem desribed in the previous part. In

Table III.1.1 we report the best observed performane on a network on Transputer for whih both

the partitioning and the over-relaxation parameter were tuned. The speed-up is lassially om-

puted as the ratio of the sequential elapsed time divided by the parallel elapsed time. The domain

is disretized using a uniform and regular 143� 143 grid. The super-linear speed-ups observed on
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# subdomains mode min/Max iterations Speed-up

1 sequential 241 1:00

2 synhronous 241 2:07

asynhronous 244/247 2:05

4 synhronous 241 4:10

asynhronous 241/291 3:88

8 synhronous 241 7:89

asynhronous 145/239 10:89

Table III.1.1: Performane observed on a Transputer network.

two subdomains and with four subdomains with the synhronous method are due to ahe e�ets.

But the super-linear speed-up with eight subdomains and asynhronous iterations is introdued by

the smaller iterations required by this method with respet to the sequential exeution.

Both the synhronous and asynhronous parallel algorithms desribed in the previous setion

an be implemented on a shared memory multiproessor using only simple parallelization diretives.

In Table III.1.2, we depit performane observed on a Alliant FX/80, that we used in dediated

mode to run those experiments.

# subdomains mode min/Max iterations Speed-up

1 sequential 241 1:00

2 synhronous 241 1:95

asynhronous 255/258 1:83

4 synhronous 241 3:64

asynhronous 238/271 3:51

8 synhronous 241 6:39

asynhronous 144/228 9:05

Table III.1.2: Performane observed on a Alliant FX/80.

These results show that the asynhronous iterations are potentially as fast and sometimes even

faster that the orresponding synhronous implementations. However their numerial behavior is

very diÆult and omplex to predit; it hanges from one omputer to another and even sometimes

two suessive exeutions in a dediated mode give di�erent onvergene behavior. In partiular

the optimal over-relaxation parameter on the Alliant and on the Transputer network for a given

deomposition are di�erent and hanges when the number of subdomains is hanged.

1.4 Conluding remarks

Extensive theoretial works have been done to analyze the onvergene of these methods and

reently new asynhronous shemes with \exible ommuniation" have been introdued [130℄ to

enable more asynhronism in blok algorithms. Nevertheless a hallenging study targeting a better

understanding and predition of their parallel numerial behavior would deserve to be developed to

make these methods more reliable for an usage in large simulation odes. For parallel linear algebra

solvers, it an also be though to use these asynhronous relaxation iterations as smoother in multi-

grid or to onsider few steps of asynhronous relaxations as a preonditioner of FGMRES [140℄ or
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GMRESR [153℄, that are Krylov solvers in whih it is allowed to take a di�erent preonditioner in

eah step.
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Chapter 2

Parallel performane of two level

non-overlapping domain

deomposition methods

2.1 Introdution

The full exploitation of the new omputer arhiteture with large proessor numbers requires

parallel salable implementations of numerially salable numerial tehniques. The numerial

salability of a numerial algorithm is haraterized by the independene of its numerial behavior

with respet to the problem size it enables to solve. For ellipti partial di�erential equations

solution, multigrid on smooth problems is numerially salable [100℄ and for general matries learly

diret methods are (when they are a�ordable). Multi-level domain deomposition methods quasi

satisfy this riterion in the sense that their numerial behavior is independent from the number

of subdomains and only weakly depends on the subdomain size. On the other hand, parallel

salable implementations are haraterized by quasi onstant elapsed time for performing one step

of the numerial algorithm when the overall problem size is inreased linearly with the number

of proessors used. Straightforward parallel implementations of expliit shemes for the solution

of time dependent problems, Jaobi/Rihardson stationary methods and unpreonditioned Krylov

method for solving disretized problem are salable (some attention should be paid to perform

the salar produts on large proessor number in this later ase, see for instane [125, 53, 71℄).

Variants of multigrid an give rise to salable parallel implementation and multi-level domain

deomposition tehnique are also good andidate for parallel salable implementations. In this

hapter, we desribe the implementation of a parallel salable two-level Shur omplement domain

deomposition. In Setion 2.2 the parallel implementation of some of two-level preonditioners we

have desribed in Part II Chapter 2 is presented. The parallel performane observed on a Cray

T3D is reported in Setion 2.3.

2.2 Parallel implementation

The independent solution of loal PDE problems expressed by the domain deomposition teh-

niques are partiularly suitable for parallel distributed omputation. In a parallel distributed

memory environment eah subdomain an be assigned to a di�erent proessor. With this map-

ping, all the basi linear algebra operations but two in the preonditioned onjugate gradient an

91
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be implemented either without or with only neighbor-to-neighbor ommuniation. The only two

steps that require global ommuniation are the dot produt omputation and the solution of the

oarse problem performed at eah iteration. In the sequel, we will desribe how the preonditioner

omposed by edge multiolor probed as loal preonditioner and any of the oarse omponent

desribed in Setion 2.3 an be eÆiently implemented on distributed memory platforms. We

will also desribe how the oarse problem solution an be implemented without any extra global

ommuniation within the iteration loop.

A time onsuming kernel involved at eah step of the preonditioned onjugate gradient is

the matrix vetor produt when the Shur omplement is not built expliitly, that is when only

the loal Dirihlet matries are fatorized and forward/bakward substitution steps are required at

eah iterations. To perform the Cholesky fatorization we have performed experiments with several

diret solvers. Form the simplest to the more sophistiated we have onsidered the band solver

from LAPACK [6℄, a skyline solver [79℄ and MA27 [62℄ from Harwell Subroutine Library [105℄.

The results observed on one proessor of the Cray T3D and reported in Table III.2.1 show

the lear superiority of MA27 with respet to the other two solvers both in term of memory

requirements and in term of omputational time.

Memory requirement Fatorization Solve

solver (in Mbytes) times (in se) times (in se)

Band 2.12 0.875 0.103

Skyline 1.31 1.034 0.061

MA27 0.70 0.409 0.027

Table III.2.1: Performane of the di�erent linear solvers on one 64� 64 subdomain.

In the sequel we will only report experiments with MA27 as loal diret solver.

2.2.1 Parallel edge probing implementation

A straightforward implementation of the multioloring probing tehnique is to perform a sequene

of matrix-vetor produt between the impliit Shur omplement matrix and eah set of (2d + 1)

probing vetors assoiated with eah interfae of the subdomains. This approah involved neighbor

to neighbor ommuniation between proessors for eah of the probing vetors on the shared

interfae and is referred to as the matrix-vetor approah. In order to redue the number of

ommuniation, the ommuniation involved for eah matrix-vetor produt an be postponed

until eah proessor has ompleted the omputation of its loal Shur omplement times all the

probing vetors de�ned on its interfae. With this approah only one ommuniation between

neighbors is required to ommuniate a matrix whih olumns are omposed by the loal matrix-

probing vetor results. This seond approah is referred to as the matrix-matrix implementation.

In both ases the amount of exhanged data is the same, but the seond one minimize the network

lateny overhead sine only one ommuniation is performed. In ounterpart the prie to pay is to

store all the partial vetor resulting from the loal Shur omplement matrix applied to the set of

probing vetors.

The advantage of the matrix-matrix implementation is illustrated in Table III.2.2 where we

report both the synhronization and ommuniation elapsed time in the olumn \omm", the

total elapsed time to onstrut the probed edge loal preonditioner and the perentage of the

ommuniation/synhronization with respet to the overall onstrution.
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matrix-matrix matrix-vetor

#pproessors oma. total % omm. total %

2� 2 32 235 13.4 42 256 16.4

2� 4 62 319 19.4 111 382 29.0

4� 4 67 373 17.9 163 484 33.6

4� 8 51 390 13.0 138 486 28.4

Table III.2.2: Elapsed time in milliseonds for ommuniation/synhronization and

omputation during the onstrution of a preonditioner using matrix-matrix and matrix-vetor

approahes, eah subdomain is a 64� 64 grid.

2.2.2 Parallel oarse omponent onstrution and appliation

The linear systems assoiated with the oarse spaes are muh smaller than the linear systems

assoiated with the loal Dirihlet problems, whih have to be solved when omputing the matrix

vetor produt by S. In this respet, we onstrut the oarse matrix A

0

one and assemble it on all

the proessors so that we an redundantly perform in parallel its solution at eah preonditioned

onjugate gradient iteration. Furthermore, we an take advantage of the struture of S and R

0

to

onstrut A

0

in parallel. Without any ommuniation eah proessor an ompute the ontribution

of its subdomain to the entries of A

0

via matrix-vetor and salar produts that only involve its

loal Shur omplement and the vetors whose support interept the boundary of its subdomain.

At this stage, all the proessors have some non-assembled entries of A

0

, a global sum redution

(MPI Allredue) enables them to assemble A

0

on all the proessors that an then fatorize it.

As the Shur omplement matrix is not assembled, the most expensive part of the onstrution

is the matrix vetor produt with the loal Shur omplement that requires the solution of the

Dirihlet problems. For eah proessor, the number of solutions is equal to the number of basis

vetor supports that interept the boundary of the subdomain the proessor is in harge of. For a

box-deomposition of a uniform �nite elements or �nite di�erenes mesh, the number of Dirihlet

problem solutions to be performed by an internal subdomain is:

� four for the vertex-based oarse-omponent,

� eight for the subdomain based oarse-omponent (that an redue to four for a �ve point

�nite di�erene sheme as the row in A assoiated to the ross points is unhanged in S),

� four for the edge based oarse-omponent.

Having made the hoie of a redundant solution of the oarse omponent on eah proessor,

we an exploit further this formulation to avoid introduing any new global synhronization in the
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preonditioned onjugate gradient (PCG) iterations desribed below.

x

(0)

= 0; r

(0)

= b

repeat

z

(k�1)

=Mr

(k�1)

(III.2.1)

if k = 1 then

p

(1)

= z

(0)

else

�

(k�1)

= z

(k�1)

T

r

(k�1)

=z

(k�2)

T

r

(k�2)

(III.2.2)

p

(k)

= z

(k�1)

+ �

(k�1)

p

(k�1)

(III.2.3)

endif

q

(k)

= Sp

(k)

�

(k)

= z

(k�1)

T

r

(k�1)

= p

(k)

T

q

(k)

x

(k)

= x

(k�1)

+ �

(k)

p

(k)

r

(k)

= r

(k�1)

� �

(k)

q

(k)

until onvergene

The steps involving a potential global synhronization are boxed, while the alulation of Mr

and Sp only involve neighbor to neighbor ommuniation.

If we now unroll Equation (III.2.1) in the PCG algorithm using the general de�nition of the

preonditioner, we have
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Eah term of the summation in Equation (III.2.4) is omputed by one proessor with possible

one neighbor-to-neighbor ommuniation. Furthermore, the numerator of Equation (III.2.2) an

also be rewritten as
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The right-hand side of (III.2.5) has two parts. The �rst is naturally loal beause it is related to

the diagonal blok preonditioner. The seond, with the presented formulation, is global but does

not require any new global redution. R

0

r

k

is atually omposed of entries that are alulated

in eah subdomain (\interfae" oarse spae) or group of neighboring subdomains (\vertex" and

\domain" oarse spaes). After being loally omputed, the R

0

r

k

entries are gathered on all the

proessors thanks to the redution used to assemble eah loal partial dot produt (R

i

r

k

;

~

S

�1

ii

R

i

r

k

).

At this stage the solution A

�1

0

R

0

r

k

an be performed redundantly on eah proessor as well as �

in Equation (III.2.2) an be omputed by eah proessor.

Rewriting these steps in the iteration loop allows us to introdue the oarse omponent without
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any extra global synhronization. With this approah, we avoid a well-known bottlenek when

using Krylov methods on parallel distributed memory omputers.

2.3 Parallel experiments

We investigate the parallel salability of the proposed implementation of the preonditioners. For

eah experiment, we map one subdomain on eah proessor of the parallel omputer. In the

sequel, the number of subdomains and the number of proessors will be always the same. The

target omputer is a 128-node T3D loated at CERFACS, using MPI as message passing library.

The fatorization of the tridiagonal probed matries, used in the loal part of the preonditioners

is performed using a LAPACK [6℄ band solver. For all the experimental results reported in the

next setion, the onvergene of the preonditioned onjugate gradient method is attained when

the 2-norm of the residual of the urrent iteration normalized by the 2-norm of the right hand side

is less than 10

�6

, the initial guess x

0

for the onjugate gradient iterations was the null vetor. All

the experiments were performed in double preision arithmeti.

To study the parallel behavior of the ode, we report the maximum elapsed time (in seonds)

spent by one of the proessors in eah of the main steps of the domain deomposition method

when the number of proessors is varied for solving the standard Poisson's equation. The �rst row,

entitled \init.", orresponds mainly to the time for fatorizing the matrix assoiated with the loal

Dirihlet problems; \setup loal" is the time to onstrut and fatorize the probing approxima-

tions

~

S

ii

; \setup oarse" is the time required to onstrut and fatorize the matrix assoiated with

the oarse problem; \iter" is the time spent in the iteration loop of the preonditioned onjugate

gradient. Finally, the row \total" permits to evaluate the parallel salability of the omplete meth-

ods (i.e. numerial behavior and parallel implementation), while \time per iter." only illustrates

the salability of the parallel implementation of the preonditioned onjugate gradient iterations.

The elapsed time orresponds to a maximum and there is some unbalane among the proessors

in di�erent kernels. Therefore the reported total time di�ers from the sum of the time for eah

individual kernel.

To illustrate the extra ost introdued by the onstrution and the solution of the oarse

problem at eah iteration, we give in Tables III.2.3 and III.2.4 the time spent in eah step of the

algorithm with (left olumn) and without (right olumn) the onsidered oarse omponent of the

preonditioner.

We report experiments with the domain-based oarse spae in Table III.2.3. Results with the

vertex-based oarse spae are displayed in Table III.2.4. For those experiments, we use MA27 to

solve the loal Dirihlet problems de�ned on 100� 100 grids. That subdomain size was the largest

we ould use aording to the 128 MB memory available on eah node of the target omputer.

# pros 4 8 16 32 64 128

init. 2.58 2.58 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57

setup loal 0.99 0.80 1.00 1.01 1.40 1.31 1.40 1.30 1.40 1.31 1.40 1.32

setup oarse 0.25 0.00 0.48 0.00 0.86 0.00 0.85 0.00 0.87 0.00 0.93 0.00

iter. 1.84 1.98 2.55 3.93 3.01 5.14 4.12 7.16 3.79 9.80 4.91 13.26

total 5.33 5.65 6.23 7.26 7.14 8.50 8.25 10.51 7.93 13.13 9.14 16.60

# iter. 16 20 22 33 26 41 35 58 32 80 40 109

time per iter. 0.12 0.12 0.12 0.12 0.12 0.13 0.12 0.12 0.12 0.12 0.12 0.12

Table III.2.3: Elapsed time in eah main numerial step varying the number of proessors with

100� 100 points per subdomain using the domain based oarse spae.
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# pros 4 8 16 32 64 128

init. 2.58 2.58 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57

setup loal 0.66 0.80 0.94 1.01 1.24 1.31 1.24 1.30 1.24 1.31 1.25 1.32

setup oarse 0.72 0.00 0.74 0.00 0.90 0.00 0.90 0.00 0.92 0.00 1.07 0.00

iter. 1.85 2.31 1.97 3.93 2.10 5.14 2.36 7.16 2.03 9.80 2.45 13.26

total 5.61 5.65 6.09 7.26 6.65 8.50 6.91 10.51 6.59 13.13 7.16 16.60

# iter. 16 20 17 33 18 41 20 58 17 80 20 109

time per iter. 0.12 0.12 0.12 0.12 0.12 0.13 0.12 0.12 0.12 0.12 0.12 0.12

Table III.2.4: Elapsed time in eah main numerial step varying the number of proessors with

100� 100 points per subdomain using the vertex based oarse spae.

We an �rst observe that the numerial behavior of those preonditioners is again independent

of the number of subdomains. It an be seen that the parallel implementation of the Shur

omplement method with only a loal preonditioner sales perfetly as the time per iterations

is onstant and does not depend on the number of proessors (i.e. 0.115 seonds on 4 proessors

and 0.118 on 128 nodes both �gures were rounded to 0.12 seonds when reported in Table III.2.3

and III.2.4).

The above salable behavior is also observed when the oarse omponents, vertex or subdo-

main, are introdued. For instane, with the vertex-based preonditioner, the time per iteration

grows from 0.116 seonds on 4 proessors up to 0.122 seonds on 128 proessors (again rounded

to 0.12 seonds in Table III.2.4). There are two main reasons for this salable behavior. First,

the solution of the oarse problems is negligible ompared to the solution of the loal Dirihlet

problems. Seond, the parallel implementation of the oarse omponents does not introdue any

extra global ommuniation.

In any ase the methods sale fairly well, when the number of proessors grows from 8 (to

solve a problem with 80 000 unknowns) up to 128 (to solve a problem with 1.28 million unknowns).

The ratios between the total elapsed time expended for running on 128 and on 8 proessors are

1.18, with the vertex-based oarse preonditioner, and 1.47, with the domain-based one. That

latter larger value is only due to an inrease of the number of iterations.

One of the most expensive kernels of this method is the fatorization of the loal Dirihlet

problems. Therefore, the tremendous redution in the number of iterations indued by the use

of the oarse alternatives - �ve times less iterations for the vertex-based preonditioner - is not

reeted diretly on a redution of the total time. The total time is an aÆne funtion of the

number of iterations with an inompressible overhead due to the Cholesky fatorization at the

very beginning of the domain deomposition method.

2.4 Conluding remarks

We have presented two-level preonditioners for Shur omplement domain deomposition meth-

ods in two dimensions built by ombining a variant of the of the loal omponent of the BPS

preonditioner with a set of new algebrai oarse spae omponents.

Those numerial methods are targeted for parallel distributed memory omputers. In this

respet, we have proposed a message passing implementation that does not require any new global

synhronization in the preonditioned onjugate gradient iterations, whih is a well-known bottle-

nek for Krylov methods in distributed memory environments. We illustrated that the numerial

salability of the preonditioners ombined with the parallel salability of the implementation result

in a set of parallel salable numerial methods.



Chapter 3

Preliminary performane of

overlapping domain deomposition

in omputational uid dynamis

3.1 Introdution

The motivations to move from sequential to parallel omputing are mainly twofold, that are either

omputing faster or omputing larger. Depending on the objetives, the riterion to evaluate the

quality of the parallel implementation is either the lassial speed-up or the saled speed-up [99℄.

The speed-up is usually de�ned by

T

1

T

p

, where T

i

denotes the elapsed time on i proessors to solve

the target problem. It measures the gain introdued by the parallelization for solving a �xed size

problem when the number of proessors is varied. Using this de�nition, the speed-up is theoretially

bounded by p when p proessors are used. However super-linear speed-ups may be observed sine

inreasing the number of proessors usually implies dereasing the amount of data handled by

eah proessor. This smaller amount of data better �t into the memory hierarhy of the proessors

resulting in faster omputation. To overome this drawbak, the saled speed-up an be onsidered.

It is de�ned by

pT

�

1

T

�

p

where T

�

p

is the time required to solve a problem whih size is proportional

to the number of proessors p. This latter riterion is usually preferred to evaluate the gain when

parallel omputing is onsidered to solve problems whose size is bounded by the memory available

on the target parallel platform. The ideal situation is to have T

�

1

� T

�

p

, that is the ase when a

numerially salable algorithm an be eÆiently implement on a parallel omputer platform. It

an be mentioned that some parallel numerial algorithms are perfetly salable in term of speed-

up and poorly salable in term of saled speed-up. A lass of suh algorithms that exhibit this

property are the expliit shemes for solving time dependent problems. They are straightforward

to parallelize eÆiently and linear speed-ups an be observed. Unfortunately in order to ensure

the onvergene stability of the numerial sheme the disretization time step should be redued

when the problem size is inreased to evaluate the saled speed-ups. This implies to perform more

time steps to ompute the solution at a given time and then leads to poor saled speed-ups [84℄.

This fat mainly highlight the non numerial salability of the expliit shemes when the mesh is

re�ned.

In this hapter we mainly address the �rst situation that is omputing faster the solution

of a �xed size problem. As already mentioned, this study was developed in the framework on

an industrial ollaboration. The primary objetive of this work was to redue the elapsed time
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required to ompute the steady state solution of the Navier-Stokes equations on a set of large,

but not huge problems, that might be takled on a moderate number of proessors. Therefore we

only onsider the lassial speed-up to evaluate the eÆieny of the parallel implementation. In

addition, sine this study was developed in a limited time period, the experimental results reported

here should be onsidered as preliminary results and further investigations would deserve to be

performed.

3.2 Parallel performane

In the sequel we report the speed-ups observed on the a IBM-SP2 using MPI as message passing

library where we always assign one proessor per subdomain. The test problem is the ONERA M6

wing, with a mesh omposed by 77000 verties and deomposed into 4, 8, 16 or 32 subdomains.

The restart for GMRES was equal to 20. The tolerane for the stopping riterion is de�ned by the

ratio of the 2-norm of the residual divided by the 2-norm of the right hand side and is set to 10

�1

.

All the experiments were performed in double preision arithmeti. Finally, beause the problem

was too large to �t into the memory of a single node of the SP2 we use the elapsed time on four

proessors to de�ne the speed-up. That is the speed-up on p proessors is evaluated by

T

4

T

p

.

The implementation of the additive Shwarz variants as preonditioner indued a signi�ant

redution of the number of iterations but makes the iteration more ostly both in term of memory

spae and CPU time. The preonditioner should be built prior the beginning of the GMRES

iterations and applied at eah step of the onstrution of the Krylov basis. If we onsider the 4

proessor example whih history onvergene is depited in Figure II.3.2, M

ILU(0)�dAS

enables to

onverge in about �ve times less iterations than the original ode that does not implement any

preonditioner. However the overall omputational time is only redued by a fator of about four,

dereasing from 7500 time units down to 2000.

# subdomains 4 8 16

Speed-up 1 1.86 3.44

Table III.3.1: speed-up using M

ILU(0)�dAS

- CFL=50.

# subdomains 4 8 16 32

Speed-up 1 1.99 3.97 7.02

Table III.3.2: speed-up using M

ILU(0)�dRAS

- CFL=50.

Table III.3.1 displays the speed-ups observed using theM

ILU(0)�dAS

variant as preonditioner.

The parallel performane ofM

ILU(0)�dRAS

are depited in Table III.3.2. For both preonditioners,

the good salability of the speed-ups is partially due to a better memory/ahe aess resulting

from the redution of the loal problem size handled by the proessors. For M

ILU(0)�dAS

, this

memory e�et partly alleviates the extra ost due to the slight inrease of the number of itera-

tions when the number of proessors is inreased; as it an be seen in Figure II.3.3. In ontrast

with M

ILU(0)�dRAS

, where the surprising derease of the overall number of Krylov steps (see Fig-

ure II.3.5) ombined with the better memory aess leads to remarkable observed speed-ups on

eight and sixteen proessors and reasonable good speed-up on thirty two proessors.
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3.3 Conluding remarks

The results presented in this hapter show that in a relative short period of time and moderate man-

month e�ort, domain deomposition tehniques an be implemented in an industrial ode. These

preonditioners enable to redue the elapsed time required to perform numerial simulations.
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Part IV

Conlusions and future work

101





Future work 103

At the time of the writing, this doument is a snapshot of ongoing works that are still on-

tinuing to evolve and be developed. We review now the researh diretions that naturally emerge

from this work.

In the framework of Jean-Christophe Rioual PhD thesis at CERFACS, that takes plae within

a joint ollaboration with INRIA, non-overlapping domain deomposition tehniques are used to

parallelize a 2D devie modeling ode based on unstrutured mixed �nite element meshes [101℄.

Two-level preonditioners, inluding some of those desribed in this doument, are investigating to

design a salable parallel simulation ode. This work intensively uses the MUMPS ode [4℄ sine

preliminary results indiate that the only loal preonditioner that is robust enough in that ontext

is the subdomain based that requires the expliit omputation of the loal Shur omplement

matries.

It beomes more and more ommon now that one iterative solver has to be embedded in an

outer one: this is the ase, for instane, for solving eigenproblems with inverse iterations or with

a Krylov method with invert. The question then arises: what is the best strategy for stopping

the inner iterations to ensure the onvergene of the outer iterations while minimizing the global

omputational ost ? Reently in the late nineties, the astonishing behavior of embedded solvers

involving a Krylov outer proess has been emphasized [22, 23, 95, 96℄. Surprisingly, it is observed

that the �rst Krylov vetors need to be known with full auray, and this auray an be

signi�antly relaxed as the onvergene proeeds. In [95℄, inner-outer iterations for the Conjugate

Gradient are studied and appliations are suggested suh as saddle point problems. The work done

in [22℄ on Krylov methods with inexat matrix-vetor produts has been extended to the ontext of

Shur omplement domain deomposition tehniques where the loal Dirihlet problems are solved

with onjugate gradient iterations. Some further investigations would deserve to be performed to

better understand this behavior and make the preliminary results reported in [24℄ appliable in a

simulation ode.

The numerial salability of the CFD solver onsidered in this doument should bene�t from

the use of an additional oarse spae omponent in the preonditioner. Another alternative ould

be to use a non-overlapping Shur omplement tehnique with inexat loal solvers to design a

salable preonditioner. The idea is similar to the one presented in [143℄ but tuned to the �nite

element ontext. Some enouraging preliminary experiments have been performed on a salar

equation using this inexat Shur omplement preonditioner for FGMRES, but its adequation in

a CFD ontext needs to be assessed.

For the eletromagnetism appliation, we intend to study the numerial salability of the

Frobenius norm minimization preonditioner when the size of the saterred objet is inreased or

when the wavelength of the illuminating wave is dereased resulting in larger linear systems. In this

respet, we are implementing this preonditioner within a omputational eletromagnetism ode

that uses a fast multipole tehnique to perform the matrix-vetor produt. This work is ontinuing

to be developed within the PhD thesis of Bruno Carpentieri at CERFACS. The ombination of

the fast multipole tehnique and the Frobenius norm minimization preonditioner should result in

an eÆient parallel ode for solving huge problems.

The next improvement stems from addressing an emerging onern in omputational eletro-

magnetism. The objetive is to solve linear systems with multiple right-hand sides using iterative

shemes. Eah right-hand side orresponds to illuminating an objet with various waves that have

the same wavelength but orrespond to di�erent angles of inidene. For this purpose, blok Krylov

tehniques will be studied. This work is being developed in the ontext of a joint ollaboration

with Aerospatiale through the PhD thesis of Julien Langou at CERFACS. One of the numerial

diÆulties in this ontext is to be able to detet and manage the situation where one right-hand

side or a linear ombination of right-hand sides have onverged before the others.

Those subjets will ertainly onstitute most of my near future researh ativities that will
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probably be developed on the emerging parallel platforms that are the lusters of symmetri multi-

proessors (SMP). On these parallel platforms it is not lear whether one should mix the two

parallel paradigms, that are shared memory programming, through OpenMP diretives, and mes-

sage passing, via MPI, or if a omplete distribute memory approah will still enable to fully exploit

the apabilities of those arhitetures for the lass of algorithms disussed in this doument.
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�eme

et 27

�eme

setion.

1991 Dotorat en Informatique et Math�ematiques Appliqu�ees de l'Institut National Polyteh-

nique de Toulouse.
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Depuis Otobre 1993, Cherheur Senior dans l'�equipe Algorithmes Parall�eles du CERFACS

(Centre Europ�een de Reherhe et de Formation Avan�ee en Calul Sienti�que), Toulouse.

D'Otobre 1991 �a Otobre 1993, Cherheur post-dotoral au CERFACS.

De Septembre 1988 �a Mai 1991, Th�ese de Dotorat INPT en informatique sur l'�etude
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ACTIVIT

�

ES DE RECHERCHE

Probl

�

ematique

L'�evolution permanente de l'arhiteture des alulateurs sienti�ques et des paradigmes de pro-

grammation assoi�es n�eessitent la remise en ause �a la fois des algorithmes utilis�es en simulation

num�erique et de leur implantation. C'est dans e ontexte que s'est d�evelopp�ee ma reherhe, plus

sp�ei�quement foalis�ee sur des tehniques de r�esolution it�erative de syst�emes lin�eaires denses et

reux de grande taille pour des arhitetures de alulateurs multiproesseur �a m�emoire partag�ee

et distribu�ee. Je me suis notamment int�eress�e �a la r�esolution de syst�emes lin�eaires issus de la

disr�etisation de probl�emes aux d�eriv�ees partielles et notamment aux m�ethodes de d�eomposition

de domaines partiuli�erement adapt�ees �a l'arhiteture des alulateurs �a m�emoire distribu�ee. Mon

travail dans e ontexte onsiste en l'�etude du omportement num�erique de nouveaux pr�eondition-

neurs et de l'implantation de es tehniques sur des arhitetures parall�eles pour en v�eri�er leur

pertinene d'un point de vue performane informatique. Comme exemples d'appliations dans

lesquelles j'ai pu mettre en �uvre e type de m�ethodes, je iterai l'a�erodymanique, la m�et�eorologie

ou la simulation de omposants semi-onduteurs.

Collaborations

� Internationales

Depuis 1994 Collaboration ave R. Tuminaro, herheur �a Sandia National Laboratories,

Livermore (U.S.A), sur des tehniques de d�eomposition de domaines et de pr�eondition-

nement.

1996-1997 Responsable pour le CERFACS de la ollaboration CERFACS-CRS4 dans le

adre des projets bilat�eraux frano-italien Gallil�ee. Le th�eme de ette ollaboration

�etait l'utilisation de tehniques d'alg�ebre lin�eaire parall�eles en simulation num�erique de

pollution des sols par des ontaminants himiques.

1994-1996 Partiipant au projet Esprit HCM intitul�e Iterative Methods. Ce r�eseau de

reherhe oordonn�e par le CERFACS avait pour objetif l'�etude de nouvelles tehniques

pour la r�esolution it�erative de syst�emes lin�eaires reux de grande taille ave une attention

partiuli�ere port�ee au as des syst�emes lin�eaires non-sym�etriques. Les autres partenaires

de e r�eseau de reherhe �etaient le CEA (Frane), le CRS4 (Italie), Dassault Aviation

(Frane), IAN-CNR (Italie) et Utreht University (Pays Bas).

1994-1997 Partiipant au projet Esprit HCM intitul�e Advaned �nite element teh-

niques IAN-CNR (Italie), National Tehnial University of Athens (Gr�ee), Instito Su-

perior Tenio (Portugal), Universitat Politenia de Catalunya (Espagne), Heriot-Wat

University (Angleterre), University of Wales (Angleterre), University of Essen (Alle-

magne).

� Nationales

Depuis 1996 Responsable d'une ollaboration ave l'INRIA-Roquenourt sur le th�eme

de la d�eomposition de domaine ave appliation �a la simulation num�erique de semi-

onduteurs. Les orrespondants INRIA sur ette ollaboration sont P. Le Talle et A.

Marroo.

Depuis 1991 Collaboration ave les herheurs du Projet Algorithmes Parall�eles et eux

des Projets appliatifs du CERFACS.
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R

�

ealisations logiielles

Mon travail est indissoiable d'une pratique logiielle qui onduit �a des d�eveloppements d'outils

pour la simulation num�erique. Certaines des implantations logiielles sur lesquelles j'ai travaill�e

ont pu être pla�ees dans le domaine publi �a la disposition de la ommunaut�e sienti�que �a des �ns

non-ommeriales. Ces outils logiiels ont �et�e on�us pour être exploit�es indi��eremment sur des

alulateurs salaires ou vetoriels ou sur des multiproesseurs �a m�emoire partag�ee ou distribu�ee.

Les odes soure ainsi que les manuels d'utilisation sont r�ef�eren�es et aessibles sur le Web:

http://www.erfas.fr/algor/Softs/

2000 \A Set of Conjugate Gradient Routines for Real and Complex Arithmetis" r�ealis�e en ol-

laboration ave V. Frayss�e.

1998 \A Set of Flexible-GMRES Routines for Real and Complex Arithmetis" r�ealis�e en ollab-

oration ave V. Frayss�e et S. Gratton.

1997 \A Set of GMRES Routines for Real and Complex Arithmetis" r�ealis�e en ollaboration

ave V. Frayss�e et S. Gratton. Cet ensemble logiiel est en ours d'aquisistion par une

soi�et�e de servies allemande pour son int�egration dans un logiiel ommerialis�e de alul

de strutures.

Enadrement sientifique

En tant que herheur senior dans le Projet Algorithmes Parall�eles du CERFACS depuis 1993,

je partiipe �a la oordination sienti�que quotidienne d'une �equipe d'une quinzaine de herheurs

(dotorants et post-dotoraux), sous la responsabilit�e de Iain S. Du�. Par ailleurs, le Projet

Algorithmes Parall�eles aueille r�eguli�erement des �etudiants ENSEEIHT de la �li�ere informatique

et math�ematiques appliqu�ees dont le stage se d�eroule sur toute l'ann�ee universitaire �a raison de

trois jours par semaine au CERFACS.

De fa�on plus sp�ei�que, j'ai eu �a enadrer diretement les personnes suivantes:

Post-dos et ing�enieurs d'�etudes

1997-1999 Ph. Kloos, ing�enieur d'�etude CERFACS, qui a travaill�e durant deux ann�ees dans

le groupe M�eso-NH du CERFACS.

1998 R. Guivarh, qui, en tant que post-dotorant au sein du groupe de travail M�eso-NH, a

ontribu�e au d�eveloppement de la biblioth�eque de gestion transparente du parall�elisme.

1996-1998 B. Hamma, qui a travaill�e pendant deux ans sur les sujets li�es au projet ODESIM

(parall�elisme et optimisation).

1995 M.M. Magolu, qui, en tant que post-dotorant, a travaill�e sur la parall�elisation du

solveur lin�eaire du ode N3S dans le adre du projet Esprit HPCN3S.

Dotorants

Depuis Otobre 1999 grâe �a une d�erogation de l'�eole dotorale de Math�ematiques ap-

pliqu�ees de Toulouse j'assure la diretion sienti�que de la th�ese de J. Langou. Le sujet

de ette th�ese �nan�ee par Aerospatiale est le d�eveloppement de solveur it�eratifs multi-

seond membres pour la r�esolution de syst�emes lin�eaires en aoustique et �eletromagn�e-

tisme issus d'une formulation par �equation int�egrale.

Depuis F�evrier 1999 j'assure la diretion sienti�que de la th�ese de J.-C. Rioual en ol-

laboration ave P. Amestoy (ENSEEIHT). Le sujet de ette th�ese est le d�eveloppement

de pr�eonditionneurs parall�eles et robustes pour les syst�emes lin�eaires en simulation de

semi-onduteurs. Ce travail de th�ese s'insrit dans le adre de la ollaboration ave

l'INRIA.
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Depuis 1998 onjointement ave I. S. Du�, j'assure l'enadrement sienti�que des travaux

de B. Carpentieri qui travaille sur des tehniques de pr�eonditionnement pour la r�esolution

it�erative de syst�emes lin�eaires omplexes denses de grande taille.

1994-1997 j'ai assur�e la diretion sienti�que de la th�ese de L. Carvalho qui �etait on-

sar�ee �a l'�etude et l'implantation parall�ele de pr�eonditionneurs �a deux niveaux pour

des m�ethodes de d�eomposition de domaines sans reouvrement. L. Carvalho a soutenu

sa th�ese en Otobre 1997 devant le jury ompos�e de P. Le Talle (Pr�esident et rappor-

teur), G. Meurant (Rapporteur), I.S. Du�, N. Maulan, J. Noailles, et moi-même.

Stagiaires 3

�eme

yle

1999-2000 F. Guevara, �el�eve 3

�eme

ann�ee ENSEEIHT + DEA, travaille sur des tehniques

de pr�eonditionnement multi-niveau pour les tehniques de d�eomposition de domaines

sans-reouvrement.

1997-1998 D. Lugato, �el�eve 3

�eme

ann�ee ENSEEIHT, qui a �et�e int�egr�e dans l'�equipe travail-

lant sur le d�eveloppement de la biblioth�eque de gestion du parall�elisme pour le projet

M�eso-NH.

1997-1998 G. Torres, �el�eve 3

�eme

ann�ee ENSEEIHT + DEA, qui a parall�elis�e, via des teh-

niques de sous-domaines sans reouvrement, un ode INRIA de simulation de semi-

onduteurs (�el�ements �nis mixtes non-strutur�es). Il a en partiulier �etudi�e le omporte-

ment num�erique de di��erents pr�eonditionneurs loaux pour le ompl�ement de Shur.

Ses r�ealisations ont servi de point de d�epart pour le travail de th�ese de J.-C. Rioual.

1997-1998 B. Thomas, �el�eve 3

�eme

ann�ee ENSEEIHT, a travaill�e sur le portage sur PC

sous Windows-NT et sur l'am�elioration du gestionnaire de tâhes parall�eles �erit par

L. Hamel. Ces travaux ont �et�e en partie pr�esent�es au ours d'une ommuniation �a

EuroPar'99.

1997-1998 Y. Thiaudi�ere, �el�eve 3

�eme

ann�ee ENSEEIHT, a enrihi le gestionnaire de tâhes

parall�eles sur r�eseau de stations Unix en int�egrant la possibilit�e de g�erer deux niveaux

de parall�elisme (tâhes prinipales g�en�erant des sous-tâhes). Ces travaux ont �et�e en

partie pr�esent�es au ours d'une ommuniation �a EuroPar'99.

1996-1997 F. Saab, �el�eve 3

�eme

ann�ee ENSEEIHT, qui a travaill�e sur di��erentes strat�egie de

parall�elisation d'un solveur de Poisson rapide sur mahines �a m�emoire distribu�ee.

1995-1996 L. Hamel, �el�eve 3

�eme

ann�ee ENSEEIHT + DEA qui a travaill�e sur un sujet

traitant de alul h�et�erog�ene sur r�eseau de stations Unix et a r�ealis�e un gestionnaire de

tâhes parall�eles. Ces travaux ont �et�e en partie pr�esent�es au ours d'une ommuniation

�a HPCN'96.

Stagiaires 2

nd

yle

Juillet - Septembre 1999 J.M. Donaville a e�etu�e son stage de 2

�eme

ann�ee ENSIMAG sur

l'�etude d'une variante de la m�ethode altern�ee de Shwarz util�ee omme pr�eonditionneur.

Juillet - Septembre 1999 G. Lartigue a e�etu�e son stage de 2

�eme

ann�ee ENSEEIHT,

�li�ere hydraulique sur un sujet que j'ai propos�e et dont l'enadrement �etait assur�e en

ollaboration ave un post-dotorant de l'�equipe CFD du CERFACS. Ce sujet portait

sur un maquettage d'une variante de la m�ethode de Shur ave solveurs loaux inexats

en vue de son implantation dans un ode industriel Navier-Stokes 3D non-strutur�e.

Organisation de onf

�

erenes

- Membre du omit�e sienti�que des onf�erenes VePar'96, VePar'98 et VePar'2000.
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- 2000 Membre du omit�e sienti�que de la onf�erene HPCN'2000.

- 1999 Membre du omit�e d'organisation d'EuroPar'99 onjointement organis�e par le CERFACS

et l'ENSEEIHT. Loal-hair d'un topi d�edi�e aux projets europ�eens et o-�editeur des pro-

eedings de la onf�erene publi�e par Springer Verlag dans la s�erie \Leture notes in omputer

siene".

- 1997 Membre du omit�e sienti�que de la onf�erene PVM-MPI Europe'97.

- Sept. 1995 - Sept. 1996 Membre du omit�e d'organisation de l\International Linear Algebra

Year" (s�erie de 4 workshops) organis�ee par le CERFACS.

- Juin 96 Co-organisation ave C. Douglas (IBM Yorktown et Yale University) du workshop \It-

erative Methods" dans le adre de l'\International Linear Algebra Year" et \guest editor" de

la s�eletion des papiers de e workshop publi�es dans BIT.

- Mai 1996 Organisation du workshop ODESIM auquel �etaient invit�es les industriels potentielle-

ment int�eress�es par l'outil logiiel r�esultant du projet.

- Sept. 1996 Co-organisation ave I.S. Du� d'un mini-symposium �a ECCOMAS'96 intitul�e \Si-

enti� omputing at CERFACS".

Referee

Pour des revues sienti�ques internationales : Computer Physis Communiations, Journal

of Computational Physis, Int. J. of Superomputer Appli. and High Perf. Comp., SIAM

J. Si. Comp., BIT.

Pour des onf�erenes internationales : VePar, PVM-MPI, Copper Mountain, HPCN, Con-

Par V, Civil-Comp, Leslie Fox Prie.

Expert aupr�es de la Commission Europ�eenne pour les projets \Long Term Researh" du

4

�eme

PCRD et les projets \Tehnologie de l'Information" du 5

�eme

PCRD.

ACTIVIT

�

ES CONTRACTUELLES

La reherhe de �nanements, et le suivi tehnique, administratif et budg�etaire de ollabora-

tions ontratuelles ave l'industrie sont des ativit�es fortement enourag�ees au CERFACS, dans

le but d'obtenir des ressoures ext�erieures permettant d'arô�tre le potentiel humain et mat�eriel

onsar�e aux reherhes plus amont. Dans la mesure du possible, nous nous e�or�ons de onevoir

des ollaborations industrielles dont le ontenu sienti�que exploite et voire fait progresser l'�etat

de nos reherhes.

1999-2002 Responsable sienti�que de la ollaboration Aerospatiale CCR (Centre Commun de

Reherhes) sur \l'�etude de solveurs parall�eles robustes et eÆaes pour la r�esolution de

syst�emes lin�eaires ave seonds membres multiples en �eletromagn�etisme et aoustique ex-

ploitant la m�ethode multipôle". Cette ollaboration est mise en plae au travers d'une th�ese

�nan�ee par Aerospatiale et enadr�ee onjointement par le CERFACS et Aerospatiale.
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1996-2000 Responsable sienti�que et animateur du groupe de travail CERFACS dans le adre de

la ollaboration ave M�et�eo-Frane pour la \Parall�elisation du ode M�eso-NH sur mahines

�a m�emoire distribu�ee". Ce ode de reherhe en m�et�eorologie m�eso-�ehelle est d�evelopp�e

onjointement par le CNRM (Centre National de Reherhes de M�et�eo-Frane) et le Labora-

toire d'A�erologie. Dans e ontexte une biblioth�eque enapsulant les �ehanges de messages

et masquant l'utilisation du parall�elisme �a �et�e sp�eif�ee puis implant�ee. Par ailleurs, diverses

strat�egies de parall�elisation ont �et�e �etudi�ees a�n de porter le solveur de Poisson rapide im-

plant�e omme pr�eonditionneur dans le solveur de Pression.

Les r�esultats de es travaux ont fait l'objet de deux ommuniations �a Euro-Par'99 et d'une

ommuniation au olloque d'analysse num�erque CANUM'99.

1998-1999 Co-ordinateur du projet Esprit PST intitul�e MYSHANET pour \Parallel Multi-

body simulation for shok absorber design on PC network". Co-ordonn�e par le CERFACS,

e projet s'insrivait dans le adre des projets europ�eens de transfert de tehnologie vers les

PME/PMI. L'objetif de e projet �etait de porter sur r�eseau de PC sous windows le ode

HIPERCOMBATS en vue de son utilisation pour le oneption d'amortisseurs. Les autres

partenaires de e onsortium �etaient : le CEIT (entre de reherhes, Espagne), Donerre

Amortisseur (industriel, Frane) et Marzohi (industriel, Italie).

Les r�esultats de es travaux ont fait l'objet d'une ommuniation �a Euro-Par'99.

1998-1999 Partiipant �a une ollaboration ave Dassault Aviation dont le but �etait d'�etudier des

pr�eonditioneurs parall�eles pour a�el�erer la onvergene des syst�emes lin�eaires intervenant

dans le sh�ema impliite implant�e dans un ode Navier-Stokes tridimensionnel �el�ements �nis

non-strutur�es. Cette �etude a �et�e r�ealis�ee en ollaboration ave l'�equipe CFD (Computational

Fluid Dynami) du CERFACS qui en avait la responsabilit�e.

Les r�esultats de es travaux ont fait l'objet de deux ommuniations, une �a Euro-Par'99 et

une �a Parallel CFD'99.

1996-1998 Responsable CERFACS du projet Esprit HPCN intitul�e ODESIM signi�ant \Op-

timum DESIgn of Multi-body sytems". Ce projet �etait oordonn�e par le CEIT ave la

partiipation de CASA (industriel, Espagne), CR Fiat (industriel, Italie), CERFACS, Matra-

Datavision (industriel, Frane) et Siemens (industriel, Allemagne). Le but de e projet �etait

de montrer que des outils de simulation multi-orps et de CAO pouvaient être int�egr�es a�n

de permettre de l'optimisation de m�eanismes multiorps en utilisant les ressoures de alul

de r�eseaux h�et�erog�enes de stations de travail. La ontribution du CERFACS onernait �a la

fois dans le hoix des tehniques num�eriques en optimisation ainsi que la gestion de tâhes

parall�eles sur r�eseau h�et�erog�ene de stations de travail en mode non-d�edi�e.

1997 Responsable CERFACS du ontrat Aerospatiale CCR portant sur l'\�etude et l'implantation

d'une variante de la m�ethode Blok-QMR pour matries J-sym�etriques".

1996 Responsable CERFACS du ontrat Aerospatiale CCR: \Aquisition d'une m�ethode pour

la r�esolution des syst�emes lin�eaires issus des probl�emes d'�eletromagn�etisme". L'objetif

de et ontrat �etait d'�etudier l'utilisation de tehnique de pr�eonditionnement par inverse

approh�ee appliqu�ees �a des syst�emes lin�eaires denses omplexe sym�etriques non-hermitiens

pour la r�esolution de probl�emes d'�eletromagn�etisme en formulation int�egrale.

Les r�esultats de e travail a fait l'objet d'un artile publi�e dans Numerial Algorithms.

1996 Partiipant au ontrat CNES: \Solveurs lin�eaires it�eratifs pour la r�esolution de syst�emes

omplexes non hermitiens reux de grande taille". Ce projet visait �a d�evelopper un solveur

de type GMRES en arithm�etique omplexe.
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1995-1996 Responsable CERFACS du projet Esprit CAPRI intitul�e HIPERCOMBATS sig-

ni�ant \HIgh PERformane COmputing in Multi-Body Analysis for Two-wheeler Suspension

design". Ce projet �etait oordonn�e par Piaggio (industriel, Italie) ave la partiipation du

CERFACS et du CEIT. L'objetif de e projet �etait de d�evelopper un outil parall�ele sur r�eseau

de stations Unix pour la simulation param�etrique de multi-orps artiul�es. Le rôle du CER-

FACS �etait de d�evelopper un module de gestion de tâhes parall�eles sur r�eseau h�et�erog�ene

non-d�edi�e ayant des fontionalit�es de gestion dynamique de la harge et de tol�erane aux

pannes.

Les r�esultats de es travaux ont fait l'objet de deux ommuniations, la premi�ere �a HPCN'96,

la seonde une �a Multi-Body Dynamis: Monitoring and Simulation Tehniques'97.

1995 Responsable CERFACS du ontrat ave Thomson LCR : \R�esolution des �equations de

Maxwell tridimensionnelles dans le domaine fr�equentiel sur r�eseaux h�et�erog�enes de alu-

lateurs". Cette �etude portait sur la r�esolution it�erative de syst�emes lin�eaires issus de disr�e-

tisation par �el�ements �nis pour la r�esolution parall�eles des equations de Maxwell.

1994-1996 Responsable CERFACS du projet Esprit HPCN intitul�e HPCN3S signi�ant \High

Perfomane Computing and Networking with N3S". Ce projet �etait oordonn�e par Simulog

(industriel, Frane) ave la partiipation du CERFACS, CISE (industriel, Italie), EDF (en-

tre de reherhe, Frane), IFP (industriel, Frane), VKI (entre de reherhe, Belgique) et

visait �a porter, sur mahines �a m�emoire distribu�ee, le ode de m�eanique des uides om-

pressible et inompressible N3S d�evelopp�e par EDF et l'INRIA. La ontribution CERFACS

�etait prinipalement la parall�elisation du solveur lin�eaire du ode inompressible.

Les r�esultats de es travaux ont fait l'objet de deux ommuniations l'une �a HPCN'95 et

l'autre �a HPCN'96.

1993-1994 Responsable CERFACS du ontrat CNES intitul�e \Parall�elisation d'un programme

CNES dans le adre du d�eveloppement de l'ativit�e alul parall�ele au CNES". Cette �etude

�etait ompos�ee d'une partie expertise d'un ode d'aoustique en vue de sa parall�elisation et

d'une omposante formation des ing�enieurs du CNES appel�es �a developper l'ativit�e alul

parall�ele au sein du CNES.

Ces travaux ont �et�e pr�esent�es lors d'une ommuniation �a CETIM'95.

1991-1992 Partiipant �a la r�ealisation du ontrat ave Aerospatiale Division Avions: \Evaluation

d'ordinateurs vetoriels et parall�eles sur un jeu de programmes repr�esentatifs des aluls

intensifs �a la division avions d'Aerospatiale". Dans le adre de e travail, nous avons �et�e

amen�e �a adapter puis �evaluer les performanes de ertains odes repr�esentatifs de l'ativit�e

alul sienti�que Aerospatiale sur une large gamme de alulateurs hautes performanes

inluant des mahines parall�eles vetorielles �a m�emoire partag�ee, les premi�eres mahines �a

m�emoire distribu�ee virtuellement partag�ee ainsi que des r�eseaux de stations de travail.

ACTIVIT

�

ES D'ENSEIGNEMENT ET DE FORMATION

L'ensemble des formations et enseignements que j'ai pu dispenser l'ont �et�e essentiellement sur le

alul sienti�que parall�ele autour de deux grands th�emes qui sont le alul hautes performanes et

l'alg�ebre lin�eaire sur alulateurs parall�eles. Les formations/ours sur le alul hautes performanes

ouvrent des aspets prinipalement informatiques inluant la pr�esentation des arhitetures des
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alulateurs sienti�ques et les m�eanismes de base mis en �uvre au niveau mat�eriel, ainsi que la

pr�esentation des outils et environnements de programmations disponibles sur es plateformes. Ces

notions sont �egalement pr�esentes dans les ours relatifs �a l'alg�ebre lin�eaire, qui sont �a dominantes

num�eriques et visent �a illustrer omment le hoix d'une m�ethode num�erique et son omportement

sont intimement li�es aux sp�ei�it�es du alulateur ible sur lequel elle sera exploit�ee. Ci-dessous

est list�e l'ensemble des ours/formations auxquelles j'ai partiip�e.

Mars 2000 Co-organisation ave V. Frayss�e d'une formation de trois jours intitul�ee "Outils de

programmation eÆae et robuste pour le logiiel sienti�que" dispens�ee �a un groupe d'ing�e-

nieurs et herheurs du CNES.

Depuis 1994 Cours (12 h) dans le module Calul Parall�ele de l'option de troisi�eme ann�ee ENSICA

(Eole Nationale Sup�erieure d'Ing�enieurs en Constrution A�eronautique - Toulouse). Dans e

ours je traite essentiellement des m�ethodes it�eratives pour la r�esolution de probl�emes d'EDP

ainsi que de leur mise en �uvre sur des multiproesseurs �a m�emoire partag�ee et distribu�ee.

1996 Cours (3 h) d'introdution au alul hautes performanes dans le adre du Mast�ere de

M�et�eorologie de M�et�eo-Frane.

Depuis 1997, j'interviens haque ann�ee dans le Mast�ere de M�et�eorologie de M�et�eo-Frane. Ave

V. Frayss�e et B. Cuenot, nous avons on�u un enseignement de alul sienti�que (ours

et travaux pratiques) qui part de l'�equation di��erentielle disr�etis�ee par �el�ements �nis pour

arriver �a sa r�esolution parall�ele. J'interviens dans ette formation pour 5 heures de ours et

3 heures de travaux pratiques.

Depuis 1996 Co-organisation d'une formation interne au CERFACS �a l'intention des nouveaux

th�esitifs et post-dotorants. Le but de ette formation est de leur pr�esenter les arhitetures

des alulateurs hautes performanes ainsi que les outils logiiels (bibioth�eques d'�ehange de

messages et OpenMP) permettant de les programmer eÆaement.

Sept. 1999 Conf�erenier invit�e dans le adre de la \Premi�ere �eole d'�et�e en alul num�erique et

symbolique de Rabat". Le th�eme de l'expos�e (2 h) �etait la r�esolution parall�ele de syst�emes

lin�eaires via des m�ethodes it�eratives.

Sept. 1999 Intervenant et organisateur ave F. Desprez (ENSL-INRIA) dans le tutorial MPI-

OpenMP organis�e dans le adre d'EuroPar'99.

1995-1999 Cours (16 h) de tron ommun dans le adre du DEA de math�ematiques appliqu�ees de

l'ENSAE/INSA/UPS. Dans e ours je traitais essentiellement des m�ethodes it�eratives pour

la r�esolution de probl�emes d'EDP ainsi que de leur mise en �uvre sur des multiproesseurs

�a m�emoire partag�ee et distribu�ee.

Le mode de fontionnement de e DEA est tel que les th�emes des ours sont renouvel�es tous

les 5 ans. A l'issu de ette p�eriode et �a ompter de la rentr�ee 1999-2000, e ours a �et�e int�egr�e

dans le ursus de la derni�ere ann�ee INSA sp�eialit�e "G�enie Math�ematique et Mod�elisation".

Juillet 1998 Assistant �a l'�eole d'�et�e CEA/EDF/INRIA onsar�e au alul parall�ele.

Juin 1994 Conf�erenier invit�e dans le adre du ours intitul�e \Parall�elisation de grands odes,

appliations industrielles et �a la reherhe" organis�e onjointement par la SMAI et le CNRS

�a l'IDRIS.

Avril 1994 Co-organisateur de deux journ�ees de formation au CERFACS intitul�ees \Calul Dis-

tribu�e sur R�eseaux de Station de Travail" ave le support d'Aerospatiale Division Avions.
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Les ours dispens�es durant de es deux journ�ees �etaient destin�es aux ing�enieurs des organ-

ismes partenaires du CERFACS ou ayant des ollaborations ave le CERFACS. En plus de

la d�e�nition et de l'enadrement de la journ�ee onsar�ee aux travaux pratiques j'ai fait deux

pr�esentations l'une sur les outils logiiels disponible (PVM, P4, ...), l'autre sur des exemples

de mise en �uvre dans des odes industriels.

1992-1993 Cours COMETT CERFACS/EPFL/INPT intitul�e \Computation in Sienes, Meth-

ods and Algorithms on Superomputing for Engineering (COSMASE)". Les di�f�erents ours

portaient sur les onepts de base pour les mahines hautes performanes, les arhitetures

des mahines �a m�emoire distribu�ee, les biblioth�eques d'�ehanges de messages, des exp�erienes

de parall�elisation de odes industriels.

1992-1993 Formation (introdution aux arhitetures distribu�ees et biblioth�eques d'�ehanges de

messages) dans le adre du projet europ�een RECITE du programme FEDER (Toulouse,

Bilbao, 1992 - Valene, 1993)

1991 Cours (12 h) �a l'ESSI (Sophia-Antipolis) sur des algorithmes parall�eles en alg�ebre lin�eaire.

1991 TD et TP en 3

�eme

Ann�ee Informatique, Setion Parall�elisme, �a l'ENSEEIHT.

1989-1990 En tant que moniteur de l'enseignement sup�erieur �a l'Universit�e Paul Sabatier de

Toulouse, j'ai e�etu�e mon servie d'enseignement �a l'ENSEEIHT. En ann�ee Sp�eiale Infor-

matique, j'ai assur�e des travaux dirig�es de ompilation, th�eorie des langages et de syst�emes

op�eratoires, ainsi que les travaux pratiques assoi�es.

1989-1990 TP d'informatique en lasses pr�eparatoires, Math�ematiques sup�erieures, au ly�ee Pierre

de Fermat �a Toulouse.

RESPONSABILIT

�

ES ADMINISTRATIVES

Une des arat�eristiques originales du CERFACS est d'avoir hoisi des Chefs de Projet dont

l'ativit�e prinipale n'est pas au CERFACS, et qui ne sont don pr�esents qu'�a temps partiel. Les

herheurs seniors ont don un rôle tr�es important �a jouer dans l'organisation et la gestion des

�equipes de reherhe.

Depuis Otobre 1993, je suis l'un des deux herheurs seniors (permanents) dans le Projet Al-

gorithmiques Parall�eles dirig�ee par I. S. Du� et qui omprend une quinzaine de herheurs non-

permanents (th�esitifs et post-dotorants). Mes responsabilit�es au sein de ette �equipe omprennent

la gestion administrative et budg�etaire au quotidien inluant la gestion de ontrats industriels,

ahat/renouvellement de l'�equipement informatique, la r�edation de demandes d'heures de alul

dans di��erents entres fran�ais ou europ�eens, le rerutement, la repr�esentation de l'�equipe, le suivi

des ollaborations ave les autres projets de reherhe du CERFACS, la partiipation �a la r�edation

de propositions de r�eponse �a di��erents appels d'o�res europ�eens, : : :


