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Abstract. To exploit the possibilities of parallel comput-

ers, we designed a large-scale bidimensional atmospheric

advection model named Pangolin. As the basis for a fu-

ture chemistry-transport model, a finite-volume approach for

advection was chosen to ensure mass preservation and to

ease parallelization. To overcome the pole restriction on time

steps for a regular latitude–longitude grid, Pangolin uses

a quasi-area-preserving reduced latitude–longitude grid. The

features of the regular grid are exploited to reduce the mem-

ory footprint and enable effective parallel performances. In

addition, a custom domain decomposition algorithm is pre-

sented. To assess the validity of the advection scheme, its re-

sults are compared with state-of-the-art models on algebraic

test cases. Finally, parallel performances are shown in terms

of strong scaling and confirm the efficient scalability up to

a few hundred cores.

1 Introduction

Global three-dimensional chemistry-transport models (here-

after referred to as CTMs) play an important role in monitor-

ing and predicting the composition of the atmosphere (e.g.,

Chipperfield, 2006; Teyssèdre et al., 2007; Huijnen et al.,

2010). Those models include large-scale transport, emissions

and chemical transformations of trace species, and sub-scale

grid processes like convection and deposition. In CTMs, ad-

vection by large-scale winds is a key process that must be

handled by numerical algorithms. For these algorithms, mass

conservation for the considered species, monotonicity and

numerical accuracy are especially important for long simula-

tions where accumulation of errors and bias must be avoided.

In this paper, we present a conservative advection model

on the sphere which is intended to form the basic frame-

work for a future CTM. The adopted scheme is based on

a flux-form (Eulerian) tracer advection algorithm on a re-

duced latitude–longitude grid. A finite-volume approach was

chosen as it provides an easy way to ensure mass preserva-

tion. Furthermore, parallelizing the model is then reduced to

a classical domain decomposition problem.

The specificity of our model, named Pangolin1, lies in the

grid definition, where the number of cells on a latitude cir-

cle is progressively decreased towards the pole in order to

obtain a grid which approximately preserves the cell areas at

mid- and high latitudes. This avoids the so-called “pole prob-

lem” arising from the convergence of the meridians, which

severely limits the size of the time steps for Eulerian models.

Several approaches have been adopted in previous studies

to cope with this issue. Finite-volume schemes on latitude–

longitude grids often aggregate latitudinal fluxes near the

poles (e.g., Hourdin and Armengaud, 1999) or successively

double the grid size at high latitudes (e.g., Belikov et al.,

2011).

Alternatively, quasi-uniform spherical grids have been

developed, such as a cubed-sphere2, composite mesh –

1PArallel implementatioN of a larGe scale multi-dimensiOnaL

chemIstry-traNsport scheme
2Each face uses Cartesian coordinates and is projected gnomon-

ically or conformally on the sphere.
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Yin-Yang – or icosahedral grids3. A review of the differ-

ent grids can be found in Staniforth and Thuburn (2012)

and Williamson (2007). However, those approaches lose the

latitudinal regularity arising from the rotation of the Earth.

Furthermore, they require specific treatments at the singular-

ities of the adopted polygons, which may also induce res-

olution clustering near these points. On the plus side, they

allow for the implementation of more accurate algorithms

than the ones on reduced latitude–longitude grids. This last

point is especially important for weather and climate models

that solve the nonlinear momentum equation, but is less strin-

gent for the two-dimensional (2-D) linear transport of trace

species on the sphere.

To construct the reduced grid, one difficulty is to define

a structure which avoids treating the poles as special cases, as

that can impact the precision and properties of the advection

algorithm. Thus we have chosen to adopt a semi-structured

approach. The grid is not regular as the number of cells varies

with the latitude, but the coordinates of cell interfaces can

be computed algebraically. We thus avoid storing a list of

neighbors as an irregular unstructured grid would normally

require, hence decreasing memory costs. This was done to

anticipate future parallel architectures, which may have less

memory capacity per core than current systems.

Our goal is to use an adequate algorithm exploiting the

grid features to achieve efficiency and scalability on mas-

sively parallel architectures. Fine control over parallelization

was obtained using the Message Passing Interface (MPI) li-

brary. In that context, the advection scheme must be cho-

sen as to balance its accuracy vs. the volume of the required

parallel communications. Furthermore, grid properties were

carefully studied to improve the parallel version. In particu-

lar, a custom domain decomposition consistent with our grid

was designed.

The present paper is organized as follows. Section 2 lists

the basic equations and numerical methods used to solve the

advection of the chemical species. In Sect. 3, results from

standard test cases for advection of tracer on the sphere are

reported. Those cases were chosen from the test case suite

proposed by Lauritzen et al. (2012). Section 4 gives details

on the model implementation on parallel architectures and

the results of parallel scalability experiments. In Sect. 5, we

summarize the results obtained and discuss the possible ex-

tension of our method.

2 Numerical scheme

2.1 Finite-volume formulation

Our model is based on a finite-volume method to integrate

the tracer advection equation. This is performed on a bi-

dimensional discrete grid on the sphere, which is described

3An icosahedra is subdivided until the desired resolution and

projected on the sphere.

in more detail in Sect. 2.2. In each grid cell, the tracer con-

centration changes according to the divergence of the fluxes

at the cell boundaries. This comes from the flux form of the

continuity and tracer conservation equations:

∂ρ

∂t
+∇ · (ρV )= 0, (1)

∂ρq

∂t
+∇ · (ρqV )= 0, (2)

where ρ is the air density, q the tracer mixing ratio and V the

winds vector field. Equations (1) and (2) are first integrated

over a cell area A. With ∂A noted as the cell boundary and n

as the local normal pointing outward, the divergence theorem

yields

∂m

∂t
=
∂

∂t

∫
A

ρ =

∫
∂A

(ρV ·n dS), (3)

∂mr

∂t
=
∂

∂t

∫
A

ρq =

∫
∂A

(ρqV ·n dS), (4)

wherem is the total air mass in a cell andmr is the total tracer

mass in a cell. The right-hand side of Eqs. (3) and (4) can

be seen as the integral of all the fluxes across the cell bound-

aries. This formulation gives a conservative scheme when the

same fluxes are used for upstream and downstream adjacent

cells.

The above equations are then integrated in time during

a time step:

mn+1
=mn−

tn+1∫
tn

(∫
∂A

ρV ·n dS
)

dt, (5)

mn+1
r =mnr −

tn+1∫
tn

(∫
∂A

ρqV ·n dS
)

dt. (6)

Equation (5) can be omitted for non-divergent flows since

the divergence of the mass fluxes is null and the mass inside

the cells is constant: [m]n+1
= [m]n. In this paper, we only

consider non-divergent flows. As such, winds are corrected

to be divergence-free in a preprocessing step, as explained

in Sect. 2.3. Handling divergent flows would require minor

adjustments to the scheme (removing the correction of winds

and adding Eq. 5 to the scheme), but this configuration was

not considered as a typical use case of CTMs, where large-

scale 3-D winds can be considered divergence-free.

There are many options to evaluate the tracer mass fluxes

at the cell boundary. These fluxes are approximated as the

air mass fluxes multiplied by the mean tracer ratio q̂ crossing

the interface. The simplest approach to evaluate q̂ was intro-

duced by Godunov (Godunov et al., 1961), who considered q̂

as constant within each upstream cell. The resulting scheme

is conservative and monotonicity preserving but very diffu-

sive. Improvements to the Godunov scheme were introduced
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Figure 1. Van Leer scheme for positive (left) and negative (right)

winds. The distribution of the tracer is shown as a linear distribution

(broken line). The grey area is the quantity of tracer passing through

the interface during a time step.

by van Leer in van Leer (1977), where q is now approxi-

mated by a non-constant polynomial function. Depending on

the polynomial degree used, i.e., the order moments of the

distribution of q inside the cell, van Leer obtained several

schemes (up to six) that varied in complexity. A review of

the different possible options can be found in Rood (1987)

and Hourdin and Armengaud (1999). In general, accuracy

is found to increase when higher-order moments are used,

but the price to pay lies in larger computational and memory

costs. Using higher moments requires a larger number of grid

points to compute the derivatives, which increases communi-

cation volumes when domain decomposition techniques are

used for parallel clusters (see Sect. 4).

For our model, we have adopted a first-order reconstruc-

tion, the van Leer scheme (noted as van Leer I in the original

paper). The distribution of q in the cells is approximated by

a linear function in latitudinal and meridional directions. The

slope of the linear function is computed as a finite difference

using the values of q within the nearest cells. In that con-

figuration, the scheme is second-order accurate in space. To

extend the algorithm to multiple dimensions, a time-splitting

scheme is used. Equations (5) and (6) are first integrated in

the zonal direction:

m̃n+1
i =mni +Ui−1/2−Ui+1/2,

(m̃r)
n+1
i = (mr)

n
i +Fi−1/2−Fi+1/2, (7)

where U and F are the air and tracer fluxes, respectively,

across the borders orthogonal to the chosen direction during

a time step. With these notation, tracer fluxes are approxi-

mated as Fi+1/2 ≈ q̂i+1/2ui+1/2. Figure 1 illustrates the re-

construction of q̂i+1/2. The linear distribution represents the

tracer distribution in the 1-D case for cells i and i+ 1. Find-

ing q̂i+1/2 depends on the wind direction: for outward winds

(ui+1/2 > 0), the grey area in the left diagram will move from

cell i to cell i+ 1. Then the mean tracer ratio corresponding

to this flux is computed from the distribution in cell i. The

same can be applied for inward fluxes, resulting in

q̂i+1/2 =


qi +

(
1−

ui+1/21t

1x

)
(δq)i if ui+1/2 > 0,

qi+1−

(
1+

ui+1/21t

1x

)
(δq)i+1 otherwise,

where δq is the slope of the linear reconstruction and ui+1/2

the wind at the interface. 1t and 1x are the time step and

cell spacing, respectively.

This first advection step gives us the intermediate mass

value m̃ and tracer value q ′ = m̃/m̃r . These new values are

then used to integrate Eq. (6) in the meridional direction. As

the grid is unstructured, mass and tracer fluxes in the north–

south direction have to be evaluated for all the neighbors of

each cell. This is detailed in Sect. 2.3.

It should be noted that other time-splitting schemes are

available. Another approach is to use a zonal–meridional ad-

vection during a time step and meridional–zonal for the next.

It is also possible to compute both zonal–meridional and

meridional–zonal advection and then use their mean as the

final value. For the complete description of each method, see

Machenhauer et al. (2009). Either way, the final bidimen-

sional algorithm is second-order accurate. In Pangolin, all

three time-splitting schemes have been tested using the nu-

merical order of convergence test (see Sect. 3.3). It was found

the choice of the time-splitting algorithm has little impact on

accuracy.

To ensure monotonicity of the solution and to prevent nu-

merical oscillations, van Leer introduced a slope limiter. The

idea is to limit the slope value within a given cell such as

the tracer value in that cell does not exceed the mean value

of the adjacent cells. This is more restrictive than limiting

the fluxes to ensure that the tracer values remain between the

maximum–minimum values of the adjacent cells but is easier

to implement. The slope is given by

(δq)i =min
(1

2
|qi+1− qi−1|,2|qi+1− qi |,2|qi − qi−1|

)
× sign(qi+1− qi) (8)

if qi lies in between qi−1 and qi+1, and (δq)i = 0 otherwise.

As discussed by Hourdin and Armengaud (1999), the slope

limiter efficiently damps the numerical oscillations but intro-

duces more diffusion of the numerical solutions. For the test

cases reported in this study, the slope limiter appears to have

little impact on the accuracy of the numerical solutions.

2.2 Grid

The grid used in Pangolin is completely defined by the num-

ber of cells at the North Pole and the number of latitudes nlat

on a hemisphere. The Southern Hemisphere is simply con-

structed in the same way as the Northern Hemisphere. To

find the number of cells at the North pole, we can write the

equality between cell areas at the pole and at the Equator.

If we consider squared cells at the Equator, like the ones on
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1 2 3

4 5 6

Figure 2. Grid used in Pangolin with 20 latitudes: orthographic projection (left) and Robinson projection, with the six identical zones

highlighted (right).

a regular latitude–longitude grid, and small latitudinal spac-

ing, the number of cells is approximately π . Thus we set the

number of cells at the poles to 3.

At a given latitude, all cells have the same area. We can

then compute the number of cells for all latitudes. For max-

imum flexibility, latitudinal and longitudinal spacings are no

longer assumed identical. Let us consider the area of cell

(i,j), noted Ai as it does not depends on j . Let us note φi as

the colatitude and λij as the position of the south and east cell

borders. As we assume that the cell spacings are constant, we

can write φi = i1φi and λij = j1λi . The area is defined on

�ij = [λj ,λj+1]×[φi−1,φi], so in spherical coordinates we

have

Ai =
∫∫
�ij

r2 sinφdλdφ

= r21λi
(

cos(φi−1)− cos(φi−1+1φi)
)
. (9)

Areas are preserved so Ai =A1:

1λi =1λ1

1− cos(1φ1)

2sin
(
1φi

2

)
sin
((
i− 1

2

)
1φi

) .
Noting ni the number of cells at colatitude i, we get

ni

n1

=

⌊
1λ1

1λi

⌋
=

2sin
(
1φi

2

)
sin
((
i− 1

2

)
1φi

)
1− cos(1φ1)

 .
Now let us assume ∀i, 1φi and (i− 1

2
)1φi are small

enough:

ni

n1

≈

2
1φi

2

(
i− 1

2

)
1φi

1φ2
1

2

= 2i− 1.

Finally, we can define the number of cells for the whole

grid, with 2nlat latitudes, as

ni =

{
3(2i− 1) if 1≤ i ≤ nlat,

n2nlat−i+1 otherwise.
(10)

It follows that the total number of cells on the grid is 6n2
lat.

As an illustration, the grid is shown in Fig. 2.

The previous formula is a sound approximation for area

preservation near the poles and when latitudinal spacing is

constant. In practice, we consider the approximation as rea-

sonable up to 75◦: the relative error is then less than 1 %. At

lower latitudes, the error increases, with a maximum of 56 %

at the Equator. So the grid used in Pangolin gives higher res-

olutions at the Equator than at the poles. One way around this

issue is to truncate the number of cells at a given threshold.

As a comparison, Fig. 3 shows the number of cells for Pan-

golin with the “exact” and truncated version. By “exact”, we

mean the number of cells comes from the area-preservation

formulae without any approximations for 1φi . Furthermore,

to truly preserve the cell areas, we should use a variable lat-

itudinal spacing. However, the distortion due to a constant

latitudinal spacing was found to be acceptable and much less

pronounced compared with a regular latitude–longitude grid.

The formula given in Eq. (10) allows us to easily deter-

mine the coordinates of the cell neighbors in each zone. The

grid used in Pangolin has four axes of symmetry – λ= 0,

λ= 120, λ= 240◦ and the Equator – and so the grid can be

split into six identical zones, numbered with regard to west

to east and north to south as shown in Fig. 2. The following

formulae to compute the position of the cell neighbors are

given for the first zone – i.e., [90◦,0]× [0,120◦]. The for-

mulae on zones 2 and 3 are obtained by adding the proper

offset. In the Southern Hemisphere (zone 4 to 6), the north

and south formulae are simply inverted. The zonal neigh-

bors for cell (i,j) are simply (i,j − 1) and (i,j + 1). For

the first zone, its north and south neighbors are respectively

Geosci. Model Dev., 8, 205–220, 2015 www.geosci-model-dev.net/8/205/2015/
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Figure 3. Number of cells for the grid used by Pangolin on one

hemisphere with 90 latitudes (solid line). The truncated and “exact”

version are shown as dotted and dashed lines, respectively.

{
(i− 1,j1), . . ., (i− 1,j2)

}
and

{
(i+ 1,j3), . . ., (i+ 1,j4)

}
,

with

j1 =

⌊
ni−1

ni
(j − 1)+ 1

⌋
, j2 =

⌈
ni−1

ni
j

⌉
,

j3 =

⌊
ni+1

ni
(j − 1)+ 1

⌋
, j4 =

⌈
ni+1

ni
j

⌉
. (11)

From that formulation, it follows that the number of merid-

ional neighbors is not constant, even though most of cells

have two north and two south adjacent cells. Special cases

include the middle of each sector (one north and three south

neighbors) and its extremities (one north and two south).

These figures apply for the Northern Hemisphere and must

be inverted in the Southern Hemisphere.

As a consequence, computing the position of the neigh-

bors is quite efficient, involving mostly integer operations

and roundings. These computations are thus performed on

the fly to reduce the storage requirements. In a more gen-

eral way, the algebraic properties of the grid are exploited as

much as possible. Our parallelization strategy relies heavily

on the properties of the grid, as shown in Sect. 4.

2.3 Adapting the scheme to the grid

For winds and tracer discretization, we adapt the Arakawa C

grid (Arakawa and Lamb, 1977) to our scheme, as shown in

Fig. 4. To avoid interpolating the winds components during

advection, winds are taken at the middle of the interfaces.

Tracer concentrations are defined at the centers of the cells.

Due to the structure of the grid (Fig. 2), air and tracer

fluxes need to be computed for all the neighbors of the cells

as illustrated in Fig. 5. For each flux, the frontier between

the current cell and its neighbor is computed algebraically

using the cell neighbors formulae (Eq. 11). While there is no

qij

vi−1j1 vi−1j2

vij3 vij4

uij uij+1

Figure 4. Discretization for zonal and meridional winds (u and v,

respectively) and tracer mixing ratio q.

vij3 vij4

vi−1j1 vi−1j2

ij

Figure 5. Meridional interfaces (bold lines) and fluxes (arrows) for

cell (i,j).

special treatment for zonal advection, meridional advection

requires an interpolation to compute the meridional gradient.

A linear interpolation in the zonal direction is computed to

evaluate the value of the mixing ratio on the meridian pass-

ing through the center of the cell (see Fig. 6). These values

are used to compute the meridional gradient by finite differ-

ence.

It is critical for mass preservation that winds have a null

divergence, so we correct interpolated winds (both zonal and

meridional) to achieve that. The first step in our correction

deals with meridional winds. If we consider all the cells on

a latitude circle, the total mass variation in this “band” only

comes from the north and south meridional fluxes. Now, if

we consider the latitude circle containing all south merid-

ional fluxes, it constitutes a closed contour. Therefore, the

wind divergence is null and the sum of all meridional winds

must be zero. Meridional winds are thus corrected by remov-

ing the mean value from the interpolated values. For a future

3-D case, a preprocessing step involving vertical winds will

be needed to ensure non-divergent circulation. Depending on

the system of vertical coordinates used, the “mass-winds in-

www.geosci-model-dev.net/8/205/2015/ Geosci. Model Dev., 8, 205–220, 2015
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consistency” issue (see, for example, Jöckel et al., 2001) will

have to be addressed.

Then we correct zonal winds to ensure that the sum of all

fluxes is locally null in each cell. As meridional winds are

already corrected, only east and west zonal winds of each

cell must be modified. We take zonal winds at longitude 0

as a reference and browse each cell sequentially from west

to east to progressively correct each of the zonal winds and

ensure mass preservation.

Finally, we need to take care that fluxes in a given direc-

tion do not completely empty the cells during an advection

step. For each cell, a local advective Courant number restricts

the time step in order to avoid this situation. As advection is

performed sequentially in two different directions, we define

two unidimensional local Courant numbers. Then the global

Courant number C is simply defined as the most restrictive

condition on all cells:

C =maxij

(
uij1t

1φij
,
1t
∑
k∈Vij

vk1λk

1φij
∑
k∈Vij

1λk

)
,

where Vij is the set of meridional neighbors for the cell (i,j)

and 1λk is the interface size between the cell and its neigh-

bor. For the tests in this paper, we use Cmax = 0.96 as a

Courant–Friedrichs–Lewy (CFL) condition.

3 Testing suite

A standard 2-D testing suite to check the accuracy and prop-

erties of a transport model was proposed in Lauritzen et al.

(2012). A comparison with state-of-the-art schemes was sub-

sequently published in Lauritzen et al. (2013), which offers

a convenient benchmark to compare transport models on the

sphere. From it, we have extracted a subset of the models and

cases which we felt were relevant to Pangolin. In Lauritzen

et al. (2013), the different grids were compared with a con-

stant resolution at the Equator. In the present paper, we retain

simulations performed with a constant total number of cells.

The number of cells in each model was computed using the

resolution at the Equator given in the appendix of Lauritzen

et al. (2013). As a summary, Table 1 contains the formulae

used and gives an idea of the size of each grid in comparison

with Pangolin.

3.1 Models features

The models were chosen as their spatial order is similar to

Pangolin. They are implemented on both regular and non-

regular grids and provide a basis for a comparison between

semi-Lagrangian, finite-volume and wave propagation meth-

ods. A summary is given in Table 2. Other features are de-

scribed below:

– FARSIGHT is a grid-point semi-Lagrangian model,

running on parallel architectures.

Table 1. For a given resolution at the Equator, we compare the total

number of cells of each model nmodel vs. the total number of cells

of Pangolin npangolin.

Model nmodel/npangolin nmodel

FARSIGHT 2 6 · (90/1λ)2

CLAW 0.68 2 · (90/1λ)2

SLFV-ML 2.17 NA

CAM-FV 2.7 b360/1λc · b180/1λc

UCISOM 2.7 b360/1λc · b180/1λc

Pangolin 1 6 · d0.5 · d120/1λe+ 1e2

– CLAW uses a wave propagation technique with a first-

order method (donor cell upwind) in each direction.

– SLFV-ML (Slope Limited Finite Volume scheme with

Method of Lines), a flux-form finite volume with sim-

plified swept area and linear reconstruction.

– CAM-FV (Community Atmosphere Model Finite-

Volume) is a finite-volume model on a regular latitude–

longitude grid. It uses the piecewise parabolic method

(PPM), with the addition of a slope and curvature lim-

iters.

– USICOM (UC Irvine Second-Order Moments scheme)

is also a flux-form finite volume. It uses an improved

version of Prather’s second-order moments scheme on

an Eulerian regular latitude–longitude grid.

All of these models are mass preserving, so the compari-

son with Pangolin is relevant. CAM-FV and UCISOM are

of particular interest as they also use a directional splitting

algorithm. Furthermore, all models have a shape-preserving

algorithm but only FARSIGHT and Pangolin do not expand

the initial tracer concentration range.

3.2 Test cases

In this paper, we only consider the case of non-divergent and

time-dependent winds. Zonal and meridional winds (u and v,

respectively) are given by

u(λ,θ, t)=
10R

T
sin2(λ′)sin(2θ)cos

(
πt

T

)
+

2πR

T
cos(θ),

v(λ,θ, t)=
10R

T
sin(2λ′)cos(θ)cos

(
πt

T

)
,

where θ is now the latitude and λ the longitude, both in ra-

dians. R is the Earth radius, T is the period, set at 12 days

here, and λ′ = λ− 2πt/T . With these winds, the tracer con-

centration first moves eastwards and is then deformed into

filaments up to t = T/2. After that, the flux is inverted and

the tracer continues to move to the east until it comes back to

its initial distribution at t = T .
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These winds provide an easy way to compute the errors as

the solution after a full period can be simply compared with

the initial concentration. We will use the same normalized

errors as in Lauritzen et al. (2012):

`2(q)=

√
I((q − q0)

2)

I(q2
0 )

and `∞(q)=

max
∀λ,θ
|q − q0|

max
∀λ,θ
|q0|

,

where q = q(λ,θ, t) is the tracer concentration and q0 the

initial concentration. Also, I is defined as the global integral:

I(q)= 1

4π

2π∫
0

π/2∫
−π/2

q(λ,θ, t)cosθdλdθ.

For our model, the tracer mixing ratio is approximated as

linear functions in a cell. Thus the mean value corresponds to

the value at the middle of the cell, so the integral is approx-

imated by I(q)=∑i,j q̂ijAij , where q̂ij is the tracer mean

value in cell (i,j) and Aij its area given by Eq. (9).

Two initial conditions are used here: a sum of two Gaus-

sian hills and a sum of two cosine bells. We note (λ1,θ1)=

(5π/6,0) and (λ2,θ2)= (7π/6,0) as the coordinates of the

two “centers” used below. Gaussian hills are defined as

q(λ,θ)= h1(λ,θ)+h2(λ,θ).

Noting hmax = 0.95 and b = 5, for i = 1,2 we have

hi(λ,θ)= hmaxe
−b((X−Xi )

2
+(Y−Yi )

2
+(Z−Zi )

2),

where X,Y,Z are the Cartesian coordinates of (λ,θ) and

Xi,Yi,Zi are the Cartesian coordinates of (λi,θi) for i =

1,2. Cosine bells are defined by

q(λ,θ)=


b+ c×h1(λ,θ) if r1 < r,

b+ c×h2(λ,θ) if r2 < r,

b otherwise,

with the background value b = 0.1 and amplitude c = 0.9.

Noting hmax = 1 and r = R/2, we also have

∀i = 1,2, hi(λ,θ)=
hmax

2

(
1+ cos

(
π
ri

r

))
,

where the ri are the great-circle distances to (λi,θi) on the

sphere:

ri(λ,θ)= R arccos(sinθi sinθ + cosθi cos(λ− λi)).

Pangolin results for the Gaussian hills and cosine bells test

cases are shown in Fig. 7 at t = 0, half the period and af-

ter a full period. The shape of the tracer distribution is well

preserved but numerical diffusion contributes to a decrease

in the tracer maxima, as it appears at t = T/2 and t = T . To

compute the numerical order of convergence in Sect. 3.3, re-

sults at t = 0 and t = T will be used, while the preservation

of filaments in Sect. 3.4 is computed using the results at t = 0

and t = T/2.

q′ij

q′′i+1j

q′′i−1j

Figure 6. Zonal interpolation to compute the meridional gradient of

q ′
ij

.

3.3 Numerical order of convergence

The aim of this test is to check the rate at which numerical

error decreases when resolution increases. Ideally, this rate

should be close to the theoretical order of convergence. The

Gaussian hills test case is used here, as it provides an in-

finitely smooth function. Results are plotted in Fig. 8, where

`2 and `∞ are plotted with a varying number of cells. When

available, the impact of shape-preserving filters is also repre-

sented on the plot, with the exception of UCISOM. For this

choice of models, it does not reduce errors in a significant

way as can be expected from lower-order models.

For errors at low and medium resolutions, Pangolin is quite

close to the other models, with the exception of UCISOM.

However, the errors with a large number of cells are lower

for models other than Pangolin. One possible explanation is

the loss of accuracy due to the interpolation when computing

the meridional gradient. In general, the order of convergence

of Pangolin is lower. To quantify that, we use numerical opti-

mal order of convergences corresponding to the errors `2 and

`∞. They result from a least-squares linear regression on the

errors plotted vs. the resolution at the Equator:

log(`i)=−κi log(1λ)+ bi with i = 2,∞.

For Pangolin, the regression is applied after the optimal

convergence has been reached. This corresponds to longitu-

dinal resolutions at the Equator in the range [0.75◦,0.1875◦].

The final numerical convergence rates are shown in Fig. 9.

This selection of models and parameters shows that the-

oretical order is not achieved for all models. For most of

them, using a different Courant number does not improve the

convergence speedup, with the exception of FARSIGHT and

CAM-FV. Using a Courant number of 10.4 (1.2) greatly im-

proves the result of FARSIGHT (CAM-FV) with a Courant

number of 1.4 (0.2).

Furthermore, we can see the numerical order of con-

vergence of Pangolin is lower than other models. This is

not surprising when comparing with similar finite-volume

schemes such as CAM-FV and UCISOM, which use higher-

order schemes in one or more directions. We studied this
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Table 2. Summary of the models used as a comparison: name, implementation grid, the total number of cells vs. Pangolin, and the time

scheme.

Model Grid Formal Time Reference

accuracy scheme

FARSIGHT Gnomonic cubed sphere 2 Third order White and Dongarra (2011)

CLAW Two-patch sphere grid 2 Euler forward LeVeque (2002)

SLFV-ML Icosahedral–hexagonal 2 Runge–Kutta 3rd-order TVD Miura (2007)

CAM-FV Regular lat–long 2 Euler forward Collins and Rasch (2004)

UCISOM Regular lat–long 2 Euler forward Prather (1986)

Pangolin Pangolin 2 Euler forward This paper

Figure 7. Cosine bells and Gaussian hills results for t = 0, t = T/2, t = T (top to bottom) with Pangolin. The initial distribution is first

deformed into filaments and then advected back to its initial position. The Equator resolution is 0.56◦×0.37◦. For these plots, Pangolin data

are interpolated to a regular latitude–longitude grid.

issue further using solid-body rotation test cases (described

in Williamson et al., 1992) and found that the accuracy was

limited by the linear interpolation done for the meridional

gradient. When the axis of the solid-body rotation matches

the polar axis, accuracy is close to second order, whereas the

level of accuracy decreases when the axis is in the equatorial

plane. In practice, Pangolin needs finer resolutions, as shown

in the following test cases, to match the accuracy of other

models.

3.4 Preservation of filaments

Realistic distributions will most likely be deformed into fil-

aments when the tracer material is stretched and gradients

are increased. For some applications, it is important to check

how well these filaments are preserved. In the cosine bells

test case, the initial concentration is deformed into thin fil-

aments up to t = T/2, before being advected to the initial

position. Diagnostics are thus computed at T/2.

Let us consider the area where the tracer is greater than

a given threshold τ . For non-divergent flows and for all

thresholds, if this area is not preserved at all times, it sug-
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Figure 9. Optimal order of convergence computed by a least-squares regression on data from Fig. 8. Some models did not offer data without

shape-preserving limiters (CAM-FV, UCISOM).

gests filaments are degraded. This leads to the definition of

the following diagnostic:

`f =

100×
A(τ, t)

A(τ,0)
if A(τ,0) 6= 0,

0 otherwise,

where A(τ, t) is the surface area for which the tracer ratio at

time t is greater or equal to τ . For Pangolin and other Eule-

rian schemes, A(τ, t) is defined as the sum of the cell areas

where q(t)≥ τ . Thus the closest `f is to 100, the better the

filaments are preserved.

Results are shown in Fig. 10. All models except Pangolin

are compared with different numbers of cells but with the

same resolution of 0.75◦ at the Equator. Pangolin is shown

with two different numbers of cells. The first case (shown as

grey solid line) has a resolution of approximately 0.75◦ at

the Equator. The second one (shown as black solid line) is

a higher-resolution version (0.1◦ at the Equator) which ap-

proaches the results of more accurate models.

The behavior of the models on non-latitude–longitude

grids (all models except UCISOM and CAM-FV) is typical

of diffusive schemes. They tend to diffuse the base of the dis-

tribution and reduce the maxima, thus leading to an increase

in `f for small τ and a decrease in `f for large τ . Another

piece of information we can extract from this is the alteration

of gradients. Here CAM-FV can be seen to have `f > 100

for large τ , which results from gradient steepening. On the

other hand, schemes on non-regular grids have a smooth and

decreasing profile, showing that the scheme diffusion is also

smooth and continuous.

Furthermore, the shape from the diagnostic for Pangolin

is quite close to models using non-regular latitude–longitude

grids (CLAW, FARSIGHT, SLFV-ML). The behavior is typ-

ical of diffusive schemes, where `f is increased for lower

threshold values and decreased for higher τ . Pangolin is

less accurate than these models, but similar accuracy can be

achieved using a finer resolution. Nevertheless, the models

using a regular latitude–longitude grid, namely UCISOM and

CAM-FV, are the most accurate for this test.
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Figure 11. Different types of mixing when plotting the correlated

concentration against the cosine bells distribution.

3.5 Preservation of preexisting relations

When advecting several correlated tracers, numerical trans-

port schemes should preserve the relations between them.

However, errors due to numerical diffusion can modify these

relations and introduce a “mixing”. This is by no means an

unphysical feature as real-life tracers can undergo some mix-

ing too, either by chemical reactions or diffusion. This test

aims at assessing the amount of unphysical mixing. To that

end, we follow Lauritzen et al. (2012) and use a first tracer

with the cosine bells initial condition qcos(t = 0) and a sec-

ond tracer correlated to the first:

qcorr(t = 0)=−0.8q2
cos(t = 0)+ 0.9. (12)

After a half-period of advection using the non-divergent

winds for each case, we plot qcorr(t = T/2) against qcos(t =

T/2) as a scatterplot. Depending on the position of the

points, we can then check the mixing level. An illustration

of the different zones is given in Fig. 11. The shaded convex

area in the figure corresponds to “real” mixing as it contains

all the lines between two points on the curve corresponding

to Eq. (12). The light-grey area is not a physical mixing but

is still in the initial range. Everything outside the box is over-

shooting, which may result in unphysical concentrations such

as negative values.

Results are shown in Figs. 12 and 13. All unlimited

schemes present some overshooting in the upper left corner

of the figure, which is then removed with a shape-preserving

filter. Also, all schemes, with the exception of UCISOM,

present real mixing. For this selection of models, only FAR-

SIGHT and CAM-FV have range-preserving unmixing. For

FARSIGHT, this can be removed with a larger Courant num-

ber. In that case, its accuracy is on the same level as UCI-

SOM. Concerning accuracy, the closer the points lie to the

curved defined in Eq. (12), the more the scheme preserves the
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Figure 12. Mixing plots for both unlimited and shape-preserving

versions. The resolution is set at 0.75◦ at the Equator, except for

Pangolin, which has 0.376◦.

initial relation. In that respect, UCISOM is the most accurate

model of this selection, followed by Pangolin and CAM-FV.

3.6 Comparing parallel performances

Pangolin was designed with scalability and parallel perfor-

mances in mind, thus leading to the choice of a smaller sten-

cil than the models presented here. From the results presented

above, it is clear that Pangolin can match the accuracy of

other models using finer resolution. Unfortunately, compar-

ing the parallel performances in terms of running time on

multi-core architectures is difficult. Some models provide

technical details about the performances – see White and

Dongarra (2011) for FARSIGHT, Dennis et al. (2011) for

CAM-FV or Erath and Nair (2014) and Guba et al. (2014)

for some other state-of-the art schemes – but there are not

enough data for a thorough comparison. We thus provide as

much detail as possible on the parallel performances of Pan-

golin alone. In particular, Sect. 4.3 highlights the smallest

size of subdomains needed for a reasonable efficiency for 2-

D parallel advection.

Figure 13. Mixing plots for both unlimited and shape-preserving

versions. The resolution is set at 0.75◦ at the Equator, except for

Pangolin, which has 0.376◦.

4 Parallelization

For large-scale numerical simulations, using only sequential

computations is no longer affordable. To use a parallel ap-

proach, we need to split and balance the computational ef-

fort among a set of computing units. For partial different

equation-based simulations where the computational cost is

evenly shared among the cells, a natural and widely used ap-

proach is to partition the computational domain into connex

subdomains of similar sizes. Each subdomain is handled by

a different computing unit that leads a well-balanced parallel

calculation.

The original objectives in designing this model were

twofold. First, we intended to have a discretization with cells

of equal areas so that the CFL condition is not penalized

by the smallest cells. Second, we targeted a semi-structured

grid to avoid managing complex data structures, as well as

an extra-tool to generate it. This leads us to define the grid

detailed in Sect. 2.2, where computing the neighbors of grid

cells is fully algebraic. In a parallel framework, this grid has

an additional asset as it enables a custom algebraic partition-

ing. Otherwise, mesh splitting often requires sophisticated

mesh partitioning tools such as those developed by Karypis

and Kumar (1995) and Pellegrini (2012).
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Figure 14. Algebraic mesh partitioning for an optimal case (54 do-

mains, left) and sub-optimal case (74 partitions, left). Each color

corresponds to a subdomain (the same color can be used for dif-

ferent subdomains). The grid contains 48 600 cells and is shown in

latitude–longitude coordinates.

4.1 Partitioning

In order to perform the partitioning, we first exploit the grid

symmetries. The grid is composed of six identical zones as

described in Sect. 2.2. We then focus on partitioning one of

these zones, which contains n2
lat cells, where nlat is the num-

ber of latitudes in the hemisphere. A perfect work balance

occurs when there are p2 subdomains with p dividing nlat.

In this case, each subdomain contains exactly (nlat/p)
2 cells.

The most natural way to gather cells to form the subdomains

is to use the same algorithm as the one to build the grid.

The p2 subdomains are set on p bands, where the kth band

contains 2k− 1 subdomains (k > 0). Applying the same de-

composition to the remaining five zones leads to the structure

shown in Fig. 14.

For the sake of flexibility, this optimal situation can be

slightly degenerated to accommodate any number of subdo-

mains. For these sub-optimal situations, we consider the clos-

est lower square p′
2

on a zone, with p′ dividing nlat. These

p′
2

subdomains are set according to the previous strategy.

The remaining p2
−p′

2
cores are associated with on a special

band, with less cells and thus without preserving the partition

size.

These results are given for one zone only. For the com-

plete grid, we find the optimal number of subdomains is 6p2

with p dividing nlat. Otherwise, the model can manage any

number of subdomains on one-third of the grid (between

longitude 0 and 120). The total number of subdomains in

these optimal cases is then a multiple of 3. It is worth not-

ing that White and Dongarra (2011) need a condition similar

to our perfect case for their parallel version: the number of

subdomains must be of the form 6p2, with p dividing the

number of cells on a cube edge.

This algebraic partitioning uses the regular topology of the

grid to create subdomains with a regular shape. This feature

ensures regular data access and allows for possible optimiza-

tions by anticipation strategies such as pre-fetching to im-

Figure 15. Mesh partitioning computed by the general purpose

mesh partitioner Scotch for 54 domains (optimal case for Pangolin,

left) and 72 domains (sub-optimal case for Pangolin, right). Each

color corresponds to a subdomain (the same color can be used for

different partitions). The grid contains 48 600 cells and is shown in

latitude–longitude coordinates.

prove faster data access by loading data into the cache be-

fore it is actually needed. To highlight this regularity, and

for the sake of comparison, we display in Fig. 15 the par-

tition computed by the mesh partitioner Scotch (Pellegrini,

2012) for the same grid as in Fig. 14. One can observe that

this general-purpose tool does not succeed in preserving the

regular shape of the subdomains. In addition, our partition-

ing reduces the number of neighbors for the subdomains and

consequently the number of messages exchanged. The total

number of neighbors of our partitioning is divided by at least

2 when compared with Scotch, even in sub-optimal cases.

4.2 Parallel implementation

Our parallel implementation first targets distributed memory

architectures. Therefore, we consider a message passing par-

allel implementation on top of the MPI library where each

subdomain is assigned to a different computing unit. To up-

date the tracer ratio for all the cells in a subdomain, most

of the information required to compute the fluxes is already

available in the subdomain. However, some communications

need to be performed to exchange information along the in-

terfaces generated by the partitioning. For example, zonal

fluxes need to exchange concentration and gradient data with

the east and west neighboring subdomains. In that respect,

we introduce ghost cells which store data received from the

neighbors via message exchanges. It should be noted that,

due to the shape of the subdomains, meridional advection re-

quires communications with the north, south, east and west

neighbors. This is illustrated in Fig. 16, where the ghost cells

are shown as hatched cells.

In order to improve the parallel performance of the code

and hide the communication time as much as possible, non-

blocking communications are used. This avoids waiting for

the completion of communications and allows for compu-

tations to be optimized. In practice, we first post the com-

munication requests, and then perform the calculation on the
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Ghost cells Boundary Interior

Figure 16. Ghost, boundary and interior cells for zonal (left) and

meridional (right) advection.

interior cells, which do not need data outside the current sub-

domain. Then we finalize data reception and eventually com-

pute the new quantities on the boundary cells using the values

received in the ghost cells. This approach is a rather classical

implementation to overlap computation and communication

in large-scale simulations. The specificity of Pangolin comes

rather from the algebraic features of the decomposition, so

the neighbors of a subdomain and the cells inside it are com-

puted on the fly. The model was also designed to have only

one layer of ghost-cells as to decrease the communication

volume.

Each advection step can be decomposed into several tasks:

gradient computing, fluxes computing and mass update. The

first two tasks require some communication and the non-

blocking approach is used for each one of them. It should be

noted that meridional advection requires an extra communi-

cation as it needs a zonal gradient to perform an interpolation

(see Sect. 2.3). The different tasks are shown in detail in the

algorithms shown in Fig. 17. The combination of boundary

and interior cells for all these tasks is shown in Fig. 16.

The boundary zone is much larger for meridional advec-

tion as data need to be exchanged with the zone’s four neigh-

bors. More precisely, computation of the zonal gradient re-

quires communication with the east and west neighbors of

the subdomain. Furthermore, computing the meridional gra-

dient and fluxes requires access to the north and south neigh-

bors. Due to the semi-structured layout of the grid, this re-

sults in the “stair-like” structure for boundary cells in the

meridional advection.

Most of the computation is performed during meridional

advection. First, due to the extra step of computing the zonal

gradient, meridional advection requires three message ex-

changes (vs. two for zonal advection). Also, the number of

boundary cells is larger, thus increasing the communication

volume. Finally, computation in a cell is more expensive as

the number of neighbors is four on average (vs. two in the

zonal case).

4.3 Performances

In this section, we investigate the parallel scalability of our

implementation of the numerical scheme. Tests were done

on the Bull cluster at CERFACS, whose features are shown

in Table 3. We consider a strong speedup study where the

size of the global grid is fixed and the number of computing

Table 3. Configuration for one of the 158 Sandy Bridge nodes.

– 2 Intel Sandy Bridge 8-core CPUs

(peak performance of 330 GFLOPS s−1)

– 32 GB of memory

– 31 KB L1 cache, 256 KB L2 cache for each core

– 20 MB L3 cache, shared by the 8 cores of each CPU

cores is increased. Ideally, the parallel elapsed time should

be reduced proportionally to the number of cores selected

for the parallel simulation. For our experimental study, we

consider the elapsed time on three cores as the reference time

so that the speedup is defined by

S(p)=
T (3)

T (p)
,

where T (p) is the parallel elapsed time observed when per-

forming the calculation on p cores.

In strong speedup studies, the number of cells per subdo-

main decreases when the number of subdomains increases.

Even though we attempt to overlap the communication and

the calculation, communication volume tends to grow when

the number of subdomains increases. A direct consequence

is that the observed speedups gradually depart from the ideal

speedup when the number of cores increases, as can be ob-

served in Fig. 18 (left-hand side). On the right plot, we report

experiments for the 2-D advection scheme using various grid

sizes ranging from 1.13◦× 0.75◦ to 0.28◦× 0.19◦ when the

number of cores varies from 3 to 128. As expected, the larger

the grid, the better the parallel performance, since we can bet-

ter overlap calculation and computation. The speedup curves

exhibit steps, with significant gaps when an optimal number

of cores (6, 24, 54, 96) is used. In between, using more cores

does not translate into an improvement in performance as the

workload of the largest subdomain is not reduced.

The final version of Pangolin will be combined with chem-

istry modeling. As the chemistry computation is fully lo-

cal, we can estimate the performances of the chemistry-

advection model. Figure 18 (right-hand side) shows the es-

timated speedups of the complete chemistry advection simu-

lation on the finest grid (i.e., 0.28◦×0.19◦). We assumed the

chemistry cost was constant across all cells and the chemi-

cal time step was similar to the advection time step. These

assumptions are not valid in practice and only give an up-

per bound on the speedup. Nevertheless they give some in-

sight into the final performances. The chemical time step was

obtained from a new solver developed by D. Cariolle (per-

sonal communication, 2014) called ASIS with 90 species.

As a reference, we use its implementation by P. Moinat, us-

ing the GMRES method (personal communication, 2014). As

a result, adding the chemistry greatly increases the compu-

tational load in a subdomain and thus improves the scalabil-

ity. On the other hand, communication volumes only increase

linearly as a function of the number of tracers, as expected.
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1: subroutine meridional advection
2: Starts ratio exchange for ghost cells
3: Compute zonal gradient on the interior
4: Wait for end of communications
5: Compute zonal gradient on the boundary
6:

7: Starts zonal gradient exchange for ghost cells
8: Compute meridional gradient on the interior
9: Wait for end of communications

10: Compute meridional gradient on the boundary
11:

12: Starts meridional gradient exchange for ghost cells
13: Compute meridional fluxes on the interior
14: Wait for end of communications
15: Compute meridional fluxes on the boundary
16:

17: Update all ratios
18: end subroutine

1: subroutine zonal advection
2: Starts ratio exchange for ghost cells
3: Compute zonal gradient on the interior
4: Wait for end of communications
5: Compute zonal gradient on the boundary
6:

7: Starts zonal gradient exchange for ghost cells
8: Compute zonal fluxes on the interior
9: Wait for end of communications

10: Compute zonal fluxes on the boundary
11:

12: Update all ratios
13: end subroutine

Figure 17. Main steps of the algorithm for zonal (left) and meridional (right) advection.

no. no.

Figure 18. Speedup up to 126 cores (left) and 294 cores (right). The left plot shows the impact of grid resolution for smaller configurations.

The right plot shows both the advection performances and an estimation of the chemistry impact on scalability. Resolutions used are 1.125◦×

0.75◦, 0.56◦× 0.376◦ and 0.28◦× 0.188◦. Both figures use non-divergent winds from Sect. 3 over a full period with a CFL of 0.96.

Comparing performances between parallel models is not

an easy task. A meaningful comparison would require all of

the models to be compiled and run on the same cluster as

hardware and software performances are paramount in such

studies. Such tests are not within the scope of the current

paper. However, we examine the limits of our paralleliza-

tion strategy, an additional strong scaling test was run with

a rather coarse resolution (2.25×1.75◦): the number of cores

was increased until the subdomains became extremely small.

At that point, the computational load inside the subdomains

is not enough to cover the communication costs. These re-

sults are shown in Fig. 19, where the efficiency is plotted

against the number of cores. Here, the efficiency is defined

as

E(p)=
T (3)

pT (p)
,

so ideal performances should be close to 1. We can consider

the parallel performances “break down” at 294 cores. The

size of the subdomains is then 5× 5, a non-realistic configu-

ration where the subdomains are so small that the communi-

cation cost can no longer be hidden. From this test, we have

estimated the size of subdomains needed for an efficiency of

0.75 was 18× 18. In practice, this allowed us to estimate the

number of cores needed for the same efficiency at different

resolutions. Results are shown in Table 4.

5 Conclusions

In this paper, we have presented a parallel scalable algorithm

for 2-D-advection on the sphere. We focused on enabling

the model to be as parallel as possible. Pangolin uses a re-

duced latitude–longitude grid, which overcomes the pole is-

Geosci. Model Dev., 8, 205–220, 2015 www.geosci-model-dev.net/8/205/2015/



A. Praga et al.: Pangolin 1.0, a parallel conservative advection model 219

Figure 19. Efficiency up to 486 cores. A resolution of 2.25×1.51◦

was used to examine the limit of the parallelization performances

for 2-D advection. For this test, the Airain cluster was used, which

has 9504 nodes where each node has an Intel Xeon processor (16

cores, 2.7 GHz and 4 GB of shared memory).

Table 4. Estimation of the number of cores needed for an efficiency

of 0.75 for 2-D advection at several resolutions (lat× long).

Resolution No. cores

1.5× 1.0 150

0.75× 0.5 486

0.15× 0.1 6144

sue, and a finite-volume formulation that ensures local con-

servation of the tracer mass. Grid features were carefully ex-

ploited to minimize memory requirements on the one hand,

and provide maximal efficiency on parallel architectures on

the other. The accuracy of the scheme was also chosen as to

minimize the impact on message passing. It was found that

the approximations made for computing the meridional gra-

dients near the poles limits the accuracy of the model. There-

fore, to reach the accuracy of other second-order models, res-

olution must be increased. This can be easily achieved with-

out large computation penalty due to the good scalability of

Pangolin.

We expect further improvement in terms of parallelism

when chemistry is added. An ongoing work addresses real-

case atmospheric situations using a linear scheme (Cariolle

and Teyssèdre, 2007), which is used to model the evolution

of stratospheric ozone on an isentropic surface. In future ver-

sions, vertical advection will be added, requiring a more ad-

Table 5. Some Pangolin configurations, with the number of lati-

tudes on a hemisphere nlat, total number of cells npangolin and res-

olution at the Equator in degrees.

nlat npangolin 1φ×1λ

20 2400 4.5× 3.08

90 48 600 1.0× 0.67

320 614 400 0.28× 0.188

vanced correction of the winds for mass preservation. A com-

plex chemistry will also be added using the ASIS solver and

the RACMOBUS scheme (Dufour et al., 2005). This chem-

istry will most likely perturb the load balancing. One miti-

gation strategy would be to use multi-threading in the sub-

domains. To conclude, Pangolin is a practical model that is

aimed at taking advantage of present and future parallel ar-

chitectures for large-scale atmospheric transport.

Code availability

The code is copyright of the CERFACS laboratory. The doc-

umentation is available as a user manual and as code docu-

mentation at http://cerfacs.fr/~praga/pangolin/index.html. To

request access to either the source code or documentation,

please email A. Praga (alexis.praga@gmail.com) or D. Car-

iolle (cariolle@cerfacs.fr). The data and scripts for the plots

of this paper are also available as a supplement.

The Supplement related to this article is available online

at doi:10.5194/gmd-8-205-2015-supplement.
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