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Nomenclature

f Flux point index

int Refer to interface

s Solution point index

α, αSD Usual Fourier number and its equivalent in SD

β Relative numerical error ratio between 2 meshes

A, b, c The matrix and the two vectors of Butcher’s tableau for RK schemes

∆xi = xi+1 − xi Size of cell i

δ Small scalar in the JFNK context

ε Perturbation for the numerical computation of the Jacobian of the residual

εKry,a Absolute decrease tolerance for the norm of the linear residual in the GMRES algorithm

εKry,r Relative decrease tolerance, from an initial evaluation, for the norm of the linear residual in
GMRES algorithm

εNewt,a Absolute decrease tolerance for the norm of the nonlinear residual in the Newton algorithm

εNewt,r Relative decrease tolerance, from an initial evaluation, for the norm of the nonlinear residual in
the Newton algorithm

ηNewt Accuracy tolerance for the Newton algorithm

κ Diffusion coefficient (m2.s−1)

δm Unknown of the linear system at iteration m in a Newton algorithm

J Jacobian of the nonlinear function in Newton’s method

ζ = [ζf ]
T
1≤f≤p Vector containing the Roots of Legendre polynomial Pp

c Advection speed (m.s−1) or chord of the NACA0012 airfoil (m)

CFL, CFLSD Usual Courant-Friedrichs-Lewy number and its equivalent in SD

col Variable used to refer to the columns of a matrix

d Space dimension

his s-th polynomial of Lagrange basis inside cell i build at solution point Xi
s

Jiso Jacobian of the isoparametric transformation

jKry,max Maximum number of Krylov iterations

lif f-th polynomial of Lagrange basis inside cell i build at solution point Xi
f

Labs2 (unum) Absolute numerical error using the 2-norm on vectors

Lrel2 (unum) Relative numerical error using the 2-norm on vectors

mNewt,max Maximum number of iterations for the Newton algorithm

Ncells Number of cells inside the mesh

ncons Number of conservative variables

NFP Number of flux points inside each mesh cell

NSP Number of solution points inside each mesh cell

p Order of solution polynomial degree

Pn Legendre polynomial of degree n

Q Total number of Runge-Kutta stages

row Variable used to refer to the rows of a matrix



S Order of accuracy of the Runge-Kutta method

xi Starting abscissa (first abscissa on the left) of cell i

Xi
f Abscissa of flux point f inside cell i

Xi
s Abscissa of solution point s inside cell i

Xf Vector containing the abscissas of all flux points

Xs Vector containing the abscissas of all solution points

DoF Degree of Freedom. In 1D-SD: DoF = (p+ 1)Ncells

i Cell index

k Cell indexes for the computing of the Jacobian of the residual

L Left neighboring to an interface

m Newton iterate in DIRK schemes

nb Neighboring cells

q Current stage of a Runge-Kutta (RK)

R Right neighboring to an interface

F̄ i Reconstructed flux vector inside cell i at all flux points after the use of a Riemann solver at cell
interfaces

v̄i Reconstructed solution vector inside cell i at all flux points after the average process in 1D-
diffusion(

∂R
∂u

)n
Jacobian of the residual taken at instant n(

∂Ris
∂uij

)n
Matrix elements of

(
∂Ri

∂ui

)n
taken at instant n where s is for the rows and j for the columns(

∂Ris
∂unbj

)n
Matrix elements of

(
∂Ri

∂unb

)n
taken at instant n where s is for the rows and j for the columns(

∂Ri

∂ui

)n
Local Jacobian of the residual of cell i with respect to ui taken at instant n(

∂Ri

∂unb

)n
Local Jacobian of the residual of cell i with respect to unb taken at instant n

Mi
Diff Diagonal block matrix composed with M i−1

Diff , M i
Diff and M i+1

Diff

G Function of the Newton algorithm applied to SD with implicit time-marching schemes

R Residual inside all the cells at all solution points:
[
Ri
]T
1≤i≤Ncells

Sq Sum
q−1∑
j=1

aqjR
j in the DIRK methods.

u Solution inside all the cells at all solution points:
[
ui
]T
1≤i≤Ncells

uq Solution inside all the cells at all solution points at stage q of the RK scheme

v Solution inside all the cells at all flux points:
[
vi
]T
1≤i≤Ncells˜̃ui Vector containing the solution vectors ui−2, ui−1, ui, ui+1 and ui+2

ũi Vector containing the solution vectors ui−1, ui and ui+1

ṽi Vector containing the solution vectors vi−1
NFP

, vi, vi+1
1

ξ, η, ζ Spatial coordinates in the isoparametric domain

A Average matrix for 1D-diffusion with centred scheme

Di Derivative matrix of cell i

Ei Extrapolation matrix of cell i

F Flux matrix for 1D-advection

F i Flux vector inside cell i at all flux points:
[
F if

]T
1≤f≤NFP

F if Flux vector inside cell i at flux point f

FL,Rint Flux at the interface flux point between cell L on its left and cell R on its right

M i
Adv Compact matrix for the discretization of 1D-advection with SD

M i
Diff Compact matrix for the discretization of

(
∂u
∂x

)i
with SD



Ri Residual vector inside cell i at all solution points:
[
Ris
]T
1≤s≤NSP

Ris Residual vector inside cell i at solution point s

ui Solution vector inside cell i at all solution points:
[
uis
]T
1≤s≤NSP

uis Solution vector inside cell i at solution point s

unb Solution vector inside the neighbors of cell i at all solution points:
[
unbs
]T
1≤s≤NSP

uana Analytic solution vector for 1D-advection or 1D-diffusion

vi Solution vector inside cell i at all flux points:
[
vif

]T
1≤f≤NFP

vif Solution vector inside cell i at flux point f

vL,Rint Solution vector at the interface flux point between cell L on its left and cell R on its right

x, y, z Spatial coordinates in the physical domain
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Abstract
The CERFACS is developing a high-order CFD code called JAGUAR. It solves the three-dimensional Navier-
Stokes equations on unstructured hexahedral grids with the spectral differences method for the spatial discretiza-
tion. However, only explicit time integration was available which was very restrictive in terms of time steps, to
ensure stability, especially for viscous dominated flows. Thus, implicit time integration was considered in order
to reduce the constraint on the time step and therefore the computation time. The implicit discretization in
time leads to a nonlinear system of equations that has to be solved at each time iteration. The resolution of this
system involves matrix-vector products with a Jacobian matrix that does not need to be computed explicitly
for some kind of nonlinear solvers. One of them is the Jacobian-Free-Newton-Krylov (JFNK) method which
was implemented in JAGUAR using the external library PETSc. Consequently, seven implicit time-marching
schemes were tested and validated for CFL values higher than one on two classical two-dimensional test cases:
the convected vortex and the NACA0012 airfoil.

Résumé
Le CERFACS développe actuellement un code CFD d’ordre élevé appelé JAGUAR. Il résoud les équations de
Navier-Stokes en trois dimensions sur des maillages hexaédriques non structurés avec la méthode des différences
spectrales pour la discrétisation spatiale. Avant mes travaux de stage, seule une intégration temporelle explicite
était disponible. Ainsi, le pas de temps était limité par une condition de stabilité qui devenait très restrictive
dans le cas d’écoulements visqueux. Par conséquent, une intégration temporelle implicite a été mise en place dans
le but de réduire la contrainte sur le pas de temps et donc sur le temps de calcul. La discrétisation implicite
en temps engendre un système d’équations non linéaires qui doit être résolu à chaque itération temporelle.
La résolution de ce système fait intervenir des produits matrice-vecteur avec une matrice Jacobienne qui n’a
pas besoin d’être calculée explicitement pour certaines techniques de résolution de systèmes linéaires ou non
linéaires. L’une d’entre elles est la méthode dite ”Jacobian-Free-Newton-Krylov (JFNK)” qui a été implémentée
dans JAGUAR en utilisant la librairie externe PETSc. Par conséquent, sept schémas implicites en temps ont
été développés et validés pour des valeurs de CFL supérieures à un sur deux cas test bi-dimensionnels: la
convection d’un vortex et l’écoulement autour d’un profil d’aile NACA0012.
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1 Introduction

All the scientific terms of this part will be detailed throughout the report.

1.1 Place and context of the internship

I did my internship at CERFACS, located at 42 Avenue Gaspard Coriolis on Météo France site in Toulouse.

1.1.1 Presentation of CERFACS

The CERFACS is the acronym for ”Centre Européen de Recherche et de Formation Avancée en Calcul Scien-
tifique”. It is a research organism working mainly on numerical simulations and modeling. CERFACS employs
physicists, mathematicians and computer specialists to investigate issues of climate, high performance comput-
ing and aeronautics especially in combustion, acoustics and aerodynamics. It is financed by seven shareholders:
Airbus, CNES, EDF, Météo France, ONERA, Safran and Total. CERFACS has also partnerships with CNRS,
CEA and INRIA. It is composed of five teams:

• Computational Fluid Dynamics (CFD): it is the team where I worked and which constitutes the biggest
number of employees.

• Aviation and environment (AE).

• Climate modeling and Global change (GLOBC).

• Parallel algorithm (ALGO).

• IT management and user support (CSG).

In 2018, there are 65 permanent members and 45 PhD and post-PhD students working at CERFACS. It also
offers a lot of training and opportunities to attend conferences. For instance, in the CFD team, each Monday
afternoon a PhD student has to present a research article and a useful software in front of the whole team.

1.1.2 Context of the internship

The CFD team at CERFACS is working on a new CFD solver which can make very accurate LES and DNS
simulations thanks to a high-order spatial discretization on unstructured meshes. This solver, called JAGUAR
(proJect of an Aerodynamic solver using General Unstructured grids And high-order schemes), is a Fortran code
that uses the spectral differences (SD) method to discretize the 3D Navier-Stokes equations. The SD approach
is based on a polynomial representation of the data inside each cell of the mesh. This solver is currently in a
validation phase for aerodynamic applications such as the turbo engine blades or the jet noise.

1.1.3 Objective of the internship

The objective of this internship is to extend JAGUAR in order to simulate high Reynolds flows with very fine
meshes close to the walls. Currently, an explicit time-marching approach is used and could lead to very small
time steps making the number of time iterations excessively high to be feasible in the long term. To do so,
implicit time-marching methods for SD have to be developed and implemented inside JAGUAR to reduce the
constraint on the time step. These methods have to be validated on academic test cases and some comparisons
of the iteration cost between explicit and implicit time-marching schemes have to be made.
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1.1.4 Brief summary of my work

Firstly, I made my own 1D model code in order to understand well the SD method before going deeply into
JAGUAR which is doing three-dimensional SD for unstructured hexahedral grids and compressible flows. Thus,
I developed a Python code that solved 1D-advection and 1D-diffusion with SD for both explicit and implicit
time-marching schemes. I started by thinking about the numerical method to compute the Jacobian matrix of
the residual, rather than directly think on the JFNK method (see section (4.2)), because there was no papers
about this method applied to SD. When I tried to implement the numerical computing of these Jacobians for
1D-advection and 1D-diffusion, I have started to think about how to get their analytic expressions to be able
to compare them with the numerical computation. Once the numerical computing of Jacobians was validated,
it was found to be very expensive in terms of CPU time. Then, I worked on the understanding of the JFNK
method, in order to use and implement it with PETSc library in my Python code at first and finally in JAGUAR.

1.2 High-order CFD simulations

1.2.1 What is a high-order CFD simulation ?

Mathematically speaking, a numerical method is said to be of order k if the solution error e is proportional to
the mesh size h to the power of k (e ∝ hk). According to a survey sent in 2007 to the members of the technical
committee of the CFD Algorithm Discussion Group (CFDADG) and other researchers outside it, a high-order
method is a method of third-order or higher [55]. For them, this is probably because many production codes
used in aerospace community are first or second-order accurate.

1.2.2 Why doing high-order CFD ?

In the past two decades, high-order CFD methods have received considerable attention because of their potential
in delivering higher accuracy with lower cost than low-order methods. In the review article of the 1st Work-
shop on High-Order CFD Methods [55], the authors have justified that high-order methods are not expensive
compared to low-order ones regarding the CPU times to achieve the same level of accuracy. They also pointed
out that high-order methods are needed for engineering purposes especially for vortex-dominated flows such as
the flow over a helicopter (accurate resolution of unsteady vortices) or for computational aeroacoustic (CAA)
where broadband acoustic waves need to propagate for a long distance without significant numerical dissipation
or dispersion errors. Actually, they listed the main reasons why high-order methods are not used in the design
process. Among them, the fact that they are more complicated than low-order methods is found or also the
high memory requirement if implicit time stepping is employed. However, if these difficulties are overcome,
high-order methods are very promising for the future of CFD.

1.2.3 High-order CFD techniques

At first glance, high-order space discretization could mean an increase of the stencil. Nevertheless, for large
stencil schemes, the use of structured meshes is preferred to unstructured ones since there is not an unique way
to extend the stencil to the neighboring cells for unstructured grids. The issue is that structured meshes are
very long to generate for complex geometries. Thus, their use in an industrial context can be complicated since
the mesh generation process may take several weeks for very complex industrial problems. Moreover, large
stencils would mean the use of many neighboring cells but this is not relevant for High Performance Computing
(HPC) because the data exchanges by the processors will highly increased.

Following those remarks, it seems that the way to avoid the use of large stencils is to define high-order techniques
with a compact stencil. Thus, these methods have to increase the number of degrees of freedom (DoF) inside
each mesh element and some of them follow the same process:

1. Define a high-order representation of the variables inside each mesh element using values at the DoF and
a high-order interpolation procedure.

2. At cell boundaries, the reconstructed data are not equal and a Riemann solver is used to take into account
these discontinuities.

Most of the methods proposed in the literature based on those ideas can be classified into three main groups:

• The Discontinuous Galerkin (DG) technique is based on the Finite Element (FE) framework. The principle
is to look for a polynomial representation of the solution that satisfies a variational form of the governing
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system within each element. Even if the technique is quite old (Reed and Hill in 1973 [38]), its extension
to the full Navier-Stokes equations is recent and many papers have been published during the last 10
years.

• The Spectral Volume (SV) technique is based on the Finite Volume (FV) framework and it follows the
pioneering work of Wang in 2002 [53][56]. It consists in defining element subdivisions on which a classical
FV technique is considered. The mean quantity over each volume is necessary to build the high-order
representation of data inside the element.

• The Spectral Difference (SD) technique follows the Finite Difference (FD) approach. Kopriva and Kolias
published it in 1996 [24] and Liu, Vinokur and Wang [29] published a more general presentation of the
technique in 2006. The idea is to define high-order approximation of the quantities but to solve the strong
form of the equations, as in FD, inside each mesh cell.

As mentioned above, the interest of all these methods comes from the possibility to manage both the space
refinement parameter h and the degree of the polynomial p. Indeed, when classical FV technique is compared
with these high-order methods, the main difference lies in the non-universal relation between the mesh element
and the number of DoF (one mesh element is not associated with one degree of freedom as in FV).

Note: These high-order methods are typically used with unstructured meshes because their generation process
is much easier than for structured grids and takes no longer than a few hours even for complex geometries.

1.2.4 High-order methods used in Europe/US

High-order methods are quite recent compared to low-order ones and scientists from Europe and the United-
States (US) have started to create groups to promote and develop these methods. In Europe, the Adaptive
High-order Variational Methods for Aerodynamic Applications in Industry (ADIGMA) project [25], supported
by a consortium consisting of 22 organizations including main European aircraft manufacturers, major European
research establishments and several universities, all with well-proven expertise in CFD. In 2007, several authors
of ADIGMA became members of the CFD Algorithm Discussion Group (CFDADG) in the American Institute
of Aeronautics and Astronautics Fluid Dynamics Technical Committee (AIAA FDTC). In the first meeting of
the CFDADG they tried to find some ways to overcome the difficulties mentioned in paragraph (1.2.1). They
decided to focus on the mathematical explanations of high-order methods, error estimates and efficient time
marching methods. Z. J. Wang’s book, ”Adaptive high-order methods for CFD” [54], co-written by a lot of
ADIGMA and CFDADG members in 2011, gives the basis of high-order discretizations. The review paper of
the 1st Workshop on High-Order CFD Methods [55], is also an excellent reference where comparisons between
several high-order methods are done on many test cases.

Table 1.1 summed up some of the methods used by several members of CFDADG or ADIGMA to have an
overview of where and which methods are more performed. It appears that DG method is the most popular
compare to SV and SD. It also seems that implicit-time marching schemes are more and more used to break
stability conditions and reduce time computation. Bassi and Munz use a Matrix-Free (MF) approach for solving
nonlinear systems arising from implicit time discretization for DG. As it will be seen in paragraph (1.2.6), the
objective of CERFACS is to use the same approach but for SD discretization because it could save time and
reduce memory requirements.

Country City/Place People Code Numerical method

Italy Bergame F.Bassi MIGALE Implicit DG [7][8][20] (MF)
Germany Stuggart CD.Munz Flexi/Fluxo Implicit DG [9] (MF)
Germany Cologne (DLR) R.Hartmann and N.Kroll PADGE Implicit DG [22]
Belgium Cenaero K.Hillewaert Argo Implicit DG [44][45]
Belgium Brussel M.Parsani and KVd. Abeele COOLFluiD Implicit SD[51][35] and SV[36]
France Bordeaux (INRIA) R.Abgrall DG
France Chatillon (ONERA) V.Couaillier Aghora Implicit DG [40](MF)

US Ames Y.Sun and Z. J. Wang Implicit SD [47][29][57]

Table 1.1: Overview of high-order methods used in Europe/US

Note: H.Deconinck from the Von Karman Institute, also works on high-order methods with Cenaero. He has
also developed in the code COOLFluiD which was, at start, a MPI parallel code with a second-order finite
volume approach coupling with implicit time-marching schemes. It also solves the linear system using PETSc
library with a GMRES technique.
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1.2.5 The choice of the SD method by the CERFACS

At CERFACS, the SD method has been implemented six years ago in a new CFD code called JAGUAR. The
choice of this approach was motivated by several reasons: initially the SD technique has been built in order to
correct some drawbacks of DG and SV. Firstly, SD seems more efficient in term of CPU usage and less difficult
to understand ”physically” than the DG technique. Secondly, the SV method suffers from a high sensitivity (in
term of stability of the method) with respect to element decomposition which is less present with SD method.
Finally, the SD approach is very recent compared to DG then the potential of research is obviously greater.

Note: KVd.Abeele, C.Lacor and Z.J.Wang have shown the connections between SV and SD in 1D in this paper
[50]. The conclusion is that SD is equivalent to SV in 1D like FV is equivalent to FD in 1D. This is due to the
fact that the SD method is independent of the solution point positions in 1D.

1.2.6 State of the art in implicit time-marching for SD

As mentioned in section (1.2.3), the SD method is quite recent. It is a high-order conservative and efficient
method developed by Liu, Vinokur and Wang for conservation laws on unstructured grids in 2006 [29]. Then,
Liu, Wang, May and Jameson extended this method for the Euler equations [57] where they implemented
limiters for discontinuity capturing and also for the Navier-Stokes equations [49]. They solved these equations
using an explicit Runge-Kutta time integration scheme but, as said in paragraph (1.1.3), it suffered from slow
convergence, especially for applications with walls, due to viscous terms.

Thus, Sun, Wang and Liu have developed an implicit lower-upper symmetric Gauss-Seidel (LU-SGS) algorithm
for the compressible flow computation using SD [48][47]. They used a backward Euler scheme and they compared
it to an explicit multi-stage Runge-Kutta scheme. They found that the speed-up went from one to two orders
of magnitude when using an implicit time integration scheme which is quite promising for JAGUAR. They also
described how they have constructed numerically the Jacobian matrix for the residual based on what was done
by Brown and al. [11] and Qin and al. [37].

Then, still for solving the nonlinear algebraic systems arising from backward Euler scheme applied to SD, Van
den Abeele, Parsani and Lacor implemented a Newton-Raphson method combined with a generalized minimum
residual (GMRES) algorithm and compared it with the LU-SGS method of Sun and al. [51]. They found
that, although the LU-SGS algorithm requires less memory than the GMRES algorithm, the latter reaches
convergence faster for many cases.

More recently, in 2016, Moreira and al. described the previous Newton-Raphson algorithm coupled with GMRES
to solve the two-dimensional Navier-Stokes equations on unstructured grids [31]. For the Jacobian of the residual,
they used the same approach as Sun and al. to compute it numerically but they also tried to go through the
structure of this Jacobian. Moreover, they did not build their own GMRES solver: they used the one from
PETSc library [6].

However, the cost for computing numerically the Jacobian matrix is very expensive for the three-dimensional
Navier-Stokes equations discretized with high-order spatial schemes where there are a lot of DoF. Some other
techniques are investigated to reduce this cost. Because the Newton-Raphson method only needs the Jacobian
matrix in terms of matrix-vector products, one could be tempted to solve the non linear systems by using a
Jacobian-free Newton-Krylov (JFNK) method based on what is done for implicit DG. This would avoid to
compute the Jacobian matrix because the result of the matrix-vector product between the Jacobian J (um)
and δum = um+1 − um will be directly computed and put into the GMRES algorithm (see Knoll and Keyes
[23]). Therefore, it seems that this approach will be faster and less memory-consuming than the other previous
methods as they all compute the matrix numerically and then solve the system.

The PETSc library, already mentioned above, also provides such matrix-free methods and it is widely used in
the CFD community. These are the reasons why the CERFACS wants to implement PETSc in code JAGUAR
to do implicit time-marching schemes.
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2 The Spectral Difference method

2.1 Notations and general principle using a 1D example

2.1.1 Solution points and time evolution process

To introduce the basics of the spectral difference method, let’s consider a hyperbolic 1D-equation:

∂u

∂t
+
∂F

∂x
= 0 (2.1)

where u = u (x, t) is the vector of conserved variables (also called the solution vector), F = F (u) is the flux
vector of u, t is the time and x represents the 1D-space. The size of u corresponds to the number of conserved
variables noted ncons. The discretization of the 1D-space is done on a 1D segment composed of Ncells cells
where Eq. (2.1) is solved.

The principle of the SD method is to assume that vector u varies as a polynomial with a predefined degree p
inside each cell of the given mesh. It means that for each cell i ∈ [|1, Ncells|], u must have p + 1 components
(for each conserved variable) which are the values of u at p + 1 points located inside this cell i. These points
are called solution points and their number, noted NSP , in 1D is:

NSP = p+ 1 (2.2)

The solution is known at solution points and the numerical values at solution points help to define the polynomial
representation of u. As for FD method, the solution is computed at any solution point s inside each cell i:

∂uis
∂t

+

(
∂F

∂x

)i
s

= 0 (2.3)

where uis and
(
∂F
∂x

)i
s

are respectively the discrete solution vector and the 1D divergence of the flux taken at
solution point s inside cell i. Then, following an explicit time marching process, the evolution of vector u is
known once the derivative of the flux F is computed at each solution point.

2.1.2 Flux points

With Eq. (2.1), since u is represented by a p-th order polynomial, the derivative of F is also a p-th order
polynomial. Thus, the interpolation polynomial of the flux F must be of order (p+ 1). Therefore, the flux
polynomial must be defined on p + 2 points that are called flux points. As for solution points, their total
number in one cell, noted NFP , is a function of p and in 1D:

NFP = p+ 2 (2.4)

2.1.3 Example with p = 2

Let’s consider the example described in [27] to illustrate the discretization process. Let’s say that in any cell i
of the mesh, u has to be represented with a second-order polynomial: p = 2. The solution points, the values of
u at these points and the second-order interpolation polynomial are represented in Figure 2.2a. The polynomial
representation is by construction local to each cell: as Figure 2.2a shows, the interpolation polynomial is not
the same in the neighbors of cell i. By nature, the SD method does not assume that polynomials are continuous
at the interface between two cells: that is why a Riemann solver will be used later for the fluxes at interfaces.
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(a) 1st step: solution points (N), u at solution points
(•) and 2nd order polynomial (−) inside the cell.

(b) 2nd step: extrapolation of u (•) at flux points (H).

Figure 2.2: 1st and 2nd steps of the SD process in 1D for a hyperbolic equation

Once the second-order interpolation polynomial is built, the vector u is extrapolated at flux points as seen in
Figure 2.2b. The flux points are located at the end points of any segment and other flux points are introduced
between two consecutive solution points. In the case of p = 2, there are NFP = 4 flux points: 2 at the cell
boundaries and 2 strictly inside the cell.

At this point, the flux vector can be computed at flux points because it is a function of u at these points and its
values are represented in Figure 2.3a. At the interface, the flux points are shared by two cells and since values
are discontinuous at interfaces, the flux is not defined there without ambiguity. However, the flux at interfaces
can be estimated by solving a Riemann problem. Then, by doing it at each cell interfaces it will be defined
uniquely in all flux points inside the cell as seen in Figure 2.3b.

(a) 3rd step: compute F (�) at flux points (H).

(b) 4th step: unique flux (�) inside the cell after using
a Riemann solver at cell interfaces.

Figure 2.3: 3rd and 4th steps of the SD process in 1D for a hyperbolic equation

From the values of F built at flux points, a (p+ 1)-th degree interpolation polynomial can be constructed
and is represented in Figure 2.4a for the p = 2 case. This polynomial is globally continuous but can only be
differentiated strictly inside each cell (not at cell interfaces). Then, it can be differentiated at solution points
which are all by construction inside the cell. Therefore, the last step consists in differentiating the polynomial

to compute the term
(
∂F
∂x

)i
s

of Eq. (2.3) as seen in Figure 2.4b.

(a) 5th step: building of the flux polynomial (−) at
flux points (3rd order here).

(b) 6th step: differentiation of the flux polynomial at
solution points.

Figure 2.4: 5th and 6th steps of the SD process in 1D for a hyperbolic equation
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2.1.4 Position of solution and flux points

Solution points

Inside a given cell i in 1D, the solution points are chosen to be the Gauss points. If xi is the starting abscissa
of cell i and ∆xi = xi+1 − xi the cell size, then the abscissa of solution point s inside cell i is given by:

Xi
s = xi +

1

2

[
1− cos

(
2s− 1

2NSP
π

)]
∆xi for 1 ≤ s ≤ NSP (2.5)

Then, for each cell i, a vector containing all the abscissas of solution points in this cell can be built. Repeating

this process for all cells gives vector Xs =
[[
Xi
s

]T
1≤s≤NSP

]T
1≤i≤Ncells

of size Ncells×NSP , containing the abscissas

of all solution points in all cells.

Legendre flux points

In paragraph (2.1.2), it was said that the flux points are ”located at the end points of any segment and other
flux points are introduced between two consecutive solution points”. Thus, still with xi and xi+1 the end points
of cell i, the first and the last flux points in this cell, noted respectively Xi

f,1 and Xi
f,NFP

, are set to:

Xi
f,1 = xi and Xi

f,NFP = xi+1 (2.6)

As explained in (2.1.2), in 1D, inside one cell, there are exactly NFP = p + 2 flux points, so it remains p flux
points to locate inside cell i. For Legendre flux points, the dimensionless abscissas of these p points are defined
as the roots of Legendre polynomial. This is a serial of polynomial of increasing order, noted Pn with n its
degree, defined by the following ordinary differential equation on x ∈ [−1, 1]:

d

dx

((
1− x2

)
P
′

n (x)
)

+ n (n+ 1)Pn (x) = 0 where Pn (1) = 1 (2.7)

A lot of explicit expressions of Pn (x) have been found (see [2]). Therefore, the values of its roots are also known
for many values of n. For instance, A.N.Lowan, N.Davids and A.Levenson have determined their numerical
values for each order n from 1 to 16 [30]. For the Legendre flux points, since p points remain to be defined,
the roots of Legendre polynomial of degree p will be used. Once they have been found, they can be gathered in
vector ζ = [ζf ]

T
1≤f≤p and the remaining p flux points can be computed with the following formula:

Xi
f =

xi + xi+1

2
+
ζf
2

∆xi for 2 ≤ f ≤ NFP − 1 (2.8)

As for solution points, repeating this process in all cells gives vector Xf =

[[
Xi
f

]T
1≤f≤NFP

]T
1≤i≤Ncells

of size

Ncells ×NFP , containing the abscissas of all flux points in all cells.

Note: Here, the polynomial order is assumed to be the same inside all the mesh cells. That is why, there is no
index i for the components of vector ζ.

Gauss-Lobatto flux points

There is another choice to determine Xi
f inside a cell. The Gauss-Lobatto points can be used and in this

case, the end points Xi
f,1 and Xi

f,NFP
are directly included inside the formula:

Xi
f = xi +

1

2

[
1− cos

(
f − 1

NFP − 1
π

)]
∆xi for 1 ≤ f ≤ NFP (2.9)

2.1.5 Basis of polynomial used

All the interpolation process uses the Lagrange interpolation principle. Using the values of u at NSP solution
points inside cell i, a p-degree polynomial can be built using the following Lagrange basis:

his (X) =

NSP∏
k=1,k 6=s

(
X −Xi

k

Xi
s −Xi

k

)
for 1 ≤ s ≤ NSP (2.10)
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his is then the s-th polynomial of Lagrange basis build at solution point Xi
s using all the other solution points

Xi
k.

Similarly, using the values of F at NFP flux points, a (p+ 1)-degree polynomial can be built using the following
Lagrange basis:

lif (X) =

NFP∏
k=1,k 6=f

(
X −Xi

k

Xi
f −Xi

k

)
for 1 ≤ f ≤ NFP (2.11)

Some attention should be put here, Xi
k are now all the other flux points different of Xi

f and not the solution
points. Actually, in the SD process, the derivative of expression (2.11) is used when the flux is differentiated at
solution points. That is why its analytic formula is recalled in Eq. (2.12):

l
′i
f (X) =

NFP∑
k=1,k 6=f

[
NFP∏

m=1,m6=k

(
X −Xi

m

)]
NFP∏

k=1,k 6=f

(
Xi
f −Xi

k

) for 1 ≤ f ≤ NFP (2.12)

2.1.6 Global algorithm for a hyperbolic 1D-equation

The unsteady update of the solution vector described in section (2.1) can be summed up in the following steps:

Algorithm 1 General algorithm for solving a hyperbolic 1D-equation with SD

1: Define solution and flux points in each cell of the mesh and initialize u at solution points.
2: for iter from 1 to Niter do
3: Extrapolate u at flux points. The solution at one flux point f inside cell i is given by:

vif =

NSP∑
s=1

uish
i
s

(
Xi
f

)
for 1 ≤ f ≤ NFP (2.13)

4: Compute the internal fluxes in each cell i at each flux point f noted F if with the values of vif .

5: Use a Riemann solver at each interface of each cell to have unique flux values. This step gives F̄ if
6: Differentiate the flux polynomial at solution points:(

∂F̄

∂x

)i
s

=

NFP∑
f=1

F̄ if l
′i
f

(
Xi
s

)
for 1 ≤ s ≤ NSP (2.14)

7: Update the solution using a time integration scheme.
8: end for

where iter is the current time iteration, Niter is the total number of time iterations and vif is the solution vector
inside cell i at flux point f .

2.1.7 Diffusion scheme

Here, one of the method used in SD to compute diffusive flux, noted FD, is explained. The main difference
between diffusive and convective fluxes is that FD is also a function of ∇u. Then, the algorithm for computing
FD (u,∇u) is different from the one of the convective flux. In the literature, many approaches can be found,
see [51][31][27]. One of the method applied to the 1D-diffusion equation (ncons = 1) is presented here:

∂u

∂t
= κ

∂2u

∂x2
(2.15)

where κ stands for the diffusion coefficient and the discretization of the term ∂2u
∂x2 is done by considering a

centred scheme. Without going into details, because the process is already detailed in paragraph (7.2.1), the
main steps for computing it may be clarified as followed:
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Algorithm 2 General algorithm for solving 1D-diffusion with SD using centred scheme

1: Define solution and flux points in each cell of the mesh and initialize u at solution points.
2: for iter from 1 to Niter do
3: Extrapolate u at flux points. The solution at one flux point f inside cell i is given by:

vif =

NSP∑
s=1

uish
i
s

(
Xi
f

)
for 1 ≤ f ≤ NFP (2.16)

4: At cell interfaces, compute the average of left and right values:

vL,Rint =
vLNFP + vR1

2
(2.17)

5: Compute v̄if by replacing interface values by their average interface values.

6: Differentiate v̄if at solution points to obtain:

(
∂u

∂x

)i
s

=

NFP∑
f=1

v̄if l
′i
f

(
Xi
s

)
for 1 ≤ s ≤ NSP (2.18)

7: Extrapolate
(
∂u
∂x

)
at flux points to have:

(
∂v

∂x

)i
f

=

NSP∑
s=1

(
∂u

∂x

)i
s

his
(
Xi
f

)
for 1 ≤ f ≤ NFP (2.19)

8: At cell interfaces, compute the average of left and right values:

(
∂v

∂x

)L,R
int

=

(
∂v
∂x

)L
NFP

+
(
∂v
∂x

)R
1

2
(2.20)

9: Compute
(
∂v
∂x

)i
f

by replacing interface values by their average interface values.

10: Differentiate
(
∂v
∂x

)i
f

at solution points to obtain:

(
∂2u

∂x2

)i
s

=

NFP∑
f=1

(
∂v

∂x

)i
f

l
′i
f

(
Xi
s

)
for 1 ≤ s ≤ NSP (2.21)

11: Update the solution using a time integration scheme.
12: end for

where vL,Rint and
(
∂v
∂x

)L,R
int

are respectively the solution vector and its derivative at the interface flux point between
cell L on its left and cell R on its right.

2.2 Extension to 2D and 3D

In this section, the extension of the SD method to flows in two and three dimensions is presented. The position
of solution and flux points are given on a 2D-example and the isoparametric transformation used to define these
positions for any cell is then described. This transformation will be explained for hexahedral cells and not for
tetrahedral cells since JAGUAR is currently dealing with hexahedral cells only.

2.2.1 Position of solution and flux points

For 2D and 3D, the solution and flux points are put direction per direction by repeating the same 1D process
described in section (2.1). Thus, the solution points are still the Gauss points, placed in each direction, and flux
points can be either Legendre or Gauss-Lobatto flux points also placed in each direction. Finally, if d stands
for the space dimension, inside one cell, the number of solution and flux points are respectively:

NSP = (p+ 1)
d

and NFP = d× (p+ 2) (p+ 1)
d−1

(2.22)

A 2D-example of the positions of solution and flux points for p = 2 and p = 3 cases is presented in Figure 2.5:
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(a) Solution points and flux points in 2D inside one
cell for p = 2 case.

(b) Solution points and flux points in 2D inside one
cell for p = 3 case.

Figure 2.5: Positions of solution points (•) and flux points ((�) for i-direction and (�) for j-direction) in 2D
inside one cell for p = 2 and p = 3. Figures from [27].

2.2.2 Isoparametric transformation

For 2D and 3D meshes, cells can have different shapes and different volume sizes. In this case, it can be difficult
to place solution and flux points in the same locations inside all cells. For 1D cells it was possible because all
cells are always segments. However, for 2D and 3D, an isoparametric transformation is considered to transform
all mesh cells from the physical domain (x, y, z) into a standard cubic element (ξ, η, ζ) ∈ [0, 1]

3
. Usually, this

transformation is written mathematically for a transformation from the isoparametric space to the physical
space [27][47]:  x

y
z

 =

K∑
i=1

Mi (ξ, η, ζ)

 xi
yi
zi

 (2.23)

where K is the number of points used to define the physical element (for instance K = 4 for a tetrahedral element
or K = 8 for a hexahedral element), (xi, yi, zi) are the Cartesian coordinates of these points and Mi (ξ, η, ζ) are
the shape functions. An example of shape function computation in 2D is given here [21].

For the transformation given in (2.23), the Jacobian matrix takes the following form:

Jiso =
∂ (x, y, z)

∂ (ξ, η, ζ)
=


∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ

 (2.24)

Finally, if the transformation is non-singular (|Jiso| 6= 0), its inverse transformation (from physical space to
isoparametric space) also exists and J−1

iso is given by:

J−1
iso =

∂ (ξ, η, ζ)

∂ (x, y, z)
=


∂ξ
∂x

∂ξ
∂y

∂ξ
∂z

∂η
∂x

∂η
∂y

∂η
∂z

∂ζ
∂x

∂ζ
∂y

∂ζ
∂z

 (2.25)

2.2.3 Application to unsteady 3D equations written in conservative form

Consider unsteady 3D equations written in conservative form (such as unsteady compressible 3D Navier-Stokes
equations):

∂U

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= 0 (2.26)
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where U is the vector of conserved variables and F , G, H are respectively the total fluxes in directions x, y and
z. Eq. (2.26) in the physical domain is transformed into the isoparametric domain to obtain [47]:

∂Ũ

∂t
+
∂F̃

∂x
+
∂G̃

∂y
+
∂H̃

∂z
= 0 (2.27)

with

Ũ = |Jiso|.U ,

 F̃

G̃

H̃

 = |Jiso|J−1
iso .

 F
G
H

 (2.28)

At each time step, the space discretization is done in the isoparametric space and then Eq. (2.28) is used to
update the solution in the physical space. For more precisions and because the purpose of the internship was
not to focus on spatial discretization, the discretization process for the unsteady compressible 3D Navier-Stokes
equations is completely described in [47].

2.3 Notion of residual

The discretization process described in sections (2.1) and (2.2) can be gathered in one single term called the
residual. In this case, for a given cell i, any conservation law discretized by the SD method can be put into the
semi-discrete formulation:

dui

dt
= Ri

(
ui, unb

)
(2.29)

where Ri
(
ui, unb

)
is the ”residual”. In the case of Eq. (2.1) it corresponds to the discretization of the term

−∂F∂x inside cell i. It obviously depends on ui but also on unb (”nb” for the neighboring cells of cell i) because of
the flux interpolation at the interface between cell i and its neighbors. For instance, for the 1D-advection, the
neighbors where a change of u will change Ri are only the cells i−1 and i+1: Ri

(
ui, unb

)
= Ri

(
ui−1, ui, ui+1

)
.

This will be shown in paragraphs (6.2.1) and (6.2.2). About the size of these vectors, since cell i has NSP
solution points, Ri and ui are both vectors of size ncons × NSP . They have the following structure: Ri =(
Ri1, ..., R

i
NSP

)T
=
[
Ris
]T
1≤s≤NSP

and ui =
(
ui1, ..., u

i
NSP

)T
=
[
uis
]T
1≤s≤NSP

where Ris and uis are both of size
ncons.

Once Ri is known inside all cells, Eq. (2.29) can be replaced by the vectorial semi-discrete equation valid in all
the spatial domain:

du

dt
= R (u) (2.30)

where u and R are two vectors of size Ncells × ncons ×NSP with the following structure:

u =
(
u1, ..., uNcells

)T
=
((
u1

1, ..., u
1
NSP

)
, ...,

(
uNcells1 , ..., uNcellsNSP

))T
(2.31)

R =
(
R1, ..., RNcells

)T
=
((
R1

1, ..., R
1
NSP

)
, ...,

(
RNcells1 , ..., RNcellsNSP

))T
(2.32)

Note: In Eqs. (2.29) and (2.30), the time derivative has become a total derivative since ui and u depend only
on time after the spatial discretization by the SD method.
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3 Time-marching schemes

High-order spatial methods need to be associated with high-order temporal schemes otherwise the accuracy won
in space is then lost with time discretization. One way to increase the time accuracy is to use Runge-Kutta
(RK) schemes which was the choice made for JAGUAR.

3.1 Runge-Kutta schemes

3.1.1 Characteristics of a RK scheme

A Runge-Kutta scheme has four main characteristics which are:

1. Its order of accuracy, noted S here.

2. Its number of stages, noted Q here.

3. Its stability: A-stable [14] or L-stable [1]. L-stability is a special case of A-stability which is better for
solving nonlinear stiff equations.

4. Its type of integration: explicit or implicit.

Very often, if ”nameRK” is the name of the Runge-Kutta method, this method will be noted ”nameRK(Q,S)”
which allows the reader to directly know the order of accuracy and the number of stages.

3.1.2 General algorithm

The RK integration process is the sum of two tasks:

• Task 1: The Q stage values uq are computed using a ”stage equation”:

uq = un + ∆t

Q∑
j=1

aqjR
j for 1 ≤ q ≤ Q (3.33)

• Task 2: The solution at time tn+1 is computed using an ”update equation”:

un+1 = un + ∆t

Q∑
q=1

bqR
q (3.34)

where Rj = R
(
uj
)
, the matrix A = [aqj ]1≤q,j≤Q and the vector b = [bq]

T
1≤q≤Q are given by the RK method.

They are typically gathered in a ”Butcher’s Tableau” (see appendix A). These coefficients are found by solving
a system of equations which depends on the order of accuracy and also on dissipation and dispersion properties
that are investigated to obtain a given scheme. An example of such system can be seen in [32].

Note: Since R does not depend on time, the vector c in the RK method is not used.

3.2 Explicit Runge-Kutta schemes

3.2.1 Consequence on the stage equation

For explicit RK schemes, aqj = 0 for j ≥ q meaning that the matrix A is a strictly lower triangular matrix.
Thus, each stage uq is ”explicitly” known thanks to the values of the previous stages (which is not the case for
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implicit RK schemes as it will be seen later) and Eq. (3.33) can be recast as:

uq = un + ∆t

q−1∑
j=1

aqjR
j for 1 ≤ q ≤ Q (3.35)

Explicit Runge-Kutta schemes are typically named ERK(Q,S). Below are the ERK schemes used in JAGUAR
and in my model code:

• In JAGUAR: ERK(2,2), ERK(4,4), ERK(4,4) low-storage, ERK(6,2)LDLD, ERK(6,4)SD.

• In my model code: forward Euler scheme, ERK(2,2) and ERK(4,4).

Butcher’s tableau for forward Euler, ERK(2,2) and ERK(4,4) methods can be found in [3]. ERK(4,4) low-
storage, ERK(6,2)LDLD and ERK(6,4)SD are low-storage RK schemes. These are special cases of RK methods
where their coefficients are such that each uq can be computed with the values of Rq−1 only. That is why they
are called low-storage because they do not need to store all the Rj , j ∈ [|1, q−1|], vectors. Actually, the solution
is advanced directly at each stage and the final stage corresponds to the solution at instant n+ 1: uQ = un+1.

Note 1: ERK(6,2)LDLD corresponds to the Explicit Runge-Kutta of second-order and six stages with low-
dissipation and low-dispersion designed by Bogey and Bailly for aeroacoustic applications [10]. More precision
about low-storage RK can be found in [46] especially if the reader is interested on knowing how Butcher’s
coefficients can be manipulated to obtain only one coefficient γq to update the solution at each stage. It should
be mentioned that all the RK processes cannot be changed into low-storage RK processes [13][58].

Note 2: ERK(6,4)SD is an Explicit Runge-Kutta of fourth-order with six stages designed for SD by J.Vanharen,
a former CERFACS PhD, where the last two coefficients, γ5 and γ6, depend on p. This scheme was presented
during the 23rd AIAA CFD conference at Denver in June 7th 2017 [4].

3.2.2 Limitations due to a stability criterion

Similarly to other numerical methods using explicit time integration schemes, the SD method is stable under a
CFL condition. This condition depends on the time integration scheme used and also on the value of p such as
in DG where the stability condition is [15][19]:

CFL =
c∆t

∆x
≤ 1

2p+ 1
(3.36)

For SD, this stability limit is often too restrictive and for high values of p the time step becomes very small
closing the doors for an industrial use. This is why implicit methods for SD are currently studied in order
to break this stability condition. More precision about CFL number in SD and its stability can be found in
appendix B.

3.3 Implicit Runge-Kutta schemes

As it was underlined in (3.2.2) and (1.2.6), implicit time marching schemes have to be developed for SD to
increase time steps and implicit Runge-Kutta (IRK) schemes can be considered. These IRK schemes can be
split into two categories: fully IRK schemes and Diagonally Implicit Runge-Kutta (DIRK) schemes.

3.3.1 Fully IRK schemes

This kind of RK schemes appears when all the elements of matrix A are non-zero. In this case, to determine
each solution at stage q, given by Eq. (3.33), the following nonlinear system has to be solved [18]: u1 − un

...
uQ − un

 = A

 R1

...

RQ

 (3.37)

Because u and R are of size ncons × N , where N = Ncells × NSP , the system given by Eq. (3.37) is of size:
Q × ncons × N . Some examples of such schemes can be found here [18] such as the RadauIIA of order 3 and
5 or Lobatto methods [3]. They can have an order that is greater than their number of stages which is quite
interesting. However, because of the size of the system to solve, they are less used than DIRK methods and
they were not considered during my internship.
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3.3.2 DIRK schemes

General case

DIRK schemes are Implicit Runge-Kutta schemes where aqj = 0 for j > q, meaning that the matrix A is a
lower triangular matrix [18]. In this case, the stage equation becomes:

uq = un + ∆taqqR
q + ∆t

q−1∑
j=1

aqjR
j for 1 ≤ q ≤ Q (3.38)

Eq. (3.38) is a nonlinear and implicit system of equations since Rq is a nonlinear operator and is needed to
find uq. Thus, the main idea is to solve successively the Q stages by considering the nonlinear system of size
ncons×N , given by Eq. (3.38), at each stage. Then, for each uq found, Rq can be computed and stored. Finally,
Eq. (3.34) is used to update u at time tn+1.

Note: Each Rq, for q ∈ [|1, Q|], has to be stored for the computation of the sum Sq =
q−1∑
j=1

aqjR
j that must be

done at each stage q because aqj depends on q.

SDIRK schemes

A special case of DIRK schemes is SDIRK schemes for Singly Diagonally Implicit Runge-Kutta. For such
schemes, aqq is equal to a constant ∀q ∈ [|1, Q|]. This hypothesis reduces the number of unknowns to determine
for building the Runge-Kutta scheme. However, only for special cases, the order achieved by one single stage
is limited to one. It means that most of SDIRK(Q,S) methods are of order S ≤ Q. Actually, Crouzeix [16]
determined all the SDIRK(2,3) and SDIRK(3,4) methods which are A-stable. Their Butcher’s table can be
found in appendix A.

3.3.3 IRK schemes in JAGUAR

During my internship, the following seven IRK schemes were implemented and tested in code JAGUAR: implicit
midpoint, SDIRK(2,2), SDIRK(2,3), SDIRK(3,3), DIRK(3,3), SDIRK(3,4) and ILDDRK(3,4). The last one is
a low-dispersion and low-dissipation DIRK scheme. All of their Butcher’s tableau can be found in appendix A.

3.3.4 Conclusion on implicit schemes

With implicit schemes, time steps will be higher than those used with explicit schemes. However, it is necessary
to bear in mind that doing implicit schemes also has a cost since the nonlinear system of Eq. (3.37) for full
IRK schemes or the Q nonlinear systems given by Eq. (3.38) for DIRK schemes, have to be solved at each time
iteration. Thus, by doing implicit time-marching schemes, less time iterations are done but each iteration is
more costly compared to explicit time-marching schemes. Therefore, it is important to compare the iteration
cost between explicit and implicit time-marching schemes.
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4 Solver for the nonlinear system of
equations

The stage equation for DIRK schemes (i.e Eq. (3.38)) is the nonlinear system of equations that has to be solved
if DIRK schemes are considered for JAGUAR. Thus, nonlinear solvers have to be use and the choice was made
on Newton solvers. That is why, the basic concepts of Newton algorithms are recalled in this chapter.

4.1 Inexact Newton method

4.1.1 Newton methods

Let’s consider the general form of a nonlinear system of equations:

F (X) = 0 (4.39)

where F (X) is the vector-valued function of nonlinear residuals and X is the state vector to be found.
The Newton iteration for Eq. (4.39) derives from a multivariate Taylor expansion about a current point Xm:

F
(
Xm+1

)
= F (Xm) + F ′ (Xm)

(
Xm+1 −Xm

)
+ higher-order terms (4.40)

Setting Eq. (4.40) to zero and neglecting the terms of higher-order curvature leads to iterations over a sequence
of linear systems [23]:

J (Xm) δm = −F (Xm) for m = 0, 1, ... (4.41)

given a X0. Here, J ≡ F ′ is the associated Jacobian matrix of F , m is the nonlinear iteration index and

δm =
(
Xm+1 −Xm

)
is the unknown of the linear system.

In the general case, Newton iterations are stopped when one of the following inequality is satisfied:

||F (Xm) ||
||F
(
X0
)
||
≤ εNewt,r or ||F (Xm) || ≤ εNewt,a or

||
(
Xm+1 −Xm

)
||

||Xm||
≤ ηNewt (4.42)

where εNewt,r is the relative decrease tolerance for the norm of F from an initial norm evaluation, εNewt,a is
the absolute tolerance for the norm of F and ηNewt is the convergence tolerance for the difference between
two successive Newton iterate. To avoid an infinite loop if none of these criterion is reached, a last stopping
criterion is defined to stop the computation when m ≥ mNewt,max where mNewt,max is the maximum number
of iterations that are allowed for the Newton algorithm.

4.1.2 Inexact Newton

Linear systems defined by Eq. (4.41) can be solved with either a direct or an iterative method. As the other
high-order methods, the SD approach has a high number of DoF which entails that Eq. (4.41) is a large linear
problem. However, for such problems, direct methods are too slow and iterative methods are preferred. It can
be seen as inexact Newton methods [17] because the solution of Eq. (4.41) will be an approximation of the
exact solution that could have been found with a direct method.

Among the iterative methods, Krylov methods and mainly the GMRES algorithm will be used.
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4.2 The Jacobian-Free-Newton-Krylov method

The Jacobian-Free-Newton-Krylov (JFNK) method is an inexact Newton method that solved Eq. (4.41) using
a Krylov method and without computing explicitly J (Xm). In this section, a brief description of the Krylov
methods and GMRES is done. Then, the Jacobian-Free approach is presented along with its use in a Newton
algorithm.

4.2.1 Krylov methods

Krylov methods are approaches for solving large linear systems introduced as iterative methods in 1971 [39].

They are projection methods for solving A.x = b using the Krylov subspace K̂j defined as [42]:

K̂j = span
(
r0, A.r0, A

2.r0, ..., A
j−1.r0

)
(4.43)

where r0 = b−A.x0 with x0 an initial guess.
These methods require only matrix-vector products to carry out the linear iteration (not the individual elements
of A). Among the wide variety of Krylov methods, it turns out that GMRES algorithm developed by Saad and
Schultz [43] is the best choice for the JFNK method [23].
The Generalized Minimal RESidual (GMRES) method is an Arnoldi-based method. In GMRES, the Arnoldi
basis vectors form the trial subspace out of which the solution is constructed. A major beneficial feature of the
algorithm is that only one matrix-vector product is required per iteration to create each new trial vector and the
iterations are terminated on a by-product estimate of the residual that does not require explicit construction
of intermediate residual vectors or solutions. However, GMRES has a residual minimization property in the
Euclidean norm which requires the storage of all previous Arnoldi basis vectors. That is why the restart version
[43], noted GMRES(mRes) where mRes is some fixed integer, is often used to restart GMRES algorithm at
every mRes steps. This resulting pressure on memory has put an increased emphasis on quality preconditioning
believing that it is only through effective preconditioning that JFNK is feasible on large-scale problems.

4.2.2 Jacobian-Free approach

The Jacobian-Free approach is the fact to estimate the matrix-vector product between a Jacobian matrix J
times a vector v with the following formula [11]:

J (Xm) v ≈ F (Xm + δv)− F (Xm)

δ
(4.44)

where δ is a scalar. This approach is perfectly adapted for an use with Newton’s method because the left-hand
side of Eq. (4.41) can be computed using formula (4.44) with v = δm. Then, the resulting vector can be put
into GMRES algorithm which will solve the system without forming any Jacobian matrix.

Note 1: In this approximation the error is proportional to δ. Thus, the value of δ is very important and
some discussions on the various options for choosing it can be found here [23]. What is usually done is to take
δ = δ0

||v||2 with δ0 closed to the square root of the machine precision (δ0 ≈ 10−7).

Note 2: In [23], there is also a demonstration of formula (4.44) in the case of two coupled nonlinear equations.

4.2.3 More precision about JFNK

The primary motivation for developing JFNK methods is the ability to perform a Newton iteration without
forming the Jacobian. In the JFNK approach, a Krylov method is used to solve the linear system of equations
given by Eq. (4.41). At nonlinear iteration m, an initial linear residual, rm0 , is defined, given an initial guess,
δm0 = Xm+1

0 −Xm
0 , for the Newton correction:

rm0 = −F (Xm)− J (Xm) δm0 (4.45)

Now, let j be the Krylov iteration index. Since the Krylov solution is a Newton correction and since a
locally optimal move was just made in the direction of the previous Newton correction, the initial iterate
for Krylov iteration, δm0 , is typically zero. This is asymptotically a reasonable guess in the Newton con-
text, as the converged value for δm should approach zero in late Newton iterations [23]. The j-th GMRES
iteration minimizes ||J (Xm) δmj + F (Xm) ||2 within a subspace of small dimension, relative to the num-
ber of unknowns, in a least-squares sense. δmj is drawn from the subspace spanned by the Krylov vectors,
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{rm0 , J (Xm) rm0 , J
2 (Xm) rm0 , ..., J

j−1 (Xm) rm0 }, and can be expressed as:

δmj = δm0 +

j−1∑
i=0

βiJ
i (Xm) rm0 (4.46)

where the scalars βi minimize ||J (Xm) δmj +F (Xm) ||2. In Eq. (4.46) all the matrix-vector J i (Xm) rm0 will be
computed with Eq. (4.44). Then, the linear residual rmj = −F (Xm) − J (Xm) δmj is computed. If it satisfies
||rmj ||
||rm0 ||

≤ εKry,r or ||rmj || ≤ εKry,a the GMRES iterations are stopped and a new Newton iterate can be computed.

εKry,r and εKry,a are respectively the relative decrease tolerance for the norm of the linear residual from an
initial linear residual and the absolute tolerance used for the norm of the linear residual. A maximum number
of Krylov iterations, noted jKry,max, is also set.
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5 Application to SD with implicit time
integration

As explained in section (3.3), doing implicit time-marching schemes involves solving nonlinear systems. Then,
in chapter (4) the inexact Newton algorithm and the JFNK method were presented as solver for such systems.
However, they were introduced on a general form of a nonlinear system and not directly on Eq. (3.38). Thus,
in this chapter, the practical application of the inexact Newton method and the JFNK method to Eq. (3.38)
are described.

5.1 Solve the stage equation for DIRK schemes with an inexact
Newton method by computing explicitly the Jacobian

5.1.1 Nonlinear system to solve

To solve Eq. (3.38) by a Newton method, the following function, of which the zeros are looked for, is introduced
[18]:

G (uq) = uq − un −∆taqqR
q −∆t

q−1∑
j=1

aqjR
j (5.47)

Its Jacobian matrix is given by:

J =

[
I −∆taqq

(
∂R

∂u

)]
(5.48)

Thus, the update from the current Newton iterate uq,m to the new Newton iterate uq,m+1 is given by:[
I −∆taqq

(
∂R

∂u

)m] (
uq,m+1 − uq,m

)
= −G (uq,m) (5.49)

where m is still the nonlinear Newton index, I is the identity matrix of size Ncells × ncons ×NSP and
(
∂R
∂u

)m
the Jacobian of the residual taken at iterate m. The algorithm starts by setting u1,0 = un for the first stage
(q = 1) and uq,0 = uq−1 for the other stages (q > 1) . Therefore, at each Newton iteration, the linear system
given by Eq. (5.49) is solved using a matrix inversion method.

Usually, when the computation of J is very costly, a simplified Newton method is considered. In the context of
DIRK schemes, it means that J is only computed at instant n and not at every iterate m [18]. Consequently,

if a simplified Newton method is considered, ∂R
∂u is computed only at instant n. This is what is done in SD

when implicit time integration is used since the computation of ∂R
∂u is quite costly for complex PDE [51][31].

Obviously, this method has a worse convergence behavior compared to a classical Newton method but it is a
good compromise in term of computation time. Thus, in my model code for 1D-advection and 1D-diffusion, I
have also considered a simplified Newton method. Actually, in the cases of 1D-advection and 1D-diffusion, this
was not a huge approximation because ∂R

∂u is not time dependent for these equations.

5.1.2 Jacobian of residual and local Jacobians

Eq. (5.49) showed that the Jacobian of the residual ∂R∂u is needed. Let’s go back to Eq . (2.29) in one mesh cell

with Ri taken at some instant q, noted
(
Ri
)q

. In the case of an implicit time-marching scheme,
(
Ri
)q

is not
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known since q > n for such schemes. Thus, a Taylor expansion can be done and since Ri is a function of ui and
unb, its variations can be observed with respect to ui and unb [47][51]:(

Ri
)q ≈ (Ri)n +

(
∂Ri

∂ui

)n ((
ui
)q − (ui)n)+

∑
nb6=i

(
∂Ri

∂unb

)n ((
unb
)q − (unb)n) (5.50)

where ∂Ri

∂ui and ∂Ri

∂unb
can be considered as ”local Jacobians matrices” as they correspond to the variations of the

cell residual with respect to the solution inside cell i and its surrounding. Their general expressions, because
Ri, ui and unb are vectors with ncons×NSP components, are the following square matrices of size ncons×NSP :

∂Ri

∂ui
=


∂Ri1
∂ui1

. . .
∂Ri1

∂uiNSP
...

∂Ris
∂uij

...

∂RiNSP
∂ui1

. . .
∂RiNSP
∂uiNSP

 =

[(
∂Ris
∂uij

)]
1≤s≤NSP
1≤j≤NSP

,
∂Ri

∂unb
=


∂Ri1
∂unb1

. . .
∂Ri1

∂unbNSP
...

∂Ris
∂unbj

...

∂RiNSP
∂unb1

. . .
∂RiNSP
∂unbNSP

 =

[(
∂Ris
∂unbj

)]
1≤s≤NSP
1≤j≤NSP

(5.51)

where the components of these matrices,
∂Ris
∂uij

and
∂Ris
∂unbj

, are square matrices of size ncons. Thus, using Eq.

(5.50), Rq can be expressed as:

Rq =



(
R1
)q

...(
Ri
)q

...(
RNcells

)q

 ≈ R
n +



(
∂R1

∂u1

)n ((
u1
)q − (u1

)n)
+
∑
nb 6=1

(
∂R1

∂unb

)n ((
unb
)q − (unb)n)

...(
∂Ri

∂ui

)n ((
ui
)q − (ui)n)+

∑
nb6=i

(
∂Ri

∂unb

)n ((
unb
)q − (unb)n)

...(
∂RNcells

∂uNcells

)n ((
uNcells

)q − (uNcells)n)+
∑

nb 6=Ncells

(
∂RNcells

∂unb

)n ((
unb
)q − (unb)n)


(5.52)

where the vector on the right corresponds to the matrix-vector product
(
∂R
∂u

)n
(uq − un):

(
∂R

∂u

)n
(uq − un) =



(
∂R1

∂u1

)n
. . .

(
∂R1

∂ui

)n
. . .

(
∂R1

∂uNcells

)n
...

...
...(

∂Ri

∂u1

)n
. . .

(
∂Ri

∂ui

)n
. . .

(
∂Ri

∂uNcells

)n
...

...
...(

∂RNcells
∂u1

)n
. . .

(
∂RNcells
∂ui

)n
. . .

(
∂RNcells

∂uNcells

)n





(
u1
)q − (u1

)n
...(

ui
)q − (ui)n

...(
uNcells

)q − (uNcells)n

(5.53)

Therefore, with Eq. (5.53), it seems that the Jacobian of the residual ∂R
∂u is a square matrix of size Ncells ×

ncons×NSP and composed of all the local Jacobians of all cells. Usually, this matrix is not dense because a lot
of local Jacobians are zero matrices. For instance, in paragraphs (6.2.1) and (6.2.2), it is shown that ∂R

∂u is a

three-diagonal block matrix for the 1D-advection equation:

∂R

∂u
=



. . .
. . .

. . . (0)

(0) ∂Ri

∂ui−1
∂Ri

∂ui
∂Ri

∂ui+1 (0)

(0)
. . .

. . .
. . .

 (5.54)

It comes from the fact that the residual inside any cell i, Ri, depends only on ui−1, ui and ui+1 for the 1D-

advection case. Consequently, for each cell i, there are only three local Jacobians ∂Ri

∂ui−1 , ∂Ri

∂ui and ∂Ri

∂ui+1 . It

indicates that the length of the diagonal block in ∂R
∂u depends on the number of local Jacobians and so on the

number of neighboring cells of cell i where the solution inside this cell has an influence on Ri.

5.1.3 Numerical computation of the Jacobian of the residual

In sections (6.2) and (7.2) analytic expressions for the Jacobian of the residual respectively for 1D-advection
and 1D-diffusion will be found. However, it will be very difficult to compute these analytic expressions for more
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complex partial differential equations because expressions of Ris or Ri will be hard to obtained with the SD
discretization. To overcome this problem, one method is to compute them numerically (see [47] and [31]):

∂Ri

∂ui
≈
Ri
(
ui + ε, unb

)
−Ri

(
ui, unb

)
ε

,
∂Ri

∂unb
≈
Ri
(
ui, unb + ε

)
−Ri

(
ui, unb

)
ε

(5.55)

where ε is a small parameter. It means that for each cell k ∈ {i, nb}, ukj , with j ∈ [|1, NSP |], is altered one
by one and the residual inside cell i uniquely is re-computed to do the numerical derivative. Actually, this
notation is not really appropriate: it is used to ”sum up” the process that computes these Jacobians. However,
more precisions have to be made to explain what is really done to construct them numerically. By looking at
expressions (5.51) of local Jacobians, it seems that altering ukj by an amount of ε and recomputing the new

residual inside cell i, noted Ri,new =
(
Ri,new1 , ..., Ri,newNSP

)T
, gives one column of the local Jacobians:



∂Ri1
∂ukj
...

∂Ris
∂ukj
...

∂RiNSP
∂ukj


(5.56)

using the formula:

∂Ris
∂ukj

=
Ri,news −Ris

ε
for 1 ≤ s ≤ NSP (5.57)

taken at a fixed j. Therefore, in practice, local Jacobians relative to cell k are computed column by column,
each column corresponding to one alteration of the solution at solution point j inside cell k.

5.1.4 Implementation of the method

This inexact Newton method was implemented in my model code for both 1D-advection and 1D-diffusion. Since
analytic expressions for the Jacobian of the residual have been derived for these equations, the user can choose
between an analytical computation or a numerical computation. A comparison between these methods will be
done in section (6.5) for 1D-advection and in section (7.4) for 1D-diffusion. For the model code, the Newton
algorithm was explicitly written by following the explanations of section (4.1). However, for the linear solver,
the Numpy library was used with direct methods (LU-numpy or LU-scipy) or iterative (conjugate gradient,
GMRES) methods. However, as it will be shown in chapter 6 and 7, the numerical computation of the Jacobian
of the residual is very costly, even for 1D equations. Thus, a JFNK approach was considered to avoid the
explicit computation of these Jacobians.

5.2 Solve the stage equation for DIRK schemes with a Jacobian-
Free-Newton-Krylov method

The idea is to find the zeros of function G defined in Eq. (5.47) without computing explicitly the matrix of
linear system (5.49). To do so, the external library PETSc will be used.

5.2.1 The use of PETSc library

The JFNK method described in section (4.2) is very promising for solving nonlinear systems such as Eq. (3.38).
However, in order to reduce the time needed for the implementation of implicit time-marching schemes in
JAGUAR, an external library will be used to solve these systems with a JFNK approach. The library which
was chosen is the Portable Extensible Toolkit for Scientific Computation (PETSc) developed by Argonne Na-
tional Laboratory.

PETSc contains a suite of parallel linear and nonlinear solvers and time integrators that can be used in applica-
tion codes written in FORTRAN, Python, C and C++. For the implementation of a JFNK method, the SNES
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(Scalable Nonlinear Equation Solver) module of PETSc has to be employed because it provides a Newton solver
with a Matrix-Free method. One main advantage of PETSc solvers is that almost every parameter of the solver
can be set by the user such as the types of nonlinear and linear solvers or stopping criterion. Moreover, almost
everything can be monitored like the number of nonlinear and linear iterations done, the residual norms in the
Newton algorithm or also the reason why convergence or divergence was reached.

For a Matrix-Free use, this library is very powerful because it only needs a subroutine that explains how the
Newton function F (or G in the SD case) has to be computed given the unknown vector X. Then, PETSc
nonlinear solver solves Eq. (4.39) with the JFNK method described in section (4.2). For instance, let’s consider
the following system of equations for n ∈ N, called singular Broyden [28]:

F1 (X) = ((3− hX1)X1 − 2X2 + 1)
2

(5.58a)

Fi (X) = ((3− hXi)Xi −Xi−1 − 2Xi+1 + 1)
2

i = 2, ..., n− 1 (5.58b)

Fn (X) = ((3− hXn)Xn −Xn−1 + 1)
2

(5.58c)

with h = 2 and the initial guess is set to X0
i = −1 ∀i ∈ [|1, n|]. To solve this system with a JFNK method

using PETSc, it only needs a subroutine that takes X as input and F as output which is computed using Eq.
(5.58). A structure for the remaining constants, such as h and n in singular Broyden, is also needed if the code
is written in FORTRAN. Thus, the same principle has to be applied for the nonlinear function defined by Eq.
(5.47).

5.2.2 Function to give to PETSc

In the definition of G, the unknown is vector uq but the residual Rq = R (uq) also depends on uq so they are

both unknowns. The remaining constants ∆t and aqq, vector un and the sum Sq =
q−1∑
j=1

aqjR
j are known and can

be considered as parameters of system (3.38) such as h and n of system (5.58). Then, by considering X = uq,
the Newton function to give to PETSc is simply:

G (X) = X − un −∆taqqR (X)−∆tSq (5.59)

with X1,0 = un for the first stage (q = 1) and Xq,0 = uq−1 for the other stages (q > 1). All the parameters
listed previously will be put in a FORTRAN structure for the code JAGUAR. The implementation of such
function using PETSc library is discussed in the next paragraph. Eq. (5.59) shows that at each Newton iterate
Xq,m, the residual R (Xq,m) has to be recomputed. Therefore, for the JFNK method it is important that the
SD code computes the residual quickly.

5.2.3 Implementation of the JFNK method in code JAGUAR

Here, the algorithm implemented in JAGUAR for an use of the JFNK method with PETSc is described. As
mentioned in paragraph (3.3.2), for DIRK schemes, at each time iteration theQ stages are solved successively and
Algorithm 3 summed up the process that has to be done at each time iteration. The subroutine ”FormFunction”
defines how to compute G using Eq. (5.59). Thus, the JFNK method using PETSc library was implemented in
code JAGUAR following Algorithm 3. The subroutine that updates the solution in time was modified to take
into account the use of DIRK schemes. The characteristics of the nonlinear and linear solvers, from the SNES
module of PETSc, used for code JAGUAR, will be described in section (8.1).
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Algorithm 3 Compute RK stages for SD in case of DIRK schemes using Matrix-Free (MF) approach

1: Define FormFunction(snes,X, F , un, Sq,∆t, aqq).
2: Define SNES context and its parameters.
3: for q from 1 to Q do
4: Set Sq = 0
5: if q = 1 then
6: Find X = u1 with PETSc MF solver for FormFunction(snes,X, F , un, 0,∆t, a11).
7: Compute R1

8: else
9: for j from 1 to q − 1 do

10: Sq = Sq + aqjR
j

11: end for
12: Find X = uq with PETSc MF solver for FormFunction(snes,X, F , un, Sq,∆t, aqq).
13: Compute Rq

14: end if
15: end for
16: Set S = 0
17: for q from 1 to Q do
18: S = S + bqR

q

19: end for
20: un+1 = un + ∆t× S
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6 Model code for 1D-advection

This part is dedicated to solve the 1D-advection equation with SD using explicit and implicit temporal schemes.
For a variable u (x, t) transported at a constant speed c, this equation is:

∂u

∂t
+ c

∂u

∂x
= 0 (6.60)

There is only one conserved variable: ncons = 1 in all this chapter. Eq. (2.29) is a very simple equation to learn
how the SD method can be implemented in a code and also for testing the numerical methods explained in the
previous parts for implicit time-marching schemes applied to SD.

6.1 Theoretical results

To validate the numerical results, they will be compared to the exact solution of Eq. (6.60). For an initial state
given by u (x, 0) = u0 (x) and an infinite domain, the analytic solution of Eq. (6.60) is:

uana (x, t) = u0 (x− ct) ∀ (x, t) ∈ R× R+ (6.61)

Since an infinite domain does not exist in practice, periodic boundary conditions are considered meaning
that the solution ”scan” the domain several times. For instance, for a finite domain [−Lx, Lx], this condition
means that:

u (−Lx, t) = u (Lx, t) ∀t > 0 (6.62)

Thus, in this case, the solution is repeated every time c× t = 2×Lx. In the model code, the absolute numerical
error, noted Labs2 (unum), and the relative numerical error, noted Lrel2 (unum), are computed using the classical
formulas:

Labs2 (unum) = ||unum − uana||2 (6.63a)

Lrel2 (unum) =
||unum − uana||2
||uana||2

(6.63b)

where unum stands for the numerical solution and ||.||2 for the 2-norm on vectors.

6.2 Analytical computing for the Jacobian of the residual

In the previous parts, it was said that the analytical computation for the Jacobian of the residual is possible for
the 1D-advection equation. This is the purpose of this section where two different approaches are considered for
the analytic computation of the Jacobian. The first approach, called ”sequential”, expresses Ris as a function
of ukj . The second one uses the matrix form of SD in order to have directly Ri as a function of ukj . Obviously,
both methods give the same results and the analytic Jacobian can be compared with the numerical Jacobian
computed using the method described in section (5.1.3).

6.2.1 ”Sequential” approach

The objective of this part is to find an analytical expression for the terms
∂Ris
∂uij

or
∂Ris
∂unbj

in the case of the 1D-

advection equation. To do so the SD algorithm which computes the residual at solution point s inside cell i is
used.
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This algorithm starts with the fact that u is known at solution points. Let’s note these values uis where s is
referring to ”solution” points. This is a simplified notation to write ui

(
Xi
s, t
)

where Xi
s stands for the abscissa

of solution point s inside cell i and t for the time. The next step is the interpolation of u at flux points Xf

using Lagrange’s polynome basis at solution points hs (X) where X can be any point inside the cell:

vi =
[
vif
]T
1≤f≤NFP

=

[∑
s

uish
i
s

(
Xi
f

)]T
1≤f≤NFP

(6.64)

where T means the transpose operation.

The computation of the flux at flux points, noted F i, for the 1D-advection case is straightforward:

F i =
[
F if
]T
1≤f≤NFP

1D−Adv︷︸︸︷
= c× vi = c×

[∑
s

uish
i
s

(
Xi
f

)]T
1≤f≤NFP

(6.65)

After that, before computing the flux derivatives (the residual) at solution points, a Riemann solver needs to
be used at each cell interface so that each interface will have only one value for the flux.

For an interface with on its left a state (uL, FL) and on its right a state (uR, FR), the flux at the interface is
given by (upwind formulation for 1D-advection):

FL,Rint =
FR + FL − |c| (uR − uL)

2
(6.66)

If this formula is applied for a given interface which has cell numbered i on its left and i + 1 on its right, Eq.
(6.66) becomes:

F i,i+1
int =

FR︷ ︸︸ ︷
cvi+1

1 +

FL︷ ︸︸ ︷
cviNFP −|c|(

uR︷︸︸︷
vi+1

1 −

uL︷ ︸︸ ︷
viNFP )

2
(6.67)

Some factorizations can be made inside Eq. (6.67):

F i,i+1
int =

(c− |c|) vi+1
1 + (c+ |c|) viNFP

2
(6.68)

Finally, Eq. (6.64) is used to have F i,i+1
int expressed as a function of uis and ui+1

s :

F i,i+1
int =

(c− |c|)
(∑

s
ui+1
s hi+1

s (Xi+1
f,1 )

)
+ (c+ |c|)

(∑
s
uish

i
s(X

i
f,NFP

)

)
2

(6.69)

At this point, all the flux values needed to compute its derivatives at solution points have been determined. The
new flux containing the flux values strictly inside the cell (those which have not change from F i) and also those
on each interface updated after the use of the Riemann solver will be denoted F̄ i. The Lagrange’s polynomial
basis created at flux points lif (X) inside cell i to differentiate F̄ i is still used:

Ris = −
(
∂F̄

∂x

)i
s

= −
∑
f

F̄ if l
′i
f

(
Xi
s

)
= −F i−1,i

int l
′i
1

(
Xi
s

)
− F i,i+1

int l
′i
NFP

(
Xi
s

)
−
∑
f⊂cell

F if l
′i
f

(
Xi
s

)
(6.70)

Here, F̄ i was split into its interface fluxes, F i−1,i
int and F i,i+1

int , and its strictly intern fluxes F if . Thus, because

F i−1,i
int and F i,i+1

int depend on u inside the neighboring cells i− 1 and i + 1, the residual also depends on
u inside cells i−1 and i+ 1 in addition to u inside cell i. Consequently, nb = {i− 1, i+ 1} for the 1D-advection

equation and three local Jacobians have to be computed: ∂Ri

∂ui−1 , ∂Ri

∂ui and ∂Ri

∂ui+1 .

The derivative of Ris with respect to ukj , where k ∈ {i− 1, i, i+ 1} and j ∈ [|1, NSP |] (one solution point inside
cell k), is given by:

∂Ris
∂ukj

= −∂F
i−1,i
int

∂ukj
l
′i
1

(
Xi
s

)
− ∂F i,i+1

int

∂ukj
l
′i
NFP

(
Xi
s

)
−
∑
f⊂cell

∂F if
∂ukj

l
′i
f

(
Xi
s

)
(6.71)

where if k = i (u inside the cell):

∂F i−1,i
int

∂uij
=

(c− |c|)hij(Xi
f,1)

2
(6.72a)

∂F i,i+1
int

∂uij
=

(c+ |c|)hij(Xi
f,NFP

)

2
(6.72b)

∂F if
∂uij

= c× hij
(
Xi
f

)
(6.72c)
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If k = i− 1 (u inside the left neighbor):

∂F i−1,i
int

∂ui−1
j

=
(c+ |c|)hi−1

j (Xi−1
f,NFP

)

2
(6.73a)

∂F i,i+1
int

∂ui−1
j

= 0 (6.73b)

∂F if

∂ui−1
j

= 0 (6.73c)

and if k = i+ 1 (u inside the right neighbor):

∂F i−1,i
int

∂ui+1
j

= 0 (6.74a)

∂F i,i+1
int

∂ui+1
j

=
(c− |c|)hi+1

j (Xi+1
f,1 )

2
(6.74b)

∂F if

∂ui+1
j

= 0 (6.74c)

Therefore,
∂Ris
∂ukj

can be expressed explicitly in the three different cases where ukj could be inside the considered

cell or in its left and right neighbors:

∂Ri
s

∂ui−1
j

= −
(c+ |c|)hi−1

j (Xi−1
f,NFP

)

2
l
′i
1

(
Xi

s

)
(6.75a)

∂Ri
s

∂ui
j

= −
(c− |c|)hi

j

(
Xi

f,1

)
2

l
′i
1

(
Xi

s

)
−

(c+ |c|)hi
j

(
Xi

f,NFP

)
2

l
′i
NFP

(
Xi

s

)
−
∑

f⊂cell

c× hi
j

(
Xi

f

)
l
′i
f

(
Xi

s

)
(6.75b)

∂Ri
s

∂ui+1
j

= −
(c− |c|)hi+1

j

(
Xi+1

f,1

)
2

l
′i
NFP

(
Xi

s

)
(6.75c)

Here, Eq. (6.75) do not depend on time but uniquely on space. Therefore, the analytic Jacobian matrix
can be entirely computed before the time loop. Now, these formulas will be investigated in the cases
where the function u is advected towards the right (c > 0) or towards the left (c < 0).

Advection towards the right (c > 0)

In this case, |c| = +c, therefore:

∂Ris
∂ui−1

j

= −c× hi−1
j (Xi−1

f,NFP
)l
′i
1

(
Xi
s

)
(6.76a)

∂Ris
∂uij

= −c× hij
(
Xi
f,NFP

)
l
′i
NFP

(
Xi
s

)
−
∑
f⊂cell

c× hij
(
Xi
f

)
l
′i
f

(
Xi
s

)
(6.76b)

∂Ris
∂ui+1

j

= 0 (6.76c)

The classical result for the advection towards the right is recovered: for a given cell there is no information
coming from the right. The Jacobian of the residual is actually a lower bi-diagonal block matrix.

Advection towards the left (c < 0)

In this case, |c| = −c this time, so:

∂Ris
∂ui−1

j

= 0 (6.77a)

∂Ris
∂uij

= −c× hij(Xi
f,1)l

′i
1

(
Xi
s

)
−
∑
f⊂cell

c× hij
(
Xi
f

)
l
′i
f

(
Xi
s

)
(6.77b)

∂Ris
∂ui+1

j

= −c× hi+1
j (Xi+1

f,1 )l
′i
NFP

(
Xi
s

)
(6.77c)
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Here, unlike the previous case, there is no information coming from the left. Consequently, the Jacobian
of the residual is an upper bi-diagonal block matrix.

Algorithm

To summarize the previous developments, Algorithm 4 can be used to compute one local Jacobian of a
cell in the case of the 1D-advection equation. In the model code, it corresponds to a Python function called
computeLocJacAnaAdv1D(NFP , NSP , Xs, Xf , i, k, c). To compute the Jacobian of the residual for all cells,
the previous algorithm is applied for all of them resulting in Algorithm 5.

Algorithm 4 Compute analytically ∂Ri

∂uk
for 1D-advection

Input(s): NFP , NSP , Xs, Xf , i, k, c
1: if k = i - 1 then
2: for s from 1 to NSP do
3: Compute l

′i
1

(
Xi
s

)
4: for j from 1 to NSP do
5: Compute hi−1

j (Xi−1
f,NFP

)

6: Compute
∂Ris
∂ui−1

j

= − (c+|c|)
2 hi−1

j (Xi−1
f,NFP

)l
′i
1

(
Xi
s

)
7: end for
8: end for
9: else if k = i then

10: for s from 1 to NSP do
11: Compute l

′i
1

(
Xi
s

)
and l

′i
NFP

(
Xi
s

)
12: for j from 1 to NSP do
13: Compute hij(X

i
f,1) and hij(X

i
f,NFP

)
14: Set S = 0
15: for f from 2 to NFP − 1 do
16: Compute hij(X

i
f ) and l

′i
f

(
Xi
s

)
17: S ← S + hij(X

i
f )× l′if

(
Xi
s

)
18: end for
19: Compute

∂Ris
∂uij

= − (c−|c|)
2 hij(X

i
f,1)l

′i
1

(
Xi
s

)
− (c+|c|)

2 hij(X
i
f,NFP

)l
′i
NFP

(
Xi
s

)
− c× S

20: end for
21: end for
22: else if k = i + 1 then
23: for s from 1 to NSP do
24: Compute l

′i
NFP

(
Xi
s

)
25: for j from 1 to NSP do
26: Compute hi+1

j (Xi+1
f,1 )

27: Compute
∂Ris
∂ui+1

j

= − (c−|c|)
2 hi+1

j (Xi+1
f,1 )l

′i
NFP

(
Xi
s

)
28: end for
29: end for
30: end if
Output(s): ∂Ri

∂uk

Algorithm 5 Compute analytically ∂R
∂u for 1D-advection

Input(s): Ncells, NFP , NSP , Xs, Xf , c

1: Initialization of ∂R
∂u as a square matrix of size Ncells ×NSP .

2: for i from 1 to Ncells do

3:

(
∂R
∂u

)
1+(i−1)NSP≤row≤iNSP

1+(i−2)NSP≤col≤(i−1)NSP

= computeLocJacAnaAdv1D(NFP , NSP , Xs, Xf , i, i− 1, c)

4:

(
∂R
∂u

)
1+(i−1)NSP≤row≤iNSP
1+(i−1)NSP≤col≤iNSP

= computeLocJacAnaAdv1D(NFP , NSP , Xs, Xf , i, i, c)

5:

(
∂R
∂u

)
1+(i−1)NSP≤row≤iNSP
1+iNSP≤col≤(i+1)NSP

= computeLocJacAnaAdv1D(NFP , NSP , Xs, Xf , i, i+ 1, c)

6: end for
Output(s): ∂R

∂u
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where row and col are respectively the variables for the rows and the columns of matrix ∂R
∂u here.

As mentioned above, the analytical Jacobian of the residual does not depend on time for the 1D-advection. It
means that algorithm 5 has to be done before the time loop.

Note: In Algorithm 5 for i = 1 and i = Ncells, the fictive cells i = 0 and i = Ncells + 1, used for the boundary
conditions, are appearing. Actually, what is done in practice, is to define a 1D-space with Ncells+ 2 cells, where
cells numbered i = 1 and i = Ncells + 2 are the fictive cells for the boundary conditions and cells from i = 2 to
i = Ncells + 1 are the real cells. Thus, in practice, the loop in Algorithm 5 is done from i = 2 to i = Ncells + 1.

6.2.2 With matrix form of the SD procedure

In section (6.2.1) an expression of Ris as a function of ukj with k ∈ {i− 1, i, i+ 1} and j ∈ [|1, NSP |] was found.
Then, formulas for the elements of the local Jacobians were obtained. However, another approach is to think
on Ri as a function of ui−1, ui and ui+1 instead of doing it on Ris. Thus, the objective is to express Ri by
involving ui−1, ui and ui+1 like it was done in [52]. This method has the advantage to need less calculations
and also to involve matrix-product operations which can make the computation faster.

SD process for computing the residual of the 1D-advection equation

The column solution vector of size NSP = p+ 1 inside cell i, ui, is reintroduced:

ui =
[
uis
]T
1≤s≤NSP

(6.78)

The first step is to extrapolate the solution at flux points using the Lagrange polynomial basis built at solution
points. Then, vector vi given by Eq. (6.64), is obtained.

However, this vector is not sufficient since a Riemann solver must be solved on the cell boundaries: information
from neighboring cells i− 1 and i+ 1 are required. Thus, two more vectors are introduced: ũi a column vector
of size 3 × NSP containing the values of the solution at solution points inside cells i − 1, i and i + 1 and the
column vector ṽi of size 1 + (p+ 2) + 1 = p+ 4 containing the solution at flux points inside cell i, vi and also
the solution on the border flux points from adjacent cells (last component of vi−1 and first component of vi+1)
[52]:

ũi =

 ui−1

ui

ui+1

 (6.79)

ṽi =

 vi−1
NFP
vi

vi+1
1

 (6.80)

One important thing to notice is that the Lagrange basis used for vi−1
NFP

and vi+1
1 have to be those built

respectively inside cells i− 1 and i + 1.

Then, by defining Om,n the zero matrix of dimension m× n, the extrapolation process for cell i can be seen as
the following matrix-vector product ṽi = Eiũi where Ei is the extrapolation matrix of size (p+ 4) × (3NSP )
and the index i is to referred to cell i:

Ei =



[
hi−1
s

(
Xi−1
f,NFP

)]
1≤s≤NSP

O1,NSP O1,NSP

O1,NSP

[
his

(
Xi
f,1

)]
1≤s≤NSP

O1,NSP

O1,NSP

[
his

(
Xi
f,2

)]
1≤s≤NSP

O1,NSP

...
...

...

O1,NSP

[
his

(
Xi
f,NFP

)]
1≤s≤NSP

O1,NSP

O1,NSP O1,NSP

[
hi+1
s

(
Xi+1
f,1

)]
1≤s≤NSP


(6.81)

The second step consists of computing the flux at flux points. For the 1D-advection, it means that a matrix
F such as c × vi = F ṽi has to be found. As a consequence, F is of size NFP × (p+ 4). Here, the Riemann
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problem is solved using the upwind Godunov scheme which can be put in the following form (starting from Eq.
(6.66)):

FL,Rint =
FR + FL − |c| (uR − uL)

2
= c

(
1 + sign (c)

2
uL +

1− sign (c)

2
uR

)
(6.82)

where sign (c) = c/|c| and the form of F is now straightforward with Ip the identity matrix of size p:

F = c

 1+sign(c)
2

1−sign(c)
2 O1,NSP 0 0

O1,NSP O1,NSP Ip O1,NSP O1,NSP

0 0 O1,NSP
1+sign(c)

2
1−sign(c)

2

 (6.83)

There is no index i here because this matrix is the same for all the cells.

For the third and last step, the flux polynomial F ṽi is differentiated and its derivative is computed at solution
points to have the term ∂

∂x

[
c× ui

]
= DiF ṽi (t) where Di is the derivative matrix of size NSP ×NFP given by:

Di =
[
l
′i
f

(
Xi
s

)]
1≤s≤NSP
1≤f≤NFP

(6.84)

Finally, the overall process for computing the residual for 1D-advection inside cell i with matrix form of SD is:

Ri =
[
Ris
]T
1≤s≤NSP

= −DiFEi︸ ︷︷ ︸
Mi
Adv

ũi (6.85)

where M i
Adv is the ”compact matrix” of the process which is of size NSP × 3NSP .

With Eq. (6.85) and (6.79), the fact that, for 1D-advection, the residual inside cell i depends only on the
solution inside cells i− 1, i and i+ 1 is recovered.

Jacobian of the residual using matrix form of SD

With Eq. (6.85) and (6.79), it seems that all the information about the variations of Ri with respect to ui−1 or
ui or ui+1 is contained into −M i

Adv. Actually, because this matrix is of size NSP ×3NSP each square submatrix
of size NSP corresponds to one of the local Jacobian matrix. Thus, the links between local Jacobians and M i

Adv

are the following:

∂Ri

∂ui−1
= −

(
M i
Adv

)
1≤row≤NSP
1≤col≤NSP

(6.86a)

∂Ri

∂ui
= −

(
M i
Adv

)
1≤row≤NSP

NSP+1≤col≤2NSP

(6.86b)

∂Ri

∂ui+1
= −

(
M i
Adv

)
1≤row≤NSP

2NSP+1≤col≤3NSP

(6.86c)

With Eq. (6.86), the fact that Jacobian matrix of the residual, ∂R∂u , is a tri-diagonal block matrix is recovered.

Each block of size NSP × 3NSP is exactly the opposite of matrix M i
Adv.

Algorithm

Like in section (6.2.1), the algorithm to compute the Jacobian of the residual using the matrix form approach
can be summed up. This algorithm is simpler than the one written in section (6.2.1) especially because it does
not involve the computation of local Jacobians one by one with the function ”ComputeLocalJacAnaAdv1D”.

Algorithm 6 has also to be done before the time loop.

Note: Like in Algorithm 5, in practice, the loop in algorithm 6 is done from i = 2 to i = Ncells + 1.

6.3 Numerical computing for the Jacobian of the residual

Thanks to the study of the analytic case, it was shown that for each cell i, there are three local Jacobians to
compute for the 1D-advection equation. Thus, it means that for each cell, the solution has to be altered at
3 × NSP solution points. Therefore, at each time step, Ncells × 3NSP alterations of the solution have to be
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Algorithm 6 Compute ∂R
∂u for 1D-advection using matrix form of SD

Input(s): Ncells, NFP , NSP , Xs, Xf , i, c
1: Compute matrix F
2: for i from 1 to Ncells do
3: Compute Ei

4: Compute Di

5:

(
∂R
∂u

)
1+(i−1)NSP≤row≤iNSP

1+(i−2)NSP≤col≤(i+1)NSP

= −DiFEi

6: end for
Output(s): ∂R

∂u

done. Fortunately, when the solution is altered at a solution point, not all the process described in section (2.1)
has to be done again for the three involved cells i − 1, i and i + 1. Actually, because the residual in all cells,
R, is known at instant n, it means that the values of v and the values of the flux at flux points were already
computed in all the cells as illustrated on Figure 6.6 for the p = 2 case:

i− 1 i i+ 1

H H H H H H H H H HN N N N N N N N N

F i−1,i
int F i,i+1

intvi−1, F i−1 vi+1, F i+1vi, F i, F̄ i

Figure 6.6: Initial situation before altering one solution point inside cell i− 1 or i or i+ 1. Solution points (N)
and flux points (H) for p = 2.

Now, let’s say that the solution at the center solution point in cell i − 1 is altered, as seen in green on Figure
6.7:

i− 1 i i+ 1

H H H H H H H H H HN N N N N N N N N

F i−1,i
int F i,i+1

intvi−1, F i−1 vi+1, F i+1vi, F i, F̄ i

Figure 6.7: Altering the solution at green solution point inside cell i − 1. The variables in green are those
changing with this alteration.

Then, the interpolation process inside cell i−1 will give another polynomial of degree p and therefore the values
of the solution at flux points vi−1 will change so the flux F i−1 too. Consequently, F i−1,i

int will also change but the
values of vi and F i, also used to compute it, are already known and there is no need to recompute them again.
Moreover, F i,i+1

int is also already known since none of the values which are used to compute it have changed.
Finally, F̄ i is recomputed and the differentiation of it gives the new residual inside cell i. The same reasoning
can be applied if the solution inside cell i+ 1 is altered as seen on Figure 6.8:

i− 1 i i+ 1

H H H H H H H H H HN N N N N N N N N

F i−1,i
int F i,i+1

intvi−1, F i−1 vi+1, F i+1vi, F i, F̄ i

Figure 6.8: Altering the solution at green solution point inside cell i + 1. The variables in green are those
changing with this alteration.

The last case is when the solution inside cell i is altered. In this case, both F i−1,i
int and F i,i+1

int are changing and
to compute them the already known data in cells i− 1 and i+ 1 are used as seen on Figure 6.9:

The process explained in this section is summed up into two algorithms, 10 and 11 that can be found in appendix
D.
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i− 1 i i+ 1

H H H H H H H H H HN N N N N N N N N

F i−1,i
int F i,i+1

int
vi−1
f , F i−1 vi+1

f , F i+1vif , F
i, F̄ i

Figure 6.9: Altering the solution at green solution point inside cell i. The variables in green are those changing
with this alteration.

6.4 Use of JFNK method with PETSc in the model code

The JFNK method using PETSc library was also implemented in the model code in Python. To do so the module
”petsc4py.py” was used and the implementation follows algorithm 3. This was done in order to compare the
inexact Newton method using the numerical Jacobian and the JFNK method which does not build any Jacobian.

6.5 Comparison between the different methods for computing the
Jacobian of the residual

In this section, the inexact Newton method with numerical computing of the Jacobian will be compared to the
JFNK method in terms of CPU time. The following test case is considered:

• Physical domain: [−Lx, Lx] with Lx = 1 m.

• Advection speed: c = 1 m.s−1.

• Physical time simulated: Tf = 2 s.

• Periodic boundary conditions.

• Ncells = 216 and p = 2.

• Initial solution: u0 (x) = 1
σ
√

2π
e−

x2

2σ2 with σ = 0.1.

• Time integration schemes: ILDDRK(3,4) for implicit simulations and ERK(4,4) for explicit ones.

It represents the advection of a 1D-Gaussian profile over a domain of total length L = 2 m during 2 s at a speed
of 1 m.s−1. Consequently the Gaussian profile will do one loop of the domain. The value of p was chosen to
have a high-order spatial scheme and also without too many DoF so that computations are not too long. The
CPU time needed and the value of Lrel2 (unum) will be picked for simulations with numerical computation of the
Jacobian, the JFNK approach with PETSc but also for the analytic computation and the ERK(4,4) scheme.
For the explicit scheme, the CFLSD was set to 0.8 which appeared to ensure stability. For implicit scheme
it was set to 10 so that the total number of time iterations was reduced by more than a factor of 10. This
value seemed also to avoid too much dissipation and dispersion. Obviously, implicit schemes are doing less time
iterations than explicit ones but their cost per iteration is higher. However, it is difficult to compare the cost
per iteration for implicit schemes since an increase in the time step increases the cost of the nonlinear solver
but reduces the number of time iterations. The results are presented in Table 6.2.

Results analysis: Firstly, only the implicit scheme with the analytical Jacobian is faster than the ERK(4,4)
simulation. It was expected because, as shown in section (6.2) , the analytic Jacobian is not time dependent
so it is computed one time before the time loop. Secondly, although its error is two times smaller, the JFNK
method is slower than the inexact Newton method with numerical computation of the Jacobian which was not
something expected. It probably comes from the boundary conditions of the domain. Indeed, as seen on Figure
6.10 when the solution is reaching the boundaries, there are oscillations that are appearing (red circles) but
they disappear when the solution is coming back to the center of the domain. These boundary conditions are
probably not well implemented. Thus, the JFNK method is doing more and more nonlinear and linear iterations
when the solution reaches the boundaries whereas the inexact Newton method written in the model code does
not. To remove the influence of the boundaries, the same simulation was done but for Tf = 0.1 s instead of
2 s. The results are presented in Table 6.3. The JFNK method is still slower but it is closer than the inexact
Newton with numerical computation for this value of Tf . Moreover, the errors are the same for both methods
meaning that there is no convergence issues. Finally, dissipation is recovered for implicit schemes since they
have an error which is twice the error of the explicit scheme.
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Time integration scheme tCPU (s) Lrel2 (unum)
ERK(4,4) 104 0.009

ILDDRK(3,4) with analytical computation 27 0.006
ILDDRK(3,4) with numerical computation 225 0.011

ILDDRK(3,4) with JFNK 414 0.006

Table 6.2: Comparison between ERK(4,4) and ILDDRK(3,4) schemes with different approaches for computing
the Jacobian of the residual in the case of 1D-advection. Tf = 2 s

Figure 6.10: Oscillations (red circles) near the boundaries in 1D-advection with the model code.

Time integration scheme tCPU (s) Lrel2 (unum)
ERK(4,4) 10 0.00001

ILDDRK(3,4) with analytical computation 2.6 0.0005
ILDDRK(3,4) with numerical computation 19 0.0005

ILDDRK(3,4) with JFNK 26 0.0005

Table 6.3: Comparison between ERK(4,4) and ILDDRK(3,4) schemes with different approaches for computing
the Jacobian of the residual in the case of 1D-advection. Tf = 0.1 s
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7 Model code for 1D-diffusion

One current problem in SD is the treatment of shocks which are strong discontinuities. Knowing that, and
because the purpose of the internship was not to study shocks with SD, a diffusion of an initial gaussian profile
in an ”infinite” domain was done instead of the diffusion inside a solid bar in contact with a constant source of
temperature for instance. The use of an infinite domain was also motivated by the observations done in section
(6.5) where the boundaries had an influence on the numerical results. Thus, the following Initial Value Problem
(IVP) for a variable u (x, t) diffused in a medium of constant diffusivity κ is considered:

∂u

∂t
= κ

∂2u

∂x2
−∞ < x <∞, t > 0 (7.87a)

u (x, 0) = f (x) −∞ < x <∞ (7.87b)

where f (x) is the initial temperature or concentration profile inside the domain. As for 1D-advection, there is
only one conserved variable: ncons = 1 in all this chapter.

7.1 Theoretical results

The solution of problem (7.87) is composed of Green’s function in 1D noted G (x, t; ξ):

uana (x, t) =

∫ ∞
−∞

G (x, t; ξ) f (ξ) dξ =

∫ ∞
−∞

e−
(x−ξ)2

4κt

√
4πκt

f (ξ) dξ (7.88)

In the model code, this analytic solution is computed using the method ”integrate” in scipy module.

As for 1D-advection, the process described in section (2.1.7) is used for the spatial discretization of Eq. (7.87).
For a given cell i, the semi-discrete formulation of equation (7.87) can still be described by Eq. (2.29). Here,

Ri
(
ui, unb

)
is the residual corresponding to the discretization of κ∂

2u
∂x2 of Eq. (7.87). In section (7.2), it will be

seen that the neighbors where a change of u produces a change of Ri, are cells i− 2, i− 1, i+ 1 and i+ 2 and
not only cells i− 1 and i+ 1 which is the case of 1D-advection.

One thing has to be noticed for the diffusion term: its discretization is still of order p + 1 and not p + 2 as it
could be thought. It can be checked numerically if the process described in appendix C is repeated. This comes
from the fact that there is no introduction of what can be called ”Diffusion Points”: flux points are still kept
to interpolate ∇u. That is why the method remains of order p+ 1 for diffusive terms.

7.2 Analytical computing for the Jacobian of the residual

In this section, methods for computing the Jacobian of the residual analytically for the 1D-diffusion equation
will be derived. As for 1D-advection, the ”sequential” approach is used in a first time to find an expression of
Ris and in a second time the matrix form of the SD procedure is used to find an expression of Ri under the
form of matrix-vector products.

7.2.1 ”Sequential” approach

The objective of this part is to find an analytic expression for the terms
∂Ris
∂uij

and
∂Ris
∂unbj

in the case of the

1D-diffusion equation. To do so, the SD algorithm starting with the polynomial defined by Eq. (6.64) is still

used. Then, before computing the term
(
∂u
∂x

)i
s

an unique value for v at each interface needs to be found. For
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an interface which has cell numbered i on its left and i + 1 on its right an interface value for the solution is
defined (centred scheme):

vi,i+1
int =

viNFP + vi+1
1

2
(7.89)

As for the flux in 1D-advection, a vector v̄i is obtained and the Lagrange’s polynomial basis created at flux
points lif (X) can be used to have:(

∂u

∂x

)i
s

=
∑
f

v̄if l
′i
f = vi−1,i

int l
′i
1

(
Xi
s

)
+ vi,i+1

int l
′i
NFP

(
Xi
s

)
+
∑
f⊂cell

vif l
′i
f

(
Xi
s

)
(7.90)

Then, the interpolation process is restarted by computing:(
∂v

∂x

)i
f

=
∑
s

(
∂u

∂x

)i
s

his
(
Xi
f

)
(7.91)

Again, the values of
(
∂v
∂x

)i
f

at cell interfaces have to be computed. With the same notations as for Eq. (7.89 )

a formula for the gradient at the interface is introduced:(
∂v

∂x

)i,i+1

int

=

(
∂v
∂x

)i
NFP

+
(
∂v
∂x

)i+1

1

2
(7.92)

Then, the new values of
(
∂v
∂x

)i
, noted

(
∂v
∂x

)i
f
, are obtained and finally, the term

(
∂2u
∂x2

)i
s

is given by:

(
∂2u

∂x2

)i
s

=
∑
f

(
∂v

∂x

)i
f

l
′i
f

(
Xi
s

)
=

(
∂v

∂x

)i−1,i

int

l
′i
1

(
Xi
s

)
+

(
∂v

∂x

)i,i+1

int

l
′i
NFP

(
Xi
s

)
+
∑
f⊂cell

(
∂v

∂x

)i
f

l
′i
f

(
Xi
s

)
(7.93)

The expression of the residual inside cell i at solution point s for the 1D-diffusion process is directly:

Ris = κ×
(
∂2u

∂x2

)i
s

(7.94)

The derivative of Eq. (7.94) with respect to one of the ukj (k could be any cell at this point) involves:

∂

∂ukj

[(
∂v

∂x

)i,i+1

int

]
=

1

2

∂

∂ukj

∑
s

vi−1,i
int l

′i
1

(
Xi
s

)
+ vi,i+1

int l
′i
NFP

(
Xi
s

)
+
∑
f⊂cell

vif l
′i
f

(
Xi
s

)his
(
Xi
f,NFP

)
+

1

2

∂

∂ukj

∑
s

vi,i+1
int l

′i+1
1

(
Xi+1
s

)
+ vi+1,i+2

int l
′i+1
Nflux

(
Xi+1
s

)
+
∑
f⊂cell

vi+1
f l

′i+1
f

(
Xi+1
s

)hi+1
s

(
Xi+1
f,1

) (7.95)

and also:

∂

∂ukj

[(
∂v

∂x

)i
f

]
=
∑
s

∂vi−1,i
int

∂ukj
l
′i
1

(
Xi
s

)
+
∂vi,i+1

int

∂ukj
l
′i
NFP

(
Xi
s

)
+
∑
f⊂cell

∂vif
∂ukj

l
′i
f

(
Xi
s

)his
(
Xi
f

)
(7.96)

To compute ∂
∂ukj

[(
∂v
∂x

)i−1,i

int

]
Eq. (7.95) can be used by changing i for i − 1 and i + 1 for i. These three terms

involved the derivatives of several vint with respect to ukj . Using, Eq. (7.89) and (6.64) the general expression

for
∂vi,i+1
int

∂ukj
is found:

∂vi,i+1
int

∂ukj
=

1

2


hij(X

i
f,NFP

) if k = i

hi+1
j (Xi+1

f,1 ) if k = i+ 1

0 otherwise

(7.97)

These three terms also involved
∂vif
∂ukj

which has the following expression by using Eq. (6.64):

∂vif
∂ukj

=

{
hij(X

i
f ) if k = i

0 otherwise
(7.98)
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Then, because the derivatives
∂vi−2,i−1
int

∂ukj
(in ∂

∂ukj

[(
∂v
∂x

)i−1,i

int

]
) and

∂vi+1,i+2
int

∂ukj
(in ∂

∂ukj

[(
∂v
∂x

)i,i+1

int

]
) are involved, there

is a dependence on cells i − 2 and i + 2 for the residual. Thus, in the case of the 1D-diffusion, nb and k are
different from the 1D-advection process:

nb = {i− 2, i− 1, i+ 1, i+ 2} (7.99a)

k = {i− 2, i− 1, i, i+ 1, i+ 2} (7.99b)

Like for 1D-advection, this Jacobian matrix is not time dependent and it is a fifth-diagonal block matrix.

Algorithm

To compute
∂vi,i+1
int

∂ukj
and

∂vif
∂ukj

let’s create functions ”Compute dvintduj(Xf , j, k, L,R)” and ”Compute dvduj(Xf , j, k, i)”.

These two previous functions can be used to compute ∂
∂ukj

[(
∂v
∂x

)i,i+1

int

]
and ∂

∂ukj

[(
∂v
∂x

)i
f

]
using respectively Eq.

(7.95) and (7.96). Let’s call these functions ”Compute ddvintdxduj(Xs, Xf , j, k, L,R)” and
”Compute ddvdxduj(Xs, Xf , j, k, i)”. With these functions, Algorithm 7 can be built to compute analytically
∂Ri

∂uk
for 1D-diffusion. In the model code, it corresponds to a Python function called

Algorithm 7 Compute analytically ∂Ri

∂uk
for 1D-diffusion

Input(s): NFP , NSP , Xs, Xf , i, k, κ
1: for s from 1 to NSP do
2: Compute l

′i
1

(
Xi
s

)
and l

′i
NFP

(
Xi
s

)
3: for j from 1 to NSP do

4: Compute ∂
∂ukj

[(
∂v
∂x

)i−1,i

int

]
and ∂

∂ukj

[(
∂v
∂x

)i,i+1

int

]
with Compute ddvintdxduj(Xs, Xf , j, k, i− 1, i) and

Compute ddvintdxduj(Xs, Xf , j, k, i, i+ 1)
5: Set S = 0
6: for f from 2 to NFP − 1 do

7: Compute l
′i
f

(
Xi
s

)
and ∂

∂ukj

[(
∂v
∂x

)i
f

]
with Compute ddvdxduj(Xs, Xf , j, k, i)

8: S ← S + l
′i
f

(
Xi
s

)
× ∂

∂ukj

[(
∂v
∂x

)i
f

]
9: end for

10: end for
11: Compute

∂Ris
∂ukj

= κ
[
∂
∂ukj

[(
∂v
∂x

)i−1,i

int

]
× l′i1

(
Xi
s

)
+ ∂

∂ukj

[(
∂v
∂x

)i,i+1

int

]
× l′iNFP

(
Xi
s

)
+ S

]
12: end for
Output(s): ∂Ri

∂uk

computeLocJacAnaDiff1D(NFP , NSP , Xs, Xf , i, k, κ). To compute the Jacobian of the residual for all cells,
the previous algorithm is applied for all of them resulting in Algorithm 8.

Algorithm 8 Compute analytically ∂R
∂u for 1D-diffusion

Input(s): Ncells, NFP , NSP , Xs, Xf , c

1: Initialization of ∂R
∂u as a square matrix of size Ncells ×NSP .

2: for i from 1 to Ncells do

3:

(
∂R
∂u

)
1+(i−1)NSP≤row≤iNSP

1+(i−3)NSP≤col≤(i−2)NSP

= computeLocJacAnaDiff1D(NFP , NSP , Xs, Xf , i, i− 2, κ)

4:

(
∂R
∂u

)
1+(i−1)NSP≤row≤iNSP

1+(i−2)NSP≤col≤(i−1)NSP

= computeLocJacAnaDiff1D(NFP , NSP , Xs, Xf , i, i− 1, κ)

5:

(
∂R
∂u

)
1+(i−1)NSP≤row≤iNSP
1+(i−1)NSP≤col≤iNSP

= computeLocJacAnaDiff1D(NFP , NSP , Xs, Xf , i, i, κ)

6:

(
∂R
∂u

)
1+(i−1)NSP≤row≤iNSP
1+iNSP≤col≤(i+1)NSP

= computeLocJacAnaDiff1D(NFP , NSP , Xs, Xf , i, i+ 1, κ)

7:

(
∂R
∂u

)
1+(i−1)NSP≤row≤iNSP

1+(i+1)NSP≤col≤(i+2)NSP

= computeLocJacAnaDiff1D(NFP , NSP , Xs, Xf , i, i+ 2, κ)

8: end for
Output(s): ∂R

∂u

Note: In Algorithm 8 for i = 1, i = 2, i = Ncells−1 and i = Ncells, the fictive cells i = −1, i = 0, i = Ncells+ 1
and i = Ncells + 2, used for the boundary conditions, are appearing. Actually, what is done in practice, is to
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define a 1D-space with Ncells + 4 cells, where cells numbered i = 1, i = 2, i = Ncells + 3 and i = Ncells + 4 are
the fictive cells for the boundary conditions and cells from i = 3 to i = Ncells + 2 are the real cells. Thus, in
practice, the loop in Algorithm 8 is done from i = 3 to i = Ncells + 2.

7.2.2 With matrix form of the SD procedure

Like for 1D-advection, the SD process can be presented in matrix form for the 1D-diffusion equation. The
principle is almost the same than the one presented in paragraph (6.2.2): only two main things are differ-
ent. Firstly, as seen in sections (2.1.7) and (7.2.1), there is no Riemann solver since there is no advective
flux: only the solution values at cell interfaces have to be recomputed to ensure continuity. Secondly, the
number of steps is different because a second derivative needs to be computed. It means that the process
extrapolation⇒averaging⇒differentiating is done two times. Thus, this process will be described using a ma-
trix approach for SD knowing that the final objective is to express Ri by involving ui−2, ui−1, ui, ui+1 and
ui+2.

SD process for computing the residual of the 1D-diffusion equation

The beginning of this process is quite similar to the one of the 1D-advection equation. Actually the first step
is the same:

ṽi = Eiũi (7.100)

The second step is different because the flux at flux points is not computed but only the solution at flux
points and the information from neighboring cells i− 1 and i+ 1 is still needed. For an interface between cell
L at its left and cell R at its right, a centered scheme is taken:

vL,Rint =
vLNFP + vR1

2
(7.101)

Thus, the matrix A (for ”Average” matrix) of size NFP × (p+ 4) such that vi = Aṽi is introduced:

A =

 1
2

1
2 O1,NSP 0 0

O1,NSP O1,NSP Ip O1,NSP O1,NSP

0 0 O1,NSP
1
2

1
2

 (7.102)

The third step is the same as for the 1D-advection process, the solution at flux points vi is differentiated:(
∂u

∂x

)i
= DiAṽi = DiAEi︸ ︷︷ ︸

Mi
Diff

ũi (7.103)

where M i
Diff is the compact matrix for the computation of

(
∂u
∂x

)i
with SD.

Now, this process has to be restarted to obtain the term
(
∂2u
∂x2

)i
. To do so,

(
∂v
∂x

)i
is needed. The fourth step

considered the following column vector:

(
∂̃u

∂x

)i
=


(
∂u
∂x

)i−1

(
∂u
∂x

)i
(
∂u
∂x

)i+1

 =


M i−1
Diff ũ

i−1

M i
Diff ũ

i

M i+1
Diff ũ

i+1

 (7.104)

Since ũi−1, ũi and ũi+1 have some terms in common, a matrix M i
Diff such that

(
∂̃u
∂x

)i
= M i

Diff
˜̃ui has to be

found where:

˜̃ui =


ui−2

ui−1

ui

ui+1

ui+2

 (7.105)
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Then, it seems that M i
Diff is a matrix of size 3NSP × 5NSP with this structure:

M i
Diff =

 M i−1
Diff O1,NSP O1,NSP

O1,NSP M i
Diff O1,NSP

O1,NSP O1,NSP M i+1
Diff

 (7.106)

Thus, the fourth step ends with the extrapolation process:(
∂̃v

∂x

)i
= Ei

(
∂̃u

∂x

)i
= EiM i

Diff
˜̃ui (7.107)

The fifth step is equivalent to the second step:(
∂v

∂x

)i
= A

(
∂̃v

∂x

)i
= AEiM i

Diff
˜̃ui (7.108)

Finally, the sixth step is equivalent to the third step:(
∂2u

∂x2

)i
= Di

(
∂v

∂x

)i
= DiAEi︸ ︷︷ ︸

Mi
Diff

M i
Diff

˜̃ui (7.109)

The overall process for computing the residual for 1D-diffusion inside cell i with matrix form of SD is:

Ri =
[
Ris
]T
1≤s≤NSP

= κ×M i
DiffM

i
Diff

˜̃ui (7.110)

Jacobian of the residual using matrix form of SD

With Eq. (7.110) and (7.105), it seems that all the information about the variations of Ri with respect to one of
the uk, where k ∈ {i− 2, i− 1, i, i+ 1, i+ 2}, is contained into κDiAEiM i

Diff . Actually, because this matrix
is of size NSP × 5NSP , each square submatrix of size NSP corresponds to one of the local Jacobian matrix.
Thus, the links between local Jacobians and κDiAEiM i

Diff are the following:

∂Ri

∂ui−2
= κ

(
DiAEiM i

Diff

)
1≤row≤NSP
1≤col≤NSP

(7.111a)

∂Ri

∂ui−1
= κ

(
DiAEiM i

Diff

)
) 1≤row≤NSP
NSP+1≤col≤2NSP

(7.111b)

∂Ri

∂ui
= κ

(
DiAEiM i

Diff

)
1≤row≤NSP

2NSP+1≤col≤3NSP

(7.111c)

∂Ri

∂ui+1
= κ

(
DiAEiM i

Diff

)
1≤row≤NSP

3NSP+1≤col≤4NSP

(7.111d)

∂Ri

∂ui+2
= κ

(
DiAEiM i

Diff

)
1≤row≤NSP

4NSP+1≤col≤5NSP

(7.111e)

With Eq. (7.111), the fact that Jacobian matrix of the residual for 1D-diffusion, ∂R∂u , is a fifth-diagonal block

matrix is recovered where each block of size NSP × 5NSP is exactly the matrix κDiAEiM i
Diff .

Algorithm

The overall process described above can be summed up in Algorithm 9.

Note: Like in Algorithm 8, in practice, the loop in Algorithm 9 is done from i = 3 to i = Ncells + 2.

7.3 Numerical computing for the Jacobian of the residual

As for the advection case, the Jacobian of the residual can be computed numerically. The process is a bit more
complicated since unb is bigger for the 1D-diffusion than for the 1D-advection.

Thanks to the study of the analytic case, it was shown that for each cell i, there are five local Jacobians to
compute for the 1D-diffusion equation. Thus, it means that for each cell, the solution has to be altered at
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Algorithm 9 Compute ∂R
∂u for 1D-diffusion using matrix form of SD

Input(s): Ncells, NFP , NSP , Xs, Xf , i, κ
1: Compute Average matrix A
2: for i from 1 to Ncells do
3: Compute Ei

4: Compute Di

5: Compute M i
Diff using M i−1

Diff , M i
Diff and M i+1

Diff

6:

(
∂R
∂u

)
1+(i−1)NSP≤row≤iNSP

1+(i−3)NSP≤col≤(i+2)NSP

= κ×DiAEiM i
Diff

7: end for
Output(s): ∂R

∂u

5×NSP solution points. Therefore, at each time step, Ncells × 5NSP alterations of the solution must be done.
Fortunately, like for 1D-advection, when the solution is altered at a solution point not all the process described
in section (2.1.7) has to be done again for the five involved cells i− 2, i− 1, i, i+ 1 and i+ 2. Actually, because
the residual in all cells, R, is known at instant n, it means that the values of v and the values of its derivatives
at flux points in all the cells have already been computed as seen on Figure 7.11 for the p = 2 case.

i− 2 i− 1 i i+ 1 i+ 2

H H H H H H H H H H H H H H H HN N N N N N N N N N N N N N N

vi−2,i−1
int

(
∂v
∂x

)i−2,i−1

int

vi−1,i
int

(
∂v
∂x

)i−1,i

int

vi,i+1
int

(
∂v
∂x

)i,i+1

int

vi+1,i+2
int

(
∂v
∂x

)i+1,i+2

int

vi−2(
∂u
∂x

)i−2(
∂v
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Figure 7.11: Initial situation before altering one solution point inside cell i − 2 or i − 1 or i or i + 1 or i + 2.
Solution points (N) and flux points (H).

As for 1D-advection, the ”optimized” process to compute the local Jacobians numerically can be written down.
Let’s say that the solution at the center solution point in cell i− 2 is altered as seen on Figure 7.12:
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Figure 7.12: Altering the solution at green solution point inside cell i − 2. The variables in green are those
changing with this alteration.

Then, the interpolation process in this cell will give another polynomial of degree p and the values of the solution
at flux points vi−2 will change so the value vi−2,i−1

int will change too. Consequently, vi−1 will also change but the

former values of vi−1, also used to compute vi−2,i−1
int , are already known so there is no need to recompute them

again: only vi−1
1 will change. Moreover, vi−1,i

int is also already known since none of the values which are used to

compute it have changed. Thus, the polynomial
(
∂u
∂x

)i−1
built using vi−1 is different and therefore

(
∂v
∂x

)i−1
also

changed. Consequently,
(
∂v
∂x

)i−1,i

int
is changing so

(
∂v
∂x

)i
is changing because

(
∂v
∂x

)i
1

is different. Finally,
(
∂2u
∂x2

)i
is recomputed with the differentiation of

(
∂v
∂x

)i
and it gives the new residual inside cell i for the 1D-diffusion.

It has to be noted that obviously the three terms
(
∂u
∂x

)i−2
,
(
∂v
∂x

)i−2
and

(
∂v
∂x

)i−2,i−1

int
are also changing but, since

they are not needed for the computation of Ri,new, they are not recomputed. This is the reason why they are
not in green in Figure 7.12. This process can be summed up as follows by putting in order only the quantities
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that need to be recomputed:

ui−2 ⇒ vi−2 ⇒ vi−2,i−1
int ⇒ vi−1

1 ⇒
(
∂u

∂x

)i−1

⇒
(
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)i−1

⇒
(
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∂x

)i−1,i

int

⇒
(
∂v

∂x

)i
1

⇒
(
∂2u

∂x2

)i
⇒ Ri,new

The same reasoning can be applied if the solution inside cell i + 2 is altered as seen on Figure 7.13 with the
summary of the process just below it:
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Figure 7.13: Altering the solution at green solution point inside cell i + 2. The variables in green are those
changing with this alteration.

ui+2 ⇒ vi+2 ⇒ vi+1,i+2
int ⇒ vi+1

NFP
⇒
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⇒ Ri,new

Another case is when the solution is altered inside the close neighbors of cell i: i− 1 and i+ 1. Let’s take the
alteration of the solution inside cell i− 1 in example as seen in Figure 7.14, still with its summary below:
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Figure 7.14: Altering the solution at green solution point inside cell i − 1. The variables in green are those
changing with this alteration.
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Then, the process for cell i+ 1 is straightforward:
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Figure 7.15: Altering the solution at green solution point inside cell i + 1. The variables in green are those
changing with this alteration.
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The last case is the alteration of the solution inside cell i as presented in Figure 7.16 :
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Figure 7.16: Altering the solution at green solution point inside cell i. The variables in green are those changing
with this alteration.
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The process explained in this section is summed up into two algorithms, 13 and 12, that can be found in appendix
E. As seen here, this type of reasoning is not simple and it is only a 1D-case with one variable. Therefore, in
3D multivariable, this process is very fastidious because it needs a certain knowledge of the structure of the
Jacobian of the residual which is very complicated. That is why, the JFNK approach is also preferred, not only
because it should be faster, but also it does not need a knowledge of the Jacobian since there is no explicit
computation of it.

7.4 Comparison between the different methods for computing the
Jacobian of the residual

In this section, the inexact Newton method with numerical computing of the Jacobian will be compared to the
JFNK method in terms of CPU time. The following test case is considered

• Physical domain: [−Lx, Lx] with Lx = 0.15 m .

• Diffusion coefficient: κ = 0.0155 m2.s−1.

• Physical time simulated: Tf = 0.002 s <<
L2
x

κ = 1.45 s.

• No boundary conditions.

• Ncells = 216 and p = 2.

• Initial solution: f (x) = 1
σ
√

2π
e−

x2

2σ2 with σ = 0.01.

• Time integration schemes: ILDDRK(3,4) for implicit simulations and ERK(4,4) for explicit ones.

It represents the diffusion of a 1D-Gaussian profile over a domain of total length L = 0.3 m during a time Tf
very small compares to the characteristic time of diffusion in this problem. This was done in order to simulate an
”infinite” domain where the boundaries have no influence on the numerical solution. As for 1D-advection, CPU
times and Lrel2 (unum) will be picked for both simulations with numerical and analytical computation of the
Jacobian, the JFNK approach with PETSc and also the ERK(4,4) scheme. The time step will be computed with
the Fourier number. It was set to αSD = 0.4 for ERK(4,4): a value that ensures stability. For ILDDRK(3,4)
αSD = 10 was chosen: this value seemed to avoid too much dissipation and dispersion. The results are presented
in Table 7.4.
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Time integration scheme tCPU (s) Lrel2 (unum)
ERK(4,4) 172 1.33e-5

ILDDRK(3,4) with analytical computation 22 1.34e-5
ILDDRK(3,4) with numerical computation 125 1.34e-5

ILDDRK(3,4) with JFNK 85 1.32e-5

Table 7.4: Comparison between ERK(4,4) and ILDDRK(3,4) schemes with different approaches for computing
the Jacobian of the residual in the case of 1D-diffusion.

Results analysis: Unlike the 1D-advection case, all the implicit computations are faster than the explicit one.
That was expected because in the advection case, the time step ratio was of 12.5 (ratio of the CFLSD) whereas
in the diffusion case it is 25. Therefore, even less iterations are done. Moreover, the JFNK is well faster than
the inexact Newton with numerical computation when there is no influence of the boundaries which is quite
promising. About the errors, they are quite the same even with a bigger time step for ILDDRK(3,4). Maybe
because the error is linked to the spatial scheme in this case.

These results are quite encouraging for the use of the JFNK method in code JAGUAR where the boundary
conditions should be well implemented.
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8 Simulations with code JAGUAR

8.1 Characteristics of PETSc solver used in code JAGUAR

In section (5.2), it was said that the JFNK solver from PETSc library will be used to solve the nonlinear system
arising from the implicit time discretization. However, although the solver is Jacobian-Free, a lot of Newton
and Krylov solvers are available in SNES module of PETSc. In this section, the type of Newton and Krylov
solvers and also their characteristics, used with code JAGUAR, will be detailed.

8.1.1 Type of Newton solver

Among the numerous Newton solvers offered in SNES module of PETSc, the one that was selected is the
”Newton Line Search” which is the default Newton solver in this module. This solver is used in a Matrix-Free
context that has to be specified with the following command line at the execution: -snes mf. Like all the Newton
methods, this one has stopping criterions and the user can change their values easily using some command lines.
Using the same notations as in paragraph (4.1.1), the defaults values and the command lines to change them
are summed up in Table 8.5:

Default value Command line
εNewt,r 10−8 -snes rtol
εNewt,a 10−50 -snes atol
ηNewt 10−8 -snes stol

mNewt,max 50 -snes max it

Table 8.5: Default values and command lines for the stopping criterions of the Newton Line Search solver of
SNES module in PETSc.

8.1.2 Type of Krylov solver

In SNES module, for the Matrix-Free context, the default Krylov solver is GMRES(mRes) and it will be the
one used for code JAGUAR. Actually, all the Krylov solvers are in another PETSc module which is called KSP
(Krylov SubsPace). When using the JFNK method of SNES module, the KSP module is automatically set and
by default it calls the GMRES(mRes) solver. If the user wants to have another Krylov methods, he just has to
use the command line ksp type with the name of the method found in PETSc documentation [6]. The defaults
values for the stopping criterions and also for some characteristics of the GMRES(mRes) algorithm are summed
up in Table 8.6 along with their associated command line:

Default value Command line
εKry,r 10−5 -ksp rtol
εKry,a 10−50 -ksp atol
jKry,max 104 -ksp max it
mRes 30 -ksp gmres restart

Table 8.6: Default values and command lines for the GMRES(mRes) solver of KSP module in PETSc.

It has to be mentioned that no preconditioners were used to accelerate the convergence. Actually, in KSP
module, a lot of preconditioners are already available such as Jacobi, SOR, LU and ILU. However, these
preconditioners are not suitable for a Matrix-Free use because they need the Jacobian matrix explicitly. Thus,
a Matrix-Free preconditioner has to be built. One idea is to use the FGMRES (for Flexible-GMRES) algorithm
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[41], already available in KSP module, instead of GMRES and do preconditioning with GMRES. This will be
the purpose of further developments in the future for JAGUAR.

8.2 Euler and Navier-Stokes equations in 2D

As mentioned in paragraph (1.1.2), JAGUAR is solving the 3D Navier-Stokes equations on unstructured hex-
ahedral grids. However, the implicit time-marching schemes have first been tested on 2D test cases. Thus, the
flows of interest in this report are assumed to be adequately modeled either by the 2D Euler equations (first
test case) or the 2D Navier-Stokes equations (second test case).

The Euler equations describe the most general flow configuration for a non-viscous, non-heat conducting fluid.
They are formed by the combination of three conservation laws, namely the conservation of mass, the momentum
equations and conservation of energy. These three conservation laws are combined with the equation of state
for perfect gases to form a closed system of equations.

The Navier-Stokes equations extend the mathematical model of the Euler equations to account for viscous
effects and heat conduction in the fluid. These equations can be put in the form of Eq. (2.26) where the fluxes
can be split into a convective (indexed ”C”) and a diffusive (indexed ”D”) part:

U =


ρ
ρu
ρv
ρE

 , F = FC − FD, G = GC −GD, H =


0
0
0
0

 (8.112)

with

FC =


ρu

P + ρu2

ρuv
u (P + ρE)

 , GC =


ρv
ρuv

P + ρv2

v (P + ρE)

 (8.113)

FD = µ


0

2ux − 2
3 (ux + vy)

vx + uy
u
(
2ux − 2

3 (ux + vy)
)

+ v (vx + uy) +
Cp
Pr
Tx

 , GD = µ


0

vx + uy
2vy − 2

3 (ux + vy)

v
(
2vy − 2

3 (ux + vy)
)

+ u (vx + uy) +
Cp
Pr
Ty


(8.114)

where ρ is the fluid density, u and v are respectively the x-velocity and y-velocity of the fluid, P is the static
pressure, T is the local temperature, µ is the dynamic viscosity, Cp is the specific heat at constant pressure,
Pr is the Prandtl number of the fluid and E is the total energy per unit mass. The notations .x and .y mean
respectively ∂.

∂x and ∂.
∂y .

This system is closed by the equation of state for perfect gases which relates static pressure with the conserved
variables:

P = (γ − 1)

[
ρE −

ρ
(
u2 + v2

)
2

]
(8.115)

The Euler equations correspond to the special case where µ = 0 meaning that FD = (0, 0, 0, 0)
T

and GD =

(0, 0, 0, 0)
T

.

8.3 Vortex transported by an uniform flow in 2D

This test case corresponds to problem C1.6. presented in the review paper [55]. It aims at testing a high-order
method capability to preserve vorticity in an unsteady inviscid flow.

8.3.1 Governing equations

The governing equations are the unsteady 2D Euler equations with a constant ratio of specific heats γ = 1.4
and a gas constant Rgas = 287.15 J.kg−1.K−1.
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8.3.2 Flow conditions

The domain is first initialized with an uniform flow of pressure P∞, temperature T∞, a given Mach number
M∞ and an initial vortex profile well-chosen which will be described below. In this case, the unperturbed flow
has a horizontal speed given by:

U∞ = M∞
√
γRgasT∞ (8.116)

The initial vortex is a 2D Lamb-Oseen inviscid vortex characterized by the following stream function [26]:

ψ (x, y) = Γ exp

(
− (x− xc)2

+ (y − yc)2

2R2
c

)
(8.117)

where Γ is the vortex strength, Rc is the vortex radius and (xc, yc) are the coordinates of the vortex center.
The vortex defined by Eq. (8.117) is very interesting because it is a solution of the 2D Euler equations. The
velocity and pressure fields can be obtained and for an uniform flow over x axis they write:

u = U∞ +
∂ψ

∂y
= U∞ − Γ

y − yc
R2
c

exp

(
− (x− xc)2

+ (y − yc)2

2R2
c

)
(8.118a)

v = −∂ψ
∂x

= Γ
x− xc
R2
c

exp

(
− (x− xc)2

+ (y − yc)2

2R2
c

)
(8.118b)

P = P∞ −
ρΓ2

2R2
c

exp

(
− (x− xc)2

+ (y − yc)2

R2
c

)
(8.118c)

Thus, theoretically, the vortex is transported by the flow without any physical dissipation. The exact solution
for any time t0 can be obtained by changing the vortex center coordinates as follows:

xc (t0) = xc (0) + U∞t0 and yc (t0) = yc (0) (8.119)

That is why, this test case is well suited to study numerical dissipation and dispersion of numerical schemes
because if dissipation or/and dispersion occurs, it has to come from numerical dissipation or/and dispersion.

8.3.3 Geometry and mesh

The computational domain is rectangular with (x, y) ∈ [0, Lx]× [0, Ly], where Lx = Ly = 0.1 m and the mesh
is composed of Ncells = 4096 cells. For all the simulations, the order of interpolation polynomial was set to
p = 4 because, according to previous simulations of this test case with JAGUAR, this value was associated with
very few numerical dissipation and dispersion from the spatial scheme. Consequently, the dissipation regarding
several time-marching schemes, especially implicit ones, could be studied. This value of p sets the number of
DoF to 4096× (4 + 1)

2
= 102400.

8.3.4 Boundary conditions

Translational periodic boundary conditions are imposed for the left/right and top/bottom boundaries respec-
tively, to enable the vortex to turn many times in the domain.

8.3.5 Testing conditions

Initially, the vortex is positioned at the center of the computational domain:

xc (0) = 0.05 m and yc (0) = 0.05 m (8.120)

with a radius Rc = 0.005 m and a strength Γ = 34.728 m2.s−1. The uniform flow is initialized with:

P∞ = 105 Pa, T∞ = 300 ◦K and M∞ = 0.5 (8.121)

With this values, Eq. (8.116) gives U∞ = 174 m.s−1 for the speed of the unperturbed flow. As explained in
paragraph (8.3.2), the vortex should be transported by the flow at speed U∞. Thus, because there are periodic
boundary conditions, the time needed for the vortex to perform one turn of the domain is:

T =
Lx
U∞

= 5.75× 10−4 s (8.122)
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A representation of the initial flow with the vortex can be found in appendix F. Finally, for the JFNK method,
the values of the parameters for the nonlinear and linear solver used in all simulations were kept to their default
value written in Tables 8.5 and 8.6 except for εNewt,a and εKry,a which were set respectively to 10−5 and 10−6.
These values were used because they gave approximately the same results as computations with the default
values but with a smaller computation time. It should be mentioned that all the computations were done on
only one core.

8.3.6 Comparison between time-marching schemes

Simulations over five periods (physical time Tf = 5×T ) where done with the implicit midpoint, the ILDDRK(3,4)
and the ERK(6,2)LDLD schemes for different CFL values. The explicit scheme was set with CFL = 0.5 and
implicit schemes were used with CFL = 5 to see if greater time steps were possible. The implicit midpoint
was also tested with CFL = 0.5 to compare its numerical dissipation with the case CFL = 5. The profile
P (x = 0.05, y) obtained with these schemes are compared with the analytic solution and the results are presented
in Figures 8.17 and 8.18 where a zoom around the pressure peak is done:

Figure 8.17: Pressure along x = 0.05 m for implicit midpoint, ILDDRK(3,4) and the ERK(6,2)LDLD schemes.

Results analysis: As expected, all the schemes are dissipating and dispersing. For CFL = 0.5 both
ERK(6,2)LDLD and implicit midpoint schemes give the same results. However, for CFL = 5, the implicit
midpoint is dispersive. On the contrary, the ILDDRK(3,4) scheme is few dispersive for CFL = 5. Moreover, its
dissipation is non-significant compared to the one appearing for the implicit midpoint when CFL = 0.5 even
though the time step is ten times greater. It is probably due to the low-dissipative and low-dispersive properties
of ILDDRK(3,4) scheme. Actually, it seems that the number of stages and also the order of the RK have a big
impact on dissipation and dispersion. On Figure 8.19 the results for the seven implicit schemes implemented
in JAGUAR are plotted. The SDIRK(2,2) scheme is less dispersive than the implicit midpoint whereas the
SDIRK(2,3) and SDIRK(3,3) schemes are few dispersive. The SDIRK(2,3) scheme is the most dissipative. The
SDIRK(3,4) is a little better than the SDIRK(3,3) on dissipation showing that the order of the scheme has an
impact on dissipation. At the end, the ILDDRK(3,4) scheme seems to be the better one to limit dissipation
and dispersion.
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Figure 8.18: Zoom around y = 0.05 m on pressure profiles along x = 0.05 m.

Figure 8.19: Zoom around y = 0.05 m on pressure profiles along x = 0.05 m for the seven IRK schemes
implemented in JAGUAR.
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8.3.7 Performance of implicit schemes

In paragraph (8.3.6), it was shown that JAGUAR was able to handle CFL > 1 thanks to the implementation
of implicit time-marching schemes. However, it is essential to determine if it is worth it to do implicit time
integration rather than an explicit one in terms of CPU time. As said in paragraph (1.2.6), the expected speed
up should be between one to two order of magnitude compared to explicit schemes. Thus, several simulations
of the 2D transported vortex were performed, at fixed different time steps for the seven implicit schemes
implemented in JAGUAR. The computation time and the 2-norm error on pressure field, noted respectively
tCPU and Labs2 (P ), are picked and they are compared to these values in the case of ERK(6,2)LDLD scheme with
a fixed time step set to ∆t = 2.8 × 10−7 s (corresponding to approximately CFL = 0.5). All the simulations
were done only during one period T . Moreover, at this time of the internship, the parallelization of the implicit
schemes was not done. Therefore simulations over a lot of periods were quite long. Three different time steps
were taken for the implicit schemes: 1.12 × 10−6 s (CFL ≈ 2), 2.24 × 10−6 s (CFL ≈ 4) and 4.48 × 10−6 s
(CFL ≈ 8). Thus, if the scheme is of order k, the error should increase by a factor of 2k between each of these
time steps. The results are presented in Figures 8.20 and 8.21. For Figure 8.20, all the tCPU values of the seven
IRK schemes are divided by tref = 378 s which is the computation time taken by the ERK(6,2)LDLD scheme
to perform a one loop simulation. Time steps were also divided by the time step taken for the ERK(6,2)LDLD
scheme: ∆tref = 2.8× 10−7 s. All of these values are also presented in Table F.1 to Table F.7 in appendix F.

Figure 8.20: Evolution of tCPU versus ∆t for the seven IRK schemes implemented in JAGUAR. tref = 378 s
and ∆tref = 2.8× 10−7 s.

Results analysis: For the CPU times, all schemes are slower than the explicit one. Moreover, when ∆t is
higher, tCPU is also higher even though less time iterations are done. Obviously increasing the time step also
increases the cost per time iteration as it can be seen from Table F.1 to Table F.7 in appendix F where the
number of nonlinear and linear iterations is bigger when ∆t is higher. However, it should be counterbalanced
by the fact that less time iterations are done which is not the case here. This is a real issue since doing implicit
time integration should reduce the computation time compared to explicit integration. The implicit midpoint
and the SDIRK(2,2) schemes are the fastest among the implicit schemes but as seen before they are dispersive.
The SDIRK(2,2) is even faster than the implicit midpoint although it has two stages. The ILDDRK(3,4) is
quite fast despite its three stages: as seen in Table F.7 in appendix F, the number of nonlinear and linear
iterations is very small for each stage. Thus, in terms of CPU time, it seems that this scheme is the best one
among all the implicit schemes. However, about the errors, all the schemes orders are retrieved but not for
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Figure 8.21: Evolution of Labs2 (P ) versus ∆t for the seven implicit schemes implemented in JAGUAR.

the ILDDRK(3,4) scheme. Actually, according to Figure 8.21, it is of order 2 as the implicit midpoint and the
SDIRK(2,2) methods. Moreover, in [33], the authors are also claiming that this ILDDRK(3,4) is of order 2 and
they propose other values of the coefficients to have a real ILDDRK(3,4) scheme. Their method was tested
in JAGUAR but it failed to converge so no results were obtained to see if this scheme was really of order 4.
Actually, when the order is increasing, the convergence is harder (see Table F.6 for SDIRK(3,4) where tCPU is
already huge for ∆t = 2.24 × 10−6 and there was no convergence for ∆t = 4.48 × 10−6) therefore this might
be linked to that observation. Finally, even though the ILDDRK(3,4) seems to be of order 2, it is a good
compromise in terms of dissipation, computation time end errors.

The fact that implicit schemes are not faster than explicit ones for the convected vortex is not surprising.
Moreover, some improvements are still possible such as the use of preconditioners to accelerate the convergence.
Actually, because there is no viscosity here, the time steps can still be sufficient for explicit time-marching
schemes without stability issues. That is why, a viscous test case will be considered to see if implicit schemes
are still less efficient than explicit ones.

8.4 Flow over a NACA0012 airfoil

At start, the objective was to simulate the NACA0012 test case corresponding to problem C1.3. presented in the
review paper [55]. This test case aims at testing a high-order method for the computation of external flow with
a high-order curved boundary representation. However, the boundary condition on the wing is an adiabatic
viscous wall and in JAGUAR only the isothermal viscous wall is implemented. Thus, the results obtained with
JAGUAR cannot be compared to the one from [55] but it is still possible to compare the results given by the
implicit time integration schemes with the one given by the ERK(6,2)LDLD scheme.

8.4.1 Governing equations

The governing equations are the 2D Navier-Stokes equations still with γ = 1.4 and a Prandtl number Pr = 0.72.
A constant dynamic viscosity will be assumed. Its value will be found using the flow conditions that are
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considered. The gas constant is still Rgas = 287.15 J.kg−1.K−1.

8.4.2 Flow conditions

The flow conditions are those of a subsonic viscous flow problem over the NACA0012 airfoil at an angle of
attack α = 1◦ and a Reynolds number, based on the chord length, Re = 5000.

8.4.3 Geometry and mesh

The geometry is a NACA0012 airfoil with the following analytical expression for the airfoil surface:

y = ±0.6
(
0.2969

√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1015x4

)
(8.123)

where x ∈ [0, 1]. Thus, the chord length is equal to one. The airfoil defined by Eq. (8.123) has not a zero
thickness at the trailing edge since y (1) = 1.26× 10−3 6= 0.

Note: Various ways exist in the literature to modify this definition such that the trailing edge has a zero
thickness. A simple one is to set the coefficient of x4 to 0.1036 instead of 0.1015.

The mesh is composed of Ncells = 3611 triangular cells and is extended about 80 chords away from the airfoil.
It means that the spatial domain is rectangular with (x, y) ∈ [−Lx, Lx] × [−Ly, Ly], where Lx = Ly = 80 m.
All the simulations were done with p = 3 ensuring a fourth-order spatial accuracy. In this case, the number of
DoF was: 3611× (3 + 1)

2
= 57776.

8.4.4 Boundary conditions

The airfoil is treated as an isothermal viscous wall since the adiabatic viscous wall was not implemented yet in
code JAGUAR.

8.4.5 Testing conditions

The uniform flow is initialized with:

P∞ = 101325 Pa, T∞ = 293.15 ◦K and M∞ = 0.5 (8.124)

In that case, Eq. (8.116) gives U∞ = 172 m.s−1 and the density is given by the ideal gas law:

ρ∞ =
P∞

RgasT∞
= 1.2 kg.m−3 (8.125)

Finally, as mentioned in paragraph (8.4.1), the dynamic viscosity can be computed to match with the Reynolds
value wanted:

µ =
ρ∞U∞c

Re
= 4.128× 10−2 kg.m−1.s−1 (8.126)

where c = 1 m is the chord of the airfoil here. About the JFNK method, the values for the stopping criterions
were set to εNewt,a = εKry,a = 10−4 which appeared to be sufficient for precision. Finally, like for the convected
vortex, it should be mentioned that all the calculations were done on only one core.

8.4.6 Results

In section (8.3), the ILDDRK(3,4) scheme was found to be a good compromise in terms of CPU time and
precision. Thus, the results given by this scheme will be compared to the ones from ERK(6,2)LDLD scheme
for a simulation with a physical time Tf = 0.01 s. About the CFL, it was set to 0.5 for the explicit case and
to 5 for the implicit one. The values of the drag coefficient Cd, the lift coefficient Cl and the computation
time that were obtained are presented in Table 8.7. As it will be shown, the ILDDRK(3,4) was not faster than
ERK(6,2)LDLD scheme but it was found that SDIRK(2,2) was. Therefore, results for the SDIRK(2,2) scheme
are also presented in Table 8.7.

Results analysis: For the Cd values, all the schemes are giving the same results which is a good point.
However, for the Cl values, there are strong differences between explicit and implicit time integration schemes
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Scheme Cd Cl tCPU (s)
ERK(6,2)LDLD 7.60× 10−3 8.90× 10−7 3834
ILDDRK(3,4) 7.60× 10−3 1.41× 10−6 5808
SDIRK(2,2) 7.60× 10−3 1.67× 10−6 3498

Table 8.7: Values of Cd, Cl and tCPU for ERK(6,2)LDLD, ILDDRK(3,4) and SDIRK(2,2) that were obtained
for the NACA0012 test case when Tf = 0.01.

and even in between implicit schemes. It probably comes from dissipation and dispersion already observed in
the convected vortex test case. About the computation times, the ILDDRK(3,4) scheme is very costly compared
to ERK(6,2)LDLD whereas the SDIRK(2,2) is not. It means that when there are viscous effects and a smaller
time step, an implicit scheme could be faster than an explicit one. This is very interesting since implicit time-
marching methods aim at reducing the computation time for viscous flows where the time step is very small
if explicit time-marching schemes are used. The remaining issue is that the SDIRK(2,2) was found to be very
dissipative and dispersive compared to ILDDRK(3,4) or SDIRK(3,3) for instance. Therefore, some efforts have
to be made in order to reduce the computation time for the less dissipative and dispersive schemes. One idea
is the use of preconditioners for the JFNK solver which will be the topic of further developments in JAGUAR.
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9 Conclusion and perspectives

As seen in Table 1.1, high-order spatial discretization methods are more and more coupled with an implicit
time discretization. It is due to the fact that such methods suffer from very restrictive stability conditions when
they are used with an explicit time integration. For the SD method, if implicit time-marching schemes are used,
the expected speed-up is between one to two orders of magnitude compared to explicit ones [47]. Thus, the
high-order SD solver on unstructured hexahedral grids, JAGUAR, developed at CERFACS has to use implicit
time integration.

Before developing into JAGUAR, some studies were made on the 1D-advection and 1D-diffusion equations
discretized by the SD method and advanced in time with implicit time-marching schemes. Algorithms for
computing analytically and numerically the Jacobian of the residual were derived for these two equations. It
turns out that the numerical computation of the Jacobian matrix was very costly. That is why a Jacobian-
Free-Newton-Krylov (JFNK) approach was considered to avoid the explicit computation of the Jacobian. The
JFNK solver from PETSc library was used and firstly implemented for 1D-advection and 1D-diffusion in my
model code and then in code JAGUAR.

For the 1D-cases, the results were quite encouraging since the JFNK method was faster than the inexact Newton
with numerical computation of the Jacobian. Following those observations, seven implicit time integration
schemes have been implemented in JAGUAR. At first, they were tested on the isentropic vortex transported by
an uniform flow test case. Although all of these schemes could handle CFL > 1, they were slower than explicit
time-marching schemes. Actually, the increasing cost of a time iteration was not counterbalanced with the fact
that less time iterations were done when the time step was higher. Dissipation and dispersion properties were
studied: the ILDDRK(3,4) was the less dissipative and dispersive among the seven time-marching schemes.
However, this scheme was found to be of order two rather than order four but it is a good compromise in terms
of dissipation and dispersion properties and also in computation time. The convected vortex is an inviscid test
case: there were no walls and consequently the time step was not very small even for explicit time integration
schemes. A viscous test case was studied to see if better performances can be seen when walls are considered.
Thus, a NACA0012 test case was simulated with the ERK(6,2)LDLD, the ILDDRK(3,4) and the SDIRK(2,2)
schemes. The last one was choosen because it was the fastest among implicit schemes in the convected vortex
test case. The three schemes gave the same results for the drag around the airfoil but for the lift they shew
huge differences. In terms of CPU time, the ILDDRK(3,4) scheme is still slower than ERK(6,2)LDLD but the
SDIRK(2,2) was faster of about ten percent.

Thus, the results were very far to what was expected in terms of speed-up. However, there was no use of
preconditioners for solving the linear systems with PETSc: some improvements can be hoped in this way.
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Appendix A

Coefficients of implicit Runge-Kutta
schemes used in JAGUAR

A convenient way to represent a Runge-Kutta scheme is the coefficient table suggested by Butcher [12]:

c A

bT

Table A.1: General form of a Butcher’s tableau

where matrix A and vectors b and c introduced in section (3.1) define the RK method.

Butcher’s tableau for implicit midpoint method

The implicit midpoint method is of second-order time accuracy. It is the simplest method in the class of
collocation methods known as the Gauss methods [3]. There is only one stage here and its Butcher’s tableau is
given by Table A.2:

1
2

1
2

1

Table A.2: Butcher’s tableau of implicit midpoint method

Butcher’s tableau for SDIRK(2,2) method

The Singly Diagonally Implicit Runge-Kutta of second-order with two stages is an implicit RK method where

the elements in the diagonal of matrix A are all equal to the same value. Here, by denoting λ = 2−
√

2
2 , its

Butcher’s tableau is given by Table A.3 [18]:

λ λ 0
1− λ 1− 2λ λ

1
2

1
2

Table A.3: Butcher’s tableau of SDIRK(2,2) method

This scheme is L-stable [18].

Butcher’s tableau for SDIRK(2,3) method

The Singly Diagonally Implicit Runge-Kutta of third-order with two stages is an implicit RK method. Its

Butcher’s tableau is the same as SDIRK(2,2) found in Table A.3 but with λ = 1
2

(
1 + 1√

3

)
[16][5]. This scheme

is only A-stable [18].
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Butcher’s tableau for SDIRK(3,3) method

The Singly Diagonally Implicit Runge-Kutta of third-order with three stages which was implemented in JAGUAR
is the one from Butcher’s book [12]. With λ = 0.4358665215, its Butcher’s tableau is given by Table A.4:

λ λ 0 0
1+λ

2
1−λ

2 λ 0

1 −6λ2+16λ−1
4

6λ2−20λ+5
4 λ

−6λ2+16λ−1
4

6λ2−20λ+5
4 λ

Table A.4: Butcher’s tableau of SDIRK(3,3) method

This scheme is L-stable [34].

Butcher’s tableau for DIRK(3,3) method

The Diagonally Implicit Runge-Kutta of third-order with three stages which was implemented in JAGUAR is
the one from this paper [34]. Its Butcher’s tableau is given by Table A.5:

0.0585104413419415 0.0585104413426586 0 0
0.8064574322792799 0.0389225469556698 0.7675348853239251 0
0.2834542075672883 0.1613387070350185 -0.5944302919004032 0.7165457925008468

0.1008717264855379 0.4574278841698629 0.4417003893445992

Table A.5: Butcher’s tableau of DIRK(3,3) method

This scheme is L-stable [34].

Butcher’s tableau for SDIRK(3,4) method

The Singly Diagonally Implicit Runge-Kutta of fourth-order with three stages is the one from Crouzeix [16].
Its Butcher’s tableau is given by Table A.6 [5]:

1+α
2

1+α
2 0 0

1
2

−α
2

1+α
2 0

1−α
2 1 + α −(1 + 2α) 1+α

2
1

6α2 1− 1
3α2

1
6α2

Table A.6: Butcher’s tableau of SDIRK(3,4) method

where α = 2√
3

cos
(
π
18

)
. This scheme is A-stable [32].

Butcher’s tableau for ILDDRK(3,4) method

The Implicit Low-Dispersion and low-Dissipation Runge-Kutta of fourth-order with three stages is a Diagonally
Implicit RK (DIRK) schemes designed by A. Najafi-Yazdi and L.Mongeau [32]. Its Butcher’s tableau is given
by Table A.7:

0.257820901066211 0.377847764031163 0 0
0.434296446908075 0.385232756462588 0.461548399939329 0
0.758519768667167 0.675724855841358 -0.061710969841169 0.241480233100410

0.750869573741408 -0.362218781852651 0.611349208111243

Table A.7: Butcher’s tableau of ILDDRK(3,4) method

This scheme is A-stable [32]. However, it seems that this scheme is actually of order 2 according to our results
and also to this paper [33].
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Appendix B

Links between dimensionless numbers
in SD and FD

CFL numbers

SD and FD do not have the same mean distance between two adjacent DoF. In 1D, with an uniform mesh, it is
∆x for FD and ∆x

p+1 for SD. Thus, a new CFL number can be defined for SD with a length scale corresponding

to the distance between two adjacent DoF [52]:

CFLSD =
c∆t
∆x
p+1

= (p+ 1)× CFLFD (B.1)

where c is the 1D linear advection speed, ∆x the distance between two consecutive mesh cells, ∆t the time step
and p the order of the interpolation polynomial. Eq. (B.1) shows that increasing the spatial order of accuracy,
and keeping Ncells constant, leads to a smaller time step for a given value of CFLSD. However, even if ∆t is
decreasing, the scheme could not be stable for a higher p even if it was the case for a lower p [52]. It comes
from the fact that spectral properties of schemes depend on the value of p for SD which is not the case for FD
where p = 0 all the time so the stability limit is always CFL = 1. Thus, the stability limit for the time step
changes with p. Therefore, for SD, stability limits should be think in terms of time step rather than in terms
of CFL condition.

Fourier numbers

The same reasoning can be applied for Fourier numbers. In 1D, still for an uniform mesh, a new Fourier number
can be introduced for SD, noted αSD, based on what is done for CFL numbers. Using the same notations of
the previous paragraph it is defined by:

αSD =
κ∆t
∆x2

(p+1)2

= (p+ 1)
2
αFD (B.2)

where κ is the diffusion coefficient.

59



Appendix C

Verification of spatial accuracy of the
model code

The purpose of this paragraph is to see if the expected spatial order of accuracy is reached by the model code.
The following test case is considered:

• Physical domain: [−Lx, Lx] with Lx = 1 m.

• Advection speed: c = 1 m.s−1.

• Physical time simulated: Tf = 0.5 s.

• Periodic boundary conditions.

• Order of interpolation polynomial: p = 2

• Initial solution: u0 (x) = 1
σ
√

2π
e−

x2

2σ2 with σ = 0.1.

• Time integration scheme: Explicit Runge-Kutta of order 2 (ERK2).

It represents the advection of a 1D-Gaussian profile over a domain of total length L = 2 m during 0.5 s at a
speed of 1 m.s−1. Because p = 2, the spatial scheme should be of order p + 1 = 3. Thus, if a constant time
step is kept and two simulations are done with two different meshes, characterized by ∆x1 and ∆x2 = ∆x1

2 , the
numerical error has to decrease by a factor of 2p+1 = 8 between the two meshes. Therefore, several simulations
with different values of Ncells, always taken as a power of 2, were tested. The values of Lrel2 (unum) and the
error ratio between 2 consecutive meshes, noted β, were collected. For these simulations, the time step was set
to ∆t = 1.30× 10−5 s, corresponding to CFLSD = 0.01 computed with p = 2 and Ncells = 512 (the finest mesh
used). The results are presented in Table C.1:

Ncells 16 32 64 128 256 512
Lrel
2 (unum) 4.31e-2 6.25e-3 7.91e-4 1.00e-4 1.26e-5 1.67e-6

β 6.90 7.90 7.91 7.94 7.54 -

Table C.1: Comparison between numerical errors for different meshes when p = 2 in order to check that the
spatial scheme is of order p+ 1 = 3

Results analysis: The model code is behaving quite well. The ratio between two consecutive meshes is close
to 8 except between meshes with Ncells = 16 and Ncells = 32. It is may be because they are very coarsed.
This ratio is also decreasing between meshes with Ncells = 256 and Ncells = 512, probably due to the mesh
convergence that has been reached. Thus, it seems that the model code is giving the expected order of accuracy.

The strength of the SD method is that it is easy to reach high-order only by changing the value of p. Actually
what is really important is the number of DoF. For a 1D-SD process, DoF = Ncells × (p+ 1), then when p
is increased, Ncells can be reduced in order to keep DoF approximately constant to have clear comparisons.
Normally, even if Ncells decreases, the error is smaller when p increases. The previous test case has been done
but with different values of p and Ncells in order to keep the number of DoF around 650 as in [27]. Moreover,
to minimize the error linked to ∆t, CFLSD was kept to 0.01 to have a very small time step. The values of
tCPU in Table C.2 are not very significant because usually the time step is well bigger but it is still possible to
compare them to see which simulation is faster.
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p 1 2 3 4
Ncells 325 216 162 130
DoF 650 648 648 650

Lrel
2 (unum) 1.11e-3 2.10e-5 1.11e-6 8.08e-7
tCPU [s] 1551 2447 3483 5197

Table C.2: Comparison between numerical errors for different meshes and values of p when DoF is kept approx-
imately constant.

Results analysis: As expected, the error is decreasing when p is higher and DoF kept constant. However, it
also increases the simulation time, which was also expected. With this example, the strength of the SD method
is highlighted: it can easily go to high-order but it has a cost in terms of computation time due to a stability
criterion if explicit time-marching schemes are used.
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Appendix D

Algorithms for the numerical
computation of the Jacobian of the
residual for 1D-advection

Algorithm that computes numerically ∂Ri

∂uk for the 1D-advection equation

Here the algorithm used to compute numerically the local Jacobians of a cell i in the case of the 1D-advection
equation is presented. It follows the explanations from section (6.3).

Algorithm 10 Compute numerically ∂Ri

∂uk
for 1D-advection

Input(s): Xs, Xf , NSP , NFP , i, k, u, v, F , Ri, c, ε
1: if k = i - 1 then
2: for j from 1 to NSP do
3: ui−1

j ← ui−1
j + ε

4: Recompute vi−1, F i−1 and F i−1,i
int

5: Recompute F̄ i using the new value of F i−1,i
int and the already known values F i and F i,i+1

int

6: Compute Ri,new

7:

(
∂Ri

∂ui−1

)
1≤row≤NSP

col=j

=
(
Ri,new−Ri

ε

)
1≤row≤NSP

8: end for
9: else if k = i then

10: for j from 1 to NSP do
11: uij ← uij + ε

12: Recompute vi, F i, F i−1,i
int and F i,i+1

int

13: Recompute F̄ i using the new values of F i−1,i
int , F i and F i,i+1

int

14: Compute Ri,new

15:

(
∂Ri

∂ui

)
1≤row≤NSP

col=j

=
(
Ri,new−Ri

ε

)
1≤row≤NSP

16: end for
17: else if k = i + 1 then
18: for j from 1 to NSP do
19: ui+1

j ← ui+1
j + ε

20: Recompute vi+1, F i+1 and F i,i+1
int

21: Recompute F̄ i using the new value of F i,i+1
int and the already known values F i and F i−1,i

int

22: Compute Ri,new

23:

(
∂Ri

∂ui+1

)
1≤row≤NSP

col=j

=
(
Ri,new−Ri

ε

)
1≤row≤NSP

24: end for
25: end if
Output(s): ∂Ri

∂uk

Algorithm 10 is a Python function called computeLocJacNumAdv1D
(
Xs, Xf , NSP , NFP , i, k, u, v, F ,R

i, c, ε
)
.
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Global algorithm for the 1D-advection equation

Algorithm 11 Compute numerically ∂R
∂u for 1D-advection

Input(s): Ncells, NSP , u, v, F , Ri, c, ε
1: Initialization of ∂R

∂u
as a square matrix of size Ncells ×NSP .

2: for i from 1 to Ncells do

3:
(

∂R
∂u

)
1+(i−1)NSP≤row≤iNSP

1+(i−2)NSP≤col≤(i−1)NSP

= computeLocJacNumAdv1D
(
Xs, Xf , NSP , NFP , i, i− 1, u, v, F ,Ri, c, ε

)
4:

(
∂R
∂u

)
1+(i−1)NSP≤row≤iNSP
1+(i−1)NSP≤col≤iNSP

= computeLocJacNumAdv1D
(
Xs, Xf , NSP , NFP , i, i, u, v, F ,R

i, c, ε
)

5:
(

∂R
∂u

)
1+(i−1)NSP≤row≤iNSP
1+iNSP≤col≤(i+1)NSP

= computeLocJacNumAdv1D
(
Xs, Xf , NSP , NFP , i, i+ 1, u, v, F ,Ri, c, ε

)
6: end for
Output(s): ∂R

∂u
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Appendix E

Algorithms for the numerical
computation of the Jacobian of the
residual for 1D-diffusion

Global algorithm for the 1D-diffusion equation

Algorithm 12 Compute numerically ∂R
∂u for 1D-diffusion

Input(s): Ncells, NSP , u, ∂v
∂x

, F , Ri, κ ε

1: Initialization of ∂R
∂u

as a square matrix of size Ncells ×NSP .
2: for i from 1 to Ncells do

3:
(

∂R
∂u

)
1+(i−1)NSP≤row≤iNSP

1+(i−3)NSP≤col≤(i−2)NSP

= computeLocJacNumDiff1D
(
Xs, Xf , NSP , NFP , i, i− 2, u, v, ∂v

∂x
, Ri, κ, ε

)
4:

(
∂R
∂u

)
1+(i−1)NSP≤row≤iNSP

1+(i−2)NSP≤col≤(i−1)NSP

= computeLocJacNumDiff1D
(
Xs, Xf , NSP , NFP , i, i− 1, u, v, ∂v

∂x
, Ri, κ, ε

)
5:

(
∂R
∂u

)
1+(i−1)NSP≤row≤iNSP
1+(i−1)NSP≤col≤iNSP

= computeLocJacNumDiff1D
(
Xs, Xf , NSP , NFP , i, i, u, v,

∂v
∂x
, Ri, κ, ε

)
6:

(
∂R
∂u

)
1+(i−1)NSP≤row≤iNSP
1+iNSP≤col≤(i+1)NSP

= computeLocJacNumDiff1D
(
Xs, Xf , NSP , NFP , i, i+ 1, u, v, ∂v

∂x
, Ri, κ, ε

)
7:

(
∂R
∂u

)
1+(i−1)NSP≤row≤iNSP

1+(i+1)NSP≤col≤(i+2)NSP

= computeLocJacNumDiff1D
(
Xs, Xf , NSP , NFP , i, i+ 2, u, v, ∂v

∂x
, Ri, κ, ε

)
8: end for
Output(s): ∂R

∂u

Algorithm that computes numerically ∂Ri

∂uk for the 1D-diffusion equation

Here the algorithm used to compute the local Jacobians of a cell i in the case of the 1D-diffusion equation is
presented. It follows the explanations from section (7.3).

Algorithm 13 is a Python function called computeLocJacNumDiff1D
(
Xs, Xf , NSP , NFP , i, k, u, v,

∂v
∂x , R

i, κ, ε
)

.
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Algorithm 13 Compute numerically ∂Ri

∂uk
for 1D-diffusion

Input(s): NSP , i, k, u, v, ∂v∂x , Ri, κ, ε
1: if k = i - 2 then
2: for j from 1 to NSP do
3: ui−2

j ← ui−2
j + ε

4: Recompute vi−2 and vi−2,i−1
int using the new value vi−2

NFP
and the already known value vi−1

1

5: Set vi−1
1 = vi−2,i−1

int

6: Recompute
(
∂u
∂x

)i−1
using the new vi−1 and after that

(
∂v
∂x

)i−1
using the new

(
∂u
∂x

)i−1

7: Recompute
(
∂v
∂x

)i−1,i

int
using the new value of

(
∂v
∂x

)i−1

NFP
and the already known value of

(
∂v
∂x

)i
1

8: Set
(
∂v
∂x

)i
1

=
(
∂v
∂x

)i−1,i

int

9: Compute Ri,new

10:
(

∂Ri

∂ui−2

)
1≤row≤NSP

col=j

=
(
Ri,new−Ri

ε

)
1≤row≤NSP

11: end for
12: else if k = i - 1 then
13: for j from 1 to NSP do
14: ui−1

j ← ui−1
j + ε

15: Recompute vi−1, vi−2,i−1
int and vi−1,i

int

16: Set vi−1
1 = vi−2,i−1

int , vi−1
NFP

= vi−1,i
int and vi1 = vi−1,i

int

17: Recompute
(
∂u
∂x

)i−1
,
(
∂u
∂x

)i
,
(
∂v
∂x

)i−1
and

(
∂v
∂x

)i
18: Recompute

(
∂v
∂x

)i−1,i

int
using the new values of

(
∂v
∂x

)i−1

NFP
and

(
∂v
∂x

)i
1

19: Recompute
(
∂v
∂x

)i,i+1

int
using the new value of

(
∂v
∂x

)i
NFP

and the already new value of
(
∂v
∂x

)i+1

1

20: Set
(
∂v
∂x

)i
1

=
(
∂v
∂x

)i−1,i

int
and

(
∂v
∂x

)i
NFP

=
(
∂v
∂x

)i,i+1

int

21: Compute Ri,new

22:
(

∂Ri

∂ui−1

)
1≤row≤NSP

col=j

=
(
Ri,new−Ri

ε

)
1≤row≤NSP

23: end for
24: else if k = i then
25: for j from 1 to NSP do
26: uij ← uij + ε

27: Recompute vi, vi−1,i
int and vi,i+1

int

28: Set vi−1
NFP

= vi−1,i
int , vi1 = vi−1,i

int , viNFP
= vi,i+1

int and vi+1
1 = vi,i+1

int

29: Recompute
(
∂u
∂x

)i−1
,
(
∂u
∂x

)i
,
(
∂u
∂x

)i+1
,
(
∂v
∂x

)i−1
,
(
∂v
∂x

)i
and

(
∂v
∂x

)i+1

30: Recompute
(
∂v
∂x

)i−1,i

int
and

(
∂v
∂x

)i,i+1

int

31: Set
(
∂v
∂x

)i
1

=
(
∂v
∂x

)i−1,i

int
and

(
∂v
∂x

)i
NFP

=
(
∂v
∂x

)i,i+1

int

32: Compute Ri,new

33:
(
∂Ri

∂ui

)
1≤row≤NSP

col=j

=
(
Ri,new−Ri

ε

)
1≤row≤NSP

34: end for
35: else if k = i + 1 then
36: for j from 1 to NSP do
37: ui+1

j ← ui+1
j + ε

38: Recompute vi+1, vi,i+1
int and vi+1,i+2

int

39: Set vi+1
1 = vi,i+1

int , vi+1
NFP

= vi+1,i+2
int and viNFP

= vi,i+1
int

40: Recompute
(
∂u
∂x

)i+1
,
(
∂u
∂x

)i
,
(
∂v
∂x

)i+1
and

(
∂v
∂x

)i
41: Recompute

(
∂v
∂x

)i,i+1

int
using the new values of

(
∂v
∂x

)i+1

1
and

(
∂v
∂x

)i
NFP

42: Recompute
(
∂v
∂x

)i−1,i

int
using the new value of

(
∂v
∂x

)i
1

and the already new value of
(
∂v
∂x

)i−1

NFP

43: Set
(
∂v
∂x

)i
1

=
(
∂v
∂x

)i−1,i

int
and

(
∂v
∂x

)i
NFP

=
(
∂v
∂x

)i,i+1

int

44: Compute Ri,new

45:
(

∂Ri

∂ui+1

)
1≤row≤NSP

col=j

=
(
Ri,new−Ri

ε

)
1≤row≤NSP

46: end for
47: else if k = i + 2 then
48: for j from 1 to NSP do
49: ui+2

j ← ui+2
j + ε

50: Recompute vi+2 and vi+1,i+2
int using the new value vi+2

1 and the already known value vi+1
NFP

51: Set vi+1
NFP

= vi+1,i+2
int

52: Recompute
(
∂u
∂x

)i+1
using the new vi+1 and after that

(
∂v
∂x

)i+1
using the new

(
∂u
∂x

)i+1

53: Recompute
(
∂v
∂x

)i,i+1

int
using the new value of

(
∂v
∂x

)i+1

1
and the already known value of

(
∂v
∂x

)i
NFP

54: Set
(
∂v
∂x

)i
NFP

=
(
∂v
∂x

)i,i+1

int

55: Compute Ri,new

56:
(

∂Ri

∂ui+2

)
1≤row≤NSP

col=j

=
(
Ri,new−Ri

ε

)
1≤row≤NSP

57: end for
58: end if

Output(s): ∂Ri

∂uk
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Appendix F

Vortex transported by an uniform flow

Initial vortex

Figure F.1: Initial vortex which will be transported by the flow.

Performance of implicit schemes

∆t [s] 1.12e−6 2.24e−6 4.48e−6 2.8e−7

Nonlinear iterations at each RK stage 1 1 1 -
Total linear iterations at each RK stage 15 37 104 -

tCPU [s] 431 507 834 378
Labs2 (P ) [Pa] 0.319 1.273 5.008 6.56e−4

Table F.1: For implicit midpoint during one loop (0.000575 s), εNewt,a = 10−5 and εKry,a = 10−6
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∆t [s] 1.12e−6 2.24e−6 4.48e−6 2.8e−7

Nonlinear iterations at each RK stage 1-1 1-1 1-1 -
Total linear iterations at each RK stage 6-7 15-18 41-46 -

tCPU [s] 417 424 528 378
Labs2 (P ) [Pa] 0.155 0.618 2.452 6.56e−4

Table F.2: For SDIRK(2,2) during one loop (0.000575 s), εNewt,a = 10−5 and εKry,a = 10−6

∆t [s] 1.12e−6 2.24e−6 4.48e−6 2.8e−7

Nonlinear iterations at each RK stage 1-1 1-1 2-1 -
Total linear iterations at each RK stage 23-20 67-55 269-162 -

tCPU [s] 981 1413 3306 378
Labs2 (P ) [Pa] 0.036 0.279 1.969 6.56e−4

Table F.3: For SDIRK(2,3) during one loop (0.000575 s), εNewt,a = 10−5 and εKry,a = 10−6

∆t [s] 1.12e−6 2.24e−6 4.48e−6 2.8e−7

Nonlinear iterations at each RK stage 1-1-1 1-1-1 1-1-2 -
Total linear iterations at each RK stage 10-11-12 25-26-29 72-76-117 -

tCPU [s] 790 917 1405 378
Labs2 (P ) [Pa] 0.013 0.085 0.629 6.56e−4

Table F.4: For SDIRK(3,3) during one loop (0.000575 s), εNewt,a = 10−5 and εKry,a = 10−6

∆t [s] 1.12e−6 2.24e−6 4.48e−6 2.8e−7

Nonlinear iterations at each RK stage 1-1-1 1-1-1 1-2-1 -
Total linear iterations at each RK stage 2-22-18 3-59-50 6-264-142 -

tCPU [s] 1015 1353 3110 378
Labs2 (P ) [Pa] 0.028 0.221 1.589 6.56e−4

Table F.5: For DIRK(3,3) during one loop (0.000575 s), εNewt,a = 10−5 and εKry,a = 10−6

∆t [s] 1.12e−6 2.24e−6 4.48e−6 2.8e−7

Nonlinear iterations at each RK stage 1-1-1 1-1-1 - -
Total linear iterations at each RK stage 34-29-26 104-89-80 - -

tCPU [s] 2412 4153 - 378
Labs2 (P ) [Pa] 0.0046 0.069 - 6.56e−4

Table F.6: For SDIRK(3,4) during one loop (0.000575 s), εNewt,a = 10−5 and εKry,a = 10−6

∆t [s] 1.12e−6 2.24e−6 4.48e−6 2.8e−7

Nonlinear iterations at each RK stage 1-1-1 1-1-1 1-2-1 -
Total linear iterations at each RK stage 7-11-6 24-35-16 69-36-43 -

tCPU [s] 700 747 1433 378
Labs2 (P ) [Pa] 0.014 0.057 0.270 6.56e−4

Table F.7: For ILDDRK(3,4) during one loop (0.000575 s), εNewt,a = 10−5 and εKry,a = 10−6
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