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Multilevel Monte Carlo covariance estimation for the computation of Sobol’
indices

Paul Mycek∗ and Matthias De Lozzo†

Abstract. Crude and quasi Monte Carlo (MC) sampling techniques are common tools dedicated to esti-
mating statistics (expectation, variance, covariance) of a random quantity of interest. We focus
here on the uncertainty quantification framework where the quantity of interest is the output of
a numerical simulator fed with uncertain input parameters. Then, sampling the output involves
running the simulator for different samples of the inputs, which may be computationally time-
consuming. To reduce the cost of sampling, a first approach consists in replacing the numerical
simulator by a surrogate model that is cheaper to evaluate, thus making it possible to generate
more samples of the output and therefore leading to a lower sampling error. However, this ap-
proach adds to the sampling error an unavoidable model error. Another approach, which does not
introduce any model error, is the so-called multilevel MC (MLMC) method. Given a sequence
of levels corresponding to numerical simulators with increasing accuracy and computational cost,
MLMC combines samples obtained at different levels to construct an estimator at a reduced cost
compared to standard MC sampling. In this paper, we derive and analyze multilevel covariance
estimators and adapt the MLMC convergence theorem in terms of the corresponding covariances
and fourth order moments. We propose a multilevel algorithm driven by a target cost as an
alternative to typical algorithms driven by a target accuracy. These results are used in a sensi-
tivity analysis context in order to derive a multilevel estimation of Sobol’ indices, whose building
blocks can be written as covariance terms in a pick-and-freeze formulation. These contributions
are successfully tested on an initial value problem with random parameters.

Key words. Monte Carlo, Multilevel Monte Carlo, Parameter estimation, Covariance, Uncertainty quantifi-
cation, Sensitivity analysis, Sobol’ indices.

AMS subject classifications. 65C05, 65N55, 62L12, 62D05, 68Q25.

1. Introduction. Computational models are widely used to represent a quantity of
interest by solving complex systems of equations that transcribe real life phenomena into
mathematical language and that are discretized on dedicated meshes. Such simulators can
take many numerical and explanatory variables as input parameters. They may be used in
computer experimentation to explore the relationship between the variables and increase the
knowledge of the real life phenomenon, while an accurate in situ experimentation would
be too costly [47], even impossible in the case of forecasting purposes. However, these
numerical simulators often have a large number of uncertain input parameters, which can
lead to an important uncertainty over the model output [11, 36].

Commonly, in a probabilistic uncertainty quantification (UQ) framework, the uncertain
input variables are modeled by random quantities (variables, vectors, fields) with prescribed
probability distributions and propagated through the model. Their impact on the output

∗CERFACS, 42 avenue Gaspard Coriolis, 31057 Toulouse Cedex 1, France (mycek@cerfacs.fr).
†CECI, CNRS - CERFACS, 42 avenue Gaspard Coriolis, 31057 Toulouse Cedex 1, France. Current affilia-

tion: IRT Saint-Exupéry, 3 rue Tarfaya, CS 34 436, 31405 Toulouse Cedex 4, France (matthias.delozzo@irt-
saintexupery.com).

1

mailto:mycek@cerfacs.fr
mailto:matthias.delozzo@irt-saintexupery.com
mailto:matthias.delozzo@irt-saintexupery.com


2 P. MYCEK, M. DE LOZZO

are then quantified, usually by computing statistics such as their expectation, variance,
probability density function or threshold exceedance probability [17]. Sensitivity analysis
(SA) methods [46] can be used to attribute shares of output randomness to individual
input parameters or subsets thereof in interaction. The conclusions drawn by SA may
then help reduce the model output uncertainty by enhancing the characterization of the
most influential input parameters and by using nominal deterministic values for the non-
significant ones. Lastly, remaining input uncertainties can be controlled by data assimilation
of real life measures facing the corresponding model output values [2].

Among the sensitivity measures used in SA studies, Sobol’ indices [49] are particularly
popular and powerful, and will be the focus of this paper. In UQ studies, such sensitivity
indices are commonly estimated using Monte Carlo (MC) or quasi-Monte Carlo (QMC)
sampling methods [44, 6, 40]. Precisely, the simulator is evaluated over a design of ex-
periments whose elements are obtained from a set of independent realizations of the input
random variables in the MC case or from a deterministic sequence of variables approaching
such realizations efficiently in the QMC case. While the simplicity of these techniques is a
significant advantage, the slow convergence of MC and QMC estimators with respect to the
sample size represents a serious drawback when the simulator is computationally expensive.

A common way to address that limit is to compute the estimators from a cheap surrogate
model parametrized by the statistical learning of a few evaluations of the simulator [15, 17].
Gaussian processes [43] and polynomial chaos (PC) expansions [39, 53] are examples of
popular and widely-used surrogate models for UQ. In the case of PC surrogates, Sobol’
indices can be directly retrieved from the expansion without requiring to re-sample the
surrogate [50, 9]. One of the downsides of using a surrogate model, however, is that it
introduces a model approximation error. In addition, constructing such a surrogate might
be computationally expensive, especially when the number of uncertain input parameters
is large. When the PC surrogate corresponds to the approximate solution of a stochas-
tic problem sought in a tensor product space, as is the case in the stochastic Galerkin
method [18, 39, 53], low-rank tensor techniques may be used to circumvent this so-called
curse of dimensionality [42, 14, 12]. However, such formulations typically lead to dedi-
cated methods for solving stochastic partial differential equations that do not allow for the
non-intrusive use of the deterministic numerical simulator as a black box, which may be
impractical when using, for instance, closed-source software.

When the accuracy of the numerical simulator and its associated computational cost can
be adjusted, by changing the mesh resolution, for example, multilevel Monte Carlo (MLMC)
sampling [28, 30, 29, 19, 20] can also be used to construct an estimator at a reduced cost
compared to standard (Q)MC sampling. Early MLMC research in the late 1990s was
conducted by Heinrich for the approximation of high dimensional parameter dependent
integrals by MC sampling [28, 30, 29]. He developed for this purpose a multilevel variance
reduction technique, popularized a decade later by Giles [19] who gave this method its
modern name of MLMC. The main idea of MLMC consists in introducing a sequence of so-
called levels, usually corresponding to a hierarchy of numerical simulators with increasing
accuracy and associated cost of individual simulations. In practice, the different levels
usually correspond to simulators having increasingly fine (spatial and/or temporal) mesh
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resolutions, so that simulators with a poor accuracy correspond to so-called “coarse” levels,
while accurate simulators correspond to “fine” levels. The MLMC estimator is obtained
by combining samples obtained from the simulator at different levels in a specific way.
In favorable cases, many samples come from cheap coarse levels in order to reduce the
statistical error, while only few come from expensive fine levels to correct the resulting
bias. This efficient combination leads to a reduced computational cost of estimating the
statistics, in some cases with asymptotically the same cost as that of a single deterministic
run of the simulator at the finest level.

From there, several extensions have appeared over the past decade, including method-
ological advances such as the combination of MLMC with QMC sampling [24], the use of
antithetic variates [22, 23] and the possibility to define levels independently in each (space
and/or time) direction, inspired from sparse grid ideas, leading to the so-called multiindex
MC (MIMC) method [26]. Initially developed to estimate the expected solution of stochas-
tic partial differential equations in computational finance [19, 21], MLMC has since been
applied to various problems such as biological systems [41] or pollutant dispersion [35].
These techniques have also been developed in different areas of engineering and applied
mathematics, for instance in reliability [1], for the estimation of covariance matrices in
inverse problems [38], or for the construction of kriging metamodels in stochastic experi-
ments [45]. A review of the most significant advances in the MLMC methodology, as well
as codes and examples from different fields of application, can be found in [20].

Recent work has extended the MLMC estimate of expectation to the case of variance [3]
and higher order central moments [4]. The case of covariance has also been addressed for the
case of the covariance matrix used in the ensemble Kalman filter [32] for data assimilation.
In this paper, we extend theorems of MLMC theory dedicated to estimating these statistics
to the more general case of estimating arbitrary statistical parameters. We demonstrate in
particular that covariance estimation fits in this framework by deriving upper bounds for the
variance of the associated multilevel estimator. The resulting MLMC covariance estimator
is then used in the context of global SA to estimate Sobol’ indices, whose building blocks can
be written as covariance terms in a pick-and-freeze formulation [34]. To our knowledge, this
is the first contribution to the deployment of MLMC methods for variance-based sensitivity
indices. We also devise an adaptive algorithm for choosing on the fly the optimal number
of levels and sample sizes on each level, driven by a target overall computational budget.
These theoretical and algorithmic contributions are successfully tested on an initial value
problem with random parameters.

The paper is organized as follows. Section 2 presents the theoretical aspects by first
describing the framework for the MLMC estimation of the expectation and of arbitrary
statistics. Then our theoretical contributions to the MLMC estimation of the covariance are
presented, as well as practical considerations leading to an adaptive algorithm for selecting
on-the-fly optimal sample sizes on each level according to a given overall computational
budget, rather than a target accuracy. Section 3 applies this MLMC estimator to the
Sobol’ indices and presents numerical results for an ordinary differential equation with
random parameters. Finally, concluding remarks and prospects for further work are given
in Section 4.
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2. Multilevel Monte Carlo techniques for statistical parameter estimation. We con-
sider an abstract numerical simulator described by the function

(2.1)
f : X → R

x 7→ f(x) ≡ y,

whose scalar input parameters (x1, . . . , xd) = x ∈ X ⊆ Rd are uncertain, leading to an
uncertainty in the output value y. In a probabilistic uncertainty quantification framework,
these uncertain parameters are commonly described by random variables defined on a prob-
ability space (Ω,A,P). The input vector x is then replaced by a X -valued random vector
X : Ω → X whose components are independent random variables with probability distri-
butions given by expert knowledge; as a consequence, Y ≡ f(X) is a random variable
whose distribution is unknown. In this probabilistic context, we introduce the expectation
operator E

(2.2) E[Z] ≡
∫

Ω
Z(ω) dP(ω),

for any random variable Z : Ω → R defined on (Ω,A,P). Furthermore, let Lp(Ω,P), with
1 ≤ p <∞, denote the space of random variables Z with finite Lp-norm

(2.3) Z ∈ Lp(Ω,P) ⇐⇒ ‖Z‖Lp(Ω,P) ≡ E[|Z|p]1/p <∞.

Of particular interest is the space L2(Ω,P) of so-called second-order random variables,
which is equipped with the inner product 〈·, ·〉L2(Ω,P) defined by

(2.4) ∀Z,Z ′ ∈ L2(Ω,P), 〈Z,Z ′〉L2(Ω,P) = E[ZZ ′] =

∫
Ω
Z(ω)Z ′(ω) dP(ω),

from which the L2-norm is induced, i.e. ‖Z‖L2(Ω,P) = 〈Z,Z〉1/2L2(Ω,P).
In practice, the expectation of a random variable Z is approximated (estimated) by the

following Monte Carlo (MC) estimator:

(2.5) EM [Z] ≡ 1

M

M∑
i=1

Z(i),

where
{
Z(1), . . . , Z(M)

}
is an M -sample of Z, that is to say that Z(1), . . . , Z(M) are M

independent and identically distributed (i.i.d.) replications of Z. The error of the MC
estimator EM [Z], measured by the root mean square error (RMSE)

(2.6) RMSE(EM [Z],E[Z]) ≡ E
[
(EM [Z]− E[Z])2

]
1/2,

is O(M−1/2), see, e.g., [44]. Reducing this error by a factor of r thus implies increasing
the sample size by a factor of r2. In practice, for the quantity of interest Y , obtaining a
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realization of the estimator EM [Y ] requiresM calls to the numerical simulator f , specifically
at the elements of the M -sample

{
X(1), . . . ,X(M)

}
of X

(2.7) EM [Y ] =
1

M

M∑
i=1

f(X(i)).

In uncertainty quantification, we are usually interested in the first central moments
of Y and in quantiles or probabilities of threshold overrun [17]. Moreover, SA indices
such as Sobol’ indices are commonly studied to quantify the shares of output variability
attributable to the different input parameters [49]. Nevertheless, an accurate estimation of
these statistical objects by standard MC sampling approaches requires a large numberM of
calls to the simulator f , namely M = O(ε−2) for an accuracy of O(ε), which is not always
possible when the numerical simulator is computationally expensive and the CPU time
budget is limited. When “coarser” simulators are available, for instance by degrading the
mesh resolution of the original simulator, one can take advantage of the different levels of
accuracy and associated computational cost by combining samples obtained from different
levels in a multilevel variance reduction manner. This is the framework of MLMC sampling,
which we now describe for the estimation of arbitrary statistical parameters.

2.1. MLMC estimator of the expectation. We first briefly recall the original MLMC
estimator of the expectation [19]. Let (f`)`≥0 be a sequence of simulators with increasing
accuracy and computational cost. In practice the different levels usually correspond to
simulators having increasingly fine (spatial and/or temporal) mesh resolutions. For that
reason, we will hereafter refer to small values of ` as “coarse” levels, while larger values of
` will be referred to as “fine” levels.

We denote by Y` the random variable f`(X), and we assume that lim`→∞ E[Y`] = E[Y ].
The expectation E[YL] can be expressed as a telescoping sum

(2.8) E[YL] = E[Y0] +

L∑
`=1

E[Y`]− E[Y`−1],

which can be interpreted as a sum of corrections to an initial, coarse representation E[Y0].
For convenience, we let Y−1 ≡ 0 by convention and we write

(2.9) E[YL] =
L∑
`=0

E[Y`]− E[Y`−1].

Note that this telescoping sum converges to E[Y ] as L→∞. Based on this rewriting, each
expectation may be approximated by a standard MC estimator at the corresponding level
of correction

(2.10) EML
L [Y ] =

L∑
`=0

E
(`)
M`

[Y`]− E
(`)
M`

[Y`−1],
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where E(`)
M`

[Y`′ ] is the standard MC estimator of E[Y`′ ]

(2.11) E
(`)
M`

[Y`′ ] =
1

M`

M∑̀
i=1

Y
(`,i)
`′ , with Y (`,i)

`′ ≡ f`′(X(`,i)), and `′ ∈ {`− 1, `},

and where the random input vectors X(`,i) are i.i.d. replications of X. Replacing the single
level MC estimators by their expression, Eq. (2.10) becomes

(2.12) EML
L [Y ] =

L∑
`=0

1

M`

M∑̀
i=1

[
Y

(`,i)
` − Y (`,i)

`−1

]
=

L∑
`=0

1

M`

M∑̀
i=1

[
f`(X

(`,i))− f`−1(X(`,i))
]
,

highlighting the fact that the correction at each level ` is computed from the same input
M`-sample {X(`,i)}i=1,...,M`

, but using calls to different numerical simulators, f` and f`−1.

2.2. MLMC estimator of arbitrary statistical parameters. The multilevel formulation
described above, originally designed for the estimation of expected values, may be directly
extended to the estimation of more general statistical parameters. Specifically, let θ be the
parameter to be estimated, let (θ`)`≥0 be a sequence of approximations of θ = lim`→∞ θ`.
We then have

(2.13) θL =

L∑
`=0

T`, with T` ≡ θ` − θ`−1 and by convention θ−1 ≡ 0.

Similarly to the case of the expectation above, the MLMC estimator θ̂ML
L of θ may then be

expressed as

(2.14) θ̂ML
L =

L∑
`=0

T̂
(`)
M`
,

where each T̂
(`)
M`

is a Monte Carlo estimator of T` using an M`-sample. The multilevel
estimator EML

L [Y ] of the expectation E[Y ], introduced above in Eq. (2.10), fits in this
framework with T̂ (`)

M`
= E

(`)
M`

[Y`]− E
(`)
M`

[Y`−1].
We now introduce the bias of θ̂ as an estimator of a parameter θ as

(2.15) Bias(θ̂, θ) ≡ E[θ̂]− θ.

If Bias(θ̂, θ) = 0, i.e. E[θ̂] = θ, we say that θ̂ is an unbiased estimator of θ. It is well-known
that the mean square error (MSE) of θ̂ as an estimator of θ can be decomposed into a sum
of two contributions, namely the variance of the estimator and its squared bias

(2.16) MSE(θ̂, θ) ≡ E
[
(θ̂ − θ)2

]
= V[θ̂] + Bias(θ̂, θ)2.

The root mean square error (RMSE) is simply defined as the square-root of the MSE, that is
to say RMSE(θ̂, θ) ≡ MSE(θ̂, θ)1/2. For the multilevel estimator θ̂ML

L defined in Eq. (2.14),
it is easy to see that

(2.17) Bias(θ̂ML
L , θ) = Bias(θ̂ML

L , θL) + (θL − θ),
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where

(2.18) Bias(θ̂ML
L , θL) =

L∑
`=0

Bias(T̂
(`)
M`
, T`).

It is clear from that expression that if T̂ (`)
M`

is an unbiased estimator of T` on each level
` ≤ L, then Bias(θ̂ML

L , θL) = 0. In that case, the total bias reduces to Bias(θ̂ML
L , θ) = θL−θ

and thus the MSE becomes

(2.19) MSE(θ̂ML
L , θ) = V[θ̂ML

L ] + (θL − θ)2 .

In that case, the first term of the MSE, V[θ̂ML
L ], can be seen as pure sampling error, and the

second term, (θL−θ)2, can be seen as pure discretization error. It is important to note that
the latter only involves the finest level L. Consequently, if the MSE remains large compared
to the sampling error, an additional, finer level may need to be considered. Conversely,
if the discretization error is small compared to the MSE, new multilevel simulations are
required on the existing levels [19, 20]. Finally, we notice that if the estimators T̂ (`)

M`
are

mutually uncorrelated, then V[θ̂ML
L ] =

∑L
`=0 V[T̂

(`)
M`

]. In what follows, we will solely consider

estimators T̂ (`)
M`

that are mutually independent, and therefore uncorrelated.
Theorem 2.1 below is an essential theorem that ensures the convergence of the multilevel

estimator at a bounded cost.

Theorem 2.1. Let θ be a statistical parameter and (θ`)`≥0 be a sequence of approxima-
tions of θ such that lim`→∞ θ` = θ. Let (T̂

(`)
M`

)`≥0 be a sequence of mutually independent

estimators, each T̂
(`)
M`

estimating T` ≡ θ` − θ`−1 using an M`-sample, with θ−1 ≡ 0 by
convention. Let C` denote the computational cost of evaluating a single member of the M`-
sample used for the computation of T̂ (`)

M`
, and let (n`)`≥0 be a sequence of positive integers

satisfying n` h s` for some fixed s > 1.
Assume that there exists a fixed finite m ∈ N0 such that V[T̂

(`)
M`

] ≤ V`/(M` −m), where
V` is independent of M`. Moreover, assume that there exist constants α, β, γ > 0 such that,
for any ` ≥ 0,

(i) |Bias(θ̂ML
` , θ)| . n−α` ,

(ii) V` . n−β` ,

(iii) C` . nγ` .

Then for any tolerance 0 < ε < e−1, there exist a level L ≥ 0 and a sequence of integers
(M`)

L
`=0, satisfying M` > m for all 0 ≤ ` ≤ L, such that RMSE(θ̂ML

L , θ) ≤ ε and

(2.20) Costε(θ̂
ML
L ) . ε−

γ
α1min(β,γ)>2α + ε−2

(
1β>γ + (log ε)21β=γ + ε−

γ−β
α 1β<γ

)
,

where Costε(θ̂
ML
L ) denotes the total cost of computing such a multilevel estimator.
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In the theorem above, . and h have the same meaning as in [7, 3]. That is, for a, b > 0,
a . b means that a/b is bounded above by a constant independent of any parameters, and
a h b means that a . b and b . a. Furthermore, with a slight abuse of the indicator
function notation, for any logical proposition P , we define 1P as

(2.21) 1P =

{
1 if P is true,
0 otherwise.

Theorem 2.1 is an adaptation of the abstract convergence theorem introduced in [51, The-
orem 4.1] to make it applicable to unbiased variance and covariance estimation (see sec-
tions 2.3 and 2.4 below). The main difference is that we require V[T̂

(`)
M`

] ≤ V`/(M` −m) so

that assumption (ii) implies V[T̂
(`)
M`

] . (M` −m)−1n−β` , while [51, Theorem 4.1], primarily

designed for the estimation of expected values, requires V[T̂
(`)
M`

] . M
−1/δ
` n−β` , where δ = 1

for MC and δ ∈ (1/2, 1] for QMC. The proof of Theorem 2.1 is along the same lines as that
of [7, Theorem 1] and [51, Theorem 4.1].

Remark 2.2. When each T̂ (`)
M`

is an unbiased estimator of T`, assumption (i) in Theo-
rem 2.1 can be relaxed and it is sufficient to have |θ`−θ`−1| . n−α` instead (see Appendix A).

Remark 2.3. It should be noted that there are cases where MLMC may fail or be in-
effective. For instance, for coarse discretizations, the error may not be in the asymptotic
regime, possibly preventing the assumptions of exponential bias and variance decay rate
from holding for coarse levels. Furthermore, the geometry of the spatial computational
domain is typically impacted by the discretization. For complex industrial problems, this
may incur significant additional error and thus shift the asymptotic regime to finer dis-
cretizations. In such cases, one may opt for other methods (e.g. using a surrogate model)
or design specific workarounds for MLMC.

2.3. MLMC covariance and variance estimator. In this work, we are particularly
interested in estimating the covariance between two random variables (and, as a special
case, the variance of a random variable). We define the MLMC estimator CML

L [Y,Z] of the
covariance C[Y,Z] between two second-order random variables Y and Z as

(2.22) CML
L [Y, Z] =

L∑
`=0

C
(`)
M`

[Y`, Z`]− C
(`)
M`

[Y`−1, Z`−1],

where C(`)
M`

[Y`′ , Z`′ ] is the single-level MC estimator

C
(`)
M`

[Y`′ , Z`′ ] =
M`

M` − 1
E

(`)
M`

[(
Y`′ − E

(`)
M`

[Y`′ ]
)(

Z`′ − E
(`)
M`

[Z`′ ]
)]

=
M`

M` − 1

(
E

(`)
M`

[Y`′Z`′ ]− E
(`)
M`

[Y`′ ]E
(`)
M`

[Z`′ ]
)
.

(2.23)

It can easily be seen that C(`)
M`

[Y`′ , Z`′ ] is an unbiased estimator of C[Y`′ , Z`′ ], implying that
Bias(CML

L [Y,Z],C[Y,Z]) = C[YL, ZL] − C[Y, Z]. The multilevel estimator V ML
L [Y ] of the
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variance V[Y ] = C[Y, Y ] is obtained from the special case Y = Z

(2.24) V ML
L [Y ] ≡ CML

L [Y, Y ] =
L∑
`=0

V
(`)
M`

[Y`]− V
(`)
M`

[Y`−1], V
(`)
M`

[Y`′ ] ≡ C
(`)
M`

[Y`′ , Y`′ ],

and, as a consequence, Bias(V ML
L [Y ],V[Y ]) = V[YL]− V[Y ].

Remark 2.4. For covariance estimation, sometimes it may not be possible — or desirable
— to consider different levels for both random variables. This may be the case for instance
when interested in the covariance between an input parameter and the output of a numerical
simulator. In such a case, the multilevel estimator

(2.25) C̃ML
L [Y,Z] =

L∑
`=0

C
(`)
M`

[Y,Z`]− C
(`)
M`

[Y,Z`−1] =

L∑
`=0

C
(`)
M`

[Y,Z` − Z`−1]

can be used, where, by symmetry, the roles of Y and Z can be interchanged.

2.4. Variance of the multilevel estimators. Theorem 2.1 shows that it is essential to
know an upper bound for the variance of the multilevel estimators. In this section, we first
recall known expressions for the variance of some single-level MC estimators, then we use
them to derive upper bounds for the variance of multilevel estimators.

For the sake of clarity, we drop the unnecessary level-related sub- and superscripts for
the single-level MC estimators. The variance of the MC estimators EM [Y ], CM [Y,Z] and
VM [Y ] defined previously in Eq. (2.11), (2.23) and (2.24) can be expressed as

(2.26) ∀Y ∈ L2(Ω,P), ∀M > 0, V[EM [Y ]] = V[Y ]/M,

(2.27) ∀Y,Z ∈ L4(Ω,P), ∀M > 1,

V[CM [Y,Z]] =
M4[Y,Z]

M
− (M − 2)C[Y, Z]2 − V[Y ]V[Z]

M(M − 1)
,

(2.28) ∀Y ∈ L4(Ω,P), ∀M > 1, V[VM [Y ]] =
M4[Y ]

M
− M − 3

M(M − 1)
V[Y ]2,

where M4[Y ] ≡ E
[
(Y − E[Y ])4

]
and M4[Y,Z] ≡ E

[
(Y − E[Y ])2(Z − E[Z])2

]
. The ex-

pression for the expectation estimator is a standard result of estimation theory, while the
expressions for the variance and covariance estimators can be found in [3, Corollary 4.2].
Note that Eq. (2.28) is simply a special case of Eq. (2.27), since VM [Y ] = CM [Y, Y ]. We
can then derive the upper bounds

(2.29) V[CM [Y,Z]] ≤ 1

M − 1

√
M4[Y ] M4[Z], V[VM [Y ]] ≤ 1

M − 1
M4[Y ],
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for M > 1, see Appendix B. From these single-level results, we can derive upper bounds, or
identity for the expectation, for the multilevel estimators defined in Eq. (2.10), (2.22) and
(2.24):

(2.30) V
[
EML
L [Y ]

]
=

L∑
`=0

1

M`
V[∆Y

` ],

(2.31) V
[
CML
L [Y,Z]

]
≤ 1

2

L∑
`=0

1

M` − 1

[√
M4[∆Y

` ] M4[ΣZ
` ] +

√
M4[∆Z

` ] M4[ΣY
` ]

]
,

(2.32) V
[
V ML
L [Y ]

]
≤

L∑
`=0

1

M` − 1

√
M4[∆Y

` ] M4[ΣY
` ],

where ∆Y
` ≡ Y` − Y`−1 and ΣY

` ≡ Y` + Y`−1. The expression for the expectation can be
found in the original multilevel Monte Carlo paper [19], while the bound for the covariance
estimator is derived in Appendix C, following an idea similar to that for the variance
estimator in [3, Theorem 5.1]. This derivation also bears resemblance with the analysis
in [32]. The main idea relies on the assumption that the correction estimators T̂ (`)

M`
are

mutually independent, so that V
[
CML
L [Y,Z]

]
=
∑L

`=0 V[T̂
(`)
M`

], and the rest of the proof thus

essentially consists in bounding each individual V[T̂
(`)
M`

] as required by Theorem 2.1, i.e.

V[T̂
(`)
M`

] ≤ V`/(M` −m). Table 1 summarizes main properties of the multilevel estimators
derived above, with an additional property for C̃ML

L [Y,Z] that is straightforward to obtain.

Table 1: Summary of properties of the multilevel estimators.

Parameter ML estimator Correction at level ` Variance contribution at level `
θ θ̂ML

L T̂
(`)
M`

V`

E[Y ] EML
L [Y ] E

(`)
M`

[Y`]− E
(`)
M`

[Y`−1] V[∆Y
` ]

C[Y,Z] CML
L [Y, Z] C

(`)
M`

[Y`, Z`]− C
(`)
M`

[Y`−1, Z`−1]

√
M4[∆Y

` ]M4[ΣZ
` ] +

√
M4[∆Z

` ]M4[ΣY
` ]

2

C[Y,Z] C̃ML
L [Y, Z] C

(`)
M`

[Y,Z`]− C
(`)
M`

[Y, Z`−1]
√
M4[Y ] M4[∆Z

` ]

V[Y ] V ML
L [Y ] V

(`)
M`

[Y`]− V
(`)
M`

[Y`−1]
√
M4[∆Y

` ] M4[ΣY
` ]

From these results, we can derive Theorem 2.5 for the multilevel covariance estimator
as a special case of Theorem 2.1.



MLMC COVARIANCE ESTIMATION FOR SOBOL’ INDICES 11

Theorem 2.5. Let Y and Z be random variables, and let Y` and Z` denote their respective
approximations at level `. Let C` be the cost of evaluating a single member of the M`-
sample used for the computation of C(`)

M`
[Y`, Z`] − C

(`)
M`

[Y`−1, Z`−1], and let (n`)`≥0 be an
exponentially increasing sequence of positive integers satisfying n` h s` for some fixed s > 1.
Moreover, assume that {M4[Y`]}`≥0 and {M4[Z`]}`≥0 are uniformly bounded and that there
exist constants α, β, γ > 0 such that, for any ` ≥ 0,

(i) |C[Y`, Z`]− C[Y`−1, Z`−1]| . n−α` ,

(ii) M4[∆Y
` ]1/2 + M4[∆Z

` ]1/2 . n−β` ,

(iii) C` . nγ` .

Then for any tolerance 0 < ε < e−1, there exist an integer L ≥ 0 and a sequence of integers
(M`)

L
`=0, satisfying M` > 1 for all 0 ≤ ` ≤ L, such that

(2.33) RMSE(CML
L [Y,Z],C[Y,Z]) ≤ ε

and

(2.34) Costε(C
ML
L [Y,Z]) . ε−

γ
α1min(β,γ)>2α + ε−2

(
1β>γ + (log ε)21β=γ + ε−

γ−β
α 1β<γ

)
.

Assumption (i) results from the fact that the level corrections C(`)
M`

[Y`, Z`]−C
(`)
M`

[Y`−1, Z`−1]
are unbiased estimators of C[Y`, Z`]−C[Y`−1, Z`−1], so the relaxed assumption can be used
(see Remark 2.2). Furthermore, if {M4[Y`]}`≥0 and {M4[Z`]}`≥0 are uniformly bounded,
then so are {M4[ΣY

` ]}`≥0 and {M4[ΣZ
` ]}`≥0, and thus assumption (ii) of Theorem 2.1 holds

(see Appendix C).

Remark 2.6. It should be stressed that the bounds and the corresponding MLMC the-
orems can be adapted to the case of random fields, using appropriate spaces and norms as
described in [3] for the expectation and variance MLMC estimators.

2.5. Adaptive MLMC algorithms. Given a sequence of discretization levels described,
e.g., by the number of grids points n` on each level `, the choice of L and (M`)`≤L in
Theorem 2.1 depends on the inequality constants in assumptions (i)–(iii). We extend here
the adaptive algorithm designed in [19, 7, 20] to estimate on the fly the optimal number of
levels L and samples M` on each level.

First, we consider that T̂` is an unbiased estimator of T` on each level and that the
assumptions of Theorem 2.1 hold. Second, we remark that in order to achieve a RMSE
smaller than or equal to some target ε, it is sufficient to have, for some given ρ ∈ (0, 1),

(2.35) |Bias(θ̂ML
L , θ)| ≤ ρ1/2ε ≡ εb, and V ≤ (1− ρ)ε2 ≡ ε2

v,

where V ≡
∑

`≤L V`/(M`−m). From these considerations, we propose adaptive algorithms
to select the optimal values of L and (M`)`≥0 where the objective function can be either
the accuracy of the MLMC estimator or its computational cost.
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2.5.1. Target accuracy approach. Following an approach similar to that of [7, 20], we
determine that the number of samples M` on each level required to achieve some target
accuracy V = ε2

v for a minimal total cost C =
∑

`≤LM`C` is given by

(2.36) ∀` ≤ L, M` = m+ 1 +
⌊
ε−2

v SL
√
V`/C`

⌋
> m, SL ≡

∑
`≤L

√
V`C`,

where b·c denotes the floor function. This naturally leads to the adaptive procedure de-
scribed in Algorithm 1, adapted from [20, Algorithm 1].

Algorithm 1: Simplified MLMC algorithm for target accuracy strategy, adapted
from [20, Algorithm 1].
1 Choose Lmin ≥ 2, Minit > m, ε < e−1 and ρ ∈ (0, 1);
2 Set L = Lmin and M` = Minit samples on levels ` ≤ L;
3 while extra samples need to be evaluated do
4 evaluate extra samples on each level 0 ≤ ` ≤ L;
5 compute/update estimates for d` and V` from samples on levels ` ≤ L;
6 update optimal number of samples M` using Eq. (2.36) on levels ` ≤ L;
7 if (sα − 1)−1|dL| > εb then
8 L← L+ 1;
9 initialize VL from VL−1 using Eq. (2.37);

10 define optimal number of samples ML using Eq. (2.36);
11 end if
12 end while

It should be stressed that this algorithm relies on the additional assumptions that

(2.37) ∀` > 1, d` ≡ θ` − θ`−1 = s−αd`−1 and V` = s−βV`−1.

The first identity implies that

(2.38) Bias(θ̂ML
L , θ) = θL − θ = −

∑
`>L

d` = −(sα − 1)−1dL,

where dL can be approximated on the fly using available samples, see [20, Section 3.1].
Roughly speaking, the algorithm starts with a small number of coarse levels, e.g. 3,

and a small number of samples on each level, from which the variance contributions V` are
estimated in order to compute the optimal sample sizes M` using Eq. (2.36). Note that
these sample sizes may be under- or over-estimated due to the limited initial number of
samples, so in practice, this process is repeated until the estimated optimal sample sizes
stop increasing. This guarantees that V ≤ ε2

v. Then the bias is computed using Eq. (2.38).
If it satisfies |Bias(θ̂ML

L , θ)| ≤ εb, then the RMSE achieves the prescribed tolerance ε,
and the algorithm can stop. Otherwise, a new level needs to be created. The second
identity in Eq. (2.37) is used to estimate VL from VL−1 for a newly created level L, then
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Eq. (2.36) is used to estimate the optimal number of samples on this new level. The overall
process is repeated until the bias is sufficiently small. More details regarding the actual
implementation of such an algorithm can be found in [20, Section 3.4].

Remark 2.7. Note that more involved strategies have been proposed in the literature.
For instance, in [8] the authors propose a continuation MLMC (CMLMC) algorithm that
iteratively applies MLMC with a sequence of decreasing tolerances, until the final target
accuracy is reached. The number of levels is updated at every iteration, as well as the
splitting parameter ρ (see Eq. (2.35)), and the variance contribution V` is estimated us-
ing a Bayesian setting. In addition, the authors exploit the asymptotic normality of the
MLMC expectation estimator to enforce the tolerance criterion on the statistical error with
a confidence level 1 − δ, for some prescribed failure probability δ ∈ (0, 1). This iterative
CMLMC approach computes increasingly accurate estimates of the bias and statistical er-
ror, which directly impact the estimation of the optimal number of samples per level, as
well as the creation of new levels. In [27], the authors also discuss optimal mesh hierarchies
and optimal error splitting.

2.5.2. Target cost approach. From a practical point of view, it may not be easy to
prescribe a target accuracy. On the contrary, one may want to prescribe a target cost
depending on a given available CPU budget. Using a technique similar to that proposed
in Section 2.5.1, we find that the number of samples required to achieve some target cost
C = η > 0 with a minimal total V ≡

∑
`≤L V`/(M` −m), is given by

(2.39) ∀` ≤ L, M` = m+ 1 +
⌊
(η̃L/SL)

√
V`/C`

⌋
> m, η̃L ≡ η −m

∑
`′≤L
C`′ .

Based on this expression, a similar algorithm to that for a target accuracy could be used.
However, whenever a new level needs to be created, the resulting additional samples on
the newly created level would cause the target cost to be exceeded. So instead, we resort
to an algorithm inspired by that proposed in [24, Section 5], [20, Algorithm 2] and [37]
for multilevel QMC. Starting from a small initial number of levels and initial number of
samples on each level, it selects the “optimal” level on which to increase the sample size by
a factor τ > 1. Specifically, it selects the level `∗ for which the ratio between the variance
reduction and the additional computational effort is maximal,

(2.40) `∗ = arg max
0≤`≤L

V`
(M` −m)(τM` −m)C`

.

Whenever the overall variance becomes too small compared to the squared bias in the sense
of Eq. (2.35), specifically whenever ρV ≤ (1−ρ) Bias(θ̂ML

L , θ)2, a new (finer) level is created.
The approach is outlined in Algorithm 2. Similarly to the CMLMC algorithm mentioned
previously, the factor τ > 1 allows for a moderate growth of the sample sizes during the
early iterations of the algorithm, thus preventing poor estimations of V` from inducing
unnecessarily large increases on fine levels. A more involved version of the algorithm could
allow for τ to take different values τ` depending on the level, typically larger values on
coarse levels and smaller, more conservative values on fine levels.
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Algorithm 2: Simplified MLMC algorithm for target cost strategy, inspired
by [24] and [20, Algorithm 2].
1 Choose Lmin ≥ 2, Minit > m, ρ ∈ (0, 1), τ > 1;
2 Set L = Lmin, C = 0 and M` = Minit samples on levels ` ≤ L;
3 while C ≤ η do
4 evaluate extra samples on each level ` ≤ L and update C =

∑
`≤LM`C`;

5 compute/update estimates for d`, V` and V from samples on levels ` ≤ L;
6 if ρ(sα − 1)2V > (1− ρ)d2

L then
7 select level `∗ based on Eq. (2.40);
8 M`∗ ← dτM`∗e;
9 else

10 L← L+ 1;
11 ML ←Minit;
12 end if
13 end while

Algorithm 2 differs from that proposed in [24, 20, 37] in that it is designed to comply
with a given computational budget, as opposed to seeking to achieve a target accuracy.
Another minor difference is the way the optimal level `∗ is chosen (see Eq. (2.40)).

3. Application to the MLMC estimation of Sobol’ indices. When the input parame-
ters of a numerical simulator f are subject to uncertainties, two important questions arise:
“how uncertain is the simulator output?” and “how do the different input uncertainties
contribute to this output uncertainty?”. Both issues occur in the framework of uncertainty
quantification and risk management. The second one corresponds to the engineering branch
called sensitivity analysis, whose objective is to highlight the contributions of the different
uncertain input parameters X1, . . . , Xd of the model f to the output Y = f(X); see, e.g.,
[46]. In this section, we focus on Sobol’ indices, which are global sensitivity measures based
on a decomposition of the output variance. Specifically, we demonstrate how to apply the
MLMC methodology for covariance estimation to the computation of such indices, in order
to reduce the overall cost of their estimation.

3.1. Sobol’ indices. Under the assumption that f(X) is square-integrable, i.e. E[f2(X)] <
∞, and that the random variables X1, X2, . . . , Xd are independent, there is a unique or-
thogonal output decomposition [31, 25, 13, 49, 52]

(3.1) f(X) =
∑
∅⊆u⊆Id

fu(Xu),

with the iterative construction

(3.2)

f∅(X∅) ≡ f∅ ≡ E[f(X)],

fu(Xu) ≡ Eū[f(X)|Xu]−
∑
∅⊆v(u

fv(Xv), ∀∅ ( u ⊆ Id,
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where Id ≡ {1, . . . , d}, Xu ≡ {Xi}i∈u for any ∅ ( u ⊆ Id, and ū ≡ Id\u. For clarity, the
subscript in the expectation notation (and subsequently in the variance notation) indicates
the indices of the variables over which the integration is performed. The subscript is omitted
whenever the integration is performed over all the variables.

Then, it is straightforward to decompose the output variance V[f(X)] with respect to
the different combinations of input parameters Xu and to analyze the different shares of
variance. Precisely, the Sobol’ index associated to Xu is defined as the share of output
variance attributable to Xu individually [49]:

(3.3) Su =
Vu[fu(Xu)]

V[f(X)]
=

Vu
V[f(X)]

−
∑
∅(v(u

Sv, Vu ≡ Vu[Eū[f(X)|Xu]],

for any ∅ ( u ⊆ Id. Similarly, the total-order Sobol’ index associated to Xu is defined as
the share of output variance attributable to Xu individually and in interaction:

(3.4) STu =
∑

u⊆v⊆Id

Sv = 1− Vū
V[f(X)]

.

As mentioned in the introduction, Sobol’ indices may be estimated by direct MC or
QMC sampling of the numerical simulator [44, 6, 40]. Alternatively, a surrogate model
(e.g. a Gaussian process [43] or a PC surrogate [39, 53, 50, 9]) may first be constructed to
reduce the sampling cost. In this paper, we focus on applying the MLMC methodology to
the estimation of Sobol’ indices. In particular, we are interested in the estimation of Vu,
which is at the basis of the construction of both Su and STu , and which may be rewritten
as a covariance term, leading to the so-called pick-and-freeze formulation [34] (see [33,
Section 3.1.2, Lemma 1] for the proof)

(3.5) Vu ≡ Vu[Eū[f(X)|Xu]] = C[f(Xu ⊕Xū), f(Xu ⊕X′ū)] = C[f(X), f(Xu ⊕X′ū)],

where
• Xu ⊕X′ū denotes the Rd-valued random vector whose ith component is Xi if i ∈ u

and X ′i otherwise, where Xi and X ′i are i.i.d.; and
• Xu ⊕Xū = X.

In other words, Vu represents the covariance between the outputs Y ≡ f(Xu⊕Xū) and Yu ≡
f(Xu⊕X′ū) where the second output is obtained by “freezing” the inputs Xu corresponding
to parameters indexed by i ∈ u, and considering an i.i.d. “copy” of the other parameters,
hence the term “pick-and-freeze.”

Remark 3.1. This formulation also shows that Sobol’ indices can be expressed in terms
of correlation coefficients, specifically

(3.6) ∀∅ ( u ⊆ Id, Su = ρY,Yu −
∑
∅(v(u

Sv,

where ρY,Z ≡
C[Y,Z]√
V[Y ]V[Z]

denotes the Pearson correlation coefficient between the random

variables Y and Z. In particular, first-order Sobol’ indices may be defined as

(3.7) ∀i ∈ Id, Si ≡ S{i} = ρY,Yi .
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Remark 3.2. It should be stressed that the terms in Eq. (3.3), i.e. Vu, V[f(X)] and∑
∅(v(u Sv are estimated independently. Here we focus on the estimation of the covariance

term Vu. The denominator V[f(X)] is a normalizing constant so that the indices can be
thought of as shares of the total output variance. This constant may be estimated once
and for all since it does not depend on u. It may also be omitted when one simply seeks
to compare the contributions of (groups of) inputs, in which case one would typically be
interested in estimating

(3.8) Vu[fu(Xu)] = Vu −
∑
∅(v(u

Vv[fv(Xv)].

The last term,
∑
∅(v(u Sv, arises from the iterative construction. When estimating Su,

the estimates of lower-order indices Sv, already available (since v ( u), are reused. It is
clear from this construction that the estimates of Sobol’ indices accumulate error from the
estimation of the lower-order indices. This is nonetheless how Sobol’ indices are typically
estimated in MC-like sampling methods (plain MC, QMC), hence the focus on Vu.

3.2. Numerical experiments. We consider the following initial value problem with
growth coefficient λ ∈ R and initial condition u0 ∈ R

(3.9)


du

dt
(t) = λu(t), t ∈ (0, 1],

u(0) = u0,

whose solution is given by u(t) = u0e
λt. We define the abstract function F that maps a

pair of parameter values (u0, λ) ∈ R2 of the input parameters and a time t ∈ [0, 1] to the
solution of (3.9) at time t with those parameters

(3.10)
F : R2 × [0, 1]→ R

(u0, λ, t) 7→ u0e
λt.

Let us now consider the input parameters as uncertain and investigate the sensitivity of the
output to the uncertain inputs. For any t ∈ (0, 1], we have (see Appendix D)

VU0(t) ≡ C[F (U0,Λ, t), F (U0,Λ
′, t)] = E[eΛt]2 V[U0],(3.11)

VΛ(t) ≡ C[F (U0,Λ, t), F (U ′0,Λ, t)] = E[U0]2 V[eΛt],(3.12)

V (t) ≡ V[F (U0,Λ, t)] = E[U2
0 ]E[e2Λt]− E[U0]2 E[eΛt]2,(3.13)

where U0 and Λ are independent random variables representing the input uncertainty and
U ′0 and Λ′ are i.i.d. copies of U0 and Λ, respectively. In addition, letting Λ ∼ N (µ, σ2) and
U0 ∼ N (µ0, σ

2
0), we obtain the following first-order Sobol’ indices

(3.14) SU0(t) =
σ2

0e
−σ2t2

σ2
0 + µ2

0(1− e−σ2t2)
, SΛ(t) =

µ2
0(1− e−σ2t2)

σ2
0 + µ2

0(1− e−σ2t2)
,
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as well as the Sobol’ index for the interaction effects between U0 and Λ:

(3.15) SU0,Λ(t) =
σ2

0(1− e−σ2t2)

σ2
0 + µ2

0(1− e−σ2t2)
.

Moreover, the total variance is given by

(3.16) V (t) = e2µt+σ2t2 [σ2
0e
σ2t2 + µ2

0(eσ
2t2 − 1)].

Finally, in what follows, we consider the following hyper-parameters for the distributions
of U0 and Λ:

(3.17) µ = −1, σ = 0.25, µ0 = 10, σ0 = 2,

which correspond to the values given in [48, Example 10.10] for the same problem. The
Sobol’ indices with these particular hyper-parameters are plotted as a function of time
in Fig. 1. At the initial time, the growth coefficient λ is absent from the solution of the
differential equation (3.9); only the initial condition u0 intervenes. The result is a first-order
Sobol’ index equal to 1 for the random variable U0 which totally explains the variance of
F (U0,Λ, 0) and a Sobol’ index equal to 0 for Λ. This is reflected in the formulas (3.14) as well
as in Fig. 1. Furthermore, as t→∞, the first-order Sobol’ index for Λ increases and tends to
25/26 ≈ 0.96 while that for U0 decreases and tends to 0, and that for the interaction between
U0 and Λ increases from 0 and tends to 1/26 ≈ 0.04. Lastly, U0 and Λ contribute in the

same way to the variance of F (U0,Λ, t) when t = σ−1
√

ln(1 + σ2
0µ
−2
0 ) = 4

√
ln(1.04) ≈ 0.79.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S
ob
ol
' i
nd
ic
es

time t

SU0
SΛ

SU0,Λ

Figure 1: Evolution of the Sobol’ indices defined in Eq. (3.14) and (3.15) as a function of
time t, with Λ ∼ N (µ, σ2) and U0 ∼ N (µ0, σ

2
0) and the hyper-parameters in Eq. (3.17).

We now focus on the solution u at time t = 1. We thus define an abstract function f as

(3.18)
f : R2 → R

(u0, λ) 7→ F (u0, λ, t = 1) = u0e
λ,
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and we define the output random variable of interest as Y ≡ f(U0,Λ). At t = 1, denoting
S1
? ≡ S?(t = 1), the Sobol’ indices defined above take the values

(3.19) S1
U0
≈ 0.374, S1

Λ ≈ 0.602, S1
U0,Λ ≈ 0.024,

and their numerators V 1
? ≡ V?(t = 1) = S1

? × V (t = 1) are given by

(3.20) V 1
U0
≈ 0.577, V 1

Λ ≈ 0.929, V 1
U0,Λ ≈ 0.037,

since V (t = 1) ≈ 1.543. Furthermore, we define a sequence of abstract numerical simulators
(f`)`≥0 as

(3.21)
f` : R2 → R
(u0, λ) 7→ un`` (u0, λ),

where

(3.22)
u0
` : R2 → R, and, ∀k = 1, . . . , n`, u

k
` : R2 → R,

(u0, λ) 7→ u0 (u0, λ) 7→
uk−1
` (u0, λ)

1− λ/n`
.

In other words, f` maps a pair of values (u0, λ) ∈ R2 to the corresponding numerical solution
at time t = 1 using a backward Euler scheme with n` time steps. The discrete counterpart
of Y on level ` is therefore Y` ≡ f`(U0,Λ).

We assume that evaluating f` for a given input pair (u0, λ) requires O(n`) operations.
This corresponds to a realistic numerical time integration procedure where the solution at
a given time step is computed from the solution at the previous time step, thus requiring to
propagate the solution from the initial time t = 0 up to t = 1. In the following numerical
experiments, we set n0 = 16 equally spaced time steps on the coarsest level ` = 0 to
discretize the time interval (0, 1], and we define n` = n02` as the number of time steps at
level ` > 0. Thus, n` clearly satisfies n` h s` with s = 2 and the computational cost of f`
is O

(
nγ`
)
with γ = 1.

The purpose of our numerical experiments is to study the advantage of MLMC sampling
over standard MC sampling for the estimation of V 1

U0
and V 1

Λ , the numerators of the Sobol’
indices S1

U0
and S1

Λ. The MLMC estimators V̂ 1
U0

and V̂ 1
Λ of V 1

U0
and V 1

Λ , respectively, are
naturally defined by

(3.23) V̂ 1
U0
≡ CML

L [f(U0,Λ), f(U0,Λ
′)] and V̂ 1

Λ ≡ CML
L [f(U0,Λ), f(U ′0,Λ)],

for a given finest level L.
First, Fig. 2 shows the convergence properties of the numerical simulator when the

number of time steps n` increases by a factor of s = 2 at each level `. It allows to verify that
the assumptions of Theorem 2.5 are satisfied before computing the MLMC estimators V̂ 1

U0

and V̂ 1
Λ . Based on the relaxed assumption for unbiased corrections, we see that the biases

of the MLMC estimators CML
` [f(U0,Λ), f(U0,Λ

′)] and CML
` [f(U0,Λ), f(U ′0,Λ)] decrease in
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Figure 2: Convergence properties of the numerical simulator, where Y` ≡ f`(U0,Λ), Z` ≡
f`(U0,Λ

′) and Z̃` ≡ f`(U ′0,Λ). We recall that M4 denotes the fourth-order central moment
defined for any random variable Y ∈ L4(Ω,P) as M4[Y ] ≡ E[(Y −E[Y ])4] (see section 2.4).
The statistics are estimated using M = 107 samples on each level.

O(n−α` ) with α = 1. Furthermore, denoting Y` ≡ f`(U0,Λ), Z` ≡ f`(U0,Λ
′) and Z̃` ≡

f`(U
′
0,Λ), we remark that M4[∆Y

` ] = M4[∆Z
` ] = M4[∆Z̃

` ], so we conclude from Fig. 2 that

(3.24) M4[∆Y
` ]1/2 + M4[∆Z

` ]1/2 = M4[∆Y
` ]1/2 + M4[∆Z̃

` ]1/2 = 2M4[∆Y
` ]1/2

decreases in O(n−β` ) with β = 2. Moreover, we note from the figure on the right-hand-
side that {M4[Y`]}`≥0 is uniformly bounded, and thus so are {M4[Z`]}`≥0 and {M4[Z̃`]}`≥0.
Consequently, all the assumptions of Theorem 2.5 hold, and thus the theorem applies for
both V̂ 1

U0
and V̂ 1

Λ . In other words, given a target accuracy ε, there exists a discretization
level L with n0 × 2L time steps and a sequence of sampling sizes (M`)

L
`=0 such that the

root mean square error of the MLMC estimator V̂ 1
U0

(and, likewise, V̂ 1
Λ ) is lower than this

accuracy and its computational cost is O(ε−2).
On the other hand, the computational cost of standard Monte Carlo is O(ε−3), consist-

ing in O(ε−2) simulations of the finest level fL described by O(ε−1) time steps. From the
reverse point of view, the accuracy measured in terms of root mean square error is O(C−1/2)
for MLMC sampling and O(C−1/3) for standard MC sampling, where C denotes the compu-
tational cost of computing the estimator. These theoretical convergence rates of the RMSE
as functions of the normalized cost C (see Remark 3.3 below) are numerically reflected in
Fig. 3, based on 100 replications of the experiments. In particular, for the estimation of
V 1
U0

(Fig. 3a), we observe that with a normalized computational cost of C ≈ 3× 103, the
MLMC estimator achieves an accuracy of about 2× 10−3, while the MC estimator only
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Figure 3: Evolution of the RMSE as a function of the normalized cost for the MC and
MLMC estimation of V 1

U0
(Fig. 3a) and V 1

Λ (Fig. 3b), obtained by applying Algorithm 2
with τ = 1.5 and ρ = 0.25. These statistics are estimated from 100 replications of the
experiment.

has an accuracy of about 10−2. Again, from the reverse point of view, using standard MC
sampling to obtain an accuracy of 2× 10−3 requires about 300 times more computational
effort, i.e. a normalized cost C ≈ 106, than when using MLMC. Similar observations can
be made for the estimation of V 1

Λ (Fig. 3b). To summarize, we see that multilevel Monte
Carlo covariance estimators converge faster than the standard Monte Carlo ones, with a
theoretical accuracy gain εMC/εML in O(C1/6), here numerically O(C0.21) and O(C0.29) for
U0 and Λ, respectively, and a theoretical speedup CMC/CML in O(ε−1).

Finally, Fig. 4 shows the evolution of the average sample size per level as a function
of the total cost. For any given level `, the sample size M` increases with the total cost.
For the lower costs, only the first (coarsest) four levels out of a potential total of eleven are
used. Then, as the total budget increases and coarsest corrections T̂` have a small enough
variance as compared to the discretization bias, finer levels are created and sampled in order
to reduce the bias.

Remark 3.3. The cost is here arbitrarily normalized by the correction cost C8 on level
` = 8. Specifically, because C` = 2`C0 = 2`−8C8, we have

(3.25) C ≡ C−1
8

L∑
`=0

M`C` =

L∑
`=0

2`−8M`.
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Figure 4: Evolution of the average sample size per level as a function of the normalized
cost for the MC and MLMC estimation of V 1

U0
(Fig. 4a) and V 1

Λ (Fig. 4b), obtained by
applying Algorithm 2 with τ = 1.5 and ρ = 0.25. These statistics are estimated from 100
replications of the experiment.

Note that the normalized cost C only differs from the absolute cost
∑

`≤LM`C` by a fixed
multiplicative factor, so that the convergence rates are unaffected by the normalization.

4. Conclusion. In computer experimentation, uncertainty quantification studies deal
with the estimation of statistics (expectation, variance, quantile, probability, . . . ) or sen-
sitivity indices associated to the output of a numerical simulator. The accuracy of crude
Monte Carlo estimators is severely limited when the computer code is time-expensive, al-
lowing only a small number of executions and leading to an important variance which is
inversely proportional to the number of simulation runs. An alternative would be to replace
the numerical simulator by a surrogate model, which could be evaluated at low cost during
the Monte Carlo sampling, significantly reducing the sampling error but adding a model
one. Another one would be to replace the Monte Carlo sampling by quasi Monte Carlo
techniques in order to slightly reduce the estimator’s variance.

In this paper driven by the estimation of Sobol’ indices, we considered another alter-
native based on the Monte Carlo sampling of different simulator versions ranked by their
exponentially increasing accuracy and computational cost. Precisely, we proposed a unified
framework for the MLMC approach where the unbiased Monte Carlo estimator of the quan-
tity of interest based on the finest level can be written as the telescoping sum of unbiased
Monte Carlo estimators based on the lower levels. This framework can be used for different
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statistics with an unbiased estimator, such as the covariance present in the construction of
a Sobol’ index. We analyzed in particular the case of covariance estimation and we adapted
the MLMC convergence theorem in terms of the corresponding covariances and fourth or-
der moments. This theorem may be applied to the estimation of the covariance between
two output instances, as well as between an output instance and the corresponding input.
We also extended an existing iterative algorithm selecting the optimal number of runs at
each level and the finest level by declining different optimal criteria. Whereas existing ap-
proaches typically consist in achieving a target accuracy for the estimator, our algorithm
aims at complying with a given overall computational budget. This strategy may be more
appropriate for engineering studies where one looks to reach the best accuracy under the
constraint that the total simulation time is lower than a given requirement.

The proposed approach was efficiently studied and validated on an ordinary differential
equation, for which a closed-form solution is available, with random parameters, namely
a random initial condition and a random growth coefficient. In particular, we estimated
covariance terms involved in the construction of the pick-and-freeze formulation of Sobol’
indices, and showed that MLMC had a better convergence rate than standard MC, which
was confirmed numerically.

The results are promising for further MLMC developments dedicated to uncertainty
quantification and management, such as sensitivity analysis with sensitivity indices based
on output variance decomposition [49], output partial derivatives [10], output probability
distribution [5] or other goal-oriented sensitivity indices [16]. It would also be appropriate
to continue this work by proposing extensions of MLMC algorithms for the estimation of a
group of sensitivity indices, along the same line as what was proposed in [20, Section 2.5]
for multi-dimensional output functionals1. Finally, further improvement may be obtained
by combining the approach with QMC or randomized QMC sampling as in [24] or with the
use of antithetic variates as in [22, 23].

Appendix A. Relaxed assumption for unbiased corrections. If T̂ (`)
M`

is an unbiased
estimator of T` on each level ` ≥ 0, then

(A.1) Bias(θ̂ML
` , θ) = θ` − θ = −

∑
k>`

θk − θk−1.

Assume n` h s` for some fixed s > 1 and |θ`−θ`−1| . n−α` , i.e. there exist positive constants
a, b, c such that

(A.2) as` ≤ n` ≤ bs` and |θ` − θ`−1| ≤ cn−α` .

Then we have

(A.3) |Bias(θ̂ML
` , θ)| ≤

∑
k>`

|θk − θk−1| ≤ a−αc
∑
k>`

s−αk = a−αc
s−α`

sα − 1
. n−α` .

1attributed by the author to Tigran Nagapetyan.
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Appendix B. Upper bound for the single-level MC estimators. Let Y,Z ∈ L4(Ω,P).
From Eq. (2.27) we notice that

V [CM [Y,Z]] =
M4[Y,Z]

M
+

V[Y ]V[Z]

M(M − 1)
− (M − 2)C[Y,Z]2

M(M − 1)
(B.1)

≤ M4[Y,Z]

M
+

V[Y ]V[Z]

M(M − 1)
, ∀M > 1.(B.2)

Furthermore, from the Cauchy-Schwarz inequality, we have

(B.3) M4[Y,Z] =
∣∣∣〈Ȳ 2, Z̄2

〉
L2(Ω,P)

∣∣∣ ≤ ‖Ȳ 2‖L2(Ω,P)‖Z̄2‖L2(Ω,P) =

√
M4[Y ] M4[Z],

with the notation Ū ≡ U − E[U ] for any random variable U and using the fact that
U ∈ L4(Ω,P) =⇒ Ū2 ∈ L2(Ω,P). Finally, using Jensen’s inequality, we have

(B.4) (V[Y ] V[Z])2 = E[Ȳ 2]2 E[Z̄2]2 ≤M4[Y ] M4[Z],

leading to the bound in Eq. (2.29) for the covariance. The bound for the variance is obtained
by taking Y = Z.

Appendix C. Upper bound for the multilevel covariance estimator.
Following the approach for the proof of [3, Theorem 5.1], we notice that

(C.1) V
[
CML
L [Y, Z]

]
=

L∑
`=0

V
[
T̂

(`)
M`

]
=

L∑
`=0

E
[(
T̂

(`)
M`
− T`

)
2
]

=
L∑
`=0

E[J2
` ],

where J` ≡ T̂
(`)
M`
− T` and

(C.2) T` ≡ C[Y`, Z`]− C[Y`−1, Z`−1], T̂
(`)
M`
≡ C(`)

M`
[Y`, Z`]− C

(`)
M`

[Y`−1, Z`−1].

Furthermore, we have the identities

C[Y`, Z`]− C[Y`−1, Z`−1] = C[∆Y
` , Z`] + C[Y`−1,∆

Z
` ](C.3)

= C[∆Y
` , Z`−1] + C[Y`,∆

Z
` ](C.4)

=
1

2

(
C[∆Y

` ,Σ
Z
` ] + C[ΣY

` ,∆
Z
` ]
)
,(C.5)

and, likewise,

(C.6) C
(`)
M`

[Y`, Z`]− C
(`)
M`

[Y`−1, Z`−1] =
1

2

(
C

(`)
M`

[∆Y
` ,Σ

Z
` ] + C

(`)
M`

[ΣY
` ,∆

Z
` ]
)
.

Thus, we have

(C.7) J2
` =

1

4
(A` +B`)

2 ≤ 1

2
(A2

` +B2
` ),
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with

(C.8) A` ≡ C
(`)
M`

[∆Y
` ,Σ

Z
` ]− C[∆Y

` ,Σ
Z
` ], B` ≡ C

(`)
M`

[ΣY
` ,∆

Z
` ]− C[ΣY

` ,∆
Z
` ].

Using the bound in Eq. (2.29) for E[A2
` ] = V[C

(`)
M`

[∆Y
` ,Σ

Z
` ]] on the one hand, and for

E[B2
` ] = V[C

(`)
M`

[ΣY
` ,∆

Z
` ]] on the other hand, we obtain Eq. (2.31).

Furthermore, suppose that {M4[Y`]}`≥0 and {M4[Z`]}`≥0 are uniformly bounded, i.e.
there exist constants cY ≥ 0 and cZ ≥ 0, independent from any parameters, such that

(C.9) ∀` ≥ 0, M4[Y`] ≤ cY and M4[Z`] ≤ cZ .

We then have

M4[ΣY
` ] =

∥∥(Ȳ` + Ȳ`−1)2
∥∥2

L2(Ω,P)
≤ 4

∥∥Ȳ 2
` + Ȳ 2

`−1

∥∥2

L2(Ω,P)
(C.10)

≤ 4
(
M4[Y`]

1/2 + M4[Y`−1]1/2
)2
≤ 16cY .(C.11)

The same naturally holds for Z, i.e. M4[ΣZ
` ] ≤ 16cZ . Denoting c ≡ 2 max(cY , cZ)1/2, it

follows that

(C.12) V
[
CML
L [Y,Z]

]
≤ c

∑
`≤L

1

M` − 1

[
M4[∆Y

` ]1/2 + M4[∆Z
` ]1/2

]
.

Appendix D. Statistics of the solution of the initial value problem.
We provide here the detailed derivation of Eqs. (3.11) to (3.16). By definition, and

because U0, U ′0, Λ and Λ′ are independent, we have

VU0(t) = C[F (U0,Λ, t), F (U0,Λ
′, t)] = C[U0e

Λt, U0e
Λ′t](D.1)

= E[U2
0 e

ΛteΛ′t]− E[U0e
Λt]E[U0e

Λ′t] = E[U2
0 ]E[eΛt]2 − E[U0]2 E[eΛt]2(D.2)

= E[eΛt]2(E[U2
0 ]− E[U0]2) = E[eΛt]2 V[U0].(D.3)

Likewise,

(D.4) VΛ(t) = C[U0e
Λt, U ′0e

Λt] = E[U0]2 E[e2Λt]− E[U0]2 E[eΛt]2 = E[U0]2 V[eΛt],

(D.5) V (t) = E[U2
0 e

2Λt]− E[U0e
Λt]2 = E[U2

0 ]E[e2Λt]− E[U0]2 E[eΛt]2.

Then, for the particular case where Λ ∼ N (µ, σ2) and U0 ∼ N (µ0, σ
2
0), it is easy to show

that

E[U2
0 ] = σ2

0 + µ2
0, E[eΛt] = eµt+

σ2t2

2 ,(D.6)

E[e2Λt] = e2(µt+σ2t2), V[eΛt] = (eσ
2t2 − 1)e2µt+σ2t2 ,(D.7)

leading to Eqs. (3.14), (3.15) and (3.16).
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