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Abstract The changing risk of extreme precipitation is difficult to project. Events are rare by
definition, and return periods of heavy precipitation events are often calculated assuming a stationary
climate. Furthermore, ensembles of climate model projections are not large enough to fully categorize the
tails of the distribution. To address this, we cluster the contiguous United States into self-similar
hydroclimates to estimate changes in the expected frequency of extremely rare events under scenarios of
global mean temperature change. We find that, although there is some regional variation, record events are
projected in general to become more intense, with 500-year events intensifying by 10–50% under 2 ◦C of
warming and by 40–100% under 4 ◦C of warming. This analysis could provide information to inform
regional prioritization of resources to improve the resilience of U.S. infrastructure.

1. Introduction
Flooding associated with extreme rainfall represents one of the deadliest and most costly types of natural
disaster worldwide, severely affecting developing and developed countries alike (Munich, 2015). For exam-
ple, according to a recent UN report, flooding accounted for nearly half of all weather-related disasters from
1995–2015, affecting 2.3 billion people (Wahlstrom & Guha-Sapir, 2015). In the United States, 90% of all
federally declared natural disasters involve flooding (FEMA, 2015). Increases in the frequency and severity
of extreme precipitation due to climate change therefore pose substantial risks to future life and property
(Wobus et al., 2017).

Governments, institutions, and communities manage the risks associated with extreme precipitation by
establishing design and performance standards for buildings, dams, levees, and other infrastructure, as well
as by placing restrictions on where and how development can take place (Crichton, 2008; Kundzewicz &
Takeuchi, 1999; Tollan, 2002). These standards and guidelines are built, however, entirely on observations
of the historical past, and therefore if the frequency and magnitude of extreme precipitation events change,
these standards could lead to inadequate preparation for future risks (Herring et al., 2015; Maxwell et al.,
2018; Wobus et al., 2017).

Currently, climate models are the main tool the scientific community uses to make projections of future
climatic conditions under changing boundary conditions. But assessing extreme precipitation risk from the
presently available archive of climate simulations is nontrivial. Basic theory has long predicted (Trenberth
et al., 2003) that the most extreme precipitation events are governed by simple thermodynamic principles:
Warmer air is capable of holding more moisture, and thus events which significantly deplete the atmospheric
column of moisture will become, on average, more extreme in a warmer climate. However, when aggregated
globally, the range of models available in the Coupled Model Intercomparison Project, version 5 (CMIP5;
Taylor et al., 2012) encompasses a variety of responses of extreme precipitation to warming, due in part to
differences in the parameterizations in convection and microphysical processes (Singh & O'Gorman, 2014).
As such, a single model is unable to capture the diversity of possible changes in future behavior and thus
any comprehensive risk analysis requires an ensemble approach.

In general, projections of extreme precipitation events are made for relatively short return periods in mod-
els (e.g., 20 years as in Wuebbles et al., 2014) and observations (20-year events in Kunkel et al., 2003, and
100 years in Mishra & Singh, 2010). However, without very large ensemble sizes such as Kay et al. (2015),
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there are not enough simulated years to directly estimate extreme value characteristics at some longer,
policy-relevant return intervals (such as 1,000-year or probable maximum precipitation, which are used for
design standards for dams, for example).

The sampling issue has been addressed in a number of ways, a common approach being spatial aggregation.
When aggregated at a global (Pendergrass et al., 2015) or continental (Fischer et al., 2013) level, precipita-
tion distributions are well enough sampled in the tail to resolve the changing nature of extreme precipitation
in a future scenario. However, while such scales can be informative for understanding the general charac-
teristics of rainfall in different models or for global scale attribution statements, they are not directly useful
for planning and adaptation at a regional or subnational scale. Furthermore, the physical interpretation of
such distributions is complicated by the fact that large regions cover a wide range of precipitation regimes,
and so the events represented are not drawn from a single distribution.

An alternative and potentially simpler approach to resolving the sampling issue is to use spatial clustering
to identify regions which broadly share precipitation characteristics, such that precipitation events within a
cluster can be approximated to be drawn from the same distribution (Gong & Richman, 1995; Hargrove &
Luxmoore, 1998; Yavuz & Erdoğan, 2012; Zhang et al., 2001). These approaches have had some qualitative
success in identifying self-similar precipitation regimes within a wider domain. There have also been efforts
to combine extreme value parameters and traditional k-means clustering to produce regions of comparable
extreme precipitation behaviour (Bernard et al., 2013; Carreau et al., 2016).

In this study, we build on such approaches and use spatially clustered precipitation data to provide infor-
mation on changing risk of extreme precipitation on a more useful scale for regional risk analysis and
adaptation. Using this spatial clustering approach, we seek to characterize the magnitude of extremely rare
(1 in 1000 years) historical precipitation events in each of 15 regions in the continental United States, as well
as the changing probability of those events under a range of warming scenarios.

This study supports increasing calls to reframe climate change assessment to better aid in real-world
risk management, incorporating principles and techniques from the public safety and financial risk fields
(Kennel et al., 2016; King et al., 2015; Kunreuther et al., 2013; National Academies of Sciences, Engineering,
and Medicine, 2016; Weaver et al., 2017). These calls highlight requests for better information on how
low-probability, high-consequence extremes are changing and how the statistics of localized events vary
as a function of global-mean temperature increase. Quantifying such risk-relevant metrics is challenging
and often subject to limitations in data availability. This study is a first step in advancing this endeavour by
proposing an approach for estimating changes in extreme precipitation at a regional scale using existing data.

2. Materials and Methods
2.1. Clustering Regions Based on Precipitation Characteristics
Our goal is to boost the sample of annual maximum precipitation values to increase confidence in the
estimates of events of up to 1,000-year return values. In order to be able to make any such statement, a com-
parable number of sample years must be considered. We thus propose a novel spatial clustering algorithm
which uses a traditional interpoint distance metric (Singh et al., 2013) but ensures each cluster has greater
than or equal to a specified number of elements. As well as the extreme precipitation characteristics, we also
seek to consider sites which have similar general precipitation characteristics to increase the confidence that
extreme precipitation events within each cluster represent similar processes. Hence, we also incorporate a
measure of physical distance, fraction of dry days, and mean precipitation into the distance metric. It was
found in the development of the algorithm that this additional information helped to distinguish between
regions where maximum precipitation events are associated, for example, with intense convective storms (as
in the U.S. Mountain West) or with large scale synoptic events (as in the Pacific Northwest). Using only the
information about extreme events was found to produce less coherently clustered regions (see supporting
information).

2.2. Defining an Interpoint Distance Metric
The code for the approach is supplied with the paper. The clustering algorithm requires an input of a matrix
of interpoint distances. How these distances are defined is fundamentally subjective, but for our applica-
tion we are primarily concerned with choosing points whose precipitation values are drawn from similar
distributions.
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Figure 1. An illustration of the regional clusters used for the analysis. Each point represents a single grid cell or cluster element, and points of the same color
are in the same cluster. The location of the most extreme event in the historical time series in the cluster is highlighted in each case (and detailed in supporting
information Table S1). The date listed is the first date of the 3 days described in the event, and the rainfall amount is the grid cell average Global Precipitation
Climatology Centre precipitation accumulation during the 3-day period. Each cluster is ascribed a verbal description for clarity.

An interpoint distance metric is computed using information derived from the distribution of daily pre-
cipitation at the point level in the Global Precipitation Climatology Centre (GPCC) 1◦ reanalysis product
(Becker et al., 2013). The algorithm is designed such that each cluster has at least 40 points, a number which
was found to be large enough to result in relatively stable extreme value parameter fits: given 26 years of
data in the GPCC data set, this ensures that each cluster has at least 1,040 years of grid point data (other
population sizes are tested in the supporting information). Figure 1 shows the resulting precipitation clus-
ters. As expected, geographical features (e.g., mountain/desert regions) provide notable boundaries between
clusters.

For each grid point, a vector is compiled using seasonal information on the median and 99th percentile of
precipitation, along with the seasonal fraction of dry days. This information is combined with a physical
interpoint distance metric to establish point-wise similarities between each one of the grid points in the
domain. We use this matrix as an input for the clustering algorithm, the results of which are illustrated in
Figure 1.

The variables used in the distance metric are illustrated in supporting information Table S2. The distance
(D0) combines a number of components:

D0(i, 𝑗) = rcos−1 (cos 𝜃i cos 𝜃𝑗 + sin 𝜃i sin 𝜃𝑗 cos
(
𝜑i − 𝜑𝑗

))
, (1)

where r is the Earth's radius in kilometers, and 𝜃i,j and 𝜑i,j are the latitudes and longitudes of points i and j
respectively.

The distance metric corresponding to fraction of dry days (D1) is calculated as follows:

D1(i, 𝑗) =
∑

s

(
Fdr𝑦(i, s) − Fdr𝑦( 𝑗, s)

)2
, (2)

where s is the season and (i, j) are the two grid cells being compared.

The distance metric corresponding to the 50th percentile of rainy day seasonal precipitation (D2) is
calculated as follows:

D2(i, 𝑗) =
∑

s

(
Pwet

50 (i, s) − Pwet
50 ( 𝑗, s)

)2
. (3)
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Finally, the distance metric corresponding to the 99th percentile of rainy day seasonal precipitation (D3) is
calculated as follows:

D3(i, 𝑗) =
∑

s

(
Pwet

99 (i, s) − Pwet
99 ( 𝑗, s)

)2
. (4)

Each distance type Dx is then normalized to form a unitless distance metric 𝛿x. We normalize each distance
metric over the contiguous United States domain, such that

𝛿x(i, 𝑗) = Dx(i, 𝑗)
i≠𝑗∑
i,𝑗

n2
i

Dx(i, 𝑗)
, (5)

where ni is the total number of grid cells in the U.S. domain.

We then combine the various elements of the distance metric into a single measure:

𝛿(i, 𝑗) = 𝛼𝛿0(i, 𝑗) + 𝛿1(i, 𝑗) + 𝛿2(i, 𝑗) + 𝛿3(i, 𝑗), (6)

where 𝛼 is a parameter to modulate the weight of the physical distance metric relative to the precipitation
characteristic metrics. We choose a value of 𝛼 = 9 for this study—which was found empirically to preserve
features associated with known precipitation regimes while also maintaining coherent and localized spatial
structures.

2.3. Population Clustering
We propose an algorithm which separates the domain into approximately equally sized subdomains while
sharing common bulk precipitation characteristics. Traditional k-means clustering performs only the latter;
hence, we propose an iterative algorithm to address both issues. The code for the algorithm is provided, but
the process is as follows.

1. Allocate an initial parameter: nc, the desired number of clusters.
2. Initially allocate one cluster to each element in the domain, forming n clusters in total (where n is initially

ni, the total number of grid cells).

Then perform the following loop, while there exists a greater number of clusters than nc:

1. For each of the clusters n, find the representative element in the entire domain which has the smallest
average distance to the elements in n.

2. Using the representative elements as approximate centroids, construct an approximate intercluster
distance metric Δ.

3. Of the total n clusters, then find the subset of clusters s which each has the smallest number of elements
(this will be 1, initially).

4. Use the intercluster distance matrix Δ to determine the member of s which is closest to one of the other
cluster centroids in the set of n. This cluster, nx will be eliminated from the set.

5. Loop through the elements of nx, and for each element, determine the closest centroid within the
remaining clusters.

6. Form a new set of n − 1 clusters, without the nx cluster, where all elements of nx are individually
reallocated to the appropriate remaining clusters.

For the purposes of this study, a value of nc = 15 was chosen to produce solutions which provided suffi-
cient points to resolve the tails of the aggregated precipitation distributions, while maintaining a diversity
of precipitation regimes. In the main analysis used in this paper, the minimum number of elements in any
cluster, smin is 40.
2.3.1. Data Preparation
We focus here on 3-day events as a proxy for potential flood risk (Kunkel et al., 1999; Pielke & Downton,
2000). We find the most extreme 3-day rainfall event in each cluster over the entire time-span of the data
set. The 3-day accumulated GPCC grid cell average precipitation associated with each of these events (each
a record in its local region during the observed period) are listed in supporting information Table S1. The 1◦

resolution (also typical of the CMIP5 models) represents a scale of roughly 100 km within the contiguous
United States, though clearly there may be significant heterogeneity at finer scale. As such, it is expected that
rain gauge precipitation records may be substantially greater than those in supporting information Table S1.
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Many of these record events caused significant damage and drew extensive coverage in popular media, news
reports, and government publications. These observations place each cluster's most extreme event into a
societally relevant context. For example, the 1994 flood event in the Gulf Coast cluster (o) in Southeast Texas
required 54 million U.S. dollars in Federal disaster assistance and resulted in private insurance losses of 700
million dollars (Liscum & East, 1995). The 1999 event in the South Atlantic cluster (n) in North Carolina
was associated with hurricane Floyd, which resulted in 56 deaths (Rappaport, 2000) and 6 billion dollars
in losses (Bin & Polasky, 2004). The 2006 event (c) in Moab UT caused extensive damage to National Park
infrastructure (National Park Service news release, october 10, 2006, n.d)

We use the CMIP5 ensemble to consider the changing likelihood of events such as those in supporting
information Table S1 both in the present day as well as at higher global mean warming thresholds of 1.5, 2, 3,
and 4 ◦C above preindustrial levels (see supporting information Table S5). The present day is represented in
each model by the 26-year period which first exhibits an average 0.67 ◦C warming above preindustrial levels,
corresponding to the observed warming during the period 1988–2013 relative to a preindustrial baseline
in HadCRUT (Morice et al., 2012). We use the historical and RCP8.5 simulations to represent simulated
climate at different warming thresholds (RCP8.5 is a Representative Concentration Pathway describing a
high greenhouse gas emission future; Riahi et al., 2011).

We consider each member of the CMIP5 ensemble to be an equally likely projection of the future (as con-
cluded to be appropriate in Knutti et al., 2010). Despite some proposed analysis schemes to account for
model skill or interdependency (Abramowitz & Bishop, 2015; Herger et al., 2017; Sanderson et al., 2017),
there is no consensus on the best approach or strong evidence to date that such approaches can significantly
improve projection accuracy relative to model democracy (Wuebbles et al., 2017).

2.4. Extreme Value Analysis
An extreme value distribution is estimated from the GPCC data for each grid point for the entire historical
period 1988–2013, and a generalized extreme value distribution (GEV) fit to the set of maximum values in
the cluster provides an estimate of the return period associated with each maximum observed rainfall event.
We determine the annual maximum 3-day precipitation value between 1988 and 2013 for each grid cell
in the GPCC data set for each point in the contiguous United States (note that although NOAA publishes
return frequency estimates for the United States (Bonnin et al., 2006), we compute our own here to provide
comparable estimates to the model output).

The data set is at 1◦ resolution, with 834 points in total in the entire domain. For each cluster ni, all points are
combined to form a vector Xi of block maximum 3-day precipitation values, assumed to be independently
sampled (we test this later), such that each distribution has at least smin ∗ 26 points (given 26 years in the
sample). The maximum event Mi = max(Xi) in the entire distribution is recorded, and the Xi vector is used
to fit a GEV, Fi(p), where p represents 3-day annual maximum precipitation.

A separate GEV distribution of maximum 3-day precipitation values is constructed for each CMIP5 model,
warming level, and cluster region. The fit can be used to estimate the precipitation value which would cor-
respond to a 100- or 1,000-year event in the region during the reference or baseline period in each model.
The baseline period is chosen such that global mean warming is 0.67 ◦C above the 1851–1880 period,
corresponding to the warming seen in HadCRUT in the years 1988–2013.

For each model, the first ensemble member of RCP8.5 has been used to represent warmer climates. The time
period corresponding to the GPCC data set is 1988–2013, during which time the globally averaged warming
in HadCRUT (Morice et al., 2012) is 0.67 ◦C above 1851–1880 levels. Correspondingly, we select the 26-year
period where the model global moving average warming is t = 0.67 ◦C above 1851–1880 levels. Similarly,
we consider warming thresholds for 40-year periods in which future climate first exceeds t = 1.5, 2, 3, and
4 ◦C of warming above 1851–1880 values.

For each model considered, precipitation data are linearly interpolated to the GPCC grid, and points are
allocated to the observationally derived clusters n. For each model m, warming level t, and cluster i, we
construct a block maximum distribution using the 3-day maximum precipitation which occurred in model
m in each grid cell of cluster i in each year of the 26-year window used to represent warming level t. We call
this vector Yt,m

i and fit a GEV distribution Gt,m
i (p).

Given the actual historical precipitation record pmax
i in cluster i, we then can produce a corresponding

percentile-mapped value in each model m for the reference time period. The percentile-mapped values for
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Figure 2. The changing return periods of precipitation events as a function of global mean temperature, where each subplot represents a specific regional
cluster. In each plot, present-day (2013–2017) global mean warming levels relative to 1851–1880 are illustrated by the vertical dotted line. Purple elements (solid
and dotted lines and the shaded region) correspond to the frequency of a precipitation event equal in magnitude to a 1,000-year precipitation event in the
present day, while green elements correspond to the future frequency of an event equal in magnitude to the historical record extreme event for the cluster. Solid
lines are the median future frequency for the available CMIP5 ensemble at a given temperature, and the shaded area spans the 10th to 90th percentiles of the
distribution. The dotted lines (green and purple) correspond to the median of the subset of CMIP5 models which reach Tg = 4 ◦ at some point during the
simulation. Subplots (a)–(o) correspond to regions illustrated in Figure 1. CMIP5 = Coupled Model Intercomparison Project, version 5.

precipitation records in the model reference period are then derived using Fi(p) and G1,m
i (p), such that

pmax,m
i = G1,m

i (F′
iMi), (7)

where Fi′ is the inverse Cumulative Distribution Function of Fi(p). Similarly, we can compute the future
return period of a present-day 1,000-year event in model m and cluster i as follows:

(
1 − G′t,m

i (G1,m
i (1 − 1∕1, 000))

)−1
(8)

In order to predict the future intensity of an event with a specific return period in the future, we combine a
simulated present day precipitation distribution with a percentile change due to warming derived from the
model m:

St,m
i = Fi(p) + (Gt,m

i (p) − G1,m
i (p)), (9)

where p is the percentile of the event in the distribution, equivalent to (1 − T)−1 for a return period T.

In Figure 4, we produce estimates for precipitation values associated with a given return period for a given
temperature level t and cluster i by taking the mean of all models m which sample up to Tg = 4 ◦C (starred
in supporting information Table S5).
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Figure 3. An illustration of the changing return periods, by region, of what
would have been a 1,000-year event during the Global Precipitation
Climatology Centre data set period 1988–2013. The color in each cluster
corresponds to the median of models reaching Tg = 4 ◦C during the
simulation. The colors correspond to the purple dotted line in Figure 2, and
the data are tabulated in supporting information Table S3. Subplots (a)–(d)
correspond to changes predicted at 1.5C, 2C, 3C, and 4C of global mean
warming, respectively.

For a given return period, we use the fitted GEVs to assess what the pre-
cipitation intensity would be both for the reference time period and the
chosen future time period. The difference between these values indicates
the expected intensification at that return period. An extreme value dis-
tribution fitted to the GPCC data yields the expected observed historical
precipitation level for a given return period. Finally, this observational
value is added to the expected intensification to yield an estimate for
future precipitation magnitude at different warming levels.

3. Results
3.1. Future Projections of Extreme Precipitation
3.1.1. Extreme Value Analysis
Figure 2 shows the results of an extreme value analysis used to project
the frequency of historical 1,000-year events at greater levels of warming
in each cluster.

The results suggest that historical 1,000-year events will occur 2–5 times
more frequently under 2 ◦C warming (depending on the region). Under
4 ◦C of warming (for those models which reach that level under RCP8.5),
a present-day 1,000-year event is projected to be 5–10 times more fre-
quent. The greatest increase in frequency is seen in the U.S. East Coast,
the Southern Great Plains, and southern Rocky Mountain clusters (illus-
trated on a map of the continental United States in Figure 3).

We can also use this analysis to consider the expected intensity of the most
extreme events which might be experienced in the future (Figure 4, for

100- and 500-year events). We find that in all clusters, 500-year events will become more intense in a warmer
world, but some clusters show more dramatic results than others. Clusters on the U.S. East Coast show a
more than doubling of the intensity of a 500-year event, whereas the western states cluster, for example,
shows less of a dramatic change in the intensity of 500-year events.

The comparison of comparable historical 100- and 500-year return values from GPCC with the modeled
results also indicates that model precipitation in some regions is underrepresenting or overrepresenting
present-day extremes. Models underestimate historical extremes in the clusters strongly affected by tropical
cyclones (South Atlantic and Gulf Coast clusters) and overestimate in mountain regions (Southern Rockies,
Chihuahuan Desert, and western states). In each case, the models are not well representing the processes
generally associated with the most extreme rainfall levels.
3.1.2. Sensitivity Analyses
We consider three degrees of freedom in the clustering approach and how they influence our results. In the
first case, we consider how modifying the desired number of clusters changes the distribution of regions.
Supporting information Figure S1 illustrates that varying nc produces the desired effect of splitting the
domain into broadly equally sized regions, with borders separating different climatological regimes. This
analysis, as for the main analysis in the paper, uses distance weights which combine mean precipitation,
fraction of dry days and the 95th percentile of precipitation.

To understand how the distribution would change if only the 95th percentile was used, we repeat the clus-
tering process for 15 clusters, using both the full climatological vector (as in the main paper) and only the
extreme information (supporting information Figure S2). We find that in the latter case, regions are more
spread out across the domain, spanning regions where the extreme precipitation events are likely to be
associated with different types of physical phenomena.

Finally, the parameter 𝛼 allows us to further coagulate regions to be more spatially contained within the
larger domain. The effect of this parameter is illustrated in supporting information Figure S3, which shows
that a variation in 𝛼 over 2 orders of magnitude can result in regions which are either compact (for large val-
ues of 𝛼) or with more complex borders following climatological boundaries (at small values of 𝛼). Choosing
a nonzero value of 𝛼 allows the method to produce regions for communication which are a trade-off between
climatological consistency and spatial coherency.
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Figure 4. The predicted intensity of extreme precipitation in various regions of the contiguous United States as a function of global mean temperature. The
vertical axis in each case represents 3-day annual maximum precipitation. Solid red and blue lines show expected 100- and 500-year events, respectively, while
shaded areas indicate the lower and upper bounds of the subset of models which reach 4 ◦C of warming. Red and blue crosses show comparable 100- and
500-year historical return periods as computed by the historical generalized extreme value fit. The green cross shows, for reference, the intensity of the record
observed event for the cluster. The vertical dotted black line shows the average warming in 2013–2017 as assessed from HadCRUT. Data for this plot are
tabulated in supporting information Table S4. Subplots (a)–(o) correspond to regions illustrated in Figure 1.

3.1.3. Model Subsetting for Higher Warming Levels
Only a subset of the models considered here reaches 4 ◦C of warming above preindustrial levels during
their RCP8.5 simulation. As such, results relating to 3 and 4 ◦C of warming use only a subset of four models
(those starred in supporting information Table S5) to represent return period estimates. One can assess the
expected influence of using only four models for the higher temperature thresholds in Figure 2 for global
mean temperatures of 2 ◦C or less where all the models are available. Based on this comparison, the smaller
set is found to broadly replicate the mean trend in most regions. This smaller set cannot represent the uncer-
tainty in the full CMIP5 estimate, so we report only the mean value for warming values of greater than 2 ◦C
without showing their associated uncertainties.

4. Conclusions
Advances in climate science made in previous decades have enabled the community to make confident
statements that the planet is warming (Gleckler et al., 2012; Wuebbles et al., 2017) and that this warming
has had a detectable influence on the frequency (Fischer & Knutti, 2014; Min et al., 2011) and intensity
of extreme precipitation (Wuebbles et al., 2014). However, there is a scarcity of information on the future
evolution of the types of extreme precipitation events that would exceed the tolerances of today's infrastruc-
ture. Such information is necessary to inform policy makers, urban planners, and regional governing bodies
when making decisions with the potential to avoid significant loss of life, property, or livelihood. As such,
producing useful projections of exactly what individual communities should expect under climate change
is an enduring challenge.

This study takes a step toward this goal by improving characterization of the risk of extreme precipitation.
We outline a potential methodology for providing information on multicentury precipitation events at a
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regional scale. We present this approach as a proof of concept, given that there are uncertainties associ-
ated with free parameters in the approach relating to cluster size, cohesion, distance metrics, and assumed
extreme value distribution. A formal risk assessment would require the effects of these parameters to be
more comprehensively sampled and understood.

While this analysis offers a useful methodology for extracting information on changes in extreme precipita-
tion events from existing data, important questions about the direct usability of these regional projections,
in planning and decision-making contexts, remain. For example, city-level accumulation might be signifi-
cantly greater than the average of the 100-km grid cell in which the city is located, and because there is a
relatively small set of models in the archive (especially at high warming levels), our results are not a com-
prehensive sample of all possible future behavior. In some regions, model results might be biased because
we know that some physical processes relevant to extreme precipitation are not represented in the CMIP5
models, such as tropical cyclones on the U.S. Gulf Coast. Nevertheless, there is value in operational use of
analytic approaches that can at least bound the problem, delineating a planning envelope for risk assessment
and providing plausible futures against which to stress test valued assets (Stern, 2013).
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