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A-posteriori evaluation of a deep convolutional
neural network approach to subgrid-scale
flame surface estimation

By C. J. Lapeyret, A. Misdariist, N. Cazard{ AND T. PoinsotZ

Deep learning (DL) and the field of artificial intelligence (AI) have been hot topics
in the software industry in 2018, notably in the field of convolutional neural networks
(CNNs). In fluid dynamics, recent studies are starting to show promising results, includ-
ing for large eddy simulation (LES) applications. In this work, a CNN previously trained
to replace a model for the unresolved flame surface in turbulent premixed combustion
is implemented inside a parallel LES solver. A-posteriori comparisons are made with a
direct numerical simulation (DNS) of a fully resolved flame, and show good agreement. A
state-of-the-art dynamic method is included for comparison, and the CNN outperforms
it on the target configuration.

1. Motivation and objectives

Deep learning is a fast-paced and hot topic in the software industry, at the center of
many so-called Al applications. However, a logical model of biological neurons was first
introduced by McCulloch & Pitts (1943), rendering the development of artificial neural
networks (ANNs) possible. The mechanism by which neural networks learn was explained
much later by Fukushima (1975), and this led to some high-performing computer vision
applications for simple datasets in the 1990s by LeCun et al. (1998). However, the train-
ing phase of these algorithms, called learning, limited their applications in more complex
cases. Advancements in hardware performance, database sizes and network training tech-
niques (Hinton et al. 2006) in the past decade have enabled DL to significantly outperform
previous approaches from natural language processing (notable for beating top human
players at the game Jeopardy!; Ferrucci et al. (2010)) to computer vision (winner of the
2012 ImageNet challenge; Krizhevsky et al. (2012)), to game playing (world’s strongest
algorithm for playing Go, Chess and Shogi; Silver et al. (2017)).

Implementation of such algorithms has gone rapidly from reserved to a small group
of domain experts to largely available to the public, thanks to modern frameworks with
high levels of abstraction (Abadi et al. 2015). Applications to the field of computational
fluid dynamics (CFD), however, are still scarce. Some shallow networks have been applied
successfully to turbulence modeling (Ling et al. 2016; Vollant et al. 2017), but the full
power of DL that stems specifically from deep feedforward networks (Goodfellow et al.
2016), and notably CNNs, is still rare in CFD, as evidenced by a recent review (Duraisamy
et al. 2018). In recent work by Beck et al. (2018), however, deep residual networks were
trained to recover state-of-the-art turbulent viscosity models on homogeneous isotropic
turbulence.
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In the combustion community, the determination of the subgrid-scale (SGS) contri-
bution to the filtered reaction rate in LES of reacting flows is an example of closure a
problem that has been daunting for a long time. Indeed, SGS interactions between the
flame and turbulent scales largely determine the flame behavior, and modeling them is
an important factor in obtaining overall flame dynamics. Many turbulent modeling ap-
proaches are based on a reconstruction of the SGS wrinkling of the flame surface and the
so-called flamelet assumption (Poinsot & Veynante 2011). Under this assumption, the
mean turbulent reaction rate can be expressed in terms of flame surface area (Marble &
Broadwell 1977; Candel et al. 1990). Indeed, the idea that turbulence convects, deforms,
and spreads surfaces (Pope 1988) can be applied to a premixed flame front in a turbulent
flow. The evaluation of the amount of flame surface area due to unresolved flame wrin-
kling has been at the core of all models based on flame surface areas in the last 50 years
(Poinsot & Veynante 2011), both for Reynolds-averaged Navier-Stokes (Bray & Moss
1977; Peters 1986; Duclos et al. 1993; Bruneaux et al. 1997) and for LES (Boger et al.
1998; Knikker et al. 2004). Recent developments in dynamic procedures (Wang et al.
2011) have shown that the extraction of some topological information could increase the
accuracy of models. CNNs may be viewed as a natural extension of this approach: multi-
layer convolutions can be trained to automatically aggregate multi-scale information to
predict the desired output. They can also be seen as an extension of earlier applications
of multi-layer perceptrons for numerical combustion applications (Christo et al. 1996;
Thme et al. 2009). Initial a priori tests have shown that CNNs are capable of achieving
very high accuracy in predicting unresolved flame wrinkling (Lapeyre et al. 2018).

The present work extends those results: Section 2 recalls the theoretical context of the
approach, as detailed by Lapeyre et al. (2018). Section 3 describes the model training.
Its performance on a test set, as well as its capacity to generalize its knowledge to a new
setup with an unknown flame, is assessed. Finally, Section 4 showcases the simulations
performed for a-posteriori validation, with the CNN running live during the LES.

2. Theoretical aspects of the model
2.1. Flame surface density models

In (LES), flow features are split between resolved and non-resolved scales using a spatial
filter. Defining a quantity @ in a fully resolved flow field, the low-pass spatial filter Fa
with width A is used to isolate the resolved scales, yielding

Qx,t) = / Fa(x—x)Q(x',t)dx’ (2.1)
v
where Q(x,t) is the result of the filtering operation applied to Q(x,t). In this study, only
perfectly premixed combustion is considered, and a progress variable c is defined as
T-T,
c=—, (2.2)
T, — T,
with T the temperature and subscripts v and b referring to unburnt and burnt gases,
respectively. A balance equation can be written for ¢ (Poinsot & Veynante 2011) by
defining a density-weighted (or Favre) filtering Q = pQ/p for every quantity @, where
p is the fluid density. Filtering the progress variable equation written in a propagative
form (G-equation; Kerstein et al. (1988)) assuming local flame elements gives (Knikker
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et al. 2004)

% + V- (pué) + V - (puc — pué) = p,SvY, (2.3)
where the term on the right hand side incorporates filtered diffusion and reaction terms
into a single c-isosurface displacement speed assimilated to laminar flame speed S9, and
where p, is the fresh gases density. ¥ = W is the generalized flame surface density
(Boger et al. 1998), and cannot be obtained in general from resolved flame surfaces. In-
deed, when filtering c to ¢, surface wrinkling decreases, resulting in less total c-isosurface.
One popular method to model X is to introduce the wrinkling factor Z that compares
the total and resolved generalized flame surfaces. The term on the right-hand side of
Eq. (2.3) is then rewritten as

0 0= |v- = by
puSLE = p,S;E|VE|, where == ~a (2.4)

Fractal approaches such as introduced by Gouldin et al. (1989) suggest a relationship

between ¥ and |Ve| of the form

where Dy is the fractal dimension of the flame surface, and 7. is the inner cutoff scale
below which the flame is no longer wrinkled. The 7. length scales with the laminar flame
thickness §? (Poinsot et al. 1991; Gulder & Smallwood 1995). More recent work, based
on flame-vortex interactions and multi-fractal analysis (Charlette et al. 2002b), suggests
a different form (modified to recover Eq. (2.5) at saturation by Wang et al. (2011))

B

— A A uw/
Y= |1+min | —1,Ta | =5, ==, Rea | =5 Ve, (2.6)
o, (62 St > St

where [ is a generalized parameter inspired from the fractal dimension. The I'A function
is meant to incorporate the strain induced by the unresolved scales between A and 7. Ex-
tensions of this model have also been proposed to compute the parameter 5 dynamically
(Charlette et al. 2002a; Wang et al. 2011). From a machine learning standpoint, these
all correspond to predicting the same output ¥, but using several local input variables:
(¢,A/89,u/x /S?). More variables could be included to further generalize the approach,
e.g. information about the chemical state, since the machine learning framework does
not require a strict physical formulation.

2.2. Reformulation in the machine learning context

Flame surface density estimation can be seen as the issue of relating the input field ¢ to a
matching output field ¥. Supervised learning of this task can be implemented as follows:
e In a first phase, a dataset generated using a DNS is used, where both ¢ and X are
known exactly. Models are trained on this data in a supervised manner.
e In a second phase, the best-trained model is frozen. It is executed in an LES context,
where € is known but not X.
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Name u'/SOL Inlet velocity Resolution Turbulent combustion model
TRAIN1 1.23 Constant u DNS Resolved

TRAIN2 2.47 Constant @ DNS Resolved

PULSE_DNS 1.23 Sinewave @ + @ sinwt DNS Resolved

PULSE CNN 1.23 Sinewave @ + @ sinwt LES Neural network (Lapeyre et al. 2018)
PULSE_DYN 1.23 Sinewave @ + @sinwt LES Dynamic (Wang et al. 2011)

TABLE 1. Simulations performed in this study. Inlet velocity is @ + «’ + 4, where o’
corresponds to turbulent fluctuations and @ to harmonic forcing. For all cases, 4/S? = 24.7.

In order to obtain ¢ and ¥, an explicit Gaussian filter is implemented. Its width is defined
as the multiplying factor on the maximum gradient |V¢|, i.e.,

max|V¢|

A= ——Auz, 2.7

max|Ve| 27)
computed on a one-dimensional (1D) laminar flame at the same equivalence ratio, pres-
sure, and inlet temperature. The resulting 1D filter function is therefore written in dis-
crete form as

-3(2)?°  f [
e"2\s)" ifn e [1,N]
F = 2.8
a() {0 otherwise, (28)

and then normalized by its sum, Zne[[O,N]] Fa(n). Here, 0 = 20 and N = 15 are optimized
to obtain a filter width of A = 4Az ~ 1.2 §?. Three-dimensional (3D) filtered fields are
obtained by applying the 1D filtering successively on each direction x, y, and z.

3. Deep learning approach to combustion modeling

In this study, a numerical setup of a methane-air burner is used to perform both
resolved DNS and LES.

The target configuration is a premixed stoichiometric methane-air slot burner. The
flame is stabilized by hot gases. A numerical domain consisting of a 3D box of 512 x 256 x
256 cells is used for DNS, with all cells Az = 0.1 mm in each direction. Figure 1(a) shows
a view of the domain and typical flame. The reacting flow field is simulated using the
fully compressible explicit code AVBP, which solves the filtered multi-species 3D Navier-
Stokes equations with simplified thermochemistry on unstructured meshes (Schgnfeld
& Rudgyard 1999; Selle et al. 2004). A Taylor—Galerkin finite element scheme called
TTGC (Colin & Rudgyard 2000) of third order in space and time is used. Inlet and
outlet boundary conditions are treated using an Navier-Stokes characteristic boundary
condition approach (Poinsot & Lele 1992) with transverse term corrections (Granet et al.
2010). Other boundaries are treated as periodic. The same domain is also used for LES,
with a coarse mesh of 128 x 64 x 64 cells. In LES, SGS eddy viscosity is included using
the model of Smagorinsky (1963). All simulations performed in this study are summarized
in Table 1.

The ANN used in this study was developed in previous work by Lapeyre et al. (2018).
It was inspired from the convolutional U-Net segmentation architecture (Ronneberger
et al. 2015), adapted for the regression task of predicting ¥ from ¢. The CNN can be
viewed as a function f that operates on an entire subset {2 of the mesh at once. Instead
of algebraically predicting ¥ from ¢ at one node, the CNN reads the vector € of values
over an entire subdomain, €, and produces a prediction for the matching field of 3 over
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FIGURE 1. (a) Numerical domain and view of a typical flame from the TRAINI simulation.
(b) Architecture of the U-net neural network used in this study. Numbers above convolutional
layers show the amount of filters used in the layer.

Q. The function fonn therefore performs

> = fCNN(é)7 (31)
fCNN : ]RQ — RQ.

The CNN consumes a matrix, meaning that {2 must be a 3D regular grid. The neural
network architecture is shown in Figure 1(b). Because of this architecture, a constraint
is placed on Q: each dimension must be a multiple of four. Other than than, there are no
constraints on the input to the network, and it can be used on arbitrarily large domains.
It has been retrained on data from TRAIN1 and TRAIN2 simulations with the thickening
factor of four of this study, according to the procedure from Lapeyre et al. (2018):

e c and X are extracted from the DNS flow fields;

e ¢and ¥ are produced using the explicit filtering approach of Eq. (2.8) on these fields
and

e the network is trained to learn the function f from Eq. (3.1).

4. A-posteriori evaluation of the method

The CNN trained with TRAIN1 and TRAIN2 runs is used as an SGS model for ¥ in
an a-posteriori LES of the same configuration: PULSE CNN. To make the test more
representative, the inlet mean velocity is pulsated with an amplitude 4/a = 15%. The
forcing frequency is f = 1 kHz. A simulation using the best present dynamic model
(PULSE_DYN) is also performed as a reference, with a flame thickening ratio of four
matching the coarsening factor of the LES mesh versus the DNS.

Using the neural network output directly in the CFD code is challenging. Indeed, the
Navier-Stokes solver is based on a parallel domain-decomposition approach, optimized for
multi-central processing unit CPU architectures. The CNN, however, is not appropriate
for domain decomposition: one CNN evaluation, called inference, must be performed on
a single 3D regular matrix coinciding with the entire LES mesh. Since the model must
be called at each time step and CNNs are CPU intensive, the inference time must be
of the same order of magnitude as the Navier-Stokes solver computational time. Initial
measurements by Cazard (September 2018) have shown that inference times on an Nvidia
Tesla V100 were ~ 200 times faster than on a 2.3 GHz Xeon Gold 6140 Skylake core. The



354 Lapeyre et al.

strategy retained for this study was therefore to use a hybrid graphical processing unit
(GPU)/CPU approach: the AVBP solver ran in parallel on CPU cores, and the CNN
inference exploited a GPU. The OpenPALM coupling library (Duchaine et al. 2015)
handled interpolations on each grid and communications between CPU and GPU.

The PULSE _CNN simulation requires two meshes, an unstructured one for the AVBP
solver and a regular one for the CNN. Second-order interpolation weights between the
two domains are computed once after domain partitioning, then used at each time step
throughout the simulation. For this case, one hybrid node including 36 Intel Skylake
(Xeon Gold 6140) cores and one NVIDIA Tesla M60 GPU was used. At each time step,
the full progress variable ¢ field was sent to the CNN. Inference on the GPU then yielded
the full efficiency = and flame sensor F' fields, which were then interpolated back on the
CFD solver mesh and used to finish the iteration. Artificial thickening by a factor of four
is used to account for mesh coarseness. In order to limit the impact on the turbulence,
a flame sensor was used to apply thickening only locally in areas where |Vé| was at 10%
or more of its maximum value. The resulting thickening factor can be written as

F=4x % [1 + tanh (|VE|70.1|VE|’”‘”)] . (4.1)

On the Tesla M60 GPU, each neural net inference requires 0.2 s for the whole domain.
The CFD solver computation requires 0.6 s on the 36 Intel Skylake cores for each iteration.
The cost of the inference is therefore lower than the cost of the CFD simulation, and the
overhead introduced by this approach is shown to be manageable in the context of this
first demonstrator. Further improvements on the GPU efficiency are, however, possible,
as this approach is new and not yet as mature as the CFD solver.

All three PULSE simulations are run until a harmonic state is reached, then recorded
every 0.2 ms for a total of 6 ms (i.e., six pulsation periods). Figure 2 shows a typical view
of the heat release rate as a marker for the flame. The LES simulations (PULSE CNN
and PULSE DYN) exhibit much less fine structures than PULSE _DNS. While normal-
ization is done on a per-simulation basis (hence scales are not directly comparable), it
should be noted in this a-posteriori approach that the apparent flame thickness is not
the same in both LESs. This could be due to the behavior of the CNN, and the resulting
flame structure being different. Nevertheless, the flame length seems to be better recov-
ered by the CNN-based LES. To explore this aspect, average fields of progress variable
at several positions downstream of the slot are plotted versus distance from the axis
in Figure 3. Both combustion models show reasonable agreement with the DNS. How-
ever, the PULSE DYN simulation significantly underestimates the progress variable on
the axis in the intermediate stages. At the second observation position (z = 22.8 mm),
the progress variable is already above 50% for PULSE DNS, but still close to zero for
PULSE DYN. PULSE CNN;, however, recovers the DNS trend much better.

5. Conclusions

In this study, a neural network trained to predict flame surface density is used for an
a-posteriori evaluation, and compared to a state-of-the-art method from the literature
known as the dynamic formulation. The successful coupling between an LES solver and
a CNN to act as a physical model opens many new possibilities for the field of CFD.

One of the major challenges in developing data-driven alternatives to physical models
is to estimate how well they will generalize to new setups. Indeed, with physics-based
models, even if some coefficient tuning is performed, the hypotheses made to derive it
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FIGURE 2. Views of instantaneous phase-synchronized flames (normalized heat release rate)
for each PULSE simulation.
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FIGURE 3. Mean profiles of progress variable for PULSE simulations at four downstream
locations, as labeled in mm above each plot.

suggest the limits of its applicability. In the case of a model fully learned from the data,
as used here, there are no physics-based hypotheses to rely on. Instead, the classical
approach in machine learning is to identify a target configuration to produce a so-called
validation dataset, which is never observed during training. The prediction error on this
dataset is monitored during training. When this validation error increases, this demon-
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strates that while the model is further learning the training set, it is doing so by losing
generality.

During the Summer Program, exchanges with other participants led to identifying a
similar configuration to the slot burner presented here, but with significant differences
that could lead the model to not generalize well on it. Indeed, MacArt et al. (2018)
performed DNS of a stoichiometric hydrogen-air slot burner with nitrogen dilution. The
K1 setup with Karlovitz number 3.7 has u//S? & 1.25, very close to the values used in the
TRAIN1 DNS. Comparisons demonstrated that indeed in this case the network initially
learned a function that described both datasets well. However, as the training process
went beyond a certain point, the prediction error for the K1 case stopped improving,
and eventually increased again. From a machine learning standpoint, this result is very
encouraging. Indeed, it highlights the point when the neural network is no longer learning
general features related to flame wrinkling, but instead specifics of the chosen training
setup. Further work is now needed to improve upon these results in order to achieve a
more general result for this type of approach.
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