
S P E C I A L I S S U E AR T I C L E

Validation of spatial variability in downscaling results from
the VALUE perfect predictor experiment

Martin Widmann1 | Joaquin Bedia2,3 | José M. Gutiérrez4 | Thomas Bosshard5 |
Elke Hertig6 | Douglas Maraun7 | María J. Casado8 | Petra Ramos8 |
Rita M. Cardoso9 | Pedro M. M. Soares9 | Jamie Ribalaygua10 | Christian Pagé11 |
Andreas M. Fischer12 | Sixto Herrera2 | Radan Huth13

1School of Geography, Earth and
Environmental Sciences, University of
Birmingham, Birmingham, UK
2Department of Applied Mathematics and
Computing Science, University of
Cantabria, Santander, Spain
3Predictia Intelligent Data Solutions S.L.,
Santander, Spain
4National Research Council (CSIC),
Instituto de Física de Cantabria, Santander,
Spain
5Swedish Meteorological and Hydrological
Institute (SMHI), Norrköping, Sweden
6Department of Geography, University of
Augsburg, Augsburg, Germany
7Wegener Center for Climate and Global
Change, University of Graz, Graz, Austria
8Agencia Estatal de Meteorología
(AEMET), Madrid, Spain
9Instituto Dom Luiz (IDL), Faculdade de
Ciências, Universidade de Lisboa, Lisbon,
Portugal
10Fundación para la Investigación del Clima
(FIC), Madrid, Spain
11Centre Européen de Recherche et de
Formation Avancée en Calcul Scientifique
(CERFACS), Toulouse, France
12Federal Office of Meteorology and
Climatology (MeteoSwiss), Zurich,
Switzerland
13Institute of Atmospheric Physics, Charles
University, Prague, Czech Republic

Correspondence
Martin Widmann, School of Geography,
Earth and Environmental Sciences,
University of Birmingham, UK.
Email: m.widmann@bham.ac.uk

The spatial dependence of meteorological variables is crucial for many impacts, for

example, droughts, floods, river flows, energy demand, and crop yield. There is

thus a need to understand how well it is represented in downscaling (DS) products.

Within the COST Action VALUE, we have conducted a comprehensive analysis

of spatial variability in the output of over 40 different DS methods in a perfect pre-

dictor setup. The DS output is evaluated against daily precipitation and temperature

observations for the period 1979–2008 at 86 sites across Europe and 53 sites across

Germany. We have analysed the dependency of correlations of daily temperature

and precipitation series at station pairs on the distance between the stations. For the

European data set, we have also investigated the complexity of the downscaled

data by calculating the number of independent spatial degrees of freedom. For daily

precipitation at the German network, we have additionally evaluated the depen-

dency of the joint exceedance of the wet day threshold and of the local 90th per-

centile on the distance between the stations. Finally, we have investigated regional

patterns of European monthly precipitation obtained from rotated principal compo-

nent analysis.

We analysed Perfect Prog (PP) methods, which are based on statistical relation-

ships derived from observations, as well as Model Output Statistics (MOS)

approaches, which attempt to correct simulated variables. In summary, we found

that most PP DS methods, with the exception of multisite analog methods and a

method that explicitly models spatial dependence yield unrealistic spatial character-

istics. Regional climate model-based MOS methods showed good performance

with respect to correlation lengths and the joint occurrence of wet days, but a sub-

stantial overestimation of the joint occurrence of heavy precipitation events. These

findings apply to the spatial scales that are resolved by our observation network,

and similar studies with higher resolutions, which are relevant for small hydrologi-

cal catchment, are desirable.
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1 | INTRODUCTION

Projections for future climate change are primarily based on
simulations with coupled atmosphere–ocean general circula-
tion models (GCMs). Their relatively coarse horizontal reso-
lution of around 100 km means that not all relevant
atmospheric processes can be realistically modelled, which
leads to errors on the resolved scales. Moreover, the output
does not have the spatial resolution often needed for impact
and adaptation studies. In order to overcome these problems
downscaling (DS) methods are routinely used, either based
on high-resolution regional climate models (RCMs), on sta-
tistical methods, or on a combination of both (Maraun et al.,
2010; Hewitson et al., 2014; Ekstroem et al., 2015; Maraun
and Widmann, 2018).

The spatial structure of the output from DS methods is
highly relevant when the results are used to assess impacts
that are determined by spatial aggregation of meteorological
variables. Typical examples for which a realistic representa-
tions of spatial variability matters are river flow and floods
(Arnaud et al., 2002; Segond et al., 2007; Viviroli et al.,
2009), droughts (Trambauer et al., 2015), glacier mass bal-
ance (Machguth et al., 2009), ecosystem composition
(Monestiez et al., 2001), crop yields (Holzkämper et al.,
2012), energy consumption and production, as well as
weather-related health problems. For instance an over- or
underestimation of correlations between precipitation time
series at different locations within a river catchment would
typically lead to an over- or underestimation of high and low
river flow conditions.

Within the COST action VALUE, a comprehensive vali-
dation framework for DS methods has been designed and
implemented (Maraun et al., 2015). The user-relevant
aspects of DS output identified in the framework are mar-
ginal distributions including extremes, temporal variability,
and intervariable relationships, all considered at individual
locations, as well as spatial variability. The performance of
DS methods with respect to the aspects defined at individual
stations within Europe has been investigated in the compan-
ion papers in this special issue (Gutiérrez et al., 2018; Hertig
et al., 2018; Maraun et al., 2018). Here we analyse specifi-
cally how well the different DS methods represent the spatial
structure of precipitation and temperature fields over Europe.
As pointed out in Maraun et al. (2015), it is usually not the
spatial pattern of the long-term mean but the structure of the
individual events that is relevant for impacts, because it
includes for instance the information on whether all

locations within a river catchment tend to receive precipita-
tion at the same time, or whether it is likely that some areas
stay dry when there is precipitation in others. It can be useful
to remove the effect of the climatological mean on individ-
ual events and to analyse the residual spatial variability, that
is, to express the data as deviations from the long-
term mean.

More formally speaking, when considering a meteorolog-
ical variable simultaneously at different locations we are
dealing with a multivariate data set given by the values at
the different locations, and the goal when validating spatial
variability is to investigate the similarity of the observed and
downscaled data clouds. To a first order approximation, the
data sets are characterized by their multivariate long-term
temporal means, that is, by the patterns of the climatological
mean. For the observations, it is mainly influenced by the
meridional gradient and local differences in the radiation
budget, the proximity to the oceans, the mean large-scale
atmospheric circulation, and topography. These factors influ-
ence meteorological processes, such as atmospheric stability,
convection, flow convergence, frontal passages, or Foehn,
which affect the spatial structure of individual weather
events as well as of the long-term mean. It can be expected
that almost all statistical DS method reproduce the mean
temperature and precipitation fields quite well by construc-
tion, for instance by estimating anomalies around the
observed mean in the case of regression-based methods or
by adjusting distributions. The skill of DS methods with
respect to representing the mean has been analysed to some
extent in Gutiérrez et al. (2018), albeit without explicitly
investigating the spatial pattern of the bias of the long-term
means. The mean bias in the raw output of regional models
has been investigated in many publications (e.g., Kotlarski
et al., 2014; Isotta et al., 2015). Moreover, as already men-
tioned, it is mostly the structure of the residual spatial vari-
ability that is impact-relevant. We therefore focus in our
analysis on the spatial structure of the residual variability,
mainly on the daily timescale.

For multivariate Gaussian data, the structure of the vari-
ability around the mean is fully captured by the covariance
matrix, and for normalized data by the correlation matrix. It
is thus a natural starting point to investigate the similarity of
the observed and the downscaled covariances or correlations
between different locations. As correlations are a direct mea-
sure for the strength of linear relationships between time
series we will consider those. We will also investigate the
probabilities for joint exceedances of thresholds, which are
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of practical relevance for impact modelling and which for
non-Gaussian data do not directly follow from the covari-
ance matrix. We note that multivariate data can alternatively
be described by a combination of their marginal distribu-
tions, which are investigated in Gutiérrez et al. (2018), and
copulas that analytically express the dependence structure.
However, for brevity this approach is not taken here. In
addition, we will analyse the overall complexity, and the
representation of regional patterns. Details on our validation
approach are given in the method section.

In spite of the importance of the spatial structure of daily
values for climate impacts, only a few studies have validated
the spatial aspects of standard deterministic Perfect Prog
(PP) DS products. Correlations between time series at differ-
ent locations, including their dependency on distance, have
been analysed (Easterling, 1999; Kettle and Thompson, 2004;
Huth et al., 2008, 2015), and homogeneous regions have been
investigated by cluster analysis (Huth, 2002). These studies,
most of which focus on temperature, indicate that PP methods
that use large-scale predictors overestimate spatial correla-
tions, whereas local analog methods underestimate them.
Huth et al. (2015) additionally included two RCMs in the
method comparison and found no systematic over- or under-
estimation for them. A comparison of some PP and model
output statistics (MOS) methods, as well as RCMs, under-
taken by Ayar et al. (2016) included some analysis of spatial
variability of daily precipitation based on the leading Principal
Component (PC) loading patterns and on correlations of daily
patterns. The study found a mixed performance of the RCMs
and MOS with better skill in winter than in summer, and in
general low performance for PP methods. The analog method
showed as expected realistic PC loadings but failed to capture
the individual daily patterns.

In addition, stochastic PP methods that explicitly model
spatial structure have been developed and analysed. Frost
et al. (2011) evaluated correlations of occurrence and
amount of daily precipitation at different locations obtained
from a Nonhomogeneous Hidden Markov Model (NHMM)
for occurrence combined with conditional multiple regres-
sion for amounts, and from GLIMCLIM, a conditional mul-
tisite weather generator (WG) based on a generalized linear
model, and found that both substantially underestimated
intersite correlations. Hu et al. (2013) obtained similar
results for GLIMCLIM, but found in contrast that a NHMM
performed well. The difference can be a result of either the
predictor choice or the specific regional climate. A further
method type are conditional multisite WGs for precipitation
constrained by the observed dependences between sites,
which were found to represent the observed properties well
(Cannon, 2008; Wilks, 2012).

Disaggregation methods for precipitation investigated in
Ferraris et al. (2003) show substantial over- and

underestimations of intersite correlations with no method
performing systematically better than others. However,
advanced stochastic models for precipitation that include a
disaggregation step based on two-dimensional, latent Gauss-
ian fields showed realistic spatial characteristics (Paschalis
et al., 2013).

Recently, several analog methods in which the analogs
are based on a coarse resolution representation of the
predictand variable rather than on the large-scale atmo-
spheric circulation have been developed. There are different
implementations depending on how model biases are treated
and on how the downscaled field is constructed from a pool
of analog situations; for a description of the frequently used
“localized constructed analog method” (LOCA) and a dis-
cussion of other variants see Pierce et al. (2014). They are
implemented such that a common analog is chosen for adja-
cent locations and thus yield realistic spatial fields by con-
struction if individual analogs are used and fairly realistic
fields if weighted means of multiple analogs are used. An
intercomparison of bias-corrected constructed analogs, of
methods combining bias correction for monthly or daily
fields and spatial disaggregation (BCSDm, BCSMd), and of
an asynchronous regression method is presented in Gutmann
et al. (2014), who found that all methods but BCSDm sub-
stantially overestimate spatial correlations. The reason for
the good performance of BCSDm is that in contrast to the
other methods it inherits the spatial variability from the
observations, rather than from the driving model.

Recent developments also include multisite MOS
methods. Bárdossy and Pegram (2012) found that RCM pre-
cipitation had too low intersite correlations and formulated a
matrix and a sequential recorrelation method to adjust the
spatial structure, with the former applicable to match Pear-
son correlations and the latter to reproduce more general
copula-based representations of the multivariate structure.
The correction methods led to a realistic spatial structure,
with the exception of an underrepresentation of clustering of
extreme precipitation, allow for changes in the spatial depen-
dences in a future climate, and mainly preserve the temporal
structure of the RCM output. Cannon (2018) developed a
multivariate quantile mapping method that yields the
observed multivariate distribution, applied it to correct spa-
tial RCM precipitation fields, and demonstrated realistic spa-
tial characteristics of the corrected fields. There are also
parametric quantile mapping methods that interpolate the
observed distribution parameters to high spatial resolution
(Mamalakis et al., 2017), but as they do not model the spa-
tial structure of variability they are essentially singlesite
MOS methods.

In the context of ensemble weather forecasting
postprocessing methods have been used that rearrange the
simulated data in time so they have the same rank structure
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as the observations in a training period (known as Schaake
Shuffle), which leads to a reproduction of the spatial and
intervariable dependence structure of the training data (Clark
et al., 2004). The method has been used to provide input for
hydrological forecasts (Voisin et al., 2011) and to post-
process atmospheric reanalyses (Vrac and Friederichs,
2015). A drawback that makes its application in a climate
change context problematic is that it is constrained to repro-
duce the temporal rank structure of the training data set.
Vrac (2018) has suggested a rank-based resampling method
that relaxes this condition and also introduces stochasticity
by generating as many multivariate corrected outputs as the
number of statistical dimensions (i.e., number of grid-cells ×
number of climate variables). This study has also demon-
strated how to apply the method in a climate change context.
However, further research on the usefulness of the method
for climate change studies is needed, for instance because
the reshuffling breaks the physical consistency between
large-scale atmospheric states and the post-processed vari-
ables, and will usually modify the climate change signal.

Our analysis extends these studies by considering a large
number of DS methods (47 for precipitation and 45 for tem-
perature) and by systematically comparing them with respect
to several measures of spatial variability, using validation
data sets over Europe and Germany. The structure of DS
methods can be expected to have a strong influence on the
spatial variability of their output. Singlesite methods, which
are fitted to individual target locations, might for instance
yield a realistic spatial structure if the predictors explain a
large fraction of the local variability, but might overestimate
spatial correlations if small-scale variability is substantial
and not adequately represented. A detailed analysis of the
variance explained by each DS method is provided in
Gutiérrez et al. (2018). Multisite DS methods, which simul-
taneously use several locations for model fitting, might
either achieve realistic spatial variability through the com-
mon influence of predictors or through explicit constraints
on the multivariate structure of noise components or of the
final output. In our study, we compare DS methods of differ-
ent types which will allow us to investigate whether some
types exhibit a common behaviour with respect to spatial
variability. We note that the VALUE perfect predictor exper-
iment uses an ensemble of opportunity in which most of the
methods are fitted on singlesite, reflecting the dominance of
such methods in DS applications. In particular, no method
explicitly models spatial dependence in the European-wide
experiment, although for some methods, spatial dependence
results as a consequence of the use of common predictors
(e.g., regression methods using PCs) or of the method char-
acteristics (e.g., some analog methods using the same analog
day for all sites). However, for the additional experiment

over Germany, two regression methods that explicitly con-
sider spatial dependence have contributed to the study.

Section 2 starts with a discussion of the observations
used for validation as well as of the downscaled data, includ-
ing a brief overview of the different types of DS methods
and of the experimental setup. It then continues with an
explanation of the different measures for spatial variability
used to validate and compare the DS methods. Section 3 will
present the validation results in separate subsections for each
validation measure. Summary and conclusions will be given
in Section 4.

2 | DATA AND METHODS

2.1 | Observations and downscaled data

The predictands for the DS methods are observations for
daily precipitation as well as for daily minimum and maxi-
mum temperature at 86 stations across Europe. This
VALUE-ECA-86-v2 data set is a subset of the publicly avail-
able ECA data set (Klein Tank et al., 2002) and covers the
period 1979–2008. Besides the European-wide experiment
(referred to as experiment_1a, or simply exp_1a), which is
the common experiment for the different validation studies,
we also present here the results of an experiment based on a
denser ECA subset of 53 stations within Germany for the
same variables (referred to as experiment_1c, or simply
exp_1c), which was designed to focus on spatial validation
aspects. Details on data availability are given in Gutiérrez
et al. (2018). Both networks are shown in Figure 1.

The DS methods that have been considered in our study
for precipitation are listed in Table 1, those used for temper-
ature in Table 2. The columns “1a” and “1c” indicate the
methods contributing to each of the experiments. All DS
methods have been calibrated following a fivefold cross vali-
dation with non-overlapping consecutive 6-year blocks. Fur-
ther details about the methods and the experimental setup
can be found in Maraun et al. (2015), Gutiérrez et al. (2018),
and on www.value-cost.eu/validation#Experiment_1a.

We distinguish between PP and MOS methods (see
e.g., Maraun et al., 2010). For the former, the statistical rela-
tionships are derived from observations whereas MOS
methods are fitted using predictors from RCMs (or global cli-
mate models). PP methods represent real-world links
between large-scale predictors and the local predictand, and
thus in applications to output from climate models they
require realistically simulated predictors—hence the name
“Perfect Prog(nosis)”. MOS methods represent relationships
between simulated and observed variables, are therefore
model-specific, and do not only represent DS relationships
but can also correct model biases. Unconditional WGs, which
are statistical models that produce time series with temporal
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characteristics similar to observations without any predictors
are a third group of methods listed under ‘WG’. Conditional
WGs, which include meteorological predictors that influence
the properties of the time series, should not be categorized as
a separate group to MOS and PP, because depending on the
setup for model fitting they either follow PP or MOS
approach, and are thus listed under either PP or MOS.

The PP methods are validated in a perfect predictor setup
using predictors from the ERA-Interim Reanalysis (Dee
et al., 2011) for the period 1979–2008 on a coarse-grained
2� resolution, which is similar to typical output from global
climate models. The PP assumption for the predictors is thus
met by construction. The MOS methods for the European
experiment exp_1a are directly applied to the ERA-Interim
data on both the original 0.75� and on the coarse-grained
resolution. We have conducted an additional European
experiment exp_1a_RCM for which the MOS predictors are
taken from the RACMO RCM (van Meijgaard et al., 2008)
driven by perfect boundary conditions from ERA-Interim on
the original 0.75� resolution. For the German experiment
exp_1c we have used MOS predictors from ERA-Interim on
the original 0.75� resolution.

The PP methods used here cover the widely used
approaches, that is, analog, regression, and weather type
methods; the MOS methods cover frequently used quantile
mapping methods as well as recently developed
stochastic MOS.

Information on the structural elements of the DS methods
that may influence the spatial characteristics of the output
are also given in Tables 1 and 2. The “MS” column indicates
whether the DS model has been fitted simultaneously for
multiple (or all) locations (“yes”) or individually for each
location (“no”). The “EX” column lists whether the statisti-
cal model has explicit constraints on the structure of spatial
variability (“yes”), for instance on correlations for adjacent
locations. The “ST” column indicates whether the DS output
contains stochastic noise (“yes”). The final column “PC”
states whether or not PCs have been used as predictors. As
already mentioned, almost all of the methods are fitted and
applied at singlesites, with only some analog methods being
applied to multiple sites. Note that methods that are fitted at
individual sites might still be used for multiple sites if for
instance realistic spatial patterns can be expected through the
influence of the predictors.

All methods participating in the European experiment are
fully described in Annex 1 of Gutiérrez et al. (2018). We
now describe the two additional methods, GLM-BN-DET
and DSCLIM-D, contributing only to the German experi-
ment. GLM-BN-DET is a multivariate extension of the
GLM-DET method, which explicitly models the spatial
structure of precipitation occurrence by considering a depen-
dence graph linking marginally and/or conditionally depen-
dent stations. This graph allows to obtain a probabilistic
model (a Bayesian network) which encodes all the

10°W 10°E0° 20°E 30°E

4
0

°
°

°
N

5
0

N
6

0
N

7
0

°N

Experiments 1a and 1a_RCM

Experiment 1c

FIGURE 1 Locations of the reference
stations for the European experiments
(1a and 1a-RCM, black circles, VALUE-
ECA-86-v2 data set) and the German
experiment (1c, red, VALUE-ECA-
53-Germany-spatial-v1 data set)
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TABLE 1 Participating methods for precipitation for the European (exp1a) and German experiment (exp1c)

Type Code Tech 1a 1c MS EX ST PC

MOS Ratyetal-M6 S × — No No No No

Ratyetal-M7 S × — No No No No

ISI-MIP S/PM × × No No No No

DBS PM × × No No No No

Ratyetal-M9 PM × — No No No No

BC PM × × No No No No

GQM PM × × No No No No

GPQM PM × × No No No No

EQM QM × × No No No No

EQMs QM × — No No No No

EQM-WT QM/WT × × No No No No

QMm QM × × No No No No

QMBC-BJ-PR QM × — No No No No

CDFt QM × — No No No No

QM-DAP QM × — No No No No

EQM-WIC658 QM × — No No No No

Ratyetal-M8 QM × — No No No No

MOS-AN A × — Yes No No No

MOS-GLM TF × — No No Yes No

VGLMGAMMA TF/WG × — No No Yes No

FIC02P PM/A/TF × × No No No No

FIC04P PM/A/TF × × No No No No

PP FIC01P A/TF × × Yes No No No

FIC03P A/TF × × Yes No No No

ANALOG-ANOM A × — Yes No No No

ANALOG A × × Yes No No Yes

ANALOG-MP A × × Yes No Yes No

ANALOG-SP A × — Yes No Yes No

MO-GP TF × — No No No No

GLM-P TF × × No No Yesa No

MLR-RAN TF × × No No No No

MLR-RSN TF × × No No No No

MLR-ASW TF × — No No Yes No

MLR-ASI TF × × No No No No

GLM-DET TF × × No No No Yes

GLM TF × — No No Yes Yes

GLM-WT TF/WT × × No No Yes Yes

GLM-BN-DET TF — × Yes Yes No Yes

DSCLIM-D A/WT — × Yes No No No

WT-WG WT × — No No Yes Yes

SWG TF × — No No Yes Yes
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dependences displayed in the graph by means of an appro-
priated factorization of the joint probability distribution. This
model allows simulating spatially consistent precipitation
occurrences. Moreover, for each particular station, the model
determines the set of stations (Markov blanket) exerting a
spatial influence. For each station, this set is included as spa-
tial predictors (in addition to the large-scale information) in
the binomial/gamma GLM model thus the model yields spa-
tially consistent precipitation amounts. Details on this partic-
ular methodology are given in Cano et al. (2004). DSCLIM-
D is based on weather typing, combined with linear regres-
sion and weather analogs. The method has been introduced
by Boé et al. (2006), but the version used here differs in
some details. The implementations for temperature and pre-
cipitation are slightly different, and for brevity we explain
only the latter case. DSCLIM-D uses a clustering method to
determine weather types (10 in this implementation) in the
SLP field. For each day, the Euclidean distances of the SLP
field to all the weather types are calculated and used as pre-
dictors for the square root of the precipitation anomaly at a
given location in a multiple linear regression. The mean of
the estimated precipitation over all stations in the target area
is then used to define a set of analog days from which the
downscaled local precipitation is chosen. The set is defined
by the days in the fitting period that belong to the same
weather type as well as have averaged precipitation in the
same decile as the estimated averaged precipitation. We note
that comparing deciles is similar to quantile mapping or
inflated regression. In the deterministic version of the
method, which is used here, one analog precipitation field is
randomly selected, the stochastic version used several
analogs.

2.2 | Validation measures

We now discuss the different validation measures on which
the method comparison is based. All computations have
been performed in R and the codes are publicly available at
Santander Meteorology Group (2016).

2.2.1 | Correlations

Pairwise cross-correlations among all pairs of stations
(n× n−1

2 pairs, n being the number of stations) are computed
for the different target variables and seasons (Spearman for
precipitation and Pearson for temperatures), and for experi-
ments 1a and 1a-RCM (n = 86) and 1c (n = 53). For the
temperature data, the seasonal cycle of each data series is
removed prior to correlation analysis by subtracting the cli-
matological mean for each particular day of the year based
on the whole analysis period 1979–2008. The mean is based
on a circular moving average with a window width of
31 days centred around the target day. The precipitation data
are used in their original form. In both cases, no detrending
has been used. In addition to the visual comparison of corre-
lation matrices, we calculate the correlation matrix distance
(CMD, Herdin et al., 2005). It measures the similarity
between two correlation matrices and is defined as one
minus the inner product of the normalized vectorized matri-
ces. For matrices that are identical up to a scaling factor, the
CMD is zero and for very different matrices, for which the
associated vectors are orthogonal, the CMD is one.

Station correlograms are then derived by plotting the
cross-correlation value for each station pair against their
respective (great circle) geographical distances. As the
resulting cloud of points may hinder a quick assessment of
the dependency of the correlations on distance, we fitted ref-
erence curves to each correlogram using a local polynomial
fit (“loess,” degree 2), allowing for a better comparability
between DS methods and against the reference data. The
local fit was preferred to other correlogram global fitting
models commonly used in geostatistics (e.g., exponential or
spherical; see e.g., Hengl, 2007), as it does not require a
priori assumptions about the structure of the correlations. It
is therefore suitable for different kinds of correlation struc-
tures and flexible enough to allow for a direct comparison
across different DS methods and experiments. As a measure
for the overall behaviour of the fitted curves, we then calcu-
lated correlation lengths (CL) for certain representative

TABLE 1 (Continued)

Type Code Tech 1a 1c MS EX ST PC

WG SS-WG WG × — No No Yes No

MARFI-BASIC WG × — No No Yes No

MARFI-TAD WG × — No No Yes No

MARFI-M3 WG × — No No Yes No

GOMEZ-BASIC WG × — No No Yes No

GOMEZ-TAD WG × — No No Yes No

Note. Columns 1a and 1c indicate whether the methods have participated in the European and German experiment, respectively. Techniques: A, analog; PM, parametric
quantile mapping; QM, empirical quantile mapping; S, scaling; TF, regression-like transfer function; WG, weather generator; WT, weather typing. EX, explicitly
modelled spatial structure; MS, multisite fitting; PC, PCs used as predictors; ST, stochastic noise.
aOnly occurrence is randomized, amounts are based on inflated regression (in this case, the results are based on a single realization).
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TABLE 2 Participating methods for temperature for the European experiment (exp1a)

Type Tech Code MS EX ST PC

MOS RaiRat-M6 S No No No No

RaiRat-M7 S No No No No

RaiRat-M8 S No No No No

SB S No No No No

ISI-MIP S/PM No No No No

DBS PM No No No No

GPQM PM No No No No

EQM QM No No No No

EQMs QM No No No No

EQM-WT QM/WT No No No No

QMm QM No No No No

QMBC-BJ-PR QM No No No No

CDFt QM No No No No

QM-DAP QM No No No No

EQM-WIC658 QM No No No No

RaiRat-M9 QM No No No No

DBBC QM No No No No

DBD QM No No No No

MOS-REG TF No No No No

FIC02T PM/A/TF No No No No

PP FIC01T A/TF Yes No No No

ANALOG-ANOM A Yes No No No

ANALOG A Yes No No Yes

ANALOG-MP A Yes No Yes No

ANALOG-SP A Yes No Yes No

MO-GP TF No No No No

MLR-T TF No No No No

MLR-RAN TF No No No No

MLR-RSN TF No No No No

MLR-ASW TF No No Yes No

MLR-ASI TF No No No No

MLR-AAN TF No No No No

MLR-AAI TF No No No No

MLR-AAW TF No No Yes No

MLR-PCA-ZTR TF No No No Yes

MLR TF No No No Yes

MLR-WT TF/WT No No No Yes

WT-WG WT No No Yes Yes

SWG TF No No Yes Yes

WG SS-WG WG No No Yes No

MARFI-BASIC WG No No Yes No

MARFI-TAD WG No No Yes No
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thresholds, as the abscissa of the point of intersection of the
correlation threshold with the fitted line. We tested different
thresholds, and the final values used are given in Table 3.
The CL biases for the predictions were calculated as the dif-
ference of the CL for a given method and the CL of the
observations (Table 4). This bias is a simple measure for the
difference in the correlation structure between the predic-
tions and the observations.

2.2.2 | Spatial degrees of freedom

We determine the number of independent spatial degrees of
freedom (DOF) that are associated with the observations and
with the DS products. DOF quantify the complexity of time-
and space-dependent data sets and are based on the correla-
tion or covariance matrix. In addition to describing the
dependency of the correlations on distance by a single num-
ber (CL) we thus also use a single number to capture a key
property of the correlation matrices themselves and then cal-
culate its biases.

One possible way to define complexity is to consider the
eigenvalue spectrum of the covariance or correlation matrix.
Consider a situation where the time series at all locations are

perfectly correlated, which means there would be only one
independent variable. In this case, one PC (e.g., Hannachi
et al., 2007) would explain all the variance, that is, the first
eigenvalue of the covariance matrix would be equal to the
total variance and all other eigenvalues would be zero. If, in
the other extreme case, the time series at all locations were
independent, the eigenvalue spectrum would be completely
flat, as no correlations between the station records could be
exploited to construct any PCs that explain more variance
than an individual station record. Roughly speaking, the
steepness of the eigenvalue spectrum can thus be taken as an
indication for the complexity of the data, with a steep (flat)
spectrum being associated with low (high) complexity.

An alternative way to define the complexity of a space-
and time-dependent field ψi(t) is to consider the time series
of the spatial sum of the squares of the values at the individ-
ual locations i, that is,

E tð Þ=
Xn
i=1

ψ2
i tð Þ, ð1Þ

with n being the number of locations. For independent vari-
ables E(t) has a χ2-distribution with N DOF, for dependent
variables the distribution is well approximated by a χ2 distri-
bution with fewer DOF. A useful measure of complexity is
obtained by asking how many independent variables are
needed to obtain approximately the same χ2 distribution,
which is defined by its mean and variance, as for the time
series of the sum of squares of the dependent variables.

This approach has been reviewed by Bretherton et al.
(1999) who have shown that for normally distributed PCs
the χ2 and the eigenvalue approaches are equivalent if, as

TABLE 2 (Continued)

Type Tech Code MS EX ST PC

MARFI-M3 WG No No Yes No

GOMEZ-BASIC WG No No Yes No

GOMEZ-TAD WG No No Yes No

Note. Techniques: A, analog; PM, parametric quantile mapping; QM, empirical quantile mapping; S, scaling; TF, regression-like transfer function; WG, weather
generator; WT, weather typing. EX, explicitly modelled spatial structure; MS, multisite fitting; PC, PCs used as predictors; ST, stochastic noise.

TABLE 3 Correlation thresholds used for calculating correlation
lengths in the European experiments (1a and 1a-RCM) and in the
German experiment (1c)

Var. Exps. 1a and 1a-RCM Exp. 1c

Precip 0.35 0.50

Tmin 0.50 0.65

Tmax 0.50 0.65

TABLE 4 Correlation length (CL) values (in km) calculated from the correlograms of the reference station data sets (VALUE-ECA-86-v2 for
experiments 1a and 1a-RCM, and VALUE-ECA-53-Germany-spatial-v1 for experiment 1c)

Exps. 1a and 1a-RCM Exp. 1c

Var. Annual DJF JJA MAM SON Annual DJF JJA MAM SON

Precip 495 527 429 475 540 404 546 310 393 417

Tmin 741 822 647 771 653 569 695 462 541 475

Tmax 873 1,005 785 893 870 698 788 697 653 668
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suggested in earlier studies, the DOF are calculated from the
eigenvalue spectrum by:

DOF=

P
iλi

� �2
P

iλ
2
i

, ð2Þ

where λi is the i-th eigenvalue and the summation is over all
the eigenvalues.

In this paper, we follow the computationally easier eigen-
value approach and calculate the independent spatial DOF
according to Equation 2. The normality assumption has been
checked in the reference observation data set VALUE-ECA-
86-v2 (see Section 2.1), by comparing the empirical distribu-
tion function of each PC against the cumulative distribution
function of the normal distribution using the Kolmogorov–
Smirnov test, implemented in the function ks.test of the R
package stats (R Core Team, 2018). All PCs were found to
be indistinguishable from a normal distribution at the 5%
significance level. The singular value decomposition imple-
mentation used in the (function svd in the R package stats R
Core Team, 2018) cannot handle missing values in the
covariance matrix, and a few methods yielding missing
values for all data in some stations did thus not yield results
(this will be later indicated in the corresponding figure
captions).

For consistency with the analysis of CLs (Section 2.2.1),
we base the DOF on the eigenvalues of the correlation rather
than the covariance matrix. In other words, we calculate the
DOF for standardized data, where the time series at each
location have the same variance. The seasonal cycle is sub-
tracted in the same way as for the correlation analysis. The
DOF for the observations, which are the reference for calcu-
lating DOF biases, are given in Table 5.

2.2.3 | Joint threshold exceedances

The correlation-based analyses discussed above investigate
the strength of linear relationships between the time series at
different locations. However for users of the downscaled
data, it may often be also relevant to know whether the prob-
abilities for joint exceedance of a certain threshold at differ-
ent locations are realistic in the downscaled data. Typical
examples are the joint occurrence of precipitation or of

heavy precipitation. For brevity, we restrict the analysis of
such joint threshold exceedances to precipitation. This is the
most challenging case since temperature fields are typically
much smoother and spatially homogeneous. Therefore, we
consider two typical cases: the wet day threshold of
1 mm/day and exceedance of thresholds for high precipita-
tion, namely the local 90th percentile.

The most direct way to analyse the dependence between
the data Xi, Xj at a pair of stations {i, j} for exceeding a
threshold x0i at location i and x0j at location j, is subtracting
the product of marginals P(xi ≥ x0i)�P(xj ≥ x0j) from the
joint probability P(xi ≥ x0i, xj ≥ x0j). Their difference is zero
only in case that P(xi ≥ x0i) and P(xj ≥ x0j) are totally inde-
pendent and the larger the value, the more dependent they
are. However, this difference would not only be influenced
by the dependence for threshold exceedance, but also by the
marginal probabilities at each of the stations, and is thus not
a useful measure for the dependence itself.

A more suitable framework is based on the mutual infor-
mation (MI) which measures the dependence between two
random variables X, Y and is unaffected by their marginal
distributions. It is a standard approach in probability and
information theory (see e.g., Hlinka et al., 2014), and for
discrete random variables is defined as:

MI X,Yð Þ=
X
x2X

X
y2Y

p x,yð Þ � log p x,yð Þ
p xð Þ �p yð Þ

� �
: ð3Þ

MI is zero if the two events are independent, that is, if p
(X, Y) = p(X) � p(Y), non-negative (MI(X, Y) ≥ 0) and sym-
metric (MI(X, Y) = MI(Y, X)).

In our analysis, we consider the binary variables Ψi at the
locations i which state whether the precipitation xi is above
or below the threshold x0i, that is, ψi = 1 if xi ≥ x0i and
ψi = 0 if xi < x0i. Following the definition above we then
calculate for each pair of locations i, j the MI for these
binary variables

MIi, j=MI Ψi,Ψj
� �

=
X

ψi2 0,1½ �

X
ψj2 0,1½ �

ðp ψi,ψj

� �
� log

p ψi,ψj

� �

p ψið Þ �p ψj

� �
0
@

1
A: ð4Þ

We calculate MI for the dry–wet threshold x0i = 1 mm/d
as well as for a high precipitation threshold defined as the
90th percentile (P90i) of the observed daily precipitation
(including dry days) at each station, that is, x0i = P90i.

Following the methodology for correlograms (see
Section 2.2.1), we plot each MIij against the distance of the
locations i, j and fit a degree-2 loess curve to the resulting
plots. We then define MI thresholds for calculating the MI

TABLE 5 Degrees of freedom for daily precipitation, minimum
and maximum temperature from the VALUE-ECA-86-v2 observation
data set

DJF MAM JJA SON

Precip 30.02 41.51 48.64 36.05

Tmin 6.56 7.66 9.43 8.86

Tmax 5.65 6.56 7.55 6.91
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lengths (MILs) for observations and for the different DS
methods. For the dry-wet binary variable based on
x0i = 1 mm/d we use MI thresholds that depend on the
experiment and season in order to obtain observed MILs
that are similar (within a few kilometres) to the observed
CLs, which makes it easier to assess whether MI yields
information about the methods that is not already included
in the CLs. The respective values are given in Table 6.
For the high precipitation threshold x0i = P90i we use a
constant MI threshold of 0.1. Analogs to the correlation
analysis MIL biases are calculated for the different DS
methods, seasons and experiments by subtracting the
respective observed MIL.

2.2.4 | Regionalisation

Note that in this study, we apply the term regionalization in
the sense of spatial clustering, that is, in the sense of finding
regions with common variability. In order to achieve a
regionalization of the station data, orthogonally rotated
(Varimax criterion, S-mode) PC analysis (RPCA,
e.g., Richman, 1986; Hannachi et al., 2007) is applied sepa-
rately for each season to the correlation matrices calculated
from detrended monthly time series.

The decision on the number of PCs to be rotated is based
on the criterion that each retained PC has to be representa-
tive for at least one input variable, following Philipp et al.
(2007). A rotated PC is considered representative for a given
station if the loading of this PC at this station is larger than
the loadings of the other PCs at this station by at least one
standard deviation of all loadings at this station; additionally,
this loading has to be statistically significant at the 5% level.
Each station is assigned to the region (as defined by RPCA)
for which it has the highest PC loading.

The number of PCs is determined from observations.
Then the same number of PCs is used for the PCAs of the
output from the DS methods. Following a standard
approach, the observed and the downscaled groupings are
compared using the Adjusted Rand Index (ARI, Hubert and
Arabie, 1985; Santos and Embrechts, 2009). The ARI is
based on how pairs of objects, which in our case are pairs of
locations, are classified as being either in the same or in dif-
ferent groups, which in our case are homogeneous regions.
When comparing two classifications U and V there are four

options for each pair and we denote the number of pairs for
each option as:

a. number of pairs that are in the same group in both
classifications

b. number of pairs that are in the same group in U and in
different groups in V

c. number of pairs that are in the same group in V and in
different groups in U

d. number of pairs that are in different groups in U and in
different groups in V

With these definitions, and n being the number of
objects, the ARI can be expressed as

ARI=

n

2

� �
a+dð Þ− a+bð Þ a+cð Þ+ c+dð Þ b+dð Þ½ �

n

2

� �2

− a+bð Þ a+cð Þ+ c+dð Þ b+dð Þ½ �
: ð5Þ

Its value increases with the agreement of the two classifi-
cations; 0 indicates no agreement and the maximum is 1 for
identical classifications.

As already mentioned in Section 2.2.2, the singular value
decomposition routine used for PCA cannot handle missing
values, and therefore the regionalisation could not be calcu-
lated for a few methods.

3 | RESULTS

3.1 | Example situation

Before we present the results of the statistical analyses, we
give an example for observed and downscaled precipitation on
a specific day and for a few selected methods to illustrate the
different characteristics of DS methods (Figure 2). We chose
August 15, 1998, because on this day there was frontal precip-
itation (over parts of the Scandinavia and the Baltic) as well as
convective precipitation (over the Iberian Peninsula and parts
of northern Italy). The distinction is based on the analysis of
pressure charts and vertical temperature profiles (not shown).

The precipitation observations show low to medium
values at most stations in Northern Spain and at one station
in northern Italy, while the values in Scandinavia and the
Baltic are medium to high. The ERA-Interim reanalysis
partly underestimates the amplitudes, shows a continuous
rain band south of the Alps whereas only one station has
recorded rainfall in this region, and does not simulate the
convective precipitation in central Iberia. In comparison, the
RACMO regional model simulates the intensities in some
regions better, for instance over Iberia and Scandinavia, but
shows the well-known drizzle effect with light precipitation

TABLE 6 MI thresholds used to calculate the MI lengths for the
precipitation occurrence (1 mm threshold in the European experiments
[1a and 1a-RCM] and the German experiment [1c])

Experiments Annual DJF JJA MAM SON

1a, 1aRCM 0.18 0.14 0.20 0.18 0.20

1c 0.24 0.22 0.24 0.22 0.24
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over large areas, as well as an unrealistic rain band north of
the Alps and over parts of Germany and France. We note
that satellite pictures showed convection over Germany,
which, however, was not associated with precipitation. As
expected, the two quantile mapping methods EQMs (empiri-
cal) and RATY (parametric) inherit the partly unrealistic
spatial structure from RACMO but change the specific
values, with the EQMs intensities being in general closer to
the observations than those from RATY.

The ANALOG-ANOM method captures well the fact
that the convective precipitation only occurs at some loca-
tions and that the frontal precipitation is more homogeneous

in space. The individual locations at which the convective
precipitation occurs are partly different to the observations,
which is an expected consequence of the stochastic nature of
occurrence of convection. The values for the convective pre-
cipitation are close to the observed ones, whereas the inten-
sity of the frontal precipitation is underestimated.

The MLR-RAN method (PP, multiple linear regression
using large-scale predictors) unrealistically yields precipita-
tion at all locations with the exception of some stations close
to the eastern boundary of the analysis domain. For the sta-
tions where precipitation was observed the intensities are
roughly in the right range. For the WT-WG method

VALUE_ECA_86 ERAIn-075t RACMO0.11

EQMs-RCM
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FIGURE 2 Observed (VALUE-ECA-86-v2, top-left panel) and downscaled precipitation on August 15, 1998 (mm/day). The second and third
panels (from top to bottom, and left to right) show the 24 hr accumulated precipitation from the ERA-Interim reanalysis (ERAint-075 panel) and
from the RACMO RCM (0.11� horizontal resolution, RACMO 0.11 panel) driven by ERA-Interim the downscaling methods are labelled by their
codes (Table 1), with the “-RCM” suffix indicating MOS methods used in experiment 1a-RCM
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(WG conditioned on weather types) one can either plot indi-
vidual realizations or the average over a simulated ensemble
(100 realizations in this case). The individual realizations
(not shown) have a much too low spatial coherency. This
indicates that the random variability component, which is
sampled individually at each location, is large compared to
the fraction of variability that is conditional on the weather
types. Here we show the conditioned component, that is, the
averaged values, which is as expected too smooth, with pre-
cipitation occurring almost everywhere and values at the
locations with observed precipitation being often too low.

In summary, the examples suggest that the methods that
either inherit the spatial structure from an RCM (EQMs and
RATY) or use observed spatial structures (ANLOG-ANOM)
yield relatively realistic spatial patterns. In contrast condition-
ing precipitation at singlesites on large-scale predictors (MLR-
RAN, WT-WG) leads to fields that are too smooth when only
the conditioned component is considered (MLR-RAN, aver-
aged WT-WG), or not smooth enough when the stochastic
component is added (individual realizations of WT-WG).

3.2 | Correlations

Selected examples of pairwise cross-correlation matrices for
winter (DJF) are displayed in Figures 3a and b for precipita-
tion and maximum temperature respectively. The 86 Euro-
pean stations (Figure 1) are arranged so that station pairs
with a small distance are near to the diagonal while distant
pairs are near the upper-left corner. The geographic distances
(measured along a great circle) are shown in the upper trian-
gle in the first matrix of each panel, while the observed cor-
relations are shown in the lower triangle.

In general, all methods are able to reproduce to some extent
the correlation structure of both temperature and precipitation,
with the exception of WT-WG. The WT-WG correlations
shown are the average of the correlations for individual reali-
zations (in contrast to Figure 2 where correlations for
ensemble-averaged values are shown), and despite the condi-
tioning of the WG on weather types it yields almost
uncorrelated values for all stations, regardless of their distance.
This is explained by the weak conditioning imposed by the
only predictor (SLP) used in this method, which explains only

FIGURE 3 Pairwise cross-correlation matrices for winter for the 86 locations of the VALUE-ECA-86-v2 data set. In each panel, the first
matrix represents the geographic distances between pairs of stations (above the diagonal) and the correlations of the observations (below the
diagonal). The remaining matrices display the correlations for two different methods indicated by the panel titles with the values for the first
(second) method given above (below) the diagonal. The number under the method names is one minus the correlation matrix distance between the
method and the observation correlation matrices. (a) Daily DJF precipitation (Spearman's ρ correlation coefficient). (b) Daily DJF maximum
temperature (Pearson's r correlation coefficient)
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a very small fraction of the variance and results in an almost
purely stochastic method (see also Gutiérrez et al. (2018)).
The correlations of raw ERA-Interim and RACMO output are
both in good overall agreement with the observations. How-
ever, the results for the different methods differ in detail. For
instance, MLR-RAN systematically yields too high positive
and negative correlations for distant station pairs, while EQMs
and in particular ANALOG-ANOM reproduce most aspects of
the structure well. The latter has the highest 1 – CMD value
for precipitation (0.988) and maximum temperature (0.992).

We now investigate the dependency of correlations on
distance more systematically by comparing correlograms
and CL values. The former are shown for some example
methods in Figure 4 for the European station network
(experiments 1a and 1aRCM) and in Figure 5 for the high-
density German network (experiment 1c). In addition to the
actual correlations, these figures include the fitted curves
and the CLs (vertical lines). As expected, the observed cor-
relations (upper-left panels) decline with distance and for the
European data set level off around zero. The fact that the
correlations show approximately an exponential decrease in
Figure 4 but a more linear decrease in Figure 5 is due to the
different size of the analysis domains. In experiment 1c,
there are some missing CL values for temperatures, because
due to the small analysis domain and the smooth topography
the temperature records are highly correlated for all station

pairs and in some cases the fitted line is therefore above the
corresponding correlation threshold (0.65, Table 3) for all
distances. In contrast, precipitation has a higher degree of
spatial heterogeneity and CLs are obtained in all cases.

For the European data (Figure 4), ERA-Interim tends to
slightly overestimate the correlations in both seasons and
reproduces the observed slight difference between the sea-
sons. RACMO has values closer to reality, but does not cap-
ture the observed seasonal difference. Both MOS methods
(EQMs-R and Ratyetal-M8-R) further reduce the correlations
compared to the raw RCM but to a different extent, and the
lack of a seasonal difference remains. As expected, the analog
method (ANALOG-ANOM), which selects an entire analog
field reproduces the observed correlations. The PP example
method (MLR-RAN), which uses large-scale predictors, over-
estimates correlations. As already shown in Figure 3a the WG
conditioned on weather types (WT-WG) strongly underesti-
mates correlations when individual realizations are consid-
ered. For the ensemble average (dashed lines) the correlations
are too high in winter and still substantially too low in sum-
mer. The deficiencies of this method have also been reported
in Gutiérrez et al. (2018).

It can be seen in Figure 5 that in Germany and on the
shorter distances, which are resolved well by the high-
density network, the observed seasonal differences are larger
than in the European case, with higher correlations in winter.

FIGURE 4 Correlograms for daily precipitation for JJA and DJF showing correlations of the time series for each pair of stations against their
geographical distances (European experiment, exp1a). For the stochastic weather typing–weather generator method the fitted curves of the averaged
option and the corresponding correlation length value are indicated by dashed lines (individual values are omitted for clarity)
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All example methods do now also show a seasonal differ-
ence. As in the European case ERAINT overestimates corre-
lations. The MOS-corrected ERA-Interim precipitation
(EQM-R) leads to fairly realistic correlations, as does one of
the PP methods (DSCLIM-D), while the other ones either
overestimate (GLM-DET) or underestimate (GLM-BN-
DET) correlations. As explained in Section 2.1, the latter is
an extension of the former, explicitly including a model for
spatial dependence (based on probabilistic networks).

We now look at the full set of methods with respect to
the precipitation CL bias for the European (Figure 6) and
German data sets (Figure 7). In Figure 6 ERAINT has a pos-
itive CL bias, which gets reduced when the reanalysis is
dynamically downscaled with RACMO, as already seen in

the previous figures. Most deterministic MOS methods do
reduce the bias both in the reanalysis-driven (*-E) and
RACMO-driven (*-R) case, with the former still having
higher CLs than the latter, as for the raw numerical models.
Many MOS methods that are based on quantile mapping
have very low CL biases, while some of the scaling
approaches (e.g., Ratyetal-M7) have slightly higher biases.
Consistent with the previous plots, the stochastic methods
(MOS-GLM, VGLMGAMMA) have substantial negative
CL biases for the individual realizations. The bias for the
ensemble mean is positive for MOS-GLM, while it is nega-
tive for VGLMGAMMA, suggesting that for the latter the
distributions are not constrained closely enough by the
predictands.

PRECIP—Correlation length bias (thresh = 0.35)
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FIGURE 6 Correlation length
(CL) biases for daily precipitation from
the downscaling methods tested in
experiments 1a (suffix—E for MOS
methods) and 1a-RCM (suffix—R) with
respect to the reference values based on
the VALUE-ECA-86-v2 data set
(Table 4). For the stochastic methods, the
results of both the member-averaged
(asterisks) and individual (circles)
approaches are shown. The box in the
lower part of the figure shows the
seasons/approaches for which the CL
cannot be calculated due to very low
correlations

FIGURE 5 Same as Figure 4 but for selected methods used in the German experiment (exp1c). The correlations for the reference observations
(VALUE-ECA-53-Germany-spatial-v1) are shown in the upper left panel
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The PP methods in Figure 6 show a wide range of positive
and negative biases. Positive biases occur for regression
methods with large-scale predictors (MLR-RAN, MLR-RSN,
MLR-ASI, GLM-DET) because the predictors for different
stations are similar (e.g., PCs from ERA-Interim fields). The
FIC01P method, which is a combination of an analog method
and postprocessing using a transfer function, has also a posi-
tive bias. In contrast, negative biases are visible for methods
that use local predictors, for example, information taken from
the gridcell covering the target station, for instance some of
the linear models (GLM, GLM-WT, GLM-P) and the “multi-
objective genetic programming method” (MO-WT). The
ANALOG method, which is based on regional-scale predic-
tors shows a negative CL bias. Individual realizations of some
stochastic methods (ANALOG-M, ANALOG-SP, GLM-P)
have also negative biases. Biases close to zero are achieved
with one analog method (ANALOG-ANOM) and a regres-
sion method with noise added (MLR-ASW).

When the CL biases on shorter distances are considered
(Figure 7) the raw ERA-Interim precipitation shows again a
positive bias, while biases close to zero are obtained for MOS
methods based on quantile mapping. For the PP methods, the
positive biases of regression methods using large-scale predic-
tors and the negative bias for those using local predictors
remain. The ANALOG method is now almost bias-free, in
contrast to the European case. The reason is that the predic-
tors are neither global, nor completely local, but based on the
division of the whole domain in a number of sub-domains
with each containing several stations. The selection of analog
dates is common for all stations within a sub-domain, thus
guaranteeing the spatial consistency within sub-domains,
whereas different dates can be chosen for different sub-
domains. As Germany lies within one sub-domain and

Europe covers several subdomains the CL bias is close to
zero for experiment 1c (sampling effects remain) and negative
for experiment 1a. The second method that is bias-free is a
hybrid method (DSCLIM-D) which combines a weather type-
based transfer function and an analog approach.

For the European data set, we also consider the CL bias for
minimum and maximum temperature (Figures 8 and 9). As
temperature fields are smoother than precipitation fields, we
use a correlation threshold of 0.5 rather than 0.35, which was
used for the European precipitation data. The results for mini-
mum and maximum temperatures are very similar. The MOS
results are fundamentally different from the precipitation case.
While for precipitation many MOS methods did reduce the
CL bias relative to the raw models (both for ERAINT and
RACMO), for temperature there is for almost all MOS
methods no reduction of the positive model bias. The reason
might be that precipitation is an intermittent process for which
debiasing the marginal distribution affects correlations more
strongly than for the continuous temperature time series. The
high biases for CDFt-E and MOS-REG-R need further investi-
gation. The CDFt method was also found to behave differently
to other MOS methods with respect to the temporal correlation
between predictions and observations (Gutiérrez et al., 2018),
trends (Maraun et al., 2018), and extreme events (Hertig et al.,
2018). We note that this method is different from the other
MOS techniques in the sense that it also uses the predictand
distribution in the validation period (see Gutiérrez et al.
(2018), appendix A1 for the full method description), which
may lead to a high sampling variability in our experimental
setup. The CDFt data passed our standard quality test, but the
correlation versus distance plots for CDFt for maximum and
minimum temperatures and experiment 1a showed an unusual
behaviour with no clear link between correlations and distance,

PRECIP—Correlation length bias (thresh = 0.5)
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precipitation from the methods included
in the European experiments (exp1a and
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and thus a technical error for downscaled temperatures using
CDFt-E cannot be ruled out.

As for precipitation the PP methods show again in gen-
eral higher biases than the MOS methods, and some analog
methods perform well, whereas others do not. A noticeable
difference is the smaller number of methods with negative
biases for temperature. Although the set of methods is not
identical, there are some methods used for both predictor
variables that have large negative biases for precipitation but
small biases for temperature, namely ANALOG-SP and
MO-GP. A potential reason is that for those methods the pre-
dictors constrain temperature better than precipitation.

3.3 | Spatial DOF

The DOF biases for precipitation, which express differences
in the dimensionality of the fields, are shown in Figure 10.
Almost all MOS methods have a negative bias and thus
underestimate complexity. The underestimation is strongest
in summer, where convective, and thus small-scale, precipi-
tation is more important than in the other seasons. Compared
with the raw model results, most MOS methods reduce the
absolute bias. The exception are some of the stochastic
methods (MOS-GLM, VGLMGAMMA), which strongly
overestimate complexity. The MLR-based PP methods also
underestimate complexity, whereas some of the analog
methods have a small bias and others overestimate it. The
WGs show a strong overestimation.

The DOF biases for temperature are shown in Figure 11.
For almost all DS methods they are substantially smaller
than for precipitation, with many MOS and some PP
methods leading to biases smaller than 2. The exception are
some WG methods (SS-WG, GOMEZ-BASIC, GOMEZ-
TAD), which show biases of up to 40. During summer and
autumn the DOF biases for minimum temperature are larger
than those for maximum temperature. In contrast to the pre-
cipitation case, the biases for the MOS-corrected models are
very similar to those of the raw models.

Most methods with a positive (negative) CL bias, that is,
those for which correlations drop too slowly (too quickly),
have a negative (positive) DOF bias. One clear exception is
CDFt-E for temperature, which is in line with other MOS
methods with respect to the underestimation of the DOFs,
but as mentioned in Section 3.2 has a large negative CL bias,
which may be due to technical errors. We note that
reordering the stations would not affect the DOFs, but would
lead to erroneous correlograms if not taken into account
when calculating the distances between station pairs. There
are also some MOS methods that have a slightly positive CL
bias despite their negative DOF bias.

3.4 | Joint threshold exceedances

The methodology for the joint threshold exceedances analy-
sis is very similar to that for correlation (see Section 2.2.3),
and we therefore do not show the MI matrices and MI versus
distance diagrams. The characteristic MILs for the reference
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observations exceeding the wet day threshold are presented in
Table 7 and for exceeding the local 90th percentile in Table 8.
As in the case of the correlograms, lower MIL values indicate
a faster loss of mutual dependence as a function of distance,
while higher MIL values indicate a stronger dependence
between stations. For both thresholds there is a marked sea-
sonal dependence, with the minimum in summer and the
maximum in winter. For the 90th percentile autumn values
are also high. The MILs obtained from the European and the
German observational data sets were similar (Table 7).

The high-density German data set is better suited than the
European data set for calculating MILs for both thresholds,
as it has a larger number of station pairs within the distance
ranges relevant for calculating the MILs for both thresholds,

and thus provides more robust results. We therefore restrict
the MIL analysis to experiment 1c. This has the additional
advantage that we avoid a potential loss of robustness in the
summer results arising from locations with no precipitation
for the whole season, which may occur in some parts of
Southern Europe. The biases for the wet day threshold with
respect to the observed reference values are shown in
Figure 12 and for the 90th percentile threshold in Figure 13.

For the wet day threshold, all MOS methods slightly
overestimate the dependence. The exceptions are FIC02P,
which strongly overestimates it, and FIC04P, which in most
seasons slightly underestimates it. All MOS methods but
FIC02P reduce the bias compared with the raw reanalysis
data. Among the PP methods, ANALOG and DSCLIM-D
(which contains an analog step) are bias-free apart from sam-
pling effects, and the individual realizations of ANALOG-
MP has also a very low bias. The MLR methods over-
estimate the dependence, whereas GLM-P strongly
underestimate it.

The different DS methods perform similarly with respect
to the MIL biases for the wet day threshold and to the CL
biases (Figure 7). Both show a bias reduction by most MOS
methods, and the same sign and relative size of the bias for
both quantities. Too strong (weak) correlations of the time
series are thus associated with too high (low) dependences
of the occurrence of wet or dry days.

The overall picture is different for the 90th percentile
threshold. Almost all MOS methods show the same over-
estimation of dependence as the raw reanalysis data. In the
PP group the analog methods and GLM-BN-DET and
DSCLIM-D have very low biases, whereas the MLR
methods very strongly overestimate dependences for heavy
precipitation.

TABLE 7 Mutual information length values (in km) calculated
for exceedance of the wet day threshold of daily precipitation in the
reference station data sets (VALUE-ECA-86-v2 for experiments 1a and
1a-RCM and VALUE-ECA-53-Germany-spatial-v1 for experiment 1c),
using the MI thresholds displayed in Table 6

Experiments Annual DJF JJA MAM SON

1a, 1aRCM 359 554 216 324 340

1c 338 528 256 360 345

TABLE 8 Mutual information length values (in km) calculated
for exceedance of the 90th percentile of daily precipitation in the
reference station data set of experiment 1c (VALUE-ECA-53-
Germany-spatial-v1, using a fixed threshold of 0.1 for all seasons. Note
that only the experiment 1c (German data set) has been used in this
case as reference (see Section 3.4)

Annual DJF JJA MAM SON

191 284 109 183 234

PRECIP—Mutual Information length bias (variable threshold)
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3.5 | Regionalisation

The number of PCs retained for rotation is shown in Table 9
along with the cumulative fraction of variance explained for
the observed daily precipitation, minimum, and maximum
temperature at the 86 European stations. As expected a
higher number of PCs is needed to explain a certain fraction
of the variability of precipitation compared with temperature,
as the spatial patterns of the former contain more small-scale
structures. Also, more PCs are needed to represent precipita-
tion well in summer and spring than in autumn and winter,
due to the higher contribution of small-scale, convective pre-
cipitation in the former seasons, and the dominance of large-
scale, stratiform precipitation in the latter. The fact that the
retained PCs do not explain all the variance in the data sets is
one of the potential reasons for differences between the
rotated EOFs in the observations and the DS results.

For temperature, five to six PCs are retained and thus five
to six regions are identified. The regions for maximum tem-
perature in the different seasons are shown in Figure 14.
Europe is divided roughly into northern Europe, north-
western Europe, south-western Europe, central and southern
Europe, eastern Europe, and south-eastern Europe. The
boundaries between the regions are to some extent season-
ally dependent. They are also not always simply connected
geographical regions, as for instance in autumn and spring
one station in northern Italy is grouped together with the

south-western stations, or in winter the United Kingdom,
Germany, and the Alpine regions contain stations associated
with different rotated PCs. Similar regions are found for
minimum temperature, but there are also some differences,
for instance a distinct central alpine region for minimum
temperature in winter (not shown).

Figure 15 shows the ARI for minimum and maximum
temperatures, which is used as performance measure to judge
the ability of the DS methods to capture the observed regions
of similar temperature variations. It can be seen that the
singlesite WG based methods (GOMEZ-BASIC, GOMEZ-
TAD, MARFI-BASIC, MARFI-TAD, MARFI-M3, SS-WG)
are not able to reproduce the regions at all due to the genera-
tion of synthetic time series at one specific location without
considering spatial relationships. WG methods that include
atmospheric covariates (WT-WG, SWG) perform somewhat
better by indirectly incorporating spatial information carried
by the covariates. There is no systematic difference between
MOS and PP methods. The ARI mostly lies between about
0.3 and 0.9 and varies more between seasons than between
methods. The best performance is achieved for spring to
autumn, whereas in winter the lowest ARI values are system-
atically attained. The lower performance in winter might
partly be explained by region-specific phenomena (for
instance inversion), which are not adequately captured by the
DS methods. The ARI for analog methods, which by con-
struction lead to a realistic spatial structure of the daily fields,
is not higher than for many other methods. The monthly
means to which the rotated PCA is applied, might be some-
what different from the true monthly means, and the questions
arises to what extent the results of the rotated PCA describe
robust statistical properties, and to what extent they might be
influenced by the individual realizations. The ARI for precipi-
tation is shown in Figure 16 and lies between about 0.2 and
0.6, but with no seasonal structure to it. Like for temperature,
WGs are not able to map the regions and no superior perfor-
mance of multisite methods arises (not shown).

TABLE 9 Number of principal components retained for rotation
and cumulative variance (in parentheses, %) for precipitation, minimum
and maximum temperature at the 86 stations of the ECA-VALUE-86-
v2 observation data set

Var. DJF MAM JJA SON

Precip 13 (78.3) 15 (71.4) 19 (71.4) 13 (71.8)

Tmin 6 (85.8) 6 (85.1) 6 (82.3) 6 (81.4)

Tmax 6 (87.2) 6 (87.3) 6 (86.5) 5 (82.0)

PRECIP90—Mutual Information length bias (thresh = 0.1)
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4 | SUMMARY AND CONCLUSIONS

We have evaluated the spatial variability of the output from
over 40 DS methods for the period 1979–2008 at a
European-wide network of 86 stations, and at a high-
resolution network of 53 stations in Germany. Predictors for
the PP methods and boundary conditions for the RACMO
regional model have been taken from the ERA-Interim
reanalysis. MOS methods have been applied to the
reanalysis as well as to the RACMO output. We have
analysed the dependency of correlations of daily temperature
and precipitation series at station pairs on the distance
between the stations. For the European data set, we have
also investigated the complexity of the downscaled data by
calculating the number of independent spatial DOF. For
daily precipitation at the German network, we have addition-
ally evaluated the dependency of the joint exceedance of the
wet day threshold and of the local 90th percentile on the dis-
tance between the stations. Finally we have investigated
regional patterns of European monthly precipitation and
temperature obtained from rotated PC analysis.

The results for CLs and DOF based on the European net-
work are summarized in Figure 17. Findings related to joint
threshold exceedances are not included in the figure because
they are based on the German predictand data and a different
set of methods. Results from the regionalisation are not
included because they are derived from monthly rather than
daily data. The figure shows the relative bias calculated as the
ratio of the bias and the observed value for the CLs or the
DOF. This normalization makes it easier to compare the
values for different seasons, and for CLs and DOF. For the
bias in the DOF we have swapped the sign because a bias in
CLs is usually associated with a bias of the opposite sign in
the DOF. The summary figure and the detailed results pres-
ented earlier show that there is a very large spread in how
well the different DS methods represent the characteristics of
the observations, ranging from close to reality to very
unrealistic.

For all three predictand variables, the raw models have
positive biases in CL and negative biases in the number of
DOF. The biases for the RACMO model are smaller than
those for the reanalysis, which demonstrates the benefit of
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the explicit representation of smaller spatial scales. It is
likely that these biases are not fully due to model deficien-
cies because the spatial scales of the data are different.
Observations averaged over the gridcells can have higher
correlations between two locations than local values, and the
number of DOF of spatial averages can be lower. Likewise
the dependence of the exceedance of thresholds at different
locations, for which the models showed a positive bias,
might be higher for area means than for local values. Never-
theless, the biases represent actual errors if the gridcell
values are used as direct estimates for local values.

As can be seen in Figure 17, most MOS methods substan-
tially reduce the positive biases in CL for precipitation,
whereas there is no clear improvement for temperature. This
difference might be due to the fact that precipitation is an
intermittent process with many zero values, for which cor-
recting the simulated marginal distribution affects correlations
and threshold exceedances more strongly than for the continu-
ous temperature time series. The bias in the DOF is not

reduced as much. It was also shown that MOS methods
reduce the positive bias in the dependence for wet threshold
exceedance, but not for the exceedance of the 90th percentile
of local daily precipitation. High-resolution, convection-
permitting RCMs combined with MOS might represent the
spatial characteristics of heavy precipitation events consider-
ably better, but are still not widely used in climate change
studies because they are computationally expensive (Prein
et al., 2015). The value added by the regional model is still
present after the MOS postprocessing (methods with suffix’-
R’ perform better than those with suffix’-E’). For temperature,
the seasonality of the biases is similar for the raw model and
for the MOS-corrected values. The biases in CL and in the
DOF are for minimum temperature in general slightly higher
than those for maximum temperature.

Figure 17 and the specific findings in the main
section also show that for all predictand variables MOS
methods perform in general better than PP methods, however,
with some noteworthy exceptions. Deterministic PP methods
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FIGURE 17 Relative biases in correlation length and independent spatial degrees of freedom (with sign swapped) based on the European
network for daily maximum and minimum temperature, and precipitation. The columns indicate the seasons (annual, DJF, MAM, JJA, SON). For
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that are based on multiple linear regression and large-scale
predictors tend to strongly overestimate spatial correlations
and also dependences of threshold exceedances, while some
other PP methods, for instance MO-GP and GLM-P, which
use local predictors, underestimate the joint variability
between the stations, in particular for precipitation. Given the
different predictors used for different PP methods, it is possi-
ble that the results are strongly influenced by the predictor
choice rather than by the structure of the statistical model.
Analog methods yield, as expected, realistic spatial character-
istics apart from sampling effects if a common analog date is
selected for all locations, whereas they underestimate links
between the stations if analogs are defined locally. In addition
to the analog methods the GLM-BN-DET method, which
explicitly models spatial dependence, performs very well with
respect to the joint exceedance of the local 90th percentile of
daily precipitation, but somewhat underestimates the joint
exceedance of the wet-day threshold and of CLs. Within the
set of PP methods analysed in our study, multisite analog
methods are thus the only ones that are clearly suitable in
applications where a realistic representation of spatial vari-
ability is important. In climate change applications, it needs to
be carefully checked, however, whether their use is justified,
as potential changes of the character of the analogs with
respect to the predictor variable, and potential new weather
situation that are not well represented by the analogs may
make it difficult to capture the climate change signal. Further-
more, the temporal sequence of the downscaled series might
be unrealistic (Maraun et al., 2018).

The stochastic PP and MOS methods considered in the
study yield time series that are too independent between the
stations. There are two potential contributions to this. First,
the local variability that is explained by large-scale predic-
tors, and thus leads to links between locations, could be
underestimated due to the choice of statistical model and
predictors. Second, the local noise is independently added at
different locations, and thus cannot include potential links in
the unexplained variability. The unconditional, local WGs,
which generate time series that are completely uncorrelated
between the locations, trivially fail to generate realistic spa-
tial fields. Recently multisite WGs have been developed,
and it has been demonstrated that they can capture the spa-
tial characteristics of precipitation at the catchment scale
well (e.g., Keller et al., 2015). If parameter changes in a
future climate can be credibly estimated, for instance by con-
ditioning them on predictor variables, such multisite WGs
can in principle be applied for climate change studies.

As can be seen in Figure 17 in most cases positive (nega-
tive) biases in the CL are associated with negative (positive)
biases in the DOF, and the ranking of the magnitudes is sim-
ilar. This might be expected as both measures are based on
correlations and capture aspects of the spatial complexity of

the fields, with low (high) complexity likely to be associated
with large (small) CLs and a low (high) number of DOF.
However, there are some exceptions. For temperature, the
only method for which the association is not found is CDFt-
E, which as discussed earlier might be due to technical prob-
lems with the method. The other exception are some of the
MOS methods for precipitation, which have small negative
biases for the CLs (see also Figure 6) but also negative
biases for the DOF. This shows that although both measures
usually yield essentially the same information, subtleties in
the correlation structure can exist that lead to both biases
having the same sign. This situation can occur because the
CLs are dominated by station pairs with distances that lead
to correlations near the correlation threshold, whereas the
DOF are based on the entire correlation matrix. Although
both approaches require the calculation of the correlation
matrix, calculating the DOF is more straightforward because
only the eigenvalue spectrum is required, whereas determin-
ing the CLs requires the calculation of correlations as a func-
tion of distance, fitting of a smooth function, and involves a
subjective correlation threshold.

In summary, we found that most PP DS methods yield
unrealistic spatial characteristics, regardless of whether large-
scale or local predictors were used, and therefore should not be
applied for multisite DS if the spatial characteristics of the
results are relevant. The exceptions are multisite analog
methods and a method that explicitly models spatial depen-
dence, which performed well. The raw RCM clearly improves
the skill compared with the driving reanalysis. Adjusting the
marginal distributions through MOS further reduces biases in
CLs for precipitation and joint occurrence of wet days, but does
neither reduce the underestimation of complexity as measured
by DOF, nor the substantial overestimation of the joint occur-
rence of heavy precipitation events, while the improvements
through the RCM are in most cases retained. Whether the spa-
tial characteristics of the output of these methods are realistic
enough for a given application needs to be carefully considered
in each individual case. Moreover, a good performance in a
perfect predictor setup is no guarantee that the methods will
perform well when driven with GCM simulations for the pre-
sent climate or that the climate change signal is realistically rep-
resented (e.g., Maraun et al., 2017).

Despite the satisfying skill of some statistical DS
methods, our results show that providing downscaled meteo-
rological fields with realistic spatial characteristics remains a
challenge. In principle, the common influence of predictors
in singlesite PP methods could lead to realistic spatial pat-
terns, but in the methods considered here it does not. The bet-
ter skill of the RCM and of MOS methods compared with
most PP methods shows that explicit physical modelling with
local statistical postprocessing is in general a better approach
for obtaining realistic spatial fields than deriving full spatial
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fields from large-scale predictors (with the exceptions men-
tioned above). However, none of the methods considered is
able to produce output with a highly realistic spatial structure,
including the dependences for the exceedance of high precip-
itation thresholds. There is thus still a clear need for increas-
ing the resolution of RCMs used in climate change studies,
because the explicit physical modelling of small-scale pro-
cesses can be expected to improve the spatial characteristics
of the raw model output and of MOS-corrected fields, and
also lead to more realistic climate change signals if regional
processes affect climate change. Multisite WGs and multisite
MOS have also the potential to yield realistic spatial fields,
but depend either on the assumption that the spatial depen-
dence does not change over time, or on ways to estimate and
include changes in the dependence.

We note that the observation network used in VALUE is
designed for the validation of a wide range of aspects of DS
results, and not specifically selected for the analysis of spatial
variability. In particular the European network, but also the
German one, has station densities that do not well resolve
variability within small hydrological catchments. Thus simi-
lar studies with a very high station density would be desir-
able. On very small scales, subgrid variability becomes
relevant for MOS methods and our results might not be
directly transferable because deterministic MOS approaches
can be expected to lead to too high dependences in cases
where there is substantial subgrid variability (Maraun, 2013).

As our intercomparison is based on an ensemble of oppor-
tunity of DS methods, it would also be very useful to conduct
future comparisons of spatial aspects with a set of DS methods
that does include all methods that are designed to represent spa-
tial variability well. This should include for instance the multi-
site WGs and multisite MOS methods mentioned in the
introduction. The evaluation of the former in different studies
has been inconclusive, while it has been positive for the latter,
and a systematic comparison using a common experimental
setup would be very helpful for identifying suitable methods
and for informing further method development. The methods
that explicitly model spatial dependence are more complex,
more difficult to calibrate and apply, and more computationally
expensive than most of the methods used in our study, which
is one of the main reasons they are not frequently used and thus
not included. The complexity of these methods also means that
they are not necessarily much easier to implement and apply
than high-resolution RCMs. Which combination of dynamical
and statistical models is best suited for a given application
therefore needs careful consideration.
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