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Abstract

We have developed two complementary methods for using ensemble perturbations to de-
fine the background-error covariance matrix (B) in the variational ocean data assimilation
system (NEMOVAR) used for the Coupled ECMWF ReAnalysis (CERA). The first method
uses ensembles to estimate the variances and correlation length scales (diffusion tensor) of
the diffusion-based background-error covariance model. To account for sampling error, the
parameters are filtered using an objective method that depends on the ensemble size. The sec-
ond method uses ensembles to construct a low-rank sample covariance matrix and includes an
objective procedure to localize this matrix to eliminate remote correlations associated with sam-
pling error. Hybrid variants of both methods have also been developed. For the first method,
the hybrid formulation involves linearly combining the ensemble estimates of the covariance
parameters with modelled representations of those parameters. For the second method, the
hybrid formulation involves linearly combining the localized sample covariance matrix with
the full-rank matrix described by the parameterized covariance model. The correlation model,
localization operator and parameter filter are all based on an algorithm that involves solving
an implicitly formulated diffusion equation. We have completely revised the diffusion model
to make it more general and to improve the computational efficiency of the implict solver on
high-performance computers.

All methods have been fully integrated into the NEMOVAR source code maintained at
ECMWF. The developments have been validated technically and scientifically, mainly using
single cycle assimilation experiments with the global ocean configuration at 1◦ horizontal reso-
lution (ORCA1). Results from validation experiments are provided in this report. Multi-cycle
ocean reanalysis experiments are ongoing to evaluate the impact of flow-dependent background-
error variances derived from ensembles. These are being conducted with a global configura-
tion at 1/4◦ resolution (ORCA025) as well as ORCA1. Extensive experimentation using the
ECMWF system will be necessary to evaluate the different options for defining B from en-
sembles and to determine the best cost-effective combination. A pragmatic strategy for pro-
gressively improving the representation of B using ensembles is proposed in the concluding
section.

∗Report prepared for the ERA-CLIM2 EU-FP7 project.
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1 Introduction

This deliverable was concerned with developing methods for using ensembles to improve background
error covariances in the ocean data assimilation component (NEMOVAR) of CERA. In addition
to scientific developments, a major part of this deliverable was to build the Fortran code infras-
tructure in NEMOVAR to allow for hybrid ensemble-variational data assimilation. The scientific
developments are described in Section 2, while the technical changes required to NEMOVAR are
discussed in Section 3. Section 4 discusses a strategy for including the developments progressively
in the CERA system, as well as areas of future research for improving the computational efficiency
of the system.

The baseline for the developments described in this report is the background-error covariance
matrix (B) used in the ocean component of the CERA system. Section 1.1 highlights its main
features. The baseline B has been used for the ocean reanalysis system ORAS4 as well for CERA.
Section 1.2 presents some results from ORAS4 that underscores the need to improve B in a re-
analysis framework and where an ensemble of data assimilations can be expected to provide that
improvement.

1.1 The background-error covariance matrix (B) used in CERA

The ocean data assimilation system used in CERA (NEMOVAR version 3.4) employs a purely
modelled form of the background-error covariance matrix given by

Bm = Kb D̂1/2
m Ĉm D̂1/2

m︸ ︷︷ ︸
B̂m

KT
b (1)

where Kb is a multivariate balance operator that acts on the control variables [Balmaseda et al.,

2013; Weaver et al., 2005], D̂m = D̂
1/2
m D̂

1/2
m is a diagonal matrix containing estimates of the

background-error variances of the control variables, and Ĉm is a correlation matrix that is block-
diagonal (univariate) with respect to the control variables. The subscript ‘m’ indicates that the
covariances are modelled. The ‘hat’ on matrices indicates that these quantities are defined for
the control variables, not the state variables. For the 3D-Var system used in CERA, the control
variables consist of temperature (T ), unbalanced salinity (Su) and unbalanced sea-surface height
(ηu). In the CERA system, there is no assimilated observational information about velocity (either
direct or indirect observations), so there is no need to introduce control variables for the unbal-
anced components (uu and vu) of horizontal velocity. Horizontal velocity increments are completely
determined by the balance operator.

The univariate covariance matrix for the control variables is the matrix denoted by B̂m in (1).

The specification of D̂m is somewhat heuristic, involving physically-motivated relations that de-
pend on the background state and empirically-tuned parameters [Balmaseda et al., 2013; Mogensen

et al., 2012; Weaver et al., 2003]. The block components of Ĉm are modelled using a symmetric
product of one-dimensional (1D) implicit diffusion operators to approximate a multi-dimensional
Gaussian correlation matrix [Mirouze and Weaver, 2010; Waters et al., 2015]. Like the variances,
the correlation length scales are also specified heuristically [Mogensen et al., 2012].

There are three points worth highlighting regarding the balance operator Kb. First, it is derived
from a combination of strictly linear balance relations (e.g., geostrophy) as well as nonlinear balance
relations (Temperature-Salinity (T-S) relation and equation of state) that are linearized with respect
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to a reference state. The nonlinear T-S relation is not explicitly available, so cannot be used to
derive a linearized T-S relation. Instead, the linearized T-S relation has been defined directly,
using a reference state-dependent expression designed to adjust salinity in response to changes in
temperature, in a way that approximately preserves the T-S water mass properties of the reference
state [Ricci et al., 2005]. Not having access to the underlying nonlinear T-S relation has implications
on the way we define the ensemble perturbations, as discussed in Section 2.2. Second, the structural
form of Kb, which is lower block triangular, means that the inverse balance operator K−1b is readily
available and easy to apply. As such, it is possible to estimate statistics of the assimilation control
variables from ensembles of the model state vector (temperature, salinity, and sea-surface height
(SSH) being the relevant state variables for the CERA 3D-Var system). Third, the fact that the
reference state, which is initially taken to be the background state, can be updated on the outer
loops of the variational minimization algorithm means that Bm will change from one outer loop
to the next. This has implications on the minimization algorithms used in NEMOVAR [Gürol
et al., 2014]. For practical convenience, and to allow for consistent re-linearization, the balance
operator is effectively included in the (generalized) observation operator rather than in Bm (see
the cost function formulation in Section 2 of Mogensen et al. [2012]). While some parameters of

the univariate covariance model (B̂m) are also state-dependent, they are fixed to their background
values when using multiple outer loops. This is done to ensure perfect consistency when using
different minimization algorithms available in NEMOVAR.

1.2 Evidence of the need to improve B in reanalysis

Differences between the observations and their model-estimated counterparts before and after as-
similation (the innovations and analysis residuals, respectively) provide valuable information for
assessing the performance of the data assimilation system. This information is also important for
evaluating the consistency of the error covariances prescribed in the system [Desroziers et al., 2005].
Figure 1 shows an example of a consistency check based on Desroziers diagnostics applied to the
ECMWF ORAS4 reanalysis [Balmaseda et al., 2013]. The version of NEMOVAR used for ORAS4
was very similar to that used for the ocean component in CERA. The figure shows a 40-year time
series of the globally averaged observation-space representations of the specified and expected tem-
perature background error standard deviations (BESD) in the upper 50 m (blue and red curves,
respectively). The specified BESD are parameterized in terms of the vertical temperature gradient
in the background state. Discrepancies between the specified and expected BESD are an indication
of sub-optimality in the error covariance specifications. Seasonal variations in the specified and
expected BESD are reasonably consistent. However, there is a noticeable decreasing trend in the
expected BESD that is not present in the specified BESD. This trend roughly mirrors the increasing
trend in the number of observations (black curve) and reflects the fact that the background state is
becoming steadily more accurate, especially in the final decade as a result of the assimilation of Argo
data. This important influence of the observation network on background error is not captured by
the state-dependent parameterization used in ORAS4 and suggests that improved background error
estimation methods are necessary. Ensemble data assimilation provides the appropriate framework
for making such improvements.
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Figure 1: Time series of monthly-averaged temperature background-error standard deviations
(BESD) in the ECMWF ORAS4 reanalysis [Balmaseda et al., 2013]. (1) the specified BESD in the
assimilation system (blue curve); and (2) the expected BESD as determined using the Desroziers
et al. [2005] method (red curve). The black curve shows the number of observations as function of
time (right axis). (From Martin et al. [2015]).
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2 Scientific description of the developments

2.1 A revised correlation model

The formulation of the correlation operator has been entirely revised to be more general, to produce
more realistic correlations near coastlines, and to employ an implicit solver with improved scalability
properties on high-performance computers. This work is documented in detail in two articles that
were prepared during the project [Weaver et al., 2017, 2016]. A brief summary is given below.

Each (univariate) block correlation matrix of Ĉm, associated with the variable χ, has the sym-
metric form

Cχ = Γ1/2 L1/2 W−1(L1/2
)T

Γ1/2 (2)

where L = L1/2 L1/2 is a self-adjoint, M -step diffusion filter, W is the matrix of grid-dependent
weights associated with the discrete inner product with respect to which L is self-adjoint (i.e.,
L = W−1 LT W), and Γ = Γ1/2Γ1/2 is a diagonal matrix of normalization factors to ensure that
the diagonal elements of Cχ are approximately equal to one. In continuous form, applying Eq. (2)
to a vector ψ0, the discrete representation of the d-dimensional continuous variable ψ0 , involves
solving the elliptic equation

(1−∇ · κ∇)
M
γ−1/2 ψ

M
= γ1/2 ψ0 , (3)

where M is a positive integer, γ1/2 is a normalization function, ∇· and ∇ are the d-dimensional
divergence and gradient operators, and κ is the local diffusion tensor. For constant κ, the kernel
of the integral solution of (3) admits correlation functions from the Matérn class [Guttorp and
Gneiting, 2006]:

c
d
(r) = γ

d
rM−d/2KM−d/2

(
r
)

(4)

where r = ‖r‖κ−1 = ‖s− s′‖κ−1 =
√

(s− s′)T κ−1 (s− s′) is a non-dimensional distance between
points s and s′ in Rd, KM−d/2(·) is the Bessel function of the second kind of order M − d/2, and γ

d

is a normalization constant. The directional length scales of the correlation function are controlled
by κ, which is a d × d symmetric positive-definite (and hence invertible) matrix. The fatness of
the tails of the correlation functions, which in spectral space is related to the decay rate of the
correlation spectrum at high wavenumbers, is controlled by the pseudo-time parameter M .

In the CERA system, L is split into a product of 1D implicit diffusion operators that act
separately in each of the coordinate directions defined by the three-dimensional (3D) model grid.
This can be considered as an approximation of Eq. (3). It is invoked to simplify the requirements
of the implicit solver: each 1D problem involves a small linear system matrix that can be solved
using a direct method based on Cholesky decomposition. In the revised correlation model, we do
not approximate the elliptic equation, but rather seek an approximate solution using an iterative
solver. The solver employed is the Chebyshev iteration; it is a linear solver that requires as input
an estimate of the extreme eigenvalues of the implicit diffusion system matrix. The eigenvalues are
pre-computed using a Lanczos algorithm. The attractive properties of the Chebyshev solver for
implicit diffusion-based correlation modelling in a global ocean model are discussed in Weaver et al.
[2017, 2016]. An example of how the revised model improves the representation of correlations near
complex geometry is illustrated in Fig. 2.
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(a) 2×1D (b) 2D

Figure 2: 2D correlations with respect to a point located next to the Australian coastline in the
Bass Strait in ORCA1, produced by a diffusion operator with (a) the 2×1D formulation used by
NEMOVAR in CERA; and (b) a newly developed unapproximated 2D formulation for NEMOVAR.
The contour interval is 0.2 and the maximum value is 1.0. (From Weaver et al. [2016]).

2.2 Constructing ensemble perturbations for estimating B

ECMWF produces an ensemble of ocean analyses using a set of perturbed background states and
set of perturbed observations as input to each 3D-Var analysis. The set of perturbed analysis
increments is then used to produce a set of perturbed ocean model forecasts where each forecast is
driven by its own set of perturbed forcing fields [Zuo et al., 2017]. The ocean model forecasts at a
particular lead time constitute the ensemble of background states to be used for the next 3D-Var
analysis cycle. The ensemble covariance of background states can provide valuable flow-dependent
information for specifying B. Estimating the ensemble covariance of the control variables requires
deriving ensemble perturbations for the control variables from the ensemble perturbations of the
state variables. The way this has been implemented in NEMOVAR is outlined in this section.

Let {xp}, p = 0, . . . , Ne, denote an ensemble of background states where ensemble member
p = 0 corresponds to a deterministic (unperturbed) background state and the remaining members
p = 1, . . . , Ne to the set of perturbed background states. An ensemble of centred control vector
perturbations can be generated from the Ne + 1 members using the relation

ε′p = K−1b (xp)−
1

Ne + 1

Ne∑
l=0

K−1b (xl), p = 0, . . . , Ne (5)

where K−1b is the inverse of the nonlinear balance operator. As mentioned earlier, however, the
nonlinear T-S balance relation is not available, so direct use of Eq. (5) is not possible. To circum-
vent this problem, we remove the unperturbed member x0 from the ensemble and use it as the
reference state for linearizing Kb. This allows us to define an ensemble of Ne centred control vector
perturbations as

ε′p = K−1b ε′p, p = 1, . . . , Ne,
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where K−1b is the inverse of the balance operator (linearized about x0), and

ε′p = xp −
1

Ne

Ne∑
l=1

xl (6)

are the centred state-vector perturbations.

2.3 Estimating covariance model parameters from ensemble perturba-
tions

In this section we describe how ensemble perturbations are used to define the variances and correla-
tion length scales of the background-error covariance model. To clarify notation, we rewrite Eq. (1)
as

Be
m = Kb

(
D̂e

m

)1/2
Ĉe

m

(
D̂e

m

)1/2︸ ︷︷ ︸
B̂e

m

KT
b (7)

where the superscript ‘e’ indicates that the variance matrix D̂e
m and parameters of the correlation

model Ĉe
m are specified from ensembles.

2.3.1 Variances

An unbiased estimate of the background-error variances from the ensemble is given by

var(ε′) =
1

Ne − 1

Ne∑
p=1

(
ε′p ◦ ε′p

)
= ε′ ◦ ε′

where ◦ denotes the Schur (element-by-element) product of two vectors, and ( · ) is shorthand
notation for the normalized summation over p. These can be used to define the diagonal elements
of D̂e

m.

2.3.2 Local correlation tensor

To use the ensemble to estimate the correlation matrix is much more challenging. Rather than
trying to estimate the full matrix, here we focus on estimating the local curvature of the diffusion-
implied (Matérn) correlation function near its peak. The curvature of a locally homogeneous and
at least twice differentiable correlation function C(r) is described by the correlation Hessian tensor
[Chorti and Hristopulos, 2008; Hristopulos, 2002], H = H(s), where r = s − s′ is the separation
vector between points s and s′ in the domain. In Rd, H is a symmetric, positive-definite d × d
matrix with elements

Hmn(s) = − ∂
2C(r)

∂rm∂rn

∣∣∣∣
r=0

, m = 1, . . . d; n = 1, . . . , d,

where s = (s1, . . . , sd) and r = (r1, . . . , rd) = (s1 − s′1, . . . , sd − s′d). The correlation Hessian tensor
has also been referred to as the local correlation tensor (LCT) in the data assimilation literature
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[Michel et al., 2016]. We will use this alternative terminology in what follows. The LCT is closely
related to the local diffusion tensor κ of the diffusion-based correlation operator. For constant κ,
Weaver and Mirouze [2013] show that for the Matérn function (4),

κ =

(
1

2M − d− 2

)
H−1. (8)

In 1D, H−1 = L2 is a scalar where L =
√
−∂2C(r1)/∂r21|r1=0 is the 1D correlation length-scale

following the usual definition given in Daley [1991]. For this reason, Weaver and Mirouze [2013]
refer to H−1 as the Daley tensor.

In practice, H = H(s) can be approximated locally from sample statistics derived from the en-
semble. Three formulae have been proposed in the literature. For a locally homogeneous correlation
function, it can be shown that [Belo Pereira and Berre, 2006; Weaver and Mirouze, 2013]

H(s) =
∇ε′(s) (∇ε′(s))

T − ∇σ(s) (∇σ(s))
T(

σ(s)
)2 (9)

where ∇ ≡ (∂/∂s1, . . . , ∂/∂sd)
T, ε′(s) is the continuous analogue of the centred random error

vector ε′, and σ(s) =

√
(ε′(s))

2
is the standard deviation of the error. A practical difficulty with

Eq. (9) for numerical applications is the minus sign in the numerator, which can destroy the positive
definiteness of H(s) and hence lead to problems computing (H(s))−1. Assuming that σ(s) is slowly
varying compared to ε′(s) then the second term in the numerator can be neglected, resulting in the
simpler expression [Sato et al., 2009]

H(s) ≈ ∇ε
′(s) (∇ε′(s))

T(
σ(s)

)2 . (10)

However, if σ(s) is not slowly varying then neglecting the second term can lead to a significant bias
in the estimate H(s), as illustrated in the idealized experiments of Weaver and Mirouze [2013]. By
introducing normalized perturbations ε ′(s) = ε′(s)/σ(s), Michel [2013] remarked that Eq. (9) can
be written in the compact form

H(s) = ∇ε ′(s) (∇ε ′(s))
T
, (11)

which, by construction, ensures positive definiteness of H(s). Equation (11) is the formulation that
has been implemented in NEMOVAR.

The ensemble average of the product (∂ ε ′l /∂sm)(∂ ε ′l /∂sn) at a given point s provides an esti-
mate of Hmn(s) for a given control variable. Let Gm, m = 1, . . . , d, be the matrix representation
of the discretized component derivative ∂/∂sm. For each ensemble member, we need to compute
the gradient product at each of the N points on the analysis grid. The values can be assembled in
an N -dimensional vector

gmn = Gmε
′ ◦Gnε

′. (12)

The ensemble average then provides an estimate of the terms needed to compute (11):

hmn = gmn. (13)
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For a 3D control variable, there are 6 N -dimensional vectors that need to be estimated to define
the full symmetric tensor, and an additional N -dimensional vector to define the variances. The
estimation problem is thus of O(N), which is much smaller than the original O(N2) problem of
estimating the entire covariance matrix for the 3D control variable. Furthermore

In NEMOVAR we use centred finite differences to evaluate the derivatives. This requires some
care, especially to evaluate the off-diagonal tensor elements. The numerical details are provided
in the Appendix. For 3D control variables, only the off-diagonal elements of H in the horizontal
plane (H12 and H21) are currently accounted for (i.e., we set H13, H23, H31 and H32 to zero). Let
Dmn denote the elements of the d× d matrix defining the local Daley tensor H−1. For diagnostics
purposes, it is useful to represent the Daley tensor as [Chorti and Hristopulos, 2008; Hristopulos,
2002]

H−1 = RLRT (14)

where R is a rotation matrix, and L = diag
(
L2
1, . . . , L

2
d

)
is a diagonal matrix whose components

L2
1, L2

2 etc. are the square of the length-scales along the principal axes of the ellipse describing the
local anisotropy in the correlations. In particular, consider the 2D case where R is defined by a
rotation angle R12 measured positive counter-clockwise from the s1 axis, and L = diag

(
L2
1, L

2
2

)
. In

terms of the Daley tensor parameters D11, D22 and D21 = D12, we can derive the relations

L2
1 =

1

2
(D11 +D22 + F ) , (15)

L2
2 =

1

2
(D11 +D22 − F ) , (16)

R12 =
1

2
cos−1

(
D11 −D22

A12

)
(17)

where

F =

√
(D11 −D22)

2
+ 4D2

12. (18)

Given estimated values of D11, D22 and D21 = D12, the degree of anisotropy in the correlations
can be determined by plotting the aspect ratio A12 = L1/L2 and rotation angle R12 as a function of
grid-point. This will be illustrated in the next section using ensembles from the ECMWF system.
Finally, for 3D fields, we simply have

L2
3 = D33 (19)

since we have neglected cross-correlations with the vertical coordinate.
Since the diffusion operator does not currently account for general anisotropic diffusion (i.e.,

non-zero off-diagonal elements in κ), we cannot use the estimated off-diagonal elements of H−1.
We have allowed for the following three options for defining the diagonal horizontal elements of κ,
via Eq. (8), given H−1.

1. Ignore the non-diagonal elements in the Daley tensor (D12 = D21 = 0):

κ11 −→ D11

κ22 −→ D22

}
.

2. Ignore the rotational anisotropic component in the diagonalized form of the Daley tensor
(R12 = 0):

κ11 −→ L2
1

κ22 −→ L2
2

}
.
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3. Assume the correlations are locally isotropic with scale equal to the geometric mean of L1

and L2:
κ11 −→ L1L2

κ22 −→ L1L2

}
.

The first and second options are adequate approximations only when the principal axes of H−1 are
approximately aligned with the coordinate axes of the model. There will clearly be regions where
this is not the case (e.g., near coastlines). It is easy to see that by ignoring rotational anisotropy, the
spatial extent of the correlations will be underestimated. The third option is a compromise, which
will underestimate the length scale in one direction and overestimate it in the other direction, when
L1 and L2 differ. While accounting for a fully non-diagonal κ is desirable, it requires non-trivial
extensions to the diffusion operator and would likely substantially increase the computational cost
of applying the diffusion operator. The developments described in Section 2.4 are thought to be a
better way forward for accounting for fully anisotropic correlations.

2.3.3 Dealing with sampling error

Even though the covariance model allows us to reduce the number of tunable covariance parameters
significantly, the estimation problem is still of O(N) where N is typically several orders of magnitude
greater than the number of ensemble members Ne. As such, sampling error will still be large and
must be filtered to obtain usable estimates for the data assimilation system.

One possibility to reduce sampling error is to time average the ensemble perturbations. For
example, Daget et al. [2009] employed a 90-day moving average when estimating background-
error variances from a 8 perturbed-member ensemble in a low-resolution global ocean configura-
tion (ORCA2). The possibility of using a moving-average time filter has been made available
in NEMOVAR. While time-averaging reduces sampling error, it comes at the expense of filtering
precious flow-dependent information in the background-error variances.

A better way of reducing sampling error is with an objective spatial filter. Ménétrier et al.
[2015a] derived optimality criteria for the filtering of sample variances by combining theoretical
results from optimal linear filtering and centred moments estimation. In practice, the optimality
criteria translate into the following requirements on the design of the spatial filter:

µS[v̂] = µS[ṽ]

C = 0

}
(20)

where ṽ is the raw variance, v̂ is the filtered variance, µS[ · ] denotes spatial average, which is used
as a practical substitute for the mathematical expectation operator, and C is an optimality function.
Assuming a non-Gaussian (NG) error distribution, the optimality function C = CNG is

CNG = µS[ṽ ◦ ṽ] − Ne(Ne − 2)(Ne − 3)

(Ne − 1)(N2
e − 3Ne + 3)

µS[ṽ ◦ v̂]

− N2
e

(Ne − 1)(N2
e − 3Ne + 3)

µS[ξ̃] (21)

where ξ̃ is the raw fourth-order moment, and ◦ denotes Schur product. The optimality function
C = CG for Gaussian (G) errors has a simpler form:

C G = µS[ṽ ◦ ṽ] −
(
Ne + 1

Ne − 1

)
µS[ṽ ◦ v̂]. (22)
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The first condition in (20) requires that the filter is mean preserving. To satisfy the second condi-
tion, we assume that the filter is homogeneous and isotropic with a single, adjustable length-scale
parameter Lf ; CNG or CG is then considered to be a function of Lf only. As shown in Appendix C
of Ménétrier et al. [2015a], CNG and CG are both monotonically increasing functions of Lf if the
spectral coefficients of the filter decrease monotonically when the values of Lf increase. With no
filtering (Lf = 0), the values of CNG and CG are negative. The zero value of CNG or CG is thus
achieved with a unique value of Lf . The objective filtering scale L∗f can be found iteratively using
a bisection method.

The filtering algorithm has been implemented in NEMOVAR, where we have taken into account
both types of optimality functions, CNG and CG. For the filter, we use a constant-cofficient 2D
implicit diffusion operator. The Matérn-like smoothing kernels implied by this filter satisfy the
conditions underlying the optimality criteria (20). For 3D fields, the filter is applied independently
in each model level k to determine a globally averaged filtering scale L∗f (k). As in the correlation
operator, the Chebyshev iteration is used as the implicit solver in the diffusion operator. Since the
diffusion coefficient (filtering scale) is optimized, the extreme eigenvalues of the system matrix must
be recomputed on each iteration of the bisection method. A Lanczos algorithm requires solving
the system to estimate the eigenvalues, so is clearly inappropriate for this application where only
one solve is required per iteration of the bisection method. Instead, we employ the simpler Power
Method to provide an approximate estimate of the maximum eigenvalue. The minimum eigenvalue
is approximately equal to one, so does not need to be explicitly computed. Yet another approach is
to use an analytical estimate of the maximum value. Weaver et al. [2016] present an approximate
expression for the maximum eigenvalue of the 2D system matrix in R2 under the assumption of
uniform resolution and constant diffusion coefficients in the x and y directions. NEMO employs a
non-uniform curvilinear grid where the horizontal resolution at grid point (i, j) is defined by scale

factors e1(i, j) and e2(i, j). For a constant diffusion coefficient κ(k) =
(
Lf(k)

)2
/(2M − 4) in level

k, we estimate the maximum eigenvalue in each level from the expression (cf. Eq. (22) in Weaver
et al. [2016])

λmax(k) ≈ 1 + 4κ(k) max
i,j

(
1(

e1(i, j)
)2 +

1(
e2(i, j)

)2
)
. (23)

This cheaper approach produces very similar estimates to those of the Power Method.
Figure 3 illustrates the convergence properties of the algorithm when filtering temperature

error variances estimated with different ensemble sizes. The ensembles have been produced for the
ORCA1 configuration for the date 04/06/2011, using the ensemble-generation procedure developed
for ECMWF’s Ocean ReAnalysis System 5 (ORAS5) [Zuo et al., 2017]. The algorithm converges
to an acceptably accurate filtering scale in less than 10 iterations. Here, the algorithm is stopped
when the length-scale increment is less than 0.01◦ (1.1 km), although a less stringent criterion would
probably be acceptable. Similar results are obtained when using the non-Gaussian (upper panels)
and Gaussian (lower panels) optimality functions, except for the small ensemble size (Ne = 5) where
a slightly larger filtering scale is obtained with the non-Gaussian optimality function (1.4◦ compared
to 1.2◦). The relative insensitivity to the Gaussian and non-Gaussian formulations is likely linked
to the low resolution of ORCA1. As expected, the objective filtering scale decreases when the
ensemble size increases. The raw and filtered temperature standard deviations with the 11-member
ensemble are shown in Fig. 4. The standard deviations are largest in the tropics and in the Gulf
Stream region. Filtering eliminates small-scale sampling noise present in the raw standard deviation
estimates, and results in the maximum value being reduced from 1.9 K to 1.0 K. After filtering, the
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standard deviations still exhibit significant spatial variability.
It seems unlikely that the filtering scale in each level should be constant, especially with high

resolution (eddy permitting/resolving) configurations and non-uniform grids. This constraint can
be relaxed by splitting the domain into smaller regions and estimating the objective filtering scale
separately in each region. Ménétrier et al. [2015b] used this approach in a convective-scale numer-
ical weather prediction model. While this is a desirable refinement to the algorithm, it is more
complicated and has not yet been implemented in NEMOVAR. Our experience with the single
filtering scale version of the algorithm has shown that its convergence properties are quite sensitive
to grid-points near boundaries. To alleviate this problem, we currently ignore all ocean grid-points
within 500 km of land boundaries when optimizing Lf .

The objective filtering algorithm can also be applied to the LCT, although this must be done
with some care to maintain positive definiteness of the LCT and to avoid violating assumptions in
the underlying optimal filtering theory. We follow the basic approach of Michel et al. [2016] (their
“COV” method). First, as with a standard covariance matrix, we factor the LCT into a product
of a matrix of “standard deviations” with diagonal elements

√
H11 and

√
H22, and a “correlation”

matrix with diagonal elements equal to one and off-diagonal elements equal to H12/
√
H11H22. This

factorization allows us to determine different filtering scales for the diagonal and cross-components
of H, while preserving positive definiteness. The objective filtering algorithm cannot be applied
directly to the derivative products involving the normalized perturbations ε̂ ′ because of the presence
of σ in the denominator (the sample mean of these terms are not normal “variances”). To counter
this problem, Michel et al. [2016] suggest a suboptimal procedure that involves first applying the
algorithm to the derivative products involving the unnormalized perturbations ε ′ to determine
objective filtering scales L∗11 and L∗22 for the respective elements H11 and H22 in the approximate
expression (10), and then to use these filtering scales to filter H11 and H22 in the unapproximated
expression (9). For H12/

√
H11H22, the filtering scale is set to L∗12 =

√
L∗11L

∗
22, the geometric mean

of the objective filtering scales for H11 and H22.
Results for the filtered 100 m depth temperature tensor elements with the 11-member ensemble

are shown in Fig. 5. The elements are displayed in terms of the principal axes L1 and L2, aspect
ratio A12 = L1/L2, and rotation angle R12 of the Daley tensor (Eqs (15)–(18)). Largest L1 scales
tend to be in the tropical regions whereas the smallest L1 scales tend to be in boundary current
regions and in the southern oceans (Fig 5a). In these regions where the L1 scales are small, the L2

scales also tend to be small (Fig. 5b). The L2 scales are also small in the equatorial waveguide. In
this region the aspect ratio A12 is noticeably large (Fig. 5c) and the rotation angle is small (Fig. 5d),
reflecting pronounced east-west anisotropy. East-west anisotropy near the equator is accounted for
in the parameterized diffusion tensor using a simple analytical function of latitude, with a maximum
aspect ratio of 3.3 directly at the equator (not shown). This is roughly consistent with the aspect
ratio from the ensemble estimates although the latter has much more spatial variability and can
have much larger values locally (the maximum value is 22.6).

While the basic patterns in L1 and L2 seem reasonable, the values are still quite noisy. The fact
that they are noiser than the ensemble estimates of the standard deviations is perhaps not surprising
since the numerical computation of H, which involves derivatives of perturbations, is inherently
noisy. Furthermore, the filtering scales obtained using the objective filtering procedure seem to
be underestimated, with values of 0.52◦ for H11 and 0.38◦ for H22. At many grid points, these
scales fall well below the local resolution. In level 10, the minimum and maximum grid sizes, as
defined by the geometric mean of the local horizontal scale factors, is 0.21◦ and 0.96◦, respectively.
Besides providing limited filtering, using below-grid filtering scales in the diffusion operator can
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(c) Gaussian
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(d) Gaussian

Figure 3: Values of the objective filtering scale (Lf in degrees where 1◦ ≈ 111 km) and of the
optimality function (C) as a function of iteration of the bisection method for temperature error
variances at approximately 100 m depth (model level 10) estimated with different ensemble sizes
with ORCA1 (see legend). (a)-(b) Non-Gaussian case (Eq. (21)); (c)-(d) Gaussian case (Eq. (22)).
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(a) Raw (b) Filtered

Figure 4: Temperature error standard deviations (K) at approximately 100 m depth (model level
10) estimated from an 11 perturbed-member ensemble with ORCA1. (a) Raw sample estimate; and
(b) sample estimate obtained after filtering the variances with an objectively determined filtering
scale of 0.83◦ (92 km). The filter scale is taken from the Gaussian case in Fig. 3c (red crosses). The
maximum values of the raw and filtered standard deviations are 1.9 K and 1.0 K, respectively.

be an additional source of numerical noise [Weaver and Courtier, 2001]. It is not clear what is
responsible for the apparent under filtering: it could be related to problems with assumptions in
the heuristic method of Michel et al. [2016], or it could point to the need to estimate geographically
dependent filtering scales.

Besides being somewhat noisy, the ensemble-estimated correlation scales can lead to practical
difficulties when applying them in the diffusion operator. First, as can be seen in Figs. 5a and b,
the scales can be quite large locally. Large scales will increase the condition number of the implicit
diffusion system matrix, and can result in slower convergence of the Chebyshev iteration solver
[Weaver et al., 2016]. Second, updating the correlation scales on each cycle of the data assimilation
system would require re-estimating the normalization factors of the diffusion operator to ensure
unit-amplitude correlations. When there is large spatial variability in the scales, as in Figs. 5a and
b, the accuracy of analytical methods to approximate the normalization factors will be poor. In such
cases, randomization with a possibly large sample of random vectors would be needed to obtain
an adequate approximation [Weaver and Courtier, 2001]. Both of these issues may significantly
increase the computational cost of the diffusion algorithm. A more practical way of exploiting the
ensembles for this problem may be to use a climatological estimate of the scale tensor (i.e., an
ensemble average over many cycles of the data assimilation system). The greater effective sample
size would reduce sampling error and there would be no need to re-compute normalization factors on
each cycle, although this simplification would be achieved at the expense of losing flow-dependent
information on the background-error correlation scales.

The ensemble estimate of L3 for temperature at 5 m depth (level 1) is shown in Fig. 6a. As might
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(a) L1 (b) L2

(c) A12 (d) R12

Figure 5: The principal axes (a) L1 (Eq. (15)) and (b) L2 (Eq. (16)), (c) the aspect ratio
A12 = L1/L2, and (d) the rotation angle R12 (Eq. (17)), associated with the local Daley tensor
H−1 (Eq. (14)) for background-error temperature at approximately 100 m depth in ORCA1. H
has been estimated from an 11-member ensemble using Eq. (11). The elements of H have been
filtered using the objective procedure of Michel et al. [2016]. The objectively-estimated filtering
scales were 0.52◦ for H11, 0.38◦ for H22, and 0.44◦ for H12. The scale in panels (a) and (b) is in
kilometres; the scale in panel (b) is dimensionless; the scale in panel (c) is in degrees.
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(a) L3 (b) Background mixed-layer depth

Figure 6: (a) The length of the principal axis L3 (Eq. (19)) of the local Daley tensor for background-
error temperature at approximately 5 m depth in ORCA1. The LCT element H33 has been filtered
using the objective procedure of Michel et al. [2016]. The objectively-estimated filtering scale was
0.75◦. For comparison, the background mixed-layer depth is shown in panel (b). The scale in both
panels (a) and (b) is in metres.

be expected, the spatial patterns closely match those of the background mixed-layer depth shown
in Fig. 6b. The vertical length scales are generally small in the northern hemisphere and large in
the southern hemisphere, consistent with shallow mixed-layer depths in the northern hemisphere
and deep mixed-layer depths in the southern hemisphere in the boreal spring/summer. In regions
where the mixed-layer depth is deep, the magnitude of L3 can be much larger than the mixed-
layer depth itself. However, the magnitude of L3 can change rapidly with depth, especially near
the base of the mixed layer. In the reanalysis used to generate the ensembles, the background-
error vertical correlation length scales were parameterized to be proportional to the local vertical
grid size. Waters et al. [2015] developed an alternative vertical length-scale parameterization in
NEMOVAR, in terms of the background mixed-layer depth. Figure 6 indicates that it would be a
sensible parameterization to employ in future reanalyses.

2.3.4 Inflation and hybrid covariance parameter formulation

The dispersion of an ensemble tends to be underestimated when Ne is small and when there are
deficiencies in the ensemble-generation procedure (e.g., neglected model error sources). To com-
pensate for this problem, we allow for the ensemble perturbations to be inflated by a small amount
with respect to their mean. That is, we let

ε′l → r ε′l

where r is a global inflation factor greater than one. The operation → means “replace with”. In
NEMOVAR, the inflation factor is implemented as a factor multiplying the ensemble estimate of the
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background-error standard deviations. Furthermore, for 3D fields, the inflation factor is allowed to
be specified differently in each model level. The inflation factor can be estimated in different ways;
e.g., by using observation-space diagnostics to compare the ensemble spread with the expected
background-error standard deviations [Desroziers et al., 2005], or by comparing the spread to the
root-mean-squared error of the ensemble mean [Leutbecher, 2009].

Let vm and ve be vectors containing the parameterized (modelled) and ensemble-estimated
variances, respectively. In order to improve the robustness of the ensemble variances, we can
combine them with the parameterized variances in a hybrid variance formulation:

vh = α2
m vm + α2

e ve (24)

where αm and αe are positive weights, with possibly different values for each field and in each model
level. This hybrid variance parameter formulation has been implemented in NEMOVAR.

The specification of the weights αm and αe is more meaningful if the spatially averaged hybrid
variance vh was anchored to a reference variance vr. We can do this by normalizing the hybrid
variance:

vh →
(
vr
vh

)
vh.

In NEMOVAR, we define vr as either the spatially averaged parameterized variance (vm) or the
spatially averaged (inflated) ensemble variance (ve). The latter would seem preferable given a
well-tuned ensemble.

Figure 7 compares the parameterized temperature error standard deviations near 100 m depth
(left panel) and those obtained using a hybrid formulation (right panel), where the inflation fac-
tor, hybrid weights and normalization factor are specified as indicated in the figure caption. The
parameterized standard deviations are defined in terms of the vertical gradient of the background
temperature field, to focus large errors in regions where there is large variability in the thermocline.
The parameterized standard deviations have been smoothed with a 3D diffusion operator, using
smoothing scales identical to those used in the correlation model Cm. As can be seen in Fig. 7a,
the parameterized standard deviations are largest in the tropics, and have large-scale spatial struc-
ture that is reasonably consistent with that of the standard deviation estimates from the ensemble
(Fig. 4). However, the large standard deviations in western boundary current regions, especially the
Gulf Stream, that are present in the ensemble estimate are not at all captured by the parameteri-
zation. As expected, the hybrid estimate captures the dominant spatial structure of the ensemble
standard deviation estimates and increases the standard deviations in regions where the ensemble
estimates are small.

In a similar way, we can combine the elements of the parameterized and ensemble-estimated
LCTs in a hybrid tensor formulation [Sato et al., 2009; Weaver and Mirouze, 2013]:

hh
mn = γ2m hm

mn + γ2e he
mn

where γm and γe are positive weights analogous to αm and αe for the hybrid variances. The
vector he

mn contains the elements of the ensemble-estimated LCT (Eq. (13)). The values of he
mn for

different pairs (m,n) are first colocated to the variable grid-point of interest, following the procedure
described at the end of Appendix A. The values of hm

mn correspond to the elements of the inverse of
the parameterized diffusion tensor, also colocated to the variable grid-point of interest for different
pairs (m,n). As with the hybrid variances, the spatial average of the hybrid tensor elements hhmn
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(a) Parameterized (b) Hybrid

Figure 7: Temperature error standard deviations (K) at approximately 100 m depth (model level 10)
in ORCA1 obtained using (a) the standard NEMOVAR parameterization in terms of the background
vertical temperature gradient; and (b) a hybrid estimate (Eq. (24)) with weights αm = 0.25 and
αe = 0.75, inflation factor r = 2, and reference value for normalization vr = vm. The non-inflated
filtered ensemble standard deviations used in the hybrid estimate are based on those displayed in
Fig. 4b.
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can be fixed to a reference value hrmn through an appropriate normalization:

hh
mn →

(
hrmn
hhmn

)
hh
mn,

where hrmn is defined as either the spatially averaged parameterized tensor element (hmmn) or the
spatially averaged ensemble-estimated tensor element (hemn). Together, the colocated elements of
hh
mn define the hybrid LCT, Hh. The scaled inverse of the LCT then provides the hybrid diffusion

tensor via Eq. (8). This hybrid tensor formulation has been implemented in NEMOVAR.

2.4 Pure and hybrid EnVar B formulations

Rather than using ensemble perturbations to estimate parameters of the covariance model, an
alternative approach in variational assimilation is to use the ensemble perturbations directly to
provide a low-rank sample estimate of the covariance matrix, and then to localize this matrix in
order to damp covariances at remote separation distances, which are attributed to sampling error.
This B formulation is usually referred to as (pure) EnVar (e.g., see Bannister [2017] for a review).
The localized sample covariance matrix can be linearly combined with the modelled covariance
matrix to provide a more robust covariance matrix. This B formulation is usually called hybrid
EnVar [Bannister, 2017]. Both these formulations have been developed for NEMOVAR as described
below.

2.4.1 Pure EnVar

Let

X =
1√

Ne − 1

(
ε′1 . . . ε′Ne

)
where ε′p, p = 1, . . . , Ne, are the centred state-vector perturbations defined by Eq. (6). A sample
estimate of the background-error covariance matrix is then

Be = X XT

where we use the subscript ‘e’ to indicate that Be is based on a raw ensemble estimate. The rank
of Be is Ne � N . In data assimilation applications, rank deficiency in Be can lead to problems
with fitting the data and to spurious analysis increments because of unrealistic covariances in Be

associated with sampling error. Localization of the sample covariance matrix is necessary to reduce
the effects of sampling error on the covariances. This can be done by forming the Schur (element-
by-element) product of the sample covariance matrix with a specified spatially-limited correlation
matrix CL:

Be = CL ◦X XT. (25)

Sample covariances will be damped in areas where the elements of CL are small.
In NEMOVAR, localization is performed on the sample correlation matrix of the control vari-

ables. Let

X̂ = K−1b X =
1√

Ne − 1

(
ε′1 . . . ε′Ne

)
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where ε ′p are the transformed centred perturbations (Eq. (6)). Furthermore, let D̂e be the diagonal

matrix containing the sample variances of ε̂ ′p; i.e., the diagonal of D̂e is the diagonal of the matrix

X̂ X̂T. Now, define a transformed perturbation matrix,

X̃ = D̂−1/2e X̂ =
(
ε̃ ′1 . . . ε̃ ′Ne

)
(26)

where ε̃ ′p = D̂
−1/2
e ε ′p are normalized transformed centred perturbations. The sample covariance

matrix X̃ X̃T is thus a correlation matrix since all of its diagonal elements are equal to one. We
then define the localized sample covariance matrix as

Be = Kb D̂1/2
e

(
C

L
◦ X̃ X̃T

)
D̂1/2

e︸ ︷︷ ︸
B̂e

KT
b . (27)

We prefer to define Be by Eq. (27) rather than by Eq. (25) for two reasons. First, Eq. (27) gives
us more control to filter sampling error by allowing us to spatially filter the ensemble variances in
addition to localizing the correlations. The variance filtering can be done using the objectively-
based techniques described in the previous section for the covariance model. Note that variance
filtering is performed on the variances in D̂e that are used after localization in Eq. (27), but not on
the variances used to define the perturbation matrix (26). Second, Eq. (27) gives us more flexibility
in defining multivariate covariances as they can be defined as a combination of those implied by
the balance operator and those estimated from the ensemble. The use of the balance operator
in Eq. (27) can compensate for possible disruptions to balance due to localization [Kepert, 2009].
Furthermore, when using multiple outer loops in the variational minimization algorithm together
with a hybrid B formulation (see Section 2.4.3), Kb must be applied in the (generalized) observation
operator to enable it to be re-linearized in a consistent manner. This is possible when combining
the covariance model Bm (Eq. (1)), with Be defined by Eq. (27), but is not possible with Eq. (25).
Multiple outer loops are central to the CERA framework for allowing coupling of the atmospheric
and ocean data assimilation systems, so maintaining a consistent outer-loop capability is viewed as
essential.

2.4.2 Localization

The direct element-by-element computation required by the Schur product in Eq. (27) is pro-
hibitively expensive with large matrices. It is straightforward to show that Eq. (27) can be written
in the equivalent form

C
L
◦ X̃X̃T =

Ne∑
p=1

Λp C
L
Λp (28)

where Λp is a diagonal matrix whose diagonal is defined by ε̃ ′p (the pth column of X̃). The right-
hand side of Eq. (28) can also be expressed in “square-root” form as

Ne∑
p=1

Λp C
L
Λp = Ũ ŨT (29)

where

Ũ =
(

Λ
1/2
1 U

L
. . . Λ

1/2
Ne

U
L

)
(30)
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and CL = ULU
T
L

. Equations (29) and (30) involve standard matrix-matrix computations. In varia-
tional assimilation, these matrices can be defined as operators in order to perform the matrix-vector
computations required by the minimization algorithm. In NEMOVAR, localization via C

L
is done

using a diffusion-based correlation operator. Applying Eq. (29) to a vector thus involves applying a
diffusion-based correlation operator Ne times. While this is potentially costly, it is still tractable in
contrast to the direct evaluation of a Schur product of two large matrices. Possible ways of reducing
the cost localization are discussed in Section 4.

A localized sample background-error covariance matrix based on Eqs (27), (29) and (30) has
been implemented in NEMOVAR. We have implemented the “square-root” form of the localization
(the right-hand side of Eq. (29)), rather than the full form (the left-hand side of Eq. (29)), to allow
for randomization applications and to provide more flexibility in NEMOVAR with regard to the
choice of preconditioned minimization algorithm.

The specific formulation of CL is important in terms of controlling the computational cost
and flexibility of the localization operator. Five formulations of C

L
have been implemented in

NEMOVAR, which we present below in terms of the choice of “square-root” factor U
L
. From

Eq. (27) we note that UL acts on vectors whose components correspond to the control variables T ,
Su, ηu, uu and vu.

1. No localization.

When no localization is employed, C
L

is a rank-one matrix of 1s and U
L

is an N -dimensional
vector of 1s:

U
L

=

 1
...
1

 .

While this formulation is not recommended when using a small ensemble, it has been imple-
mented as a limiting case for academic purposes. The non-localized sample covariance matrix
has a low-rank matrix representation X̃X̃T. A low-rank B matrix derived from a truncated
set of empirical orthogonal functions (EOFs) was developed for NEMOVAR by the Met Office

as part of deliverable D2.1. The EOF-based covariance matrix also has the basic form X̃X̃T,
but with X̃ −→ EP1/2 where E is a rectangular matrix whose columns are the dominant
eigenvectors (EOFs) and P is a diagonal matrix containing the corresponding eigenvalues.
The developments for the EOF-based B matrix exploited the code infrastructure developed
here for the non-localized ensemble-based B.

2. Univariate and separate localization for each control variable.

C
L

is a full-rank matrix where U
L

is an N ×N block-diagonal matrix

U
L

= diag ( UT , USu
, Uηu , Uuu

, Uvu ) (31)

where Cχ = UχUT
χ is a diffusion-based (unit-amplitude) localization operator for the control

variable χ. This formulation gives full flexibility for defining different localization matrices
for different variables but completely filters out cross-covariance information between control
variables. As such, multivariate covariances are described entirely by the balance operator.
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3. Multivariate and common localization for each control variable.

We define CL from the factor

U
L

=


I
I

RT→η

AT→u

AT→v

UT (32)

where CT = UTUT
T is a 3D localization operator defined at T -points on the staggered Arakawa

C-grid used in NEMO, and U
L

is an N ×NT matrix where NT is the number of 3D T points.
C

L
is then a matrix of rank NT . The matrix I is the NT ×NT identity matrix. The matrix

RT→η is a restriction operator from 3D T -points to 2D η-points, which are co-located with
T -points in the first level. RT

T→η = Eη→T , which appears in the factor UT
L

, is an extension
operator from 2D η-points to 3D T -points. The matrices AT→u and AT→v represent local
averaging operators from T -points to u- and v-points, respectively. Similarly, the matrices
AT
T→u = Au→T and AT

T→v = Av→T , which appear in the factor UT
L

, represent local averaging
operators from u- and v-points to T -points, respectively.

Contrary to Eq. (31), Eq. (32) does not allow different localization matrices for different
variables. However, it does have advantages over Eq. (31) in other respects. First, it is cheaper
than Eq. (31) since only one application of a 3D diffusion operator is required per ensemble
member, instead of four applications of a 3D diffusion operator and one application of a 2D
diffusion operator per ensemble member. Second, the memory requirements with the “square-
root” B-preconditioned conjugate gradient algorithm available in NEMOVAR are also smaller
with Eq. (32) since they depend on the number of columns of the first operator component
of UL (in this case UT ). Third, the localization operator corresponding to Eq. (32) has non-
zero blocks associated with the cross-variable blocks in the sample covariance matrix. This
means that multivariate covariance information from the ensemble is retained (and localized),
unlike with Eq. (31) where it is discarded entirely. Since the cross-variable covariances in the
ensemble are associated with the unbalanced fields, they should be small (respectively, large)
in areas where the variance of the balanced perturbations explains a large (respectively, small)
amount of the total variance.

This reduced-rank formulation of the localization matrix, where the same localization is ap-
plied to each variable, is the most commonly used formulation in EnVar applications in
meteorology (e.g., see Desroziers et al. [2014]).

4. Multivariate and separate localization for each control variable.

It is possible to relax the common localization constraint using the following formulation (also
implemented in NEMOVAR):

U
L

=


UT

USu

UηuRT→η

UuuAT→u

UvuAT→v

 , (33)
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which, like Eq. (32), is an N × NT matrix. However, the computational cost of applying
Eq. (33) is greater than applying Eq. (32) since separate applications of the diffusion operator
must be performed for each control variable. It is also worth remarking that the cross-variable
localization blocks associated with Eq. (33) do not have unit amplitude, contrary to those
associated with Eq. (32). It is not clear, however, whether this is an important requirement
in practice.

5. Full localization.

Full localization corresponds to setting C
L

to the identity matrix. In this case, the localized
sample correlation matrix in Eq. (27) is also equal to the identity matrix:

C
L
◦ X̃ X̃T = I.

With full localization, only the ensemble variances are retained in B̂e. This limiting case with
pure EnVar has not been implemented since a diagonal B̂e matrix is of no practical interest.
It is worth remarking, however, that when a diagonal B̂e matrix is linearly combined with B̂m

in hybrid EnVar (discussed in the next section), the resulting hybrid B̂ matrix is equivalent
to the hybrid variance formulation presented earlier in Section 2.3.4.

2.4.3 Hybrid EnVar

A hybrid B matrix is formed by linearly combining the localized sample covariance matrix with
the modelled covariance matrix (e.g., see Bannister [2017] for a review). This results in a more
robust covariance formulation than the pure EnVar B matrix. For the control variables, the hybrid
covariance matrix is given by

B̂h = β2
m B̂m + β2

e B̂e (34)

where βm and βe are positive weights, and B̂m and B̂e are the matrices highlighted by the underbrace
in Eqs (1) and (27). As with the hybrid parameter formulation, it is convenient to allow the hybrid
weights to depend (at least) on the control variable and model level. The hybrid weights must
then be defined as vectors, βm and βe, and introduced symmetrically in the hybrid B matrix as
[Ménétrier and Auligné, 2015]

B̂h = βm β
T
m ◦ B̂m + βe β

T
e ◦ B̂e. (35)

Equation (35) can also be written as

B̂h = Υ1/2
m B̂m Υ1/2

m + Υ1/2
e B̂e Υ1/2

e (36)

where Υ
1/2
m (respectively, Υ

1/2
e ) is a diagonal matrix whose diagonal is defined by βm (respectively,

βe). Equation (36) shows that the matrices Υ
1/2
m and Υ

1/2
e act to modulate the matrix of standard

deviations D̂
1/2
m and D̂

1/2
e , respectively.

Note that B̂m in Eqs (34) and (36) can be replaced by the matrix B̂e
m (Eq. (7)), which itself is

specified using ensembles. This would be reasonable if B̂e
m was defined in terms of a climatological

ensemble, but could be problematic if both B̂e
m and B̂e were specified using the same flow-dependent

ensemble, as this would result in double counting of the ensemble information and hence a break
down in the assumption that these two matrices can be decoupled.
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2.4.4 Estimating the localization matrix and hybridization weights

We have adopted the objective procedure of Ménétrier and Auligné [2015] to estimate the localiza-
tion matrix and hybridization weights. The procedure optimizes the elements of the localization
matrix and hybridization weights in order to minimize the effects of random sampling error in B̂h.
This is done by minimizing the expected squared error between B̂h and the asymptotic sample co-
variance matrix that would be obtained with a hypothetical infinite ensemble size. We denote this
(unknown) matrix by B̃? = limNe→∞ X̃X̃T, and formally write the optimality criterion as finding
the minimum of

eh = E

[∥∥∥ B̂h − B̃?
∥∥∥2

F

]
where E[ · ] is the expectation operator and ‖ ‖F is the Frobenius norm. This optimality criterion
does not account for the possibility of systematic errors in the ensemble.

For the optimization problem, the hybridization matrix βe β
T
e and localization matrix C

L
in (35)

can be merged into an effective localization matrix Ch
L
. The optimal localization and hybridization

parameters are found by setting to zero the derivatives of eh with respect to the elements Ch
ij of Ch

L
,

and with respect to the independent parameters in the weighting matrix βm β
T
m. For simplicity, we

assume here that βm β
T
m is given by a constant weight β2

m. Under the mild assumption that the
sampling error and asymptotic covariances are uncorrelated, it can be shown that [Ménétrier and
Auligné, 2015]

β2
m =

∑
ij

(1− Ci,j)E[B̃ij ]B̂ij

∑
ij

(
E[B̃2

ij ]− E[B̃2
ij ]

E[B̃2
ij ]

)
B̂2
ij

, (37)

Ch
ij = Cij −

E[B̃ij ]

E[B̃2
ij ]
B̂ij β

2
m (38)

where B̃ij denotes an element of B̃ = X̃X̃T, B̂ij denotes an element of B̂m, and Cij denotes an
element of the optional localization matrix obtained with the pure EnVar formulation (βm = 0).
Assuming a non-Gaussian (NG) error distribution then Cij = CNG

ij where

CNG
ij =

(Ne − 1)2

Ne(Ne − 3)
− Ne

(Ne − 2)(Ne − 3)

E[Ξ̃ijij ]

E[B̃2
ij ]

+
Ne − 1

Ne(Ne − 2)(Ne − 3)

E[B̃iiB̃jj ]

E[B̃2
ij ]

. (39)

Assuming a Gaussian (G) error distribution then Cij = CG
ij where

CG
ij =

[
(Ne − 1)− E[B̃iiB̃jj ]

E[B̃2
ij ]

]
. (40)

Equations (37)–(40) depend on the ensemble size, modelled covariances and sample covariances.
These are all quantities that are known or can be estimated. In practice, an ergodicity assumption is
invoked so that the expectation operator can be replaced by a spatial or angular averaging operator
over a particular domain. An important theoretical result shown by Ménétrier and Auligné [2015]
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Figure 8: Estimated hybridization weights in Eq. (34) as a function of ensemble size using idealized
experiments with ORCA1. The ensembles are defined as randomized vectors with a specified
covariance matrix. The hybridization weights have been estimated using the optimal formulae (37),
(38) and (40).

is that B̂h, with parameters optimized using the procedure above, is always more accurate than B̂e

taken alone, regardless of the quality of B̂m.
The methods described above have been implemented by B. Ménétrier in an open source di-

agnostic software package called hdiag nicas1. hdiag nicas is applied offline from NEMOVAR. To
interface hdiag nicas with NEMOVAR has required adapting it to support the global ORCA grids
used by NEMO. In addition to the model coordinates, hdiag nicas requires as input (in NetCDF
file format), the ensemble perturbations and, in the case of hybridization, a limited number of

randomized vectors bp ∼ N(0, B̂m), p = 1, . . . , Nr, which can be generated using the “square-root”

operator of B̂m. The output from hdiag nicas used by NEMOVAR consists of localization scales,
which are used by the diffusion operator, and hybridization weights, as a function of variable and,
possibly, model level.

The algorithm has been validated with NEMOVAR using an ensemble of randomized vectors
whose covariance matrix is given by the modelled covariance matrix with specific (“true”) pa-

rameters, different from those specified in B̂m. Figure 8 illustrates the values of the estimated
hybridization weights β2

m and β2
e as a function of ensemble size. The sum of the estimated weights

is close to one in all cases. With an ensemble size of 10, B̂m and B̂e are given approximately
equal weight. As expected, the weight to B̂e then increases steadily with increasing ensemble size,
reaching over 80% of the total weight with an ensemble size of 50.

Figure 9 shows the estimated localization functions for different ensemble sizes. The average
sample correlation function (black curve) is also plotted for comparison. The amplitude of the
localization function at zero separation gives the hybridization weight β2

e (cf. Fig. 8). As expected,
the scale of the localization function increases with increasing ensemble size. The localization

1https://github.com/benjaminmenetrier/hdiag nicas
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Figure 9: Estimated localization functions in Eq. (34) as a function of ensemble size using idealized
experiments with ORCA1 (coloured curves). The ensembles are defined as randomized vectors with
a specified covariance matrix. The localization functions have been estimated using the optimal
formulae (37), (38) and (40). The average sample correlation function is also shown (black curve).

functions are also noticeably flat near the origin, which makes them difficult to model accurately
with standard correlation functions such as Matérn or Gaussian. For NEMOVAR, these curves are
first fit to a Gaussian function and the best-fit localization scale is then used to define the diffusion
tensor of the diffusion-based localization operator.

Figure 10 gives an example of background error correlations generated by B̂m, B̂e and B̂h in
NEMOVAR. The ensembles are again based on randomized vectors from a “true” modelled Bm.
The correlations are shown for temperature in level 1 at an arbitrary horizontal grid point in the
global domain. The true correlations are noticeably anisotropic, being elongated in the north-
south direction. This feature is not represented by the modelled correlation matrix (Bm), which is
specified using a purely isotropic formulation. The correlations (notably the anisotropic features) are
reasonably well recovered by the localized ensemble correlation matrix (Be), although their spatial
extent is somewhat underestimated. The correlations are clearly improved with hybridization (Bh).

3 Technical description of the code and its review

The developments have required a major rewrite of the existing Fortran code dedicated to B. One
of the main structural changes of the code has been to introduce nested derived types to group
covariance and ensemble parameters associated with a specific control variable. This has resulted
in a much more compact and flexible code, and has allowed for better control of memory allocation.
There are five main derived types, which are defined separately for 2D and 3D fields: a covariance
type (‘cov’), correlation type (‘cor’), diffusion type (‘dif’), implicit solver type (‘sol’), and ensemble
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Figure 10: An example of temperature background-error correlations represented in ORCA1 at an
arbitrary grid point. From left to right: the “true” correlation; the modelled correlation in B̂m;
the localized ensemble correlation in B̂e; and the hybrid correlation in B̂h. Two different ensemble
sizes are considered: 10 (top panels) and 50 (bottom panels). The radius of the dotted circles
corresponds to the localization scale.
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type (’ens’). Their nested arrangement can be represented schematically as:

cov −→ cor −→ dif −→ sol
ens −→ dif −→ sol
cor −→ dif −→ sol
dif −→ sol

Each control variable has a ‘cov’ type when the covariances are modelled and an ‘ens’ type when
the covariances are estimated from ensembles. The ‘ens’ type depends on a ‘dif’ type for spatial
filtering. With a sample covariance matrix, each control variable has a ‘cor’ type for localization.
The ‘dif’ type is used for any variable or parameter employing spatial filtering with the diffusion
operator. The ‘sol’ type assembles information for the different solvers and preconditioners used
with the implicit diffusion operator. Solver parameters for the Chebyshev iteration and conjugate
gradient methods are contained in ‘cbv’ and ‘pcg’ types, respectively, and limited-memory (Ritz)
preconditioning parameters are contained in an ‘lmp’ type:

sol −→

 cbv
pcg
lmp

The restructuring of the code in this manner has greatly facilitated the introduction of the new
methods for defining B that have been described in this report. The main Fortran modules that
have been either modified or added are located in the NEMOVAR source code directories BGE,
COV, COR, DIF and ENS.

The new code has been fully integrated into the central NEMOVAR code repository that is
hosted on a Git server at ECMWF. The code integration has been done progressively during the
course of the project, using development branches dedicated to specific tasks. Before being in-
tegrated into the central development branch (the trunk), the branches were peer-reviewed by
members of the NEMOVAR consortium (typically two reviewers for each branch) and revised ac-
cordingly. Code review and integration into the trunk has been done in an efficient and coordinated
manner using software collaboration tools (JIRA, Bitbucket, Bamboo) made available at ECMWF.
The latest version of NEMOVAR, which includes all the developments described here, will be re-
leased as version 5 in the coming weeks.

In addition to the Fortran source code development, substantial work has been made by ECMWF
to adapt the operational scripts (prepIFS and SMS) to the new version of NEMOVAR and to be able
to apply it within an EDA framework. Four one-week-long visits made by A. Weaver to ECMWF in
2017 were dedicated to validating the new code. This required exhaustive testing and debugging to
ensure that the new version of NEMOVAR (soon to be labelled version 5) produced near-identical
results to the operational version (version 3.4) using similar algorithmic and parameter choices (see
Fig. 11). The new developments have been validated primarily using single cycle experiments (as
illustrated in the previous sections), and using standard tests and diagnostics: adjoint operator
tests, cost function and gradient tests, minimization diagnostics, single observation experiments,
etc.

4 Discussion and conclusions

In this report we have discussed developments that have been made to NEMOVAR to exploit en-
semble information in the specification of the background-error covariance matrix (B). Several new
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Figure 11: The root-mean-square (RMS) of the analysis-minus-observations (dashed curves) and
background-minus-observations (solid curves) obtained with ORCA1 with the current operational
version of NEMOVAR (version 3.4; black curves) and with the new version of NEMOVAR developed
during ERA-CLIM2 (labelled as version 4.x in the legend; red curves) for an ocean reanalysis
experiment from 01/02/2010 to 31/12/2010. Similar parameter settings have been chosen in both
experiments to validate the new version of the code. The top (respectively, bottom) 6 panels show
the RMS errors for temperature (respectively, salinity) in different regions.
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features have been developed and made available in a new version of NEMOVAR. The new version
has been integrated into the central source code repository and operational running environment
at ECMWF. Preliminary validation experiments have been conducted with the new version in an
ocean reanalysis framework using an ensemble of data assimilations (EDA) approach to cycle the
analysis-forecast system. The perturbation strategy is based on that developed for ORAS5 [Zuo
et al., 2017]. The ensemble developments described in this report have been evaluated with a 3D-
Var version of NEMOVAR. An obvious extension of this work would be to combine the ensemble
methods with the simplified 4D-Var version of NEMOVAR developed as part of deliverable D2.5.
This would bring the ocean data assimilation system to the same basic level of sophistication as
the atmospheric data assimilation system to which it is coupled in CERA [Laloyaux et al., 2016].

The options that have been developed for defining B from ensembles are numerous and have
various levels of complexity. Computational cost and pragmatism will be determining factors in
choosing the most appropriate options in an operational framework. To this end, a three-step
strategy is proposed below for progressively improving the representation of B in CERA using
ensembles.

1. Cycle-dependent ensemble-based variances.

Specifying the variances in B is the most straightforward use of the ensembles and can be
done with limited cost overhead. Cycle-dependent background-error variances, either used
alone or in hybrid form, would give the ocean data assimilation system leverage to adapt to
the time-evolving flow field and to changes in the observing system (see Fig. 1). Focusing
initially on the variances would help to identify problems in ensemble spread, which would
need to be rectified by improving the ensemble-generation procedure, inflating the variances,
and/or calibrating the weights in the hybrid formulation.

The objective filtering algorithm needs to be generalized to allow for different filtering scales
to be computed in subdomains of the global model. Adapting the diffusion filter to work
in arbitrary subdomains in NEMO would require some non-trival technical developments.
Without these developments, it is possible that the use of subjectively specified filtering
scales (e.g., taken to be proportional to the local grid steps) would be as effective as, and a
cheaper alternative to, the optimally-based single-scale algorithm.

The NEMOVAR system should also be extended to include ensemble variance estimates of
sea-ice concentration, which is a fundamental control variable in the coupled sea-ice ocean
data assimilation system.

2. Climatological ensemble-based horizontal correlation scales.

In the background-error covariance model, the correlation scales are controlled by the diffusion
tensor. While it would be desirable to use ensembles to specify cycle-dependent diffusion
tensors as well as cycle-dependent variances, computational cost would preclude the former
without further improvements to the numerical efficiency of the diffusion algorithm and to
the accuracy of methods for approximating normalization factors on the fly. Avenues for
improving the efficiency of the diffusion algorithm are proposed later in this section. To avoid
the expensive task of recomputing normalization factors on each cycle, the ensemble could be
used to provide a climatological estimate of the diffusion tensor. This should already be a
vast improvement over the ad hoc approach currently used in CERA. One possibility would
be to use the climatological ensemble to estimate the horizontal diffusion tensor only, and to
use a flow-dependent parameterization based on the background mixed-layer depth to specify
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the vertical diffusion tensor. An attractive feature of this parameterization, in addition to
being flow dependent, is that it can be employed with an accurate normalization procedure
[Waters et al., 2015].

In this project, a method was developed to estimate the local diffusion tensor based on the
ensemble average of the tensor product of the local gradient of the ensemble perturbations.
This approach could be used to provide a climatological estimate of the diffusion tensor by
averaging the gradient tensor product over many assimilation cycles. An alternative and more
general approach would be to estimate the local diffusion tensor at a given grid point by fit-
ting a locally homogeneous Matérn or Gaussian function to sample correlations available in
a neighbourhood of that point [Pannekoucke and Massart, 2008; Yaremchuk and Nechaev,
2013]. The hdiag nicas software has recently been extended by B. Ménétrier to include this
possibility and has been tested with ensembles from ORAS5, as illustrated in Fig. 12. The
top panel shows raw sample correlations at selected points, computed using a 19-member
ensemble. The middle and bottom panels show the correlations obtained by fitting the LCT
of a Gaussian function to the sample correlations using a nonlinear least-squares optimization
method. The middle panel accounts for fully anisotropic correlations (non-diagonal LCT),
whereas the bottom panel accounts for coordinate stretching only (diagonal LCT). The dif-
fusion operator currently used in NEMOVAR would be able to account for the latter only.
These results are very encouraging and suggest that this approach should be further in-
vestigated and compared with the gradient-based approach in terms of cost, accuracy and
robustness. Moreover, the function-fitting approach is better suited to the general multiple-
scale background-error covariance model available in NEMOVAR, which is formed from a
linear combination of Matérn or Gaussian functions and requires additional parameters to be
estimated [Mirouze et al., 2016].

3. Hybrid EnVar.

The hybrid B formulation described in section 2.4.3 provides a rich and robust framework for
using ensembles to define fully cycle-dependent background-error covariances (i.e., variances,
correlations and multivariate relationships). The modelled covariance matrix in the hybrid
B formulation could be based on climatological ensemble estimates of the correlations and
variances, following work in steps 1 and 2 above.

Localization is currently the main computational bottleneck in the hybrid B formulation,
and work is needed to reduce this cost in order to make the EnVar formulation feasible
with NEMOVAR. Recent developments with the hdiag nicas software have opened up some
interesting possibilities in this regard, by including an efficient localization algorithm based on
a compactly-supported Gaussian-like function. The algorithm is made efficient by applying
the localization function on a reduced-resolution grid, which is possible since localization scales
are generally broad. The algorithm can also account for complex boundaries such as those
found in a global ocean model, although the treatment is somewhat less-refined than what can
be achieved by diffusion near complex boundaries. For localization, however, this is probably
not important. The algorithm thus represents a potentially more efficient alternative to a
localization algorithm based on the diffusion operator. In the hybrid formulation, however, the
algorithms are complementary as the diffusion operator is more efficient for small correlation
scales typically present in the modelled component.

The hybrid B formulation also benefits from a theoretically well-founded and practical algo-
rithm (available in hdiag nicas) for estimating localization scales and hybridization weights.
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The hybrid B formulation also opens the way to using fully coupled background-error covari-
ances, although this is recognized to be a longer term objective.

In parallel to the developments above, continued efforts should be made to improve the com-
putational efficiency and scalability of the implicit diffusion-based correlation model. Important
advances have been made in this area during this project, notably with the introduction of the
Chebyshev iteration (CI) method to approximate the solution of the underlying implicit diffusion
equation [Weaver et al., 2016]. Nevertheless, further improvements are necessary to reduce the
computational cost of the correlation model for applications involving high-resolution models or,
as mentioned above, “large” correlation length-scales. Closely related to this work is the need to
improve the efficiency and accuracy of approximate methods used to estimate normalization factors
for the diffusion operator when using cycle-dependent correlation parameters.

There are different ways the cost of the correlation operator can be reduced while still remaining
within the CI framework. In one approach that was studied during the project, it was shown
that there was potential for speeding up the runtime of the correlation operator by allowing the
implicit “time” steps (M) to be executed in parallel on each iteration of CI [Weaver et al., 2017].
This can be done by reformulating the sequence of M -step implicit diffusion problems as a single
problem involving a nonsymmetric matrix. This “time”-parallel version of the correlation operator
could be implemented practically using a hybrid parallelization approach that combines Message
Passage Interface tasks in the spatial domain with Open Multi-Processing threads spanning the
pseudo-time dimension. Another approach is to employ selective use of single precision in the CI
solver. Preconditioning is another possibility, with domain decomposition preconditioners, such as
Additive Schwarz or Restricted Additive Schwarz [Cai and Sarkis, 1999], seemingly well suited for
the problem at hand. Furthermore, for large-scale correlations, the diffusion computations could
be done more economically on a grid with resolution comparable to the scale itself, which could be
much coarser than the resolution of the native analysis grid.
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A Appendix. Finite difference representation of the LCT

The estimation of the components of the LCT (H) using centred finite differences is outlined in
this appendix. Notation is similar to that used in the NEMO documentation [Madec, 2008]. Since
the off-diagonal elements of the LCT involving the vertical coordinate s3 have not been accounted
for in NEMOVAR, we focus separately on the estimation of the diagonal component H33, and of
the horizontal components (H11, H12, H21, H22).

A.1 Estimating H33

Consider a 1D scalar field α which we consider to be a function of the vertical coordinate s3. Let
s3 = s3(k) where k is the grid-point defined at the centre of the grid step, and k+ 1

2 the grid-point
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(a) Raw sample correlations

(b) Gaussian correlations with non-diagonal LCT

(c) Gaussian correlations with diagonal LCT

Figure 12: Examples of point correlations estimated using a 19-member ensemble on a single
cycle of the ECMWF ORA system based on ORCA1. (a) Sample correlations estimated from
the raw ensemble; (b) correlations estimated by fitting sample correlations to a locally homoge-
neous Gaussian function with non-diagonal LCT; and (c) as in (b) but using a diagonal LCT
used in the Gaussian function. The computations have been done using the hdiag nicas software
(https://github.com/benjaminmenetrier/hdiag nicas). Figure courtesy of B. Ménétrier.

33



defined at the interface with the adjacent grid step. The derivative of α at adjacent points in the
s3 direction is defined at the mid-point between them, and can be represented by the difference
operator

nk
ek
δk[α] =

nk
ek

(
mk+ 1

2
αk+ 1

2
−mk− 1

2
αk− 1

2

)
,

where ek is the scale factor (metric coefficient) defined at grid-point k, mk± 1
2

is a land/ocean mask

(equals 0 for land; 1 for ocean), and nk is a mask to enforce either Neumann or Dirichlet boundary
conditions (equals 0 for Neumann; 2 for Dirichlet). The average of α at adjacent points in the sk
direction is defined at the mid-point between them and represented by the operator

α k =

(
1

mk+ 1
2

+mk− 1
2

)(
mk+ 1

2
αk+ 1

2
+mk− 1

2
αk− 1

2

)
.

Let the perturbation state ε in Eq. (11) be defined at integer grid-points k where, for clarity of
notation, we have dropped the hat and prime symbols on ε. The product of vertical derivatives at
each grid-point is needed to compute g33 in (12):

{g33}k+ 1
2
≡
{(

∂ε

∂s3

)(
∂ε

∂s3

)}
k+ 1

2

=

(
1

ek+ 1
2

δk+ 1
2
[ε]

)2

.

To estimate h33 (Eq. (13)), we compute the ensemble average of g33. This gives the values of the
derivative product at the mid-point of the cell interface. These values are then averaged back to
the centre of the cell to define H33,

{H33}k = h33

k
,

and then inverted to give H−133 . The diffusion tensor coefficient κ33 is defined at the mid-point of
the cell where it multiplies the vertical derivative of the field being diffused. κ33 is obtained from
H−133 by averaging H−133 back to the mid-point and dividing it by 2M − d− 2 (see Eq. (8)) where
d = 1 or 3 depending on whether the 1D or 3D diffusion-based correlation model is used. For the
vertical component, the double averaging is, in fact, unnecessary since h33 is already defined at
the mid-point. This is done to be consistent with the horizontal case described below, which does
require averaging to colocate the horizontal tensor elements. The double averaging done in the
vertical introduces additional filtering in the computation of κ33.

A.2 Estimating (H11, H12, H21, H22)

Consider a 2D scalar field α = α(s1, s2) where the coordinates s1 = s1(i, j) and s2 = s2(i, j). The
grid-points (i, j) are defined at the centre of a grid cell, and the points (i+ 1

2 , j) and (i, j+ 1
2 ) are

defined at the east and north interfaces, respectively, between adjacent grid cells. The derivative of
α at adjacent points in the s1 or s2 direction will be defined at the mid-point between them, and
can be represented by the difference operators

ni,j
ei,j

δi[α] =
ni,j
ei,j

(
mi+ 1

2 ,j
αi+ 1

2 ,j
−mi− 1

2 ,j
αi− 1

2 ,j

)
,

ni,j
ei,j

δj [α] =
ni,j
ei,j

(
mi,j+ 1

2
αi,j+ 1

2
−mi,j− 1

2
αi,j− 1

2

)
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Figure 13: With centred finite differences, the horizontal derivatives of a scalar variable defined at
the location X are located at the half grid-points defined by O. When m 6= n the derivative with
respect to sm is located at a different point from the derivative with respect to sn. In this case, the
computation of the derivative product (∂ε/∂sm)(∂ε/∂sn) requires averaging or interpolating one of
the derivatives to the location of the other derivative as illustrated.

where ei,j is the scale factor (metric coefficient) defined at grid-point (i, j), mi± 1
2 ,j

and mi,j± 1
2

are

land-ocean masks (equal to 0 or 1), and ni,j is a mask to enforce Neumann or Dirichlet boundary
conditions (equal to 0 or 2, respectively). Similarly, the average of α at adjacent points in the s1 or
s2 direction are defined at the mid-point between them, and can be represented by the operators

α i =

(
1

mi+ 1
2 ,j

+mi− 1
2 ,j

)(
mi+ 1

2 ,j
αi+ 1

2 ,j
+mi− 1

2 ,j
αi− 1

2 ,j

)
,

α j =

(
1

mi,j+ 1
2

+mi,j− 1
2

)(
mi,j+ 1

2
αi,j+ 1

2
+mi,j− 1

2
αi,j− 1

2

)
.

Let the normalized perturbation state ε be defined at integer grid-points (i, j). The products
involving the horizontal derivative components are estimated using the difference formulae

{g11}i+ 1
2 ,j
≡
{(

∂ε

∂s1

)(
∂ε

∂s1

)}
i+ 1

2 ,j

=
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δi+ 1
2
[ε]

)2

, (41)
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{g
12
}i+ 1

2 ,j
≡
{(

∂ε

∂s1

)(
∂ε

∂s2

)}
i+ 1

2 ,j

=

(
ni+ 1

2 ,j

ei+ 1
2 ,j

δi+ 1
2
[ε]

)ni,j
ei,j

δj+ 1
2
[ε]

i+ 1
2

j
 , (43)

{g21}i,j+ 1
2
≡
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∂ε

∂s2

)(
∂ε

∂s1
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2
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2
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2
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i
 . (44)

Equations (41) and (42) require, as in the 1D (vertical) case, simply squaring the derivative estimates
at the mid-point where they are defined. Equations (43) and (44), on the other hand, require first
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averaging one of the derivatives to the location of the other derivative before they can be multiplied.
This is illustrated in Figure 13. The need to average the derivatives introduces inaccuracies in the
estimate of g

12
and g

21
.

To estimate hmn (m,n = 1, 2) (Eq. (13)), we compute the ensemble average of the corresponding
elements of gmn. Notice that components of h11 and h12 are not defined at the same mid-points
as the components of h22 and h21. In order to compute the inverse Hessian tensor, the elements
of the hmn must be colocated. The procedure adopted here is to average the components to the
centre point (i, j) of the cell where ε is defined:

{H11}i,j = h
11

i
,

{H22}i,j = h
22

j
,

{H12}i,j = {H21}i,j =
1

2

(
h

12

i
+ h

21

j
)
,

where the last expression enforces symmetry. The resulting 2×2 matrix can then be easily inverted
at each grid point. After inverting the tensor, the elements are divided by 2M − d− 2 (Eq. (8)),
where d = 2 or 3 depending on whether the 2D or 3D diffusion-based correlation model is used,
and then averaged to the appropriate cell interface points where the diffusion tensor elements are
defined.
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