
Grenoble INP – ENSIMAG & MSIAM
École Nationale Supérieur d’Informatique et de Mathématiques Appliquées de Grenoble

Master of Science in Industrial and Applied Mathematics

Master’s thesis report

Introduction to Quantum computing

Suau Adrien

3rd year – ENSIMAG MMIS & MSIAM

August 2018

Centre Européen de Recherche et de
Formation Avancée en Calcul
Scientifique
31 057 Toulouse

Internship supervisor:
Gabriel Staffelbach
School tutor:
Christophe Picard

Abstract

Quantum computing is known to be able to solve efficiently problems that are hard
for classical computers, such as prime factorisation. In this report, a study of different
quantum algorithms is done to assess their applicability on two computational problems:
solving sparse linear systems and detecting thermoacoustic instabilities in combustion
chambers. Several limitations to the quantum algorithms studied have been identified
and a method has been partially devised to apply quantum computing algorithms to the
detection of thermoacoustic instabilities.

Résumé

Le calcul quantique est un domaine de recherche en pleine expension qui semble capable
de résoudre efficacement certains problèmes compliqués pour un ordinateur classique.
Ce document se concentre sur l’étude de potentielles applications du calcul quantique
dans le domaine de la mécanique des fluides numérique. Dans ce document, une analyse
de l’utilité de certains algorithmes quantiques est réalisée pour deux problèmes : la réso-
lution de système linéaires creux et la détection d’instabilités thermo-accoustiques dans
une chambre de combustion. L’analyse de ces deux problèmes a démontré un certain
nombre de limitations inhérentes aux algorithmes étudiés et a donné lieu à l’élabora-
tion partielle d’une méthode qui utilise un algorithme quantique pour cractériser les
instabilités thermo-accoustiques.

Acknowledgements

I would like first to express my very great appreciation to all ENSIMAG and MSIAM
teaching staff. I really enjoyed my first two years spent within ENSIMAG and my last
year in the MSIAM master program. A special thank to Dr Christophe Picard, my
ENSIMAG tutor for this internship, for his proofreading and advices.

I am particularly grateful for the assistance, advices and guidance given by Gabriel
Staffelbach, my internship supervisor, all along the internship. He helped me a lot during
these six months and made this internship particularly interesting and challenging.

I also wish to thank all the CSG team for the pleasant atmosphere in the office.
Within the CSG team, I particularly want to thank Dr Isabelle d’Ast that helped me
a lot with the IT environment and gave me precious advices during my research for a
PhD.

I finally wish to acknowledge the help provided by Dr Jean-François Parmentier on
the slides for the quantum computing meet-ups.

Table of Contents

Glossary

Acronyms

1 Introduction 1
1.1 General considerations . 1
1.2 CERFACS and work team . 2
1.3 Description of the work and outline of the document 2

2 Existing quantum technologies 5
2.1 Quantum chips . 6

2.1.1 Existing quantum chips in July 2018 6
2.1.2 Physical implementation of quantum chips 7

2.2 Programming languages . 7
2.2.1 Quantum instruction sets . 8
2.2.2 Quantum programming languages 8

2.3 Quantum simulators . 9
2.3.1 Limited hardware accessibility 9
2.3.2 Hardware errors . 10
2.3.3 Limitation on the number of qubits 11

3 Quantum algorithms applied to scientific computing problems 13
3.1 Detecting acoustic instabilities in combustion chambers 13

3.1.1 Numerical model to compute thermoacoustic instabilities . . . 14
3.1.2 Classical algorithms used to solve Helmholtz equation 15
3.1.3 Quantum algorithms . 15
3.1.4 Applicability of the quantum algorithms 17

3.2 Solving linear systems of equations . 18
3.2.1 The HHL algorithm . 19
3.2.2 Possible applications of HHL algorithm 19

4 Internship contributions 23
4.1 Implementation of quantum algorithms 23

4.1.1 Early developments . 23
4.1.2 Shor’s algorithm . 24
4.1.3 HHL algorithm . 25
4.1.4 Analysis of the HHL implementation 26

4.2 Auxiliary tools . 28
4.2.1 Endianness management . 28
4.2.2 qasm2image . 28
4.2.3 qasm2error . 29

4.3 Quantum computing meet-ups . 29

5 Conclusion and outlook 31
5.1 Results . 31
5.2 Outlook . 31

Appendices A.i

A Introduction to quantum computing A.i
A.1 Quantum computing basics . A.i

A.1.1 What is a quantum bit? . A.i
A.1.2 Notation and mathematical formalism A.i
A.1.3 Superposition states . A.iv
A.1.4 Measurement of quantum states A.v
A.1.5 Entanglement between qubits A.vi

A.2 Theoretical background of quantum computing A.vi
A.2.1 Model of computation and universality A.vii
A.2.2 Measurement based quantum computer A.vii
A.2.3 Adiabatic quantum computer A.viii
A.2.4 Topological quantum computer A.viii
A.2.5 Quantum circuit . A.viii

A.3 Quantum gates and algorithms . A.x
A.3.1 Qubit state transformation . A.x

B Qubit coherence times B.i
B.1 Quantum decoherence . B.i

B.1.1 Definition . B.i
B.1.2 IBM’s coherence times definition B.i

B.2 Coherence times for IBM’s qubits . B.ii

List of Figures

2.1 Qubit number evolution . 5

4.1 Online editor on IBM’s website. 24

A.1 Bloch sphere: possible qubit states . A.iv
A.2 Abstract model of computation . A.vii
A.3 Visual representation of a quantum circuit A.ix

List of Tables

2.1 Quantum chips – July 2018 . 7
2.2 Quantum programming languages – July 2018 8
2.3 Quantum computer simulators – July 2018 12

3.1 FEM time complexity . 20

4.1 Coherence time for the HHL algorithm on ibmqx5 27
4.2 Probability of errors due to decoherence for the HLL algorithm on ibmqx5 27

B.1 Coherence characteristic times for ibmqx2 B.ii
B.2 Coherence characteristic times for ibmqx4 B.ii
B.3 Coherence characteristic times for ibmqx5 B.ii

Glossary

Quantum algorithm for linear systems of equations A quantum algorithm solving
linear systems of equations, designed by Aram Harrow, Avinatan Hassidim, and
Seth Lloyd. References: [1, 2]. 7, 17

Quantum Phase Estimation A quantum algorithm that estimates the eigenvalue
associated to a known eigenvector of a unitary operator. References: [2, 3].
14–16

Qubit ‘Quantum bit’: the quantum equivalent of the ‘bit’. Used to store the data needed
by the program being run. See A.1.1 for a detailled explanation. A.i

Variational Quantum Eigensolver A quantum iterative algorithm that computes the
ground state eigenvalue of a unitary operator. References: [4]. 14–16

Acronyms

ALGO Algorithmique Parallèle – Parallel algorithmic. 2
API Application Programming Interface. 2, 7, 25

CERFACS Centre Européen de Recherche et de Formation Avancée en Calcul Scienti-
fique. 2, 11, 21, 27, 28

CES Consumer Electronics Show. 3
CFD Computational Fluid Dynamics. 2, 11
CNES Centre National d’Études Spatiales – National Centre for Space Studies. 2
COOP sCientific sOftware Operational Performances. 2
CSG Computer Support Group. 2

EDF Électricité De France – French electricity company. 2

FEM Finite Element Method. 18

GLOBC Modélisation du climat et de son changement global – Modeling of climate
and its globalchange. 2

GUI Graphical User Interface. 2

HPC High Performance Computing. 2

ONERA Office National d’Etudes et de Recherches Aérospatiales – National Office for
Aerospace Studies and Research. 2

PDE Partial Differential Equation. 18

QC Quantum Computing. 1, 2
QFT Quantum Fourier Transform. 23

SDK Software Development Kit. 7

Chapter 1

Introduction

1.1 General considerations
Quantum mechanics theory as we know it began in the mid-1920s with the work of Erwin
Schrödinger [5], Werner Heisenberg [6], Max Born [7] and many other researchers. Using
quantum mechanics, Yuri Manin and Paul Benioff [8] started to conceive a theory around
QC (Quantum Computing), followed by Richard Feinman [9] and David Deutsch [10].
Until the second half of 1990, QC was considered only as a scientific curiosity: the
existing quantum algorithms, although allowing an exponential speed-up in asymptotic
complexity in some specific cases, could only solve artificial problems with no real interest
apart from a theoretical point of view.

The vision of QC in the scientific community changed in the late 1990s, when Luv
Grover and Peter W. Shor devised two of the most important algorithms of the field
up to now: Grover’s algorithm [11] and Shor’s algorithm [12]. In its domain of applic-
ation (function inversion) Grover’s algorithm outperforms the best classical algorithm
by providing a quadratic speed-up in the asymptotic complexity. On the other hand,
Shor’s algorithm is able to solve the problem of large integer factorisation with a poly-
nomial asymptotic complexity (versus a sub-exponential one for the best known classical
algorithm).

But at that time the hardware was not sufficiently developed to implement the al-
gorithms, making them only of theoretical interest. Today, quantum hardware is still
not developed enough for useful applications but the size (number of qubits) and the
fiability (error-rates) of the quantum chips available started to increase very quickly in
2017, along with an increased disponibility to the public. The point when quantum
computers will be able to solve some problems faster than classical ones (also called
quantum supremacy) seems to be only a few years ahead.

This internship takes place at a time when huge actors like Google [13], Intel [14] or
IBM [15] have decided to invest massively in quantum computers, mainly on the hard-
ware side, and huge progress has been made: the maximum number of qubits on a single
chip increased from 17 at the beginning of 2017 to 72 a year later. Alongside American
companies, Europe is also investing in quantum technologies following a roadmap edited
in 2016 [16] and summarised and updated at the end of 2017 [17]. Finally, quantum
technologies have attracted European companies like Airbus [18] (searching for poten-

Page 1 of 32

tial usages of quantum technologies) or Atos [19] (developing and selling a quantum
simulator).

1.2 CERFACS and work team

CERFACS (Centre Européen de Recherche et de Formation Avancée en Calcul Scientifi-
que) is a private research laboratory created in 1987 and specialised in advanced methods
for numerical simulations, especially simulations involving fluid mechanics. The company
is managed by the representatives of its seven shareholders: Airbus; CNES (Centre
National d’Études Spatiales – National Centre for Space Studies); EDF (Électricité De
France – French electricity company); Météo-France, the French meteorological service;
ONERA (Office National d’Etudes et de Recherches Aérospatiales – National Office for
Aerospace Studies and Research); SAFRAN, a high-technology international group; and
TOTAL, a multinational energy company.

The laboratory is divided into three research teams:

• ALGO (Algorithmique Parallèle – Parallel algorithmic)

• CFD (Computational Fluid Dynamics)

• GLOBC (Modélisation du climat et de son changement global – Modeling of cli-
mate and its globalchange)

A fourth team named CSG (Computer Support Group) is in charge of information
technology and support. CSG also hosts the COOP (sCientific sOftware Operational
Performances) team, in charge of code quality, API (Application Programming Interface)
design, GUI (Graphical User Interface) design, HPC (High Performance Computing)
and technology watch. The internship was supervised by Gabriel Staffelbach, a senior
researcher of the COOP team.

1.3 Description of the work and outline of the document
The internship had several complementary goals: introducing the field of QC to CER-
FACS employees (PhD students, post-doctorates and researchers), determining if QC
could be useful to CERFACS in their domain of activities (mostly CFD) and starting
to implement some quantum algorithms.

The first step to complete these goals was to understand the concepts behind QC and
how computations can be performed with quantum computers. The base concepts of QC
are presented in Appendix A, along with a short introduction to quantum algorithms.

An important part of the internship consisted in a bibliographic work. This work
can be divided into two parts:

• Building a list of the tools related to quantum computing and assessing their
applicability and usefulness for the internship and for CERFACS.

Page 2 of 32

• Understanding several quantum algorithms and determining if they could be ap-
plied to CERFACS field of expertise: CFD.

Chapter 2 summarises the first part (listing the technologies around quantum com-
puting) by splitting it into three categories: the chips, the programming languages and
the simulators.

Then, Chapter 3 recapitulates the research results obtained on the applicability of
several quantum algorithms to computational problems in CFD.

Finally, Chapter 4 outlines the different contributions made during the internship,
both in terms of code and knowledge sharing.

Page 3 of 32

Page 4 of 32

Chapter 2

Existing quantum technologies

One of the early goals of the internship was to list as exhaustively as possible the tech-
nologies created and used in quantum computing. In this chapter, we use the word
‘technology’ for ‘real quantum chip’, ‘quantum programming language’ or ‘quantum
simulator’.

The first section of this chapter will list the existing physical implementations of
quantum chips alongside with their characteristics. The second section will then intro-
duce some quantum programming languages that are used to generate quantum machine
instructions. The third and last section will finally discuss the purpose of quantum com-
puter simulators and their development in a near future.

1997 2003 2008 2014 2019
0

20

40

60

N
um

be
r

of
qu

bi
ts

(a) Evolution in time of the number of qubits
of universal quantum computers. Universal
quantum computers are capable of running
any quantum algorithm.

2007 2010 2012 2015 2018
0

500

1,000

1,500

2,000

N
um

be
r

of
qu

bi
ts

(b) Evolution in time of the number of qubits
of quantum annealing computers. Quantum
annealing computers are not universal and are
specialised to a very restricted set of prob-
lems (quadratic unconstrained binary optim-
isation).

Figure 2.1 – Evolution in time of the number of qubits in quantum chips. Scales between
universal qubits and quantum annealing qubits differ by 2 orders of magnitude.

Page 5 of 32

2.1 Quantum chips
Before making a list of the existing quantum chips it is interesting to draw a time-line
of the key dates in quantum computer physical implementation.

The first experimental demonstration of a working quantum computer took place in
1998. The quantum computer was composed of 2 qubits and ran Deutsch’s algorithm
[10]. In 2000, a research team at the Los Alamos National Laboratory constructed a
7-qubit quantum computer. The first quantum computer with more than 10 qubits
was built in 2006 and had 12 qubits. One year later, DWave announced a 28-qubit
quantum annealing processor. Since then the number of qubits in quantum computers
has massively increased. Figure 2.1 summarises the evolution of the largest quantum
chip (in term of number of qubits) along the time.

2.1.1 Existing quantum chips in July 2018

In July 2018, the major actors in quantum computer engineering are:

• Intel that announced during the 2018 CES (Consumer Electronics Show) a 49-
qubit chip code-named Tangle Lake.

• IBM who built five quantum computers since 2017:

– A 5-qubit computer made available on 24th January
– Another 5-qubit computer made available on 25th September
– A 16-qubit computer unveiled on 28th September
– Two 20-qubit computers, made available to IBM partners at beginning of

June
– A 50-qubit computer that is still in test-phase and should be available to IBM

partners in 2019

Among these quantum chips, the two 5-qubit and the 16-qubit ones are publicly
available via IBM’s Q Experience website [15]. The 20-qubit chips are only avail-
able to IBM’s commercial partners and the 50-qubit chip is not available yet.

• Google unveiled on 5th March 2018 its 72-qubit chip code-named Bristlecone.

• DWave which is specialised in the quantum annealing technology, has the D-Wave
2000Q chip which is composed of 2048 qubits.

Google announced in a blog post published on 18th July 2018 [20] that it plans to
make its Bristlecone chip available in the cloud in the future. In July 2018, IBM’s
quantum computers are the only chips available to test the quantum codes produced
during the internship as they are the only publicly accessible.

Table 2.1 summarises the biggest existing quantum chips in July 2018.

Page 6 of 32

Company Universal Technology Max. qubits Publicly available
DWave × Superconducting 2048 on sale
Intel ✓ Superconducting 49 ×
IBM ✓ Superconducting 50 in the future

Google ✓ Superconducting 72 ×
Rigetti ✓ Superconducting 19 ✓

Table 2.1 – Quantum chips owned by companies and known to public in July 2018.
The column ‘Technology’ lists the physical qubits implementations used. This list is not
exhaustive.

2.1.2 Physical implementation of quantum chips
Classical computer chips have not always been constructed with silicon transistors: in
the early steps of computers, other technologies like electromechanical computers or
vacuum tubes were used.

The same scheme holds for quantum computing. Currently, there are several im-
plementations of qubits and quantum gates that are co-existing. The most widespread
implementation, which is used in nearly all the ‘industrial’ quantum chips, is based on
super-conducting qubits and on a quantum mechanical effect known as the Josephson
effect. In addition to the Josephson junction, there exist plenty of different physical
entities to represent a qubit, mostly used in research laboratories, such as photons,
electrons or optical lattices.

Even if super-conducting qubits are currently the most used, there exist other al-
ternatives that could be more interesting for a large-scale quantum computer such as:

1. Silicon-based qubits. Its advantage lies in the fact that silicon technology has
already been used for decades in classical chips and companies like Intel or TSMC
(Taiwan semiconductor founders) have gained an enormous amount of knowledge
and expertise on this material.

2. Topological qubits. This implementation of a qubit uses a quasi-particle called
anyon which is still highly theoretical. Topological qubits are considered as prom-
ising because they can theoretically achieve error-rates several order of magnitude
better than the other technologies.

2.2 Programming languages
As for classical computers, quantum computers need to receive instructions from the
developer in order to execute an algorithm. There exist two kinds of programming
languages in quantum computing, like in classical computing:

• The instruction sets that are the quantum equivalent of classical assembly lan-
guage like MIPS or x86-64.

Page 7 of 32

• The programming languages that will be used to produce a code written in a
given instruction set. These programming languages are the quantum equivalent
of C++ or Python.

2.2.1 Quantum instruction sets
Quantum instruction sets are used to express a quantum algorithm in terms of machine
instructions. Because of this, instructions sets are linked with the hardware and designed
according to its key strengths and weaknesses.

In mid-2018, there are two main open quantum instruction sets: OpenQASM and
Quil.

OpenQASM (Open Quantum ASsembly Language) [21] is the open-source instruc-
tion set designed by IBM for its quantum chips.

Quil [22] is the first quantum instruction set that introduced a model where quantum
memory and classical memory are shared.

2.2.2 Quantum programming languages
There are plenty of quantum programming languages, Table 2.2 lists the main languages
used to produce quantum machine instructions (i.e. a code in quantum assembly).

Language name Free Open-source Inspired from Supported by Launched in
Q# ✓ × C# Microsoft 2017

QISKit ✓ ✓ Python 3 IBM and
Open-source 2017

Quipper ✓ ✓ Haskell Researchers 2013
Cirq ✓ ✓ Python 3 Google 2018

Table 2.2 – Main quantum programming languages in July 2018. This list is not ex-
haustive.

In Table 2.2, each programming language uses a different paradigm to produce and
run quantum code and has a different level of maturity.

• Q# [23], created by Microsoft. It can be integrated into C# or F# code. Q# code
works like a black box: the user/developer does not have access to the low-level
representation of its code (i.e. the translation of the code in quantum assembly).
Everything is abstracted in order to make Q# programming a ‘high-level’ pro-
gramming language.
Q# comes with a quantum library developed by Microsoft. This library imple-
ments most of the basic quantum algorithms such as the Quantum Fourier Trans-
form or Shor’s algorithm.

Page 8 of 32

• QISKit [24] is an open-source project launched by IBM. The QISKit project is
composed of:

– The OpenQASM language specification [21].
– Several SDKs [25, 26, 27] allowing developers to generate OpenQASM code

with their favourite programming language. The available languages in July
2018 are Python 3, Swift and JavaScript.

– An API to submit quantum programs to IBM’s quantum chips [28] that are
in the cloud.

The QISKit project provides a way to generate OpenQASM code from Python,
Swift and JavaScript.

• Quipper [29] is designed to be a scalable programming language for quantum
computing. Quipper is based on Haskell and uses the functional paradigm.

• Cirq [20] was released in July 2018. It is a Python 3 framework developed by
Google that specifically targets Bristlecone, the quantum chip unveiled several
months ago by Google.

2.3 Quantum simulators
Quantum simulators are the final brick in quantum computing. Just as their classical
counterparts, quantum simulators are software designed to run on classical architectures
that aim at simulating the behaviour of a quantum computer. The same principle exists
in classical computing with the Intel Software Development Emulator that emulates the
behaviour of new Intel chips without requiring access to one of those chips.

Simulators are crucial in quantum computing and address several major issues of the
current quantum chips:

1. Real quantum hardware is not readily accessible to everyone.

2. Real quantum hardware is noisy (see 2.3.3), has resiliency issues.

3. Real quantum hardware is currently limited to a small number of qubits.

Each issue is explained in details in the sections 2.3.1, 2.3.2, 2.3.3.

2.3.1 Limited hardware accessibility
The first main issue with quantum chips is that not everyone is able to use them. In
fact, most of the quantum chips are owned by private companies and only accessible
to ‘partners’ that registered and paid to have access to those chips. The only quantum
hardware currently available to everyone is IBM’s chips, but strong conditions on in-
tellectual property applies: to run the code on a IBM chip, you must give IBM all the
rights on it (right to patent, copy, share, modify, etc.).

Page 9 of 32

Quantum simulators settle this accessibility issue as they are just a classical software
that is most of the time freely shared on specialised websites like GitLab or GitHub.
Some simulators are not freely available and some are even linked with a specialised
hardware that should be bought with the software. Nevertheless, there exist plenty of
open-source quantum simulators and a list can be found in [30].

According to the documentation of the simulators, simulating at least 20 qubits
should be accessible to everyone with a ‘normal’ computer. Most of the current quantum
simulators are limited by the quantity of available RAM because they need to store
a quantum state which is composed of 2n complex numbers, n being the number of
simulated qubits. Knowing that, we can easily compute the number of simulable qubits
as a function of the available quantity of RAM. Function f computes for a given quantity
of RAM M (in bytes) the number of simulable qubits.

f(M) = log2
(

M

sizeof(complex)

)
= log2

(
M

8

)
For a computer equipped with 4GiB of RAM, f(4 × 230) = 29 so 29 qubits are sim-
ulable if we neglect the quantity of RAM needed for the operating system and the other
applications.

2.3.2 Hardware errors
Another big issue in quantum computing is the errors that appear during the computa-
tions. Errors during quantum computations can be caused by:

1. Imperfect implementation of quantum operations: each application of a quantum
operation has a probability to fail and to introduce an error in the computation.
On IBM’s quantum chips, operations involving a unique qubit have an error rate
in the order of 10−3, operations on 2 qubits have an error rate of approximately
3.10−2(= 3%) and the error rate in measurement is between 2.10−2 and 11.10−2,
i.e. between 2% and 11%.

2. Interactions between the qubits and an external system that is not under con-
trol. The probability that no interaction occurs is given by an exponential law of
parameter λ = 1

T , where T is called the ‘coherence time’. After a duration T , an
interaction between the concerned qubit and an external system (i.e. an error) has
occurred with a probability of 1 − e−1 ≈ 0.63. Coherence times of IBM’s qubits
are all below 100µs for the publicly available chips.

Because of these high error rates, actual quantum chips are only capable of running
toy programs and are limited by coherence time and gate errors.

This problem is circumvented by using quantum simulators which are by definition
‘perfect’ in the sense that they do not suffer from the errors caused by physical phe-
nomenon such as decoherence or imperfect operations.

If we take as example a quantum algorithm that would require t = 1 second to run
on a real quantum computer composed of n qubits, taking T = 100µs as the coherence

Page 10 of 32

time of reference and neglecting gate errors, the probability for one qubit to executes
without error is e−λt = e−

t
T = e−10000 ≈ 10−4343. The quantum program needing n

qubits, the final probability that the whole program runs without error is e−10000n. On
the other hand, for the same quantum program, a quantum simulator would give an
error-free result with probability 1 (neglecting errors that may happen on the classical
hardware).

2.3.3 Limitation on the number of qubits
In this section, the distinction between noisy and noise-less qubits is crucial: a noisy
qubit has imperfect operations (i.e. errors can occur when performing an operation on
the qubit) and a finite coherence time whereas a noise-less qubit has perfect operations
and an infinite coherence time.

Thanks to QECC (Quantum Error Correction Codes) it is possible to group multiple
noisy qubits together to make them behave as a unique ‘less-noisy’ qubit (see [31]). When
using QECC, it is convenient to introduce the notions of physical qubits and logical qubits:

• A physical qubit represents the ‘raw’ qubit, without QECC.

• A logical qubit is something that behave as a qubit. Examples of logical qubit are:

– A physical qubit (it behaves like a qubit, so according to the definition it is a
logical qubit).

– A group a physical qubits aggregated with a QECC is a logical qubit. In this
case, the logical qubit will have better caracteristics (longer coherence time,
lower gate error-rate, etc.) than the physical qubits composing it.

With these definitions, we can clearly state the difference between a quantum simu-
lator and a real quantum chip when speaking of their qubits:

• Quantum simulators simulate noise-less qubits, i.e. perfect qubits, without errors.

• Quantum computers implement noisy physical qubits, i.e. qubits with a non-
negligible error-rate. A quantum computer can also use QECC to implement noisy
logical qubits, with lower error-rates and greater coherence time than the noisy
physical qubits. In practice, QECC can introduce huge factors in the number of
needed qubits. See [32] for more details.

Speaking of the number of qubits, the existing hardware is still limited to a very
small number of noisy qubits. The maximum number of noisy qubits on a quantum
chip is detained by Google with the 72 qubits of its Bristlecone chips, but for a publicly
available quantum chip, the maximum number of noisy qubits is only 16.

On the other hand freely accessible simulators are able to simulate at least 28 qubits.
Table 2.3 gives the characteristics of 3 quantum simulators.

Page 11 of 32

Company Free Max. qubits free Max. qubits non-free
Atos × × 40

Microsoft ✓ 30 40
IBM ✓ 30 ×

Table 2.3 – List of quantum programming simulators in July 2018. This list is not
exhaustive. The given numbers of qubits are the one advertised by the companies. The
real number of qubits that are simulable in a reasonable time may be lower in practice.

Page 12 of 32

Chapter 3

Quantum algorithms applied to scientific computing
problems

Using the quantum programming languages presented in Section 2.2 and the formalism
explained in Appendix A, quantum algorithms can be devised and implemented. Several
quantum algorithms have already been published, and the main goal of the internship was
to investigate the potential usefulness of these algorithms (and more generally quantum
computing) in the field of scientific computing. A deeper study should be carried out on
problems that are of particular interest for CERFACS or some of its shareholders.

During this internship, two practical problems that can be solved by classical com-
puting were studied.

3.1 Detecting acoustic instabilities in combustion cham-
bers

CERFACS is one of the leading research laboratory in the field of combustion. Jointly
with ‘IFP Energies nouvelles’ (a public French research laboratory), CERFACS main-
tains and improves the AVBP solver, one of the most advanced solver in combustion.

One of the major issues that may arise in the design of combustion chambers is
instabilities. These instabilities may appear in a combustion chamber can be classified
in three categories: thermoacoustic combustion instabilities; static instabilities or flame
blow-off and intrinsic flame instabilities. However thermoacoustic instabilities can des-
troy the engine in a few minutes and are complex to predict before the end of the design
phase, that is why the study of instabilities in combustion chambers is often reduced to
the study of thermoacoustic instabilities.

Thermoacoustic instabilities are characterised by pressure variations in the combus-
tion chamber that have a well defined frequency, most of the time between 100 Hz and
several thousands Hertz. These instabilities may have amplitudes which are high enough
to damage the combustion system and in extreme cases provoke an explosion of the sys-
tem. Such instabilities have already caused the explosion of several rocket engines during
their test phase, such as for example the Saturne-F1 engine.

Because of the cost of these equipments and the difficulty to create experimental
setups to find the instabilities, companies use CFD to compute numerically the potential

Page 13 of 32

instabilities and their characteristics, in order to avoid them in the design of their rocket-
engine.

Based on [33], section 3.1.1 will introduce succinctly the equations modeling the
instability phenomenon and the discretisation used. Section 3.1.2 will then explain
briefly the algorithms used to solve the differential equation governing the instability
phenomenon. Finally, an analysis of the potentially interesting quantum algorithms for
this problem is presented in section 3.1.3. The full development for sections 3.1.1 and
3.1.2 can be found in [33].

3.1.1 Numerical model to compute thermoacoustic instabilities
According to [33], the pressure in a combustion chamber is governed by the equation

∂2p1 (x⃗, t)

∂t2
−∇.c20 (x⃗) ∇⃗p1 (x⃗, t) = (γ − 1)

∂

∂t
q1 (x⃗, t) , (3.1)

with:

• ρ0 (x⃗) the density of the fluid in the combustion chamber,

• γ the compressibility coefficient of the fluid under consideration,

• p (x⃗, t) = p0 (x⃗) + p1 (x⃗, t) where p0 is the (constant) mean value of the pressure
and p1 the non-constant part of the pressure,

• c20 (x⃗) = γp0/ρ0 (x⃗),

• q1 (x⃗, t) the unsteady part of the heat emission rate,

We also assume that the solution in the frequential domain have harmonic oscillation:
p1 (x⃗, t) = p̂ (x⃗) e−iωt . In this specific case, thermoacoustic instabilities appear if ωi, the
imaginary part of ω, is non-negative (i.e. ωi > 0).

After some additional transformations, discretising the equation 3.1 by using the
finite volume method gives the linear system(

A+ ωB + ω2M
)
p⃗ =Mn⃗r⃗T p⃗,

which can be re-organised to(
M−1A+ ωM−1B − n⃗r⃗T

)
p⃗ = −ω2p⃗ (3.2)

with:

1. A a sparse symmetric matrix

2. B a diagonal matrix of imaginary numbers

3. M a diagonal matrix of real numbers

Page 14 of 32

4. n⃗r⃗T a bloc sparse matrix

Finding the eigenpairs (ω, p⃗) of equation 3.2 gives us all the information we need to
compute the discrete repartition of the pressure field, i.e. to characterise the instabilities
thanks to the relation in equation 3.3.

p⃗1 = ℜ
(
p⃗e−iωt

)
= ℜ

(
|p⃗|eiϕ⃗eωiteiωrt

)
= |p⃗|eωit cos(ϕ⃗− ωrt)

(3.3)

More precisely, the eigenvector p⃗ = |p⃗|eiϕ⃗ gives information on the discrete repartition
of the pressure field and its amplitude. The imaginary part of the eigenvalue ω also gives
information on the amplitudes of the pressure field and its evolution in time, whereas
the real part represents the frequency of the pressure variations.

More precisely, we only need to find the eigenpairs that correspond to modes with a
frequency between 100 Hz and several thousands of hertz as thermoacoustic instabilities
frequencies are usually within this range.

3.1.2 Classical algorithms used to solve Helmholtz equation
Section 3.1.1 reformulated the problem of characterising the thermoacoustic instabilities
in a combustion chamber as finding the eigenvalues and associated eigenvectors of a
discretised operator. The required size for the discretised eigenvalue problem depends
on the complexity of the combustion chamber topology and on the desired precision. For
industrial combustion chambers, the complexity of the chamber topology and the desired
accuracy impose a very fine discretisation step, which translates to a huge number of
unknowns in the linear system 3.2 and a huge matrix size.

Because of computing capabilities limitations, we are currently limited to discret-
isations leading to a maximum of 20 million unknowns. In order to fully compute the
instabilities, a discretisation using at least 100 million unknowns is needed but is com-
putationally intractable at the moment.

Eigenpair problems with such a size cannot be solved with a direct numerical method,
mainly because storing all the eigenvectors would require an enormous amount of me-
mory (more than 2.8 Pio in single precision, nearly 5.7 Pio in double precision). Instead
of a direct method, an iterative method needs to be considered.

Today, the most efficient iterative methods known for eigenpair problems are the
Jacobi-Davidson method and the Arnoldi method. These methods are explained in
details in [34, Chapter 6].

3.1.3 Quantum algorithms
Investigations on quantum algorithms that could replace the classical methods used
nowadays have been carried out during the internship. There exist several quantum

Page 15 of 32

algorithms related to eigenvalues and eigenvectors. The most cited and used one is
the Quantum Phase Estimation (QPE) algorithm. Most of the other eigenvalue-related
algorithms are based on QPE, except for the Variational Quantum Eigensolver (VQE).
Both algorithms are presented in the following sections.

Quantum Phase Estimation

The QPE [35] algorithm is the first quantum algorithm to deal with eigenvalues and
eigenvectors. It was introduced by Alexei Kitaev in 1995 as a generalisation of Shor’s
algorithm (that can be seen as a special case of the QPE algorithm).

Let U be a unitary matrix, i.e. UU † = U †U = I. Let u⃗j be an eigenvector of U . As
U is unitary, u⃗j is of unit norm and the eigenvalue λj associated to the eigenvector u⃗j
has necessarily a norm of 1.

As λj has a norm of 1, it can be expressed as λj = e2πiθj . In this particular case, the
phase of the eigenvalue λj is enough to fully recover the eigenvalue. The QPE algorithm,
as its name indicates, estimates the phase θj of the eigenvalue λj associated to a known
eigenvector u⃗j of a given unitary matrix U .

In other words, given a unitary matrix U and one of its eigenvectors u⃗j (represented
as the quantum state |uj⟩), the QPE algorithm estimates on n bits θ in the expression

U |uj⟩ = e2πiθ |uj⟩ .

The QPE being a probabilistic algorithm, it can return a bad result. If the value
of θ can be exactly encoded on n bits, the QPE algorithm succeed with probability 1.
Else, the algorithm succeed with a probability of at least 4

π2 ≈ 0.41 [3]. At the end of
the algorithm, the state |uj⟩ is left unchanged and the best n-bit approximation of θ, θ̃,
is encoded on n quantum bits in the state |θ̃⟩.

The fact that the eigenvector u⃗j needs to be known in advance seems to be a major
drawback of the algorithm but in fact the QPE can still estimates the eigenvalues of
unknown eigenvectors. If instead of using an eigenvector u⃗j as input to the QPE al-
gorithm we use a random vector b⃗ =

∑
i βiu⃗i (the decomposition is always possible as

the eigenvectors form a basis), the QPE will act linearly on b⃗ and will construct the
state

∑
i βi|θ̃i⟩ |ui⟩ from the input state |b⟩ =

∑
i βi |uj⟩.

Variational Quantum Eigensolver

The VQE [4] is a quantum algorithm that needs both a quantum computer and a classical
computer to execute. The algorithm is particularly suited to computational chemistry
because it aims at estimating the lowest eigenvalue (ground state) of a known Hermitian
matrix along with its associated eigenvector.

The algorithm is based on two facts:

1. The Rayleigh-Ritz quotient
⟨ψ|H |ψ⟩
⟨ψ|ψ⟩

Page 16 of 32

reach its minimum value λmin when |ψ⟩ is |umin⟩, the eigenvector associated with
the lowest eigenvalue λmin of H.

2. The quantity ⟨ψ|H |ψ⟩ is efficiently computable on a quantum computer.

The idea behind the VQE algorithm is to apply a classical gradient-free optimisation
algorithm (such as the basin-hopping algorithm) to minimise the quantity

⟨ψΘ|H |ψΘ⟩
⟨ψΘ|ψΘ⟩

(which can be computed efficiently on a quantum computer) with respect to a set of
parameters Θ that parametrise the state |ψΘ⟩. By doing so, the minimisation algorithm
used will eventually compute a set of parameters Θ and the associated state |ψΘ⟩ that
approximate the minimum of the Rayleigh-Ritz quotient, i.e. the ground state of H.

3.1.4 Applicability of the quantum algorithms
The next step after understanding the two previous algorithms was to assess their use-
fulness in the computational problem of characterising the instabilities in combustion
chambers (presented in 3.1).

Before analysing the applicability of the QPE and VQE algorithms, a quick summary
of the problem might be useful.

We want to find the eigenpairs of a system Cp⃗ = λp⃗ with C a non-hermitian matrix
defined in 3.4 and λ = −ω2.

C =M−1A+ ωM−1B − n⃗r⃗T (3.4)

In the particular case summarised above, the VQE algorithm seems to be unsuited for
at least two reasons. First, the matrix C is not hermitian, which is a necessary condition
for the VQE algorithm. Secondly, the VQE algorithm only estimates the ground-state of
the hermitian matrix given, but solving our problem requires to know all the eigenpairs
satisfying a given criterion.

The first issue might be mitigated by adapting the initial problem to the algorithm
requirements. For example, a non-hermitian matrix can be transformed into a hermitian
matrix by using some mathematical tricks. One example of transformation would be to
consider the matrix

Ch =

(
0 C†

C 0

)
, (3.5)

which is hermitian, instead of C. The transformation used needs to verify some proper-
ties in order to be interesting for our case:

• The transformation should not cost too much to apply.

• The transformed problem should be efficiently solvable by the VQE algorithm.

Page 17 of 32

• The solution of the initial problem (the eigenpairs of C) should be computable
by using the solution of the transformed problem (the eigenpairs of Ch). In other
words, the transformation should be easy to invert.

Searching for a transformation satisfying the conditions above has not been done
within the internship and is a possible working track for further research.

The QPE algorithm is more versatile than the VQE algorithm in the sense that it
is not limited to the ground-state and can produce a quantum state involving all the
eigenpairs of the considered matrix. But the matrix given to the QPE algorithm needs
to be unitary, which is not the case in the eigenvalue problem 3.2.

As for the VQE algorithm, workarounds may exist. One possible workaround would
be to transform our general eigenvalue problem into a hermitian eigenvalue problem
(using a transformation that satisfies the properties discussed in the previous part) and
then re-transform this hermitian eigenvalue problem into a unitary eigenvalue problem.

Chp⃗h = λp⃗h, (3.6)
Let 3.6 be the hermitian eigenvalue problem, with Ch the hermitian matrix obtained

by transforming C and ph the transformed solution vector. Applying the transformation
A 7→ eiA to Ch gives us a matrix Cu = eiCh with the following properties:

1. Cu is unitary.

2. If {(λj , uj)}j are the eigenpairs of Ch then
{(
eiλj , uj

)}
j

are the eigenpairs of Cu.

Supposing that the transformation from the initial problem to the hermitian one
exists, we end up with an eigenvalue problem that is suitable for the QPE algorithm.

Independently of the quantum algorithm used, one more issue needs to be analysed:
the eigenvectors computed by both algorithms are stored in the coefficients of a quantum
state. This means that we cannot have access to the full eigenvector: we only have access
to an expectation value of the form ⟨uj |M |uj⟩ where M is a linear operator. This data
is likely to be insufficient to compute the pressure vector field by using equation 3.3.

One solution would be to devise a new algorithm that is able to give some information
on the instabilities just by using a reduced number n of expectation values of the form
⟨uj |Mi |uj⟩ for 0 ⩽ i ⩽ n. The number of expectation values needed n will be crucial
for the complexity of this new algorithm, because as quantum states cannot be copied,
n will represent the number of times the QPE algorithm needs to be repeated.

3.2 Solving linear systems of equations
In 2008, Harrow, Hassidim and Lloyd introduced the ‘quantum algorithm for linear
systems of equations’, also known as ‘HHL algorithm’, in [1]. This algorithm is considered
as a major breakthrough in the field of quantum computing for several reasons.

First, new quantum algorithms that have direct implications on real-world problems
are rare: the only algorithms known before HHL were Grover’s algorithm [11] and Shor’s
algorithm [12], both of them dating from the end of the 20th century.

Page 18 of 32

Secondly, solving linear systems of equations is a widespread problem which used in
many fields of scientific computing. By solving this problem exponentially faster than
classical methods, the HHL algorithm may help to improve the asymptotical complexity
of other algorithms that need to solve linear systems of equations. Some examples of
applications are mentioned in section 3.2.2.

3.2.1 The HHL algorithm
The HHL algorithm solves a linear system of equations

Hx⃗ = b⃗ (3.7)

with H a s-sparse hermitian matrix of size N ×N and x⃗ and b⃗ two vectors of N complex
numbers1. The major advantage of the HHL algorithm over its classical counterparts is
its asymptotic time complexity of

Õ
(
log(N)s2κ2/ϵ

)
(3.8)

whereas the best known classical method to solve linear systems (conjugate gradient
method) has a time complexity of

O
(
Ns

√
κ log

(
1

ϵ

))
. (3.9)

In the equations above, κ is the condition number of H, ϵ is the desired precision and Õ
is the equivalent of the big-O notation but suppressing the more slowly-growing terms
(see [1] for a complete description).

At the end of the algorithm, the vector x⃗
||x⃗|| is encoded in the coefficients of a quantum

state |x⟩. The fact that the solution is encoded in the coefficients is also a limitation
of the HHL algorithm: once the HHL algorithm finished, the solution vector x⃗ cannot
be completely recovered because of the property of quantum measurement that collapse
the measured state. Even if the full vector is impossible to recover, expectation values
like x⃗TMx⃗ can be measured and can provide information on normalisation, moments,
etc.

3.2.2 Possible applications of HHL algorithm
As explained in section 3.2.1, the HHL algorithm solves linear systems of equations
exponentially faster (with respect to the problem size) than classical algorithms. Since
its publication in 2008, the HHL algorithm has been the subject of many scientific papers
and several applications in the field of scientific computing have been found. In each of
the following sections, a quantum algorithm that uses the HHL algorithm as a subroutine
and solve a scientific problem is presented.

1Other conditions apply, such as the necessity for the singular values of H to be between 1/κ and 1.
See [1] for a summary of the pre- and post-conditions of the algorithm.

Page 19 of 32

Finite Element Method

The FEM (Finite Element Method) is used to approximately solve a boundary value
problem given as a PDE (Partial Differential Equation) with constraints on a defined
boundary. Solving a PDE with the finite element method boils down to solve a sparse
linear system of equations obtained after discretising the weak formulation of the original
PDE over a given mesh.

The utilisation of the HHL algorithm instead of a classical solver in the FEM has
been studied in [36] by Montanaro and Pallister. Table 3.1 summarise the theoretical
asymptotical complexities they obtained depending on whether or not a pre-conditioner
is used.

Algorithm No preconditioning Optimal preconditioning

Classical Õ
(
(|u|2/ϵ)(d+1)/2

)
Õ
(
(|u|2/ϵ)d/2

)
Quantum Õ

(
||u|||u|22/ϵ3 + ||u||1|u|2/ϵ2

)
Õ (||u||1/ϵ)

Table 3.1 – FEM algorithms complexities according to [36]. u is the solution vector,
||.|| is the classical Euclidean norm, ||.||l is the Sobolev l-norm and |.|l is the Sobolev
l-seminorm.

In the ideal case where the optimal pre-conditioner is available, the quantum al-
gorithm achieve an exponential speed-up on the number of dimensions d. If the number
of dimensions d is fixed, the quantum algorithm provides at most a polynomial speed-up
depending on the value of d.

The asymptotical time complexity of the algorithms also depend on the ‘smoothness’
of the solution u. The classical algorithm time complexity depends on the amplitude of
the second derivative of the solution, whereas the quantum algorithm time complexity is
computed by using the amplitude of the first derivative of the solution. This means that
if the solution is not ‘smooth’ enough, the quantum algorithm can provide a substantial
speed-up over the classical method.

Quantum machine learning

Machine learning is a field of computer science that is currently exploding in terms
of research paper published and obtained results. One of the principal problem that
machine learning aims at solving is classification problem. Depending on the availability
of labelled data, the classification problem has two different formulations:

• If labelled data is available, then we are performing ‘supervised learning’ and the
problem is to be able to classify a given object within a given set of classes that
are characterised by the labelled data.

• If the data we have is not labelled, then we are performing ‘unsupervised learning’.
In this case, the problem is to find the labels that best fit the provided data.

Page 20 of 32

There exist plenty of classical algorithms in both supervised and unsupervised ma-
chine learning. The case of quantum algorithms applied to supervised or unsupervised
machine learning has been investigated in [37]. In this papers, Lloyd, Mohseni and
Rebentrost introduce and analyse a new quantum algorithm that mimics Lloyd’s al-
gorithm [38] (the author of this algorithm is not one of the authors of [37] even if the
have the same name).

According to [37], the quantum version of Lloyd’s algorithm for finding a local min-
ima of the k-means problem has an asymptotic complexity of O (k log (kMN) /ϵ) with k
the number of classes, M the number of points in the data set, N the dimension of the
search space (i.e. the number of coordinates needed to represent one data point) and ϵ
the desired precision. This complexity can be lowered down to O (log (kMN) /ϵ) if the
k clusters representing the different classes are ‘relatively well separated’. In compar-
ison, Lloyd’s algorithm on a classical computer has an asymptotic time complexity of
O(kMNI) where I, the number of iterations needed, may scale as 2Ω(

√
n) in the worst

case.

Linear differential equations

Linear differential equations are omnipresent in the fields of science and engineering.
First-order linear differential equations are even more important as any high-order linear
differential equation can be reformulated as a first-order linear differential equation.

In its general form, a first order ordinary differential equation can be written as

∂

∂t
x⃗(t) = A(t)x⃗(t) + b⃗(t). (3.10)

If A and b⃗ are independent of time and A is a s-sparse hamiltonian matrix, a steady
state can be found by solving Ax⃗ = −b⃗ with the HHL algorithm. But when A, b⃗ or both
are time-dependent, the steady state is not trivially computable. In [39], Berry presents a
quantum algorithm to solve the time-dependent first-order ordinary differential equation
presented in 3.10 with the constraint that A is s-sparse.

The algorithm presented in [39] achieves an asymptotical time complexity2 of

Õ
(

log(Nx)s
9/2 (||A||∆t)2 ϵ−1

)
, (3.11)

with Nx the number of spatial discretisation points, s the sparsity of the matrix A,
∆t = t − t0 the total time interval over which the differential equation is to be solved
and ϵ the desired accuracy.

With a classical algorithm, the complexity of solving 3.10 should be at least O(Nx),
i.e. the time needed to compute or read the matrix A(t0) or the vector b⃗(t0) for a given
time t0. So the quantum algorithm achieve an exponential speed-up with respect to the
spatial discretisation size Nx.

2The expression of the asymptotical time complexity has been simplified to highlight the most im-
portant points and to avoid re-explaining the paper. See [39, p. 12] for the complete expression.

Page 21 of 32

Page 22 of 32

Chapter 4

Internship contributions

The internship was not limited to theoretical research but also included a more practical
aspect: the implementation of quantum algorithms that are of interest for some of CER-
FACS shareholders. Another key purpose of the internship was to introduce quantum
computing to CERFACS’s researchers.

Sections 4.1 and 4.2 present the different implementations performed during the in-
ternship. More specifically, section 4.1 expose the different quantum algorithms success-
fully implemented and section 4.2 introduce two auxiliary tools dealing with quantum
programs: qasm2image and qasm2error.

Section 4.3 is dedicated to the two quantum computing meet-ups that were organised
at CERFACS. Each of these meet-ups consisted in a presentation related to quantum
computing and was followed by an exchange on the presentation and more generally on
quantum computing.

4.1 Implementation of quantum algorithms
Table 2.2 summarises the programming languages that were available during the intern-
ship (except for Cirq that has only been published at the end of the internship). Among
these languages, QISKit was chosen for the implementations of quantum algorithms for
multiple reasons:

1. The language is open-source and open to contributions.

2. The lead developers maintaining the QISKit library are very active and improve
the library continually.

3. QISKit is highly oriented toward IBM’s quantum chips, which were the targeted
chips at the beginning of the internship.

4.1.1 Early developments

The internship started with a period of introduction to the field of quantum computing
as I did not have any prior knowledge on this subject. During this period, my time was

Page 23 of 32

split between reading introductory books ([40] and [41]) and experimenting with basic
quantum programs.

The first experiments were performed on IBM’s website with the online editor made
available. A screen-shot of IBM’s online editor is shown in Figure 4.1.

Figure 4.1 – Online editor on IBM’s website [15]. The quantum circuit is represented
on the left of the editors and quantum gates are distributed on the circuit by using
drag-and-drop on the gates presented on the right of the editor.

The editor is convenient for testing small quantum programs and reasoning about
the output, but becomes quickly impractical when dealing with medium-sized or large
quantum programs. The QISKit library replaced the online editor very quickly for its
convenience, even when dealing with large circuits. Moreover, as QISKit is a Python 3
library it did not require a long adaptation time.

After successfully implementing some ‘toy’ algorithms like Deutsch-Jozsa algorithm
with the QISKit library, a more complex quantum algorithm was needed to assert the
capabilities of QISKit. Shor’s algorithm was chosen for several reasons. First, there
are several research papers that investigate Shor’s algorithm implementation and that
explain in details the authors’ implementation. Secondly, the algorithm is not trivial and
was a good candidate to test the limits of the QISKit library. Finally, the introductory
book [40] used at the beginning of the internship had a whole chapter dedicated to the
practical implementation of subroutines used in Shor’s algorithm.

4.1.2 Shor’s algorithm
Shor’s algorithm requires a quantum subroutine that performs a modular exponenti-
ation. In other words, Shor’s algorithm needs a quantum subroutine that performs the
operation

|x⟩ −→ |axmodN⟩ ,

with a a given constant and N = 2n the number of superposed states considered. This
operation is relatively easy to implement on a classical computer but becomes harder
to implement efficiently on a quantum computer. In order to implement the modular
exponentiation subroutine, base subroutines like addition or subtraction are needed.

Page 24 of 32

There exist several quantum algorithms to perform an integer addition, each of them
having advantages and drawbacks. Three different quantum addition algorithms have
been implemented with QISKit:

1. The ‘Conventional Quantum Plain adder’ explained in [42].

2. The ‘Ripple-Carry adder’ introduced in [43].

3. The ‘Quantum Fourier adder’ presented in [44]

The last algorithm uses the QFT (Quantum Fourier Transform) as a subroutine to
compute the sum of two integers. In order to complete its implementation, the QFT
algorithm has also been implemented.

The next step to build the quantum modular exponentiator was to use the quantum
adder to build a quantum modular adder. One such implementation is presented in [45].
The implementation of the quantum modular adder presented in [45] revealed a missing
feature in QISKit: the library lacks the possibility to transform a given quantum gate U
into its controlled-equivalent c−U . The implementation of the controlled gate could the-
oretically be done ‘by hand’, by re-writing the U gate and modifying its implementation
to make it a controlled gate, but this method has several faults:

1. It leads to code duplication: the code that implements the U gate is duplicated in
the c− U gate.

2. Re-writing and adapting a code is time consuming and error-prone.

3. The approach is not extensible: if the gate we want is cc − U (i.e. the U gate
controlled by two qubits) then we will not be able to re-use the code for c− U .

Because the purpose of implementing Shor’s algorithm (to gain experience with
QISKit) was already reached, we decided to stop the implementation at that point and
to wait for a possible improvement of the library. In August 2018, the QISKit library
still does not implement the needed method.

4.1.3 HHL algorithm
It became evident quickly that the HHL algorithm was of central importance in quantum
computing and especially within the context of this internship which is oriented towards
scientific computing.

After a few weeks of bibliography on the algorithm it became clear that the imple-
mentation of HHL algorithm was not trivial at all and would not be possible to fulfil
completly within the time limits of the internship. The main source of complexity in
the implementation of the HHL algorithm is due to Hamiltonian simulation. [46] is the
most comprehensive source that explains the problem of Hamiltonian simulation and
lists algorithms to solve this problem in particular cases.

Because of the impossibility to implement the HHL algorithm within the time con-
straints another target had to be found. Two choices were studied:

Page 25 of 32

1. Implementing only a part of the whole generic algorithm.

2. Making simplification hypothesis to implement the whole algorithm for a reduced
set of inputs.

The second option has been chosen because it allows us to have a fully working ‘toy’
program on which we can perform various analysis (execution time, error-rates, results
precision, ...).

The implementation was done following [47]. In this paper, the authors explain how
they implemented the HHL algorithm for a fixed 4× 4 matrix A:

A =
1

4

15 9 5 −3
9 15 3 −5
5 3 15 −9
−3 −5 −9 15

 (4.1)

During the implementation, multiple mistakes in [47] implementation have been
found and corrected. In addition to the mistakes, the accuracy of parts of the algorithm
has been improved by several orders of magnitude by running an optimisation proced-
ure on the scalar coefficients given in the paper. This optimisation procedure found
coefficients that lowered the error of the Hamiltonian simulation part from 5× 10−3 to
2× 10−8 which is 5 orders of magnitude better!

The implementation of the specialised HHL algorithm can be found on my GitHub
repository [48], in the HHL directory.

4.1.4 Analysis of the HHL implementation
The implementation of the specialised HHL algorithm found in [47] with QISKit has
been validated by testing different values of b in the system Ax = b, solving this 4 × 4
system with the HHL algorithm and with a classical algorithm and comparing the two
results.

The generated assembly code is composed of 355 quantum gates. Once compiled for
the ibmqx5 quantum chip [49] the compiled assembly code contains 2242 quantum gate
instructions. The huge increase in the number of gates between the generated and the
compiled assembly codes is mainly due to:

1. The approximation of quantum gates with other quantum gates. The generated
assembly code uses the 14 quantum gates made available by the IBM library but
real quantum chip only implements 4 different quantum gates. Consequently, the
compiled assembly code should only use the 4 quantum gates implemented by the
hardware. All the gates in the generated assembly that are not supported by the
hardware need to be translated in terms of hardware gates.

2. The qubit mapping. The qubits in the hardware are not fully connected and
additional gates need to be used when the generated quantum gate does not respect
the hardware connectivity.

Page 26 of 32

Thanks to the qasm2error tool presented in 4.2.3 we are able to compute the time
needed by each qubit to reach its final state. These times are reported in Table 4.1.

Qubit index 0 1 2 3 13 14 15
HHL execution (µs) 466 396 413 357 232 464 466

T1 (µs) 36.6 41 45.7 41.7 50.2 28.9 47.5
T2 (µs) 22.2 69.3 49.9 47 63.9 48.4 67

Table 4.1 – Time needed by each qubit to reach its final state (second line) compared
to the coherence times of the ibmqx5 qubits (third and fourth lines). The qubits with
an index between 4 and 12 (inclusive) are not used by the HHL implementation and are
omitted for clarity. The values for T1 and T2 listed in this table have been downloaded
with QISKit API on 30th July, 2018. These values may change during the next device
re-calibration. The exact signification of T1 and T2 can be found in appendix B

The times T1 and T2 are the parameters of the two laws representing the probabilities
that an error occurred. More precisely, the decoherence errors of type 1 follow an
exponential law of parameter λ1 = 1

T1
and the decoherence errors of type 2 are governed

by an exponential law of parameter λ2 = 1
2T2

. With these parameters we can easily
compute the probability that a decoherence error occurred for one qubit.

Qubit index 0 1 2 3 13 14 15
Type 1 decoherence 3e−6 6e−5 1e−4 2e−4 1e−2 1e−7 6e−5
Type 2 decoherence 3e−5 6e−2 2e−2 2e−2 2e−1 8e−3 3e−2

Type 1 and 2 decoherence 8e−11 4e−6 2e−6 4e−6 2e−3 9e−10 2e−6

Table 4.2 – Probability that no decoherence error occurs during the execution of the
specialized HHL algorithm. The first two lines give the probability for each type of
decoherence error and the last line gives the probability that no decoherence error (in-
dependently of its type) occurred to the concerned qubit.

Table B.3 tells us that during the execution of the specialised HHL algorithm solving
a 4 × 4 linear system, an error due to decoherence on qubit n°0 will happen with a
probability of pe0 = 1− 8× 10−11.

By combining the probability of success of each qubit, we can compute that the
probability that the computation succeeds with no decoherence error is psuccess ≈ 6e−45.
An important point to note is that this probability of success does not take into account
the errors introduced by quantum gates imperfections. The real probability of success
is consequently even lower than 6e−45.

This shows that current hardware is unusable at the moment for real purpose HHL.
However, decoherence times have improved dramatically in the last few year, which is
encouraging for the future.

Page 27 of 32

4.2 Auxiliary tools
Auxiliary tools have also been developed alongside the implementation of quantum al-
gorithms. These tools are not linked to quantum algorithms but are useful for the
development of such algorithms.

4.2.1 Endianness management
The main issue that regularly came up during the internship was due to endianness.
The endianness of a given classical architecture (a processor for example) reflects how
the bits should be interpreted in a byte or in which order the bytes of a multi-byte value
should be read. In this section, endianness refers to the order of the bits within a byte
(in classical computing, endianness often refers to the other definition, i.e. how the bytes
are organised within a multi-byte value).

The issue of endianness first came up when trying to verify the validity of the
quantum adders implemented for Shor’s algorithm. In order to address this problem,
wrappers around the QISKit’s QuantumRegister class have been made to convey the
information about endianness. These wrappers were used and improved all along the
internship but did not fully solve the original problem because the time initially spent
on their design and implementation was not sufficient.

Future development will start by designing and implementing a robust solution to
manage quantum register endianness. This solution should have the same characteristic
as the one used in classical computing: the users should be able to use the solution
transparently without worrying about endianness but should also have all the control if
they need to.

4.2.2 qasm2image

The second issue encountered in this internship was the lack of development tools de-
signed for quantum computing. At the beginning of the internship, quantum debuggers
did not exist (and there was still no real quantum debugger at the end of July 2018).
The only way to debug a quantum program was to look at the generated assembly and
try to find the bug. This task can also be done visually, by representing the compiled
quantum program as a quantum circuit and trying to find the problem visually. As most
of the quantum algorithms are explained with the quantum circuit visualisation, it is
easy to compare the two representations (the one given in the research paper presenting
the algorithm and the one obtained from the quantum assembly created) and thus find
the differences.

At the beginning of the internship, the QISKit library had a visualisation function
to draw the graphic representation of a given quantum circuit. But this function had
several limitations:

1. It was using a non-standard LATEX package that needed to be installed as root.

2. It was limited to very small quantum circuits.

Page 28 of 32

3. The produced image lacked quality.

For all these reasons, I decided to implement my own quantum circuit drawer. This
drawer is now available on PyPi, the Python Package Index, and installable with the
command pip3 install qasm2image. Source code can be found on my personnal Git-
Hub page [50]. The qasm2image tool was also proposed as the official drawer of QISKit
but the proposal was finally declined because of licensing incompatibilities and the par-
allel development of another tool with the correct licensing.

4.2.3 qasm2error

After successfully implementing a simplified version of the HHL algorithm (see Section
4.1.3), the question of its executability on a real quantum chip arose. Two points were
particularly interesting to investigate:

1. Is the execution time Te inferior to the coherence time of the qubits Tc? What is
the probability that an error due to decoherence occurs?

2. Each quantum gate having a fixed-error rate, what is the probability that at least
one quantum gate fails?

To sum up, it would be interesting to be able to estimate the errors that are caused
by the imperfection of the hardware and that are not due to the probabilistic nature of
the algorithm. This is exactly the purpose of the qasm2error tool: estimating the errors
caused by hardware.

At the end of the internship, the qasm2error tool is able to estimate the occurrence
probability of a decoherence error on a given IBM chip for a given quantum program.
A first method to compute the errors due to quantum gate imprecisions has been im-
plemented, but it does not take entanglement into account and so gives wrong results
on nearly all the useful quantum circuits. A new method has been implemented but its
validity could not be tested because of a problem of non-concordant error-rates between
theory and real experiments on IBM’s quantum chips.

4.3 Quantum computing meet-ups
Two meet-ups on quantum computing were organised in CERFACS during the intern-
ship. These meet-ups consisted in a presentation followed by a debate.

The first quantum computing meet-up was aimed at beginners in the field of quantum
computing and presented:

1. The basic notions of quantum computing: superposition A.1.3, quantum measure-
ment A.1.4 and entanglement A.1.5.

2. A quick summary of the quantum technologies presented in 2.

3. An introduction to the quantum circuit model A.2.5.

Page 29 of 32

4. The idea behind Grover’s algorithm [11].

The presentation was done in French and lasted approximately 3 hours in total (present-
ation and questions).

The goal of the second meet-up was to introduce to CERFACS researchers a quantum
algorithm that could be used to solve problems they are confronted with. The chosen
algorithm was the HHL algorithm [1] because of its potential implications in linear
algebra, finite-element method or machine learning. This second presentation was done
in English and lasted 1 hour in total.

Page 30 of 32

Chapter 5

Conclusion and outlook

5.1 Results
The principal results of the internship are:

• The implementation of the qasm2image tool that can help for debuging quantum
algorithms.

• A partial implementation of the qasm2error tool.

• The research done on the HHL algorithm and on the problem of caracterising the
thermoacoustic instabilities of a combustion chamber.

• The implementation of a special case of the HHL algorithm.

• The construction of an extensive bibliographic archive related to quantum comput-
ing and more specifically to quantum algorithms that could be useful in scientific
computing.

• The two quantum computing meet-ups organised at CERFACS.

5.2 Outlook
In the future, the two tools implemented within this internship may be improved:

1. With some minor graphical modifications, the qasm2image tool may be able to
generate quantum circuit representations suitable for inclusion in scientific papers.

2. The qasm2error tool can be improved to support entanglement between qubits.

In addition to the tools improvements, the HHL algorithm will be studied more thor-
oughly during a one year contract that will follow the internship. More specifically, the
problem of implementing a ‘black-box hamiltonian simulator’ (see [51]) will be studied.

Finally, Dr Jean-François Parmentier offered me to build a SPOC (Small Private
Online Course) with him on quantum computing. This consists in building a small

Page 31 of 32

introduction to quantum computing of approximately 2 hours with questions all along
the presentation. This 2-hour presentation will then be accessible online.

Page 32 of 32

Published articles

[1] Aram W. Harrow, Avinatan Hassidim and Seth Lloyd. ‘Quantum algorithm for
solving linear systems of equations’. In: (2008). doi: 10.1103/PhysRevLett.103.
150502. eprint: arXiv:0811.3171 (cit. on pp. 18, 19, 30).

[2] D. Dervovic et al. ‘Quantum linear systems algorithms: a primer’. In: ArXiv e-
prints (Feb. 2018). arXiv: 1802.08227 [quant-ph] (cit. on p.).

[3] R. Cleve et al. ‘Quantum algorithms revisited’. In: Proceedings of the Royal Society
of London Series A 454 (Jan. 1998), p. 339. doi: 10.1098/rspa.1998.0164. eprint:
quant-ph/9708016 (cit. on p. 16).

[4] A. Peruzzo et al. ‘A variational eigenvalue solver on a photonic quantum pro-
cessor’. In: Nature Communications 5, 4213 (July 2014), p. 4213. doi: 10.1038/
ncomms5213. arXiv: 1304.3061 [quant-ph] (cit. on p. 16).

[5] Erwin Schrödinger. ‘Quantisierung als Eigenwertproblem’. In: Annalen der Physik
384.4 (1926), pp. 361–376. doi: 10 . 1002 / andp . 19263840404. eprint: https :
//onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19263840404 (cit. on
p. 1).

[6] W. Heisenberg and W. Pauli. ‘Zur Quantendynamik der Wellenfelder’. In: Original
Scientific Papers / Wissenschaftliche Originalarbeiten. Ed. by Walter Blum, Hans-
Peter Dürr and Helmut Rechenberg. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1989, pp. 8–68. isbn: 978-3-642-70078-1. doi: 10.1007/978-3-642-70078-
1_1 (cit. on p. 1).

[7] M. Born and P. Jordan. ‘Zur Quantenmechanik’. In: Zeitschrift fur Physik 34 (Dec.
1925), pp. 858–888. doi: 10.1007/BF01328531 (cit. on p. 1).

[8] Paul Benioff. ‘The computer as a physical system: A microscopic quantum mech-
anical Hamiltonian model of computers as represented by Turing machines’. In:
Journal of Statistical Physics 22 (May 1980), pp. 563–591 (cit. on p. 1).

[9] Richard Feynman and Peter W. Shor. ‘Simulating Physics with Computers’. In:
SIAM Journal on Computing 26 (1982), pp. 1484–1509 (cit. on p. 1).

https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
arXiv:0811.3171
https://arxiv.org/abs/1802.08227
https://doi.org/10.1098/rspa.1998.0164
quant-ph/9708016
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://arxiv.org/abs/1304.3061
https://doi.org/10.1002/andp.19263840404
https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19263840404
https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19263840404
https://doi.org/10.1007/978-3-642-70078-1_1
https://doi.org/10.1007/978-3-642-70078-1_1
https://doi.org/10.1007/BF01328531

[10] David Deutsch. ‘Quantum theory, the Church–Turing principle and the universal
quantum computer’. In: Proceedings of the Royal Society of London A: Mathem-
atical, Physical and Engineering Sciences 400.1818 (1985), pp. 97–117. issn: 0080-
4630. doi: 10.1098/rspa.1985.0070. eprint: http://rspa.royalsocietypublishing.
org/content/400/1818/97.full.pdf (cit. on pp. 1, 6).

[11] Lov K. Grover. ‘A Fast Quantum Mechanical Algorithm for Database Search’. In:
Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Comput-
ing. STOC ’96. Philadelphia, Pennsylvania, USA: ACM, 1996, pp. 212–219. isbn:
0-89791-785-5. doi: 10.1145/237814.237866 (cit. on pp. 1, 18, 30).

[12] Peter W. Shor. ‘Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer’. In: SIAM J. Comput. 26.5 (Oct.
1997), pp. 1484–1509. issn: 0097-5397. doi: 10.1137/S0097539795293172. eprint:
quant-ph/9508027 (cit. on pp. 1, 18).

[17] A. Acı́n et al. ‘The European Quantum Technologies Roadmap’. In: ArXiv e-prints
(Dec. 2017). arXiv: 1712.03773 [quant-ph] (cit. on p. 1).

[22] R. S. Smith, M. J. Curtis and W. J. Zeng. ‘A Practical Quantum Instruction Set
Architecture’. In: ArXiv e-prints (Aug. 2016). arXiv: 1608.03355 [quant-ph] (cit.
on p. 8).

[31] A. Paetznick. ‘Resource optimization for fault-tolerant quantum computing’. In:
ArXiv e-prints (Oct. 2014). arXiv: 1410.5124 [quant-ph] (cit. on p. 11).

[32] E. Knill. ‘Quantum Computing with Very Noisy Devices’. In: (2004). doi: 10.
1038/nature03350. arXiv: quant-ph/0410199v2 (cit. on p. 11).

[33] C. Sensiau. ‘Simulations numériques des instabilités thermoacoustiques dans les
chambres de combustion aéronautiques - TH/CFD/08/127’. PhD thesis. Université
de Montpellier II, - Institut de Mathématiques et de Modélisation de Montpellier,
France, 2008 (cit. on p. 14).

[34] Y. Saad. Iterative Methods for Sparse Linear Systems. Second. Society for Indus-
trial and Applied Mathematics, 2003. doi: 10.1137/1.9780898718003. eprint:
https://epubs.siam.org/doi/pdf/10.1137/1.9780898718003 (cit. on p. 15).

[35] A. Y. Kitaev. ‘Quantum measurements and the Abelian Stabilizer Problem’. In:
eprint arXiv:quant-ph/9511026 (Nov. 1995). eprint: quant-ph/9511026 (cit. on
p. 16).

[36] A. Montanaro and S. Pallister. ‘Quantum algorithms and the finite element method’.
In: 93.3, 032324 (Mar. 2016), p. 032324. doi: 10.1103/PhysRevA.93.032324.
arXiv: 1512.05903 [quant-ph] (cit. on p. 20).

[37] S. Lloyd, M. Mohseni and P. Rebentrost. ‘Quantum algorithms for supervised and
unsupervised machine learning’. In: ArXiv e-prints (July 2013). arXiv: 1307.0411
[quant-ph] (cit. on p. 21).

https://doi.org/10.1098/rspa.1985.0070
http://rspa.royalsocietypublishing.org/content/400/1818/97.full.pdf
http://rspa.royalsocietypublishing.org/content/400/1818/97.full.pdf
https://doi.org/10.1145/237814.237866
https://doi.org/10.1137/S0097539795293172
quant-ph/9508027
https://arxiv.org/abs/1712.03773
https://arxiv.org/abs/1608.03355
https://arxiv.org/abs/1410.5124
https://doi.org/10.1038/nature03350
https://doi.org/10.1038/nature03350
https://arxiv.org/abs/quant-ph/0410199v2
https://doi.org/10.1137/1.9780898718003
https://epubs.siam.org/doi/pdf/10.1137/1.9780898718003
quant-ph/9511026
https://doi.org/10.1103/PhysRevA.93.032324
https://arxiv.org/abs/1512.05903
https://arxiv.org/abs/1307.0411
https://arxiv.org/abs/1307.0411

[38] S. Lloyd. ‘Least squares quantization in PCM’. In: IEEE Transactions on Inform-
ation Theory 28.2 (Mar. 1982), pp. 129–137. issn: 0018-9448. doi: 10.1109/TIT.
1982.1056489 (cit. on p. 21).

[39] D. W. Berry. ‘High-order quantum algorithm for solving linear differential equa-
tions’. In: ArXiv e-prints (Oct. 2010). arXiv: 1010.2745 [quant-ph] (cit. on p. 21).

[40] Eleanor Rieffel and Wolfgang Polak. Quantum Computing: A Gentle Introduction.
1st. The MIT Press, 2011. isbn: 9780262015066 (cit. on p. 24).

[41] Hoi-Kwong Lo, Tim Spiller and Sandu Popescu. Introduction to quantum computa-
tion and information. World Scientific, 1998. isbn: 9789810244101 (cit. on pp. 24,
A.iv).

[42] K.-W. Cheng and C.-C. Tseng. ‘Quantum Plain and Carry Look-Ahead Adders’.
In: eprint arXiv:quant-ph/0206028 (June 2002). eprint: quant-ph/0206028 (cit.
on p. 25).

[43] Steven Cuccaro et al. ‘A new quantum ripple-carry addition circuit’. In: (Nov.
2004). arXiv: 0410184 [quant-ph] (cit. on p. 25).

[44] Thomas Draper. ‘Addition on a Quantum Computer’. In: (Sept. 2000) (cit. on
pp. 25, A.x).

[45] S. Beauregard. ‘Circuit for Shor’s algorithm using 2n+3 qubits’. In: eprint arXiv:quant-
ph/0205095 (May 2002). eprint: quant-ph/0205095 (cit. on p. 25).

[46] Andrew Childs. ‘Simulating Hamiltonian dynamics on a small quantum computer’.
2013 (cit. on p. 25).

[47] Y. Cao et al. ‘Quantum circuit design for solving linear systems of equations’.
In: Molecular Physics 110 (Aug. 2012), pp. 1675–1680. doi: 10.1080/00268976.
2012.668289. arXiv: 1110.2232 [quant-ph] (cit. on p. 26).

[51] D. W. Berry and A. M. Childs. ‘Black-box Hamiltonian simulation and unitary
implementation’. In: ArXiv e-prints (Oct. 2009). arXiv: 0910.4157 [quant-ph]
(cit. on p. 31).

[52] C. M. Dawson and M. A. Nielsen. ‘The Solovay-Kitaev algorithm’. In: eprint
arXiv:quant-ph/0505030 (May 2005). eprint: quant-ph/0505030 (cit. on p. A.iv).

[53] Robert Raussendorf, Daniel E. Browne and Hans J. Briegel. ‘Measurement-based
quantum computation with cluster states’. In: International Journal of Quantum
Information 07.06 (2009), pp. 1053–1203. doi: 10 . 1142 / S0219749909005699.
eprint: https://www.worldscientific.com/doi/pdf/10.1142/S0219749909005699
(cit. on p. A.viii).

[54] Dorit Aharonov et al. ‘Adiabatic Quantum Computation Is Equivalent to Standard
Quantum Computation’. In: SIAM Review 50.4 (2008), pp. 755–787. doi: 10 .
1137/080734479. eprint: https://arxiv.org/abs/quant-ph/0405098 (cit. on
p. A.viii).

https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://arxiv.org/abs/1010.2745
quant-ph/0206028
https://arxiv.org/abs/0410184
quant-ph/0205095
https://doi.org/10.1080/00268976.2012.668289
https://doi.org/10.1080/00268976.2012.668289
https://arxiv.org/abs/1110.2232
https://arxiv.org/abs/0910.4157
quant-ph/0505030
https://doi.org/10.1142/S0219749909005699
https://www.worldscientific.com/doi/pdf/10.1142/S0219749909005699
https://doi.org/10.1137/080734479
https://doi.org/10.1137/080734479
https://arxiv.org/abs/quant-ph/0405098

[55] Chetan Nayak et al. ‘Non-Abelian anyons and topological quantum computation’.
In: Rev. Mod. Phys. 80 (3 Sept. 2008), pp. 1083–1159. doi: 10.1103/RevModPhys.
80.1083 (cit. on p. A.viii).

[56] Michael A. Nielsen. ‘Cluster-state quantum computation’. In: Reports on Mathem-
atical Physics 57.1 (2006), pp. 147–161. issn: 0034-4877. doi: https://doi.org/
10.1016/S0034-4877(06)80014-5 (cit. on p. B.ii).

https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/https://doi.org/10.1016/S0034-4877(06)80014-5
https://doi.org/https://doi.org/10.1016/S0034-4877(06)80014-5

Websites

[13] Julian Kelly. A Preview of Bristlecone, Google’s New Quantum Processor. Mar.
2018. url: https://research.googleblog.com/2018/03/a- preview- of-
bristlecone-googles-new.html (visited on 05/04/2018) (cit. on p. 1).

[14] Intel: Quantum Computing. Apr. 2018. url: https://newsroom.intel.com/
press-kits/quantum-computing/ (visited on 05/04/2018) (cit. on p. 1).

[15] IBM Q Experience. Apr. 2018. url: https://quantumexperience.ng.bluemix.
net/qx/experience (visited on 05/04/2018) (cit. on pp. 1, 6, 24).

[16] QUROPE Quantum Information Processing and Communication in Europe. url:
http://qurope.eu/h2020/qtflagship/roadmap2016 (visited on 05/07/2018)
(cit. on p. 1).

[18] Airbus’s quantum computing brings Silicon Valley to the Welsh Valleys. url:
https://www.telegraph.co.uk/finance/newsbysector/industry/12065245/
Airbuss - quantum - computing - brings - Silicon - Valley - to - the - Welsh -
Valleys.html (visited on 05/07/2018) (cit. on p. 1).

[19] Atos Quantum. url: https : / / atos . net / en / insights - and - innovation /
quantum-computing/atos-quantum (visited on 05/07/2018) (cit. on p. 2).

[20] Allan Ho. Announcing Cirq: An Open Source Framework for NISQ Algorithms.
July 2018. url: https://ai.googleblog.com/2018/07/announcing- cirq-
open-source-framework.html (visited on 24/07/2018) (cit. on pp. 6, 9).

[21] OpenQASM language specification. Apr. 2018. url: https : / / github . com /
QISKit/openqasm (visited on 25/04/2018) (cit. on pp. 8, 9).

[23] Microsoft’s Q# main page. Apr. 2018. url: https://docs.microsoft.com/en-
us/quantum/quantum-qr-intro?view=qsharp-preview (visited on 25/04/2018)
(cit. on p. 8).

[24] QISKit main page. Apr. 2018. url: https://github.com/QISKit/ (visited on
05/04/2018) (cit. on p. 9).

[25] Software Development Kit – Python 3. Apr. 2018. url: https://github.com/
QISKit/qiskit-sdk-py (visited on 05/04/2018) (cit. on p. 9).

[26] Software Development Kit – Javascript. Apr. 2018. url: https://github.com/
QISKit/qiskit-sdk-js (visited on 05/04/2018) (cit. on p. 9).

https://research.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://research.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://newsroom.intel.com/press-kits/quantum-computing/
https://newsroom.intel.com/press-kits/quantum-computing/
https://quantumexperience.ng.bluemix.net/qx/experience
https://quantumexperience.ng.bluemix.net/qx/experience
http://qurope.eu/h2020/qtflagship/roadmap2016
https://www.telegraph.co.uk/finance/newsbysector/industry/12065245/Airbuss-quantum-computing-brings-Silicon-Valley-to-the-Welsh-Valleys.html
https://www.telegraph.co.uk/finance/newsbysector/industry/12065245/Airbuss-quantum-computing-brings-Silicon-Valley-to-the-Welsh-Valleys.html
https://www.telegraph.co.uk/finance/newsbysector/industry/12065245/Airbuss-quantum-computing-brings-Silicon-Valley-to-the-Welsh-Valleys.html
https://atos.net/en/insights-and-innovation/quantum-computing/atos-quantum
https://atos.net/en/insights-and-innovation/quantum-computing/atos-quantum
https://ai.googleblog.com/2018/07/announcing-cirq-open-source-framework.html
https://ai.googleblog.com/2018/07/announcing-cirq-open-source-framework.html
https://github.com/QISKit/openqasm
https://github.com/QISKit/openqasm
https://docs.microsoft.com/en-us/quantum/quantum-qr-intro?view=qsharp-preview
https://docs.microsoft.com/en-us/quantum/quantum-qr-intro?view=qsharp-preview
https://github.com/QISKit/
https://github.com/QISKit/qiskit-sdk-py
https://github.com/QISKit/qiskit-sdk-py
https://github.com/QISKit/qiskit-sdk-js
https://github.com/QISKit/qiskit-sdk-js

[27] Software Development Kit – Swift. Apr. 2018. url: https://github.com/QISKit/
qiskit-sdk-swift (visited on 05/04/2018) (cit. on p. 9).

[28] IBM’s publicly available quantum chips. Apr. 2018. url: https://quantumexperience.
ng.bluemix.net/qx/devices (visited on 05/04/2018) (cit. on pp. 9, B.ii).

[29] Quipper main page. July 2016. url: https://www.mathstat.dal.ca/~selinger/
quipper/ (visited on 25/04/2018) (cit. on p. 9).

[30] Quantiki: List of QC simulators. url: https://quantiki.org/wiki/list-qc-
simulators (visited on 24/07/2018) (cit. on p. 10).

[48] Quantum tools (all the code produced during the internship). url: https : / /
github.com/nelimee/quantum-tools (visited on 01/08/2018) (cit. on p. 26).

[49] IBM Q 16 Rueschlikon specifications. url: https : / / github . com / Qiskit /
qiskit-backend-information/tree/master/backends/rueschlikon/V1 (vis-
ited on 30/07/2018) (cit. on p. 26).

[50] qasm2image. url: https://github.com/nelimee/qasm2image (visited on 01/08/2018)
(cit. on p. 29).

https://github.com/QISKit/qiskit-sdk-swift
https://github.com/QISKit/qiskit-sdk-swift
https://quantumexperience.ng.bluemix.net/qx/devices
https://quantumexperience.ng.bluemix.net/qx/devices
https://www.mathstat.dal.ca/~selinger/quipper/
https://www.mathstat.dal.ca/~selinger/quipper/
https://quantiki.org/wiki/list-qc-simulators
https://quantiki.org/wiki/list-qc-simulators
https://github.com/nelimee/quantum-tools
https://github.com/nelimee/quantum-tools
https://github.com/Qiskit/qiskit-backend-information/tree/master/backends/rueschlikon/V1
https://github.com/Qiskit/qiskit-backend-information/tree/master/backends/rueschlikon/V1
https://github.com/nelimee/qasm2image

Appendix A

Introduction to quantum computing

In this chapter, the bases of quantum computing are introduced. Section A.1 will first in-
troduce the mathematical formalism used in quantum mechanics and explain the notions
of ‘quantum bit’, ‘quantum measurement’, ‘superposition’ and ‘entanglement’. Then,
section A.2 will present the theoretical abstraction used in quantum computing and ex-
plain why a theoretical model of computation is crucial. To close this chapter, section
A.3 will explain in more details the theoretical abstraction used in the majority of the
scientific papers: the quantum circuit model.

A.1 Quantum computing basics

A.1.1 What is a quantum bit?
The most elementary block of classical computing is the bit, an element that can only
takes two values: either 0 or 1. Physically, a bit can be implemented in various ways
such as magnetic orientation (used in hard drive disks), flip-flop circuits (used in random
access memory) or a voltage (used to transmit the information on a cable).

A quantum bit or ‘qubit’ can be seen as an improved classical bit: it has all the
properties of a classical bit plus some additional properties that a classical bit does not
have access to. The two core properties that differentiate a classical bit from a qubit
are ‘superposition’ (see section A.1.3) and ‘entanglement’ (see section A.1.5). Before
introducing these two notions, section A.1.2 will introduce the mathematical formalism
used in the field of quantum computing.

A.1.2 Notation and mathematical formalism
One of the most common mathematical representation for a quantum state is ‘a ray
in a finite- or infinite-dimensional Hilbert space over the complex numbers equipped
with the Euclidean norm’. In other words, a quantum state can be represented by a
vector of complex numbers. Because of physical constraints, this vector is taken to be
of unit-length (with respect to the Euclidean norm). A specific notation is used for
the representation of quantum states in quantum mechanics (and by extension, also in
quantum computing): the Bra-Ket notation.

Page A.i

Dirac (Bra-Ket) notation

Quantum mechanics and quantum computing use Dirac notation (also known as Bra-Ket
notation) to represent quantum states. In Dirac notation, | . ⟩ is called a ket and is a
unit-length vector representing a quantum state. The bra ⟨ . | is the Hermitian conjugate
of the ket: ⟨ . | = | . ⟩† = | . ⟩T .

Using bra-ket notation, we can define two of the most used states in quantum com-
puting,

|0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)
,

which represent the default basis in which all the other quantum states are decomposed.
The bra-ket notation is convenient for common mathematical operations on vectors

such as scalar product or outer product. The scalar product between two vectors u and
v is written ⟨u|v⟩. The outer product that construct a matrix from two vectors u and
v representing quantum states is denoted by |u⟩⟨v|. Finally, bra-ket notation is widely
used in quantum mechanics because it is basis-independent: we do not have to specify a
basis neither an order for this basis to represent a quantum state with bra-ket notation.

Tensor product

Dirac notation explained in section (A.1.2) is sufficient to describe fully a single-qubit
state but is not enough to describe multi-qubit states (i.e. the state of a system composed
of 2 or more qubits).

A good way to introduce multi-qubit systems is to first think about multi-bit systems.
Let each of S(c)

1 , S(c)
2 and S(c)

3 be a classical system that can be described with 2 classical
bits.

S(c)
1 ≡ (b11, b12)

T , S(c)
2 ≡ (b21, b22)

T and S(c)
3 ≡ (b31, b32)

T

Then, the system S(c)
4 composed of S(c)

1 , S(c)
2 and S(c)

3 can be described with 6 values:
the first 2 values describing S(c)

1 , the next 2 values describing S(c)
2 and the last 2 values

describing S(c)
3 . Mathematically, combining n classical states is the same as applying a

direct sum to their vector representation:

S(c)
4 ≡ (b11, b12)

T ⊕ (b21, b22)
T ⊕ (b31, b32)

T = (b11, b12, b21, b22, b31, b32)
T

The dimension of S(c)
4 is the sum of the dimensions of the systems composing it (i.e.

6).
Multi-qubit systems follow the same scheme as multi-bit ones except that the oper-

ator to join 2 systems is no longer a direct sum but rather a tensor product. Transposing

Page A.ii

the previous example in the quantum world, we would have:

S(q)
4 =

(
q11
q12

)
⊗
(
q21
q22

)
⊗
(
q31
q32

)
=

q11 ⊗ q21 ⊗ q31
q11 ⊗ q21 ⊗ q33
q11 ⊗ q22 ⊗ q31

...
q12 ⊗ q22 ⊗ q32

With the tensor product, the dimension of the resulting state S4 is now the product

of the dimensions of the state composing S4 (i.e. 8).
Using Dirac notation, the state of a non-entangled1 2-qubit system can be written

|q1⟩ ⊗ |q2⟩. This notation is often shortened |q1q2⟩. An other abbreviation is used in the
field of quantum computing: the multi-qubit state |q1q2q3q4⟩ may be noted |n⟩ where n
is the integer corresponding to the big-endian binary number q1q2q3q4. Some examples
are given in equation A.1.

|1⟩ ⊗ |0⟩ ⊗ |1⟩ = |101⟩ = |5⟩
|0⟩ ⊗ |1⟩ ⊗ |0⟩ ⊗ |0⟩ = |0100⟩ = |4⟩ (A.1)
|1⟩ ⊗ |1⟩ ⊗ |1⟩ ⊗ |0⟩ = |1110⟩ = |12⟩

Common misuse of language of notation in quantum computing

Equivalence between quantum states and vectors A very common misuse of
notation in quantum computing is to use the Dirac notation presented in A.1.2 to rep-
resent a vector of complex numbers. For example, it is frequent in quantum computing
papers to read that |uj⟩ are the eigenvectors of a given unitary matrix.

In general, quantum states and vectors can be used interchangeably by using the
equation

b⃗ =

b0
b1
...

b2n−1

 ≡
2n−1∑
i=0

bi |i⟩ = |b⟩ .

Equivalence between quantum operations and unitary matrices An other com-
mon misuse of language and notation is to use interchangeably the notions of ‘quantum
operation’2 and ‘unitary matrix’.

This misuse of language can be explained by the fact that (⇒) each quantum op-
eration can be represented by a unitary matrix and (⇐) each unitary matrix can be
approximated to an arbitrary precision by a sequence of quantum operations (see [52]).

1See A.1.5 for more precision. With entanglement, the general state of a 2 qubit system is given by
|q⟩ = α0 |0⟩ ⊗ |0⟩+ α1 |0⟩ ⊗ |1⟩+ α2 |1⟩ ⊗ |0⟩+ α3 |1⟩ ⊗ |1⟩.

2See A.3.1 for a precise definition of ‘quantum operation’.

Page A.iii

As a result, it is frequent to read about the eigenvectors of a quantum operation (i.e.
the eigenvectors of the unitary matrix that represents the quantum operation) or the
application of a unitary matrix on a quantum state (i.e. the application of the gate that
is represented by the unitary matrix on the quantum state).

Now that the notation has been introduced, the next section will explain one of
the two most important difference between a bit and a quantum bit: the fundamental
principle of quantum superposition.

A.1.3 Superposition states

A bit is defined as a quantity that can have only one of two fixed values. A bit is always
either in one value or in the other.

This property does not hold anymore for a qubit: a qubit can choose one value from
an infinite set of possible states, called superposition states.

A good definition of superposition can be found in [41]:

[...] a single quantum bit, or qubit, has the luxury of an infinite choice
of so-called superposition states. Nature allows it [the qubit] to have a part
corresponding to 0 and a part corresponding to 1 at the same time, analogous
to the way a musical note contains various harmonic frequencies.

The difference between a classical bit and a quantum bit in terms of attainable states
is clearly visible by using the Bloch sphere representation presented in Figure A.1.

|0⟩

|1⟩

φ

θ

|ψ⟩

Figure A.1 – Drawing of the Bloch sphere representation. The Bloch sphere is the sphere
of radius 1, centered at the origin. The possible states for a classical bit are the north
and south poles of the sphere (only 0 and 1). The possible states for an isolated quantum
bit are all the points located on the surface of the bloch sphere. Each point on the Bloch
sphere represents a unique state.

Mathematically, a general 1-qubit state can be written

|ψ⟩ = α |0⟩+ β |1⟩ (A.2)

Page A.iv

with the following conditions on the coefficients α and β:

(α, β) ∈ C2, |α|2 + |β|2 = 1.

A qubit in the state A.2 is said to be in a superposition state if and only if α ̸= 0 and
β ̸= 0.

The coefficients α and β are tightly linked with the behaviour of quantum measure-
ment. The next section is dedicated to this measurement operation and will explain how
α and β play a role when measuring a quantum state.

A.1.4 Measurement of quantum states
In order to retrieve the result of an algorithm executed on a quantum computer, we
need to be able to read the state of each qubit representing the solution at the end
of the algorithm. The only way to read the value stored in qubits is to measure their
state and to interpret the result of the measurement. But measurement in the quantum
world does not behave as in the macroscopic world. The following sections will introduce
the two main characteristics of the measurement operation, only on single-qubit states.
Multi-qubits states are addressed in section A.1.5.

Measurement is probabilistic

Let first recall the mathematical representation of a single-qubit state in the basis
{|u⟩ , |v⟩} (generalisation of equation A.2):

|ψ⟩ = α |u⟩+ β |v⟩ , with (α, β) ∈ C2 and |α|2 + |β|2 = 1 (A.3)

The outcome of measuring in the basis {|u⟩ , |v⟩} a qubit in the state |ψ⟩ will be
probabilistic and the probabilities associated to each outcome are known: |α|2 is the
probability to measure the state |u⟩ and |β|2 is the probability to measure the state |v⟩.
This behaviour is an axiom of quantum mechanics and cannot be derived from physical
principles but was verified in practice in various experiments.

Measurement destroys superposition

Taking back the state |ψ⟩ in equation A.3, section A.1.4 told us that the outcome of
measurement can be random (if α = 0 or β = 0 then the measurement is deterministic,
else it is a random process with pre-defined probabilities). An other important charac-
teristic of quantum measurement is that it collapses the qubit state that is measured
into the measured state.

For example imagine we have a qubit in the superposition state |ψ⟩ described in
equation A.3. We perform a measurement on this state and the state |u⟩ is the outcome
of the measurement. After the measurement the state |ψ⟩ collapsed in |u⟩ and is no
longer in a superposition state (i.e. |ψ⟩ = |u⟩). Measuring again the state |ψ⟩ after the
first measurement will then give a deterministic result (|u⟩ for the previous example) as
the qubit is no more in a superposition state.

Page A.v

A.1.5 Entanglement between qubits
Entanglement is the second fundamental difference between quantum bits and classical
ones. In order to explain the notion of entangled states we need to define what is a
separable state. A n-qubits quantum state is said to be separable if it can be written as
the tensor product of the states of its individual components:

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩

A n-qubits quantum state that is not separable is called an entangled state. Entangled
states are quantum states that cannot be described only by looking individually at each
of its components. In other words, there is a link between the qubits that cannot be
explained just by looking at each qubit separately.

Entangled states are easier to understand with an example. A commonly used
quantum state in the literature is the Bell state given by equation (A.4):∣∣Φ+

⟩
=

|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B√
2

(A.4)

If we consider only the state of qubit A in |Φ+⟩, it comes out that the qubit has an equal
probability to be in the state |0⟩ or |1⟩ after measurement. The same observation holds
for the qubit B. But these individual descriptions are not sufficient to fully describe
|Φ+⟩. For example the state A.5 satisfies the 2 individual descriptions, but is not equal
to |Φ+⟩. (

|0⟩+ |1⟩√
2

)
⊗
(
|0⟩+ |1⟩√

2

)
(A.5)

In order to fully describe |Φ+⟩ we should add another condition that will link the qubits
A and B together. In the case of |Φ+⟩ the condition ‘when measured, the states A and
B always output the same result’ is sufficient to suppress the ambiguity: because of the
destructive nature of measurement, measuring qubit A will necessarily collapse the state
of qubit A to either |0⟩ or |1⟩. But as qubits A and B are entangled, the state of qubit
B will also be impacted by the measurement and depending on the value measured for
A, the final state after measuring qubit A is either |0⟩ ⊗ |0⟩ or |1⟩ ⊗ |1⟩.

To summarise, 2 or more qubits are entangled if their states are linked and cannot
be fully described individually.

A.2 Theoretical background of quantum computing
Formalising a theoretical background that defines the concept of ‘computation’ in clas-
sical computing has been a major step in computer science. The most famous theoretical
model in classical computing is probably the Turing machine that defines how informa-
tion is stored (on an infinite tape) and how ‘computations’ are done (by moving a head
over a cell, reading/writing the cell and moving left or right).

Such an abstraction is fundamental in classical computing as it allows to define the
notions of computability and complexity. There exist many models of computation in

Page A.vi

classical computing, such as the Turing machine, finite state machine, random access
machines, etc.

Figure A.2 illustrates a generic model of computation.

Input Output
Computations

Figure A.2 – Illustration of an abstract model of computation. A real model of com-
putation should define how data is represented (i.e. how the input and output are
represented) and how computations are performed (i.e. how the input state is changed
into the output state).

Following the lessons from classical computing, quantum computing researchers tried
to define a ‘quantum’ model of computation. At the moment of writing (July 2018),
several quantum models of computation are co-existing. Before briefly presenting the
existing quantum models of computation we should define the notion of universality.

A.2.1 Model of computation and universality
A model of computation is said to be universal if it can map any input state to any
output state.

Being universal for a classical computer means that it can map any input state
{0, 1}n to any output state {0, 1}n just by using the logical gates allowed by the model
of computation it implements.

Similarly, a quantum model of computation is said to be universal if it can map
any n-qubit input state |ψn⟩ to any n-qubit output state |ϕn⟩. But as quantum states
are continuous, an other definition of universality is often used in quantum computing.
Most of the time, a quantum model of computation is said to be universal when it can
approximate arbitrarily close any output state |ϕn⟩ from any input state |ψn⟩.

The next sections will present some of the quantum models of computation that have
been defined and studied since the creation of quantum computing.

A.2.2 Measurement based quantum computer
The measurement based quantum computer, also called the one-way quantum computer,
is a model exclusively based on measurement and its properties.

The qubits composing the quantum computer are initialised in a particular highly-
entangled state called cluster state or graph state. Once the initial state has been pre-
pared, computations are performed by measuring qubits in a specific order. Performing
a measurement on one qubit of such an entangled state will, thanks to the properties
of entanglement and measurement, change the state of the qubits that were entangled
with the measured qubit.

An algorithm for such a quantum computer should output a sequence of qubit in-
dexes, representing the qubits that should be measured. This sequence may depends on
the results obtained on the previous measurements.

Page A.vii

It has been proven that measurement based quantum computing is universal, i.e.
it can approximate to an arbitrarily low precision any output state. See [53] for more
information.

A.2.3 Adiabatic quantum computer
The adiabatic quantum computer model is based on Hamiltonian simulation and evol-
ution. It consists in encoding the solution of a problem as the ground state of a given
Hamiltonian and find this ground state.

To find this ground state, the model starts by constructing a simple Hamiltonian
already in its ground state. Then, it evolves this simple Hamiltonian towards the one
related to the solution we are searching for, by keeping the ground state of the evolved
Hamiltonian thanks to the adiabatic theorem. A proof of the equivalence (in term of
complexity) between the quantum circuit model and the adiabatic quantum model can
be found in [54]. This makes the adiabatic quantum computer model a universal model.

A.2.4 Topological quantum computer
The topological quantum computer model is based on properties of a fundamental
particle (anyons) that has not been experimentally observed at the moment. The model
is also universal in the sense that it can simulate any quantum circuit with only a poly-
nomial loss in complexity. More information can be found in [55].

Even if they are highly theoretical at the moment, topological qubits are an active
subject of research because they would theoretically allow coherence times much lar-
ger than qubits based on super-conducting materials. An explanation of what is the
coherence time of a qubit can be found in Appendix B.

Microsoft is currently investigating topological qubits.

A.2.5 Quantum circuit
The quantum circuit model is one of the most used model of computations in quantum
computing today: most of the quantum algorithms are presented by using this model and
nearly all the complexity analysis make use of this model to reason about the number
of needed operations.

Definition of the model

The model of quantum circuit defines a computation as a sequence of quantum gates,
which are reversible operations acting on n-qubits. In the quantum circuit model, all
the qubits are initialised to the state |0⟩.

The quantum circuit model is similar to the classical model of computation in two
ways:

1. There are unitary blocks in both models: quantum gates for the quantum model
and logical gates for the classical one.

Page A.viii

2. The unitary blocks are chained in an ordered sequence.

But there is also a major difference between the quantum and the classical models:
quantum operations need to be reversible whereas classical ones are not (AND logical
gate for example). Quantum gates are presented more extensively in section A.3.1.

Quantum circuit representations

As said in section A.2.5, quantum circuit model is the most used one today in the
field of quantum computing. Because there is no unique, standardised, easily readable
and widely-used quantum language for the moment, quantum circuits and quantum
algorithms are represented in a visual way.

Figure A.3 – Visual representation of a quantum circuit. The quantum circuit is an
in-place 2-qubit adder modulo 3 (i.e. no overflow checks are performed). The circuit is
analysed in more details in section (A.2.5). Generated with the qasm2image tool (see
4.2.2).

Figure A.3 illustrates how a quantum circuit is represented. The graphical repres-
entation used follows the following rules:

• Time evolution goes from left to right.

• Each qubit is represented by an horizontal line. The qubit identifier can be written
at the extremities of the line.

• Each classical bit is represented by a doubled horizontal line.

• Each gate has a unique representation. Single-qubit gates (like X) and measure-
ment are represented by a square. Controlled single-qubit gates (CX for example)
use circles.

Page A.ix

Analysis of quantum circuit (A.3)

Registers names are written on the left of the figure: the circuit will use the quantum
registers qlhs (for ‘quantum left-hand side’) and qrhs (for ‘quantum right-hand side’)
and the classical register cres (for ‘classical result’). Each of these registers contains 2
qubits identified by the numbers 0 and 1.

The quantum algorithm starts with the X gate on the left of the circuit. Section
(A.3.1) explained the effect of the X gate on a quantum state: it acts like a classical NOT
gate. Moreover, qubits are initialised to |0⟩ so the X gate will leave the qubits in the
state |qlhs⟩ |qrhs⟩ = |00⟩ |10⟩.

Then, we use the algorithm presented in [44] to add the two integers represented by
the registers qlhs and qrhs. Finally, measurements are performed to recover the result
of the addition.

A.3 Quantum gates and algorithms
The previous section described quantum computing basics. This section will explain
how qubits can be manipulated in practice to perform quantum computations:

1. Introduction to the mathematical formalism behind the operators acting on qubit
states

2. Examples of some quantum operators

The whole section uses the model of quantum circuit and quantum gates. This model
is similar to the one used in classical computing: a quantum circuit (resp. a program
for classical computing) is composed of quantum gates (resp. logical gates) applied
sequentially to a given number of qubits (resp. bits). Thanks to the similarity between
the classical and the quantum models, many mathematical tools and formalisms from
classical computing can be re-used in the quantum world.

In addition, this section will not deal with physical implementation of qubits and
quantum gates. To do an analogy with classical computing, this section will explain
how works the AND logical gate and how to use it in algorithms without showing the
underlying electric circuit implementing it.

A.3.1 Qubit state transformation

Mathematical formalism

‘Qubit state transformations’ are operations applied on one or several qubit(s) that may
change their state to an other valid state. From quantum mechanic properties, these
quantum operations must be linear. This means that a quantum operation U can be
represented as a matrix acting on the quantum state space.

U (a1 |ψ1⟩+ · · ·+ an |ψn⟩) = a1U |ψ1⟩+ · · ·+ anU |ψn⟩ (A.6)

Page A.x

The property of quantum operation to map quantum states to quantum states implies
that unit length vectors must remain of unit length vectors, or equivalently that the
operation is unitary.

U †U = UU † = I (A.7)
Linearity of quantum operators is enough to prove a fundamental theorem of quantum

programming: the no-cloning principle. This theorem say that a quantum operator U
that clones a quantum state does not exists.

The quantum operator presented in this section is often called a quantum gate.

Quantum gates

Quantum gates are the quantum equivalent of logic gates in classical programming: they
are used as base to construct more advanced quantum operations. Some of the most
used quantum gates and their mathematical definition is given below.

Hadamard gate is one of the most used quantum gate in quantum computation.
Hadamard gate acts on a single qubit and is used to create a superposed state from |0⟩
or |1⟩.

H =
1√
2

[
1 1
1 −1

]
Applying the Hadamard gate on |0⟩ gives a superposition state:

H |0⟩ = 1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1
1

]
=

|0⟩+ |1⟩√
2

.

Pauli-X gate is also called NOT gate because of its effects: it flips the state of the
quantum bit.

X =

[
0 1
1 0

]
Applying the NOT gate on the state |0⟩ gives the state

X |0⟩ =
[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1⟩

controlled NOT gate is the most used 2-qubits gate. It takes as input a control qubit
and a target qubit and applies a NOT gate to the target qubit if and only if the control
qubit is in the state |1⟩.

cX = CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Page A.xi

This gate is commonly used to create entanglement between 2 qubits.
More generally, for any quantum gate U the quantum gate controlled-U or c-U is a

gate that applies U to the target qubit if the control qubit is in the state |1⟩.

Page A.xii

Appendix B

Qubit coherence times

Quantum decoherence is, with quantum operation errors, one of the two sources of
hardware errors on quantum chips. As one of the major source of errors in computation
in today quantum chips, quantum decoherence is an active subject of research, both by
physicists and exerimenters that tries to produce the most coherent qubits possible and
by quantum computing researchers that are searching for ways to improve the coherence
time of qubits with specific quantum procedures.

B.1 Quantum decoherence

B.1.1 Definition

The quantum decoherence phenomenon can be defined by ‘the loss of coherence of the
considered qubits’. Two qubits are said to be in a coherent state when there exists a
definite phase relation between their states.

In other words, the theory of quantum decoherence tries to characterise how S(q)
e

(the external quantum system) affects S(q)
i (the internal quantum system, composed of

the qubits we control) by interacting with it.
Quantum decoherence is the phenomenon that explains why quantum chips need

extremly low temperatures (≈ 0.3K) to work: low temperature avoids thermal excitation
and reduce the interactions with the environment.

B.1.2 IBM’s coherence times definition

Decoherence (i.e. interactions between particles) is a phenomenon that can be charac-
terised by an exponential law of probability. IBM defined two different characteristic
times related to decoherence: T1 and T2.

T1 is the characteristic time for decoherence of type 1. λ1 = 1
T1

is the parameter
of the exponential law describing the probability that a qubit initially prepared in |1⟩
interacts with its environment and ends up in its ground state |0⟩. Reformulating, if we
initialise a qubit with a characteristic time T1 to the state |1⟩ and measure it after a
time t, the qubit will be in its ground state |0⟩ with a probability of 1− e

− t
T1 .

Page B.i

T2 is the characteristic time for decoherence of type 2. λ2 = 1
2T2

is the parameter of
the exponential law describing the probability that a qubit initially prepared in |+⟩ =
|0⟩+ |1⟩ evolves into the state |0⟩ ⟨0|+ |1⟩ ⟨1|1.

B.2 Coherence times for IBM’s qubits
As explained in the previous section, IBM introduced its own definition of the charac-
teristic times T1 and T2. The values advertised by IBM on their website are summarised
in the tables below.

Qubit index 0 1 2 3 4
T1 (µs) 62.40 55.10 48.40 49.00 53.30
T2 (µs) 77.50 64.00 54.70 57.30 36.40

Table B.1 – Coherence characteristic times for the ibmqx2 backend. The times were
recovered on IBM’s website [28] on 12th August.

Qubit index 0 1 2 3 4
T1 (µs) 43.60 37.10 51.00 55.00 60.90
T2 (µs) 48.60 23.00 51.30 24.20 11.60

Table B.2 – Coherence characteristic times for the ibmqx4 backend. The times were
recovered on IBM’s website [28] on 12th August.

Qubit index 0 1 2 3 4 5 6 7
T1 (µs) 38.00 40.40 44.50 47.00 54.10 52.00 51.80 44.90
T2 (µs) 23.90 64.40 67.30 75.90 89.40 53.40 72.10 54.80

Qubit index 8 9 10 11 12 13 14 15
T1 (µs) 48.50 45.60 57.80 46.40 44.40 52.20 36.80 36.30
T2 (µs) 72.90 74.90 96.50 94.70 56.00 90.10 60.50 64.40

Table B.3 – Coherence characteristic times for the ibmqx5 backend. The times were
recovered on IBM’s website [28] on 12th August.

1The notation used here represents a quantum state. It is called a mixed state. The specific state
|0⟩ ⟨0|+ |1⟩ ⟨1| means ‘the system has a probability of 0.5 to be in the state |0⟩ and a probability of 0.5
to be in the state |1⟩’. Warning: this state is not |0⟩+|1⟩√

2
. The difference between the two states is the

following: |0⟩+|1⟩√
2

is a superposition of the states |0⟩ and |1⟩ whereas |0⟩ ⟨0|+ |1⟩ ⟨1| is either in the state
|0⟩ or in the state |1⟩ but we do not know which one. See [56, Section 2.4] for a thorough explanation
on mixed states formalism.

Page B.ii

	Glossary
	Acronyms
	1 Introduction
	1.1 General considerations
	1.2 cerfacs and work team
	1.3 Description of the work and outline of the document

	2 Existing quantum technologies
	2.1 Quantum chips
	2.1.1 Existing quantum chips in July 2018
	2.1.2 Physical implementation of quantum chips

	2.2 Programming languages
	2.2.1 Quantum instruction sets
	2.2.2 Quantum programming languages

	2.3 Quantum simulators
	2.3.1 Limited hardware accessibility
	2.3.2 Hardware errors
	2.3.3 Limitation on the number of qubits

	3 Quantum algorithms applied to scientific computing problems
	3.1 Detecting acoustic instabilities in combustion chambers
	3.1.1 Numerical model to compute thermoacoustic instabilities
	3.1.2 Classical algorithms used to solve Helmholtz equation
	3.1.3 Quantum algorithms
	3.1.4 Applicability of the quantum algorithms

	3.2 Solving linear systems of equations
	3.2.1 The HHL algorithm
	3.2.2 Possible applications of HHL algorithm

	4 Internship contributions
	4.1 Implementation of quantum algorithms
	4.1.1 Early developments
	4.1.2 Shor's algorithm
	4.1.3 HHL algorithm
	4.1.4 Analysis of the HHL implementation

	4.2 Auxiliary tools
	4.2.1 Endianness management
	4.2.2 qasm2image
	4.2.3 qasm2error

	4.3 Quantum computing meet-ups

	5 Conclusion and outlook
	5.1 Results
	5.2 Outlook

	Appendices
	A Introduction to quantum computing
	A.1 Quantum computing basics
	A.1.1 What is a quantum bit?
	A.1.2 Notation and mathematical formalism
	A.1.3 Superposition states
	A.1.4 Measurement of quantum states
	A.1.5 Entanglement between qubits

	A.2 Theoretical background of quantum computing
	A.2.1 Model of computation and universality
	A.2.2 Measurement based quantum computer
	A.2.3 Adiabatic quantum computer
	A.2.4 Topological quantum computer
	A.2.5 Quantum circuit

	A.3 Quantum gates and algorithms
	A.3.1 Qubit state transformation

	B Qubit coherence times
	B.1 Quantum decoherence
	B.1.1 Definition
	B.1.2 IBM's coherence times definition

	B.2 Coherence times for IBM's qubits

