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1.1 CFD, how did we get here?

To understand the development of humanity up to its present state, it would be difficult to
contextualize the world as in 2017 without talking about Fluid Mechanics. Transport in ancient
and current societies, energy transformation for common use or even developments in biomed-
ical research would not be possible without fluids. Fundamental of Fluid Mechanics started
with the hydrostatic theory, a contribution that is known to the non-specialized public such as
Archimedes’ principle. The principle implies an incompressible fluid, an acceptable hypothesis
for liquids, and allowed to develop architectural elements such as aqueducts or cisterns but also
to explain the buoyant forces that keep a boat afloat. Likewise, to understand the atmosphere
that surrounds the planet, it is necessary to balance the different forces applied to the air and
the different pressures encountered in each layer. This is now known thanks to the contribu-
tion of Pascal who introduced the concept of hydrostatic pressure. This same principle can be
extended to many other fields such as biomechanics where equilibrium processes take place in
the body of any human being. In short, many engineering applications rely on the most basic
principles of fluids without even introducing the applications of fluid dynamics.

Of course, one might be tempted to think that considering the large space of time since the
first developments done over more than 2000 years, the basics are today well understood. The
problem of fluids is that even with all the powerful tools available today, predicting how a flow
will establish still remains the greatest unresolved problem of classical physics. The ideal would
be to find a general model capable of predicting the behaviour of any type of flow and solve it
for each particular case. The first step in itself, although achieved in the context of Newtonian
fluids, was not at all trivial and it took many centuries to be able to define the problem to
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be solved. The validity of this model, represented by a set of equations, is currently one of
the Seven Problems of the Millennium of the Clay Institute that questions the existence of the
solutions and their unicity. However and despite the lack of such validation or demonstration,
these equations are currently being heavily used and are the starting point of anybody willing
to study flows in a Computational Fluid Dynamics (CFD) context.

Historically, the governing equations at hand are the today well-known set of Navier-Stokes
equations, named after both Claude Navier and George Stokes. Their individual contributions
were to introduce respectively, the viscous transport equations for an incompressible fluid and
its extension to compressible fluids [14] responsible for the shear stress or heat transfer effects.
Not mentioned explicitly, the reader may note that there is a loop in the process as only the
viscous part of the equations is mentioned and so, an inviscid part must also exist. Due to the
great number of publications and theorems already assigned to his name, Leonhard Euler is
mentioned only for the inviscid part of the equations.

Many applications of these equations were found during the 19th Century and solutions
to specific problems of interest were developed. To mention some, the solution to a laminar
channel done by Poiseuille, or Reynolds, who determined that different flows could be classified
depending on the ratio of inertial forces to viscous forces. Additionally, Reynolds introduced
the idea of separating a mean component and a fluctuating component for a turbulent flow,
leading to a Reynolds-average way of dealing with turbulence. The resolution of such complex
problems required a reasonable hypothesis in each case, and thus, a limited applicability of
the solution. From a physical point of view, it was important for the understanding of certain
principles that although still not well mastered, set a ground for the study of many engineering
applications such as turbomachines. From a mathematical point of view however, developments
did not advance as fast as in the coming 20th century. One of the reasons for these mathemat-
ical difficulties can be found in the nature of the equations.

The equations are written in terms of partial derivatives and some of the shortcomings
of the methodologies developed until the 20th century were in part due to the lack of tech-
niques to solve Partial Differential Equations (PDE). These relate to the the inability to find a
mathematical functional space for an adequate solution to the problem. Indeed, although in-
finitesimal calculus had been developed by notable mathematicians such as Newton or Leibniz,
applications to this field were not found until many centuries later. The realization that the
continuous equations could not be solved resurfaced the possibility to study them in a discrete
way through numerical schemes or algebraic relationships. In that respect, contributions by
Banach and Sobolev to functional analysis [27] and their future application to Finite Elements,
were fundamental to a larger variety of spatial discretization techniques.

In terms of developments and associated interest from industry, one can easily identify the
presence of an inflection point in the resolution of the system of equations’ history; before and
after World War II. There is a general consensus that the first work in the context of what today
is known as CFD was published by Richardson [149] and consisted in solving the Laplace equa-
tion using a relaxation technique. Another important achievement before this period was done
by Lewy et al. [108] who defined one of the stability requirements for the resolution schemes.

2
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The definition of the CFL number, known to any CFD practitioner, is due to this paper. Other
contributions were done by Lax [103] who stated the theorem that produces the sufficient con-
ditions of consistency and stability to guarantee the convergence of the discretization. The
stability of the different methods was then continued by von Neumann and Richtmeyer in [188]
who developed a methodology capable of determining the stability of the scheme under certain
hypotheses.

Nowadays, past World War II progress still remains the panorama as no numerical scheme
has yet managed to impose itself over others. And it is still in continuous development as
the problems to be solved become more and more complex. Classical methods for spatial dis-
cretizations such as Finite Differences, Finite Elements or Finite Volumes coupled with a time
integration scheme are nowadays used regularly, as well as other methods such as the multi-grid
approach. More recent methods such as Spectral schemes [195] or Lattice-Boltzmann [77] are
increasing their presence in publications. The current tendency is to increase the order of the
scheme, meaning that a higher accuracy is attained for the same number of degrees of freedom,
compensated of course by a larger number of operations. However, there is a limit to these
developments which introduces significant difficulties. This was found thanks to Godunov [70]
who published in his thesis the theorem that carries his name. He stated that a scheme of order
equal or higher than two is non-monotonic. This affirmation is a strong one as it requires for
practically all type of schemes to introduce flux limiters or to suffer the consequences, namely
the node-to-node oscillations, a deadbeat and purely numerical artifact.

While computers might seem the sine qua non of CFD as explicitly noted in its name, initial
computations such as the ones done by Richardson [149] were not performed by a machine. It
was after the war that developments in the military industry led to more powerful tools for the
resolution of repetitive tasks. The classical Turing machines started to literally fill laboratories
and Universities, see Fig. 1.1. Some of the most convinced precursors of machine-resolved task
resolution were some of the great names in CFD, von Neumann and Lax. The arrival of ma-
chines capable of solving costly operations for humans increased the interest in this discipline.
This induced the growth in the number of publications focusing on numerical simulations, but
also the number of groups developing new mathematical methods and applying them to prob-
lems of industrial interest. The main initial issue from a coding point of view at the time was
the difficulty of implementing the desired code and worst of all, the portability of this code for
future machines. This issue might once again be of relevance as in recent years, the existence of
GPU architectures or even quantum machines have shown their power and possible advantages.
The exploitation of these machines seems to be the future and requires to adapt most codes to
these new systems.

In any case, the future of scientific computing seems guaranteed and so, the continuous
development of tools and results that may one day be of use.
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Figure 1.1: IBM computer in 1955, capable of performing 3750 operations per second. Total
memory of approximately 10 kbytes.

1.2 Industrial interest for CFD

The rate of development of CFD has been greatly impacted by industrial needs. Developments
in CFD required an investment that industry could provide while industry required means to
reduce their costs using improved or complimentary methods to the traditional experimental
procedures. This process is still taking place today because many tasks may not be put in
place using industrial configurations, or at least not as regularly as required at an assumable
cost. Industrial applications represent a challenge both in terms of geometry and flow physics.
Geometrical difficulties arise as a result of the global optimization process leading to curved
shapes which are difficult to represent. Flow physics are also a problem as highly turbulent flows
are encountered in most of these industrial configurations. Higher levels of turbulence require
more computational power and it was clear from the beginning to the precursors of CFD that
computational power available at the time would inevitably limit the industrial applications.
To circumvent this limit, the development of turbulence models appeared and contributions
from Spalding [174] with the k-ε model allowed to address turbulent flows. The model used
at the time is still widely applied today and many variants have been developed since its first
appearance [122].

In term of process and effective use of CFD by industry, one has to realize that in the aero-
nautical industry, the first complete aircraft simulations were performed using potential flow
theory in the 60-70s. Euler equations were then successfully applied in the following decade to
a whole aircraft configuration. The optimization process did not start until the decade 90-00
using Euler equations, the Navier-Stokes equations being applied in the past decade [88] for the
whole aircraft, see Fig. 1.2. Note that qualifying the simulation of a complete aircraft does not
mean taking into account all of its components. In fact, most of the time the use of CFD is more
or less frequent depending on the difficulty to capture the physics around the targeted domain
and its relevance to the overall design process. For example, the ventilation system is important
for the cooling of components and optimal comfort of passengers but of great difficulty to model
due to all the possible sub-components of an aircraft present in a large configuration. This being
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Figure 1.2: Evolution of equations solved for similar problems throughout the years [83].

the case, use of CFD for this specific problem has been largely neglected until recently. Fuselage
design or performance envelopes on the other hand have always been targeted since the gain
in optimization is much more important. Today, it is possible to model complete aircrafts or
cars but difficulties are still present when simulating vortex dominated transitional flows. This
is the case for internal engine aerodynamics. Unsteady effects however govern most processes
in a flow and turbulence models are in most cases insufficient for the correct prediction of
the associated physics. It seems however clear to most of the community that the correct rep-
resentation of these unsteady effects is critical to the manufacturers to produce better products.

To this end, it is necessary to have a solver as well as the means to perform these simulations
and the expertise required to analyze the results. Generally, CFD codes are not developed by
the industry that uses them. If the problem is a multiphysics problem, it could be necessary to
acquire multiple codes. In fact, each CFD code depending on its numerical approach inherently
limits the range of problems it will be optimal for. The existence of dedicated codes for each
discipline is hence common.

The appearance of the first CFD general-purpose code was PHOENICS, contemporary to
one of the best-known commercial software that appeared a few years later and named FLU-
ENT. Although the existence of solvers alone does not guarantee a sufficient basis for adequate
CFD simulations, pre-processing and post-processing softwares are also required to create the
necessary meshes and to be able to analyze the results. Large editors such as ANSYS provide
the whole chain so it is a good option for many good manufacturers. The existence of such
an offer could seem discouraging for smaller research groups to find their place in the industry
market. However, future trends are always pursued by research groups, public or private, and
remains their strength. It has been said that unsteady effects contribute largely to flows and
Large Eddy Simulation (LES) is an alternative turbulence modeling approach to Reynolds-
Averaged Navier Stokes (RANS), one that is feasible for industry in the coming years. The
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gain behind this new approach is that modeling is reduced and more degrees of freedom are
used, the fluid being treated as a fully dynamic and unsteady system. This different formalism
usually requires different schemes and so, a completely different code. Additionally, LES re-
quires an expertise that can be found in research groups and not so often in industry as the use
of this methodology is still not common. Even with larger computers, a great effort must still
be done to increase the efficiency and the applicability range for industry, namely through code
parallelism. The access to this type of supercomputers is also an issue and although research
groups are granted access to a large volume of CPU hours provided by national governments
for research means, industrial partners must pay these accesses. This gives an edge to research
departments to gain expertise that is then published and applied in future configurations com-
ing from industry.

The industrial configurations of interest are here limited to gas turbines for the following.
The interest of this thesis focuses on the possible means to obtain the solutions to the Navier-
Stokes equations within the context of gas turbines. The study of gas turbines is bounded
by the formalism chosen and corresponds to Large Eddy Simulations (LES) for the present
document. There are two main questions to be answered in relation to the output provided
by any CFD code when performing a gas turbine component simulation. First of all, is the
code capable of producing an acceptable prediction of the flow at hand? Many codes presume
they possess the required properties to be a usable code in industry. Some of these properties
are that it is optimally parallelized, that it is portable on a large range of machines or that it
contains the latest and most robust numerical methods. This last point is interesting as a per-
fect comparison between codes and their numerical schemes is never possible, or complicated
at the very least, for complex configurations. If however it is assumed that a fair compari-
son can be done, it is reasonable to ask how well each code behaves when confronted to the
complex cases they must solve and for which they were designed and financed. The second
question relates precisely to the numerical methods behind each simulation: which is the best
choice? For this document, the comparison between numerical methods is limited to only one
code. Nevertheless, various numerical methods implemented in this same code are compared
in simple and in complex configurations. These methods will be notably low-order versus high-
order schemes (see Chap. 3) and comparisons to literature results are performed when available.

1.3 Gas Turbines
Gas Turbines (GT) have been used to power aircraft since the 1930s when thrust generating
aeroengines were first used. Due to their higher power-to-weight ratio these engines are exten-
sively used either to power aircraft or produce electrical energy in an effective and adaptive
way. Aircraft engines are subject to a large range of operating conditions on a daily basis
where it must perform safely. From take-off to cruise, from the Andes to the Sahara desert
the variability of the atmosphere must not interfere with the performance limits of the aircraft
and thereby its engines. This large envelope of operating points introduces difficulties in many
aspects including combustion requirements. It is necessary to operate and maintain an efficient
but at the same time quiet and ’green’ combustion.
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Historically, there has been little need for clean combustion requirements, so liability and
efficiency have been the main targets of existing aircraft engine designs. Reliability was an eas-
ily measured parameter which has mainly been addressed by performing multiple tests for the
different modules of the engine. The exercise hence, resumed to finding the best compromise to
operate the engine for as long as possible. When dealing with efficiency, it began to be a prob-
lem once the aircraft industry started to grow exponentially and fuel reservoirs were no longer
considered as infinite. Industry became more competitive and companies began to find out that
preservation of their market shares started to be a difficult exercise which forced them to be
in continuous evolution, a context where research becomes crucial. At the same time, external
agents such as governments or regulation agencies started adding more constraints to the whole
process of design and operation. A direct consequence of such a stringent industrial context is
that it is no longer possible to produce and test all the thought innovations that might occur
within an engineering process. Experience can provide an approximative assessment of a given
design but such an intuitive decision making carries either a lot of risks or conversely prevent
disruptive and potentially highly efficient solutions. Decision taking is definitely not eased by
the flow encountered in such systems which results from the different aspects of the physics in
the engine which are highly coupled. Despite this fact, it is still necessary to manufacturers to
know which is the most constraining factor for each individual component that will constitute
its final product that is the engine.

An aircraft engine works as a whole and so, it must be carefully integrated meaning a careful
assembly of all its different components. Each component of a gas turbines has its limitations;
in some cases restricted by the aerodynamic loading it is capable of sustaining, some limited by
global weight constraints, and others are subject to restrictions given by other components. In
the case of high-pressure turbines, the focus of this work, the most limiting factor is bound by
the heat transfer due to their proximity to the combustor exit plane [118]. From an efficiency
point of view, it is convenient to increment the temperature of the system and so increase the
work available for the turbine to extract from the cycle. This temperature thus, represents a
critical issue. Material sciences have remained behind in comparison to the evolution rate of
other fields. Nickel superalloys seem to have been exploited to the limit for the time being
although recent approaches show a promising margin of improvement in Smith et al. [169]. In
the meantime, increasing the life span of turbine blades relies mainly on the engineer’s capac-
ity to predict the correct temperature and heat flux that the blades are subject to. If done
adequately, the key remaining step is to correctly optimize the different cooling systems. In
such a context, Computational Fluid Dynamics (CFD) is an ideal tool to complement and even
surpass experiments while reducing global costs.

As stated in Sec. 1.2, simulations in this document, including the high-pressure turbine, are
done using LES. The final goal is to correctly predict the thermal fields associated to the surface
of the blade using a code that is supposed to simulate accurately the flow. It will be seen in
Part II that one of the main problems associated to the heat transfer coefficient prediction is
the capacity of the proposed solution to capture laminar to turbulent transition. Special focus
is thus paid to boundary layer turbulence in terms of statistics and visualization.
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1.4 Objectives

The objectives of this thesis are to assess LES for turbine flow predictions and to continue the
improvement of numerical schemes to ease LES of complex geometries. Towards this goal, the
developments are performed in the context of a validated LES solver AVBP [161] (developed
by CERFACS and IFP-EN). The objective is in fine to assess numerics versus modelling effects
on the LES prediction of a turbomachinery flow, all in the context of non-reactive LES. In the
majority of simulations the unsteadiness of the flow is a preponderant effect. However, it is
necessary to assess that this unsteadiness does not have a numerical origin due to boundary
effects or Gibbs type oscillations. In this application, specific interest focuses on the sensitivity
of the near wall bounded flows to inflow specifications as well as near wall numerical treatments.

The main objectives of the thesis are hence:

• The study of a complex geometry for various operating points: the LS89 turbine vane [7].
The study of one of the richest databases in turbomachinery and the different operating
points is a key element to understand the physics of boundary layer transition around
blades, an objective not attained to date for a number of cases of this database by most
conventional CFD tools. From the analysis, it is observed that acoustic waves, wake
interactions and turbulence in boundary layers are potentially of great importance towards
the prediction of the flow pursued during this work.

• The study of current numerical schemes in AVBP and their implementation. Special
focus is paid to stability issues and prediction methodologies, the influence of physical
borders being taken into account through specific developments. The implementation of
boundary conditions and the equations behind the numerical scheme closure terms are
analyzed and tested. Also, the multi-element context and the meshes encountered in
complex configurations are analyzed.

The work is decomposed into the following parts:

Part I

• Chapter 2: Introduction to Modelling and Numerics

Different turbulence modelling approaches such as Reynolds Averaged Navier-Stokes (RANS),
Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES) are detailed, from
then on focalising on the LES formalism. Special attention is then devoted to the specific
need for modelling in the case of wall-bounded flows where the previous models miss some
unsteady effects, the associated necessary grid resolution requirements being discussed.
Numerics is then addressed. Various discretizations methods, both spatial and temporal
are also seen in this section, distinction being made between the different possible solvers
and the way the data stored is addressed. The most used Finite Differences (FD), Finite
Elements (FE) or Finite Volumes (FV) spatial discretization methods are described and
different methods for time advancement are presented.

8
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• Chapter 3: Numerics of AVBP

Once the state-of-the art has been presented, the cell-vertex context, its properties and
the metrics associated to the approach are first shown. Then for AVBP in particular,
both the convective and diffusive schemes are introduced highlighting the importance of
each operator used. Time advancement limits and the necessary artificial terms to control
possible numerical instabilities are discussed. Finally, boundary conditions are appraised
in both a physical and a numerical context.

• Chapter 4: Spectral properties of the AVBP schemes

The properties of numerical schemes are studied in many different ways and the main
methods are presented here. Stability is analyzed to try to determine the origin of nu-
merical instabilities in the present code. A von Neumann analysis is done in both 1D and
2D type elements for the main convective schemes in AVBP. Dissipation and dispersion
properties are also available from the Fourier analysis done.

Part II

• Chapter 5: Introduction to LS89 simulations

First, a brief introduction on the composition and applications of aeroengines is provided
with special attention to high-pressure turbine blades. Performance issues stress the
importance towards the correct prediction of thermal fields in an unsteady flow. Explicitly
in the context of high pressure turbines in academic but realistic operating conditions,
the LS89 test case [7] arises as an ideal case for the evaluation of the physical effects
observed and their origin, numerical effects included.

• Chapter 6: LES predictions of MUR129 and MUR235

Two operating points of the LS89 database have been simulated and are analyzed in
this section. The physical analysis performed depends on the difficulty to understand
the complex flow physics behind each operating point, the effects of turbulence injection,
boundary layer interactions or acoustics generated from the wakes are appraised.

• Chapter 7: LS89 Numerical Aspects and associated analyses

Aside from the aerodynamical response of the flow predictions that are observed to be
of great interest, mesh dependency and numerical observations point to the need for an
in-depth numerical analysis of the schemes for the specific problem at hand. To do so,
an amplification matrix method is implemented due to the impossibility to treat bound-
ary conditions by more conventional methods and tests are performed for its validation.
The methodology used to perform such an analysis is general to all types of linearized
equations. It is capable of determining the stability in a case-dependent situation at a
reasonable cost but proportional to the number of degrees of freedom. Following the
applications of such a tool which was not able as of today to analyze bounded numerical
instabilities, a series of numerical experiments are performed to demonstrate the impor-
tance of a rigorous mathematical formalism. In this case, emphasis is put on boundary
closure terms and new mathematical procedures are proposed to close the higher order
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terms at boundaries to reduce numerical issues. This discussion led to study the impor-
tance of accurate spatial derivatives proposing improvement strategies and directions to
alleviate the impact of the observed numeric instabilities.

This thesis was funded by the European Union Project COPA-GT as part of the Marie
Sklodovska-Curie Initial Training Networks (ITN). It has also had a strong link with the CN2020
project conducted by the Safran group to impulse the use of LES for turbines by the year 2020.
A list of publications done during this thesis is provided below.
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Modelling and Numerics





Daily circumstances of big industrial companies often impose to newcomers or even
people with a certain experience in the domain of CFD to simulate complex devices. In fact,
your new boss, whatever your engineer’s background will have you to rapidly answer the
question: " can you do a flow simulation of this ’new engine’ that explains this problem as
soon as possible?" Assuming your company computing account is active, you know where
the coffee machine stands and you have a desk already assigned, the natural next step is to
ask yourself ’how shall I perform this task?’ Although a first reflex is to jump onto the geome-
try definition, mesh generation... and the need for the mastering of the associated softwares
and manipulation steps which are very time consuming and require expertise often to be
acquired, one should instead wonder if the code X, that one you’ve heard so much about that
is widely used in your company, optimal for this simulation?. Or even simpler, is code X capable
of performing such a simulation? Of course, the definition of optimal is not trivial. In most
cases such questions never arise because the choice of code might be limited to the only one
available. Assume now that X is a set. Say there are two codes that are used by your office
colleagues, one that has been around for quite a few years but is based on a more classical
approach and another that has been developed more recently and is state of the art. Which
one to choose? What are the differentiating features between codes that make one a priori
better than the other? By intuition or experience, the problem identified is here to be linked
to a fluid dynamics problem and as discussed in the introduction, not all CFD solutions (if
none) is valid for the whole range of known flow physics. Specific tools, modelling and
codes are usually the only guarantee for a reliable prediction. You hence need to know what
is effectively behind the human friendly interfaces. Imagine now that you are researcher
with many years of experience and you must perform a comparison between these two pre-
viously mentioned codes. Someone will probably try to convince you that the state of the art
code is clearly superior. Or maybe the contrary, that all these new codes are not sufficiently
mature to compete with the more classical and tuned approaches which have comprehen-
sively been studied in the literature and have been used over the years in the design process
of your new company. An objective way to determine how well all these codes perform is
naturally to select a set of test cases and check the predictions’ accuracies. What seems clear
is that using a code as a ’black box’ is likely to blow up on you and this will depend on your
understanding of flows, codes and the various difficulties encountered.

The objective of the following chapters of Part I is to provide the necessary background
to answer these questions. First, a description of the different options that exist in terms of
modelling and resolution approaches is given in Chapter 2. This chapter allows to answer
questions such as what features differentiate one approach from another. One must know
which are the aspects attention must be paid to, these being the numerical modelling (if nec-
essary) of turbulence, the associated grids used to discretize the domain and the separation
of spatial and temporal operators. In chapter 3 focus is set upon a single code, AVBP, and a
comprehensive description of the operators, as well as specific aspects associated to the con-
trol volumes where the equations that are solved are detailed. Finally, in Chapter 4 answers
are provided for the properties that characterize the methods used in AVBP in particular.
Only when all of these aspects have been addressed is it possible to move on to more com-
plicated problems such as positioning a code, AVBP, with respect to others in a content of a
series of complex test cases a subject that is left to Part II.
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Chapter 2

Introduction to Modelling and Numerics
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The interest of Computational Fluid Dynamics (CFD) is to obtain a representative flow of a
given configuration determined by the Boundary Conditions and a geometry of the problem. To
do this requires the resolution of a set of equations capable of representing the fluid behaviour.
These are the previously mentioned Navier-Stokes (NS) equations,

∂ρ
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+
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= 0 (2.1)
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where ρ is the density, u is the velocity vector, E the total energy, T (v)
ij is the viscous stress

tensor, P represents the pressure, q the heat flux and Q̇ is the heat source term.

The previous equations Eqs. (2.1), (2.2), (2.3) represent a continuity equation. This last
concept is useful because based on the local conservation laws it allows to write the whole set
of equations as a transport equation,
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∂U

∂t
+ ~∇ · ~F = S, (2.4)

where U corresponds to the vector containing the conservative variables of the solution; F
represents the fluxes matrix and S represents the possible source terms. These equations are
comprehensively detailed in App. A and will be filtered to obtain the Large Eddy Simulation
(LES) equations to be solved which is the focus of this thesis, see App. A.1.

It is arguable that the NS equations at the root of CFD are already a model of the phys-
ical behaviour but will be nonetheless accepted as being exact for the rest of this document.
When discussing modelling of the equations a new step is added and this one refers to the
fact that it is not the continuous Partial Differential Equation (PDE) problem which is solved.
The numerical methods solve only the discrete equations and depending on the resolution (see
Sec. 2.3) there is more or less "numerical" modelling to perform. Equivalently and as detailed
hereafter for high Reynolds (Re) number flows, directly discretizing Eq. (2.4) which results
from Eqs. (2.1)-(2.3) is not practiced. "Turbulence" modelling is to be introduced which will
substitute Eqs. (2.1)-(2.3) be recast in the form of Eq. (2.4) and then be "numerically" modelled
or discretized. In particular, the filtering of the LES equations indicates that there is a part
of the equations that is differs from the resolution algorithms. Two other approaches to treat
high Re flows are also possible and are described to show how LES is a more powerful source of
information compared to Reynolds Averaged Navier-Stokes (RANS) or Direct Numerical Sim-
ulations (DNS). Modelling requirements for the turbulence are presented in following sections.
How the equations are solved and the different strategies to decompose the equations into the
spatial and temporal parts that arise naturally from the equations are then discussed.

2.1 Free-stream turbulence based modelling
Nowadays, there is a great number of CFD codes able to provide an approximation of the flow
in an industrial configuration, with more or less accuracy, by solving a larger or smaller part of
the original geometry. The objective of these models is to capture the necessary physics for the
simulation to be representative of the flow at the lowest cost possible. The representative part
of the flow is clearly a subjective matter as in some cases the global trend might be enough for
the description of the problem at hand. This has however clear limits since it is now known
that a small local change in a flow can affect dramatically the main flow state or field. The
question that arises is then how much of the flow is necessary to be solved to obtain an accept-
able representation of the actual solution. This a priori choice clearly influences the final result
obtained and users must be aware of the limitations when analyzing the results. Difficulties
are nonetheless not limited to this choice. The key difficulty, in a fluid mechanics simulation, is
turbulence and its definition is not trivial. Following the proposal of Bradshaw [25] "Turbu-
lence is a three dimensional time-dependent motion in which vortex stretching causes velocity
fluctuations to spread to all wavelengths", the mathematical terms responsible for this process
are the non-linear terms present in the governing equations Eqs. (2.1)-(2.3). These non-linear
terms are more or less important depending on the Reynolds number of the flow, a number
that quantifies the importance of the non-linearities with respect to the diffusion process. A
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Figure 2.1: Spectrum of an homogeneous isotropic turbulent flow [194].

higher Reynolds number implies more non-linearities and thus, a more turbulent flow which
is inconvenient from a mathematical point of view. In practice it requires accurate spatial
and temporal discretizations or equivalently large meshes and small time steps. Most of the
industrial configurations are high-Reynolds number flows so tackling the problem is inevitably
expensive numerically unless artificial manipulations or models are introduced.

Different types of simulations are possible depending on the amount of turbulence that is
resolved by the numerical model [141]. Note that such a choice only alleviates the high Reynolds
number difficulty since in the end, the turbulence defined as resolved is inevitably influenced
by the number of degrees of freedom used to solve each wavelength. Logically, a larger number
of points leads to a more resolved simulation and a higher cost. How to determine which type
of simulation to perform and more importantly, how reliable the information is in each case
needs to be quantified. Very early on, effort has been done towards developing models capable
of reproducing the non-resolved turbulence. Reviews such as Boussinesq [23] who developed
what is now a very popular approach, has led to many classes of models [171, 109]. Today,
there exists three main types of turbulent flow simulations which can be recast using the energy
spectrum of a turbulent flow seen in Fig. 2.1; i.e. RANS, DNS and LES.

RANS - Reynolds Averaged Navier-Stokes approach

The first model historically applied and less expensive approach is the Reynolds-Averaged
Navier Stokes (RANS) method. It consists in modelling the whole turbulence spectrum, a
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hypothesis only valid if a temporal or ensemble average is performed over a set of realizations
of the same flow [141]. The equations to be solved are different from the general Navier-Stokes
equations. It is the averaged Navier Stokes equations which model all the turbulent scales and
a large variety of closure models can be found, some of them being based on the Boussinesq
closure method [173].

It is a powerful tool as many simulations can be performed at a very reasonable cost. The
main disadvantage of this approach is that it is not capable of capturing the most subtle effects
of a turbulent flow. So, even if it is based on averaged fields, these might be completely off
if there is a transitional effect strong enough to create an instability. Such a case can easily
be found for combustion instabilities for example [22]. In the end, it should be stressed that
although RANS is effectively cheap in terms of computer cost, corresponding simulations can
become expensive. The results may be unexploitable, or even worse, exploited under the wrong
hypotheses or disregarding the risks induced by the inherent limitations present in the deriva-
tion of such models.

DNS - Direct Numerical Simulation

The most precise approach in terms of resolution of the equations is to solve the whole turbulent
spectrum. This however is the most expensive approach and is known in the literature as Direct
Numerical Simulations (DNS) [87]. Even with the increasing power of computational resources,
it is extremely costly to solve the problem in this fashion due to the amount of points required
to solve the smaller length scales that might be found in the flow. Theory of Homogeneous
Isotropic Turbulence (HIT) indicates that the smallest length scales are those defined by the
Kolmogorov scales [95], i.e.

lK =
(
ν3/ε

)0.25
, (2.5)

where lK is the Kolmogorov lengthscale, ν is the kinematic viscosity of the fluid and ε is the
turbulence dissipation rate. By definition, the grid minimum cell size should be of the same
order of magnitude as lK or smaller to represent correctly the complete spectrum. Likewise, the
size of the computational domain should allow the representation of multiple most energetic
length scales or integral length scales resulting into an overall mesh size scaling as Re9/4 for
adequate DNS (where Re is the non-dimensional Reynolds number). The advantage provided
by this method however is the possibility to gain insight into the turbulent structure [49] in a
way considered as exact. This also allows to compare results obtained with other methods such
as LES or RANS and to help validating the latter that do include some modelling.

Note that depending on the turbulent flow addressed, turbulence dissipation will not be the
same and will evolve spatially contrarily to HIT: i.e. free-stream jets will have lower dissipation
values than wall-confined flows. In the HIT case the cost of the simulation scales with a relation
of Re9/4 as mentioned earlier. It increases at a higher rate in the second case as a result of
the the viscous effects in the near-wall region for example or in an inhomogeneous flow. Such
scaling rules are the primary reasons why most publications address only academic problems
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by use of DNS although there are some recent articles [192] where DNS is effectively used in
complex configurations. Nevertheless, it is still regarded as an impossible approach for industry
and very difficult for research of complex configurations.

LES - Large Eddy Simulation

LES is an alternative modelling approach to RANS which solves the larger scales of turbulence
responsible for the interaction with the mean flow [140] while modeling the smallest scales.
The difficulty in LES is to determine a priori the size of the filter used, ∆, that limits the
quantity of turbulence to be modelled. This parameter should be taken small enough to solve
approximately 80% of the turbulent kinetic energy (TKE) as stated in Pope [141]. Nevertheless,
not knowing the full solutions implies a clear difficulty and an arbitrary choice of ∆ will need
verification. Just like in RANS note that, the solved equations are also modified to take into
account the filter effects and additional terms arise for which dedicated models will have to be
introduced.

Numerically, this formalism implies additional problems. Depending on the cell size, ∆x,
if numerics are required to have a negligible effect on the prediction, the ratio between the
filter size and grid size should be large. Ideally, an explicit filter of size 2∆x is recommended
[107] to avoid numerical issues with the non-resolved waves but in most practical approaches
this recommendation is far from being met due to the resulting cost increase. In many codes
the filter size is set to be the cell size and no explicit filtering is performed. Doing so implies
introducing numerical scheme errors in the resolution of the equations, errors which are larger
for the smallest wavelengths as less points are available for their resolution. The absence of an
explicit filter is seen by some as the optimal option [142], as some numerical bias is acceptable
and does not, in general, pollute the global simulation. It is important however to be able to
ensure a low-dissipation scheme. Since there is no cut-off frequency, the smallest wavelengths
must be both correctly predicted in terms of amplitude but also correctly transported. This
requires a low-dispersion scheme for the waves to propagate at the correct speed.

Although there are different approaches to address the problem of turbulence, experienced
researchers are able to know approximately which are the minimum requirements to correctly
capture the global behaviour of a given configuration. This isn’t true for the local flow aspects
that are different in certain areas (wall region notably). Thus, mesh convergence is often a
required step in any LES. However and in practice, an appropriate or sufficient mesh is a re-
quirement not always met even when performing a convergence test today. For such issues,
human experience will never be as good as a proper optimisation algorithm. In fact and to
ease use of such CFD tools by engineers, mesh adaptation research is expected to upgrade LES
performance in the future [64, 46] as long as adequate metrics are proposed which are still to
be found for turbulent flows.

The previous modelling considerations for LES are true assuming the model is used in
regions of free-stream turbulence. The accuracy of different models have been compared for a
number of flows [69] but in most cases they are universally used without the necessary rigor, this
implying that errors can come from this initial choice (such as the model used for unresolved
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terms, see App. B) that may be difficult to trace. Nevertheless, the resolution of most structures
(that correspond to the largest part of the spectrum) is a much better option than modelling
the whole spectrum as done in the RANS approach. It must be stressed that the theory behind
these models is HIT which is by no means applicable in near wall regions. For regions where the
turbulence is anisotropic, as in the proximity of walls, additional models are required or must
be modified locally to take into account the turbulent properties of the flow. This represents
an advantage for RANS nonetheless because the whole spectrum is modelled and thus, only
requires switching the model, from isotropic in the free-stream to anisotropic close to the wall.
LES on the other hand requires to couple instantaneous data to a model that predicts the values
at the wall when a sufficient resolution is not acquired. How to do this in LES is discussed in
the following section.

2.2 Near-wall turbulence modelling
As mentioned in the previous section, regions close to the walls suppose an additional problem
for RANS and LES in terms of modelling, DNS not requiring any modelling. RANS has been
well-adapted for this different modelling with more or less success as stated in the previous
section. Equivalently, LES relies on a certain amount of modelling to close the equations to
be solved as shown in App. B. Thus, unresolved terms rely upon these models to account for
missing physics. Adequate models may be found in cases where turbulence is isotropic, but
these need usually to be adapted for strongly sheared flows such as those encountered near
walls. Even for sub-grid scale models that are designed for wall-resolved situations, like the
WALE model in App. B.3, these require additional hypotheses if meshes aren’t sufficiently fine.
This implies that any unresolved physics will either be wrongly modelled (Smagorinsky model)
or neglected (WALE, SIGMA) if no other condition is added. There are thus two options;
either define a mesh sufficiently fine to account for the smallest scales or to use an additional
model. Simulations done in Chap. 6 are done in a wall-resolved context but the most widely
used alternatives in industry are nevertheless presented.

Two main great families of modelling exist in the context of LES,

• Wall-modelled LES

Modelling results from the need to determine the interaction between the smaller and the
larger scales of the flow which are filtered and resolved respectively. This applies to the
whole domain, however, it is of great importance in the near-wall region as the boundary
layer physics dominate this area. The problem is that subgrid-scale models by themselves
are not able to account for the shear stresses at the wall if y+, a non-dimensional distance
parameter, is larger than a certain value O (10). On the other hand, from the universal
velocity distribution law in the presence of walls it is possible to provide a relation to
account for the wall influence. Taking this law and the associated velocity distribution,
it is possible to estimate the shear stress. This has been a historical problem initially
approached by Schumann and Deardorff [163, 47] that has led to many laws and their
variants. The common feature to all laws is that they require information of the velocity
field outside of what is known as the viscous sublayer (see Chap. 5). The mesh must be
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adapted so the position at which the information is extracted has a physical meaning as
it is crucial to the correct behaviour of the wall law. The wall-modelled LES approach
is thus based on predicting the shear stress (from a purely aerodynamical point of view)
using a velocity value given at a normal distance from the wall to surpass the need for a
high resolution in the proximity of the wall.

• Wall-resolved LES

In this approach, the objective is to capture the dynamics of the locally most energetic
scales. This imposes that the mesh cell size decreases in the near-wall region to account
for the smaller scales present in the flow. The problem associated to this reduction is the
increase in cost of the simulation. The estimation of the cost associated to this type of
simulation is linked to the value of the Reynolds number and scales as Re13/7 following
Choi and Moin [31]. This implies that the cost is near to that of a DNS as the value
of y+, should not be higher than 5 for channel simulations [140] and even lower when
curvature effects are present. In this low value y+ region, contributions from the subgrid-
scale models should be well adapted and an adequate SGS model (cf. the P1 property in
App. B) has to be used.

It is known that different levels of refinement and discretization lead to different predictions
and the only way to correctly assess this influence is by comparing different grids. This is
especially critical if a wall-resolved approach is chosen, which increases the number of degrees
of freedom, but more importantly, limits the time step to be used. This observation has led
some authors to qualify such predictions as Quasi-Direct Numerical Simulations (QDNS) [171].

It is of note to underline the fact that in a wall model context, the effort required to obtain a
good near-wall model is especially critical for blade flows characterized by an adverse pressure
gradient. Most industrial-like application of LES relies on the use of laws-of-the-wall [189].
The main issue in this approach is the existence of pressure gradients which are not taken into
account in classical approaches [148] or more recently [115] for example. The importance of
taking into account the local effects of tangential pressure gradient was first noted by Wang
and Moin [190] and good agreement has been found in papers such as Duprat et al. [60] and
Maheu et al. [114]. In all approaches however, there is still the issue of the prediction of the
transition position. The law-of-the-wall is designed to behave properly in turbulent boundary
layers, whereas this might not be the case on the whole blade surface being then necessary to
deactivate the model. Only the wall-resolved approach provides a sufficient degree of confidence
today for such near wall flow predictions around blades where a transitioning flow is expected.
Indeed, the solution provided by a well designed wall-resolved LES allows to capture all the
effects provided an adequate local grid resolution. The main difficulty is hence not so much the
physics in the boundary layer but the capability to capture effects such as strain or curvature
[172] as well as rely on adequate SGS models.

Although the subject of this discussion stresses the importance of the turbulence formalism,
it is important to note and this is especially evidenced in the context of LES, grid resolution is
of foremost importance. The cell grid size parameter determines the filter size and in the case
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of wall bounded flows qualifies the prediction as a wall-resolved simulation. Great care on grid
generation is hence needed but different numerical solutions call for different code capabilities
on this specific matter as detailed in the next section.

2.3 Meshes for LES

The choice of mesh determines to a large degree the quality of a LES. The use of different
numerical schemes may lead to different solutions for the same mesh, more accurate results
being attained for higher-order schemes. However, a high-order scheme in an insufficiently
resolved near-wall region will never reproduce the correct physics by itself and so, the number
of degrees of freedom must be well adapted locally in the domain. An important aspect to take
into account before tackling the discretization methods is the way the information is stored
relative to the available mesh and how the code will access the information stored at each
degree of freedom. The set of elements that conform the domain may in general overlap [79]
although this is not the case for AVBP. There are two main approaches defining a grid:

• Structured mesh
A structured mesh is an approach where the mesh has a regular connectivity meaning
side nodes are known so there is a direct data addressing. The main strength of this
type of meshes resides in the simplicity to construct high order schemes compared to
unstructured meshes as it is easier to find neighbour nodes. An example of structured
mesh is shown in Fig. 2.2a. The main drawback is that structured meshes are in many
cases limited to simple geometries. Also and in the most general case, it requires very
long human time to generate the more complex meshes which in many cases limits its
use especially for industrial applications. In this specific context most common type of
meshes are H-mesh, O-mesh and C-meshes [78] which allow to follow a curved geometries
more easily if needed.

• Unstructured mesh
It is a more expensive approach in terms of memory as it requires to read an irregular
connectivity table to exchange information on all elements. However, it is possible to
generate all type of geometries in an acceptable amount of time and it allows to use dif-
ferent types of elements easily (hybrid meshes), although the use of tetrahedra is generally
privileged. Note however that the use of hybrid meshes can be important when solving a
boundary layer flow as presented in Auffray [9] where a structured type set of elements is
highly beneficial. Another characteristic of unstructured meshes is that in end usage it is
useful to be able to locally improve the mesh. In many cases this leads to the addition of
nodes which increases the number of degrees of freedom. The objective of such strategies
is to affect the quality of the mesh which if insufficient, can cause numerical artifacts.
As stated in Section 2.1, the observation and improvement of meshes is a very subjec-
tive issue and algorithms based on certain fields must be used to optimise and enter this
paradigm. A typical unstructured mesh is shown in Fig. 2.2b.
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(a) Structured mesh of an airfoil. (b) Unstructured mesh around a vane profile.

Figure 2.2: Mesh comparison between structured and unstructured meshes.

Recent strategies try to take advantage of both formalisms, that is to have hybrid meshes
composed of two blocks, some structured and others unstructured that are coupled to conform
one global mesh. For the rest of this document, the concept of hybrid mesh is restrained to
fully unstructured multi-element meshes composed of tetrahedra and prisms for example. Note
finally that confusion must be avoided when referring to the isotropy or regularity of the mesh.
These specifications are not limited to structured grids but may as well be obtained with an
unstructured mesh.

Having established the existing mesh types available to a LES solver, the following fun-
damental step in solving the modelled LES equations resides for a given mesh and associated
degrees of freedom in the introduction of numerical operators. For LES, there is no doubt that
a time-dependent operator must be used but it is also clear that it is necessary to introduce the
spatial operator of the problem. The way both discretizations are done will condition the prop-
erties of the scheme [9] and are shown in the following sections. The different sections to follow
address first the spatial discretization in Sec. 2.4 while Sec. 2.5 addresses the temporal problem.

2.4 Spatial Discretization

The spatial discretization is first tackled in this section. Before introducing the different families
of discretization that can be used, the integral form of the conservation laws of the continuity
equations, see Eqs. (2.1)-(2.3), are presented as it is used in the next steps. The application
of the integral conservation laws requires to define a sub-domain, namely a cell, where the
conservation law has to hold. Naturally if this is law is directly applied the discretization
conservativeness is automatically guaranteed in the cell. Mathematically this can be written
through Eq. (2.6) with no source terms (after the use of Green’s theorem),
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∂

∂t

∫
Ω
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S

~F~ndS = 0. (2.6)

where U represents the conservative variables, ~F are the fluxes ~n is the normal vector. Also,
Ω is the domain of interest: i.e. cell or computational domain and S represents the boundary
of the domain.

The interpretation of the previous expression is that summing over all the elements that
form the domain, the internal fluxes (faces of cells that do not correspond to boundary domain
faces) must not contribute to the internal volume sources. If this is verified, the formulation
is indeed conservative. However, calculating the direct integral of the fluxes is not the only
way to proceed. It is also possible to obtain an approximate solution of the problem that is
bounded but does not hold absolutely. This corresponds to a weak formulation (also known as
weighted residuals) based on the Lax-Milgram theorem [27]. Finding these approximate func-
tions remains the most challenging aspect of the method and is explained in the corresponding
section.

An additional comment must also be done in terms of control volumes and their storage.
The elements in which the domain is divided into, how the control volumes are defined and the
spatial discretization used have to be clarified. These three approaches are shown in Fig. 2.3.
Different algorithms exist to this end, cell-centered, vertex-centered and cell-vertex methods.
The cell-centered method was the first to be used in the context of finite volumes. The domain
is discretized using a series of cells that connect the nodes of the mesh, known as primary
cells. For this method, the variables to be solved (one per cell) are stored at the center of each
primary cell. This is different from cell-vertex methods which use the same primary cell to solve
the equations, but will however store the information at a different location. The most usual
locations are the vertices that define the primary cell. The control volume where the equations
are solved is not necessarily the primary cell, an alternative being the vertex based approach.
In this case, one requires an additional cell to be defined using the centroids of the neighbouring
cells around a given node and define what is known as the dual cell. In this way, it is similar
to the cell-centered method as it solves and stores the information at the same point with the
additional cost of defining the dual cell.

For both cell-centered and vertex-centered approaches, the evaluation of the discretized
variables requires to obtain information from its neighbours to compute the fluxes on each cell
face. This is not necessary for the cell-vertex approach as the values are already stored at the
vertices that define the cell. The counterpart to this is that once the computation in each cell
has been performed, the cell-vertex method requires to send the information to each vertex.
In all cases, information will need to be exchanged. Nowadays, CFD codes are run on a large
number of processors, which requires good partitioning algorithms to optimize the exchange
of information. The partitioning strategy will greatly determine the methodology to be used
and vice versa. If the primary cells are kept, meaning that the boundaries of the partitioning
coincide with the primary cell faces as in Fig. 2.4, the cell-vertex method would be a more ap-
propriate choice. As nodes on the partitioning limits will be duplicated, each cell will contain
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(a) (b) (c)

Figure 2.3: Discretization approaches [45], a) cell-vertex, b) cell-centre and c) vertex-based
approach.

the required information for the resolution of Eq. (2.6). Of course, the node update will require
partitioning information exchange. However, the time required for the computation of gradi-
ents will be much larger than just the update, concluding thus that for this type of partitioning
the cell-vertex method will be more efficient. It is also of note that the boundary treatment
performed in the cell-vertex method is in general, more precise and cheaper than for the other
methods. It has also been shown for a large number of cases that the cell-vertex method is
also the most accurate of the three methods [126] as well as more robust to distorted meshes
[177]. All of these reasons justify the choice of methodology done for AVBP and is studied by
numerous research groups still today [2]. The details of the cell-vertex method are developed
in Section 3.1.

Once these concepts have been defined, it is possible to go on to define each particular
discretization strategy. The spatial discretizations can be divided into three different fami-
lies. These families are, by chronological development, Finite Differences, Finite Element and
Finite Volumes. They are here presented to show their advantages and disadvantages regard-
ing mainly their applicability, greatly limited depending on the type of mesh and their accuracy.
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Figure 2.4: Partitioning of cells in AVBP [29] duplicates the number of nodes affected by the
partition. Definition of primary and dual cells around a target node are also shown.

2.4.1 Finite Differences (FD)

Finite Differences was the first method developed and it is not based on an integral form but
on a Taylor expansions of the spatial derivative of a function f(x) around x0,

f (x) = f (x0) +
∆x

1!
f ′ (x0) +

∆x2

2!
f 2) (x0) +O

(
∆x3

)
. (2.7)

It therefore addresses Eqs. (2.1)-(2.3) instead of Eq. (2.6) different expressions of the deriva-
tives are obtained by truncating the development at the required order. If an infinite number
of degrees of freedom were to be used, no truncation error would be present. The difficulty
associated with this approach is the increase of stencil size or equivalently, the number of neigh-
bouring nodes required to obtain the derivative approximation at a given order of accuracy.
For structured type meshes this is not an issue except at boundaries, but as it has been seen,
it will introduce difficulties in the discretization of complex geometries. Based on this type of
development, the most common schemes are the compact or generalized Padé schemes [107]
that allow to have reduced stencils compared to the classical Taylor expansion at the same
order of accuracy. The first derivative in this case would be written as,

βf ′j−2 + αf ′j−1 + f ′j + αf ′j+1 + βf ′j+2 = c
fj+3 − fj−3

6∆x
+ b

fj+2 − fj−2

4∆x
+ a

fj+1 − fj−1

2∆x
(2.8)

where j is the target node and j + k are their kth neighbours. Depending on the values
assigned to the coefficients β, α, a, b, c, the order of the scheme will be different. There is a
clear inconvenience in this formulation due to the presence of neighbour node derivatives. This

26



2.4 Spatial Discretization

requires to know the values taken by the derivative at these points and implies the use of a
matrix that must be inverted, making it an implicit method. This inversion adds an additional
cost from a purely computational point of view but it also presents computational difficulties
due to memory requirements and eventually, partitioning issues. The great improvement issued
by such approaches is however seen in both the lower dissipation and dispersion errors of such
schemes justifying their wide use. General difficulties encountered for this type of schemes relate
to aliasing errors leading to optimization studies that provide the best possible combinations
[164].

2.4.2 Finite Elements (FE)

This method was originally derived for structural mechanics in the 1940s although the first
applications to CFD appeared in the early 1980s. It is based on functional analysis and will
resolve the weak form of the equations, i.e.: Eq. (2.6). Numerically, Finite Elements requires
to discretize space into control volumes, known as elements (in Finite Differences although
the domain is discretized artificially by elements, there is no other notion than nodes). These
elements or cells will at the same time be delimited by vertices. Associated to these cells and
vertices, shape functions are introduced to carry the spatial information associated to each
variable. So, for each cell,

u (~x) =
∑
k

uk~φk (~x) (2.9)

~φ being the shape function containing the information of how the variable u is distributed inside
the cell. Performing this operation in all cells contained in the domain, the spatial discretization
is complete and a temporal integration can be applied. The construction of the entire spatial
approximation based on each element representation is known as the assembly process. The
local information is expressed in a global form so the problem is reduced to solving a matrix
system. The shape functions can be of various types, interpolating, splines... [147]. If the trial
functions are taken to be equal to the test functions, the method is known as Bubnov-Galerkin
or simply the Galerkin approach. This numerical approach is applied for certain schemes in
the AVBP solver and will be detailed in Section 3.2.2.

2.4.3 Finite Volumes (FV)

The most widely used discretization method in CFD relies on the direct application of the
integral form of the governing equations, see Eq. (2.6). Introduced by Rizzi and Inouye [150]
among others, its popularity comes from its ease and applicability to both structured and un-
structured meshes. To obtain the update from step n to n + 1 the fluxes must be evaluated
through each face that composes the element. Fluxes will hence only depend on their sur-
face values, which need to be approximated using the conservative values in each cell or its
neighbours. How these fluxes are evaluated varies between the algorithm used (cell-centered,
cell-vertex or vertex-centered) and each particular code implementation. Once the surface fluxes
have been calculated, Eq. (2.6) can be rearranged to read,
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∂

∂t

∫
Ω

UdΩ = −
∫
S

~F~ndS = RΩ. (2.10)

where the surface integral is defined as the residual RΩ of the control volume. This residual
can then be used to advance in time and move on to the next iteration.

The three main families of discretization methods have been described as well as the dif-
ferent control volumes that exist and how this information is stored. Although robust, in the
context of FE and FV the direct application of these methods lead to low-order schemes (equal
or lower than two). The trend in the numerical community has been to increase this order as a
result of its numerous advantages [182] which although more expensive in terms of operations
pays off in terms of number of degrees of freedom necessary to obtain the same solution. The
obtention of high-order distribution schemes has been a challenge for a large number of years
now and in the context of classical CFD there are two main approaches today, Residual Dis-
tribution schemes (RD) and Discontinuous Galerkin (DG). They both have local formulations
but the number of degrees of freedom increases slower in the RD case compared to DG. For
the remaining of this thesis only the RD method, originally developed by Roe [152], is studied
as it is the method applied in AVBP.

2.4.4 Residual distribution schemes (RD)

Residual distribution schemes, or fluctuation splitting schemes usually have associated to the
nodes as degrees of freedom exclusively, so it has similarities with the cell-vertex approach and
can be closely related to both finite volume and finite element schemes. The objective for the
development was to increase the accuracy of the standard Finite Volume methods while keep-
ing the linearity preservation properties [28]. This type of schemes tries to bring together the
optimal properties of both methods. The difficulty of residual distribution schemes resides in
extending the problem to the complete Navier-Stokes problem as it was initially designed for
advection problems [3].

Considering no source terms as in Eq. (2.6), it can be shown that the spatial discretization
for one element leads to Eq. (2.11). Based on the calculation of a residual or fluctuation from
a non-stationary solution, in the case of a Finite Volume method, integrating the divergence of
the fluxes over an element will lead to a value that will be different from zero:

RΩ =
1

VΩ

∫
Ω

~∇ · ~FdV, (2.11)

expression that can be transformed using the Gauss-Ostrogradskii theorem to obtain what is
known as the residual previously seen.

The difference between Finite Volumes and RD is that the fluxes in the RD schemes are not
considered to vary along the edge or face of the element, but are concentrated on the degree
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of freedom. For a cell-vertex context this corresponds to a node. The key to the development
of high-order schemes is that the gradients reconstructed must be of higher-order. This step
provides the main interest in the method but also poses most of the problems. The calculation
of the residual is however done at the center of the element and uses all the neighbour vertices.
For a cell-vertex method, this value must now be distributed back to each node through the
scatter operation. This operation can be characterized mathematically by a distribution matrix
Dj,Ω that is related to the temporal advancement of the conservative variables by,

dUj
dt

= −Nj, (2.12)

where Nj is,

Nj =
1

Vj

∑
Ω∈Dj

Dj,ΩVΩRΩ, (2.13)

and Vj represents the nodal volume. The way the Dj,Ω matrix is chosen define the different
schemes and is discussed in Chapter 3 as each distribution will have very different properties.

Note that in all cases the spatial discretizations presented have always been ended by ob-
taining a residual. This is because the temporal advancement has still not been performed
but is of course necessary. Section 2.5 presents the different ways this step can be done in the
cell-vertex context used in AVBP.

2.5 Temporal integration
The advancement from time step n to n+1 is by adding a weighted residual to the conservative
variables Un to obtain Un+1 . There are two main ways to advance a temporal step, either in
an explicit or in an implicit way.

• Explicit schemes

Explicit schemes reside on finding a finite time step ∆t to move from an instance n to
n+1 for it to remain stable. The schemes are conditionally stable (if not unstable) and
are limited by the CFL number. The CFL value is due to [41] that defined the criterion
for a compressible flow as

CFL =
(u+ c) ∆t

∆x
. (2.14)

with u is the convection velocity and c is the sound speed. Typical order of magnitude
of CFL stable values is CFL ≈ O (1). As an example, in the case of a compressible flow
where u << c a typical time step could be of the order of ∆t α ∆x

c
. It is especially critical

if a small ∆x is required such as in the proximity of walls as already discussed.
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• Implicit schemes

Implicit schemes on the other hand are unconditionally stable which implies that large
values of ∆t may be used, the limit not being related to numerical issues but to the cor-
rect capture of the physics involved and the accuracy of the solution. Cases where strong
non-linearities are present require small time steps losing thus part of the advantages
associated to this family of schemes. This being the case, it seems unusual that explicit
schemes still be used today. This may be explained by the cost of the operations associ-
ated to each family. Implicit schemes use backward time advancement which introduces
a matrix inversion which is both costly and memory intensive. Additionally, it is much
more difficult to parallelize which is a clear disadvantage considering the current machine
architectures status. Both methods have however their advantages and disadvantages so
it is a choice to make which will depend on the application targeted.

As specified for the spatial discretization, there is a need to increase the order of the tempo-
ral numerical schemes to reduce the global cost of the simulation. In hyperbolic systems where
waves are transported there is a duality between space and time that must not be forgotten.
However, effort has seemingly been focused much more on spatial discretization than on tem-
poral integration schemes. This is a great mistake as it is the coupling of both that leads to
the final properties of a numerical scheme [78]. Thus, temporal integration schemes require to
increase their order too. To this end, many methods are available and can be further classified
into three different families:

• Runge-Kutta methods

The most popular integration method [84, 33] can be either explicit or implicit. It is an
iterative method family where intermediate steps are used to approximate the solution.
This way it is possible to increase the temporal stencil and thus, increase the order of the
scheme and cancel out lower order error terms. They are simple to code and have good
robustness properties.

• Multi-step methods

They have a similar principle to Runge-Kutta methods except that multi-step methods
rely on different time steps to approximate the solution at instant n+ 1. The main issue
concerning this type of integration is that the unsteady effects are not well captured for
large CFL numbers [17] and thus of small interest for LES.

• Predictor-corrector methods

The idea behind these approaches is to make a first estimation using generally an explicit
integration method. This predicted value is then evaluated and used in a following step
to combine it with either the same or another integrator in time. The number of optimal
predictor or corrector steps in combination with different spatial discretization methods
can be found in Lambert [102]. It is commonly used for non-linear problems for its
robustness as it also deals better with stiff type problems.

As seen in this chapter, schemes can be classified in a large variety of ways. The way
this is done depends mainly on: a) the way a solver addresses the data storage b) the spatial
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discretization c) the temporal discretization. From now on and throughout the remaining part
of this document, the numerics used are related exclusively to the AVBP code which uses:

• Unstructured data addressing,

• Finite Volume/ Finite Element discretization method,

• Explicit time integration based on predictor-corrector methods to increase the temporal
order.

All these points can be justified from an application point of view. AVBP is a solver
widely used in industry, so it requires to be able to deal with complex geometries limiting
the choice to an unstructured solver. Accordingly, this discards the possibility to use finite
differences and schemes are obtained either in a Finite Element or Finite Volume formalism.
The temporal discretization makes use of the spatial derivatives to update the time step and is
a characteristic of the Lax-Wendroff type methods. All these aspects are described in deeper
details in the following chapters.
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Chapter 3

Numerics of AVBP
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A detailed description of the numerical methods implemented in AVBP, a cell-vertex FE/FV
unstructured solver are presented in this chapter. The cell-vertex approach introduces many
particular aspects inherent to the method that are less intuitive compared to standard FE/FV
methods. This adds a layer of complexity in terms of notation and operations which require
additional studies. Both the convection and diffusion operators are described highlighting the
various difficulties present and which need to be be well-adapted to LES. The unstructured
meshes make difficult the finding of high-order schemes which is the current trend in LES
related literature. In AVBP, the convection operators are based on a Taylor expansion that
allows to increase the temporal order of the scheme on such meshes. Note also that since the cell-
vertex algorithm is known to be prone to small-amplitude oscillations a numerical treatment
is introduced to improve the convergence towards the solution. This treatment is known as
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artificial viscosity and is detailed here. Finally, the boundary conditions either physical or
numerical are also described since needed to close the problem. Note that physical boundary
conditions are certainly necessary for the correct definition of the problem but some schemes
will require additional information. Identifying the terms, an introduction on how to tackle
these closes the chapter.

3.1 The cell-vertex approach
Cell-vertex methods were first introduced by Ni [130] and were used along with the Lax-
Wendroff scheme. It has been extensively studied by Crumpton et al. [45] or Deconinck et al.
[48]. It is a residual method that stores information at each mesh node, j, while the equa-
tions are solved using the primary control volumes as indicated in Fig. 3.1, where the primary
cell is that confined by the edges connecting the black dots and the dual cell is the shaded
cell confined by the white dots. Two types of residuals are defined; the cell residual RKe is
calculated using the flux values at each node balancing the equations on the primary cell.
This cell residual is then redistributed to the nodes using the scatter operator to obtain the
node residual Rj. Details on how this residual is obtained are provided in the following sections.

The main properties and advantages compared to other approaches are:

• Accuracy on degenerated meshes The use of a control volume defined by the primary
cell is important when using complex geometries. In such cases, the dual cell might be
greatly distorted while the primary cells are adequate, an observation which is even more
present and critical for hybrid meshes. In that respect, accuracy has been shown to be
much greater when compared to cell-centred or vertex-centred approaches [44, 154].

• Memory intensive In complex geometries it is a fact that the number of cells is always
larger than the number of nodes if elements such as tetrahedra are used. This privileges
the cell-vertex method as it will need to store less information.

It is necessary to introduce now the metrics that may be encountered in AVBP as well as
the calculation of the residual on a single primary cell and how it is redistributed to the node.

Figure 3.1: Residuals at primary (white) and dual (shaded) cells.
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3.1.1 Cells and metric definition

In the cell-vertex context, the existence of a cell duality is present due to the primary and dual
cells. This duality introduces an extensive need notations that must be clarified. To do this, it
is first necessary to introduce the different types of elements found in the AVBP code in two
and three dimensions:

• 2-D

Triangles,

Quadrilaterals,

• 3-D

Tetrahedra,

Pyramids,

Prisms,

Hexahedra.

A simple 2D hybrid mesh is presented in Fig. 3.2a to provide all the necessary definitions
required. Throughout the following discussion, the definitions hereafter provided will refer to
Fig. 3.2.

• j ∈ [1, Nnode] is the index used for the global node numbering where Nnode is the total
number of nodes of the mesh.

• Ke represents the primary cells of the mesh. The cell is defined by the edges that connect
its nodes thanks to the connectivity table of the mesh.

• Cj represents the dual cell of the mesh. It is defined by the centroids of the primary cells
and the half-lengths of the primary cell edges.

• ∂Cj represents the boundary of the dual cell. The same applies to the primary cell for
∂Ke.

• k ∈ [1, nv(Ke)] is the local numbering of the vertices of a cell Ke, with nv(Ke) the number
of vertices of the cell Ke.

• f ∈ [1, nf (Ke)] is the local numbering of the faces of a cell Ke, with nf (Ke) the number
of total faces of the cell Ke.

• ~Fk is an approximation of ~F (a vector field) at the vertices.

• ~s represents the normal vector. It is defined at each face and each vertex.

• Rj is the global nodal residual.

• RKe is the primary cell residual.
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(a) Detail of mesh dual cell. (b) Definition of normals to face and nodes.

Figure 3.2: Definition of cell-vertex metric.

• ~x is a vector representing the vertex coordinates.

• Linear element is a metric element whose shape function is linear, e.g. triangles or
tetrahedra.

• Bilinear or trilinear elements are metric elements whose shape functions are bilinear or
trilinear, e.g. quadrilaterals, prisms, hexahedra.

To define the volume VKe consistently it is necessary to define it in a way such that,

VKe = − 1

n2
d

∑
k|k∈Ke

~xk · ~sk, (3.1)

since ∇ · ~x = nd with nd the number of dimensions. The control volume around the node j
(median dual cell) is thus defined as : Vj =

∑
j|k∈Ke

VKe/nv(Ke).

An additional comment is necessary for the definition of the normal to both faces and
vertices presented in Fig. 3.2b. The normal to a face ~sf is uniquely defined by the normal to
the edge (or surface in a 3-D case) created by the nodes as shown. Each normal to the edge ~sf
is additionally scaled by the length of the edge. The expression of the normal to each vertex
inside a primary cell is hence given by,

~sk =
∑
f∈k
−nd
nfv
~sf (3.2)

where nfv is the number of vertices on an edge.

3.1.2 Residual calculation

The residual is computed for each primary element using an integration rule on the surrounding
faces. Rewriting Eq. (2.11) and transforming it using the Green-Gauss theorem,
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RKe =
1

Ve

∫
∂Ke

~F · ~ndS. (3.3)

Using the notation described in Sec. 3.1.1, Eq. (3.3) can be expressed as

RKe = − 1

ndVe

∑
k

~Fk · ~sk. (3.4)

Once the cell residuals are calculated, one can obtain the nodal residual at node j as the
volume average of the cell residuals,

Rj =
1

Vj

∑
k|j∈Ke

Dj|KeVKeRKe (3.5)

where Dj|Ke is a distribution matrix from the primary cells Ke to the dual cells j that is
conservative if

∑
k|k∈Ke

Dk|Ke = I. Then the time advancement must be performed, that is

dUj
dt

= −Rj. (3.6)

This section provides the foundation of all cell-vertex schemes and associated operations
present in the AVBP codes. Different schemes however exist, their derivation and link to the
above discussed steps are the subject of the following sections.

3.2 Convection schemes in AVBP
AVBP uses a cell-vertex approach and different spatial discretizations, either FV or FE, depend-
ing on the scheme used. The main schemes used in AVBP are the second-order Lax-Wendroff
and the Taylor-Galerkin (TG) family. Both the LW and the TTG family are based on a Taylor
expansion in time of the solution vector function,

Un+1 = Un + ∆t

(
∂U

∂t

)n
+

1

2
∆t2

(
∂2U

∂t2

)n
+

1

6
∆t3

(
∂3U

∂t3

)n
+ O(∆t4), (3.7)

but have different truncation errors. Each term of type ∂nU
∂tn

is solved using diverse flux expres-
sions and is then substituted into the general continuity equation.

3.2.1 Lax-Wendroff scheme

The first scheme to be presented is the second-order Lax-Wendroff (LW) scheme [104] and
serves as an example to introduce the main concepts. The LW scheme uses Eq. (3.7) keeping
the terms up to ∆t2. The idea behind the Lax-Wendroff scheme is to substitute the temporal
derivatives with spatial derivatives using the continuity equation (Eq. (3.8)),

∂U

∂t
= −∇ · ~F , (3.8)
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and,

∂2U

∂t2
=

∂

∂t

(
−∇ · ~F

)
= −∇ · ∂

~F

∂t
. (3.9)

Once this point is reached, it is necessary to introduce an additional operator as the fluxes’
temporal derivative cf. Eq. (3.9) is unknown. To do this, the idea of Ni [130] was to use the
Jacobian matrix defined as ~A = ∂ ~F

∂U
so the temporal derivative of the fluxes is rewritten as

∂ ~F
∂t

= ~A · ∂U
∂t

since spatial and temporal derivatives can be interchanged. The second order
derivative can hence be expressed as,

∂2U

∂t2
= −∇ ·

[
~A ·
(
∂U

∂t

)]
= ∇

[
~A ·
(
∇ · ~F

)]
(3.10)

The LW scheme is finally obtained and reads,

Un+1 = Un −∆t


(
∇ · ~F

)n
︸ ︷︷ ︸

L

− 1

2
∆t∇ ·

[
~A ·
(
∇ · ~F

)n]
︸ ︷︷ ︸

LL

 . (3.11)

Two terms are to be noted on the RHS of Eq. (3.11). The second term factor of ∆t is here
on defined as L while the third term factor of ∆t2 will be named LL. For this scheme, as the
implementation done is based on a FV approach (although the FE is also possible), all cells
are treated in the same way not distinguishing between linear and bi or tri-linear elements (see
Sec. 3.1.1). The first term of the scheme is obtained for a cell using a local volume integral
re-expressed using the Green theorem,

L =

∫
Ke

∇ · ~FdV =
∑
∂Ke

~Ff · ~sf (3.12)

where the fluxes and surface normals are given at the faces. The fluxes are defined at the
primary cell vertices which define the faces where a linear variation is assumed along the edges
so that,

~Ff =

nf
v∑
k

~Fk

nfv
, (3.13)

where nfv represents the number of vertices on an edge or face.

The residual contribution from the L term corresponds to the first order temporal derivatives
of the original problem and is calculated at a primary cell level using,
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RL
Ke

= − 1

ndVKe

∑
k|k∈Ke

~Fk · ~sk. (3.14)

Once this residual is calculated, it can be redistributed to the nodes using the distribution
matrix previously noted in Eq. (3.5).

The second term LL of Eq. (3.11) is calculated directly at the vertex of each primary cell
using Eq. (3.10). The Green-Gauss theorem is once again used to go from a volume to a surface
integral leading for each subcell Ke ∩ Cj,

LLj|Ke =
1

2
∆t

∫∫∫
Ke∩Cj

∇ ·
[
~A
(
∇ · ~F

)]
dV =

1

2
∆t

∫∫
∂Cj

[
~A
(
∇ · ~F

)]
~n dS. (3.15)

This term is then discretized to read,

LLj|Ke =
1

2Vjnd
∆t

∑
e∈∑Cj

[
~AKe

(
∇ · ~F

)
Ke

]
~sj|Ke . (3.16)

where j|Ke refers to the node contribution to a certain primary cell.

Although the residual associated to this LL term only has sense from a dual cell point
of view, the primary cell residuals previously calculated are used in this step too. The loop
performed in Eq. (3.16) is done for all subcells

∑
Ke ∩ Cj and the terms that correspond to(

∇ · ~F
)
Ke

are precisely the first order residual of each intersection cell. The Jacobian matrix
is evaluated using this residual. The assumption made here is to assume a constant Jacobian
for each Ke.

Applying the assumption of a constant Jacobian over each primary cell to Eq. (3.16) re-
quires then only to substitute the values obtained by the Jacobian matrix, the residuals of the
primary cell and the normals of the corresponding node. Composing both first and second
order derivatives it is possible to construct the global distribution matrix as,

Dj|Ke = Vj|Ke

(
I − ∆t

2nd

nv(Ke)

VKe

~AKe · Sj|Ke

)
. (3.17)

3.2.2 TTG numerical schemes

The Taylor-Galerkin family of schemes first appeared with Donea [52] and consisted in devel-
oping the same Taylor expansion as done for the LW scheme but performing a Finite Element
discretization in space using the Galerkin discretization method. Due to the cell-vertex nature,
no great difference is present in terms of discretization whenever compared to a Finite Volume
approach. Indeed, residuals are calculated at the primary cell and redistributed to vertices while
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for a Finite Element case these are directly calculated at the vertices. However, introducing the
Finite Element discretization implies the apparition of a consistent mass-matrix that greatly
improves the dispersion error [54] but also increases the cost of the update. The acronym that
gives name to the section is Two-Step Taylor-Galerkin and relates to an improved version of the
one-step scheme presented by Donea et al. [54] to extend the stability domain of the scheme,
especially for a multi-dimensional problem. The extension to multi-step schemes (order higher
than two) was provided in Safjan and Oden [155] but is only applicable in the context of h-p
type elements. For AVBP only P1 type elements (elements whose shape functions use only the
vertices of each edge) are considered which limits the improvement of the schemes but at the
same time limits the cost of the different operations.

The one-step family is first presented to show the disadvantages and justify the extension to
the two-step method. The one-step family is not unique and depends on the time-integration
order of the scheme. As presented in [37], the most popular time integrator is the Euler inte-
gration method. Ultimately, the difference with the LW scheme is that the truncation order of
the Taylor expansion is of order three instead of second order.

Starting back with Eq. (3.7), the idea behind the first and second temporal derivatives
introduced by the LW scheme is conserved Ni [130]. The treatment of the third order temporal
derivative can not however be equivalent to the second order derivative. Instead it is dealt with
using a simple Euler equation so,

∂3U

∂t3
=

∂

∂t

(
∇
[
~A
(
∇ · ~F

)])
, (3.18)

or by commutation of temporal and spatial derivatives,

∂3U

∂t3
=

(
∇
[
~A

(
∇ · ∂

∂t
~F

)])
, (3.19)

where ∂F
∂t

is approximated by Fn+1−Fn

∆t
which renders the method implicit. The development

done by Donea [52] used only the simple advection equation to treat more easily this Euler
time integration method ending up with only a modified mass matrix. The stability limits of
these schemes (shown in [52]) have led however to their disuse.

The development by Quartapelle and Selmin [146] of the two-step corresponding schemes
eliminated issues. The coefficients used for their schemes can be generalized as done by Colin
et al. [37] to present the whole family of schemes as detailed in Eqs. (3.20) & (3.21) where both
steps are expanded,

Ũn = Un − α∆t~∇ · ~F n + β∆t2~∇ ·
(
~A ~∇ · ~F n

)
, (3.20)

Un+1 = Un −∆t~∇ ·
(
θ1
~F n + θ2

~̃F n
)

+ ∆t2
(
ε1~∇ ·

(
~A ~∇ · ~F n

)
+ ε2~∇ ·

(
~A ~∇ · ~̃F n

))
, (3.21)
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TTGC TTG4A
α 0.49 1

3

β 1
6

1
12

θ1 0 1
θ2 1 0
ε1 0.01 0
ε2 0 1

2

Table 3.1: Coefficients for the Two-Step Taylor Galerkin schemes implemented in AVBP.

where˜stands for the intermediate step variables.

If substituting Eq. (3.20) into Eq. (3.21) the expression resembles a Taylor expansion up to
the fourth order. This meaning for example that to obtain a first order scheme θ1 + θ2 = 1 is
required, and so on for higher order schemes. The choice of the coefficients is not trivial, as
it could be desirable to have a lower order scheme to try to enforce other desired proprieties.
In the original document [146] the choice was to develop two fourth-order schemes, notably
TTG4A that is a scheme used in AVBP. However, for LES it is a good approach to try to
have the lowest dissipation possible for a large range of wavenumbers which led to the develop-
ments of Colin et al. [37]. The coefficients used for these two schemes are presented in Table 3.1.

Before discussing the differences between schemes which is left for the next chapter where
properties are tested, the Galerkin spatial discretization is introduced. By multiplying Eqs. (3.20)
& (3.21) by the test functions φj leads to the weak formulation of the problem. There are three
main operators that intervene for each step of the update, the two derivatives as for the LW
scheme and the additional mass matrix inversion. The two derivatives are the RHS terms while
the matrix operation is kept in the LHS term,∫

Ωj

R̃nφjdV︸ ︷︷ ︸
LHS

= −αLj(Un, φj)− β∆tLLj(U
n, φj)︸ ︷︷ ︸

RHS

(3.22)

∫
Ωj

Rn+1φjdV = −Lj(Ũn, φj)− γ∆tLLj(U
n, φj), (3.23)

remembering that U and R represent the conservative variables and the residual update re-
spectively,

R̃n =
Ũn − Un

∆t

Rn+1 =
Un+1 − Un

∆t
.

(3.24)
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Note that in the above expression similar terms and identifications as for the LW description
are retained. Notations are hence equivalent, only the field dependency differ: i.e. either Ũn

or Un. Functions are furthermore dependent on the shape function φj contrarily to the LW
scheme as presented in Sec. 3.2.1. Similarly the RHS terms of Eq. (3.22) can be written as,

Lj(U
n, φj) =

∫
Ω

∇ · ~F (Un)φjdV, (3.25)

LLj(U
n, φj) =

∫
Ω

∇ ·
(
~A
(
∇ · ~F (Un)

))
φjdV . (3.26)

This second term is decomposed using integration by parts to decompose the interior and
boundary terms in a suitable way as will be shown later,

LLj(U
n, φj) = −

∫
Ω

~A
(
∇ · ~F (Un)

)
∇φjdV︸ ︷︷ ︸

LL0
j (Un,φj)

+

∫
∂Ω

φj ~A
(
∇ · ~F (Un)

)
~ndS︸ ︷︷ ︸

BTj(Un,φj)

. (3.27)

The term noted as LL0
j is integrated over the whole domain as it is a volume integral while

the second BTj is different from zero only at boundaries. The difficulty concerning this second
term is that additional boundary conditions must be provided. These BCs are discussed in
Sec. 3.6. The final step is to apply the Galerkin method, taking the shape functions φk equal
to the test functions previously noted φj. With this LHS are expressed as,

Rn =
∑
k

Rn
kφk, (3.28)

∇ · ~F =
∑
k

Fk∇φk, (3.29)

∫
Ω

R̃nφjdV =
∑
k

(∫
Ω

φjφkdV

)
R̃n
k =

∑
k

MjkR̃
n
k , (3.30)

where Mjk is the mass-matrix that must be inverted. The RHS terms of Eq. (3.22) are hence
expressed similarly,

Lj(U
n, φj) =

∑
k|j∈Ke

Lk(U
n, φj)Ke (3.31)

LLj(U
n, φj) =

∑
k|j∈Ke

LLk(U
n, φj)Ke (3.32)

so only the neighbour primary cells contribute to the nodal residual. The development of the
L term for a primary cell leads to,

42



3.2 Convection schemes in AVBP

Lj(U
n, φj)Ke =

∑
k|k∈Ke

F n
k

∫
Ke

φj∇φkdV, (3.33)

and for the LL term,

LLj(U
n, φj)Ke = AnKe

∑
k|k∈Ke

F n
k

∫
Ke

∇φj ·∇φkdV−AnKe

∑
k|k∈Ke∩∂Ke

F n
k

∫
∂Ke∩∂Ω

φj∇φk~ndS. (3.34)

Various points must be noted before continuing. The first important assumption is the
one taken to write Eq. (3.29). The Galerkin approach discretizes the conservative variables
using certain test functions. If the fluxes were taken to be linear, this would not present any
inconsistency, but this is not the case when dealing with the Navier Stokes equations where
non-linearities are clearly present. This hypothesis has been addressed by Fletcher [65] who
named this latter context of work group finite elements and stated two conditions for the well-
posedness of the equations. The first one deals with the way the NS equations are written
which must be in a conservative form. This presents no problem as equations are indeed solved
using this formalism. The second condition is that only one type of interpolation is used for
the group of terms it discretizes, meaning that the test functions are the same independently of
the equation it is applied to. Thus, terms such as u2, uv or v2 must use the same test functions,
e.g. u2 =

∑
k u

2
jφk. This formulation allows a much simpler differentiation. In [65], various

examples show that an improved behaviour with such recommendations is found if large discon-
tinuities are encountered while maintaining a good accuracy at a much lower cost than classical
Finite Element approaches.

Another hypothesis of importance is used when writing Eq. (3.34). The Jacobian is assumed
constant inside the cell, which is true for linear type elements such as triangles and tetrahedra.
This is not the case for bilinear type elements like quadrilaterals, although as stated in Colin
et al. [37] it is only used for the second derivative terms.

Differences are nonetheless seen for this scheme for bi-linear or tri-linear elements such
as quads, pyramids, prisms and hexahedra. If triangles or tetrahedra are used, the spatial
discretization resembles that of Finite Volumes. This can easily be shown as in Auffray [9]: i.e.,

∇φk = − ~sk
ndVKe

, (3.35)

∫
Ke

φkdV =
VKe

nv(Ke)
∀k ∈ Ke. (3.36)

It is then simple to show that Eqs. (3.33) & (3.34), neglecting the border contribution in
the LL term, take the form,

Lj(U
n, φj)Ke =

∑
k|k∈Ke

F n
k∇φk

∫
Ke

φjdV = (∇ · ~F n)Ke

∫
Ke

φidV = Rn
Ke

VKe

nv(Ke)
(3.37)
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LLj(U
n, φj)Ke = AnKe

∑
k|k∈Ke

F n
k∇φk ·

∫
Ke

∇φjdV = − 1

nd
(AnKe

Rn
Ke

) · ~sj|Ke (3.38)

which are exactly the expressions obtained previously for the LW scheme once the redistribution
is done. Of course difficulties arise when the gradient can not be considered constant inside
the cell. In this case, the approach followed in Colin et al. [37] is to add a correction to the bi-
linear and tri-linear elements as simple quadrature leads to oscillatory profiles. The correction
proposed by Colin et al. [37] consists in splitting the Θj,k matrix in Eq. (3.39) into two parts
Θ0
j,k + Θ1

j,k where,

Lj (Un, φj) |c =
∑
k∈Ke

FkΘj,k|c, (3.39)

and

Θj,k|c =

∫
Ke

φj∇φkdV, (3.40)

Θ0
j,k

∣∣∣
c

=

∫
Ke

φj∇φkdV, (3.41)

Θ1
j,k

∣∣∣
c

=

∫
Ke

φj
(
φk −∇φk

)
dV. (3.42)

In the case of regular elements,

∇φk = ∇φkFV , (3.43)

which is equivalent to

∇φkFV = − ~sk
nd VKe

. (3.44)

This last formulation is adequate but as soon as the element is deformed a transformation
matrix T is needed to map the original element onto the canonical reference element as shown
in Fig. 3.3. The definition of this matrix is given as T = |P |

(
P T
)−1 where P = ∂x

∂x̃
is the

Jacobian geometrical matrix and x̃ corresponds to the canonical coordinate system. This map-
ping is taken to be constant for each element which implies it is treated as if it were a regular
element and hence evaluated at the barycentre of the cell. This implies that only the average
distortion is taken into account comparatively to the real deformation and thus does not take
into account the exact metrics.
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1 2

34

Figure 3.3: Detail of mesh dual cell.

The missing step concerns the LHS terms of Eqs. 3.22 and the inversion of the mass matrix.
Following [36] there are alternatives to the exact inversion of the whole matrix containing all
the degrees of freedom of the system, which can be memory intensive when large numbers of
degrees of freedom are used and the problem is to be parallelized. These methods are iterative
methods and locally invert the matrix as described below. One of the most popular methods
is the Jacobi method, which in very few iterations allows to converge towards the solution
accurately. The process can be summarized in the following:

• Copy initial residual R̃n
j , Eq. (3.45), to new variable,

• Scale initial residual with D−1, (cf Eq.3.47), where D represents the diagonal of the
lumped mass matrix M ,

• Multiply (M-D) matrix by scaled residual, Eq. (3.47),

• Add copy of residual,

• Scale result by D−1 if final iteration is not reached.

Mathematically, this could be represented by the following operations,

R̃n
j = −α 1

Vj

∑ 1

nv(Ke)

VKeRKe + β
∆t

2ndVj

∑(
~AKe ·RKe

)
· ~Sj|Ke , (3.45)

∫
Rn
j φjdV =

∑
j

(∫
φkφjdV

)
Rn
k =

∑
j

MjkR
n
j , (3.46)

(
R̃n
)i

=
(
R̃n
)0

−D−1 (M −D)
(
R̃n
)i−1

, (3.47)
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(
R̃n
)0

= D−1R̃n
j . (3.48)

This specific iterative method has been verified to tend to the exact solution when inverting
exactly the matrix using a bi-periodic mesh. The stencil is affected by the number of inversion
steps performed and is larger when the number of Jacobi iterations increases. This is logical as
each Jacobi step affects locally the neighbour cells and hence nodes, of the initial set of degrees
of freedom. Of course, it is necessary to define the number of iterations to be performed in
the Jacobi method to assure a sufficient accuracy while guaranteeing no excessive cost. Tests
performed in [36] show that for academic cases when the number of iterations is equal or larger
than two, the errors between the iterative and the exact approaches are sufficiently small to be
considered acceptable.

3.3 Diffusion schemes in AVBP

Diffusive fluxes require additional considerations for their discretization. The additional require-
ments are due to the presence of the gradients in the diffusive fluxes defined in App. A. The
literature is vast on this matter, so the following focuses only on unstructured multi-element
meshes that are of interest for this thesis. In a cell-vertex context and using unstructured
meshes as in AVBP, constructing an operator becomes even more cumbersome due to the dual-
ity of the meshes already seen and because the stencil connectivity is harder to access. The type
of dual cell is of type median dual as in [13] so the cell nodes are at the centroids of each cell
but also at the center of the edges of the intersected faces as seen in Fig. 3.2a. The cell-vertex
approximation is also known to be much better when compared to a cell-center approach as
the number of operations scales with the number of edges while the cell centered approach
scales with the number of elements. In 2D this does not imply a much larger cost but it does
largely increase in 3D. Depending on the metrics, more specifically the type of elements, it has
been shown by Barth [11] that triangular and tetrahedral type elements are conservative and
additionally, the gradient is constant over the element. The objective behind such operators
are also in Barth [11] and summarized in Puigt et al. [145]. The operator should indeed satisfy
the following criteria to be efficient:

• Consistent,

• Conservative,

• Monotonic,

• Second-order accurate,

• Insensitive to mesh quality,

• and rely on a compact stencil.
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In AVBP there exist two operators, the FV 4∆ operator and the FE 2∆ operator. Using
the previous criteria these two operators are compared in terms of performance. Consistency is
guaranteed for the FV 4∆ in all cases but this is not the case for the FE 2∆ operator for certain
connectivity as defined in Colin [35]. This however does not affect the quality of the results as
shown in the same document. Both operators are built to be fully conservative and second-order
accurate in all cases for regular meshes but neither of them is monotonic. This means that the
appearance of chequerboard modes is expected. However, due to the Finite Element formulation
and the more compact stencil, the FE 2∆ allows to diffuse the chequerboard modes contrarily
to the FV 4∆. This FE 2∆ operator was purposely developed to dissipate these chequerboard
modes and is today the standard option for AVBP simulations. Both of these operators are
detailed hereafter. It is important to note that for this section and to differentiate the nota-
tion from previous sections, the superscript V is used to denote the viscous part of the problem.

3.3.1 FV 4∆ operator

The spatial discretization is evidently the same as for the convection schemes so the same
hypotheses are taken into account when dealing with non-linear elements. The first operation
to be performed is the obtention of the gradient at each node. To do this, the gradient is
calculated in all primary cells represented in Fig. 3.4 using,

~∇UKe =
1

nd VKe

∑
k

Uk~sk, (3.49)

and redistributed to the nodes so that,

~∇U |j =
1

Vj

∑
k

VKe

nv(Ke)

~∇UKe . (3.50)

Once the gradients are obtained at all neighbour nodes to j, the diffusive fluxes are recalcu-
lated using both the conservative variables and the gradients previously calculated in the cells
shaded in Fig. 3.4

Figure 3.4: Complete connectivity around node j for FV 4∆. Gradients are required in all the
primary cells and the divergence operator is applied only to the shaded cell.
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RV
Ke

= − 1

ndVKe

∑
k∈Ke

~F V
k · ~sk, (3.51)

and redistributed once again using Eq. (3.50).

3.3.2 FE 2∆ operator

The passage to the 2∆ stencil is necessary to dissipate unwanted modes. The introduction of
the Finite Element method instead of the Finite Volume approach that would be cheaper and
easier to implement, is justified by the need to filter any diagonal modes that could appear
[35]. Note that for triangular elements however the method degenerates into a Finite Volume
scheme.

Instead of extending the stencil to the n + 2 neighbours as for the FV 4∆, only the n + 1
neighbours are used as for the median dual cell. The calculation of the gradients is analogous
to the one calculated for the fluxes for the family of convective TTG family schemes. These
gradients are corrected for the non-linear elements for the set of primitive variables necessary
to construct the viscous fluxes using the same operators. The divergence is then calculated
around the dual cell of node j,

~∇ · ~F V =
1

ndVj

∑
j∈Ω

~F V
j|Ke

~sj|Ke . (3.52)

This operator provides the necessary ingredients to avoid the apparition of diagonal modes,
in no case excluding the appearance of other type of oscillations that are common in these
simulations.

At this point, all of the operations either linked to the spatial or temporal operators have
been detailed. Although most of the discussion has focused on the LW or TTG schemes that
are mainly used for LES, other schemes are also implemented in AVBP. An important property
that clearly differentiate all these numerical schemes relates to their stability limits.

Figure 3.5: Complete connectivity around node j for FE 2∆. Gradients are required in all the
primary cells and the divergence operator is applied only to the shaded cell.
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3.4 Numerical scheme stability constraints

The update of the global variables at the end of the iteration requires a time advancement. This
advancement impacts the temporal accuracy of the scheme as well as impacts its overall charac-
teristics. In the end, the main problem resides in calculating the time advancement step ∆t to
be used so as to ensure a stable scheme while keeping under control its main spectral properties.

There are two parameters that account for the stability limits in a non-reactive flow, one
due to the convective advancement (CFL) and one due to the diffusion limit (Fourier number).
The definition of the CFL already provided reads CFL = (u+c)∆t

∆x
where u and c are the con-

vective velocity and sound speed. In schemes present in AVBP the maximum value should be
of order O (1) considering it uses an explicit time advancement. The Fourier number is defined
as F = D∆t

∆x2
where D is the diffusion coefficient and limits diffusion dominated problems.

3.4.1 CFL number

Using the definition given of the CFL, the stable value the CFL can take depends on the scheme
used and logically, the highest limit possible is searched. In the case of a one-dimensional
scheme ∆x is uniquely defined, not being always the case for higher-order dimension problems,
especially if the elements are deformed. In this case, the information might propagate in a
direction different to the main directions and so, the characteristic distance requires to be
defined in another way. The choice is to use the L2-norm of the velocity propagation in each
cell, which for a 2-D case reads,

normKe =
1

2

√∑
k∈Ke

(|u · s1 + v · s2|+ dsck · ~c)2, (3.53)

where dsck is the geometrical norm defined by dsck = (~s2
1 + ~s2

2)
0.5 and normals s1 and s2 are

vertex based norms in global coordinates respectively. Then the ∆t for temporal integration of
the scheme is the minimal value over the whole domain Ω reading,

∆t = minΩ

(
CFL

VKe

normKe

)
. (3.54)

3.4.2 Fourier number

The Fourier number is the equivalent for the diffusion fluxes to the CFL values. In this case, the
difficulty resides again in estimating the characteristic length scale which is calculated through
the following relation in AVBP,

∆x2 =
2VKe∑

k∈Ke
s2
k/n

2
d

. (3.55)
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Once again, it is necessary to search for the minimal value in the whole domain to set the
limit. In general, or at least for all tests performed in the following, this parameter does not
represent a constraint whenever compared to the CFL number.

The compliance of these constraints leads, in theory, to stable schemes. In practice however,
issues such as strong physical discontinuities or the existence of non-regular metrics affect
negatively the accuracy of the different operators, in occasions, being at the origin of oscillations.
This has led many authors to develop a framework where a dissipation operator is added to
minimize the presence of such output without it being too dissipative, a desired property when
performing LES.

3.5 Artificial viscosity (AV)
Convective schemes in AVBP are spatially centered which is known to present oscillations in
regions where the fields vary abruptly. The effect of chequerboard spurious modes should be
minimized and this requires the addition of a carefully chosen dissipation operator to deal with
these oscillations. The Artificial Viscosity (AV) does not only eliminate these high-frequency
oscillations but improves the convergence of the scheme being highly dependent on the amount
of viscosity added [154]. A high value of artificial viscosity however is inconvenient for LES
purposes as it artificially modifies the Reynolds number of the flow so a balance must be found
which is also different depending on the configuration and the flow topology. In cases of strong
discontinuities such as shocks it is also applied to mitigate its effects. The application of the
artificial viscosity in a simulation falls upon two main steps: to detect the need to apply the
AV, done with a sensor and the correction applied through an operator.

3.5.1 The operators

There are two AV operators in AVBP, a second-order pseudo Laplacian sharp sensor and a
fourth-order pseudo bi-Laplacian operator. The order of each operator and how to obtain them
is detailed in Jameson et al. [84]. They have the following properties:

• Second Order operator

The second order operator introduces viscosity in the same way diffusion terms do. It is
thus applied locally and exclusively in regions where very strong gradients are encoun-
tered. Some approaches use it exclusively in regions where shocks are encountered to
smooth variables such as pressure or density, but may of course be active in regions of
strong physical gradients. Others such as Stringer and Morton [176] however indicate
that this operator should be inactive in regions where shocks are present since resulting
in a thickening that is incorrectly predicted. The former approach is however the one
adopted in AVBP.

• Fourth Order operator

It is as a bi-Laplacian operator used to suppress the spurious high-frequency modes. It
has been shown to be effective to treat both chequerboards and washboards that are
related to the errors committed in the residual estimation while the latter are associated
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to errors in the redistribution matrices [176]. Improvements are available by increasing
even further the order of the operator (up to 6th order) towards the same end, which is
reducing the spurious oscillations.

The way they are combined is determined both by the sensor and by user-defined parameters.
Both operator contributions are first computed on each cell vertex, and are then scattered back
to nodes.

3.5.2 Sensors

The sensor is either active or not in a boolean sense, meaning the sensor is active when there are
steep gradients present in the flow (higher than a certain predefined value). The stencil and the
fields that intervene in the detection differentiate each model. Depending on the sensitivity of
the sensor each one will determine different activation locations depending on the field studied.
Various types of sensors are available in AVBP, the main ones being the Jameson-sensor [84]
and the Colin-sensor [34].

3.5.2.1 The Jameson sensor

The variable it is based on for the activation is denoted as S in the following section, usually
being pressure. The sensor is calculated at the vertices and is active when:

ζJk =
|∆k

1 −∆k
2|

|∆k
1|+ |∆k

2|+ |Sk|
. (3.56)

∆k
1 and ∆k

2 being functions that are written as,

∆k
1 = SΩj

− Sk, ∆k
2 = (~∇S)k.(~xΩj

− ~xk), (3.57)

where Ωj is the subscript for cell-averaged values and ~x represents the coordinates. ∆k
1 measures

the variation of S inside each cell Ωj. ∆k
2 is an estimation of the same variation but on a wider

stencil (using all the neighbouring cell of the node). The operator is proportional to the second
derivative of S, which is zero in the linear case and different from zero when the gradient of S
varies rapidly.

3.5.2.2 The Colin sensor

The Jameson sensor, used mainly in the framework of steady-state computations, is too dis-
sipative in most unsteady turbulent simulations. The necessity to develop a more sensitive
operator to capture the small gradients but also able of applying large dissipation values in the
presence of shocks for example, led to the development of the Colin sensor.

The properties of the sensor can be resumed in,

• It is very small when both ∆k
1 and ∆k

2 are small compared to SΩj
. This corresponds to low

amplitude numerical errors (when ∆k
1 and ∆k

2 have opposite signs) or smooth gradients
that are well resolved by the scheme (when ∆k

1 and ∆k
2 have the same sign).
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• It is small when ∆k
1 and ∆k

2 have the same sign and the same order of magnitude, even if
they are quite large. This corresponds to stiff gradients well resolved by the scheme.

• It is big when ∆k
1 and ∆k

2 have opposite signs and one of the two term is large compared
to the other. This corresponds to a high-amplitude numerical oscillation.

• It is big when either ∆k
1 or ∆k

2 is of the same order of magnitude as SΩj
. This corresponds

to a non-physical situation that originates from a numerical problem.

The previous artificial viscosity algorithms are necessary for the numerical stability of the
cell-vertex schemes that is to say, from a purely numerical point of view. From a mathematical
point of view however, the problem has not been properly closed yet because it requires to
impose the boundary conditions. These are important from the physical point of view of
the problem as they determine the flow, the mathematical closure of the system to correctly
solve the equations and the numerical stability of the scheme which can be affected by their
imposition.

3.6 Boundary conditions (BC)

Literature is rich about the number of physical variables to be set at each boundary to close the
mathematical problem [175]. In terms of physics, there are two possible conditions of interest
to be imposed in a fluid problem.

• Physical boundary conditions

The physical boundary conditions are those imposed to solve the PDE. The distinction
between both BCs is made because one targets the physical variable and the other type
imposes the spatial derivative of a physical value.

Dirichlet BCs

Dirichlet boundary conditions are conditions to be set directly onto the solution variable.
An example of this type is the velocity at the wall. Indeed, an impermeability condition
must be set for a wall so the fluid may not cross the solid boundary. Hence, the normal
velocity to the wall must be zero. Likewise for a non moving wall, the tangential velocity
of the fluid should be zero:

~u · ~t = 0, (3.58)

where ~t represents the tangential vector.

Neumman boundary conditions

Boundary condition applied to the first spatial derivative. Using again the example of
the wall, in the case of an adiabatic wall where, by definition, the heat exchange is zero.
This is represented by
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~∇T · ~n = 0, (3.59)

where ~n is the normal vector to the surface.

The choice of well-suited BCs for LES presents further difficulties. Additionally to the
physical interactions that must be respected, imposing either the Dirichlet or the Neu-
mann BCs in a hard way can induce different types of numerical errors. A common error
is found in the prediction of waves impacting a wall and the consequent inaccurate reflec-
tion. It can be shown [185] that discontinuities in the flow (either physical caused by a
boundary limit or numerical due to an abrupt change of mesh cell size) always leads to
a dispersion error of the waves reflected by the wall (see Chap. 4). This effect must be
minimized to have a good LES. The characteristic boundary conditions [138] provide a
path to comply with the physics by relaxing the solution predicted by the scheme towards
the target value.

• Characteristic BC’s

This kind of approach was first introduced by Thompson [181] to account for the in-
teraction between waves at boundaries using the Euler equations. The validity of these
conditions was limited to the inviscid flow and was extended to the viscous flow by Poinsot
and Lele [138]. The principle consists in providing a solution at the boundary from the
balance between incoming and outgoing waves. The outgoing waves of the domain con-
tain physical information as they are calculated from the interior domain. The incoming
waves however, have no physical sense as it would require outside information that is not
available. The conditions are then appropriately set as ingoing/outgoing, in a wave sense,
which will be transformed back in the original variables performing matrix operations.
The whole set of equations is extensive and may be found in [181, 200].

With these approaches, the main problem resides in the correct estimation of the waves.
Great advancements in the amplitude estimation of waves in the Euler equations for-
malism were done by Nicoud [131], who took into account the importance of the three-
dimensional effects of the boundary layer as well as the effect of developing the partial
differentials in a spatial or a temporal space. The method was extended to the Navier-
Stokes equations by Prosser [144]. One of the main problems when doing a study of
wave interaction is that only the partial derivatives are considered, which may lead to
drifts as no hard condition is imposed. A solution proposed by Yoo and Im [199] consists
in introducing a relaxation factor to suppress spurious oscillations. This method works
quite well but is too dissipative for higher frequencies and must be handled with care in
LES or DNS simulations. Lamarque et al. [101] showed the difference between the use
of normal Dirichlet boundary conditions and characteristic conditions, demonstrating the
slightly more dissipative behaviour of the characteristic conditions but suppressing many
output errors. Other studies have extended the formulation originally provided by [138]
including additional terms as in Yoo et al. [200] or extending it to a broader range of
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boundary conditions as done by Lodato et al. [110].

Imposing BCs in a hard or a weak way is not the only issue for certain numerical schemes
such as for those used in AVBP. Additional problems appear because the development of high-
order schemes, that require higher order derivatives [139], results in the need for additional
boundary conditions. The increase in order, as done when using a Taylor expansion to increase
the temporal order (see Sec. 3.2) thus requires high-order derivatives to close the problem at
the boundaries. The problem resides in the fact that no available physical boundary conditions
exist to satisfy the mathematical needs. This has led to name these conditions as numerical
BCs. For example, when developing Eq. (3.27) in Sec. 3.2.2, a surface integral appears during
the derivation. But why isn’t there a physical condition? For a convective scheme it would
require to impose a condition for the spatial derivative as a BC. There are two ways to treat
these terms in AVBP which are studied in detail in the following. The USOT formulation
which consists in setting the BTj(Un, φj) term to zero. The second possibility is the CSOT
formalism which sets the LLj(Un, φj) term to zero at the boundary nodes. Again, these terms
do not have any physical meaning and are dealt with specifically in Sec. 7.2.

In this chapter the AVBP code and the subtleties related to numerical schemes have been
approached. The cell-vertex formalism has been detailed as it is the method AVBP is based on.
The convection operator is detailed for both low-order and high-order schemes. The truncation
error is clearly superior for high-order schemes and the mass-matrix that appears from the FE
context notably improves the spatial order. In that respect high-order schemes are expected to
behave more accurately in any type of configuration, something that is questioned in Chap. 7.
This is however confirmed and detailed analyses discussed in the next chapter or later on
highlight the importance of knowing what is behind each numerical scheme, its virtues and its
defects. The next chapter is dedicated to the 1D and 2D spectral analysis of the schemes in
AVBP. The objective behind this is to understand and illustrate their behaviour at both high
and low resolution.
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Chapter 4

Spectral properties of the AVBP schemes
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It has been observed that CFD numerical solvers have a recurrent appearance of oscillations
near discontinuities or at interfaces between different elements, physical gradients, i.e. shock
waves, or geometry boundaries [187]. Such issues have also been reported in numerical sim-
ulations in other fields of study as in seismic imaging, see Scales [157]. The nature of these
oscillations can be due in some cases to an insufficient mesh resolution. In other cases, they
might be due to numerical issues inferred by a numerical boundary treatment for example. It
is these numerical issues that will be studied during a great part of the present work as they
are important in two aspects. The first one is how it influences the physical field itself and its
sensitivity to perturbations. The second one is to actually simulate a problem robustly without
a crash of the algorithm due to bad quality grids for example.

Numerical oscillations are one of the hardest problems today in CFD. Most of these prob-
lems arise from the fact that there is a physical under-resolved effect that is not captured by
the scheme for the present mesh. When this happens, the most usual output is the feared ’wig-
gles’. Various approaches are possible to deal with these numerical artifacts. Eliminating such
oscillations is justifiable as they may spatially grow and convect (while remaining bounded and
causing no stability issue for the scheme and simulation) inducing an interaction with physical
scales and thus modifying the flow prediction. Others like Gresho and Lee [73] have the opinion
that an attempt to eliminate these oscillations is not the optimal path. It is necessary to un-
derstand the reasons that cause their appearance and correct the cause and not the output, by
adapting the local grid resolution for example. The most commonly accepted diagnostic is that
these oscillations must remain ’bounded’ so that they will not lead to the crash of a simulation
nor affect the small scales encountered. For fluid flows, unresolved physics are most common in
complex physical regions such as near-wall flows where not only the physics is to be captured
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Figure 4.1: Group velocity as shown by Vichnevetsky and Bowles [187]. Three snapshots of a
spatially evolving signal highlights the dispersion it undergoes.

by the solver but it is also a region where the numerical scheme is usually adapted to allow the
treatment of the imposed boundary condition. This is a difficult situation as various problems
are possible and may even coexist. The boundary condition applied and how it is implemented
in the scheme is not a trivial nor straightforward process. Boundary conditions are associated
to domain limits where the discretization is distorted as a result of the lack of points in the
proximity of a wall for example.

Boundary conditions previously presented in Chapter 3 are sufficient to account for the
physical interactions and for certain cases, represent a well-posed system following Gustafs-
son and Sundstrøm [74]. This however might not be enough in terms of numerical boundary
conditions. The most common output which can be observed is the existence of node-to-node
oscillations, also known as wiggles. These oscillations can be explained by the non-uniqueness
of the solution to the associated numerical problem in the wavenumber spectra: i.e. non-
monotonic curves [187], see Fig. 4.1. A great number of numerical schemes are analyzed in
this document to determine the stability using a Fourier analysis. One of the most important
findings in [187] was that an increasing spurious behaviour, even for almost hyperbolic equa-
tions, is found when low-order degree of accuracy is used for the spatial discretization near
boundaries. This critical observation assures that independently of the scheme used (except for
spectral methods), a wave impacting a boundary can generate additional numerical waves and
that chain of reaction will be worse if low-order discretizations are used! A later study done
also by Vichnevetsky [186] for finite element scheme boundaries showed the effect of treating
upwind and downwind boundaries and how this can affect the reflection of non-physical waves
(q-type) as well as energy conservation to try to improve the behaviour. Conclusion is then
that the degradation of the scheme is to be held responsible for spurious effects near boundaries
and thus their appearance is inevitable.

This additional problem of scheme degradation is common to all schemes as a result of the
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Figure 4.2: Chequerboard mode and washboard modes on left and right respectively.

existence of a set of cells which do not have a neighbour that inevitably decreases the order
for any type of discretization. It is natural to study if additionally to the apparition of these
unwanted waves this could affect both the robustness and accuracy of the simulation leading to
a decrease of the global scheme order. Kreiss and Gustafsson et al. [98, 75] have shown, using
different approximation methods for both inviscid and viscous flows, that the decrease in order
due to the lack of neighboring nodes will not affect the global scheme if there is a loss of no
more than one order of accuracy at the boundary O

(
∆xglobal−1

)
.

Assuming the previous condition is respected, these non-physical waves can also be related
to the way the boundary conditions are imposed in a strong (imposing directly the condition
on the boundary) or a weak way (relaxing the value towards the target) [1]. Weak solutions
have been seen to be more accurate and less oscillatory on coarse meshes compared to impos-
ing the strong solution which is more accurate in a sufficiently refined mesh. To try to relax
the appearance of spurious oscillations, remembering we are in a fully compressible context,
characteristic type boundary conditions are preferred to impose boundary conditions in terms
of ingoing and outgoing waves.

The presence of oscillations in the near wall-region is not new for the cell-vertex used in
AVBP and is thus even expected if no specific care or treatments are added. From the first
applications to the NS equations in Crumpton et al. [45] it was seen that artificial viscosity was
a necessary step to dissipate not only the spurious waves already mentioned but also to treat
additional problems related to the cell-vertex method, notably chequerboard and washboard
modes. Of course, at first instance it is difficult to discern what type of oscillation is present in
the simulation and only numerical experiments may lead to the real origin of oscillations that
are, if not noted until now, case dependent.

Most numerical tests in the literature are performed on perfectly isotropic regular meshes
[99]. However, this is not the case in most of the real applications done today where very
different cell volumes are encountered in the same mesh. This is certainly the first analysis to
be performed, especially when more complex metrics are present, see Chap. 7. One might then
be tempted to analyze the effect not only of distorted meshes but also on meshes with high
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aspect ratios. It is thus necessary to ask in which situations this might be an issue because
an error is being introduced. It is known that redistributing the residual calculated at a dual
cell and assigning it to the node instead can introduce a discretization error [21]. This is why
upwind discretizations are commonly introduced to try to control possible errors that arise from
this additional dissipative step [67]. If no upwinding is explicitly done however, the errors can
be large when this difference is important. In general, for all LES schemes it is desired that
the dissipation be minimal to retain the original signal while being transported at the correct
speed. A good balance must hence be found.

The following chapter introduces the necessary concepts and notation used for the present
chapter which will be also used in Chap. 7. A short description of the consistency of the AVBP
schemes is given, proof being found in [99]. Then, a von Neumann analysis is accomplished
in 1-D and 2-D. At first, the approach taken is to perform a classical Fourier analysis of the
schemes implemented in the solver to evidence specificities of each scheme and go beyond the
respective CFL criterion. The 1-D case provides useful information but only represents the
behaviour in one direction and is limited as the multi-dimensional will be shown to be very
different. A 2D Fourier analysis has then been performed for bilinear elements such as the one
done in Donea et al. [54]. Doing so allows to have a deeper understanding of the main errors
which are then studied numerically; i.e. dissipation by analyzing the modulus and dispersion
by studying the phase error of the amplification factor. In whole, the final goal to be achieved is
to track the possible sources of instabilities and to understand their apparition at first instance.

4.1 Concepts and definitions

Numerical schemes are required to obtain an approximate solution to the continuous Partial
Differential Equation (PDE). It is then natural to ask what degree of accuracy is to be expected
from seemingly very different schemes. With such an objective in mind, it is necessary to
establish certain criteria to evaluate and compare the different approaches. The criteria taken
to do this are consistency, stability and convergence and stem from the work of mathematicians
whenever confronted to such issues and the derivation of schemes.

• Consistency

A numerical scheme is said to be consistent if the truncation error between the discretized
and continuous PDE tends to zero when the spatial and temporal steps also go to zero.
This implies that in the limit where ∆x→ 0 and ∆t→ 0 the equation being resolved is
indeed the original continuous equation.

• Stability

A scheme is defined as stable for finite values of ∆x and ∆t if the error between the exact
solution of the scheme and the numerical approximation remain bounded. This means
that since it is impossible to take values of ∆x = 0 and ∆t = 0 to resolve the exact con-
tinuous equation, there will always exist a numerical approximation. This approximation
has to be the same as the exact discretized equation, or to have an error that does not
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increase as the number of time steps increases. Defining εi as the error (can be due to
various reasons, i.e.; round-off errors), the following should hold

lim
n→∞

| εn |< C, (4.1)

i.e. the error must be bounded as the number of iterations tends to infinity, C being a
real number.

• Convergence
The numerical solution obtained with a numerical scheme must converge to the exact
solution of the continuous PDE when ∆x → 0 and ∆t → 0. This may seem to be the
same condition as for consistency, the difference being that in this case it is the numerical
solution that must tend to the exact solution.

All three criteria are clearly not independent relations and led to the equivalence theorem
of Lax that states that for a well-posed initial value problem that is consistent, the scheme is
convergent if and only if the stability condition is verified. So,

Consistency + Stability = Convergence. (4.2)

Effectively, investigation of the consistency of a scheme resides in identifying the truncation
error both spatially and temporally to evaluate its order of accuracy εtruncation = O (∆xp,∆tq).
Developing the numerical scheme in a Taylor expansion, it is possible to eliminate the lower
order errors to obtain what is known as the modified equation as described by Warming and
Hyett [191]. Applying this method it is possible to discern the lowest order error performed and
in turn determines the order of the scheme. In terms of stability however, there is a wider range
of problems to be studied as there is a clear influence of the steps taken for time advancement
(related to the spatial step through the CFL value) as well as the inclusion of the boundary
conditions in the problem or not. Many methods exist and are explained in the following section.

For what remains in this document, the consistency of the scheme will be assumed in
agreement with the results demonstrated by Lamarque [99], results being shown in Sec. 4.2
but no demonstration will be provided for the specific schemes of AVBP. The stability is then
analyzed using a standard von Neumann approach for a convection problem where the phase
speed c is assumed to be constant, first in a 1D context and then moving to a 2D context where
the properties are shown to differ. It will be shown that the properties of the schemes are
determined by the CFL value associated to each scheme and will justify the use of high-order
schemes (TTG family) which perform better when compared to simple second-order schemes
(LW).

4.2 Consistency results
To further understand the dispersion properties of the high-order schemes, a modified equation
analysis was shown in Lamarque [99] to define the order of the scheme. The modified phase
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velocity (Ω) of the schemes previously presented, which can all be seen to be fully consistent,
and whose stability is going to be studied are,

ΩLW = kc− c∆x2

6
νk3 − ic∆x

3

8
ν
(
1− ν2

)
k4 +O

(
∆x4

)
(4.3)

ΩTTGC = kc− ic∆x
3

24
νk4 − c∆x4

360

(
3ν4 − 10ν2 + 2

)
k5 +O

(
∆x5

)
(4.4)

ΩTTG4A = kc− ic∆x
3

24
ν
(
ν2 − 0.02

)
k4 +

c∆x4

360

(
12ν4 − 4.7ν2 − 2

)
k5 +O

(
∆x5

)
(4.5)

where the error is determined by the lowest order of ∆x, k is the wavenumber denoted by 2π
λ

and λ varies between 2∆x and ∞, c is the phase velocity and ν is the CFL value. The low-
order LW method scales with ∆x2 while the other two scale with ∆x3. The term not present
in the higher-order schemes can be shown to be directly related to the dispersion properties
and is thus the reason why TTGC and TTG4A perform better on this specific property usually
desired for any LES.

4.3 von Neumann stability analysis
The most widely used method to study the stability of a scheme is the von Neumann analysis
which was developed by Crank and Nicolson and documented by von Neumann and Richtmeyer
[43, 188]. The method is based on the expansion of the numerical solution in a finite Taylor
series which is analogous to the finite difference method. This expansion is then decomposed
into Fourier modes (normal spatial and temporal modes). A crucial point that is implied in
the development of the Fourier series is the linearity of the solution. The solution is only
true if each mode is independent from the others which is important to note especially when
applying it to a set of non-linear equations such as NS. The condition for this method to be
applicable also requires the solution to be defined over the real axis, meaning that 2π periodic
conditions are assumed at all boundaries. Clearly, the applicability of the method when other
type of boundary conditions of interest such as walls, is greatly limited and it is necessary to
evaluate the error performed when assuming such a specific context. Another requirement is
that the solution must also be square integrable [53]. More importantly, the method requires
the uniformity of the discretization as it needs each node to be fully discretized by the same
equations. To study the stability, it is possible to either study the computed solution and
therefore the error, as it is also a solution to the discretized equations,

ui = ūi + εi, (4.6)

where ui is the exact solution to the discretized equation which is decomposed into the solution
obtained with the truncated scheme ūi and the associated round-off error εi. Note that the
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numerical solution decomposition includes the truncation error and can only be a solution of
the original PDE if the scheme is consistent and is thus a pre-requisite to be confirmed.

The decomposition in Fourier modes allows the separation of temporal and spatial domains.
As the interest in the method resides in the growth or decay of the solution over time to
determine the stability of the scheme, it is commonly the error which is studied as it has the
same behaviour. The amplitude V n

j of the kj Fourier mode contains the temporal contribution
while the exponential part contains the space dependency,

uni =
N∑

j=−N
V n
j e
−ıkj∆x. (4.7)

The condition for stability can then be expressed as in von Neumann and Richtmeyer ’the
amplitude of any harmonic must not grow indefinitely in time when n tends to infinity’. This
leads to the definition of the complex number called amplification factor,

Gj =
V n+1
j

V n
j

=| Gj | eıΦ, (4.8)

where Φ = kc∆t which relates the amplitude of a given harmonic at two consecutive time steps
and is defined as stable when for any j | Gj |< 1. No indications will be given on how to perform
a stability analysis as the literature is rich in this sense [124], nor their application to classical
time-stepping schemes [54] different from those used in the AVBP solver. By performing this
stability analysis however, additional information may be extracted. By introducing concepts
such as dissipation or dispersion:

• Dissipation: Error in amplitude between the numerical scheme prediction and the exact
signal. This dissipation error εDissip measured by,

εDissip = | G |. (4.9)

This error is usually measured from one temporal step n to another n + 1 leading to
εDissip = |V n+1|

|V n| . Note that this definition is the same as the previous amplification factor.
From a stability point of view, the amplification factor or the spectral radius of G is used to
determine if the scheme dissipates or amplifies the amplitude to define a scheme as stable
or unstable. The difference between definitions is that when talking about dissipation,
the scheme is assumed to be stable and the difference between amplitudes is quantified.

• Dispersion: Dispersion relates to error committed by the numerical scheme in the predic-
tion of the phase speed with respect to the exact speed. In the same way dissipation was
defined, dispersion can be written as the cocient between the predicted phase speed and
the exact value,
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εΦ =
| Φ |
| Φexact |

. (4.10)

Just as a reminder, a non-dimensional wavenumber defined as φ = k∆x is used. Outside
the context of spectral methods it is hence only possible to have wavenumber values
between [0, π]. The relative phase speed respect to the exact phase speed at which the
waves propagate is defined by c∗

cexact
. This expression is an indicator of the dispersion

error,

c∗(φ)

cexact
=
arg (G)

φν
, (4.11)

where arg (G) is the argument of G. This parameter is widely used in the following sec-
tions.

Results are provided for the schemes in the AVBP solver to study the following:

• The scheme properties in multi-dimensional problems.

• The impact of a numerical treatment on the above mentioned scheme to deal with the
application of a boundary condition.

4.3.1 1D analysis

To ease the interpretation of the figures present in this section, a short explanation is provided
in the context of regular meshes. Recall first that high wavenumbers are representative of the
smallest wavelengths and thus correspond to low resolution waves. On the other hand, the low-
est wavenumbers are representative of waves that have a large number of points to discretize
them and are thus expected to have better dispersion properties in the low wavenumber range
as more points are available to discretize a wave.

Figure 4.3 shows the non-dimensional modulus and phase velocity of each scheme for a
certain CFL value. As can be seen, all schemes show low dissipation because the numerical
solution must converge towards the physical solution when reducing both spatial and time dis-
cretization steps. Thus, a smaller time step should always lead to a lower dissipation for all
wavenumbers. Between the different schemes, it can be observed that the high-order TTG4A
scheme seems to have a higher dissipation when compared to the second-order LW. Although
true for the highest wavenumbers, plotting the error, | 1 − G | instead shows that this is not
the case for most of the spectrum as seen in Fig. 4.4a. TTGC is clearly the less dissipative
scheme followed by TTG4A except for the highest wavenumbers and finally LW. Concerning
the dispersion however, it can be seen that the two-step schemes, TTGC and TTG4A, show a
much lower dispersion error compared to LW through most of the wavenumbers Fig. 4.3. Once
again, by analyzing the error done for each scheme for the whole spectrum as in Fig. 4.5a,
TTGC can be seen to be slighly more dispersive for the largest wavenumbers. This statement
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Figure 4.3: Amplification factor of various schemes for CFL=0.1.

holds when zooming in, Fig. 4.5b. Note that the choice of the abscissa value limit for Figs. 4.4b,
4.5b is not arbitrary. It is chosen such that for a regular mesh all the waves in the wavenumber
range are represented by at least 10 points which is a good estimate of the minimum number
of points to properly capture a wave [10] when comparing to the schemes addressed.

When increasing the CFL number, notable changes are observed in Fig. 4.6. The same
behaviour can be found with the difference that between the high-order schemes, dissipation
is much higher for the high wavenumbers for TTG4A while dispersion is better for this same
range when comparing to TTGC. Although not shown, dissipation and dispersion properties
have the same tendency for the smaller wavenumbers, TTGC presenting the best properties
in terms of dissipation and TTG4A for dispersion. For a CFL value of 0.5 as in Fig. 4.7, a
different behaviour can be seen for TTG4A concerning its dispersion properties. Note that
dissipation curves may never be higher than one or it would be an unstable scheme. Dispersion
relations however may be higher than one in which case a phase velocity higher than that of
the original wave, yielding a wave that is transported at a higher speed than the exact one.
TTG4A provides the highest levels of dissipation for these values of CFL and LW can be seen
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Figure 4.4: Dissipation error using the amplification factor of various schemes for CFL=0.1.
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Figure 4.5: Dispersion error using the amplification factor of various schemes for CFL=0.1.

to be much too dispersive at nearly all wavenumbers. Confirmation of this can be found for
even higher CFL values as seen in Fig. 4.8. Once again waves are propagated at a higher speed
when using the TTG4A scheme.

When analyzing these results, the first conclusions are that TTGC seems the best suited for
LES as it has the lowest dissipation for all wavenumbers [36]. This is an interesting feature for
1D analysis but that will be pursued in 2D. An issue common to all the schemes presented is the
existence of the problems associated to the highest wavenumbers. A question that commonly
arises is whether if these waves are required to be kept or if, on the contrary, they should be
filtered due to their nature. The Nyquist-Shannon theorem states that the minimum points
necessary to represent a wave is at least two. Due to this many authors suggest that an ex-
plicit filtering is to be performed [10] to remove them from the simulation. This strategy can
be further extended to the waves that are seen to propagate with the wrong speed but then
the limit is quite arbitrary and strongly dependent on the scheme. For all these reasons, the
philosophy adopted here is to look first for the best scheme behaviour.
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Figure 4.6: Amplification factor of various schemes for CFL=0.3.
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Figure 4.7: Amplification factor of various schemes for CFL=0.5.
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Figure 4.8: Amplification factor of various schemes for CFL=0.7.

67



Spectral properties of the AVBP schemes

The analysis of the schemes in 2D is also motivated by the need to analyze the behaviour of
the schemes when waves are unresolved. The number of points per wavelength has already been
shown to be the most important parameter to minimize the dispersion error so the following
section performs the scheme analysis for a specific set of wavenumbers. It is important to
anticipate when the scheme may present problems, notably oscillations, that are related to the
poor dispersion behaviour in such zones. The objective is to have a deeper insight into the
wavelength values that bound an acceptable behaviour of a given scheme.

4.3.2 2D analysis

The von Neumann analysis can also be done in 2D, the mesh being limited to regular meshes
of characteristic size ∆x as done in Vichnevetsky and Bowles [187]. The only constraint is to
assume that a wave is moving in a direction ~c colinear to each direction of study.

Following the directives described in Donea et al. [54] for bilinear finite elements it is possible
to write the complete equation in the most general case for the family of two-step Taylor-
Galerkin,

M
(
Ũ − Un

)
= −α

(
νxδ̂xU + νy δ̂y

)
Un + β∆t

(
ν2
xδ̂

2
x + 2νxνyδxδy + ν2

y δ̂
2
y

)
Un, (4.12)

M
(
Un+1 − Un

)
= −α

(
νxδ̂xU + νy δ̂y

)
Un + β∆t

(
ν2
xδ̂

2
x + 2νxνyδxδy + ν2

y δ̂
2
y

)
Un, (4.13)

(4.14)

where each spatial derivative is represented using centered derivatives,

δxU = 0.5 (Uj+1,k − Uj−1,k) , (4.15)
δyU = 0.5 (Uj,k+1 − Uj,k−1) , (4.16)

δxyU = 0.5 (Uj+1,k+1 − Uj−1,k−1) , (4.17)
δyxU = 0.5 (Uj+1,k−1 − Uj−1,k+1) , (4.18)

δ̂x =
2

3

(
δx +

1

4
(δxy + δyx)

)
, (4.19)

δ̂y =
2

3

(
δy +

1

4
(δxy − δyx)

)
. (4.20)

Following the same approach for the second order derivatives,
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δ2
xU = (Uj+1,k + Uj−1,k − 2Uj,k) , (4.21)
δ2
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δ2
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The consistent mass matrix can then be re-expressed using these operators

M = 1 +
1

9

(
δ2
x + δ2

y +
1

4
δ2
xy +

1

4
δ2
yx

)
. (4.27)

Similarly to what was done in 1D, the equivalent transfer function may be found in 2D
to determine the dissipation and dispersion properties for each scheme. In the same way for
the 1D analysis, a short explanation and interpretation of the obtained curves is given. The
plots for the 1D section present the behaviour of the scheme for a wavenumber range in [0, π].
For the 2D case, the polar plots represent not the wavenumber but the physical direction of
propagation, namely in cartesian coordinates, x and y. These coordinates are the main direc-
tions of the scheme and present the same behaviour in both directions. This implies that all
figures shown from here on, although represented in the range of [0, 2π] could be presented
in [0, π/2] and be then rotated. It is difficult to present a whole range of wavenumbers due
to visualization effects so certain wavelength values have been chosen to be specifically rep-
resented, namely [2h, 3h, 4h, 8h]. Each coefficient that accompanies the studied wavelengths
indicates the number of points used to discretize a whole wavelength. Starting from the lowest
value which corresponds to 2 and moving outwards shows the effect resolution has. Of course,
it would be possible to analyze higher values but as more points are added, waves are better
represented and errors decrease. Note that theoretically, the non-dimensional exact values of
both dissipation and dispersion for pure convection should have a value equal to 1, meaning
that ideally the values should be located on the circle of radius equal to one.

To show the different behaviour, for the same wavenumber values, different schemes are
compared in Figs. 4.9-4.19. Starting from the lowest wavenumbers addressed, which corre-
spond to the 8h wavelengths, it can be seen that for all schemes the errors are low. The only
apparent error is seen in the dispersion behaviour of the second-order scheme, LW which is to
be expected as it requires more points to resolve a wave. It is necessary to study the error
performed as seen in Figs. 4.11a and 4.11b. In all cases dissipation exists but remains ac-
ceptable ε < 1%, and is lower in most directions for TTGC. For a CFL value of 0.3, TTG4A
always performs better than LW. Increasing the CFL number shows however directions where
TTG4A is less dissipative than TTGC, mainly in the diagonal directions but TTGC remains
more homogeneous through the whole spectrum. In all cases there is however an oscillatory
behaviour being always more dissipative in the main directions.
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Figure 4.9: Amplification factor of various schemes for CFL=0.3 at 8h wavelengths.
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Figure 4.10: Amplification factor of various schemes for CFL=0.7 at 8h wavelengths.
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Figure 4.11: Dissipation errors 8h wavelengths.
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Figure 4.12: Amplification factor of various schemes for CFL=0.3 at 4h wavelengths.

When using less points to discretize the waves as in Figs. 4.12 & 4.13 where four points are
used and for various CFL values, the general behaviour of the curves is modified and differences
are observed in terms of dissipation but also dispersion. Once again the dispersion for LW is
clearly the most noticeable issue but high-order schemes are also affected, especially for the
higher CFL value. Once again, the schemes become more dissipative (see Fig. 4.12) and dis-
persion increases, see Fig. 4.13. The same holds for both Figs. 4.16 & 4.17. Note that for larger
wavenumbers and high CFL values, the dispersion error is negative for TTG4A. This means that
the phase speed is larger than the real value and thus the wave is transported at a higher speed.

For the smallest wavelengths, due to the lack of points, it was seen for the 1D case that
the error done in terms of dispersion is large, meaning that these waves are not transported at
the correct speed. When comparing Figs. 4.18b & 4.19b, both show a fairer behaviour in the
diagonal directions contrarily to the main axes. For CFL of 0.7 shown in Fig. 4.19a, certain
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Figure 4.13: Amplification factor of various schemes for CFL=0.7 at 4h wavelengths.
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Figure 4.14: Dissipation errors 4h wavelengths.
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Figure 4.15: Dispersion errors 4h wavelengths.
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Figure 4.16: Amplification factor of various schemes for CFL=0.3 at = 3h wavelengths.
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Figure 4.17: Amplification factor of various schemes for CFL=0.7 at 3h wavelengths.
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Figure 4.18: Amplification factor of various schemes for CFL=0.3 at 2h wavelengths.

schemes even do not dissipate the smallest waves, notably TTGC in the main directions. In
2D, this specific behaviour is clearly not homogeneous and is highly dissipative in the diagonal
directions. LW and TTG4A are observed to dissipate waves in all directions. For lower CFL
values as in Fig. 4.19a, TTGC recovers its homogeneity in terms of direction of propagation
while LW is less directional.

The conclusions to be extracted from this analysis are that errors are large when transport-
ing low-resolved waves for all schemes. These cannot be expected to be correctly transported
and observed behaviour will be strong direction dependent. To include boundary condition
effect and implementation of such waves, the von Neumann analysis previously presented is
not an option. Another method must be used to estimate the stability of the scheme near the
boundaries to evaluate its influence on the resulting predictions. It has been proven that the
effect of boundary conditions can indeed hinder the accuracy of the general scheme [75]. Taking
into account the boundary conditions is imperative when performing such an analysis as it aims
at evaluating the stability in more standard circumstances. This will be done in Sec. 7.1 where
differences become evident.
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Figure 4.19: Amplification factor of various schemes for CFL=0.7 at 2h wavelengths.
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At the end of Part I, you have a better idea of what to expect from different free-stream
modelling approaches and how to model the near-wall region (if it exists) in a simulation.
The first question to tackle is if the simulation to perform is going to be RANS, LES or DNS.
Can you pay it and is it worth the extra cost? The answer to these questions is, as in most
cases, it depends. If the simulation is unsteady, RANS may be discarded quickly. An aver-
age behaviour of the flow is in most cases insufficient, e.g. flashback effects in a combustion
chamber. Say then you move on to evaluate the pros and the cons of LES and DNS. It is true
that some wall-bounded flows require a highly refined grid so LES will not scale that far
from DNS in terms of cost. Performing an accurate simulation will inevitably imply a huge
cost and needs to be justified with a deep understanding of the flow physics. This last reason
is why you should continue reading Part II where the physics of turbomachinery blades are
encountered. A comprehensive analysis of turbulence in the boundary layer included. The
modelling is however possible in some simulations if studying the boundary layer is not
required (provided a good model accounts for the missing physics), LES being an optimal
approach given the computational power today and will continue to be like this for a few
years yet.

So, let’s summarize. It is important to read carefully the cell-vertex introduction as most
of the differences from standard schemes come from this approach. Once this is clear it
is possible to move on to the different operators. Convection operators based on the Tay-
lor expansion provide an increase in order using certain cleverness to discretize the spatial
operators. However, it was shown that there was an unclosed term that has still not been
clarified as well as the boundary conditions that appear as a result of the second-order spa-
tial derivatives (or Hessian). The requirement to impose a BC for this term should certainly
be addressed because as mentioned, boundary conditions are responsible for a particular
flow to exist. If no boundary condition is provided, the problem is unresolved, and giving
an approximative value can be dangerous. Also, the analyses performed have shown the
better behaviour of high-order schemes compared to low-order ones in 1D. When the re-
sults are extended to 2D the direction properties are seen to change thus showing the limits
of the 1D approach. In any case, the high-order schemes show better properties and this is
the reason why they are systematically used in the next Part.
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Part II

Application to a complex geometry: LS89





Part II of this document concerns the simulations of the complex turbomachinery flows.
In the previous part, the necessity to understand the inner workings of a LES solver was
described. At this occasion, important points related to LES wall-bounded simulations were
also underlined as it is an important aspect for turbomachinery flows. This modelling issue
is not new and can rapidly become a major problem to apply LES in an industrial context.
Indeed, simulating such flows is expected to be very expensive. In that respect, our initial
goal is not necessarily to assess LES for real applications but instead to qualify CERFACS’
LES solver on a turbomachinery representative flow. That is: ensure the capacity of the code
and associated numerics to address specific flow physics around blades. In this context,
to alleviate the weight of the near wall modelling, the simulations performed hereafter are
wall-resolved.

In this document, the targeted configuration is the LS89 vane [7]. Literature is rich for this
configuration but certain operating points are not properly captured even when performing
a priori good quality type simulations either using the RANS, URANS or LES and DNS
formalisms. The present study is divided in three parts, each corresponding to a different
chapter. The first chapter addresses the physics encountered in turbomachines, and more
specifically linked to the presence of near walls that are known to condition the boundary
layer physics. An introduction to the test case and the possible sources of existing discrepan-
cies between simulations and experiments are discussed. The second chapter corresponds
to the simulation of two operating points. The first operating point is used to validate the
LES solver under simple physics. The second point represents the complex physics that are
normally encountered in high-pressure turbines. This second case leads to a series of sim-
ulations that try to explain the exact physical behaviour of the flow and why the numerical
simulations have problems to match the experiments. The third chapter discusses the nu-
merical artifacts that may be at the origin of certain flow prediction behaviours. A thorough
discussion on how to deal with the different issues is provided. These discussions concern
mainly the boundary term closures seen in Part I, an alternative Fourier analysis being done
for the existing closures. A promising new methodology to treat the closure terms are at this
occasion detailed.
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Chapter 5

Introduction to LS89 simulations
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5.1 Application and validation of LES for a complex tur-
bomachinery flow

Turbomachinery applications have traditionally been studied numerically using Reynolds Av-
eraged Navier-Stokes (RANS) or Unsteady Reynolds Averaged Navier-Stokes (URANS) turbu-
lence modelling approaches. RANS benefits from a large experience acquired during the years
and is still of great use in the design phase of an industrial project, Large Eddy Simulations
(LES) and Direct Numerical Simulations (DNS) being too expensive for this goal. This ex-
plains why active research is still being done in this direction [71, 127]. However, LES allows
to resolve, at a more reasonable cost when compared to DNS, the larger energy-containing
wavelengths of the turbulence spectrum in unsteady flows. This is not the case for the RANS
or URANS approaches, which are not capable of predicting many unsteady turbulent effects
such as transition or flow separation. These limitations have motivated turbomachinery studies
using LES to try to capture effects that are missed with approaches that require more modelling.

The first unsteady simulations of LES and DNS type were the fully resolved turbomachinery
simulations performed by Wu and Durbin [196] for a low-pressure turbine. The low Reynolds
and low Mach numbers of the configuration addressed permitted such a study at the time. In
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recent years, the number of publications of LES in turbomachinery has increased exponentially
in both compressor, McMullan and Page [121], and turbines, Wheeler et al. [192]. A large re-
view of different configurations and simulations performed in the context of LES can be found
in Tucker [183] and the future use of LES in aeroengines in Tyacke and Tucker [184]. It is thus
possible today to perform LES of turbomachine components in research institutions. The main
limitation in this context is of course the cost, one that can difficultly be overcome for cases
with rich physics that are normally present in wall-bounded flows.

The rich physics near the wall are the main problem encountered in turbomachinery flows
because in most cases, unsteady transitional flows are encountered. When fully developed tur-
bulent boundary layers (BLs) are present there are models that account for most physics and
are capable of producing good results. The problem however is that most boundary layers are
initially in a laminar state and undergo a transitional process. The simulation of the neces-
sary flow dynamics to capture transition and the accurate prediction of the position where this
process happens is the most difficult aspect of turbulence around blades. The position where
this process takes place is especially critical in the design of the blade profile to determine its
loading or performance, and is thus of upmost importance. In order to understand the process
of transition, it is first necessary to study the features that define a BL as turbulent as well
as the possible sources that may trigger this transition. The details and knowledge about this
specific fundamental fluid mechanics problem are briefly covered in the following paragraphs.

Boundary layer physics

A turbulent boundary layer may be divided into different sublayers as shown in Fig. 5.1. The
near-wall region is dominated by viscous effects, the intermediate region named ’buffer layer’
requires to take into account both viscous and inertial effects followed by the logarithmic region
and wake where inertial effects are dominant. By describing the structures that exist in the BL,
starting from the wall towards the outer part of the boundary layer, the main wall-signatures
can be explained. The nearest layer to the wall is the viscous sublayer, region that is dominated
by ’streaks’ [94]. The generation of streaks, which are low and high-velocity fluctuating regions,
are an effect of both the high shear strain [105] induced by the wall in most cases and the velocity
normal to the surface. The normal velocity in this region makes low momentum fluid initially
located at the wall move into higher momentum regions leading to long streamwise zones of
negative fluctuation velocities. It seems clear now that this normal velocity necessary for streak
generation is induced by the set of counter rotating streamwise vortices that are present in the
viscous sublayer and buffer regions [19]. It is an accepted process that streamwise vortices
generate streaks but how the streamwise vortices are generated remains unclear. Inflectional
instability mechanisms of streaks seem to be at the origin but they are not responsible for the
energy necessary for vortices to form [85]. What is known is that streaks are three-dimensional
structures that are responsible for the bursting processes described by Kim et al. [91]. These
longitudinal fluctuating structures (a fancier way of naming the streaks) may enter the buffer
layer and under different instability processes, breakdown to local turbulent structures. For
this specific process, two main instabilities are found to coexist: the varicose mode, related to
wall-normal inflectional profiles, and the sinuous mode which is related to spanwise inflectional
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Figure 5.1: Boundary layer distribution in terms of Reynolds number [140].

modes, the latter being seen to be more unstable [158, 90]. Once these sources of turbulence are
generated, they may expand in the streamwise and spanwise directions as detailed in Fig. 5.2
once again leading to fully turbulent fields.

All the previous near wall features are accompanied in a turbulent boundary layer by coher-
ent turbulent structures seen for example in the DNS of Wu and Moin [197]. These structures
and their relation between inner and outer structures and their importance in the regenera-
tion mechanism of near-wall turbulence remain an issue of controversy. These coherent struc-
tures are fundamentally organized into the known ’hairpin’ vortices. Originally introduced by
Theodorsen [180] they have been hypothesised to be a composition of the streamwise vortices
dominant in the buffer layer and the spanwise arch-like vortices seen in the outer wake [151].
They are mainly related to the existence of varicose modes and to wall-normal instabilities of
the streaks nearest to the wall. These hairpin vortices are however not always observed in DNS
[158] as one unique structure, e.g. the streamwise vortex, can exist without the spanwise vor-
tex leading to new definitions such as one-legged hairpin or cane and arch vortices. Although
no specific analysis concerning instabilities is performed, it is useful to recognise the patterns
expected to visually examine the turbulence organisation near the wall. What is important is
to recognise the sources of instabilities that lead to a turbulent boundary layer as this is one
of the mechanisms potentially present in turbomachinery flows studied in this document.
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Figure 5.2: Formation and evolution of turbulent spots [120].

5.1.1 Boundary layer transition

For all existing flows, it has been very early known that there is a value of the Reynolds num-
ber that triggers the transition to a turbulent state. This has led many authors to study the
stability of laminar flows and the need to identify the perturbations that could give rise to this
transition [160]. However, it is important to underline the fact that it is still impossible today
to determine the path taken by the flow once it has undergone the transition process. Indeed,
turbulence is merely an observation that occurs at high Reynolds number as described in White
[193]. It is a fact however that the transition process happens, and it is the various mechanisms
responsible for it that are of interest and are described in the following.

Natural transition

In the absence of pressure gradients and external perturbations, for a laminar BL on a flat
plate configuration for example, the mechanism that drives the instability is widely accepted
and known as natural transition. The first step in the global process shown in Fig. 5.3 is the
generation of the instability waves known as Tollmien-Schlichting waves, thoroughly described
in hydrodynamic stability documents [55]. The mechanism that generates these waves is known
as receptivity of the flow to external disturbances that can be of various natures, e.g. acoustics,
and was first noted in Morkovin [125]. Linear stability analysis can explain this feature using
only 2D theories and provides the growth and amplification of these unstable waves. It has
also been shown that these waves undergo a non-linear phase when the amplitude of the waves
is of the order of 1− 2% of the free-stream velocity resulting in the wave break down. Various
types of regimes can lead to this boundary layer breakdown such as the K-regime [93] which
always develops a three-dimensional flow. An additional process was observed by Emmons [61]
prior to a fully turbulent flow. Emmons observed the appearance of turbulent patches that he
baptised ’spots’. These spots are nothing other than the local apparition of turbulent regions
where the disturbances ’break’ and expand spatially until all spots overlap, situation where
the flow is then said to be fully turbulent. Although this process is important for fundamental
studies, note that small perturbations present in the free-stream will affect the path towards a
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Figure 5.3: Instability process in natural transition as described in [89].

turbulent flow. Such alternative paths towards fully turbulent BLs are detailed hereafter.

By-pass transition

The first processes of receptivity, wave amplification and breakdown can be by-passed obtaining
directly turbulent spots in the laminar BL without any of the former. The origin of the
perturbations that overcome the first steps of natural transition need therefore to be explained.
Such mechanisms are relevant to turbomachinery applications because strong turbulent fields
are usually present in the main stream flow around blades and transition is often of by-pass
type.

Free-stream turbulence

Experiments done by Schubauer and Skramstad [162] for a flat plate subject to a moder-
ate free-stream turbulence were the first to show the influence of free-stream turbulence
on the onset of transition. Matsubara and Alfredsson [117] showed by performing flow
visualizations that the free-stream turbulence induced spanwise variations of the stream-
wise velocity near the wall. These structres are the dominant longitudinal streaks found
in the viscous sublayer that are the same wall-signatures first seen by Kline et al. [94].
They have been shown to be a crucial part of the dynamics of turbulent boundary layers
and the absence of these would lead to a relaminarization of the flow [86].

Free-stream turbulence provides also the necessary fluctuations for the coupling within
the boundary layer. Important contributions from Jacobs and Durbin [81] confirmed by
other DNS such as Brandt et al. [26] indicated the apparition of negative (and positive)
streamwise fluctuating structures under external free-stream turbulence in the laminar
boundary layer and positioned prior to the spot apparitions that were termed ’backward’
jets. These jets induce a low-frequency flow region that couple to turbulent eddies from
the free-stream turbulence, something that is normally avoided thanks to the natural
shear induced by the boundary layer. Requirements in terms of necessary turbulent in-
tensity and integral length scale to produce these effects are discussed in Nagarajan et al.
[128].
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Figure 5.4: Sources of streak generation in boundary layers [120].

Wake-induced transition

Wake interactions normally happen between different stages of compressors or turbines
such as rotor-stator as shown in Wu et al. [198]. Although sometimes considered sepa-
rately, the wake induced transition generates perturbations that have the same effect as
the free-stream turbulence induced by-pass transition mechanism. The main difference is
that the disturbances generated by the wake evolve in what are termed as puffs shown in
Fig. 5.4. These are then stretched downstream and evolve into the same streaky struc-
tures generally observed in turbulent boundary layers.

Separation induced transition

In the presence of strong adverse pressure gradients the flow may separate. This causes the flow
to locally transition but it may reattach further downstream due to the high mixing. When this
happens, the formation of a bubble in the laminar flow at a streamwise position that moves in
time induces a reverse flow. The mechanism is thoroughly described in Simpson [166] involv-
ing many secondary instabilities. This separation process has many origins such as geometry
discontinuities, curvature effects or shocks and is present in many turbomachinery flows. In-
dependently of the reattachment or not of the flow, it is important to capture the bubble and
thus the separation as it has a critical effect on the global performance of the blade. This type
of process is also largely influenced by free-stream turbulence which determines in many cases
the bursting or not of the separation bubble and the rapidity of the transition, Fig. 5.5.
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Figure 5.5: Separation mechanism instability in a boundary layer [120].

Reverse transition

Reverse transition, as indicated by its name, is the inverse process by which a flow ’relami-
narizes’. Contrarily to the processes described until now, a flow that is initially turbulent can
become laminar. The streamwise vortices present in the viscous sublayer are subject to strong
viscous forces. As these vortices move downstream while the mean flow accelerates, the wall
acts as a sink of momentum and stretches the vortices until finally dissipating these struc-
tures. From studies such as Jiménez and Pinelli [86] the filtering of such structures disrupts
the turbulence cycle and laminar flows are encountered shortly after this interruption. Mayle
[120] showed comprehensively the non-negligible frequency at which this process happens in
turbomachinery flows reminding it is a process largely underestimated.

A first conclusion from the above discussion is that there are many different paths that can
lead to a turbulent flow. Different sources of instability are potentially present and will be more
important depending on aspects such as pressure gradients, curvature or Reynolds number. The
difficulty to capture transition is thus due essentially to the capacity to take into account all
these effects accurately and reaffirms the fact that only wall-resolved LES simulations can trace
all the small structures that contribute to such a potential transitions. In most cases, transition
in complex geometry high Reynolds number flows will be of by-pass type although recent studies
have shown the presence in some cases of the a priori less probable natural transition process.
Indeed in specific cases, the flow around blades may become laminar and can separate. The
difficulty to capture transition even today limits the quantity of information obtained through
numerical simulations and questions may be posed on how these results have been obtained.
This is why experiments have been until now much more reliable and one of the main goals
at VKI when performing the LS89 test case. Numerical studies usually try to compare their
predictions against experiments, which in turbomachinery are generally accepted as being the
exact solution, one of the reasons being that CFD lacks of correct models or computational
power to prove the contrary. With the advent of HPC facilities, LES has appeared as an
appropriate tool to provide good comparison and understanding of experiments. Indeed outside
the specific problem of flows around blades, it can go further helping the understanding of
the flow. LES predictions in specific circumstances are a complement to circumvent possible
deficiencies or uncertainties that come with any experiment. The conviction that numerical
studies today are not accurate enough on configurations such as the LS89 is mainly due to the
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lack of a comprehensive understanding of the loading mechanisms present in this specific test
case. As a result, numerical simulation inabilities to reproduce the entire spectrum of test cases
of this database can have many different origins: grid used, boundary conditions and numerical
schemes. The following is in that respect primarily oriented in the identification of the need for
AVBP to provide the "right" prediction. With this in mind the following gives first a literature
review of the different numerical simulations performed after the initial experimental setup was
published. The problems encountered as a result of the lack of information for values such as
the integral length scale as well as the conclusion that the geometrical profile was unsuitable
for CFD simulations is further explained. The operating points selected for this study are
presented and the numerical grids and parameters are noted for the following chapter where
the simulations are actually analyzed. Finally, a short section provides the criteria used to
conclude when a convergent state is reached as well as the total cost required to do this.

5.2 LS89: Experiments and literature review
The blade cascade LS89 turbine vane configuration tested in the experimental facility at the
Von Karman Institute, see Fig. 5.6. This configuration consists of a set of highly loaded tran-
sonic nozzle guide vanes in a linear configuration [7]. The vane profile was especially designed
for this experiment and consists of a 2D extruded profile. More details related to the original
geometry provided are given in Fig. 5.7 and Table 5.1. Although it is an academic configura-
tion, the values encountered could easily be found in current aeroengines today and it represents
the most valued database available for numerical comparisons in turbomachinery due to the
reduced data provided by industrial partners. This has led to the thorough study already per-
formed numerically by a large number of authors as Bhaskaran and Lele [18], Gourdain et al.
[72], Wheeler et al. [192] or Collado Morata et al. [38].

The first simulations that used this configuration were of RANS type like in Smirnov and
Smirnovsky [168], requiring complex turbulence models to capture transition and other phe-
nomena. Results when compared to experimental data had hence an improvement margin and
LES showed its capabilities to capture unsteady effects that RANS can not. The increase in
numerical power as well as the large number of operating points, has led in the last years to an
increase in the number of publications concerning this test case. RANS as in Emory et al. [62]
for Uncertainty Quantification analyses but also DNS studies in Wheeler et al. [192] have been
performed nearly simultaneously, showing that there are many ways to approach the problem.
Focus is set on different parameters such as the certainty in low-cost simulations or the effect
of high resolution are reported of crucial importance for simulation assessment. This exempli-
fies the fact that a simplified 2D extruded profile vane still represents a challenge in terms of
numerical reproduction due to the complex physics it entails and that different methodologies
are still today possible towards the resolution of this problem.

Although experiments available for comparison have been available for a few decades al-
ready, numerical simulations and finer aspects of them such as sensitivity to boundary condi-
tions, shock capturing techniques have not been evaluated thoroughly in a LES context. This
can be explained by the lack of computational power available until recent years. Latest pub-
lications show that one of the most critical issues points towards the evaluation of free-stream
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Figure 5.6: Isentropic Light Piston Compression Tube facility at VKI facilities.

c 67.674 mm
cax 38.81 mm
g/c 0.85
γ 55.0 deg
o/g 0.2597
rLE/c 0.061
rTE/c 0.0105

Table 5.1: Geometrical parameters characterizing LS89 geometry.

turbulence and the parameters that characterize it. Turbulence characterization requires both
intensity measurements but also correlations to estimate for example, the integral length scale
which in turn, will influence the dissipation rate and the turbulence evolution. This type of
information is not provided in Arts et al. [7] and has been a problem towards characterizing
the real conditions that the blade encounters. Studies in Consigny and Richards [40] give esti-
mations but these have proven to be insufficient. Recent experimental tests on the same test
bench at VKI have provided complementary and valuable information concerning these missing
parameters [66].

Many of the first simulations performed show large differences. The most notable of them
all is the heat transfer field which represents the most challenging task as it requires to correctly
solve all phenomena (thermal and aerodynamic) involved. This has been improved during the
last few years due partly to an increased quality in the geometry description. Indeed, based
on the original data available to describe the blade geometry, one of the concerns when first
performing the simulations was the existence of high-frequency oscillations around the profiles
when investigating heat transfer or shear stress fields from the predictions. This problem has
also been reported by Wheeler et al. [192], stating that the geometry provided by the original
authors [7], although accurate, is not adapted to high fidelity CFD simulations. By taking a set
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Figure 5.7: Geometrical detail of the LS89 blade.

of coordinates of the contour of the vane under manufacturing tolerance, it is possible to obtain
a curvature that avoids the observed "bumps" and renders a geometrical profile adapted to such
numerical simulations. For this study, the geometry was provided by the CENAERO group
under the same constraints leading to an appropriate curvature profile. Note that with the
original geometry, numerical oscillations were observed whenever diagnosing the LES predic-
tions obtained with AVBP, and these were always found at the same position on the curvilinear
abscissa. This led to a study of the curvature around the vane, which even under eye inspection
can be found to be uneven confirming previous conclusions.

To summarize; difficulties are known to exist to predict the heat transfer coefficient profile
around the blade or more generally the overall aerodynamics. This specific field can hence serve
to evaluate the quality of the simulation since it is easily accessible experimentally. Different
experimental observations on this specific field will then be associated to different boundary
layer states or flows around the blade profile. Indeed, the dynamics present in the near-wall re-
gion is the most probable reason for these differences as they affect both the momentum and the
thermal boundary layers. One of the sources of fluctuations in these boundary layers are due to
the free-stream turbulence in the mainstream. This value is fixed experimentally but different
turbulent intensities and integral length scales are tested to check its impact and importance.
From a numerical point of view, turbulence has to be created and different methods to generate
this turbulence may lead to different results, this point is further investigated. Finally, different
LES predictions when modifying the turbulent parameters require a mesh convergence analysis.
Once the grid effect is assessed and the flow prediction is considered of good quality, a more
detailed analysis of the boundary layer statistics is performed to discriminate the findings and
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gain insight on the transition mechanism of the LS89 test case.

5.3 LS89: Operating points

The LS89 configuration presented in section 5.1 has been thoroughly studied, as mentioned
already. The computational domain retained for the LES to be discussed hereafter is presented
in Fig. 5.8. Out of the great extent of the experimental operating points provided, MUR129
and MUR235 are two of the existing points of the database and are detailed in Table 5.2.
These points have been chosen because the flow presents many interesting aspects such as shock
waves, skin vortices or wave interaction and they are similar in terms of pressure ratio between
inlet and outlet, as well as Reynolds number. To underline the effect of free-stream turbu-
lence, both points have been retained as the weak turbulence injected in the MUR129 case is
considered negligible. The importance to study these specific points comes from the following
interrogations: can the current code provide a satisfactory result in conditions such as those of
the MUR129? If so, is this still the case once the physics becomes more realistic and thus,
more complex? These two operating points are also the most realistic in terms of equivalence
with industrial turbines. Finally, comparisons to previous numerical simulations are possible.

MUR129 MUR235
P01 (bar) 1.849 1.828
T01 (K) 409.2 413.3
Ps2/P01 0.63 0.57
Tw 297.75 301.15

Mach number at outlet 0.84 0.927
Reynolds outlet 1.1352 106 1.15 106

Inlet turbulent intensity (%) 1 6

Table 5.2: Operation point conditions.

For all the coming simulations, the computational domain retained relies on the view given
in Fig. 5.8 unless specifically mentioned. The position of the inlet of the domain is located
at approximately 0.82 blade chords upstream of the blade which is the same location as the
hot wire probe present in the experiments and used for turbulent intensity measurements. The
outlet region of the domain is chosen far enough for the wake to develop and for acoustic waves
to exit the domain with no reflection. Note that such an objective also requires the use of
non-reflecting boundary conditions [200]. In terms of specifications, the blade behaves as an
uncooled isothermal surface and periodicity is enforced in the pitch and span wise directions.
For the simulation, two aspects must be analyzed: the spanwise boundary conditions and the
domain extent in this direction. Likewise, a comprehensive analysis concerning the inlet bound-
ary conditions is to be performed and is presented in Section 5.5.1.
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Figure 5.8: Computational domain used for the simulation of the LS89 configuration.

The periodicity condition enforced in the spanwise direction is valid due to the the fact that
measurements have been taken on the central part of the blade. In this context, oil flow visual-
izations show that the tip and hub walls induce corner vortices. Two other types of vortices are
also observed thanks to this analysis and correspond to passage and horseshoe vortices. Such
secondary flows are absent only for a short portion of the blade corresponding to 17% of the
total height of the blade. It is in this range that the probes were located so a spanwise peri-
odicity condition would seem appropriate. The question remains however about the possible
influence these secondary flows may actually have going downstream since these structures will
necessarily evolve while going through the passage.

A second question relates to the spanwise domain extent. Requirements for the turbulence
injection in terms of integral length scales are that these must not be affected by the numerics
or lateral boundaries. Note that numerically the largest eddy the domain can reproduce is
limited by the smallest dimension of the computational domain. For eddy interaction to occur,
a best-practice is to take a length scale value that does not surpass half the smallest distance of
the domain, to be confirmed by correlations obtained from the simulations. This specific point
and numerical difficulty should be validated a posteriori in CFD. Note that most numerical
studies take a spanwise extent of the computational domain of approximately 10 mm, which
should be sufficient for the turbulence not to be constrained in this direction if an integral
length scale of 3.5 mm is used. It is important to notice however that this value does not
correspond to any measured values from the original experimental database.

Through the course of this study, new information was communicated to CERFACS’ indus-
trial partner. Indeed, Fontaneto [66] explicitly characterized the missing information about the
integral length scales on the same workbench. The turbulence generated is of grid type, the
grid being a set of horizontal cylinders that cover the duct inlet. The position of the hot-wire
probe used to measure the turbulent intensity is at a fixed position in all cases and it is the
grid that is displaced to modify the level of turbulence for the different operating positions.
The turbulence intensity is thus determined by the distance of the grid to the probe identified
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Figure 5.9: Measured turbulence intensity dependency on the grid position. Positions A-D
correspond to different grid locations.

in Fig. 5.9. In the case detailed in Fontaneto [66] and contrarily to the original experiment, a
signal was recorded at the hot-wire position. The autocorrelation of this signal is then obtained,
producing an integral time scale transformed to an integral length scale applying Taylor’s hy-
pothesis [179]. Based on these new findings, a 30 mm spanwise domain has also been simulated
to take into account the value of the integral length scale since the 10 mm domain is insufficient
for the newly reported value. Indeed such changes in integral length scale specifications: i.e.
presumed 3.5 mm against newly reported values of 7.6 mm will affect both the spatial decay of
the turbulent kinetic energy since the turbulence dissipation rate ε is known to be proportional
to the inverse of the integral length scale, Lii α 1

ε
. It also impacts how the free-stream eddies

will interact with the boundary layer and therefore the predicted transitioning mechanism. Of
course, this boundary layer must be sufficiently refined to reproduce the smaller scales present
and so, mesh resolution must be discussed and evaluated first, especially if a wall resolved LES
is thought.

5.4 Mesh resolution

Three meshes are used for the simulations of the operating points shown in Figs. 5.10-5.12
for which specific parameters are given in Table 5.3. All meshes are hybrid and consist of
tetrahedra except for the first layers of elements adjacent to the blade surface which consist
of prisms as seen in Fig. 5.11. This specific meshing approach allows stretching the elements
in the wall-normal direction without degrading the mesh quality excessively. In Fig. 5.10 the
inlet region is seen to be coarser for M1 and more refined for M3 which allows to reproduce the
smallest scales of the free-stream turbulence. The trailing edge region is also shown in Fig. 5.12.
M1 has no specific refinement around the trailing edge while M2 and M3 do. The transition
between the wake region and the free-stream region for M2 is seen to be more abrupt than

93



Introduction to LS89 simulations

(a) (b) (c)

Figure 5.10: LS89 mesh at inlet for (a) M1 mesh (b) M2 mesh (c) M3 mesh.

(a) (b) (c)

Figure 5.11: LS89 mesh in near-wall region as highlighted by the box represented on Fig. 5.10a
(a) M1 mesh (b) M2 mesh (c) M3 mesh.

for M3. This could explain differences seen later on when comparing predictions issued by the
use of the three meshes for the MUR235 case. Note that the influence of mesh resolution for
the MUR129 operating point was seen to be negligible. Only small differences were observed
between M1 and M2 so the finest and most expensive simulation issued by the use of M3 was
not performed for MUR129.
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M1 mesh M2 mesh M3 mesh
Total number of cells 65M 213M 587M

Total number of prisms 8M 89M 269M
Prims layers 5 25 15

Total number of nodes 14.4M 67.6M 193M

Table 5.3: Mesh parameters for three meshes simulated.

(a) (b) (c)

Figure 5.12: LS89 mesh at trailing edge for (a) M1 mesh (b) M2 mesh (c) M3 mesh.

5.5 Numerics and modelling

The convective scheme used in this specific study is a Finite Element high-order scheme (3rd-
order in space, 4th order in time) [146] unless otherwise specified. The mean y+ corresponding
to the three meshes is approximately 5, 3 and 1.5 over the whole blade with corresponding
∆x+ = ∆z+ ≈ 6y+, so these are wall-resolved simulations. The sub-grid scale model used is
the WALE model [132], various sub-grid scale models (WALE, SIGMA, Dynamic Smagorinsky)
being tested for the M1 mesh without large differences. In the current simulations, no shock
capturing technique is used and the correct representation of the shock relies solely on the use
of artificial viscosity.

In terms of boundary conditions, the following boundary conditions are used:

• Inlet boundary where total pressure and total temperature are imposed. Depending on
the operating point, a fluctuating turbulent field is superimposed.

• Outlet where pressure is imposed.

• Isothermal wall for the blade surface.

• Translational periodicity in the pitchwise and spanwise directions.
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Precursor Main

Inlet

Figure 5.13: Global process of the precursor technique; fluctuations extracted from the precursor
domain are transferred to the inlet of the main domain.

All conditions aside from the periodicity condition are imposed in a characteristic way
meaning a relax parameter is used to avoid strong unphysical wave reflections. Values imposed
on each surface are provided in Table 5.2.

5.5.1 Turbulence injection

Although the integral length scale imposed at the inlet remains an open question, the quality
of the turbulence is to be accounted for. Classical synthetic type injection methods [96] require
some adaptation distance to develop a physical energy spectrum. Such modeling strategies add
onto the difficulty of having an adequate boundary condition implementation and adequate
grid resolution as well as numerical schemes. As such, different methods and LES codes will
inevitably produce different inflows or turbulent fields prior to the blade and hence responses
of the flow. A comprehensive review of the different turbulent injection methods is given by
Dhamankar et al. [50] where aside from the synthetic methods previously mentioned, details
about the rescaling or precursor methods [113] are also discussed.

To discriminate the importance of the initial spectra and move away from synthetic turbulent
spectrum that does not give physical solutions: i.e. solution of Navier-Stokes, a pre-computed
turbulence approach is also used here to provide information to the boundary conditions. To do
so, a precursor simulation performed using the same code, represented in Fig. 5.13, is coupled
to the inlet domain to overcome any issue related to the adaptation of the unphysical inflow.
For this specific case, only modeling and grid resolution are expected to play a role and can
be compared to the synthetic turbulence injection methodology previously mentioned. Details
about these specific developments and the difference with synthetic turbulence injection are
available in Appendix C.
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5.6 Characteristic flow time, convergence and simulation
cost

To assure the simulation is statistically converged it is necessary to determine two things; first,
a temporal value sufficiently large to guarantee that the results are independent of the data
collection; second, the field used to determine this convergence measure. The most constrain-
ing quantity is probably the profile of heat transfer around the blade which additionally, is
part of the experimental data provided for each operating point. This field is thus chosen to
decide if the convergence of the simulation has been reached. The characteristic time used is
based on the time it takes for a particle with a certain velocity to travel a distance, calculated
as tcharacteristic = c

u0
, where u0 is an average of the inlet and outlet mean velocities and c is

the chord of the blade. Once this non-dimensional value is obtained, it is possible to talk of
the number of flowthrough times necessary. It must be noted for the following that spanwise
averaging is done to help convergence, hence reducing the cost of the simulation. Note also
that spatial averaging was also performed in the experiments. These definitions are used and
quantitative results are provided in App. D, different proofs of convergence being given. The
cost in term of CPU hours is necessarily an issue and orders of magnitudes are provided here-
after to underline the computational effort needed.

All simulations have been run on different machines with different architectures, details are
provided in Table 5.4. All cases presented are for the MUR235 conducted with synthetic
turbulence, which requires the random data generation and implies an additional cost. All
machines have been extensively used, having received a GENCI allocation x20162a6074 for
access to the CINES machine.

Name Affiliation Max. nb. processors Year Architecture
NEMO CERFACS 360 2015 Intel Haswell, 2.5 GHz

OCCIGEN CINES 6720 2014 Intel Haswell, 2.6 GHz
BEAUFIX Meteo-France 3840 2013 Intel Ivy Bridge, 2.7 GHz

Table 5.4: Machine architecture description.

The most important parameter to study is the CPU cost per flowthrough time which gives
the total cost on a particular machine. These times may be decomposed into the various
pre-processing and post-processing steps and other additional parameters of interest.
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Name Nemo OCCIGEN BEAUFIX
Cells (million) 65 65 195

Iterations/Tconv (x103) 55 55 55
CPU time pre-processing (s) 17.94 16.2 21.3

CPU time/Tconv 6133 4400 20750
CPU time writing 10.4 6.61 13.2
Nb. processes 360 1200 1600

Time/(nb. it * nb. cells) (x10−6 s) 5.78 6.5 6.67
Max. memory/core (Mb) 153.79 44.35 103.89

Table 5.5: CPU detailed for various simulations.

The following chapter shows the results of the simulations done for the various operating
points addressed. The first simulations as can be intuited give similar results to those found in
literature. A sensitivity analysis was however performed to test the influence of mesh refine-
ment, turbulence injection parameters at the inlet and domain size effects. When possible, a
comparison to the experiments is given, normally in terms of heat flux coefficient. Once the
LES has been validated, an analysis concerning the transition mechanisms is sought to explain
the results here obtained.
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LES predictions of MUR129 and MUR235

Contents
6.1 MUR129 predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 MUR235 predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.1 M1 mesh predictions using synthetic turbulence injection . . . . . . . 103

6.2.2 Grid resolution impact . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2.3 Preliminar conclusions from the parametric study . . . . . . . . . . . . 123

6.3 Temporal evolution of near-wall turbulence . . . . . . . . . . . . . . 124

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

It is now time to evaluate the predictions given by AVBP for the chosen configuration. For
the following, the two operating points selected are the MUR129 and MUR235. The former
case will be used as a reference test case. No turbulence is present and previous simulations from
the literature are usually seen to be capable of correctly predicting the heat transfer coefficient.
This operating condition therefore evaluates how well AVBP and associated numerical schemes
compare to other codes that also match the experimental results. The results obtained when
studying the MUR129 case are then used as a preliminary step before addressing the more
complex MUR235 operating point. For this second operating point, the level of heat transfer
coefficient is quite accurately predicted over the whole blade profile, accuracy depending on the
mesh refinement used. Sensitivity to the grid is in particular seen to be locally crucial on the
suction side. This particular region is targeted in the following steps to understand the driving
parameter that allows to attain the levels reported in the experimental data.

6.1 MUR129 predictions

The first case considered is MUR129. This operating point reports a 1% turbulence intensity
at the inflow, which corresponds to an absolute rms value of 0.61 m/s. Tests have been per-
formed to quantify the influence of this parameter compared to a no turbulence simulation on
fields such as heat transfer or shear stress. Although the mean heat transfer is the only data
available in Arts et al. [7], no noticeable difference can be observed on this field nor on others
such as the isentropic Mach number. The effect of introducing small values (equal or lower
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A
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(a) (b)

Figure 6.1: MUR129 operating point. a) Q-criterion coloured by vorticity. Background plane
represents the |∇ρ|

ρ
b) y+ distribution along curvilinear abscissa for M1. Box indicates region

where neighbour acoustic waves impact the blade surface.

than 1 %) are therefore assumed to be negligible for the rest of the section.

When analyzing the instantaneous flows issued by the LES prediction based on the M1
mesh, the Q-criterion represented in Fig. 6.1a shows that the only coherent structures present
in the simulation locate in the wake of the blade. These are the result of the vortex shedding
that issues from the trailing edge and will be shown to be a strong source of noise. This can be
observed on the background plane where the density gradient is shown. The acoustic waves that
are issued from the wake impact the contiguous vane perturbing locally the boundary layer.
This generates a pattern visible on fields such as the y+ profile of Fig. 6.1b and marks even the
averaged profiles. To check that this is indeed the effect of the acoustic waves, two probes are
used in the simulation to register the flow activity in the wake, Probe A, and on the surface of
the blade where these waves impact, Probe B. By tracing the FFT of the pressure evolution of
both signals, a clear correlation is found and confirms the source of the waves as depicted by
Fig. 6.2. To verify the frequency at which the flow sheds is effective, its corresponding Strouhal
number is evaluated as this non-dimensional number is widely used in literature to study if,
for the Reynolds number of the flow, the shedding is indeed physical. It is defined by St = Lf

U

where L is a characteristic length (taken as double the radius of the trailing edge), f is the
shedding frequency and U is the mean velocity in the wake. It is also known that for Re ≈ 106,
its value should range between 0.2 ∼ 0.24. Based on the present simulation, St = 0.1988 which
confirms that these waves are indeed physical although slightly too coherent; i.e. below 0.2.

In any case and despite this unsteady activity, the boundary layer predicted by the simula-
tion is observed as attached on both pressure and suction sides. Some vortices may be found
locally on the suction side in the region where contiguous waves emanating from the wake
impact the suction side. However, the intermittency and weakness of their appearance may be
considered negligible. On the pressure side, it is not until the flow reaches the trailing edge that
the flow detaches. Note that boundary layer velocity profiles will be presented and compared
to cases where free-stream turbulence is present in later sections.
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Figure 6.2: Spectral composition of the pressure signal at probes A and B.

The heat transfer coefficient is retrieved from the simulation following the expression h =
qn

T0,1−Tw , where qn is the heat flux, T0,1 is the total temperature at the inlet and Tw is the wall
temperature. Shown on Fig. 6.3 along the blade, its prediction is found to be in excellent
agreement with the available experimental data. The level of the profile on the pressure side
is slightly underestimated, the shape of the curve being well captured. On the suction side,
the simulation captures very well the experimental profile. The M1 mesh is hence found to
be sufficient for the prediction of the heat flux although the slope on the suction side near
the trailing edge could require a better refinement such as the one provided by M2. Whenever
comparing these predictions to the one obtained by Collado Morata et al. [38], a slightly different
transition offset position is found: i.e. sudden h increase near the blade trailing edge. It must
however be stated that although the value of y+ has been kept the same, a better mesh quality
has been used here complemented by the use of twice the original number of degrees of freedom
in the case of the M1 mesh. For this operating point it is hence concluded that LES predicts the
flow independently of the mesh used. This is also observed to be independent of the numerical
scheme employed: TTG and LW giving similar results on the M1 and M2 meshes (not shown).
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Figure 6.3: Heat transfer coefficient of MUR129.

6.2 MUR235 predictions

This operating point is richer in terms of physics than the previous MUR129. The different
physics that happen for this particular operating point can be observed in Fig. 6.4. The key
that differentiates MUR235 from MUR129 is the turbulence present in the incoming inflow.
In the former case, free-stream turbulence convects from the inlet before interacting with the
blade boundary layer resulting in a completely different flow field. On the suction side of the
blade the presence of acoustic waves generated by the wake of the neighbour blade are seen
provided the adequate mesh resolution just like for theMUR129 case. The shock wave present
here on the suction side of the vane is furthermore seen to interact with the wake issued by
the trailing edge of the upper vane and migrates upstream compared to MUR129. The shear
stress that is shown on the blade surface on Fig. 6.4 shows localized high-shear stress regions
upstream from the shock wave indicating the appearance of turbulent regions that may develop
as discussed in the following sections depending on the simulation. The pressure side boundary
layer remains laminar although free-stream vortices are seen to impact the surface and deform
due to the imposed near wall shear stress. Finally, a Karman vortex street develops downstream
from the trailing edge generating acoustic waves similarly to the MUR129 case.

From a CFD point of view, the difficulty concerning this operating point with higher free-
stream intensity is the clear inability of current codes to correctly predict the heat transfer
coefficient of the experimental results. In light of the multiple physical interactions, various
modelling parameters are tested and a sensitivity analysis is performed to discriminate the
seemingly more important interactions. First, inlet turbulence parameters are modified to
check the influence they have on the heat transfer curves and other flow profiles. The influ-
ence of a higher intensity as well as various values of the integral length scale are tested, the
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Figure 6.4: Shear stress field on blade surface. Background plane represents the |∇ρ|
ρ
.

latter being addressed in light of the recent experimental findings [66]. The spectrum used
to inject turbulent structures at the inlet is then qualified, a comparison being made between
classical synthetic turbulence injection and the precursor turbulence injection method detailed
in App. C. Mesh convergence is finally addressed in this chapter to determine the importance
of resolution. To finish, a detailed analysis of turbulence statistics in view of the previous
tests is also performed based on the best prediction in an attempt to evidence the mechanism
responsible for the boundary layer transition. Note that whenever possible, results provided by
Arts et al. [7] are compared to the simulations.

6.2.1 M1 mesh predictions using synthetic turbulence injection

The first simulation detailed here was obtained using the M1 grid and turbulent inflow condi-
tions specified in [7] with a 6% turbulence intensity, injecting a synthetic turbulent spectrum
and a characteristic integral length scale of 3.5 mm. This test is done to check how a validated
code behaves using literature parameters. Experimental values are set when available but val-
ues from literature are used to see how well AVBP behaves compared to other codes.

First, a visualization of the flow prediction is done focusing on the inlet passage region up-
stream the blade as well as around the leading edge of the blade. The structures generated at
the inlet are seen to arrive to the vane in Fig. 6.5a contrarily to the MUR129 case. These vor-
tices are then stretched around the leading edge as seen in Fig. 6.5b and are no longer isotropic.
Note that from now on and when necessary to ease the representation, a blade representation is
added alongside the Q-criterion as shown in Fig. 6.5b to show the camera position from which
the blade is being viewed.

The existence of such structures around the leading edge requires to validate the hypothesis
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(a) (b)

Figure 6.5: MUR235 operating point. a) Q-criterion coloured by vorticity. Background plane
represents the |∇ρ|

ρ
b) Stretched vortices around leading edge of the blade represented by Q-

criterion coloured by spanwise velocity.

described in Sec. 5.3 concerning the spanwise domain extent. Indeed, the domain was said to
possibly constrain the injected turbulence requiring an a posteriori validation as the turbulent
structures could be affected by the spanwise BCs. For verifications, spatial correlations are
studied at a position upstream from the blade at s/c = −0.2 (s ≈ −15 mm) where c is the
chord value presented in the previous chapter. The two-point correlation shows how correlated
the structures are along the stagnation point height (y axis). The criterium assumed is that
structures are not correlated if the absolute value of the correlation is lower than 0.3. It can
be observed in Fig. 6.6 that this value is much lower than this threshold value and so, the
periodicity does not seem to constrain the free-stream turbulence. Other positions were tested
confirming our conclusion for the main stream flow.

In Fig. 6.7, it can be observed that the heat flux coefficient h retrieved from the M1 pre-
diction, remains almost at the same level as the MUR 129 predictions on most of the suction
side, and is hence, far from the corresponding experimental data. The position of the shock
wave present at approximately s ≈ 60 mm is nonetheless predicted quite accurately, position
at which a large increase in heat flux coefficient is seen although the level of the jump is not
well captured if compared to the experiment. This could indicate either that the shock is not
sufficiently resolved or that the physics may be different upstream this point. Compared to
MUR129, an increase in h appears on the suction side in the proximity of the leading edge
s = 0 − 20 mm in coherence with experimental findings in this region. The Q-criterion struc-
tures seen in Fig. 6.5b when free-stream turbulence is present have not been recovered in the
simulations with low turbulence levels, which confirms that the source of the increase in heat
transfer around the leading edge is indeed due to the turbulence upstream from the blade. The
pressure side is also seen to have much larger h values compared to a case with no turbulence.
It also confirms that free-stream turbulence does play an important role in the prediction of the
heat transfer coefficient for this flow. To test the sensitivity of the prediction to this parame-
ter, simulations at different turbulence intensity levels are compared. Additionally, a realistic
spectrum is also injected to have a broader view on the impact of the injection models.
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Figure 6.6: Axial and spanwise velocity correlations in spanwise direction.
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Figure 6.7: Heat flux comparison of MUR129 and MUR235 operating points using
synthetic injection methods when required.
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Turbulence injection model effects

The first modelling aspect to be studied is the turbulence intensity as well as the approach
employed to determine the inflow turbulent signal. Indeed, the impact of the turbulence evo-
lution from the inlet channel is different depending on the methodology used (cf. App. C for
validations and illustration of such models). There are various parameters that are known to in-
fluence the turbulence evolution in a LES simulation: the turbulent intensity level, the turbulent
length scale, the spectrum of turbulence injected and the mesh refinement. Note that all tests
in this section are conducted using the M1 mesh and a fixed integral length scale set to 3.5 mm.

The first point that must be addressed is the flow evolution in the passage region upstream
the blade. The difference in the turbulence intensity decay is illustrated on Fig. 6.8 for different
turbulent inflow signals and intensities. Decay is plotted on streamlines that go from the inlet
up to the stagnation point on the leading edge of the blade. At this specific location, care
must be taken since when the flow approaches the blade, it will stretch inducing anisotropy
in the turbulence. This means the turbulent intensity can no longer be studied using the ho-
mogeneous turbulence injection expressions. When comparing the simulations using the same
inlet intensities, it can be noted that the decaying slopes do not agree and depend on the
methodology used to create the inflow field. The precursor simulation has been shown to have
a physical spectrum at the inlet, (i.e. solution of NS equations) which is not the case for the
synthetic method. To explain the differences, it should be noted that at the inlet, the most
energetic length scale of the synthetic method is large with no dissipative length-scales (PP
spectrum). Most of the energy at the inlet for the synthetic injection is distributed in large
spots. During the streamwise advection however, energy is naturally distributed to the whole
spectrum. This process modifies the integral length scale and in turn determines the turbulence
rate of decay. When this happens it is difficult to correctly estimate the decay of Turbulent
Kinetic Energy (TKE) since the perturbations introduced at the inflow do not initially com-
ply with the NS equations. It requires an undefined axial distance for the length scales to
attain a physical behaviour. This problem is not an issue with the precursor as the spectrum
injected is generated by solving the NS equations and the TKE rate of decay is correct from
the inlet. It is thus expected that curves don’t have the same slope for the same turbulent
injection level. It can also be noted that the TKE at position x = −55 mm is not exactly the
one prescribed retrieving neither 6% nor 18% at the inlet. In the precursor case, to obtain the
correct turbulence properties (intensity level, length scale) a momentum source term is added
in the precursor simulation. This source term is not trivial to obtain [136] and it is difficult to
impose the exact values and comply with all the turbulent inputs. A small tolerance is thus ac-
cepted. For the synthetic case, the previous non-physical behaviour at the inlet may be blamed.

The effects the turbulence level and the spectrum have on the aerodynamics are overall
observed to be negligible with mesh M1. The control parameter for this conclusion is the isen-
tropic Mach number profile shown on Fig. 6.9. Furthermore and for all cases, inlet to outlet
pressure ratios are correctly estimated and losses are also of the same order for all injection
methods which implies that the isentropic Mach number does not show large differences. Given
the global performance of the flow compared in Table 6.1, Fig. 6.9 shows the expected agree-
ment, small differences are only seen in the abscissa of the oscillating shock.
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Figure 6.8: Turbulent intensity decay at inlet channel upstream from blade.

Synthetic turbulence Precursor
Tu 6% 18% 6% 18%

Ps2/P01 0.57345 0.57372 0.57341 0.57348
(P01 − P02)/P02 0.018208 0.018180 0.017669 0.017836

Table 6.1: Global performance for each value of turbulent intensity and spectrum injected.

Fields such as the shear stress values represented in Fig. 6.10 are observed to be more prone
to differences as the boundary layers can be excited differently by the different turbulent sur-
rounding fields. From Fig. 6.10 which compares all cases, the pressure side boundary layer
remains laminar so the shear stress is not modified for this part of the blade. The same can be
said for the leading edge region around the suction side: i.e. between s = 0− 20 mm where it
was previously seen that the heat flux was enhanced by turbulence compared to MUR129. Here
this response seems however independent of the turbulent field at least with the level and mod-
els tested here. Moving downstream on the suction side, the plateau between s = 30− 60 mm
shows the largest differences between the four simulations. The mean shear stress is notably
higher for the larger values of turbulence intensity (18%) and are always slightly lower for the
precursor case. This observation corresponds to the same findings when analyzing the previous
TKE decay in Fig. 6.8. The highest turbulence intensity levels near the blade correspond to the
18% inlet level and the synthetic is always slightly higher than the precursor. The connection
between free-stream turbulence and the profiles around the blade seems to also be important
in the region s = 30− 60 mm. An effect should thus be seen on the heat transfer profile.

Heat coefficient profiles are given in Fig. 6.11 and show that both turbulence injection
methods predict a similar heat transfer coefficient over the whole blade. Increasing the inflow
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Figure 6.9: Isentropic Mach number comparison of turbulence injection methods for
MUR235 operating point for M1 grid.
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Figure 6.11: Heat flux comparison of turbulence injection methods for MUR235
operating point for M1 grid.

turbulent intensity shows an improved agreement around the leading edge region, comple-
mented by an improvement on the pressure side region. The suction side downstream from the
location of impact of the neighbour acoustic waves s/c ≈ 0.3 (s ≈ 20 mm) remains however the
most challenging. The importance of free-stream turbulence for the prediction of the heat flux
plateau between s/c ≈ 0.4− 0.9 (s ≈ 27− 61 mm) is observed once again. Finally, at s/c = 1.1
(s ≈ 74 mm) and locations downstream the shock, the flow is fully turbulent and independent
of the level of turbulence imposed at the inlet.

The turbulent intensity level has been seen to have a great impact on the different profiles
such as the shear stress and the heat transfer around the blade. A much better agreement
in terms of heat transfer is found for higher levels of turbulent intensity while the spectrum
injected does not seem to be critical for these simulations. These findings are only the output of
changes in the mean flow and a more detailed analysis of the physical interactions is required.
Visual and instantaneous field inspections are now proposed to see how different inflow turbu-
lent fields may affect the heat transfer. For this investigation, the blade will be divided in two
different parts. First, the suction section that goes from s ≈ 20 mm to the trailing edge will be
analyzed. This section is of particular interest as it is seen to be the most sensitive region to
the different turbulent parameters. The second part is the pressure side and leading edge of the
blade which seems to be directly driven by the level of turbulence at the inlet. Complementary
mean statistical fields are also detailed hereafter to ease the analysis whenever needed.
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Figure 6.12: Coherent structures representation for a) 6% b) 18% turbulent intensity at the
inlet using M1.

Flow dynamics

Visualization of the instantaneous flow helps to understand the mean flow behaviour and more
precisely, the local dynamics that takes place and its imprint on the mean fields. Differences
between 6% and 18% fields are first sought by doing a visualization of the Q-criterion and
comparing them in Fig. 6.12. The main differences between the two predictions are found in
the region upstream the shock wave where turbulent structures are found for the 18% level that
are named ’spots’ in literature. This indicates that the main differences between simulations in
the range of s/c = 0.4 − 0.9 (s ≈ 27 − 61 mm) are due to a pre-transition region found when
injecting the higher turbulence intensity. In other words, the higher free-stream turbulence level
acts as a source of instability leading the boundary layer to locally transition. This specific
process seems to be absent for the 6% case.

In Fig. 6.13 an instantaneous contour of Q-criterion based on the 18% case shows how tur-
bulent structures develop inhomogeneously in the spanwise direction prior to the shock wave
on the suction side. As seen on this specific view, turbulent patches are found when large
structures from the free-stream turbulence are near the wall for interactions to occur. Such
free-stream vortices are believed to be responsible for the spots found upstream of the shock
wave. As seen on this figure further downstream, these structures tend to redistribute along
the whole span due to the strong shock and give place to more coherent structures.

To confirm this transitioning effect the shape factor has been extracted along the abscissa
comprised between s/c = 0− 1.1 (s ≈ 0− 74 mm) for both 6% and 18% synthetic turbulence
at the inlet. The shape factor is an indicator of the state of the boundary layer [120, 165] and
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Figure 6.13: Interaction between free-stream vortices and wall structures.

serves to evaluate if the boundary layer remains laminar or if it is turbulent. This factor is
defined by H = δ∗/θ, where δ∗ and θ are the displacement and momentum thicknesses [160]
written as,

δ∗ =

∫ ∞
0

(
1− ρ(y)Us(y)

ρ0Us,0

)
dy, (6.1)

θ =

∫ ∞
0

ρ(y)Us(y)

ρ0Us,0

(
1− Us(y)

Us,0

)
dy. (6.2)

Their streamwise evolution along the blade is shown in Fig. 6.14. The displacement thick-
nesses are seen to be very similar implying that the streamwise velocity profiles do not show
large differences. However, the momentum thickness value is larger for the higher injected tur-
bulence case in the pre-transitioning region. This is expected as the existence of turbulent spots
increases locally the momentum exchange in the boundary layer which moves the momentum
thickness limit further away from the wall. As a consequence, an increases in the shear stress
is found as anticipated in Fig. 6.10.

These two variables are now used to calculate the shape factor. From Sieverding [165], it
can be said that transition region is attained when values range between 1.3− 1.7 which is not
far from the retrieved values for both intensity levels when s/c > 0.9 (s ≈ 61 mm). Further
upstream, current predictions clearly produce initially laminar boundary layers. The existence
of turbulent spots tends to decrease the shape factor until it fully transitions after the shock
at s/c ≈ 0.92. This effect is only seen when injecting the 18% turbulence intensity at the inlet.
This corroborates the transitioning effect seen visually but does not contribute to explaining
the mechanism responsible for transition as the same type of behaviour can be found for natural
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Figure 6.14: Displacement and momentum thickness along the suction side of the blade for M1
mesh.
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Figure 6.15: Shape factor on suction side at different abscissas in the transitioning region.
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transition mechanisms as shown by Abu-Ghannam and Shaw [4] when by-pass transition is sus-
pected for the configuration studied in this document. A more detailed analysis on this specific
point is provided in Sec. 6.3. In any case, the existence of spots can be suspected to be related
to the increase in heat transfer seen previously in the simulations and in the experiment. It is
also reasonable to question if the appearance of these spots which occur at an undefined fre-
quency and the increase in heat transfer can be related to the statistical time duration used to
extract the profile. A short study was conducted to answer this question and confirms that the
period taken to extract the discussed profiles was sufficient to satisfy convergence, c.f. App. D.

Such events however can explain the observed differences in the boundary layer profiles of
streamwise velocity shown at three different positions of interest. The first position is located
upstream the position where incoming acoustic waves from the contiguous blade impact the
blade at s/c = 0.3 (s ≈ 20 mm). The second at s/c = 0.7 (s ≈ 47 mm) is representative of
the pre-transition region before the shock wave while the third position represents the fully-
developed transition region after the shock wave s/c = 1.1 (s ≈ 74 mm). The streamwise
velocity profiles as a function of the local normal distance from the blade wall are compared
at the cited positions between the 0% and 6% inlet turbulence cases in Fig. 6.16. Streamwise
velocity comparisons between higher intensity levels of turbulence and spectrum are not shown
here because profiles are very similar. The MUR129 case, where no turbulence is injected
is added for comparison and is seen to be very similar to the turbulent case at s/c = 0.3
(s ≈ 20 mm) in Fig. 6.16a. At this position the boundary layer is still laminar in all cases
and the acceleration around the leading edge dominates the mean velocity. The impact of the
external turbulent flow is quasi-null and seen to introduce only a weak unsteady component.
At the second position however, Fig. 6.16b shows that the streamwise velocity starts to differ.
The shape of the profiles are similar but the absolute value is larger for the MUR235 case due
to a reduced effective section for the flow to go through the passage. At s/c = 1.1 (s ≈ 74 mm),
a fully developed velocity profile appears for the turbulent case while the MUR129 velocity
evolution approaches a laminar shape, remaining in this state up to the trailing edge where a
sudden transition takes place.

More information about the BL state is accessible by studying the profiles for the Turbulent
Kinetic Energy (TKE) at the same positions. TKE indeed gives insight into the turbulent
activity in the boundary layer. Additionally to the previous profiles studied in Fig. 6.16, the
different levels of turbulence intensity injected and the two spectrums are compared. The ad-
ditional curves were previously neglected because the streamwise velocity curves did not show
appreciable differences as mentioned earlier. At the first position s = 0.3 c, profiles of TKE
are seen to be larger for higher levels of turbulent intensity, Fig. 6.17a. On the outer region of
the boundary layer, TKE values differ being in agreement with each inflow specification: i.e.
6% and 18%. However, in terms of spectrum injected the precursor injection leads to lower
turbulent fluctuations in the boundary layer. In all cases, the maximum values are obtained
at a value of y+ ≈ 30. At the second position s = 0.7 c, higher values of TKE are found
in all cases which means there is indeed a development of the boundary layer becoming more
energetic. Different methodologies to inject turbulence lead however to very distinct boundary
layer profiles. It can be noted that the effective TKE level between the 6% synthetic and 18%
precursor simulations are nearly the same. From Figs. 6.8 & 6.11 which show the turbulence

113



LES predictions of MUR129 and MUR235

0 50 100 150 200 250 300 350 400
us (m/s)

0

100

200

300

400

500

y
+

Pressure side Suction side

MUR129: Tu=0%

MUR235: Tu=6%

(a) 30%

0 50 100 150 200 250 300 350 400
us (m/s)

0

100

200

300

400

500

y
+

Pressure side Suction side

MUR129: Tu=0%

MUR235: Tu=6%

(b) 70%

0 50 100 150 200 250 300 350 400
us (m/s)

0

100

200

300

400

500

y
+

Pressure side Suction side

MUR129: Tu=0%

MUR235: Tu=6%

(c) 110%

Figure 6.16: Tangential velocity profiles on suction side at different s/c.
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Figure 6.17: Turbulent Kinetic Energy profiles along different stations on the suction side a)
s/c = 0.3 b) s/c = 0.7 c) s/c = 1.1.

decay in the channel and the heat flux on the blade, it is clearly seen that at this position
both simulations show a very similar prediction. The reasons for this behaviour remains to
be investigated. Finally, at s/c = 1.1 (s ≈ 74 mm) all TKE profiles show a fully developed
turbulent boundary layer which is expected downstream the shock. It must be stated that only
the resolved part of the turbulent kinetic energy is represented in the previous and following
figures. Using a subgrid-scale model that complies with the asymptotic relation u′v′ ∼ y3 [30],
it is possible to assume that the contribution of unresolved terms is indeed negligible.

Having analyzed the transitional region of the suction side we now move to the remainder
regions of the blade. The pressure side and the leading edge of the blade require investigation of
other fields as fewer structures are seen using the Q-criterion compared to the transitional zone
on the suction side. When studying instantaneous snapshots at a value of y+ ≈ 20 normal to the
blade surface, temperature contours in the near blade wall flow give insight to the flow as seen
in Fig. 6.18. Streaky regions are observed in cases where turbulence is injected in agreement
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(a)

(b)

(c)

S=0 mm
Approximate 

shock position

Figure 6.18: Instantaneous temperature field a) MUR129, b) MUR235 u=6%, c) MUR235
u=18%.

with Jacobs and Durbin [81]. Although the turbulent intensity at the inlet is notably different
in the three cases, no large visual difference is seen around the leading edge when comparing
the two simulations with turbulence injection. The stretching of vortices observed in Fig. 6.5b
are indeed seen for both cases to mark the temperature field as evidenced on cases b) and c) of
Fig. 6.18. This highlights the effect induced by the free-stream turbulence on the heat transfer
profile near the leading edge. This effect extends to the pressure side of the blade where the
temperature field is also highly marked by elongated structures which induce a higher heat flux
transfer coefficient. The existence of free-stream turbulence and its intensity are directly related
to the heat transfer coefficient recovered thanks to the temperature fluctuations observed in
the BL.

The higher turbulence intensity case of the previous section proves that there is a boundary
condition that provides the necessary physical conditions to match the experimental values.
Various reasons might be pointed out. First, the size of the integral length scale could be
responsible for the free-stream turbulence and the consequent interaction with the boundary
layer of the blade. It is well-known that only certain frequencies are capable of trespassing
the shielding effect the shear stress induces [81] and these modes will therefore be capable of
perturbing this layer to create an instability in the boundary layer. The effect of the integral
length scale could be important if this process is of first order and pilots the transition. Along
this same line, another possible interaction that may be missed is the unresolved turbulence
structures. The sub-grid scale model should correctly account for the missing energy but not
for the interactions of the smaller vortices and therefore their interaction with the boundary
layer flow. In that respect, a fine mesh will be important for the near-wall resolution but also to
convect the free stream vortices and represent adequately a larger part of the spectrum. These
paths are explored in the following.
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Figure 6.19: Modified geometry with three times initial spanwise domain.

Integral length scale effect

As already discussed, in the original experiments the information concerning the integral length
scale of the upstream free-stream turbulence has only been a recent point of study. Due to the
incapability of codes to reproduce the pre-transitioning region on the suction side of the vane,
but also to capture the missing level on the pressure side of the vane, it has long been suggested
that this parameter could be the origin of the errors. The study performed by Fontaneto [66]
provided a value of approximately 7.6 mm, which is not far from usual values of the domain
in the span wise direction (here taken to be 10 mm). For adequate modelling, this means that
it is necessary to increase the limits in this direction. To do so while measuring the impact it
may have on the predictions, a 30 mm thick domain is constructed. For this purpose, the M1
mesh generated previously is twice duplicated in the span wise direction leading to the final
30 mm mesh, approximately four times the integral length scale to be imposed as represented
in Fig. 6.19.

To analyze if there is indeed a length scale effect, two different simulations corresponding
to an inflow turbulent integral length scale prescribed at 3.5 mm and 7.6 mm are compared in
terms of heat transfer coefficient in Fig. 6.20. For both predictions, a 6% turbulent intensity
Passot-Pouquet spectrum is used as no clear effect was reported earlier. Although the tur-
bulence intensity decay rate is smaller in the passage previous to the blade due to the larger
initial integral length scale imposed, simulations show a similar behaviour for the larger 7.6 mm
length scale. Results show an even worse agreement for the 7.6 mm length scale. This might
indicate, as found by Collado Morata et al. [38], that only the smaller structures are able to
penetrate the boundary layer and so, it is by decreasing the size of the integral length scale
that the heat transfer profile increases to be in better agreement with the experiments. Of
course and for fixed intensity, smaller length scales will make the turbulence decay rate larger
and the forcing induced by the free-stream would be weaker when reaching the blade fur-
ther downstream. In fact it is suspected that for the smaller values of the integral length scale,
resulting structures may require a mesh refinement effort, a subject that is studied in Sec. 6.2.2.
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Figure 6.20: Heat transfer coefficient comparison for different length scales.

6.2.2 Grid resolution impact

In this section, only synthetic turbulence method is used for the two intensity levels previously
seen in Sec. 6.2.1 since in LES, one of the most important effect relates to the mesh resolution.
For the MUR235 case it is naturally expected to play a key role. By refining the mesh, the
increase in resolution will allow smaller structures to arrive to the leading edge. Such a be-
haviour is confirmed by looking at instantaneous views issued from the use of meshes M1 and
M2, Figs. 6.21a & 6.21b. Smaller turbulent structures can clearly be observed with the finer
mesh. The other most noticeable effect of the grid resolution concerns the effect it has on the
acoustic waves emanating from the vortex shedding from the trailing edge, see Fig. 6.21a. The
strong acoustic waves that are emitted from the blade are seen to be much less intense with
the refined mesh as observed in Fig. 6.21b.

To further investigate the differences issued by the use of M1 or M2 grids, local probes A and
B are placed in the wake and on the blade surface for both simulations as shown in Figs. 6.21a
and Fig. 6.23a. Recall that for MUR129, Fig. 6.2 represented the pressure spectra recorded at
the same probes A and B. Spectrum at probe B clearly highlighted a tonal peak corresponding
to the vortex shedding frequency at 43 kHz. A peak at the exact same frequency was found
for probe A on the wall and which is also found when analyzing the M1 grid MUR235 simu-
lation. However, performing the simulation with the M2 mesh, Fig. 6.22, a peak is no longer
clearly visible in the pressure spectrum recorded in the wake at probe A nor at probe B. The
reason for this is found by doing a visual comparison between the wakes for M1 and M2 grids,
Fig. 6.23. The wakes issued by the two simulations are very different if looking at shear zones
and coherent vortices. The M1 mesh shows a shorter shear zone accompanied by some very
coherent vortices. On the other hand, the M2 mesh has a longer shear zone and the vortices
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B

(a) M1 mesh density gradient (b) M2 mesh density gradient

Figure 6.21: Density gradient comparison for 18% turbulent intensity at inlet.

are less coherent. As a consequence the spectrum recorded at probe A for M2 contains many
less tonal frequencies than the M1 grid.

The presence or absence of these waves can however have a direct impact on the boundary
layer and thus affect the heat transfer as shown in Fig. 6.24. Indeed, the boundary layer evo-
lution of the M1 mesh shows a higher heat transfer upstream when compared to the fine mesh
observed between s ≈ 25 − 40 mm. Figure 6.24 also shows that the fine mesh predicts more
accurately the level of heat flux downstream from the shock if compared to the M1 mesh, con-
firming it is a mesh refinement effect. It is reasonable to ask then if one of the meshes (or both)
might not be adequate for the capture of these waves or that the waves are generated due to
the way the domain was meshed. It seems logical thus to generate a third more refined mesh M3.

The first aspect to consider is the existence of these waves for the new M3 mesh. For this
new mesh, acoustic waves are seen to reappear similarly to the M1 grid which suggests that
the M2 mesh is not adequate for the capture of the correct trailing edge physics and thus the
acoustic waves issued. The effect on fields such as the isentropic Mach number is shown in
Fig. 6.25b. Small differences may be seen for the pressure side of the leading edge. The same
conclusions are extracted on the suction side between s ≈ 0− 25 mm which corresponds to the
leading edge region. Up to s ≈ 40 mm, it is the impacting acoustic waves that dominate the
flow, and so, the absence of acoustic waves in M2 shows differences compared to M1 and M3.
Downstream from this position, M1 and M2 have a great resemblance while M3 departs from
the previous one due to differences in flow physics.

Shear stress profiles show larger differences between meshes. On the pressure side, a slight
increase in shear stress is found thanks to a better transport of turbulent structures in the pas-
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Figure 6.22: Spectral composition of the pressure signal at probes A and B.

B

(a) M1 (b) M2

Figure 6.23: Trailing edge vorticity comparison between different meshes.
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Figure 6.24: Heat flux comparison of MUR235 with fine mesh.
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Figure 6.25: Isentropic Mach number comparison of MUR235 with three meshes and 6%
turbulent intensity at inlet.
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Figure 6.26: Shear stress comparison of MUR235 with three meshes and 6% turbulent inten-
sity at inlet.

sage upstream the blade as well as a better refinement in the near-wall region. This conclusion
extends to the profile around the leading edge of the blade which is also better captured. The
influence of the free-stream turbulence on these two regions was shown in Sec. 6.2.1 so it is
not surprising that a more resolved free-stream leads to better results. The largest differences
are seen however in the transitional area on the suction side. Both M1 and M2 meshes remain
practically at the same level while the M3 mesh predicts a shear stress that is up to 50% higher
at the abscissa before the shock wave. This tendency is similar to the already observed effect
when increasing the turbulence at the inlet for a coarser grid (M1) seen in Fig. 6.10. It was
demonstrated that this effect was due to the existence of turbulent spots along the suction side.

Figure 6.27 shows the heat flux predictions obtained with the three meshes for the level of
free stream turbulence indicated in the experiments, 6%. This turbulence level seems to have
a different impact on heat flux for M3 if compared to the two coarser meshes. Both M2 and
M3 show a better prediction on the pressure side of the blade, probably only due to refinement
both at inlet and in the wall region. On the suction side, in the pre-transitioning region, the
heat flux is notably different between the finer mesh M3 and the other two. The surface heat
transfer after the shock is captured much more accurately for increasing the refinement even if
the isentropic Mach number distributions are very similar as in Fig. 6.25a.

For all cases, an increase in shear stress is accompanied by an increase of heat flux at every
curvilinear abscissa position. Both shear stress and heat transfer together suggest that the
simulation with the M3 grid and a 6% turbulence at the inlet does present turbulent patches
on the blade surface. The Q-criterion presented in Sec. 6.3 of this M3 grid confirms this aspect,
turbulent spots appearing very early on within the flow BL: i.e. way upstream the shock around
s/c ≈ 0.7 (s ≈ 47 mm).
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Figure 6.27: Heat flux comparison of MUR235 with three meshes and 6% turbulent intensity
at inlet.

6.2.3 Preliminar conclusions from the parametric study

From this parametric study, various conclusions are extracted:

• Boundary conditions based on experimental values on an insufficiently refined mesh (al-
though acceptable) do not provide the adequate prediction of the flow.

• The increase of turbulence intensity level at the inlet allows a better agreement with the
experiment and seems to be the most important factor towards recovering the correct
heat flux.

• The injected turbulent spectrum is not important to obtain a physical solution at the
leading edge of the blade because it has enough distance to develop for the present con-
figuration. It does however affect the decay rate of TKE.

• Integral length scale effects are negligible in the tests here conducted.

• A very refined mesh is capable of predicting the heat flux plateau on the suction side of
the blade when using experimental data as boundary conditions. These results are, to
the authors knowledge, the results that agree the most up-to-date and within all available
predictions to the experimental data of Arts et al. [7] for this operating point.

The question is now why this mesh behaves differently than the other two M1 and M2.
It is well-known that small structures feed on the mean flow [112], and that higher Reynolds
values decrease the threshold limit of turbulent intensity required to produce turbulent spots
at higher intermittency as shown by Mayle [120]. The effective Reynolds number of the simu-
lation (modified by the SGS viscosity added to the simulation) indeed increases as a result of
an increased resolution. Likewise, numerical scheme properties will be affected by grid quality
and resolution as discussed in Chapter 7. All of these contributions as discussed in Sec. 3.5

123



LES predictions of MUR129 and MUR235

(a) (b)

Figure 6.28: Turbulent viscosity comparison between a) M1 and b) M3 grids.

will thereby decrease artificially the numerical effective Reynolds number and a need for higher
intensity fluctuating levels to generate more frequent spots.

This however is only a supposition. Certainly, the better prediction of the heat transfer
goes along with an increase in shear stress. Accompanied by the instantaneous visualizations
of the Q-criterion on the surface blade, it certainly seems as though the turbulent spots are
at the origin of this change of behaviour on the suction side of the blade. The first aspect to
confirm is that turbulence features are indeed retrieved. To do so, skewness of the velocity
fluctuations, ejection and sweep events as well as turbulence anisotropy are all addressed to
check their agreement to literature values on the basis of the M3 predictions. Then, comparisons
can be made to other grid simulations to identify the differences and thus, the reason why one
simulation transitions (M3) and why the others do not (M1, M2).

6.3 Temporal evolution of near-wall turbulence

The turbulence encountered in the near-wall region is analyzed on the basis of the best LES
prediction reported previously for the MUR235 case, i.e.: the M3 grid except when noted dif-
ferently. The objective is to study the near-wall structures that are from our analysis seen to
play an important role towards the heat transfer prediction as shown in fundamental papers
like Hadziabdic and Hanjalic [76]. Before going into the details of the signals and statistics,
some instantaneous visualizations are shown for this specific simulation in terms of flow and
structures encountered notably on the suction side of the blade. Then, temporal data and
statistics extracted from the signals are analyzed and compared to experimental findings. Al-
though it might seem trivial, the first check that must be done is to confirm that the structures
seen are indeed turbulent events. The Q-criterion is useful from a visualization point of view
but nowadays it is thought that both visual and statistical data are required for the analysis
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of a turbulent boundary layer. Furthermore, depending on the value chosen for the Q-criterion
to plot the contours, different conclusions can be extracted. This is why statistics are also
searched, something not so usual in turbomachinery flows and much more commonly encoun-
tered in channel flows.

Instantaneous visualizations

The visualization of coherent structures on the suction side of the blade shows the typical struc-
tures found in the transition process as in Adrian [5]. Indeed, Fig. 6.29 evidences the existence
of hairpin vortices and canes coloured by the saturated spanwise local velocity values. The Λ
vortices indicated at position A are the union of two streamwise vortices that have alternatively
positive and negative spanwise velocities indicating they are counter rotating vortices. These
are the near-wall streamwise vortices that are responsible for the streak generation mechanism.
From the literature, these vortices may undergo lift-up and develop arch-type vortices connect-
ing the streamwise rolls as those indicated at position B. Finally, one-legged vortices or canes
may exist independently and are observed at position C.

The previously mentioned streamwise vortices along with the streamwise velocity fluctuat-
ing component are shown in Fig. 6.30 on a plane formed by the normal to the blade surface
(n) and spanwise directions (z ). The normal direction to the n-z plane just described is the
streamwise direction (s). Various counter rotating vortices are seen in the cross-wise plane
(n-z) shown by the arrows that represent the normal and spanwise velocities. These are the
vortices responsible for the negative streamwise velocity fluctuations (with respect to the tem-
poral and spatially spanwise averaged velocity) represented by the negative (blue light areas)
coloured field on the plane. The streamwise vortices ’lift-up’ fluid from the wall which has
lower momentum creating streaks of lower fluctuating velocity. The dark red zones represent
on the contrary positive fluctuations of velocity. This same n-z plane in Fig. 6.30 is now shown
accompanied by two s-z planes at distances of y+ equal to 5 and 20 respectively in Fig. 6.31.
This allows to study the longitudinal characteristics of the streaks that have been lifted. The
longitudinal behaviour of these streaks shows a certain waviness and streaks are separated by
a distance of the order of z+ ≈ 100. The value here obtained corresponds to the mean value of
spacing between streaks found in literature [151]. The presence of streaks at the two distances
(5 and 20) is however not always encountered as they are characteristic of the viscous sublayer.
The longitudinal traces found in Fig. 6.31b implies they have penetrated into the buffer layer
and so may eventually be a source of transition to turbulence further downstream [8].

Although the previous views give sufficient evidence for the existence of turbulence on the
suction side of the blade where the corresponding structures are seen, a statistical analysis of
the signals recorded is put in place in the following.
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A

B

C

Figure 6.29: Shear stress field shown on the blade surface where each sphere corresponds
to locations where probes were located. The region highlighted on the blade surface shows
turbulent structures represented to the right of the figure.

Figure 6.30: Coloured field shows cross-stream (n-z) instantaneous distribution of streamwise
velocity fluctuations at s/c = 0.8 . Arrows show normal (n) and spanwise (z) velocity vectors.

126



6.3 Temporal evolution of near-wall turbulence

(a)

z+=100

(b)

Figure 6.31: Coloured field shows streamwise (s-z) instantaneous distribution of streamwise
velocity fluctuations at s/c = 0.8 at a) y+ = 5 b) y+ = 20. Arrows show normal and spanwise
velocity vectors.

Signals and statistical data of the boundary layer

The temporal signals recorded at different positions along the streamwise direction of the blade
and at different distances normal to the surface are analyzed. An example of recording is shown
in Fig. 6.32 which only shows random temporal events of strong fluctuations. An additional
step is used to discriminate time periods where a turbulent event is taking place at the probe
location, in other words, to take into account the intermittency effect. The definition of inter-
mittency given by Narasimha [129] is of course applicable so classical distributions where the
intermittency factor is 0 for laminar flows and 1 for fully turbulent regions holds true. How-
ever, it must be stressed that the probes measuring the signals are static and do not follow the
streamwise evolution of the spots. This means that in a certain temporal range, the flow may
be turbulent because a convected spot is detected by the sensor. To discriminate turbulent
from laminar events, various sensors are provided in the literature namely for experimental
collections such as described in Antonia et al. or Cousteix [6, 42]. The evaluation used in the
following is based on the latter that has also been used by Blair [20] and relies on criteria based
on
(
dus
dt

2
)

or
(
dusun
dt

2
)

to determine the intermittency factor. If the value of this parameter
surpasses a case-dependent value, the period is taken to be turbulent. An example of event
detection is shown in Fig. 6.33. Recall that Fig. 6.29 shows the different locations at which the
probes are placed, the physical normal distance to the blade of each probe being given in Ta-
ble. 6.2. Once the signals have been correctly processed to obtain the fluctuating components,
these signals can be analyzed in detail.
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Figure 6.32: Temporal evolution of streamwise, normal and spanwise velocities at s/c = 0.7
and y+ = 10.
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Figure 6.33: Temporal evolution of velocity fluctuations. Boxes show where the sensor is active
and records the signal to be used.

Streamwise velocity fluctuations in the boundary layer are known to be highly skewed as
a result of the coupling between the turbulence in the outer- and inner-regions of a BL. In
the proximity of a wall, the skewness of streamwise velocity fluctuations is always positive as
evidenced by Kim et al. [92], values that increase with growing Ret (turbulent Reynolds num-
ber) as shown by Metzger and Klewicki [123]. High streamwise velocity fluctuations may be
induced by the ’inactive’ large scale structures [24] in the outer part of the boundary layer
that interact with the free-stream intensity without altering the mean flow. These fluctuations
undergo a ’modulation’ process and couple to the smaller structures near the wall [170]. Recent
studies such as Mathis et al. or Dróżdż [116, 57] have tried to relate pressure gradients to the
skewness of streamwise velocity components. Following Mathis et al. [116], the skewness can
be represented in terms of y+ and Reynolds number which is shown in Fig. 6.34 for only the
Reynolds number of the present flow. The retrieved curved shape is qualitatively in excellent
agreement with the skewness data provided in previous citations showing that it is indeed the
free-stream turbulence that is at the origin of the turbulent events seen. The inner motion in
the boundary layer is characterized by positive streamwise fluctuations because the modulation
with the free-stream turbulence, which has higher momentum, amplifies the wall fluctuations
in the streamwise direction.

It is questionable at this stage to know if these streamwise fluctuations us and corresponding
normal to the surface fluctuations un contribute to the production of turbulence. The Reynolds
stresses which are related to the turbulence production terms through P = −〈usun〉∂Us

∂xn
[140]
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Figure 6.34: Skewness of streamwise velocity fluctuations at various positions normal to the
surface.

Position 1 2 µm
Position 2 4 µm
Position 3 16 µm
Position 4 32 µm
Position 5 64 µm
Position 6 400 µm

Table 6.2: Position of local probes in normal
to blade direction.

are indeed responsible for the generation of turbulent kinetic energy (TKE). The production
of turbulence is here a viscous process that takes place mainly in the BL and the position at
which the production peaks usually happens approximately at y+ ≈ 15, position located in
the buffer region (for realistic Reynolds numbers). To evaluate the qualitative behaviour of
the Reynolds stresses, various 2D plots representing normal un against streamwise us velocity
fluctuations are given and considered sufficient to measure the turbulence generation as the
production terms are proportional to usun. This furthermore holds true because in the prox-
imity of a wall the mean shear component is always positive. The production of turbulence can
further be separated using a quadrant analysis [111]. In this case, two main events presented
in Fig. 6.35 contribute to the turbulence production terms. Sweep events, which correspond
to us > 0 and un < 0 correspond to high-speed exterior fluid entering the low-speed internal
region. The second mechanism is due to ejection events us < 0 and un > 0 corresponding to
low-speed fluid ejected from the internal boundary layer.

The first position analyzed is the location where acoustic waves impact the suction side of
the blade: i.e. s/c = 0.5 (s ≈ 34 mm) for M1 and M3 (cf. Fig. 6.29). The temporal evolution
of fluctuating components of velocity are represented in Fig. 6.36 and the streamwise against
normal velocities at various perpendicular positions to the blade in Fig. 6.37. Figure 6.36 shows
a periodic peak of both us and un components, confirmed if performing a FFT of the raw signal
and yielding a peak value around 42 kHz. This effect is related to the acoustics issued from
the contiguous blade which is independent of the mesh used. This frequency is furthermore
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Figure 6.35: Quadrant analysis of boundary layer interactions [134].

evidenced independently of the distance to the blade surface, Fig. 6.37, and has been found
to have a linear relationship between velocity components un ≈ −0.5us. It seems therefore
legitimate to conclude that the effect of acoustic waves impacting the blade surfaces is to excite
the boundary layer and potentially contribute to the apparition of a flow instability and/or the
production of turbulence.

Further downstream, at s/c = 0.6 (s ≈ 40 mm) the behaviour is notably different from
what is observed in Fig. 6.38. For visualization reasons, the different normal positions are
separated for each distance from the blade as the statistical behaviour can not be condensed
as previously. At near-wall positions y+ = 1.24 and y+ = 2.48, the streamwise fluctuations are
mostly positive, the first position having a negligible normal velocity component, that is slightly
higher at the second position. In the viscous sublayer, it is the sweep events that dominate.
A part of this entering fluid leaves the near-wall region corresponding to positive streamwise
fluctuations us > 0 and positive normal components un > 0. Moving away from the wall, in the
buffer region, normal velocities start to have larger absolute values as well as more important
contributions of negative streamwise velocity components. However, these negative streamwise
velocities also coincide with low normal velocities and so, turbulent production terms are mainly
due to sweep events. For increasing y+, ejection events become more important in terms of
contribution to the production of turbulent kinetic energy. This data is consistent with channel
flow observations such as those presented by Kim et al. [92]. When comparing to a position
even further downstream, at s/c = 0.8 (s ≈ 54 mm) in Fig. 6.39, except for distances very close
to the wall as in Fig. 6.39a, streamwise velocity fluctuations are approximately of the same
order as for position s/c = 0.6 (s ≈ 40 mm) but much larger normal velocity fluctuations are
seen. This means that moving further downstream, the streaks have had the time to breakdown
and ejection events are more probable.

A more detailed analysis of the importance of turbulent events is given in Fig. 6.40. Reynolds
stress contributions from streamwise and normal velocities are decomposed into four groups
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Figure 6.36: Velocity fluctuations at Position 4 of the a) M3 and b) M1 meshes.
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Figure 6.37: Evolution at s/c = 0.5 of normal against streamwise fluctuation map for a) M3 b)
M1 mesh.
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Figure 6.38: Streamwise agains normal velocity fluctuations at various positions normal to the
blade at s/c = 0.6 using M3 grid.
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Figure 6.39: Streamwise agains normal velocity fluctuations at various positions normal to the
blade at s/c = 0.8 using M3 grid.
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depending on the quadrant at the different positions provided in Table. 6.2 and for various
streamwise positions as done by Lu and Willmarth [111]. At s/c = 0.4 (s ≈ 27 mm) and
s/c = 0.5 (s ≈ 34 mm) which are shown in Figs. 6.40a & 6.40b, the locations are under the
influence of impacting acoustic waves and the behaviour is slightly different compared to the
downstream probes. Ejection events can be seen to be of the same order of importance at all
distances. Downstream, the fourth quadrant events are more important near the wall where
it peaks between y+ = 10 and y+ = 20 while ejection events are found mainly at distances
between y+ = 20 and y+ = 40. In terms of amplitude, Reynolds stresses have large values
at s/c = 0.5 (s ≈ 34 mm) but decrease abruptly at s/c = 0.6 (s ≈ 40 mm). Downstream of
this last position, they increase back monotonically. This implies that although the impacting
acoustic waves on the suction side of the blade contribute to the production of TKE, it is
rapidly dissipated downstream.

Another interesting point is the nature of the turbulence and its potential anisotropy. Such
effects are exposed by use of the turbulence triangle [112] of the resolved components of the
velocity (sub-grid scale components are neglected due to the SGS model used, WALE, although
methods exist that take into account these contributions [159] ). The turbulence triangle is
defined as in Choi and Lumley [32], a variation of the original Lumley triangle for a better
visualization of trajectories for the return to isotropy. The Reynolds stress anisotropy tensor
is defined as aij =

uiuj
k
− δij

3
where k = ukuk

2
. It is possible to construct an invariant map that

leads to the classical Lumley triangle,

II =
aijaji

2
; III =

aijajnani
3

, (6.3)

but an additional transformation is used here to give the turbulence triangle,

ξ3 =
III

2
; η2 =

II

3
. (6.4)

When analyzing Fig. 6.41 that contains information about the turbulence triangle, it can
be seen that at all positions the evolution of turbulence is very similar. Note in Fig. 6.41a the
markers found correspond to near-wall values moving outwards from the wall at the positions
presented in Table. 6.2. For earlier positions as s/c = 0.5 (s ≈ 34 mm), turbulence is mainly
one-dimensional for probes located in the range y+ ≈ 1 − 40 which implies that the stream-
wise component is much larger than the other two. The strong sweeping events generate large
streamwise velocity fluctuations that are seen near the wall and concentrate most of the points
near the one-component region of the turbulence triangle. When moving downstream near
the shock-wave, Fig. 6.41e, the invariant map shows a behaviour similar to turbulent channels
where near to the wall the viscous sublayer shows a two-component behaviour, moving upwards
towards a one dimensional component for y+ ≈ 10. Well away from the wall, turbulence moves
towards an isotropic state through the axisymmetric expansion path where one component
fluctuations, in this case the streamwise, are larger than the other two. Except for the last
curvilinear abscissa position, the anisotropy is the same as upstream and thus result in higher
heat flux levels. Note that here turbulent events are only related to the amplitude fluctuations
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Figure 6.40: Reynolds stresses separated in quadrants plotted as a function to the wall distance.
The streamwise position on the suction side corresponds to a) s/c = 0.4 b) s/c = 0.5 c) s/c = 0.6
d) s/c = 0.7 e) s/c = 0.8 f) s/c = 0.9.
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and time between events.

The finer aspects of turbulence have shown that the behaviour is that expected for a transi-
tional flow. The initial growth is due to an instability, probably of two types as hairpin vortices
are observed but strong spanwise oscillations too, which then develop further downstream. The
Reynolds stresses along the normal to the wall distance confirm this observation. These have
been separated and as expected, positive streamwise velocity fluctuations dominate the inner-
region of the boundary layer but are overcome by ejection events further away from the wall.
Finally, the anisotropy of turbulence is similar to that encountered in channel flows and no
large difference is seen depending on the streamwise position. Also, the wake effects that were
pointed out as being a possible precursor to transition have been seen to have destabilising effect
on the simulated boundary layer. Nonetheless, their existence does not seem to be the main
reason for turbulent spots to appear. This conclusion is reached because further downstream,
Reynolds stresses seem to be smaller compared to the region where acoustic waves impact the
blade surface and are also found in simulations where transition does not occur.
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(a) s/c = 0.5
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(b) s/c = 0.6
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(c) s/c = 0.7
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(d) s/c = 0.8
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(e) s/c = 0.9

Figure 6.41: Turbulence triangles at various locations normal to the blade and different curvi-
linear abscissa positions for M3 mesh.
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6.4 Conclusions
The analysis performed of the LS89 test case developed by the VKI has proven to be enriching.
Two cases have been studied. The first case, MUR129 has no turbulence injection. Assuming
the heat flux coefficient field remains the most challenging field to predict, profiles compare
adequately to those obtained experimentally. It is thus concluded that in the absence of larger
turbulent intensities the flow is precisely reproduced due to the simpler physics encountered.
For higher levels of turbulence combined with larger Mach number values at the exit, literature
shows that operating points such as MUR235 represent a more difficult case. Turbulence
injection introduces a level of uncertainty due to the influence of different length scales and
effective intensity.

The sensitivity of the simulations to different parameters and spectrum has been investi-
gated. The turbulent intensity level at the inlet seems to be the most important parameter and
the level of heat transfer is better captured when imposing a 18% level instead of the measured
6%. Certain uncertainties may be present due to the natural turbulence introduced by the
experimental facility, however, values required for adequate predictions are too large so other
parameters have been investigated [153]. The use of a larger integral length scale at the inlet,
which corresponds to the one indicated by Fontaneto, did not show an improvement of the
prediction in the simulation performed. Although the level of turbulent intensity that arrives
to the blade leading edge is higher, this does not seem to be sufficient to trigger the transi-
tion. From the simulations performed here, this does not seem to be the dominant parameter
although simulating the finest mesh with the latter integral length scale could lead to different
conclusions. A grid resolution study points to important differences in the predictions. The
coarser M1 mesh remains far when compared to other meshes, both on the suction and pressure
sides. A first refinement shows a closer agreement on the pressure side but does not capture
the plateau on the suction side. This objective is partly attained with the M3 mesh that adds
sufficient points in the boundary layer to have a more accurate value of heat fluxes while re-
ducing the contribution of the SGS turbulent viscosity. A detailed analysis of the temporal
evolution and statistics extracted from temporal recordings give evidence of the importance of
transition to adequately capture the heat transfer field. Contiguous acoustic waves are also
seen to destabilize the flow but it is only responsible locally for an increase of heat transfer.
Downstream, TKE decreases immediately after the impact of these waves and increases back
towards the position of the shock wave. The critical bypass transition seems to be determined
by the mesh refinement exclusively.

All these findings may be termed as ’physical’, meaning they are the output of a sensitivity
analysis of physical variables. The only effect that has not been shown is the behaviour and
importance of the numerical scheme. The following chapter opens with an analysis of their
influence on the prediction of the flow. A numerical analysis is then detailed to try to explain
the behaviour observed and ways to improve existing methods are proposed when possible.
Note that the sensitivity analysis developed in Sec. 6.2.1 has been used as a starting point for
a UQ analysis detailed in App. F.
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The properties of the numerical schemes in AVBP were studied in the previous Part but
the sensitivity of the complex geometry to these parameters has not been shown yet. Different
results may be expected when performing a simulation with low-order or high-order schemes,
especially if a mesh convergence analysis such as the one performed in Sec. 6.2.2 shows dif-
ferences. Just as a reminder, the objective of increasing the order of a scheme is to reduce
the number of degrees of freedom necessary to capture the correct physics. The two numerical
schemes compared are the high-order Two-Step Taylor Galerkin (TTG) family of schemes and
a second-order Lax-Wendroff (LW) for the M1 mesh and 6% turbulent intensity level at the inlet.

During the course of the simulations, it was observed that numerical oscillations appeared
in the proximity of mesh element transitions such as the one between prism layers in the BL
and tetrahedra in the rest of the domain, Fig. 7.1. In Fig. 7.1 the noise is seen to be more
intense between the last layer of prisms and the tetrahedra for the LW scheme, observation
confirmed using the crinkled view in Fig. 7.1c. The high-order schemes are not free from these
oscillations as it may seem however. In Fig. 7.2 the surface pressure field is shown on the suc-
tion side downstream the shock wave. This field shows that when dealing with small turbulent
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(a) (b) (c)

Figure 7.1: Pressure field in wall region at an arbitrary position on the suction side of the blade
for a) LW scheme b) TTG scheme c) crinkled slice of pressure field for LW.

structures near the wall the pressure field is affected by the numerics. The influence these small
oscillations observed on the surface is assumed to be small in wall-resolved simulations but can
be important for coarser meshes.

This leads to the question if the analyses done for simple cases where meshes are perfectly
uniform and the physics are not as complex as encountered in industrial configurations are
sufficient. Indeed, the numerical schemes used in AVBP were analyzed in Chap. 4 in terms of
consistency and stability, and thus convergence, concluding that although all schemes complied
with the requirements to be used in the context of LES, some were better adapted for those
simple cases. These properties were however obtained under two important circumstances, the
lack of boundary conditions (BCs) and using perfectly regular meshes. In literature, similar
tests to those already presented in Chap. 4 are normally performed to determine the dispersion
and dissipation properties [146]. The orders of convergence of the scheme are also shown in
general on a variety of meshes that include non-regular elements, but do not take into account
in most cases the influence of the boundary conditions. For the following, the cases shown will
be performed using simple physics but will include other uncertain aspects such as metrics and
BCs.

Boundary conditions can be taken into account using the well-known amplification matrix
method [78]. This method is a brute-force method that has been used previously [39] but due
to the lack of computational power has not been exploited to its extent. The matrix method
is applied to two different configurations and the boundary closure terms presented in Chap. 3
are tested. This method can deal with any type of configuration for any scheme and all BCs
without an additional large human effort. The prediction of the stability or instability of each
scheme is consistent with conclusions obtained in Lamarque et al. [101] who performed an an-
alytical analysis of a particular scheme coupled to a certain boundary condition. These closure
terms are then studied in the context of the test case they were originally validated with. An
explanation on why these closure terms were successful in providing a satisfactory solution is
given and a new closure is presented to take into account the correct BCs.
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(a)

(b)

Figure 7.2: Instantaneous surface pressure field on the suction side of the blade downstream
the shock for a) TTGC scheme b) TTG4A scheme.
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For the mesh effects, simple test cases where oscillatory profiles appeared were analyzed
and similarities between them were sought. It initially seemed that the preponderant location
for the apparition of these profiles was any location in the proximity of a boundary condition.
Nonetheless, when perturbing slightly the mesh regularity in the absence of BCs, similar prob-
lems appeared as shown at the interface region between hybrid elements in Chapter 6. This
indicates that as well as possible issues in the coupling of the scheme and BCs, there is an im-
provement margin for the actual scheme and its implementation. The origin of this unexpected
oscillatory behaviour in the absence of BCs comes from the metrics themselves when using a
cell-vertex method. It was seen in Chap. 3 that cell-vertex algorithms introduce the concept of
cell duality for each node of the mesh as well as the redistribution matrix. This redistribution
matrix however does not take into account the relative position between the centroid of the dual
cell and the position of the node. Tests done in this chapter show the importance of this relation.

The following chapter is divided into three distinct parts:

1. Stability analysis using the matrix method coupled to BCs.

2. Analysis of Second Order Terms that appear in the AVBP schemes. Existing closures
and new developments are studied in a simple test case used for validation.

3. Metrics importance for non-regular meshes with a cell-vertex algorithm.

Global conclusions to the three parts are given. Although all three points are studied
independently, they are not uncorrelated and so, a reminder of what is done for the second-
order term for the TTG family is first illustrated as it is targeted as being a potential source
of problems.

Second-order Temporal Terms and Current Treatment

As shown in Chap. 3, all AVBP schemes based on a Taylor expansion in time include a second
order temporal derivative or higher that is transformed into a spatial derivative which calls
for a contribution that is due to the boundaries. This was not the case for first order deriva-
tives where it is necessary to comply with the Dirichlet conditions that are naturally imposed.
For the case of second order derivatives however, it is necessary to impose additional condi-
tions. Although documents as Donea and Huerta [53] suggest that the second order derivative
must be seen as a mean to increase the order of the scheme, in nature it introduces a second
order spatial derivative that is responsible for a diffusive effect. This modifies the nature of
the equation requiring a diffusion type boundary condition for a convection scheme. It is thus
an artificial boundary condition that has already been discussed in this same context [143, 100].

The additional term that appears is shown again in Eq. (7.1),

LLj (Un, φj) = ∆t

∮
∂Ω

φj

(
~A~∇ · ~F

)n
· ~ndS︸ ︷︷ ︸

BTj(Un)

−∆t

∫
Ω

(
~A~∇ · ~F

)n
· ~∇φjdV︸ ︷︷ ︸

LL0
j (Un)

, (7.1)
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Figure 7.3: Border cell indicating primary and dual cells (discontinuous line).

where the boundary term is, assuming a constant Jacobian in the primary cell,

BTj(U
n, φj) = ∆tAnKe

∑
k|k∈∂Ke∩∂Ω

F n
k∇φk

∫
∂Ke∩∂Ω

φjdS = ∆t
1

nbfv
(AnKe

Rn
Ke

) · Sbfj|Ke
, (7.2)

where Sbfj|Ke
is the normal to the boundary and nbfv the number of vertices on the boundary.

From a geometrical point of view one might recognize the requirement to close this cell too in
Fig. 7.3. It is important to note that the apparition of this last equation is independent of the
boundary condition to be imposed, either if it is a Dirichlet or a characteristic condition.

Previously, closure propositions classically accessible in AVBP for these terms are:

• Uncancelled Second Order Term (USOT)

The volume term LL0
j is calculated in the whole domain but the boundary term BTj(U

n)
is set to zero. This approach, in the absence of information, in first instance would seem
logical but does not close the boundary terms.

• Cancelled Second Order Term (CSOT)

The surface term BTj(U
n) is set to a value such that the contribution of volume and

surface terms is zero over the boundary nodes.

Their contribution to the stability of the scheme in particular cases will be seen in the
following section and an alternative to these two approaches is proposed in the section after.

7.1 Advanced stability analysis of AVBP
The most general method to perform a stability analysis is the so-called linear matrix method
[79]. The method consists in building a linear matrix that relates a set of conservative variables
at instant n to the same variables at instant n+1. Once the method has been explained, the
matrix A obtained can be analyzed. The most common approach is to perform an eigenvalue
and eigenvector analysis of the matrix to link the absolute value of the eigenvalues to the sta-
bility. The difficulty of this method resides in the obtention of the eigenvalues and eigenvectors
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Figure 7.4: Oscillations originated by round-off error example [79].

that are nearly impossible to obtain analytically for a convection-diffusion problem. The matrix
method is nonetheless much more expensive and to perform it correctly, the directives from
Mitchell and Griffiths [124] must be followed.

The matrix method compared to the traditional von Neumann analysis allows also to take
into account implementation effects. Indeed numerical implementation of schemes may vary
with codes and as an example, the border terms and the discretization done at these points may
be different, specifically for AVBP which gives access to two types of boundary closure terms.
This effect may be studied using the amplification matrix method which therefore provides a
deeper insight into the nature of the different closures.

Another method to study the effect of boundary conditions on the stability of the scheme
is the normal mode decomposition. This is the method used by Gustafsson et al. [75] which
consists in searching for a localized power-law solution where the coefficients are determined
by the boundary conditions. This method is also applicable to a convection-diffusion type
problem. Once again, the main drawback of this approach is the complexity of the algebraic
solution. This however, is compensated by the prediction of the potential oscillatory behavior of
the solution. An example in Hirsch [79], shows the round-off error on a set of nodes as in Fig. 7.4.

In any case, there does not seem to be a perfect method towards the analysis of the schemes
for a general configuration and this document, tests have been carried out using the amplifi-
cation matrix through an automatic tool. The more general application of the matrix method
was the reason to pursue this path and not try the power-law solution. It allows to provide
the stability curves in terms of amplification factors and gives insight into the stability matrix
for specific grids, schemes and BCs. The steps required for this analysis are provided in the
following.

7.1.1 Amplification matrix

The method retained to build the matrix resides in the idea of introducing perturbations onto
a steady or reference flow. This assumption allows the linearization and differentiation of the
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mean field evolution from the perturbated field. It furthermore allows to represent the pertur-
bated system evolution in time by use of a linear application represented by a matrix around
an operating point for which,

wn+1 = A · wn. (7.3)

Note that exceptionally for this section, the conservative variable vector previously denoted
as U will be redefined as vector w to avoid confusion with other variables. In Eq.(7.3), the
vector w represents the vector of conservative variables and A is the linear matrix that includes
both information of the scheme and the flow. This matrix contains both temporal and spatial
information related to the influence on neighbour nodes and between time steps. In the code
used, AVBP, this vector is composed of the following in 2D,

w =


ρ
ρu
ρv
ρE

 , (7.4)

where ρ for example, is a vector containing the density value at each mesh point xn,

ρ =

ρ (x1)
ρ (x2)

...

 . (7.5)

If Eq. (7.3) holds, a perturbation δ can be added to the solution at instant n so,

wnp = wn + δenj , δe
n
1 =


δ
0
...
0

 , (7.6)

and,

wn+1
p = A · wnp . (7.7)

The value of the perturbation to be added can not be trivial and this will be discussed later
on. For the moment the assumption of small perturbations is accepted to be correct. The field
of interest will be composed of the conservative variables presented in Eq. (7.4) and will have
as many degrees of freedom as nodes times the number of equations in the problem (excluding
certain boundary conditions, i.e. periodicities which will have extra constraints). The whole
vector containing information is hence written as,
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wn =



ρn1
...
ρnN
ρun1
...

ρunN
ρvn1
...

ρvnN
ρEn

1
...

ρEn
N



, (7.8)

where N is the total number of nodes.

An issue that has not yet been addressed is how this perturbation is added and how it can
help to construct the matrix representative of the full scheme integration. The key to building
the matrix consists in adding the perturbation to only one node and one variable at a time to
build a column of matrix A. Then, substracting Eq. (7.7) from Eq. (7.3) leads to,

wn+1
p − wn+1 = A ·

(
wnp − wn

)
= A · δenj . (7.9)

It can easily be seen that the addition of each perturbation will lead to the construction of
each column j where the perturbation has been added,

ρn+1
1p − ρn+1

1
...

ρn+1
Np − ρn+1

N

ρun+1
1p − ρun+1

1
...

ρEn+1
Np − ρEn+1

N


=



a1,1 · · ·
...

...
aN,1 · · ·
aN+1,1 · · ·

...
...

a4N,1 · · ·




δ
...
0
...
0

 , (7.10)

ai,1 =
wn+1
ip − wn+1

i

δ
, (7.11)

which explains the cost and the limitations encountered by Colonius [39] that are much more
acceptable nowadays.

A final note must be added which will help to validate the method. If the initial solution
wn is indeed a stable solution in the sense that it is a stationary converged state, it is then
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possible to say that applying the matrix to this field will not induce any change of the field at
instant n+ 1. Being this the case, the following must be true,

Awn − wn =

0
0
...

 . (7.12)

Equation (7.12) will however not always be true if careful attention is not paid to the mag-
nitude of the perturbation added to the problem in Eq. (7.9). Two reasons can explain such
a behaviour: error propagation and round-off error can be held responsible as well as the fact
that it is a non-linear system of equations. A certain tolerance must hence be chosen.

The relation that must be verified to guarantee the stability can be expressed by the limits
of the amplification factor, defined as,

Gj =
wj

n+1

wjn
=| Gj | eıφ. (7.13)

If the perturbation added is amplified A will have eigenvalues larger than one and the system
will be unstable, while if | G | is less than 1 the perturbation will be damped. This relation
coincides with the von Neumann condition for stability,

| Gj |< 1. (7.14)

Obtaining the eigenvalues of A and plotting their real and imaginary parts, it can be com-
pared to the unitary circle. If the eigenvalues are located outside the circle, the numerical
system will be unstable as seen in Fig. 7.5.

The method described above must be validated and the tool must prove robust to the
different test cases. The first step is thus to obtain this matrix A for a simple case, moving on
then to modify the boundary conditions and the different schemes to study their stability.
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Figure 7.5: Eigenvalues spectra obtained using the amplification matrix, [99].

7.1.2 1D cavity eigenmode

The configuration consists of an acoustic wave moving between two adiabatic walls on the left
and right sides with Dirichlet type conditions in Fig. 7.6. Top and bottom conditions are set to
be periodic as the flow should remain 1D. The wave is then advected until it impacts the wall
and ’rebounds’. The Euler equations are preferred to simplify the study for which an analytical
expression can be found. A CFL value of approximately 0.4 was used in this case although
various values were tested and for which the same conclusions can be extracted. In the sim-
ulations, the wave is expected to dissipate due to the natural numerical dissipation terms of
the scheme and it is never expected to be unstable for an adequate numerical scheme. This is
why two numerical schemes are tested, LW and TTGC. Also, this test can be compared to the
results found in previous works of Lamarque and Poinsot [100].

Figures 7.7-7.9 show the comparison between two different analyses and for different schemes.
The first one is the method explained above concerning the matrix method while the second

Figure 7.6: Initialization of the wave for the 1D cavity.
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Figure 7.7: Eigenvalue distribution of LW USOT amplification matrix applied to a 1D cavity
eigenmode.

method is the Fourier analysis which will not take into account the boundary condition effects.
The first comment concerns the matrix amplification method and the eigenvalues located at
the origin. These eigenvalues exist because at the walls, a perturbation is being added artifi-
cially in a no penetration direction. The influence this perturbation has on the actual stability
has however not been quantified as it is a numerical bias, a pre-processing step was done to
set to zero the matrix rows and columns correspondingly. The figures show how the Fourier
analysis gives results that do not agree with the other approach that does take into account
the boundary conditions. In Figs. 7.7 & 7.8 the comparison is being done between the different
schemes in a USOT (Uncancelled Second Order Term) context. By plotting the eigenvalues it
is possible to discern the dissipation properties as the scheme will be less dissipative the nearer
it is to the unit circle. As seen in Fig. 7.7a the eigenvalues are distributed in an oval form,
the lowest eigenvalue being of the order of ∼ 0.5. In Fig. 7.8a however the eigenvalues are
seen to be very close to the unit circle through the whole spectrum. These differences between
the LW and TTGC schemes are consistent with results obtained in previous chapters. The
further the eigenvalues are from the unit circle, the more dissipative the scheme is and so,
TTGC is better adapted to LES. However, introducing the CSOT (Cancelled Second Order
Term) context combined with Dirichlet type boundary conditions in Fig. 7.9 the scheme is
found to be unstable. The CSOT formalism in an inviscid case leads to a numerical divergence
[101] due to the presence of eigenvalues outside the unit circle, see Fig. 7.9b. This proves
the prediction power of the tool that would not be accomplished using exclusively a Fourier
analysis that predicts a stable behaviour and confirms the observations of Lamarque et al. [101].

It seems clear from the previous problem that an issue arises for the correct closure of the
scheme boundary terms. Indeed, for a simple wave transported inside a channel the CSOT
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Figure 7.8: Eigenvalue distribution of TTGC USOT amplification matrix applied to a 1D cavity
eigenmode.
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Figure 7.9: Eigenvalue distribution of LW CSOT amplification matrix applied to a 1D cavity
eigenmode. The red circle highlights an eigenvalue located outside the unit circle which indicates
an unstable mode.
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formulation is seen to be slightly unstable which for the Euler equations is problematic. The
question that remains is how such issues behave in a case where diffusion exists to determine if
the scheme remains unstable. A Poiseuille flow is hence addressed below.

7.1.3 Application to a Poiseuille flow

A typical Poiseuille flow is adopted for this test. The conditions demanded for this case are
essentially to have a Reynolds number sufficiently small for the flow to remain perfectly lami-
nar. As the test intends to be a purely numerical test case, a value of Re = 1000 is taken so
no physical interactions may be held responsible for any eventual instability. The mesh used
to simulate the converged Poiseuille flow is 2D, Fig. 7.10 and is composed of 7x21 nodes. The
boundary conditions are periodic on the left and right sides of the computational domain in the
direction of the flow. Isothermal no-slip Dirichlet boundary conditions are set on both top and
bottom limits and a source term is added to the system of equations to account for the pressure
drop. The CFL value used in this case is a realistic CFL=0.7 value and only the TTGC scheme
is tested. The flow is converged until residuals are of the order of machine precision before
applying the method. Results obtained with the evaluated matrix issued by the previous flow
prediction are compared with a convective Fourier analysis of the scheme.

Analyzing Figs. 7.11 & 7.12 it can be seen that both schemes are stable. Differences may be
seen in the shape of the curve due to the different CFL value compared to the previous section.
In any case, similarities between the Fourier analysis that includes only the convective terms
and the amplification matrix method are clear. Although it is a diffusion dominated problem,
the effect of introducing a perturbation in the flow is seen. The physical diffusion seems to be
sufficient to render stable the slightly unstable convective CSOT formulation. It must also be
noted that the use of artificial viscosity, which is not used here, is common for realistic simu-
lations in a cell-vertex method which would add an additional source of dissipation. It seems
therefore clear that both closures may be used without worrying about stability issues. The
conclusion then is that although the closure terms definitely influence the stability properties
of the scheme, any type of fluctuation that may cause spurious oscillations remains bounded
and will never appear in a stability analysis even when boundary conditions are taken into
account. This poses a problem towards the analysis of these modes as any stability analysis
will not detect them as they do not represent an unstable state.

Figure 7.10: Mesh used for amplification matrix test.
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Figure 7.11: Eigenvalue distribution of USOT amplification matrix applied to a Poiseuille flow.

The previous stability analyses are useful for various reasons. The analysis is performed
directly on the implemented schemes and not only on a theoretical analysis. The main advan-
tage is that the effect of the different numerical closures can be detected between, one resulting
in a stable behaviour while the other yields an unstable solution that would end up blowing
up. Although not shown, this last conclusion is confirmed when running the corresponding
simulation and in which the pressure amplitude of the signal increases in time. In the following
chapter the issue of oscillations and their treatment will be discussed. Closure terms will receive
special attention concluding with a metric analysis typically found for an unstructured solver.

From here on, two different problems are addressed. The first section treats the recurrent
apparition of boundary closure terms and how to mathematically impose the missing infor-
mation. The two existing formalisms are examined and a new method is proposed which is
consistent with the scheme. The second section discusses the effect of the metrics on the re-
lation with non-physical oscillations. It will be shown that the existing shift between nodes
and associated dual cell centroids seen in Chap. 3 plays a significant role in the development of
oscillations when meshes are not perfectly regular.
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Figure 7.12: Eigenvalue distribution of CSOT amplification matrix applied to a Poiseuille flow.

7.2 Development of a new numerical closure

The two closures currently implemented in the AVBP code have been previously detailed. To
illustrate mathematically the impact of these two methods, the simple advection equation is
used as a mathematical toy case to discuss the difficulty of the problem. By substituting
ut = −cux in the Lax-Wendroff scheme,

un+1 − un
∆t

= unt +
∆t

2
untt +O

(
∆t2
)

=

−cux +
∆t

2
c2uxx

(7.15)

the second order term represents the Hessian operator, which implies the calculation of a second
order spatial derivative. The difficulty resides in providing a boundary condition to this opera-
tor that has no physical sense. Not providing any information to this operator as in the USOT
case provides a degree of freedom and the system is thus mathematically undetermined. The
value of the operator will then be that predicted by the volumetric term with no surface term
contribution. For the case of CSOT, it implies setting the second order derivative contribution
to zero. This is only true if the Hessian is indeed zero at the border of the domain implying that
the volumetric term is equal to the boundary term always. However, when any other type of
profile is encountered the value imposed will not be in agreement with the physics. The system
requires imposing the exact profile which is not the case when setting the operator to zero.
Note finally that although potentially modified, the equations must still verify the conservative
properties of the scheme which in the end and depending on the choice adopted between the
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two operators available today, may not be guaranteed.

As it has proven difficult to obtain additional information from a spatial formulation, thor-
oughly discussed in the next section, tests have been performed to complement boundary con-
dition information through the temporal derivatives. In Eq. (7.1), the surface term contains
the term ~∇ · ~F which is taken to be the value of the residual predicted by the scheme without
the imposition of boundary conditions associated to the physics. To alleviate the problem, it is
however possible to estimate the value of ∂U

∂t
, related through the expression ∂U

∂t
= −~∇· ~F . The

idea is to reconstruct this term using backward information from previous iterations. Mathe-
matically this is done through a Taylor expansion as shown in Eq. (7.19). The first derivative
can be estimated using a backward reconstruction that although not exact, provides a better
estimation of the exact derivative,

∂Un

∂t
=

1

∆t

imax∑
i=0

αi ∗ Un−i (7.16)

where n is the current time step, αi correspond to the coefficients of the development and imax
is the maximum number of time steps stored. This new closure will be denoted here onwards
as TSOT (Temporal Second Order Term). This formulation has been put into place and a
test case originally done by Porta [143] is performed to illustrate the advantages of the TSOT
formalism and to show the reasons why the other two will only work in specific cases.

7.2.1 1D profile between walls

The test case used to test the accuracy of the closure terms in AVBP is an artificial one. It
relies on the work of Porta [143] and solves using only the Euler equations. Inside a cavity such
as the one represented in Fig. 7.13 composed of triangles (although a quadrilateral mesh has
also been tested with the same conclusions) using 21x21 nodes, the simulation is initialized with
the profiles seen in Fig. 7.14. The linear profile respects the boundary conditions at the limits
(x=0 and x=0.01 m with walls) and remains very simple. In particular, this saw-tooth shape
is useful for the prediction of incoming and outgoing waves as can be intuited from Eq. (7.17),

L− = λ−

(
∂p

∂n
− ρc∂u

∂n

)
, (7.17)

which represents the outgoing acoustic wave amplitude as done in Poinsot and Veynante [139].

By imposing a constant pressure profile, the first RHS term of Eq. (7.17) will be zero. The
outgoing acoustic wave can then be written as L− = ρc2 given λ− = u− c. Using the notation
in [29] the notion of strength of the wave can be determined using the following expression,

strength = −L−∆t

ρc
= c∆t, (7.18)
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Figure 7.13: Mesh used to impose the 1D acoustic profile sufficient to neglect possible border
effects.

Figure 7.14: 1D acoustic profile of the initial solution.
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Analytical USOT CSOT
−3.7299 · 10−4 −5.677 · 10−4 −3.7296 · 10−4

Table 7.1: Wave strength values obtained by Porta [143].

Analytical TSOT | Error |
∆t = 1.039 · 10−6 −3.669 · 10−4 −1.307 · 10−4 64%
∆t = 1.039 · 10−7 −3.669 · 10−5 −3.655 · 10−5 0.4%
∆t = 1.039 · 10−8 −3.669 · 10−6 −3.670 · 10−6 0.02%

Table 7.2: TSOT closure terms using different time steps for the same order approximation.

and can easily be compared with the value provided by the code.

For the test case, the value of the sound speed is c = 353.212 m/s and the value of the
time step will be varied. The proof given in Porta, and Lamarque and Poinsot [143, 100] is
that the USOT formalism does not predict the correct strengths compared to the CSOT that
provides them in an exact way when performing a one-iteration test. Of course, imposing a
Hessian operator equal to zero which is true only if a linear profile is used, the solution com-
plies with this condition and CSOT is exact for this case. However, this is not true in other
more general cases where the profile isn’t linear. Providing a null value of the Hessian is not
an option either as can be seen in this simple test case comparing the results shown in Table. 7.1.

The new formulation developed in this section, from here on denoted as TSOT for Temporal
Second-Order Term, is applied to this same test case. The first issue encountered for the
application of this closure is the initialization as no previous iteration information is available.
Once the term corresponding to ∂U

∂t
is reconstructed using previous values of the conservative

variables of previous iterations, the method is straightforward. The first test performed is to
reconstruct the term using only a first order approximation, so,

∂U

∂t
=

1

∆t

(
Un − Un−1

)
. (7.19)

Only two iterations are then necessary, the first one to obtain the ∂U
∂t

used in the second
iteration. Table. 7.2 shows the results for various time steps to illustrate the effect of the first
iteration. The effect of having an erroneous first iteration is much more important when the
time step is larger as the flow will evolve differently and there will be other contributions to
be taken into account. Furthermore, the space-time consistency holds only for small time steps
meaning that using the temporal discretization of Eq. (7.19) is valid only for a certain range.
This could hence also be held responsible for the differences observed. However, when small
time steps are taken the value tends to the analytical one.

Using the intermediate time step value of ∆t = 1.039 · 10−7, ten iterations are done for
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TSOT | Error |
First order −3.6553 · 10−4 0.1%
Second order −3.6553 · 10−5 0.1%
Third order −3.6654 · 10−6 0.095%

Table 7.3: TSOT closure terms using a constant time step for different order approximation.

different order of approximations of the ∂U
∂t

term. Three different tests using first, second and
third order approximations for the first derivative are used and are shown in Table. 7.3. For the
current time step used, the increase in order does not present any advantage which does not
mean it is true for other time steps. The same conclusions can be extracted for other schemes
(such as TTGC) except that the error is of the order of 0.005%. For the USOT formulation after
10 iterations the error is of the order of 4% which means that the reduced time step is not the
only important point for the accurate prediction of the outgoing wave. Using a mathematically
obtained relation using backward derivatives in time therefore provides the correct estimation
of the strengths in this case. Note that ideally, this should be done using a spatial discretization
as the temporal discretization is only a ’trick’ that holds as long as the time step used remains
small. The next section explains the reasons why the spatial discretization was not possible
with the current implementation.

7.3 Node and dual cell centroid conundrum

The majority of tests dedicated to stability or consistency studies are done on regular meshes.
This is not the case of many complex simulations however where high aspect ratio meshes exist
or when the scheme is degenerated near the border of the domain. Considering a border cell
such as shown in Fig. 7.15, geometrical differences that exist between the nodes and the centroid
of the dual cell are evidenced. In the previous figure, the center of gravity of each primary cell is
represented by the red crosses while the centroid of the median dual cell (CMDC) is represented
by the blue plus sign. The first thing to note is the large difference present between the CMDC
and the node. Clearly borders are a flagrant example of the distance from the CMDC to the
node which differs in almost half the size of the dual cell. Just as a reminder, this problem
is related to cell-vertex formulations as cell-centered formulations store the information at the
same location it is calculated for second order schemes. When higher order schemes are used
it requires additional operations [135]. This redistribution process can lead to the washboard
modes noted by Stringer and Morton [176]. Errors associated to the washboard modes are a
result of using an imprecise distribution matrix effect as noted by Blazek [21] that leads to a
nodal residual convergence (of the order of machine precision values) but rendering a seemingly
’oscillatory profile’ that does not move in time. The scheme consistently approximates the
residual value at the CMDC but is then erroneously sent to the node. The gradients associated
to the calculation of the residual have therefore a small error that may be especially critical for
boundary conditions.

An interpolation step may be added to correct this distribution matrix using a linear gradient
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Figure 7.15: Dual cell of a border schemes indicating the centroid of primary
cells with red crosses and the CMDC by the blue plus sign.

reconstruction as done by Mavriplis [119] where,

Unode = UCG + ~∇UCG · ~rCG−node. (7.20)

The problem of this formulation is the difficulty in unstructured meshes to reconstruct high-
order gradients necessary to comply with the order of the scheme. If the solution of a scheme
is said to be of order n the gradients must be at least of order n− 1. This difficulty has been
addressed in the literature by Ollivier-Gooch and Van Altena [135] and more recently by Jalali
and Ollivier-Gooch [82] to provide the necessary order by using least-square reconstruction. The
objective of the following tests is exclusively to point out the problem in a simple configuration
and link it to the metrics.

7.3.1 1D convection of an acoustic wave

The following test case was done to evaluate exclusively the behaviour of convection schemes
using the Euler equations. More specifically, the behaviour of the schemes is tested when de-
formed meshes are encountered. The test case therefore consists of a simple 2D domain box as
shown in Fig. 7.16 with three layers of cells in the y direction and fifty in the x direction and in
which an acoustic wave is convected. The convection distance domain is kept constant but the
transverse direction will vary for reasons explained later on. Periodicity boundary conditions
are enforced in the top-bottom and left-right limits on various meshes as shown; Fig. 7.17. The
idea behind this test case is to evaluate the effect of introducing a deviation between the node
position, defined by the degrees of freedom of the grid, and the centroid of the median dual
cell (CMDC) implicitly defined. Profiles are traced in both directions in a multi-dimensional
context for a problem that should remain 1D. Different schemes are also tested to discriminate
the influence of the L and LL terms described in Chapter 3.

The first simulation is conducted on a standard isotropic mesh, Fig. 7.17a, and for which all
elements are the same and the connectivity of each node is exactly the same. It is built so that
the node position and the center of the dual cell are placed at the same position. The other
two meshes however have a deviation as shown in Fig. 7.18. In Fig. 7.17b the domain has been
extended in the y direction so the set of middle cells is modified. The third mesh represented
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x

y

x=1m

Figure 7.16: Domain used in the 1D convection of an acoustic wave
.

(a)

(b)

(c)

Figure 7.17: Meshes used for the convection of an acoustic wave in a) Isotropic triangles b)
Modified triangles c) Hybrid triangle-quad mesh.
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(a) Intersection of primary cells and dual cell in the
modified triangle mesh around an arbitrary node.

(b) Intersection of primary cells and dual cell in the
modified hybrid mesh around an arbitrary node.

Figure 7.18: Representation of a dual cell around node inside box highlighted in a) Fig. 7.17b
b) Fig. 7.17c. Red crosses represent the centroid of each intersection of dual cell and primary
cell. Deviation of CMDC to node is represented by the blue plus sign.

in Fig. 7.17c substitutes the middle range of triangular cells for quadrilaterals becoming thus a
hybrid mesh. To study how this may affect the wave convection only five iterations are necessary.

The profiles in the y direction using the LW and the TTG schemes are presented in Fig. 7.19
after five iterations. It can be seen that for both schemes the pressure is constant at all posi-
tions and the flow remains 1D. This however is not the case for the other two meshes. Values
at the interior nodes are seen to be displaced with respect to the mean value and are seen to
be larger in the hybrid case, in no case negligible after just a few iterations. Additionally, the
fluctuations have opposite signs comparing the modified triangle and the hybrid mesh. This
would indicate that there could be a scheme-related problem for the calculation of gradients
associated to cases where dual cell center and nodes do not coincide.

This problem can be further demonstrated using this same simple test case. If the problem
was indeed associated to the gradient calculation it would be possible to modify the mesh in
a way that in the convection direction the CMDC were at the same position as the node and
modifying the transverse direction only. This can be attained as shown in Fig. 7.20a using
quadrilaterals where one of the cells has been stretched in the y direction. This introduces a
deformation in the mesh but does not change the mesh in the direction where the gradients are
significant. By advancing the same physical time as before, pressure fluctuations are shown in
Fig. 7.20b and are seen to be zero indicating that the flow remains 1D.

This simple test case shows that indeed the correct redistribution of residuals is a necessary
process and an accurate gradient reconstruction is mandatory to achieve this specific property.
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(a) LW (b) TTG

Figure 7.19: Pressure fluctuation profile in y direction at x = 0.5 where symbols and their
corresponding meshes are: (4) Fig. 7.17a; (◦) Fig. 7.17b ; (×) Fig. 7.17c.

(a) Deformed quadrilateral mesh. (b) Pressure fluctuation profile in y direction at x = 0.5.

Figure 7.20: Test performed on alternative mesh where mesh is not stretched in the convection
direction.

161



LS89 Numerical Aspects and associated analyses

7.3.2 Perspectives

The implementation of a high-order gradient reconstruction in unstructured meshes such that
it remains HPC efficient is not a trivial task. Various methods are available today in a finite
volume context such as the MOOD approach [51] or the k-exact formulation [12]. These ap-
proaches have been shown to be parallelizable although the gain with respect to other methods
such as spectral approaches [185] is still imperfectly addressed in the literature and so remains
an issue of controversy. What is clear is that an additional step must be added to account for
this grid issue. Various cases are possible:

• Interior nodes

Currently there are many grid refinement softwares available that require a criteria for
mesh adaptation. If the criterion was to minimize the distance between the CMDC and
the node positions it would be possible to avoid the gradient calculation for these cells.

• Boundary nodes

No option but to apply a correction. In no case does the CMDC coincide with the
boundary node. Even when applying Dirichlet boundary conditions they are generally
applied to velocity fields, i.e.: no-slip walls, but does not impose a condition on density
for example. The value estimated by the scheme is thus imposed on the boundary node
and corresponds to a value that the conservative variable should take at the centroid of
the dual cell.

7.4 Conclusions
Schemes in this part of the thesis have been studied through various types of analyses. The
most general one, the von Neumann analysis, predicts a perfect stability and mainly provides
information related to the maximum CFL permissible for a simulation not to crash. This is
insufficient as no information is given related to boundaries nor their implementation. Tests
using the amplification matrix method allow to quantify both of these issues, the influence of
such a BC and how it is implemented. Although tests performed are limited to the analysis
of AVBP schemes it can be extended to any type of algorithm, a complete description being
provided. Despite the effort in this direction, it remains incapable of predicting bounded os-
cillations that do not render a divergent solution. This is why instead of searching to predict
possible instabilities, corrections to potentially problematic aspects of the scheme are sought.

Although nearly always tested on isotropic grids and using tools that do not take into ac-
count the influence of boundary conditions and closures, it has been shown that the influence
of these two aspects cannot be neglected. The closure terms considered are just another block
of a mathematical problem and as such it must be treated. The difficulty of finding numerical
conditions for terms that physically have no sense does not exempt from finding a mathemat-
ically complying condition. Thus, the two approaches used until now present problems that
arise as soon as the test cases are slightly changed. The new temporal formulation presented
is not perfect either. The hyperbolicity of the equations allows to describe them either in time
or in space but to render the scheme consistent, this approach should be done in space as this

162



7.4 Conclusions

relation only holds when time and space steps tend to zero. This means that errors will grow
when the steps are larger, introducing a limitation to the formulation.

The spatial reconstruction of the necessary residual was however unfeasible during this work.
Section 7.3 explained at least partially the reasons why problems appeared. The cell-vertex
formulation requires a correction to account for the shift between the centroid of a dual cell
and the node the residual is redistributed to. If this is not the case, even for very simple test
cases as shown in Sec 7.3.1, fields such as pressure or density will suffer from oscillations that
are undoubtedly of numerical origin. The interpolation required to correct this represents a
complication because it is sensitive to the order of the scheme to be coupled with. Literature
does show examples of how to calculate the nodal gradients that are inaccurate in the current
implementation. Although costly, they are inevitable if upwinding is to be avoided.
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In Part II we have seen the complex simulations done for a HPT linear cascade, the LS89
vane [7]. The experiments provide a large database from which a selection of points are
chosen due to their resemblance to realistic operating points in aeroengines. Results in the
previous chapters were seen to be highly dependent on all the parameters discussed in Part I:
BCs, turbulence models and meshes. Different boundary conditions were tested in Chap. 6
in terms of turbulence injected (intensity level, length scale and spectrum) and conclusions
are that only the variation of the intensity level is capable of providing a better agreement
to experiments. Mesh refinement does however improve the matching between curves, the
effect of turbulence being different depending on the profile region around the blade.

The different numerical signatures encountered during the simulations of this config-
uration led to a more comprehensive analysis of the already presented schemes in Part I.
Although a conclusive solution has not been found to all the problems, the development
of a tool capable of predicting the stability of a scheme in a certain configuration is useful
for the development of new methods and potential closure solutions. Additional boundary
conditions and their implementation may also be studied. The reasons for which current
closures in the solver can be improved are shown and a solution is proposed although its
applicability is clearly limited. The correct way to approach the issues is to work on the
residual interpolations that arise from the cell-vertex algorithm.
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The industrial interest in gas turbines has increased over the past decades. The arrival of new
technologies such as electrical or hybrid vehicles are certainly the present of the automotive
industry but not yet for the aeronautical industry. The development of this type of technology
continues and the current trend is to improve the global behaviour through the use of numerical
methods. The objective is to one day be able to couple the different components of the gas
turbine by performing massive numerical simulations and obtain the global efficiency of the
engine. This objective remains feasible but for the moment unattainable, so each component
is studied either separately, or at the very most, coupling is done between two modules of the
engine, i.e. combustion chamber-turbine [189]. New approaches completely independent of
CFD simulations (such as Deep Learning) appear as an option in the not so distant future.
However, these remain to be explored and for the moment the only viable path for the contin-
uous improvement of aeroengines is CFD.

However, these complex studies are still limited and make use of models to be able to afford
the simulations. The study here done is specifically related to high-pressure turbines which
are still today not perfectly mastered. The correct prediction of such complex configurations
requires first a high-fidelity formalism such as LES to grasp the unsteady aspects of the flow.
This is not sufficient as it must also be done in a very refined and thus costly simulation nearing
DNS in some cases. Two steps are required to perform a quality simulation; first to analyze in
detail the solver used, its schemes and its properties in various situations (different size cells,
variety of geometries...). Secondly, it must be applied to a test case where complex physics are
known to exist. Although problems may be identified in simpler cases, it can be possible that
these do not appear until non-linear effects take place: i.e. turbulent structures. The document
was divided into two parts:

In Part I the solver used to simulate such a configuration and its specificities is intro-
duced. The numerical developments required for LES and in particular the AVBP schemes are
developed including the temporal and spatial discretizations necessary for the resolution of all
schemes. Models used for free-stream turbulence modelling are summarized and the limitations
for the wall-bounded applications are shown. This leads to the classification of wall-modelled
and wall-resolved simulations that represent the hardest barrier for non-reactive simulations
today.

In Part II, the simulation of the high-pressure turbine blade LS89 developed by the VKI
is performed. The impossibility to obtain the correct heat transfer curves and match the ex-
periments led to the development of new strategies such as modifying the physical boundary
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conditions proposed or inferred from experiments and literature. The different boundary con-
ditions are seen to be dominant for the global behaviour so a sensitivity analysis was put in
place. The different tests are summarized:

• The turbulent injection level at the inlet patch was the first test performed. Higher
turbulent intensity levels could effectively be responsible for the mismatch between profiles
of heat flux coefficient. When injecting a level equal to three times the experimental
value the resulting heat flux coefficient value is indeed much nearer to the measured one.
Differences between the "standard" simulation which injects the experimental values and
the modified ones show there are regions of turbulent spots in the latter not present in
the low-level turbulence intensity simulation. This effect highlights the importance of
turbulence and more importantly, transition on blades.

• Other aspects such as the turbulence spectrum injected did not seem to be as effective as
increasing the turbulent intensity. The synthetic turbulence has enough spatial distance
to develop a physical spectrum comparable to that provided by a real simulation so no
large discrepancies are seen between synthetic and precursor type simulations. Certainly
the evolution of the turbulence from the inlet is notably different but no great differences
are observed between the outputs of both simulations either for the higher or lower values
of turbulence intensity.

• A question concerning the exact value of the integral length scale has existed since the
experiments were performed. This value was reported recently for the first time doing
new experiments and the agreement with respect to experimental data has not improved
when imposing the integral length scale value at the inlet.

The predictions are however in agreement when increasing the mesh resolution in regions
identified as important, notably the boundary layer. Transition on the suction side of the blade
influences the heat transfer levels and is examined to determine its behaviour. Another aspect
that could affect the transition of this boundary layer is a numerical one. Different schemes are
seen to provide different results and numerical noise can not be neglected.

The natural consequence is to perform a detailed analysis of the schemes used in the AVBP
code and study its interactions with boundary conditions. Stability analyses of larger mathe-
matical difficulty than standard von Neumann tests are done to identify the possible differences
between schemes. Various mathematical closures were tested and implemented. Results were
shown to be inconclusive in terms of oscillation determination. This led to the study of the
metrics and the implications it has for a cell-vertex code.

Several improvements can be envisaged as a result of this dissertation:

• The need for wall-resolved simulations is today necessary due to the inefficient wall models
that currently exist for geometries with high curvature and high pressure gradients. The
inability to correctly capture the transition position and its impact on the aerodynamic
losses does not leave another alternative but to resolve the finer structures. Wall-resolved
simulations are not a realistic approach for industrial partners today so better and more
robust methods must be found if accurate simulations are to be expected in the short
term.
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• It is necessary to confirm the results here obtained, either by other groups or using a
different solver to conclude that experimental results may indeed be matched if a high-
fidelity simulation is performed using a sufficiently refined mesh. Experimental results
have long been targeted as being a source of uncertainty that could lead numerical solvers
to the incorrect conclusions. Indeed, the boundary layer flow seems to be on the thin edge
of the wedge in terms of stability and effects such as the feeble numerical noise observed
can contribute to transition.

• The line between the two flows seems to be very fine so features such as wall roughness or
geometrical curvature could be targeted. If accurate models were found, it would be inter-
esting to perform a UQ analysis such as the one done in Roy et al. [153]. Determining the
influence of the curvature along the blade profile (identified by various groups during the
course of this thesis) or the effect of introducing a small perturbation term representative
of physical roughness could point to the causes of the turbulent flow appearance.

• Numerical methods are in continuous development but classical methods are still largely
used today as evidenced in this document. The improvement of these schemes is necessary
and evidenced difficulties must be corrected when identified as they constitute a basis
of extensive literature and knowledge. How long classical schemes will be used for is
today unknown. New approaches such as Lattice-Boltzmann or Spectral methods seem
to provide new paths that seem promising. However, even if classical schemes are no
longer used in a HPC context they may at least help to validate new faster algorithms
that help to take CFD one step further.
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Appendix A

General equations

The equations to be solved, written in a conservative form, are

∂U
∂t

+ ~∇ · ~F = S, (A.1)

where U corresponds to the vector containing the conservative variables of the solution; F
represents the fluxes and S represents the possible source terms. Such source terms will no
longer be considered in this section to simplify the notation.

The conservative variables used are,

U = (ρ, ρui [i = 1...3] , ρE) . (A.2)

each variable corresponding to density, the vector of momentum of size equal to the number of
dimensions and total energy.

Fluxes may be separated into two groups, convective and diffusive. This can be justified
based on a physical ground but also mathematically. From a mathematical point of view,
inviscid fluxes will depend exclusively on the solution U while the viscous fluxes will also have
a dependency on the gradients of U. From a physical point of view, while the convective fluxes
can be considered as the directional passive transport of a conserved variable, diffusive fluxes
represent a smoothing of the field, a process that is also non-directional. One may note that the
non-linearity previously introduced is present in the convective flux. There is no unique way to
express the convective fluxes and different formulations led to different truncation and aliasing
errors as shown in Kravchenko and Moin [97] in the specific context of LES for example. This
is due once again to the non-linear terms and the effects the filter operator has on each set of
variables. This non-linearity is not only a problem to model but will also be responsible for
possible discontinuities or bifurcations that might appear in the flow (not solely responsible for
the known turbulence). The formulation used in AVBP is as in Poinsot and Veynante [139]
and groups all terms in a divergence form. The inviscid fluxes for this solver are hence, in
three-dimensions,



General equations

~F =


ρu ρv ρw

ρu2 + P ρuv ρuw
ρuv ρv2 + P ρvw
ρuw ρvw ρw2 + P
ρuH ρvH ρwH

 (A.3)

where H represents the total specific enthalpy, H = E + P
ρ
and for which the perfect gas law

is assumed as:

P = ρrT. (A.4)

This equation of state is true if one species is used. In the case of a multi-species mixture,
it is necessary to take into account each contribution separately. The gas constant will vary
then for each species to yield for a mixture

r =
R

W
=

N∑
i=1

YiR

Wi

(A.5)

where R = 8.314 J/mol K is the universal gas constant, Yi is the species mass fraction of the
mixture and W represents the mean molar mass of the mixture or species, Wi. In this case,
the equation of continuity reads,

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0. (A.6)

and additional equations appear for each new species. Of course, it is possible to relate the
partial densities to the total density using ρi = ρYi. One clearly notes that these evolution
equations are Euler like equations and represent the hyperbolic part of the problem.

The diffusive part of the NS equations for a unique species is represented by,

~Fv =


0 0 0
τ11 τ21 τ31

τ12 τ22 τ32

τ13 τ23 τ33

uτ11 + vτ12 + wτ13 + λ∂T
∂x

uτ21 + vτ22 + wτ23 + λ∂T
∂y

uτ31 + vτ32 + wτ33 + λ∂T
∂z


(A.7)

where τij are the shear stress components. These can be expressed as,

τij = 2µ

(
Sij −

1

3
δijSkk

)
(A.8)
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with Sij = 1
2

(
∂uj
∂xi

+ ∂ui
∂xj

)
. The heat flux term is usually modelled using −λ ∂T

∂xi
where λ is the

thermal conductivity defined as λ = µcp
Pr

. In the above viscous terms, µ represents the dynamic
viscosity of the fluid, cp is the heat capacity of the fluid and Pr is the Prandtl number. This
Prandtl number is taken constant.

Note that in the case of a multi-species simulation, an additional term appears in the continu-
ity equation which represents the diffusion of species within a mixture, Ji,k = −ρ

(
Dk

Wk

W
∂Xk

∂xi
− YkV c

i

)
with Xk representing the molar fraction of species, Dk the diffusion coefficient and V c

i is a ve-
locity correction to guarantee mass conservation. This diffusion of species does not only affect
the continuity equation but also the energy equation as the heat flux is affected by this diffusion
process. The modified flux is hence written as,

qi = −λ ∂T
∂xi
− ρ

N∑
k=1

Ji,khs,k, (A.9)

where hs,k is the sensible enthalpy of each species.

A.1 LES governing equations
LES is based on filtered equations, the type of filtering being usually of Favre type [156]
introduced on the basis of the following expression,

ρf̃ (x) =

∫ ∞
−∞

ρf (x′)G (x− x′) dx′. (A.10)

Note that there is no temporal dependency, the filter being applied in the physical or spectral
space the latter being the one retained throughout this document and with AVBP. Note that
by construction it is also recommended that the filter function satisfies the condition,∫ ∞

−∞
G(x)dx = 1. (A.11)

This filter acts on the highest wave numbers after a cutoff filter denoted hereafter by ∆.
Defining f as the resolved field in a numerical simulation (not to be confused with a temporal
average), the unresolved part of the physics that is not captured because of the filter, is rep-
resented by f ′ = f − f and usually appears through the so-called sub-grid scale terms. The
filtered NS equations read,

∂ρ ũi
∂t

+
∂

∂xj
(ρ ũi ũj) = − ∂

∂xj
[P δij − τij − τij t], (A.12)

∂ρ Ẽ

∂t
+

∂

∂xj
(ρ Ẽ ũj) = − ∂

∂xj
[ui (P δij − τij) + qj + qj

t], (A.13)
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∂ρ Ỹk
∂t

+
∂

∂xj
(ρ Ỹk ũj) = − ∂

∂xj
[Jj,k + Jj,k

t
], (A.14)

where no summation is indicated for index k (it represents each species present and will add
an equation for each additional species used). In the above new system of equations, one rec-
ognizes the following,

Inviscid terms:
The three spatial components of the inviscid flux tensor are identical to DNS but now based

on the filtered quantities:  ρũi ũj + P δij
ρẼũj + P ujδij

ρkũj

 (A.15)

Viscous terms:
The components of the viscous flux tensor take the form: −τij

−(ui τij) + qj
Jj,k

 (A.16)

where the different terms are:

• the laminar filtered stress tensor τij , given by the following relations:

τij = 2µ(Sij − 1
3
δijSll),

≈ 2µ(S̃ij − 1
3
δijS̃ll),

(A.17)

and the filtered shear stress

S̃ij =
1

2
(
∂ũj
∂xi

+
∂ũi
∂xj

). (A.18)

This term can be explicited for each component,

τxx ≈ 2µ
3

(2∂ũ
∂x
− ∂ṽ

∂y
− ∂w̃

∂z
), τxy ≈ µ(∂ũ

∂y
+ ∂ṽ

∂x
)

τyy ≈ 2µ
3

(2∂ṽ
∂y
− ∂ũ

∂x
− ∂w̃

∂z
), τxz ≈ µ(∂ũ

∂z
+ ∂w̃

∂x
)

τzz ≈ 2µ
3

(2∂w̃
∂z
− ∂ũ

∂x
− ∂ṽ

∂y
), τyz ≈ µ(∂ṽ

∂z
+ ∂w̃

∂y
).

(A.19)

• for a multispecies case, the diffusive species flux vector for a non-reacting flow,

Ji,k = −ρ
(
Dk

Wk

W
∂Xk

∂xi
− YkVic

)
≈ −ρ

(
Dk

Wk

W
∂X̃k

∂xi
− ỸkṼi

c
)
.

(A.20)
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• the filtered heat flux is,
qi = −λ ∂T

∂xi
+
∑N

k=1 Ji,khs,k

≈ −λ ∂T̃
∂xi

+
∑N

k=1 Ji,k h̃s,k.
(A.21)

Additional terms appear compared to the original Navier-Stokes equations. These are known
as the sub-grid scale components and are detailed in the following.

• Unresolved or sub-grid scale Reynolds stresses: τij t
Reynolds stresses are responsible for many of the properties of a turbulent flow, so captur-
ing their effects is critical. These non-resolved stresses are the result of ũiuj− ũiũj. These
terms have focused the attention of most models, notably those based on an eddy-viscosity
model presented in Section B.

• Pressure-velocity term ∂
∂xj

(
uiPδij

)
Responsible for the exchange of momentum between the different velocity components of
the momentum vector [140], it is important not to neglect them as it changes the nature
of the turbulence. The term is commonly simplified by ũi ∂P∂xj .

• Unresolved species and enthalpy fluxes
Similar to the Reynolds stresses, they are unresolved transport terms that are taken into
account by the turbulence models presented in the following section.
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Sub-grid scale models

The closure terms are a difficulty to be dealt with specifically in LES and RANS. Although
equally or even more important for RANS, these models are not detailed and only LES sub-grid
scale models are dealt with from here on. There are many sub-grid scale (SGS) models available
in the literature for LES most of them being based on the modelling of the Reynolds stress
tensor by means of the Boussinesq approximation. The approach used will however affect the
physics and a choice must be made. Some desirable properties for such a model are summarized
in the following,

• Allow backscatter phenomena

• Should have some local adaptation dependent on the problem

The backscatter phenomena is a process by which small scales in a turbulent flow provide
energy to the larger ones. This first affirmation being true, it seems reasonable to allow this
physical process and represents the idea behind Germano [68]. This effect is however much more
problematic for the Boussinesq assumption based models. In practice, the latter introduces a
non-linear viscosity term in front of the laminar viscosity which acts as an additional diffusion
term. If the backscatter process was allowed it would mean that the viscosity had taken a
negative value, and thus, the term would numerically represent an anti-diffusion term that
could affect the stability of the simulation. Also, it can be justified on physical ground, the
main argument being that it has to account for the missing energy transfers and these are
mainly from large to small scales, the contrary being a second-order effect. This justifies the
existence of less physical models such as those proposed by Nicoud et al. [133] who defined a set
of additional desirable properties in the context of Boussinesq based models and are summarized
in,

• P0 property. The value of the turbulent viscosity must not be allowed to take negative
values. As explained, for numerical robustness this value is always taken to be positive
and is thus a purely diffusive operator.

• P1 property. Requires to have a cubic asymptotic behaviour near walls, meaning that
this turbulent viscosity must vanish at walls. Due to the physical constraints imposed
by walls, such as the no-slip and impermeability conditions, this relation must be of the
form O (y3) where y represents the normal distance to the wall as done in Chapman and
Kuhn [30]. This is especially important when performing wall-resolved LES.
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• P2 property. The turbulent viscosity value will be zero when the flow is 2D. Indeed, in
cases where the flow is 2D like, the evolution of the fluctuating turbulent activity will
induce 3D components. It is necessary to deactivate the model in such situations such as
pure shear or rotation.

• P3 property. The turbulent viscosity must not be active in isotropic or axisymmetric
cases. Similarly to the previous P2 property, these are not associated to phenomena of
turbulent nature and as such, must not activate the sub-grid scale models.

In Eq. (B.1) τij t is the SGS tensor to be modelled, νt is the SGS turbulent viscosity, ũi is
the Favre filtered velocity vector (compressible flows) and S̃ij is the resolved strain rate tensor
which must be based on the local resolved velocity fields.

τij
t = −ρ (ũiuj − ũiũj)

= 2 ρ νt S̃ij −
1

3
τll
t δij. (B.1)

B.1 Sub-grid models available in AVBP
The models in AVBP only differ through the value of νt and the expressions for the most
commonly used are given below. A thorough comparison between the different models applied
to a high-pressure turbine case can be found in Papadogiannis et al. [137].

B.2 Smagorinsky model
The Smagorinsky model [167] was the first to be developed and is currently still used after
undergoing certain modifications [109]. The definition of νt is,

νt = (CS∆)2

√
2 S̃ij S̃ij, (B.2)

where ∆ denotes the filter characteristic length and CS is the model constant set to 0.18 but can
vary between 0.1 and 0.18 depending on the flow configuration. This indicates that there is no
flow independent manner of closing the unknown terms and thus, the turbulent viscosity may
be added where it is not necessary. Although it is correct for homogeneous isotropic turbulent
flows, this is not true in wall-bounded flows as it has a bad scaling in the presence of strong
shear. It is known to be too dissipative and its application must be limited [156].

B.3 WALE model
In a wall-resolved context, LES requires to have the adequate scaling when approaching a solid
boundary, refer to Property 1. The first model presented was the Van Driest damping function
[56]. Since then the WALE (Wall-Adapting Local Eddy-viscosity) proposed by Nicoud and

178



B.4 Sigma model

Ducros and Ducros et al. [132, 59] has become more popular. Differently to the Smagorinsky
model, the characteristic filtered rate of strain is replaced by a term that detects strong rates
of deformation and/or rotation and not shear. Its expression hence reads,

sdij =
1

2
(g̃2
ij + g̃2

ji)−
1

3
g̃2
kk δij, (B.3)

νt = (Cw∆)2
(sdijs

d
ij)

3/2

(S̃ijS̃ij)5/2+(sdijs
d
ij)

5/4
, (B.4)

where ∆ denotes the filter characteristic length (cubic-root of the cell volume), Cw = 0.4929
is the model constant and g̃ij denotes the resolved velocity gradient. This expression for νt
allows for the right scaling of turbulent viscosity when approaching walls: i.e. νt α (y+)

3 thus
complying with both properties P0 and P1.

B.4 Sigma model
Developed also by Nicoud et al. [133], the principle is very similar to that of the WALE model.
Instead of using the strain rate tensor, it is based on the singular values of the velocity gradient
tensor where,

νt = (Cσ∆)2Dσ (B.5)

where Cσ is a constant equal to 1.5 and

Dσ =
σ3 (σ1 − σ2) (σ2 − σ3)

σ2
1

. (B.6)

The main advantages of the sigma model in relation to WALE are that no viscosity is ap-
plied in pure shear nor for axisymmetric flows, additionally having all the desirable properties
defined in the same article. It finally follows the (y+)

3 law when approaching a wall.

It must be noted that although no proof is shown, various sub-grid scale models were tested
during this thesis. No large differences were found between the Sigma and the WALE model
for the coarsest mesh case. Smagorinsky results were too dissipative as expected.
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Appendix C

Precursor methodology

An approach that uses an external simulation to provide information to boundary conditions is
not new [50]. As cited in the same publication, turbulence injection requirements are difficult
to fulfill in whole. The main features can be summarized in the following points:

• Two-point correlations and spectrum in agreement with physical problem
Agreement is good when comparing these parameters to known curves such as the Kol-
mogorov spectrum [80]. More details and comparisons are provided in later sections
Sec. C.2.

• No modification required away from the inlet
Turbulence perturbations are added only through the inlet patch. No modification is
required elsewhere.

• No spurious modes introduced through the inlet
The turbulent fluctuations are introduced through the characteristic conditions, [138].
This approach requires to establish the relax parameters appropriately for the turbulence
to be imposed at the inlet but low enough for possible acoustic waves reaching the inlet
to leave and not affect the field to be imposed. The implementation done shows that no
noise is introduced.

• Instantaneous solutions must be available to reduce the storage
The coupling is performed on the fly at each iteration. The storage issue is overcome,
introducing in contrast the extra cost of an additional simulation running in parallel.
Additionally, the interpolation and information exchange between fields must be taken
into account.

• No restriction to the type of discretization nor the grid type
In this particular case, different types of discretizations have been studied, in a purely
finite volume context but also using a FE element scheme. In both cases the results
obtained were coherent with the initial data and turbulence description only depended
on the properties of the schemes. Concerning the type of grid, no constraints have been
found as there is an interpolation step between grids, which implies that non-conformal
grids are also subjected to this coupling. Of course, the grid size in the main domain will
filter any turbulent scales that may be generated in a finer mesh precursor simulation.

• Implementation effort
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The difficulty of this methodology, as in most methods, resides in prescribing the cor-
rect turbulence parameters in the precursor simulation. The present implementation is
performed only for HIT, but may be extended to more complex turbulent fields. The ge-
ometrical features of the inlet patch through which turbulence is to be injected however,
do represent a constraint towards the general applicability of the method.

• Highly parallelizable
Tests performed show the interpolation and exchange processes do not compromise the
global efficiency of the code. The additional simulation required to generate the turbulence
does add a cost that depends on the ratio of degrees of freedom between both simulations.

Periodicity in all directions simplifies the injection as a HIT field can be imposed without
the need for cross-correlations as in wall-bounded flows [113].

C.1 Methodology for precursor simulation
The turbulent field to be injected into the main domain is a HIT field, due to the fact that
the experimental is of grid-turbulence type. Computationally, it means that it is necessary to
keep the turbulent production in the precursor at the desired level. To do so, the methodology
described in Paoli and Shariff [136] is adopted. It is based on a stochastically forced source term
applied to the momentum and energy equations, corrected to keep the total energy constant.
The original idea was proposed in Eswaran and Pope [63].

Note that the precursor simulation is run simultaneously to the main simulation, which
adds computational cost due to the exchange time required but reduces the amount of memory
necessary for the storage. In terms of boundary conditions specification, the coupling software
OpenPALM [58], is used to send the local velocity perturbation field from the precursor simu-
lation to the inflow domain. Note that this operation is done at each time-step and does not
require a coincident mesh. The field extracted from the precursor is interpolated onto the inlet
and will serve as the reference fluctuating field. The interpolation performed is of order three
to comply with the order of the convective scheme.

Finally, it is of note to underline the fact that the precursor field is taken into account by
the main domain simulation through characteristic conditions [138]. Indeed, directly superim-
posing the velocities would lead to the reflection of upstream moving waves which would pollute
the inlet channel region. To account for the mean velocity, the Taylor hypothesis is used in
this specific application in conjunction with the bulk velocity field of the main simulation [179].
Computationally, this implies that the plane from which the information is extracted in the
precursor is not fixed, but moves in the axial direction at the mean bulk velocity of the flow as
prescribed by the main domain. Note that such an hypothesis is here relevant since the inlet
Mach number is low and fluctuations are of the order of 15% of the mean [106].

To analyze the statistics of the flow, the first points of interest is the evolution of the
Turbulent Kinetic Energy (TKE) decay. From the theory of homogeneous isotropic turbulence
it is possible to transform the temporal variable into spatial values using the Taylor hypothesis
[179]. The general expression that allows to evaluate the TKE is,
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C.1 Methodology for precursor simulation

TKE(x) =
u′(x)u′(x)

2
, (C.1)

where u′ represents the velocity fluctuations with respect to the mean velocity.

It is important to also check the evolution of the characteristic scales of turbulence in the
streamwise direction. These lengthscales can be related to experimental expressions derived in
Batchelor and Townsend [15, 16]. It is well known that the evolution of the Taylor and the
integral lengthscales is an increasing tendency as turbulence evolves in a free-stream flow. In
Batchelor and Townsend [15], a first relation is provided for the growth of the Taylor microscale
as,

U
dλ2

dx
=

10ν

n
, (C.2)

where U represents the mean velocity, ν corresponds to the viscosity and n is a coefficient
that was assumed to take a value of 1, a more detailed explanation is provided in the article
[15]. However, this relation was not consistent with other contemporaneous data, which led to
the study in [16]. New data determined that the slope should be modified according to the
Reλ = u′λ

ν
, where λ is the Taylor microscale, defined as λ = u

′2
1 /u

′2
1,1, where u′1 is the axial veloc-

ity fluctuation and u′1,1 the axial spatial derivative of the axial velocity fluctuation. Depending
on the value of Reλ, the period of decay is different and so, the tendency of λ. This is logical
as Reλ represents the importance of the inertial terms in the flow.

In Fig. C.1, the evolution of λ2 is plotted as a function of x/M where M represents the
characteristic length of the grid that generates the turbulence in the experiment. The natural
question that arises is how to characterize the increase of λ. For inertial terms to be negligible,
Rλ << 15 is commonly established and the decrease rate of Rλ as stated in Batchelor and
Townsend [16] is very slow, this meaning that only for very long periods will the final decay
period be seen.

An assumption also from [15], is that velocity derivative skewness is independent of the
Reynolds number. This value is widely used as proof that a flow is turbulent. Studies such as
Tavoularis et al. [178] show a great number of experiments and plot the skewness, changing its
sign, as a function of Reλ, Fig. C.2. For values where 5 < Reλ < 1000, the skewness value varies
between -0.3 and -0.7, which justifies why this value is taken as constant for certain studies.
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Precursor methodology

Figure C.1: Spatial evolution of Taylor microscale in experimental study [16]. Marker curves
represent various experimental results at different turbulence intensity levels.

Figure C.2: Skewness of spatial velocity derivative measured experimentally [178].
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C.2 Test case: Turbulent channel

C.2 Test case: Turbulent channel
This approach has been tested on a quasi DNS configuration. To check the quality of the
turbulence injected, two injection type methods are compared in a 4×1×1 mm channel repre-
sented in Fig. C.3. The inlet conditions will vary as shown in Table. C.1, where either the fields
imposed correspond to the velocity and temperature, cases 1 and 3, or total pressure and total
temperature. At the outlet, static pressure is imposed using characteristic conditions. In the
pitchwise and spanwise direction periodicity is prescribed. In all cases, the boundary conditions
are set to have a mean velocity field of 100 m/s, a fluctuating velocity of 5 % which corresponds
to a Mach number of 0.28. The integral scale is set to 0.13 mm which represents approximately
L
2π
, where L is the characteristic length in the periodic directions. The precursor simulation is

done on a domain of 3×1×1 mm and periodicity conditions are imposed on all domain surfaces.

OUTLET

PERIODICITY

INLET

Figure C.3: Channel geometry and boundary conditions.

Synthetic turbulence Precursor
Cases Case 1 Case 2 Case 3 Case 4

Variables imposed u,v,w,T Pt,Tt u,v,w,T Pt,Tt

Table C.1: Variables imposed in each precursor simulation.

The different simulations lead in all cases to a fully developed turbulent field as seen in
Fig. C.4. Of course the main interest in the use of the precursor is to avoid the region where
the spectrum of turbulence does not follow any physical laws. This occurs for all type of syn-
thetic type methods and represents a limitation in terms of domain size as it requires to have
a minimum development distance.

The TKE decay is evaluated by the use of probes at different positions along the streamwise
direction. In Fig. C.5a, synthetic and precursor methods are compared for Case 3. Evolution

185



Precursor methodology

(a) (b)

Figure C.4: Channel test case. a) Q-criterion coloured by vorticity b) Vorticity field on a x-y
plane.

of the decaying turbulence shows an excellent agreement with the theoretical approach, while
the synthetic turbulence does not follow the exact trend. When comparing the same decay
near the boundary conditions using the same characteristic conditions and relax parameters,
Fig. C.5b shows the unphysical behaviour for the synthetic injection which is, of course, unde-
sirable.

For this particular case, Rλ ≈ 20, which implies that at least at first the non-linear inertial
terms cannot be neglected and the initial decay region which follows the law in Eq. (C.2)
should be expected. As seen in Fig. C.6, the precursor follows accurately the 10νx

U
curve except

at the limits of the domain where there is a slight shift due to the imposition of the boundary
conditions. The initial value at the entrance of the domain can be estimated from the relation,

λ = lt100.5Re−0.5
t , (C.3)

where lt represents the integral lengthscale and Ret = u′lt
ν

is the turbulent Reynolds number.
Substituting the values imposed in the simulation gives a value of λtheory = 7.110−5 m. Al-
though the value in the simulation is of the same order as the estimate, differences may be
explained by the low Reλ which is not representative of fully-sustained turbulence.

As can be observed in Fig. C.7, the value of the velocity derivative skewness along the whole
channel for the precursor is found to be between the range found experimentally. Additionally,
for the precursor simulation, this value is reached at the inlet of the channel which is not the
case for the synthetic turbulence method. This can also be shown when comparing the one-
dimensional energy spectrum between both methodologies. While the Kraichnan methodology
peaks at a low wavenumber where the energy while Fig. C.8 shows that for the precursor, the
spectrum is spread along the whole wavenumber range. Likewise, correlations are also shown
to prove the agreement with temporal simulations seen in Figs. C.9 & C.10.
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Figure C.5: Spatial TKE decay comparison. a) TKE decay along axial direction b) View of
the 10% inlet channel region.
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Figure C.6: Spatial evolution comparison of Taylor microscale with numerical simulation.
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Figure C.10: Ruu at outlet
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Appendix D

Convergence aspects

To ensure the simulation is sufficiently converged, the most limiting case is chosen using the
18% level turbulence at inlet. It is the most limiting as the apparition of turbulent spots with
a random spatial and temporal distribution, which increase the heat transfer, introduces a
skewness in the measurement distribution. The appearance of a spot is held responsible for the
local temporal increase in heat transfer and thus, the skewed histogram. The mean value of
the heat transfer profile is compared after averaging for multiple characteristic times obtaining
Fig. D.1. Even for the lowest value used, the profile trend does not greatly vary when more
time is added to the average.

A histogram of the heat flux is represented at various locations where probes record the
temporal signal in Fig. D.2. Although not shown, various probes located at different spanwise
positions at the same curvilinear abscissa show the same temporal distribution. The analysis
of the histograms show the total number of events during the simulation in Figs. D.2a-D.2b
and Fig. D.2c. Moving downstream the number of events grows where larger heat flux values
are encountered and so, the latter figure is much more skewed towards the higher values of
heat flux. This implies that turbulent spots are more probable as the shock wave is approached
and it is these events that cause the increase of heat flux in the plateau region on the suction side.



Convergence aspects

Figure D.1: Heat transfer coefficient profile in most unsteady case for 18% turbulence using
M1 mesh.
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(a)

(b)

(c)

Figure D.2: Heat flux histogram at a) s/c = 0.4 b) s/c = 0.6 c) s/c = 0.8.
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Appendix E

Development of one iteration calculation

In many situations the notation may induce errors that could be avoided by a simple example.
This appendix is intended for those wishing to implement such a solver or that require to un-
derstand the main steps followed associated to the notation provided.

E.1 First order temporal derivative for triangular elements,
L term

The first order temporal derivatives are calculated at a primary cell level using the expression
in Eq. (E.1)

RKe = − 1

ndVKe

∑
k|k∈Ke

~Fk · ~sk (E.1)

remembering nd represents the number of dimensions of the element, VKe is the volume of the
primary element, ~F being the fluxes and ~s the normal to the node represented in Fig. ??.
Subindex k represents each vertex of the cell. Once the residual is calculated, it can be redis-
tributed to the nodes using the distribution matrix previously noted obtaining at each node j
as in Eq. (3.5).

So, taking a simple example as in Fig. E.1b, assuming the coordinates for the nodes indicated
to be x = (0, 1, 0) and y = (0, 1, 1)

~Fk =

F1x F1y

F2x F2y

F3x F3y

 ;~sf |edge =

 0 1
−1 0
1 −1


edge

(E.2)

The order of ~sf is taken to be that of the edges, so the first row corresponds to the first
edge. Applying

∑ ~Ff~sf would lead to,



Development of one iteration calculation

(a) Details of dual cell mesh and notation.

1

23 Edge1

Edge2

Edge3

(b) Normal definitions in elementary cell.

Figure E.1: Notation and definitions used for elements in AVBP.

RKe =
1

VKe

(F2x + F3x

2
sf1x +

F2y + F3y

2
sf1y +

F1x + F3x

2
sf2x

+
F1y + F3y

2
sf2y +

F1x + F2x

2
sf3x +

F1y + F2y

2
sf3y

)
=

1

VKe

(
F2x − F3x

2
+
F3y − F1y

2

) (E.3)

The vertex normals may be recalculated using ~sk =

 0 1
−1 0
1 −1

 at each vertex. Note that

the normal to each vertex corresponds to the normal of the opposite edge scaled by the length
of the correponding edge. It is easily shown that the same result is obtained,

RKe = − 1

2VKe

(F1y − F2x + F3x − F3y) (E.4)

The redistribution process requires to scale the obtained residual by the volume of the in-
tersection of Ke∩Cj, corresponding to the volume of the whole primary cell and divided by the
number of vertices in the cell remembering the residual is redistributed equally to each vertex.

For optimisation issues, the redistribution is not done at the end of the calculation of each
operation. Also note that the redistribution matrix is done in a fashion such that each node
receives a ponderated part of the primary cell residuals surrounding the dual cell. This pon-
deration corresponds to the area of each primary cell divided by the number of vertices in each
cell. The residual of each sub-cell formed by Ke ∩ Cj is constant, as assumed in the primary
cell, and is concentrated in its centroid. For each cell, residuals are added and finally divided
by the total area of the node volume, meaning that the final residual corresponds to that of
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E.2 First order temporal derivative for quadrilateral elements, L term

Figure E.2: Detail of mesh dual cell.

Figure E.3: Dual cell mesh. x represent the centroid of the intersection Ke ∩ Cj and + is the
global centroid of the cell.

the centroid of the dual cell and not the node. As can be easily shown in Fig. E.3, the centroid
of the dual cell does not necessarily coincide with the node position which can lead to large
geometrical differences when distorted meshes are used. This is discussed in more detail in
Chapter 7.

E.2 First order temporal derivative for quadrilateral ele-
ments, L term

It was seen that bilinear elements such as quadrilaterals required an extra correction in relation
to linear elements such as triangles. Following the notation in Colin et al. [37], it was seen that,

Lj (Un) |c =
∑
k∈Ke

FkΘj,k|c, (E.5)
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where Θj,k = Θ0
j,k + Θ1

j,k.

It can be demonstrated that Θ0
j,k represents the Finite Volume way of proceeding, being Θ1

j,k

the responsible for the correction. The simplest way to exemplify it is the application of the
residual on a quad element. Taking a quadrilateral defined by the coordinates x = (−1, 1, 1,−1)
and y = (−1,−1, 1, 1) which is represented by the following shape functions,

φ1 =
1

4
(1− ξ) (1− η)

φ2 =
1

4
(1 + ξ) (1− η)

φ3 =
1

4
(1 + ξ) (1 + η)

φ4 =
1

4
(1− ξ) (1 + η)

(E.6)

where the shape function gradients,

φ1ξ = −1

4
(1− η) φ1η = −1

4
(1− ξ)

φ2ξ = +
1

4
(1− η) φ2η = −1

4
(1 + ξ)

φ3ξ = +
1

4
(1 + η) φ3η = +

1

4
(1 + ξ)

φ4ξ = −1

4
(1 + η) φ4η = +

1

4
(1− ξ)

(E.7)

Variables ξ and η vary between −1 and 1 which means that its mean value is zero. Thus,
∇φk will be determined exclusively by the sign of the gradient and scaled by 1

4
. It can be

easily verified that it complies with Eq.(3.44). The correction part then is calculated, proof
being provided in [36] that it is a conservative approach as the sum over all the vertices of
the correction is zero. For the canonical quadrilateral elements, it is possible then to integrate
exactly Eq. (3.40) to obtain the necessary coefficients, as an example for j = 1 k = 1,

∫
Ke

φj∇ξφkdV =

∫ 1

−1

∫ 1

−1

− 1

16
(1− ξ) (1− η) (1− ξ) dξdη = −1

3
(E.8)

It is possible to construct a table with all the coefficients,
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E.3 Second order temporal derivative for quadrilateral elements, LL term

∫
Ke

φj∇ξφkdV =



−1

3

1

3

1

6
−1

6

−1
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1

3

1

6
−1

6

−1

6

1

6

1
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3
−1

3


(E.9)

∫
Ke

φj∇ηφkdV =



−1

3
−1

6

1

6

1

3

−1

6
−1
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1

6

−1

6
−1

3

1

3

1

6

−1

3
−1

6

1

6

1

3


(E.10)

and calculate the correction using these coefficients that are constant for quadrilateral elements.

E.3 Second order temporal derivative for quadrilateral el-
ements, LL term

Similarly to the L terms, it is possible to do the same for the LL terms,

LLj (Un) |c = (A,B)
∑
k∈Ke

FkΨj,k|c (E.11)

where A and B are the Jacobian matrices in cartesian coordinates and,

Ψj,k

∣∣∣
c

=

∫
Ke

∇φj∇φkTdV. (E.12)

Rembembering that the transformation matrix is set to the unity matrix in this case, the
integration of this Ψ matrix for quadrilaterals can be shown to be,

Ψj,k

∣∣∣
c

=

∫
Ke


∂φk

∂ξ

∂φj

∂ξ

∂φk

∂ξ

∂φj

∂η
∂φk

∂η

∂φj

∂ξ

∂φk

∂η

∂φj

∂η

 =

(
(A) (B)
(C) (D)

)
(E.13)
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ΨA
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∣∣∣
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ΨC
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Abstract
Uncertainty Quantification (UQ) is receiving more and more attention for engineering applica-
tions in particular from robust optimization. Indeed, running a computer experiment only pro-
vides a limited knowledge in terms of uncertainty and variability of the input parameters. These
experiments are often computationally expensive and surrogate models can be constructed to
address this issue. The outcome of a UQ study is in this case directly correlated to the surrogate’s
quality. Thus, attention must be devoted to the Design of Experiments (DoE) to retrieve as much
information as possible. This work presents two new strategies for parameter space resampling
to improve a Gaussian Process surrogate model. These techniques indeed show an improvement
of the predictive quality of the model with high dimensional analytical input functions. Finally,
the methods are successfully applied to a turbine blade Large Eddy Simulation application: the
aerothermal flow around the LS89 blade cascade.
KEYWORDS:
Design of Experiment, Uncertainty Quantification, SurrogateModel, Gaussian Process, LES

1 INTRODUCTION
Design process and robust optimization are themajor purposes of most
engineering works dealing with Computational Fluid Dynamics (CFD),
especially in aeronautical or automotive industry (1). Despite the large
amount of work that has been devoted to the design of efficient opti-
mization techniques, the design process still requires important invest-
ments (financial and human) (2). As a consequence, design errors appear
after the industrialization phase (3) and the implications these can have
may be critical. This partially explains why CFD tools have been used
more andmore in the past decades to decrease the number of iterations
betweenconception andexperiments to avoid irreversible errors during
the preliminary design phase.
Nowadays, CFD codes have reached maturity and represent more

accurately physicalflowphenomena. Complexflow simulations on high-
resolution grids are possible thanks to the continuous developments in
numerical models and in High Performance Computing (HPC). Never-
theless, deterministic simulations only provide limited knowledge about
a system. Uncertainties in the numericalmodel aswell as in the problem

formulation or inputs are necessarily present and translate into uncer-
tainties in the outputs (4).
In fact, the diversity of uncertainties on the CFD boundary condi-

tions or initial conditions, as well as on model parameters (input data,
geometry, simplification of the model physics, etc.) limits the validity of
the simulations: the quantity of interest (QoI) can be easily affected and
shadowed by the conjugation of all types of uncertainties. This assess-
ment explains why Uncertainty Quantification (UQ) is now becoming a
mandatory step in application-oriented modelling for operational and
industrial purposes (5, 6). It provides insight into the level of uncertainty
in the numerical simulation results but also gives access to the Sensitiv-
ity Analysis (SA) which aims at describing the respective influences of
the input parameters on the QoI. The inclusion of UQ in a design opti-
mization cycle hence allowsmanufacturers to design quicker and obtain
better, cheaper andmore robust (i.e. more stable) products.
ClassicalUQmethods, basedon theMonte-Carlo approach, require a

large number of CFD simulations (7), which quickly go beyond the limits
of available computational resources (CPU cost). This is especially true
when it comes to large dimensional problems, both with respect to the
domain discretization and to the number of uncertain input parameters.
The cost of the UQ study can however be significantly reduced when
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the CFD code is replaced by a surrogate model which is formulated in
a parameter space and which is fast to evaluate at any set of uncertain
variables (8).
Two successful approaches for building a surrogate model are Poly-

nomial Chaos (9) and Gaussian Process (10). The approach used in this
work consists in combiningGaussianProcesseswithProperOrthogonal
Decomposition (POD) to build response surfaces through interpola-
tion (11, 12). In an industrial context—which is the case here—, some
benefits of thismethodare:(i) it does not require anyprior knowledgeon
the probability distribution of the uncertainties on the input parameters
; (ii) it does not need a specific sampling of the parameter space which
could lead to curse-of-dimensionality or mis-evaluation of the space ; (iii)
it provides an estimation of the predictive error ; and (iv) the use of
the POD reduces the number of predictors to compute. Details and
comparisons can be found in (13, 14).
In any case, the number of CFD simulations that is required for the

formulation of the surrogate model is defined by the complexity of the
physics and the number of input parameters to take into account. This
factor is paramount when considering costly numerical simulations.
The accuracy of an uncertainty quantification being directly corre-

lated to the quality of the surrogate (15), the present study aims at
improving its construction by using two new strategies for resampling
the parameter space. Industrial applications being targeted, a first UQ
analysis of the LS89 case (16) using Large Eddy Simulation (LES) is pre-
sented. LES are high-fidelity full 3Dunsteady simulations. This approach
comes at a high CPU cost which requires the use of High Performance
Computing (HPC) resources.
The paper is tailored as follows; Section 2 starts by presenting the

techniques employed to construct the surrogate model as well as its
error assessment. Then the UQ tools used are detailed and Section 3.1
describes the two proposed strategies. After this methodological pre-
sentation, Section 4 assesses the benefits of these strategies on several
difficult analytical functions and presents the results on the applica-
tion: the aerothermal analysis around the LS89 blade cascade. Finally,
Section 5 will put a closure to this paper by summarizing its contribu-
tions along with potential directions for future works or applications.

2 SURROGATEMODEL FORUQ
In this study, the surrogate model is created using the BATMAN
(Bayesian Analysis Tool for Modeling and uncertAinty quaNtification)
tool (14) which is written in Python language. Using a non-intrusive
approach, BATMAN allows to construct a surrogate model from any
black-box code. The result obtained is a POD-based Gaussian Process
(pGP) surrogatewhich is computationally inexpensive and able to inter-
polate any new realization (or snapshot)x∗ not in the sample composed
ofNs snapshots. BATMAN’s workflow is detailed in Algorithm 1.
All different steps are detailed in the following sections. Section 2.1

presents the POD technique and Section 2.2 reminds the Gaussian pro-
cess technique. The quality of the surrogate is addressed in Section 2.3

Algorithm 1 POD-based Gaussian Process
1: Choose the size of the sampleNs
2: PickNs samples in the input space xwith a low discrepancy design
of experiment (DoE)

3: Perform a POD on the output
4: Formulate the pGP surrogateMgp on the POD’s coefficients
5: Resample the parameter space if necessary

and the UQ methods are detailed in Section 2.4. Finally, in order to
improve the surrogate’s quality, resampling strategies are presented
in Section 3.1. Figure 1 shows the workflow implemented in the BAT-
MAN tool for constructing the surrogatemodel for UQ.

Design of Experiment (DoE)

Simulation

Refinement Strategies

1 2

3

Quality estimation 

5

Surrogate Model

4

Uncertainty 
Quantification (UQ)

6

Proper 
Orthogonal 

Decomposition 
(POD)

FIGURE 1 Workflow to resample the parameter space in an Uncer-
tainty Quantification framework.

2.1 POD
A function z can be approximate using a finite sum of terms:

z(m,Ni) '
∑

k

ak(Ni)φk(x), (1)

withm being the spatial discretization andNi a realization of the code,
a snapshot. The functions φk(m) have an infinite representation and
can be Fourier series, Chebyshev polynomials, etc. For a chosen basis of
functions, a set of unique snapshot functions ak(Ni) arises. In the case
of POD (17), the basis functions are orthonormal which implies:

(φk1 , φk2 ) =

{
1 if k1 = k2

0 if k1 6= k2
, (2)

ak(Ni) = z(m,Ni) ·φk(m),

with ( · , · ) the inner product. The principle of POD is to choose φk(m)

such that the approximation of z(m,Ni) is optimal in a least square
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sense. These orthonormal functions are called the proper orthogonal
modes of the function.Modes can be found using a Singular Value Decom-
position (SVD) of the snapshot matrix (18). Considering the snapshot
matrixA, gathering the output QoI computed spatially onm for theNs
snapshots:

A =
[
zN1 , · · · , zNi , · · · , zNS

]
, (3)

with zNi the i-th snapshot vector stored as a column inA. The SVD is a
factorization operation of amatrix expressed as:

A = UΣVT , (4)
withV ∈ RNs×Ns diagonalizesATA,U ∈ Rm×m diagonalizesAAT

andΣ ∈ Rm×Ns is the singular valuematrixwith its diagonal composed
by the singular values σ ofA. Thus, the initial matrix can be rewritten:

A =

r∑

i=1

σiuiv
T
i , (5)

with ui and vi the eigen vectors of respectively U and V which form
an orthonormal basis. Also r = min(m,Ns) is the rank of the matrix.
Due to the singular value matrix’s null terms, the reduced form of the
matrices is used which leads toU ∈ Rm×Ns ,Σ ∈ RNs×Ns . Note that
one can apply a filtering on the modes to only keep the basis vectors
containing the highest energy of the system. For any k < r, an optimal
approximation of rank k of the snapshot matrixAk = UΣkV

T
k can be

calculated by setting the σi>k = 0 inΣ. These two steps allow to com-
press the data as only an extract ofU andΣ need to be stored. But the
real benefit is that a surrogatemodel does not need to be carried out for
all points of the spatial discretization of the QoI but only for the matrix
ΣkV

T
k (a column of this matrix corresponds to a snapshot).

2.2 The Gaussian Process Regression
A Gaussian Process (GP) is a collection of random variables which have
a joint Gaussian distribution (10). GP is equivalent to Kriging (19). In this
case, the randomvariablebeing thePODcoefficients computed for each
random input vector x ofNs: f(x) = (ΣkV

T
k )x. A new prediction con-

sists in a new column ofΣkV
T
k . A Gaussian Process GP is described by

its meanm(x) and covariance k(x,x′)—where x,x′ are different sets
of inputs

f(x) ∼ GP(m(x), k(x,x′)), with (6)
m(x) = E [f(x)] ,

k(x,x′) = E
[
(f(x)−m(x))(f(x′)−m(x′))

]
.

Here the covariance function k (or kernel) is chosen as a squared
exponential

K = k(x,x′) =
√
π σ2

x exp− (x− x′)2

2(
√

2l)2
, (7)

where l is a length scale that describes the trend in the data andσx is the
varianceof theoutput signal. Then theGPmodel consists of a regression

providing an interpolation f̂ for a new set of input parametersx∗:

f̂(x∗) = f̄(x∗) =

Ns∑

i=1

αik(xi,x∗), with (8)

α = (K + σ2
nI)
−1y,

where f̄ is themean realization,xi the i-th set of parameters,y the snap-
shot matrix and σn is the variance of the input variables. Indeed, it is
themean realization of the conditioned process considering an artificial
noisy observation which gives the prediction. The learning phase of the
GP consists in selecting l, σn and σx so that f passes through or close
to the dataset points. These hyperparameters are optimized using a dif-
ferential evolution strategy. A key advantage of this predictor is that it
provides an inference about its prediction variance

V[f(x∗)] = k(x∗,x∗)− k(x∗)T (K + σ2
nI)
−1k(x∗). (9)

2.3 Estimation of the error
To correctly adapt the number of snapshots to the required precision,
the quality of the model has to be evaluated by comparing expected
values and their estimations. A common indicator is to compute the
predictivity coefficientQ2 (20):

Q2 = 1−

Ns∑

i=1

(fi − f̂i)2

Ns∑

i=1

(fi − f̄)2

, (10)

with f denoting the mean value, fi the measured point and f̂i its pre-
diction by the model. When dealing with a non-analytical function the
expected values are not known. However, there are two methods to
evaluate the precision:

• The sample can be divided into a validation set and training set.
The model is built based on the training set and then evalua-
tions are compared relative to the validation set. However, this
technique requires that we do not use the validation simulations
which is computationally costly when dealing with high fidelity
numerical experiments.

• Another approach is to estimate the quality by k-fold Cross Val-
idation (21). A particular case is the Leave-One-Out Cross Vali-
dation (LOO) with k = n = 1—with n the number of obser-
vations. The LOO technique derived from statistical learning
theory requires the formulation of several surrogates. Each sur-
rogate is built excluding one point from the evaluation sample;
the accuracy of the surrogate is then calculated at this particu-
lar point. Removing point p from f̂p gives f̂p(−p) and leads to an
error

εp = ‖fp − f̂p(−p)‖2. (11)
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with the Euclidean 2-norm considered for Rm. This is done all
over the sample composed of Ns snapshots to get the mean-
square-error

LOO =
1

Ns

Ns∑

p=1

ε2p. (12)

Thus, an estimated predictivity coefficient Q̂2 can be retrieved
Q̂2 = 1− LOO

Ns∑

p=1

(
f̂p − ¯̂

f
)2

. (13)

As stated in (15), this estimation tends to be pessimistic. Indeed, a
snapshot is removed fromanalreadyvery small samplewhichultimately
tends to lower the predictive quality of the model. However the indi-
cator is stable—provided a correct sample size (Ns > 10ndim, with
ndim the number of dimension (22))—and as the quality increases, the
difference between the estimation and the real quality vanishes.

2.4 Uncertainty Quantification
There are several methods to estimate the contribution of different
parameters on quantities of interest (23). Among them, sensitivity
methods based on the analysis of the variance allow to obtain the con-
tribution of the parameters on the QoI’s variance (24). Here, classical
Sobol’ (25) method is used which gives not only a ranking but also quan-
tifies the importance factor using the variance. This method only makes
the hypothesis of the independence of the input variables. It uses a
functional decomposition of the variance of the function to explore:

V(Mgp) =

p∑

i

Vi(Mgp) +

p∑

i<j

Vij + ...+ V1,2,...,p, (14)

Vi(Mgp) = V[E(Mgp|xi)]

Vij = V[E(Mgp|xixj)]− Vi − Vj ,

with p the number of input parameters constituting x. This way Sobol’
indices are expressed as
Si =

V[E(Mgp|xi)]
V[Mgp]

Sij =
V[E(Mgp|xixj)]− Vi − Vj

V[Mgp]
. (15)

Si corresponds to the first order term which apprises the contribu-
tion of the i-th parameter, while Sij corresponds to the second order
term which informs about the correlations between the i-th and the j-
th parameters. These equations can be generalized to compute higher
order terms. However, the computational effort to converge them is
most often not at hand (15) and their analysis, interpretations, are not
simple.
Total indices represents the global contribution of the parameters on

theQoI and express as:
STi

= Si +
∑

j

Sij +
∑

j,k

Sijk + ... ' 1− Si. (16)

For a functional output, as for the LS89 case—see Section 4.4—,
Sobol’ indices can be computed all along the output and retrieve a map
or create composite indices. As described by Marrel (26), aggregated

indices can also be computed as themean of the indicesweighted by the
variance at each point or temporal step

Si =

p∑

l=1

V[fl]S
l
i

p∑

l=1

V[fl]

. (17)

In this paper the indices are estimated using Martinez’ formula-
tion. In (27), they showed that this estimator is stable and pro-
vides asymptotic confidence intervals—approximated with Fisher’s
transformation—for first order and total order indices.

3 IMPROVING THEDESIGNOF EXPERIMENT
3.1 Description of the new resamplingmethods
Correctly sampling the parameter space is paramount as it is used to
construct themodel. Although the golden standardwould be to perform
a Monte Carlo sampling, it would require an unreasonably large sam-
pling which is unfeasible within a costly simulation environment or if
considering real-time applications. This constrains the number of simu-
lations that can be performed. Cavazzuti (28) provides a comprehensive
description of the techniques used to generate the best DoE.
A good criterion for assessing the quality of a DoE technique is the

discrepancy (15, 29). It measures the uniformity of the points’ cover-
age of the parameter space. Hence, low discrepancy sequences, or quasi-
random sequences, have good filling properties of the space. To name
a few, Sobol’ and Halton sequences are known to perform well when
dealingwith low-dimensional spaces (30, 7). Furthermore, an advantage
over the traditional LHS (31) or optimized LHS (30) sampling is that the
sample is deterministic. The sequence can be continued without los-
ing any space-filling quality whereas with traditional LHS, the sample
becomes suboptimal. Indeed, LHSalgorithms require anumberof points
to create the sample.
This last observation motivates our choice of a low discrepancy

sequence for sampling the parameter space. Indeed, this enables us to
increase the design one simulation at the time. A complementary strat-
egy consists in exploring the space using as few points as possible and
then refine the exploration around zones of interest.
Starting from the work of (32, 11) with the σ method as a baseline,

two novel strategies—LOO-σ and LOO-Sobol’—have been developed
and are presented in this work. The common strategy is detailed in
Algorithm 2.

• Variance (σ),
As stated in Section 2.2, one of the main advantages of Gaussian
processes over other surrogates is to provide an insight into the
variance of the solution. The first method consists in using this
data andweight it with the eigenvalues of the POD:

k∑

i=1

σ2
i × V[Mgp(x∗)]i. (18)
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Algorithm 2Refinement strategy
Require: Nmax, threshold
1: whileLOO − quality < threshold andNs < Nmax do
2: xL ← least stable point of the design
3: HL ←maximum hypercube aroundxL

4: xo ← maxV[Mgp], withinHL
5: Compute a new snapshot atxo
6: Update pGP surrogateMgp(x∗)

7: endwhile

Global optimization of this indicator gives the new point to sim-
ulate (33).

• Leave-One-Out (LOO) and σ,
A LOO is performed on the POD and highlights the point where
themodel is themost sensitive. The strategy here is to add a new
point around it. The creation of the hypercube is described in
Section 3.2. Within this hypercube, a global optimization over σ
is conduced giving the new point.

• LOO-Sobol’,
Using the same steps as with the LOO-σmethod, the hypercube
around the point is here truncated using prior information about
Sobol’ indices—see Section 2.4. It requires that indices be close
to convergence not to bias the result. However, the bias can be
intentional depending on the insight we have about the case.

• Hybrid.
This lastmethod consists of a navigator composed by any combi-
nation of the previousmethods.

The evaluation of the latter composite method is not presented in
this work. Although the computation of the LOO metric is merely an
attempt to characterize the model’s global quality, this mainly serves
to assess the surrogate model’s stability. If the model’s response sur-
face is not affected by the removal of a particular point, it is interpreted
as a stability—or a non sensitivity—of the model to this action. This
technique aims at stabilizing themodel.

3.2 Construction of the Hypercube
To resample locally the parameter space, a hypercube is constructed
around point pwhich is themost sensitive in the construction of the sur-
rogate model—LOO point, see Section 2.3. An optimization problem is
defined to construct the largest hypercube bounded by the surrounding
points P as shown in Fig. 2 . This allows to only consider the vicinity of
the point.
The hypercube is defined by the cartesian product of the intervals

of the n parameters i.e. [ai, bi]n. The constrained optimization problem

Hypercube

New point using Global Optimization
on the variance

LOOCV point

a1a1 b1b1

b2b2

a2a2

X1X1

pp
X2X2

PP

FIGURE 2 Sketch of a Hypercube of size [ai, bi]
2. The grey dot is the

LOO point p, the black dots are the surrounding pointsP and the white
dot is the new point to evaluate.

can hence bewritten as:




max ‖ (b− a) ‖2
P /∈ [ai, bi]

n

p ∈ [ai, bi]
n

. (19)

A maximum cube-volume aspect ratio (34) is also defined in order to
preserve the locality. This gives the new constrain

C :
n

√√√√√√

max(b− a)
n∏

i=1

max(bi − ai)
< ε, (20)

with ε = 1.5, set arbitrarily to prevent too elongated hypercubes.
The global optimum is found using a two-step strategy: first, a discrete
optimization using P gives an initial solution; second a basin-hopping
algorithm (33) finds the optimum coordinates of the hypercube. In case
of the LOO-Sobol’ method, the hypercube is truncated using the total
order Sobol’ indices.

4 RESULTS
The benefits and mechanisms of the methods are first evaluated
on complex analytical functions. The chosen functions are defined
in Section 4.1. Then, the treatment of the parameter space’s boundary
is presented in Section 4.2. Taking into account this issue, the analytical
functions are tested in Section 4.3. Finally, the methods are evaluated
on a realistic application in Section 4.4 with the LES of the LS89 test
case (16).

4.1 Analytical functions
In order to test the new resampling methods, three analytical
functions—see Table 1 —with increasing numbers of input dimensions
are presented, namely: (i) Rosenbrock ; (ii) Ishigami ; and (iii) g-function (35,



6 Pamphile T. Roy ET AL

36, 7). They all are widely used because they are nonlinear and non-
monotonic. Note that, similar results were obtained on other functions.

4.2 Restriction of the DoE
The first step when constructing a model is to define the DoE. This is
done by defining the range of each input parameter, the boundaries
that describe a hypercube. Then, using a low discrepancy sequence as
described in Section 3.1, an initial pool of snapshots is computed within
the hypercube. However, when constructing a model based on Gaus-
sian Process regression, the error is important at the boundaries of the
DoE due to the lack of information. Themodel is thus not able to extrap-
olate accurately at these locations. If using the variance technique as
it is, the algorithm tends to add points around the corners and only
after it considers other parts of the domain. When dealing with a low
dimensional case—fewer than three parameters aswith theMichalewicz
functionwhich uses two input parameters, see Fig. 3 —, a few iterations
are "wasted" in the process.

1 2 3
x1

1.0

1.5

2.0

2.5

3.0

x 2

1.75
1.50
1.25
1.00
0.75
0.50
0.25

0.00
0.25

f

FIGURE 3 Michalewicz function: dots represent the initial sample of 50
points and diamonds represent the 20 resampled points. The function
was evaluated on the hypercube [1, π]2

When increasing the number of parameters, there is a larger number
of boundaries to cover. This has been confirmed on the Ishigami func-
tion (3 input parameters) for which the reported Q2 values are even
worse. As shown in Table 2 , the optimization process is being over con-
strained in these regions and the global predictions are degraded. To
obtain this Table, the initial samplewas increased using a constant num-
ber of resampling points (10 points) and the error was measured using
a uniform distribution on the domain, confirming the importance of the
boundary treatment.

The possibility to widen the space by a delta space has been evalu-
ated to address this question. The objective is to condition the predictor
around the boundaries by adding information outside the domain of
interest. A Halton sequence has been used to generate a sample of size
Ns = 80 from the space

Ni ∼ U(20, 80) ∆space ∼ U(0, 20%), (21)
withNi the number of initial snapshots and∆space thewidening factor,
the outer delta space. For each caseNi, it is only the proportion of ini-
tial sample over the number of resample point that varies. (See Fig. 4 ).
A fixed budget of Nb = 80 snapshots was considered. Then, the num-
ber of resampling points is equal toNrs = Nb − Ni. The strategy used
here was the σ model (see Section 3.1). After the resampling phase has
been completed, the quality Q2 of the model is computed. Applied to
the Ishigami function, Ns simulations each performing Nb evaluations
have been used to construct the response surface. These results were
compared to a case without resampling:Ni = NS = 80. The resulting
predictivity quality beingQ2 ' 0.8.

BATMAN

BATMAN

BATMAN

BATMAN

…

Ns = 80Ns = 80

Ishigami

Ishigami

Ishigami

…

Nb = 80Nb = 80

Ni = 35Ni = 35

Nrs = 45Nrs = 45

Q2Q2

FIGURE 4 Example showing a computation ofQ2 withNi = 35, Nrs =

45.

As shown in Fig. 5 , there is no benefit of adding points outside the
domain. Aside from the uniform distributions usually employed on this
function, a standard arcsine distribution was also tested to assess the
quality around boundaries but no enhancement was observed. When
the delta space is increased, there is a loss of quality due to the presence
of points in non-interesting regions.
Complementarily to this analysis using an outer delta space, an inner

delta space factor has also been considered. The same methodology
was used. Results are shown in Fig. 6 . On the uniform case, the model
was not correctly computed due to high discontinuities caused by the
0% inner delta space cases. In (37), optimal design that tends to put
more points near the boundaries were shown to be more effective. Our
results are coherentwith their findings aswe observed an improvement
of the quality when using a low inner delta space. Indeed, a small value
of the parameter limits the trend to add points close to the boundaries.
This work has shown that setting an inner delta space comprised

between 5 and 10% is required to ensure the robustness of the model
construction. Based on this observation, in the following the inner delta
space is set to an arbitrary value of 8%.
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Function Hypercube Definition
Rosenbrock [−2.048, 2.048]2 f(X1, X2) =

∑d−1
i=1 [100(xi+1 − x2i )2 + (xi − 1)2].

Ishigami [−π, π]3 f(X1, X2, X3) = sinX1 + 7 sin2X2 + 0.1X4
3 sinX1.

g-function [0, 1]4 f(X1, X2, X3, X4) =
∏4
i=1

|4Xi−2|+ai
1+ai

, ai = i.

TABLE 1 Analytical functions considered sorted by increasing number of input parameters.
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FIGURE 5 Response surface ofQ2 function of the initial sample and the outer delta space. Dots represent the simulations.

Initial sample Total size Q2

30 40 0.05
35 45 -0.02
40 50 -0.13
45 55 -0.19
50 60 -0.04
55 65 0.43
60 70 0.51
65 75 0.87
70 80 0.54
75 85 0.86

TABLE 2 Error Q2 on the Ishigami function of the size of the initial
sample using a variance strategy with 10 points.

4.3 Application on analytical functions
The operating mechanism and catches of the method can be visualized
on the Rosenbrock function—see Fig. 7 . Starting from the σ method:
points are first added close to the top boundary despite the inner delta
space parameter. However, the lack of surrounding points made this

choice fairly legitimate. Other points seem to be located in interesting
regions—where there is a gradient and no points. It can be seen as a
low discrepancy sequence, whichmade its use relevant for studying the
delta space impact in Section 4.2.On the other hand, the LOO-σmethod
does not seem to exhibit a boundary preference. But, on the bottom
left-hand corner, there is an accumulation of points. Indeed, thismethod
relies on the location of the most sensitive point. Considering the sur-
roundings of a strong extremum—as it is the case here—, the method
tends to add points first in this zone preventing further exploration of
the domain and, in this case, totallymisses the second extremum. Lastly,
the LOO-Sobol’ method seems more balanced. Points have been added
preferentially on theX1 parameter axis, as it is slightly themost influent
parameter (STX1

' 0.7).
A convergence study has also been performed. With a fixed total

number of simulations, the size of the initial learning sample was
changed to evaluate the impact of the ratio of the initial sampling
over the total number of samples on the quality of the model. As
in Section 4.2, a Halton sequence was used. The respective parameters
are reported in Table 3 . The Sobol’ indices for the Ishigami function are
found in (38), while for the other functions, a deterministic sample of
100 000 evaluations was used.



8 Pamphile T. Roy ET AL
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FIGURE 6 Response surface ofQ2 function of the initial sample and the inner delta space. Dots represent the simulations.

Function Sample Budget Q2 Total order Sobol’ indices
Rosenbrock 2-D 25 0.82 [0.71, 0.50]
Ishigami 3-D 80 0.85 [0.557, 0.443, 0.244]
g-function 4-D 65 0.66 [ 0.61, 0.29, 0.16, 0.09]

TABLE 3 ReferenceQ2 and Total order Sobol’ indices at a fixed budget using a Halton sequence for the analytical functions.

Results are shown in Fig. 8 . The σ method appears to be one of the
most, in some cases themost, effectivemethod but it also exhibits more
variability. Increasing dimensionality seems only to improve slightly this
behaviour. There are multiple explanations to this phenomenon. The
method relies on the use of an inference about the variance of the
model. Starting from a given sample, if the fitting process does not con-
verge, the prediction of the variance will be far from correct leading
to a wrong resampling. Of course, there is a chance for this new point
location to be relevant, still this can lead to an even worse model or an
overfitting where the model is too closely linked to the outputs, so the
model has memorized only the feature but not learned the underlining
correlation between the data. Lastly, looking at Fig. 9 , even if the points
look well distributed over the parameter space, the pGP model is abso-
lutely wrong. The Gaussian Process reconstruction failed to recover
the response surface of the function whereas a Radial Basis Function
Networksmodel successfully did it.
Theother twomethods share theσ strategy, but thevariability is con-

ditioned by the LOOpoint. Indeed, the former only uses inference about
the predictive variance whereas LOO’s methods take into account the
observedquality of themodel. LOO-Sobol’ is evenmore stable especially
when the contribution of the parameters to the QoI is not even. The
quality evolves quasi-linearly with the initial sample size. This is due to

the initial guess on the indices. The closer the indices are converged, the
better the sizing of the hypercube used by the σ strategy. Indeed, some
dimension of the hypercube could be neglected due to the indices. In the
Rosenbrock case themethodbehaves like LOO-σ, the importance factors
are close enough so that this collapse of dimension does not occur. On
the other hand, with the g-function, the total order Sobol’ indice of the
last input parameter is so small that the algorithm tends not to take into
account this dimension.
For each function, as the initial sample gets close to the budget, the

expected improvement is reduced. This is clear with the Ishigami func-
tion. When the initial sample is too small, the model is so poor that the
points are not added efficiently. On the contrary, if we add an insuffi-
cient number of points, the impact is close to none but still there is an
improvement. From the other cases, the effect of the ratio of the ini-
tial learning sample size over the total budget is not so clear. In 2-D the
impact is null and after that, a ratio> 0.5 seems appropriate.
Thus, setting aside the possible non-fitting of the data, improving

the quality of the surrogate model by resampling the parameter space
appears to be guaranteed in high dimensional cases and using no more
than half of the budget.
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FIGURE 7 Response surface of the Rosenbrock function. In each case, the initial learning sample is composed of 12 simulations and there are 13
resampling points—respectively represented in dots and diamonds.

4.4 LS89 case
4.4.1 Case description
The LS89 case is a blade cascade designed and tested experimentally
at the Von Karman Institute for Fluid Dynamics (VKI) (16). The linear
cascade consists of five high-pressure turbine vanes although only the
center vane is studied. The vane is a 2D extruded profile unlike most
industrial vanes that are much more complex geometrically. It however
remains of great interest because the operating points are representa-
tive of values found in real engines today. This test case represents one
of the largest turbomachinery databases available for the validation of
CFDmodels in complex geometries.

A large variety of operating points have been successfully simulated
until now. Low levels of turbulence injection (< 1%) do not represent an
issue for most solvers (39, 40) using either Reynolds-Averaged Navier
Stokes (RANS) or Large Eddy Simulation (LES). Higher levels of tur-
bulence have also been studied successfully (41) but difficulties arise
for higher Reynolds numbers and larger outlet Mach numbers. Simula-
tions are not able to correctly predict experimentally obtained profiles,
notably the heat transferfieldwhich is of great importance for the blade
life-cycle.
The operating point addressed in this document, selected from

Arts (16), is the MUR235, a very rich case in terms of physics that
presents the above mentioned challenges (high Reynolds and outlet
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FIGURE 8 Convergence ofQ2 of the different methods on each function by varying the initial learning sample size with a fixed budget.

Mach numbers). Figure 10 highlights the main physical interactions in
such a flow. One of themost notable features is the presence of a shock
wave on the suction side of the blade. This shock wave interacts with
a transitional boundary layer due to the highly curved flow, a potential
source of instabilities in the boundary layer which in turn determines
the wake downstream. This wake issues acoustic waves that impact
the neighbour blade affecting the stability of the boundary layer. Also,
there is a high level of free-stream turbulence that undergoes stretch-
ing around the leading edge of the blade which modifies the position of
the boundary layer transition on the suction side (42).
In the original experiments (16), an increase in heat transfer is

observed on the suction side of the blade when a high turbulence inten-
sity level at the inlet (∼ 6%) as well as a large Reynolds number at the
outlet (> 1 · 106) are present. The simulations recover the shock wave

that triggers an abrupt transition of the boundary layer, but turbulent
spots may be found upstream of this position that can contribute to
the overall heat transfer. These spots can be explained due to perturba-
tions in the free-stream turbulence Tu that are capable of trespassing
the sheltering effect of the shear layer and thereby increase the heat
transfer. Turbulence values upstream of the blade are thus of upmost
importance.
The original experiments give only the turbulence intensity level at

an upstream distance from the vane, which is insufficient to charac-
terize the turbulent flow at this location. Recent studies on the same
test bench have measured the integral length scale for the same inten-
sity level (43). In spite of this newly available information, simulations
are not capable of recovering an important part of the heat flux on the
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suction side even when taking the correct length scale (44). Uncertain-
ties concerning the measured values in the experiments, that serve as
boundary conditions in the simulation, appear as a path to be explored.
Apart from the turbulence intensity and the length scale, the angle

of attack α of the incoming flow can also be seen as an uncertain
parameter. There is no information related to this parameter in the
experimental campaigns. In Fig. 11 , the effect of α was numerically
investigated with respect to Tu by studying the heat transfer coeffi-
cient response—hereafter defined as theQoI. Due to the computational
effort required to modify and simulate correctly a case with a modi-
fied integral length scale versus a modification of α, this parameter was
not taken into account. Increasing Tu or α causes an increase of the
QoI and Tu seems to have a larger impact than α. A deeper analysis
would requiremore computations to obtain: (i) a correct response of the
influence of these parameters on the QoI ; (ii) the contribution of each
parameter ; and (iii) the probability density function of the QoI by prop-
agating the uncertainties. Thus, the parameter space for this study was
defined as

Tu ∈ [0, 30%] α ∈ [−5, 5◦]. (22)

4.4.2 Numerical setup
The simulations have been performed using AVBP (45), a validated CFD
LES solver co-developed by CERFACS and IFP-EN. This parallel code
solves the three-dimensional compressible Navier-Stokes equations
for both steady and unsteady reacting flows. The code is capable of
handling hybrid unstructured meshes and allows to address complex
geometries. High-order numerical schemes based on the Taylor-Galerkin
(TTG) family are used (46).

The simulations were performed on a 20 million cells mesh. Five lay-
ers of prisms in thenear-wall region arepresent allowing ahigher aspect
ratio. The mean y+ has a value of' 6.62which limits the physical time
step to 1,94 · 10−8 s. In this context, a wall-resolved computation using
theWALE (47) model is used to take into account the proper turbulence
scaling in the near-wall region. To gather enough statistics, a simulation
time of ∼ 4,1 ms was performed. This lead to a CPU cost, for a single
computation, of ∼ 7500 hours lasting ∼ 5 hours on a cluster of 1440
cores.
The resolution of the mesh and the LES quality must be guaranteed

to be sufficient to capture the complex physics encountered. Indeed, the
interaction between the free-stream turbulence and the boundary layer
requires to carefully mesh the near-wall region. It is reasonable then to
compare the profiles of heat transfer obtained using the mesh for this
UQ study, from here on denoted asM0, to two finermeshesM1 andM2,
see Fig. 12 . The corresponding spatial distributions of y+ are shown
in Fig. 13 for the threemeshes.
The heat transfer coefficient is seen to be different on the pressure

side for the finest mesh (M2). However, on the suction side the coarser
mesh (M0) leads to approximately the same results as the finest mesh
(M2). This suggests that the valueofy+ doesnot have afirst order effect
on the heat transfer coefficient for the meshes considered. The sensi-
tivity to other effects such as turbulence intensity and angle of attack
may thus be sought. Additionally, it can be noted that the shock wave
on the suction side is located at approximately the same position for all
meshes. This implies that the upstream boundary layer is similar in all
cases although the heat transfer coefficient across the shock wave is
affected by themesh refinement.
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FIGURE 10 ∇ρ
ρ

(m−1)with Tu = 30%.

4.4.3 Uncertainty Quantification results
This section presents the comparison between the different resampling
methods on this complex case. In the following, an existing sample com-
prised of 16 simulations is used to generate a Sobol’ low-discrepancy
sequence. As seen in Section 3.1, the quality of Sobol’ sequence is similar
to Halton’s in low dimensional cases. Using this initial set of simula-
tions, the sequence has been continued adding 4 points to give a total
of 20 simulations. Then using the same initial sample, the previous set is
compared to the use of the σ method and the LOO-Sobol’ method. The
LOO-σmethod gives similar results compared to LOO-Sobol’method. It
is not tested on this case. Quality results evaluated by LOOas described
in Section 2.3 are shown in Table 4 .
As demonstrated in Section 4.1, there is no guarantee that the qual-

ity of the model improves when using a refinement strategy other than
continuing the lowdiscrepancy sequence, given a low-dimensional case.
The σ method was only able to improve a little the quality of the ini-
tial design. This improvement was inferior to the simple continuation
of the sequence. However, we observed an improved quality using the

Method Number of Simulations Q̂2

Sobol’ 16 0.638
Sobol’ 20 0.821
σ 20 0.688
LOO-Sobol’ 20 0.856

TABLE4 EstimatedQ2 function of the resamplingmethod compared to
an initial sample of 16 simulations.

LOO-Sobol’ method. The importance factors’ difference between the
two input parameters make it feasible to improve further the quality of
themodel—see Fig. 17 .
The response surfaces of themodels are plotted in Fig. 14 . The heat

transfer coefficient has been integrated over the chord line to obtain
this visualization. The first thing to notice is the correct distribution of
sample points within the parameter space ensuring that most of the
effects are captured. The predictions obtained using the models are
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then found to be in agreement with the observations made previously.
The heat transfer coefficient increases with the turbulence intensity
and is fairly stable regarding the angle of the incoming flow. The mod-
els are said to be additive with respect to the turbulence intensity.
Contrary to the Sobol’ sequence, the LOO-Sobol’ method detected that
the model was sensitive to low values of turbulence intensity. It is this
physical information that helped improve the predictivity quality. In the
following, themodel constructed using the LOO-Sobol’method is used.
Withoutmaking any assumption on theuncertainties, theProbability

Density Functions (PDF) of the input parameters are both defined using
uniform distributions over the parameter space

Tu ∼ U(0, 30%) α ∼ U(−5, 5◦). (23)

Using these PDFs, uncertainties are propagated by 5 000 predictions
of the heat transfer coefficient along the blade. Then the QoI’s PDF is
reconstructed using a kernel smoothing procedure (48, 49). Figure 15
reveals the expected concerning the propagation of such uncertain-
ties to the heat transfer coefficient. As the two input distributions are
uniform and the model is additive, the mean is centred between the
extrema. From the experiments—see Fig. 11 —the envelope of the heat
transfer coefficient is correctly captured except after the shock region.
Indeed, from past experiences, capturing this region requires a value of
y+ ∼ 1− 2 (50).
Finally, the Sobol’ indices have been estimated using 200 000 predic-

tions. As the response surface suggested, the heat transfer coefficient
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is mainly affected by the variation of the turbulence intensity. The spa-
tial evolution of the indices in Fig. 16 , shows a spatial dependency.
On the pressure side, the inflow angle has a higher influence as its
contribution rises to become themost important parameter at the trail-
ing edge. On the suction side, the turbulence intensity contribution is
stable until the shock region. Reaching the trailing edge, the angle con-
tribution increases. Finally, aggregated indices are reported in Fig. 17 .
These indices confirm that the turbulence intensity is the most impor-
tant parameter compared to the inflow angle when studying the heat
transfer coefficient and for the range of angle variations retained. The
turbulence intensity contributes to 70% of the total variance of the
QoI whereas the inflow angle contributes to 30%. This behaviour was

expected as downstream the shock, the incoming level of turbulencehas
little impact. The computation of the second order indices are not pre-
sentedherebecause their values arenegligible in comparison to thefirst
order indices. This is in agreement with the small differences observed
between the first and total order indices. There are no joint effects
between the two parameters.



16 Pamphile T. Roy ET AL

FIGURE 15 Probability Density Function andmoments of the heat transfer coefficient along the chord line of the blade.

5 CONCLUSIONS
Two newmethods have been introduced in this work for resampling the
parameter space in order to improve thepredictivity coefficient of a sur-
rogate model: namely LOO-σ and LOO-Sobol’methods. These methods
do not only take advantage of the capability of Gaussian Process mod-
els to infer a prediction variance, but they use information about the
observed quality of the model. It was shown that an improvement of
the quality of the model is guaranteed in high dimensional cases. Com-
pared to a resamplingmethod based on the predicted variance only, the
proposed methods behaviour appears to be more stable and reliable.
We also found that the ratio of the initial learning sample space over
the total budget of function evaluation should remain greater than 0,5.
Which is to say that nomore than half of the budget should be allocated
to resampling the parameter space. In any case, the initial quality of the
model should be reasonable when considering these techniques.
AfirstUncertaintyQuantification LES study of the LS89 is presented.

The parameter spacewas comprised of the turbulence intensity and the
inflow angle. In order to increase the quality of the surrogatemodel, the
LOO-Sobol’methodwas used to refine the parameter space.We showed
that it performed better than continuing the sampling sequence. Apart
from an analysis of the variance, the model was used to propagate
uncertainties. This study reveals that although the turbulence intensity

is themain factor impacting the heat transfer coefficient, there is spatial
evolution of its contribution along the blade.
In terms of conclusions, by taking into account the physics in this pro-

cess, the proposedmethodswill help build bettermodels at lower costs.
This will allow also Uncertainty Quantification of high-dimensional or
expensive cases to bewithin reach.
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