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Abstract

Expected stringent legislation on particulate matter (PM) emission by

gas turbine combustors is currently motivating considerable efforts to better

understand, model and predict soot formation. This complex phenomenon

is very difficult to study in detail with experiment, and numerical simula-

tion is an essential complementary tool. Considering that the chemistry of
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soot particles strongly depends on their size, the numerical prediction of

soot formation requires the description of their size distribution. To do so,

either Eulerian methods (sectional or moments), or stochastic Lagrangian

approaches are reported in the literature. In the present work a far more

simple semi-deterministic Lagrangian approach is proposed. Combined to

the semi-empirical model of Leung et al. (1991) for soot chemistry, the La-

grangian approach is first validated on a one-dimensional premixed ethylene-

air flame. The model is then applied to a gaseous non-premixed ethylene-air

burner measured at DLR and computed with Large Eddy Simulation (LES).

The gaseous chemistry is described with an Analytically Reduced Chemistry

(ARC) to guarantee a good prediction of combustion and gaseous soot pre-

cursors. Results are validated against experiment and compared, in terms

of accuracy and CPU cost, to an Eulerian semi-empirical model. To the

authors knowledge, it is the first time that such Lagrangian particle track-

ing approach is used for soot. Results obtained in terms of accuracy and

computing time are very encouraging.
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1. Introduction

Particulate Matter (PM) emitted from practical combustion devices con-

tribute to air pollution, which has a strong negative impact on the population

health [1] and air quality. This includes soot, which results from a complex

gaseous and heterogeneous chemical process. When emitted at high altitude,

soot increases significantly the local concentration of aerosols in the atmo-

sphere inducing a possible artificial radiative forcing via the formation of

contrails. On the ground, emitted soot particles can be inhaled and, depend-

ing on their size, penetrate more or less deeply in the human body where it

can trigger specific diseases. In this context, the design of the next gener-

ation of combustor devices with limited soot emission has become a major

challenge for engine manufacturers. To do so numerical simulation is an es-

sential tool which, if sufficiently accurate, allows a better understanding and

control of soot formation.

Soot particle size is not only critical for their toxicity, but also for their

formation / destruction processes, as these involve heterogeneous chemistry

at the particle surface. The prediction of soot particle formation therefore

requires to describe their size distribution. A population of soot particles

is then represented by its local and instantaneous Number Density Func-

tion (NDF), defined as the number of particles of a given size. The NDF

is often bimodal due to the constant inception of very small soot particles

and the final large aggregates resulting from successive collisions and surface

reactions [2]. The NDF is the solution of the Population Balance Equation

(PBE), which is solved using statistical approaches. Three classes of reso-

lution methods of the PBE are commonly used: the Method of Moments
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(MOM), the Sectional Method (SM), and the Monte Carlo (MC) stochas-

tic Lagrangian approach. The MOM aims at calculating a set of statistical

moments of the NDF [3–6], while SM [7–9] and MC directly solve the PBE

to obtain the NDF. Although they have allowed to obtain very good re-

sults [10, 11], these methods are complex, demand specific numerics and are

computationally expensive.

An alternative is proposed in the present work, based on a simple semi-

deterministic Lagrangian approach. The method is deterministic in the sense

that physical particles are tracked, contrary to MC dealing with stochastic

particles. It however still includes stochastic processes such as collisions. To

limit the computational time, only a subset of particles is computed, rep-

resentative of all particles possibly present in a control volume. With this

strategy, Lagrangian particle tracking becomes affordable in real complex

geometries such as aircraft or internal engines. The choice of such a La-

grangian formalism for nano-particles is still on the fringes of the official

methods. The reason is to be found in the prohibitive computational cost of

the Lagrangian tracking of all physical particles in a 3D complex configura-

tion. As a consequence, most Lagrangian calculations are restricted to the

resolution of realizability issues in MOM [12]. An attempt of deterministic

Lagrangian calculation of soot has been made very recently by Ong et al.

[13] where however the interactions between particles were neglected. This

considerably simplified the implementaion but also significantly reduced the

accuracy as particle interactions are essential. Today, both the progress made

in parallel computing and the semi-deterministic Lagrangian concept allow

to overcome this computational cost issue, as will be demonstrated in the
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present paper. This requires however an optimum parallel efficiency of the

Lagrangian solver, as well as a careful control of statistical convergence.

In the following, the derivation of the semi-deterministic Lagrangian method

is explained in details. Combined to a semi-empirical model for soot evolu-

tion [14], it is then validated in a one-dimensional sooting premixed flame.

Finally, an experimental gaseous ethylene-air non-premixed burner [15] al-

ready investigated with LES and a one-section SM approach [16, 17] is used to

assess the computational cost and accuracy provided by the new Lagrangian

method.

2. Soot modeling

2.1. Lagrangian formalism

The present methodology is based on the Discrete Particle Simulation

(DPS), similar to what is used for spray computations. Contrary to dilute

sprays, soot particle populations are dense, so that collisions have a high

probability and must be accounted for. Indeed, they play an essential role

in the soot particles size distribution. The proposed approach, so-called EL

POLY, relies on the following assumptions:

• Dynamics: soot particles are tracers. This means that neither drag

nor thermophoresis effects are taken into account. Considering that

soot are mostly nanometric and evolve in highly turbulent flows (low

Stokes number), this assumption seems reasonable.

• Temperature: Soot particle temperature is homogeneous and equal
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to the surrounding gas temperature. This assumption is also justified

by the nanometric size of the particles.

• Shape: The particles are spherical. This is clearly a very strong as-

sumption that is not true in most cases, but is done here as a first

step for the demonstration of the new Lagrangian approach. It will be

shown that this approach is a good framework to relax this assumption

in future work.

In the DPS approach, particles are handled as point sources, having prop-

erties like temperature, size, velocity, surface area, collision diameter, etc.

just as in stochastic methods [10]. In particular the spherical assumption

can be easily relaxed through the particle surface or a joint surface-volume

model [18]. In addition, as only a subset of physical particles are computed

in the semi-deterministic concept, each particle also has a weight wk (also de-

noted rparcel) representing the number of physical particles having the same

properties at the same location and time. Being not constant nor uniform,

this rparcel is not a user-defined parameter, but varies for each particle and

results from the control of statistical convergence. The objective is to de-

scribe with sufficient accuracy the NDF in each control volume (mesh cell),

given a maximum allowed number of computed particles per control volume

Nmax
soot . To do so, at each time step, particles grouping is revisited via con-

servative merging operations based on criteria of properties proximity (size,

location). This merging process will be described in Sec. 2.3.
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2.2. The Leung model

The chosen soot model is the semi-empirical, two-equations Leung model

[14], employed in many previous studies [16, 17, 19]. The model describes

soot as a monodisperse particle size distribution population, and was writ-

ten in both Eulerian and Lagrangian formulations. Although this model is

too simple to be quantitatively accurate, this choice was made to ease the

comparison between Eulerian and Lagrangian approaches, which is the main

objective of this paper.

In the Leung model, the soot particle mass evolves as:

dmp

dt
=

!̇s

N
� mp

N
!̇n NA


kg

s

�
(1)

where N is the soot particle number density per volume, NA is the Avogadro

number and mp is the particle mass. !̇n and !̇s refer to soot number density

and mass fraction source terms, and are detailed later in this Section. Note

that condensation is not taken into account. The monodisperse approach

has been validated [17] in non-premixed laminar ethylene-air flames studied

experimentally by [20] and often used for soot modeling validation. The

gas-phase chemistry was described by an Analytically Reduced Chemistry

including 29 species, among which 11 were set in Quasi Steady State [17].

The reaction rate constants of the Leung model have been calibrated in order

to improve soot prediction. This is a standard procedure for such simple

model, that has anyway a limited accuracy. It is however not the objective

here to demonstrate the validity of the Leung model, but rather to guarantee

a correct behavior before focusing on the soot numerical formalism.

The source terms of the Leung model are now detailed.
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2.2.1. Nucleation

Nucleation processes characterize the inception of the nascent soot parti-

cles (nuclei). The corresponding source term reads:

!̇n,nu =
Rnu

N

✓
Ms �mp,nu NA

2

Cmin

◆
(2)

where !̇n,nu is the nucleation part of the source term !̇n, Ms is the soot

molecular weight, Cmin is a constant, and Rnu is the nucleation reaction rate

defined by Leung et al. [14]:

Rnu = knu(T ) [C2H2] (3)

where k refers to the reaction rate (from [17]), T is the gas temperature, and

[�] stands for molar concentration. As the Lagrangian formalism is based on

discrete particles, a new particle is created only after the nucleation source

term is found sufficiently large. The new particle then has an initial weight

equal to the number of generated nuclei, and is injected at a random position

in the control volume with a given initial diameter. This initial diameter can

be retrieved analytically from Eq. 2, considering that nuclei are formed at

the end of the nucleation process, i.e., !̇n,nu = 0. This gives an initial value

of 0.98 nm, which will be used in all simulations presented in this paper.

In the current model, nucleation contributes only to the inception of soot

particles and does not modify their properties. Therefore it does not con-

tribute to the source term !̇s.
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2.2.2. Surface reactions

Surface reactions act on the soot mass fraction source term !̇s in Eq. 1

with two contributions :

!̇s = !̇s,sg � !̇s,ox


kg

m3s

�
(4)

where subscripts sg and ox refer to surface growth and oxidation, and respec-

tively read :

!̇s,sg = ksg(T ) [C2H2] S
1/2 Ms (5)

!̇s,ox = (kox,O2(T ) [O2] + kox,OH(T ) XOH) S Ms (6)

where XOH refers to the molar fraction of OH species. Surface reactions are

directly linked to the soot surface area per unit volume S = ⇡/4 d2p N , if

spherical particles of diameter dp are assumed.

2.2.3. Coagulation

For a monodisperse size distribution of soot particles, the coagulation

source term reduces to the same global source term for all particles. Poly-

disperse coagulation is more complex and has been widely investigated for

particles and aerosols [21–23]. Usually stochastic approaches are used. In

the present approach, the deterministic Lagrangian tracking of a subset of

physical particles does not allow to realize all possible coagulation events

and a probability of coagulation is introduced. Coagulation events are then

computed according to this probability. Following Kruis et al. [24], we start

from binary collisions. Considering a particle pair (i,j) with i 6= j, �i,j (called

coagulation kernel) describes the collision rate between both particles. For

symmetry reasons �i,j = �j,i and the total coagulation rate between all par-

ticles represented by the pair (i,j) is �⇤
i,j = max(!i,!j) �i,j / v, with v the
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control volume. The coagulation kernel is calculated in the free molecular

regime as in the original Leung model:

�i,j = Ca

s
⇡T

2⇢s

✓
1

vi
+

1

vj

◆ 1
2

(dp,i + dp,j)
2


m3

s

�
(7)

where Ca is the agglomeration rate constant equal to 9.0 higher than the

commonly used value around 2.0 [9],  is the Boltzmann constant, and ⇢s is

the soot density equal to 2000 [kg ·m�3]. The free molecular regime assump-

tion considers that the two particles of volume vi and vj have a size much

smaller than the mean free path in the gas. The probability of coagulation

for each pair of particles (i, j) is then Pi,j = �⇤
i,j /

P
k,l �

⇤
k,l.

This probability is used in the Lagrangian tracking approach as follows:

1. At the cell level, �⇤
i,j is computed for each pair of particles (i,j), and

the maximum coagulation rate in the cell �⇤
max is determined.

2. The acceptance-rejection method [25] is applied: selecting a pair of soot

particles (i,j), coagulation occurs if r  �⇤
i,j /�

⇤
max, where r 2 [0, 1] is a

random number. Otherwise, the selected pair does not coagulate, and

the operation is repeated until one coagulating pair is found [26].

3. The selected coagulation event is realized according to the constant-

number method [26].

4. The coagulation time step is computed as the inverse of the sum of

all coagulation rates : ⌧coa = 1 /
P

i,j �
⇤
i,j [24, 27], and an event-driven

coagulation process is applied: as soon as one coagulation event takes

place, a waiting time ⌧coa is set before the next coagulation event.

The above coagulation model assumes that the particles in the control volume

are sufficiently numerous, and describe a sufficient number of discrete states
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of particles to fully describe coagulation statistics.

2.3. Control of statistical convergence

Lagrangian approaches require a minimum number of particles to reach

statistical convergence. On the other hand, the inception of nascent soot par-

ticles implies the constant creation of new particles in the control volume,

increasing their number in an uncontrolled way. In MC simulations, resizing

[28] or constant-number approaches [29] are applied to nucleation [30]. In the

present Lagrangian formulation, the constant-number approach is retained.

This implies defining a maximum number of particles, sufficient to reach sta-

tistical convergence, and merging of weighted particles to keep their number

below the maximum, as was already used in [2]. Particles can be removed

randomly [21, 30, 31] but in order to enhance statistical convergence, it is

more efficient to merge particles with close enough properties (size here) [26].

To do so, particles and their weights are controlled as follows:

• Maximum number of particles: A constant threshold value Nmax
soot is

applied to control the number of computed particles which are merged

if N > Nmax
soot .

• Particle creation: The nascent particles are created with a weight

dictated by both the control volume and the numerical timestep to

guarantee a number of particles below Nmax
soot .

• Merging: Particle merging is controlled by a criterion based on their

position and diameter.
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3. Validation in laminar flames

The Lagrangian polydisperse methodology (EL POLY) was implemented

in the code AVBP jointly developed by CERFACS and IFPEN To benefit

from the difference between the compressible flow timestep controlled by

acoustics, and the particle motion convective timestep which is much larger,

Lagrangian iterations are performed only after a number fs (soot frequency)

of flow iterations. This leads to a significant gain of computational cost

without loosing accuracy, as illustrated in Table 1 showing the contribution

of the Lagrangian solver to the total computational time for different values of

fs. The value of the soot frequency fs depends on the case and the numerical

setup, and can be estimated as fs = ↵⌧min/⌧f , where ⌧f is a flow time scale

and ⌧min corresponds to the minimum characteristic time of soot processes

among nucleation, surface reactions and coagulation. The coefficient ↵ allows

to filter out some unsteadiness of the flow and depends on the application.

In the present case ↵ = 2. Note that the soot frequency has to be chosen

carefully to guarantee a maximum gain in computational cost and a minimum

error.

To assess the quality of the proposed method applied to gas turbines,

the pressurised 1D premixed ethylene/air sooting flame from the Interna-

tional Sooting Flame workshop (ISF Target Flame 4 : Laminar Premixed

Pressurised 2 [32]) is first computed. The equivalence ratio is high: � = 2.3

(C/O = 0.766), and the pressure is 3 bars. For this flame fs is estimated at

5, for which the error is still found negligible (See Table 1). Higher values

lead to significantly higher errors.
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Soot frequency, fs 1 5 10 20

Lagrangian solver, % 25 9 6 4

Maximum Error, % 0 3.3 18 37

Table 1: Contribution of the Lagrangian solver to the computational time for different

values of fs and maximum relative error on soot prediction for the ISF Target Flame 4.

For this case Nmax
soot is set to 20 per control volume. Soot has been com-

puted with both the monodisperse (in both Eulerian (EE) and Lagrangian

(EL MONO) formulations) and polydisperse (EL POLY) approach. For EL

MONO, the soot particle mass is governed by Eq. 1, the nuclei diameter is set

to the mean diameter and the coagulation is based on Eq. 7 where particles

have the same diameter. Results are compared in Fig. 1. As expected EE
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Figure 1: Soot number density (left axis, grey line) and soot volume fraction (right axis,

black line) in the ISF Target Flame 4 (Laminar Premixed Pressurised 2). Comparison

between experiment [32] (squares),

EE (lines), EL MONO (crosses) and EL POLY (circles).

and EL MONO are strictly identical and reproduce well the experiment as

in [17]. The EL POLY approach gives also the same soot number density,

but a slightly higher soot volume fraction downstream the flame.
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To go further, the same 1D sooting flame is computed without surface

reactions, in order to focus on coagulation. As the EL POLY approach for

coagulation is stochastic, several computations have been performed. Re-

sults are compared to the EE approach in Fig 2. EL POLY introduces
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0
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f v
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]
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Figure 2: Soot number density (left axis) and soot volume fraction (right axis) for coagu-

lation in the ISF Target Flame 4 (Laminar Premixed Pressurised 2). Comparison between

EE (lines) and EL POLY (symbols) with the stochastic noise (shaded area).

a slight stochastic noise on soot volume fraction directly linked to Nmax
soot .

The stochastic noise induced by Nmax
soot = 20 seems reasonable compared to

Nmax
soot = 10. However, near the exit the statistical average of soot volume

fraction is slightly higher while the average soot number density is slightly

lower. This is due to polydispersity which promotes the coagulation of the

largest particles. The number of particles is negatively impacted whereas the

soot diameter increases.

4. Application to a realistic combustion chamber

4.1. Configuration and numerical set-up

The configuration studied in this work is an experimental set-up installed

at DLR [33] referred to as ISF-3 Target Flame 1. It is one of the target
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pressurized flame within the International Sooting Flame (ISF) workshop.

It is designed to study soot formation in gas turbine combustors under ele-

vated pressure, burning ethylene with or without secondary air dilution. The

combustor is presented in Fig. 3, also illustrating the flow topology by dis-

playing the instantaneous axial velocity field. The chosen operating point is

Oxidationair

Laserprofiles

Swirlerair

C2H4

30-30 0U [m/s]

120 mm

ORZ

ORZ

IRZ

Figure 3: ISF-3 Target Flame 1: Instantaneous axial velocity from LES in a mid-plane

cut.

summarized in Table 2. The burner operates under overall lean conditions

(�glob = 0.86) but the primary combustion zone (PZ) is characterized by an

overall rich equivalence ratio (� = 1.2).

The numerical strategy used for the LES of this configuration is fully

described and validated in [17]. The domain is discretized into a fully un-

structured mesh using 40M tetrahedral elements, and the flow and flame
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ṁair ṁair,oxy ṁf �PZ

[kg · s�1] [kg · s�1] [kg · s�1] [�]

0.82⇥ 10�3 4.04⇥ 10�3 0.86⇥ 10�3 1.2

Table 2: Experimental operating conditions at P = 3 bars [15].

equations are solved with a third order in space and time numerical scheme

[34]. The same ARC described in Sec. 3 is employed, associated with the

DTFLES turbulent combustion model [35] and the WALE [36] turbulence

model. Two simulations including soot, one with EE approach and the other

with EL POLY approach were performed for comparison. An instantaneous

field of temperature in a mid-cut plane is displayed in Fig. 4(a). As suggested

by the white superimposed acetylene isocontour, soot is massively generated

in the PZ, downstream the (rich) main flame. The dilution holes are respon-

sible for the temperature decrease along the main axis, visible in Fig. 4(b)

where the comparison with experiment shows a very good agreement.

4.2. Soot prediction

Figure 5 presents a qualitative comparison of time-averaged soot mass

fraction fields obtained with both formalisms and the experimental results.

In both simulations a good order of magnitude and distribution of soot vol-

ume fraction is retrieved. The Eulerian and Lagrangian descriptions lead to

very similar results, confirming the validity of our Lagrangian particle track-

ing approach. The different formalisms however lead to slight differences

for oxidation. This is due to the removal of particles with a diameter lower

than the nuclei (=0.98 nm) in the Lagrangian approach, in order to avoid

computing small residual diameter particles, whereas all particles are kept
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Figure 5: ISF-3 Target Flame 1: Comparison of (A) time-averaged LII soot measurements

with time-averaged soot volume fraction from LES using (B) the monodisperse Eulerian

(EE) and (C) the polydisperse Lagrangian (EL POLY) approaches. Soot diameter isocon-

tour dp = 0.98 nm is shown in white.
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in the EE approach. A white isocontour of diameter at the nuclei value in

Fig. 5b confirms that results for EE and EL POLY are very similar for soot

particles larger than nuclei. The main difference between both approaches

is the NDF, which is reduced to a Dirac function in the Eulerian approach.

Figure 6 shows the instantaneous presence of soot particles (for easier visu-

dilution holes

YO2[-]0 0.25

P3

P4

P1

P2

EL
EE

dpmean

Figure 6: ISF-3 Target Flame 1: Instantaneous soot presence (symbols) in the primary

zone with superimposed streamlines, O2 mass fraction (grey scale), one isocontour of

acetylene (white), the isocontour of Temperature at T = 1200 K (red). Four bins of

particles are represented: nuclei to 2.5nm (•), 2.5 to 7.5 nm (H), 7.5 to 12.5 nm (⇥)and

12.5 to 20 nm (?). Finally, 4 probes are defined and their respective NDF are shown.

alization only 1 over 100 particles are displayed). Particles are displayed in

four bins of size from nuclei size to 20 nm diameter. Streamlines thickened
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by the velocity magnitude illustrate the interaction with particle dynamics.

The flame position, O2 and C2H2 mass fractions explain why soot remains

in the primary zone (Fig. 5). As already seen, soot is formed mainly in post-

flame zones rich in C2H2, the soot precursor used in the Leung model. Soot

particles are then quickly oxidized although the level of O2 has significantly

decreased in this burnt gas region. Oxidized particles are removed as soon

as their size falls below the nuclei size. Only few particles are able to subsist

slightly longer downstream until they meet the dilution air jets where they

are in turn oxidized. The NDFs obtained with the Lagrangian approach at

four probes P1 to P4 represented by large circles on the snapshot are also

available in Fig. 6. Although no validation can be made due to the lack of

measurement, results demonstrate that the EL POLY approach is capable to

describe the NDF with sufficient statistical convergence. The first probe (P1)

located in the rich C2H2 regions exhibits a single-peak NDF shape due to the

strong nucleation in this zone. The bimodality of the soot NDF is retrieved

at the forth probe (furthest from the flame) as expected. The comparison of

the mean diameter obtained is also plot in Fig. 6 for each probes.

The soot mean diameter follows the same distribution over the four probes

for both formalisms. However, the Eulerian mean diameter is lower than the

Lagrangian mean diameter, mainly due to the small particles kept in Eulerian

and deleted in Lagrangian, in the oxidation zone.

As mentioned in the Introduction, access to the NDF is critical to im-

prove soot modeling. The current results demonstrate that the Lagrangian

particle tracking approach is a promising technique to increase the accuracy

of soot prediction. This conclusion is re-enforced by the computing times re-
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ported in Table 3 for each formalism. Overall the computational time of the

Lagrangian approach is of the same order of magnitude than the monodis-

perse Eulerian approach. This means that the Lagrangian approach gives

the NDF at the same computational cost as a monodisperse approach, and

allows to envisage sophisticated soot chemistry models in real complex ge-

ometries. Note that detailed soot chemistry models may involve additional

properties like surface or H/C ratio. If adding such properties is easier with

particles than in Eulerian methods [10], it may require more numerical par-

ticles to reach sufficient accuracy and then increase the computational cost.

However, Table 3 shows that increasing the number of particles will impact

the computational cost to a reasonable extent. Another additional complex-

ity will be to include PAH chemistry. This can be achieved either with the

use of look-up table [19] or by directly calculating lumped PAHS, as in the 3

sections model of [37]. Both methods induce a low additional cost. All these

issues associated to detailed soot chemistry models will be investigated in a

future work.

EE EL POLY

fs - 1 5 1 5

Nmax
soot - 10 10 20 20

CPUh 12500 20250 13600 26650 14675

Table 3: Summary of computational requirements for the computation of 1 ms physical

time.
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5. Conclusions

A semi-deterministic Lagrangian particle tracking methodology has been

introduced and validated for soot prediction in combustion chambers. Valida-

tion on a one-dimensional sooting flame and a gaseous non-premixed burner

has been performed by comparison with the original Eulerian Leung model

and experiment when available. Results confirm that the approach is suit-

able for soot modeling and provides accurate results in reasonable computing

time. Although further validations are required to assess the accuracy of the

predicted NDF, the proposed formalism is ready to include more sophisti-

cated soot models based on more particle properties.
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