## Vers l'hybridation des covariances d'erreur d'ébauche pour la prévision climatique

Sébastien Barthélémy<sup>1,3</sup> - François Counillon<sup>1,2,3</sup>

<sup>1</sup>UiB <sup>2</sup>NERSC <sup>3</sup>BCCR

23 Janvier 2020








- Une courte introduction
- 2. Assimilation de données et hybridation des covariances
  - DEnKF et hybridation des covariances
  - Différentes méthodes d'hybridation
- 3. Expériences numériques sur le modèle QG
  - Set up des expériences
  - Static hybridization
  - Dual resolution
  - Dual static hybridization
  - Comparaison des résultats des méthodes d'hybridation
- 4. Expériences numériques avec NorCPM
  - NorCPM et set-up des expériences numériques
  - Résultats numériques
  - Perspective : application à la prévision de la gyre sub-polaire
- Conclusion

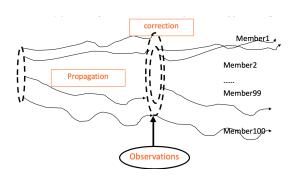
#### 1. Une courte introduction

- 2. Assimilation de données et hybridation des covariances
- 3. Expériences numériques sur le modèle QG
- 4. Expériences numériques avec NorCPM
- 5. Conclusion

## Pourquoi hybrider les covariances d'erreur d'ébauche pour la prévision climatique ?



- La taille de l'ensemble est limitée par les coûts de calcul ;
- Hybridation: améliorer les résultats de l'assimilation sans augmenter le coût de calcul;
  - But à long terme: initialisation de NorCPM high res.


- 1. Une courte introduction
- 2. Assimilation de données et hybridation des covariances
- 3. Expériences numériques sur le modèle QG
- 4. Expériences numériques avec NorCPM
- 5. Conclusion

- 1. Une courte introduction
- 2. Assimilation de données et hybridation des covariances
  - DEnKF et hybridation des covariances
  - Différentes méthodes d'hybridation
- 3. Expériences numériques sur le modèle QG
- 4. Expériences numériques avec NorCPM
- Conclusion

## Le Deterministic Ensemble Kalman Filter, DEnKF - (Sakov & Oke, 2008)

- Version déterministe de l'EnKF;
- Approximation linéaire de l'ETKF pour des petites corrections ;
- Deux étapes: propagation et correction.

#### Etape de propagation



## Le Deterministic Ensemble Kalman Filter, DEnKF - (Sakov & Oke, 2008)

#### Etape d'analyse

 $\mathbf{E}_1$  est un ensemble de taille  $N_1$ .

La moyenne  $\mathbf{x}_1$  et les anomalies  $\mathbf{A}_1$  sont mises à jour de manière indépendante :

$$\mathbf{x}_1^a = \mathbf{x}_1^f + \mathbf{K}_1 \left( \mathbf{d} - \mathbf{H} \mathbf{x}_1^f \right) \tag{1}$$

$$\mathbf{A}_1^a = \mathbf{A}_1^f - \frac{1}{2}\mathbf{K}_1\mathbf{H}\mathbf{A}_1^f \tag{2}$$

où:

$$\mathbf{K}_{1} = \mathbf{P}_{1}^{f} \mathbf{H}^{T} \left( \mathbf{H} \mathbf{P}_{1}^{f} \mathbf{H}^{T} + \mathbf{R} \right)^{-1}$$
 (3)

$$\mathbf{P}_{1}^{f} = \frac{\mathbf{A}_{1}^{f} \left(\mathbf{A}_{1}^{f}\right)^{T}}{N_{1} - 1} \tag{4}$$

Implémentation en termes de scaled observation anomalies (Sakov et al., 2009) ⇒ efficace numériquement.

## Hybridation des covariances d'erreur d'ébauche - (Hamill & Snyder, 2000)

- Le sous-échantillonnage de l'ensemble  $\mathbf{E}_1$  résulte en une mauvaise estimation de  $\mathbf{P}_1$ .
- o Remplacer  $\mathbf{P}_1^f$  par une matrice  $\mathbf{P}_h^f$  dans les eq. (3) et (4) avec:

$$\mathbf{P}_{h}^{f} = (1 - \alpha)\mathbf{P}_{1}^{f} + \alpha\mathbf{P}_{2}^{f}, \qquad \alpha \in [0; 1]$$
(5)

où  $\mathbf{P}_2^f$  sont les covariances d'erreur d'ébauche d'un ensemble  $\mathbf{E}_2$  de taille  $N_2$ .

• La dimension du sous-espace de l'incrément d'analyse est maintenant :

$$\mathsf{rang}(\mathbf{P}_h^f\mathbf{H}^T) = \mathsf{min}(p, N_1 + N_2 - 1) \geq \mathsf{min}(p, N_1 - 1) = \mathsf{rang}(\mathbf{P}_1^f\mathbf{H}^T)$$

où p est le nombre d'observations.

- 1. Une courte introduction
- 2. Assimilation de données et hybridation des covariances
  - DEnKF et hybridation des covariances
  - Différentes méthodes d'hybridation
- 3. Expériences numériques sur le modèle QG
- 4. Expériences numériques avec NorCPM
- 5. Conclusion

## Static hybridization - (Counillon et al., 2009)

- $\mathbf{E}_1 = \mathbf{E}_d$  est l'ensemble dynamique initial ;
- $\mathbf{E}_2 = \mathbf{E}_s$  est un ensemble statique issu d'un run climatologique.
- $\bullet \mathbf{P}_h^f = \lambda (1 \alpha) \mathbf{P}_d^f + \alpha \beta \mathbf{P}_s^f$
- $\lambda$  est le facteur d'**inflation** et  $\beta$  est un facteur d'**échelle**.
- $\alpha = 0$ , full dynamic  $\equiv \text{EnKF}$ ;
- $\alpha = 1$ , full static  $\equiv$  ensemble d'EnOI.

## Dual resolution - (Rainwater & Hunt, 2013)

#### Modèle haute résolution

- $\mathbf{E}_1 = \mathbf{E}_H$  est l'ensemble dynamique haute résolution ;
- ullet  ${f E}_2={f E}_L$  est un ensemble dynamique basse résolution ;
- $\bullet \ \mathbf{P}_{h}^{f} = \lambda (1 \alpha_{H}) \mathbf{P}_{H}^{f} + \lambda \alpha_{H} \, \pi_{LH} \left( \mathbf{P}_{L}^{f} \right)$
- o  $\pi_{LH}$  est l'opérateur d'interpolation du modèle LR vers le modèle HR.

#### Modèle basse résolution

- $\mathbf{E}_1 = \mathbf{E}_L$  est un ensemble dynamique basse résolution ;
- $\mathbf{E}_2 = \mathbf{E}_H$  est l'ensemble dynamique haute résolution ;
- $\bullet \ \mathbf{P}_{h}^{f} = \lambda (1 \alpha_{L}) \pi_{HL} \left( \mathbf{P}_{H}^{f} \right) + \lambda \alpha_{L} \mathbf{P}_{L}^{f}$
- o  $\pi_{HL}$  est l'opérateur d'interpolation du modèle HR vers le modèle LR.

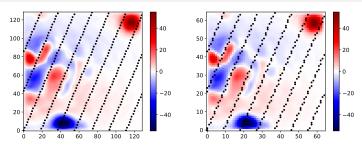
## Dual static hybridization

#### Modèle haute résolution

- ullet  $\mathbf{E}_1 = \mathbf{E}_{H,d}$  est le modèle dynamique haute résolution ;
- ullet  $\mathbf{E}_2 = \mathbf{E}_{L,d}$  est le modéle dynamique basse résolution ;
- $\mathbf{E}_3 = \mathbf{E}_{H,s}$  est le modèle statique haute résolution.

$$\circ \mathbf{P}_{h}^{f} = \lambda \alpha_{H,1} \mathbf{P}_{H,d}^{f} + \lambda \alpha_{H,2} \pi_{LH} \left( \mathbf{P}_{L,d}^{f} \right) + \alpha_{H,3} \beta \mathbf{P}_{H,s},$$

 $\alpha_{H,1} + \alpha_{H,2} + \alpha_{H,3} = 1$ 

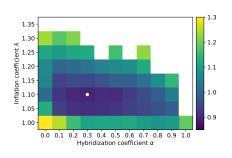

#### Modèle basse résolution

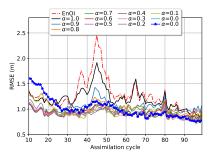
- ullet  ${f E}_1={f E}_{L,d}$  est le modèle dynamique basse résolution ;
- ullet  ${f E}_2={f E}_{H,d}$  est le modèle dynamique haute résolution ;
- $\mathbf{E}_3 = \mathbf{E}_{L,s}$  is the static low res. ensemble;
- $\bullet \ \mathbf{P}_{h}^{f} = \lambda \alpha_{L,1} \pi_{HL} \left( \mathbf{P}_{H,d}^{f} \right) + \lambda \alpha_{L,2} \, \mathbf{P}_{L,d}^{f} + \alpha_{L,3} \beta \mathbf{P}_{L,s},$
- $\alpha_{1,1} + \alpha_{1,2} + \alpha_{1,3} = 1$

- 1. Une courte introduction
- 2. Assimilation de données et hybridation des covariances
- 3. Expériences numériques sur le modèle QG
- 4. Expériences numériques avec NorCPM
- Conclusion

- 1. Une courte introduction
- 2. Assimilation de données et hybridation des covariances
- 3. Expériences numériques sur le modèle QG
  - Set up des expériences
  - Static hybridization
  - Dual resolution
  - Dual static hybridization
  - Comparaison des résultats des méthodes d'hybridation
- 4. Expériences numériques avec NorCPM
- 5. Conclusion

## Set up des expériences



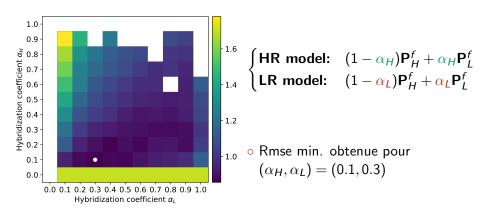


- $\circ$  HR  $\sim$  16000 points de grille, LR  $\sim$  4000 points de grille ;
- Expériences jumelles avec 300 observations synthétiques sur 100 cycles d'assimilation;
- ullet **Observations synthétiques :** true run + bruit  $arepsilon \sim \mathcal{N}\left(0,\mathbf{R}
  ight)$
- Erreur d'observation :  $\sigma_{o,H}=0.2~\text{m}$  et  $\sigma_{o,L}=0.24~\text{m}$
- Rayon de localisation :  $L_r = 17.7$  ("local analysis")
- Viscosité :  $\nu_t = 2.10^{-12}$  Pa.s et  $\nu = 2.10^{-11}$  Pa.s
- **Pas de temps** :  $\Delta t_H = 2.5$  s et  $\Delta t_L = 5$  s
- Facteur d'échelle :  $\beta = 0.04$

- 1. Une courte introduction
- 2. Assimilation de données et hybridation des covariances
- 3. Expériences numériques sur le modèle QG
  - Set up des expériences
  - Static hybridization
  - Dual resolution
  - Dual static hybridization
  - Comparaison des résultats des méthodes d'hybridation
- 4. Expériences numériques avec NorCPM
- 5. Conclusion

## Static hybridization

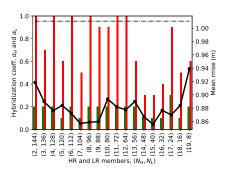
•  $N_d = 20$  membres dynamiques,  $N_s = 200$  membres statiques.

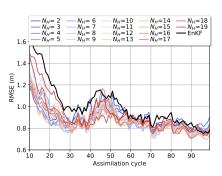





- L'hybride avec  $\alpha = 1$  (ensemble d'EnOI) est meilleur que l'EnOI;
- $\bullet$  Avant convergence, l'hybride est meilleur que le full dynamic,  $\alpha=0$  ;
- Après convergence, l'hybride et le full dynamic sont équivalents ;
- Les résultats sont en accord avec (Counillon et al., 2009).

- 1. Une courte introduction
- 2. Assimilation de données et hybridation des covariances
- 3. Expériences numériques sur le modèle QG
  - Set up des expériences
  - Static hybridization
  - Dual resolution
  - Dual static hybridization
  - Comparaison des résultats des méthodes d'hybridation
- 4. Expériences numériques avec NorCPM
- 5 Conclusion


#### Dual resolution - 20 membres HR

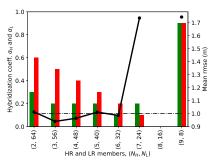

- Ressources de calcul  $\sim$  20 membres HR :  $(N_H, N_L) = (15, 40)$  ;
- Coefficient d'inflation  $\lambda = 1.1$ .

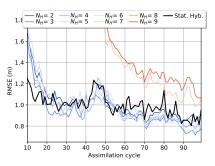


#### Dual resolution - 20 membres HR

$$\begin{cases} \text{HR model:} & (1 - \alpha_H) \mathbf{P}_H^f + \alpha_H \mathbf{P}_L^f \\ \text{LR model:} & (1 - \alpha_L) \mathbf{P}_H^f + \alpha_L \mathbf{P}_L^f \end{cases}$$





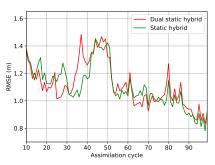


- Amélioration de la rmse par rapport à l'EnKF pour chaque combinaison de  $(N_H, N_L)$ ;
- $(\alpha_H, \alpha_L)$  optimaux vérifient  $\alpha_H < \alpha_L$ .

#### Dual resolution - 10 membres HR

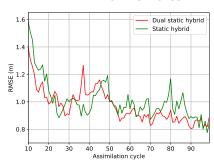
 $\circ$  Ressources de calcul  $\sim$  propager 10 membres HR.

$$\begin{cases} \text{HR model:} & (1 - \alpha_H) \mathbf{P}_H^f + \alpha_H \mathbf{P}_L^f \\ \text{LR model:} & (1 - \alpha_L) \mathbf{P}_H^f + \alpha_L \mathbf{P}_L^f \end{cases}$$





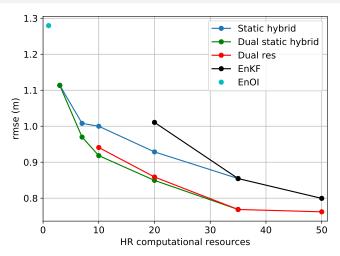

- Amélioration par rapport au static hybrid après convergence (cycle d'assimilation 30);
- $(\alpha_H, \alpha_L)$  optimaux vérifient  $\alpha_H < \alpha_L$ .


- 1. Une courte introduction
- 2. Assimilation de données et hybridation des covariances
- 3. Expériences numériques sur le modèle QG
  - Set up des expériences
  - Static hybridization
  - Dual resolution
  - Dual static hybridization
  - Comparaison des résultats des méthodes d'hybridation
- 4. Expériences numériques avec NorCPM
- 5. Conclusion

## Dual static hybridization

#### $HR \sim 3$ membres




#### $HR \sim 7$ membres

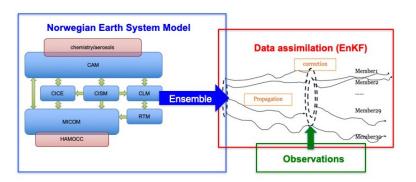


- o Ressources de calcul  $\sim$  3 membres HR: pas d'amélioration par rapport au *static hybridization* ;
- $(\alpha_{H,1}, \alpha_{H,2}, \alpha_{H,3}) = (0.24, 0.06, 0.7), (\alpha_{L,1}, \alpha_{L,2}, \alpha_{L,3}) = (0.24, 0.06, 0.7)$
- $\circ$  Ressources de calcul  $\sim$  **7 membres HR**: très faible amélioration avant et après les cycles d'assimilation 20 et 50 respectivement ;
- $(\alpha_{H,1}, \alpha_{H,2}, \alpha_{H,3}) = (0.72, 0.18, 0.1), (\alpha_{L,1}, \alpha_{L,2}, \alpha_{L,3}) = (0.24, 0.36, 0.4)$

- 1. Une courte introduction
- 2. Assimilation de données et hybridation des covariances
- 3. Expériences numériques sur le modèle QG
  - Set up des expériences
  - Static hybridization
  - Dual resolution
  - Dual static hybridization
  - Comparaison des résultats des méthodes d'hybridation
- 4. Expériences numériques avec NorCPM
- 5. Conclusion

## Comparaison des résultats

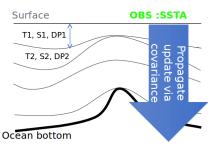



- Soumission prochaine à QJRMS;
- Sources bientôt disponibles avec le package DAPPER (Raanes et al., 2018).

- 1. Une courte introduction
- 2. Assimilation de données et hybridation des covariances
- 3. Expériences numériques sur le modèle QG
- 4. Expériences numériques avec NorCPM
- 5. Conclusion

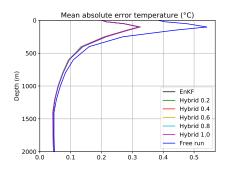
- 1. Une courte introduction
- 2. Assimilation de données et hybridation des covariances
- 3. Expériences numériques sur le modèle QG
- 4. Expériences numériques avec NorCPM
  - NorCPM et set-up des expériences numériques
  - Résultats numériques
  - Perspective : application à la prévision de la gyre sub-polaire
- 5. Conclusion

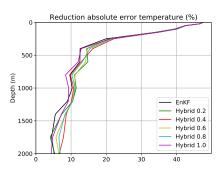
## Quelques mots à propos de NorCPM


NorCPM = NorESM + EnKF



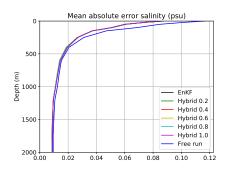
- Correction de l'état océanique (MICOM) avec l'EnKF : assimilation de la SST :
- o Limitation à 30 membres dynamiques du fait des coûts de calcul.

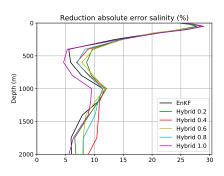

## Set-up des expériences numériques


- Méthode d'hybridization : static hybrid ;
- 30 membres dynamiques et 315 membres statiques générés avec un run climatologique et des forçages pré-industriels;
- o L'ensemble statique est différent chaque mois ;
- o Assimilation "full field" mensuelle sur une période de 10 ans ;
- o Observations synthétiques avec signal du changement climatique ;
- Les covariances sont calculées en coordonnées isopycnales.



- 1. Une courte introduction
- 2. Assimilation de données et hybridation des covariances
- 3. Expériences numériques sur le modèle QG
- 4. Expériences numériques avec NorCPM
  - NorCPM et set-up des expériences numériques
  - Résultats numériques
  - Perspective : application à la prévision de la gyre sub-polaire
- 5. Conclusion

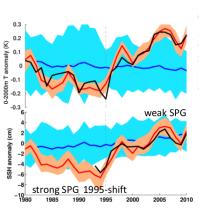

## Résultats température, erreur absolue






 La mer Noire et la mer Caspienne ne sont pas prises en compte dans les résultats;

### Résultats salinité, erreur absolue





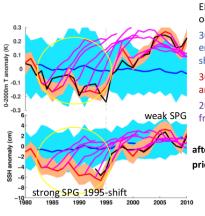

- La mer Noire et la mer Caspienne ne sont pas prises en compte dans les résultats.
- Le besoin d'hybridation est differént selon les régions : 0.4 pour l'Atlantique et l'océan Indien, 0.6 pour le Pacifique.

- 1. Une courte introduction
- 2. Assimilation de données et hybridation des covariances
- 3. Expériences numériques sur le modèle QG
- 4. Expériences numériques avec NorCPM
  - NorCPM et set-up des expériences numériques
  - Résultats numériques
  - Perspective : application à la prévision de la gyre sub-polaire
- Conclusion

## SPG prediction with NorCPM-SSTA



EN4 T/S analysis; altimetry observations


30-member NorESM hist. ensemble (solid=mean, shading=min/max)



30-member NorCPM-SSTA reanalysis using anomaly EnKF assimilation of SST obs.

Courtesy: Ingo Bethke & Yiguo Wang

## SPG prediction with NorCPM-SSTA

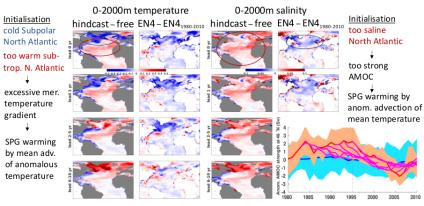


EN4 T/S analysis; altimetry observations

30-member NorESM hist. ensemble (solid=mean, shading=min/max)



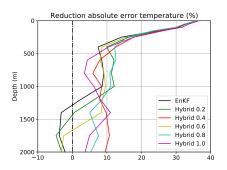
30-member NorCPM-SSTA reanalysis using anomaly EnKF assimilation of SST obs.

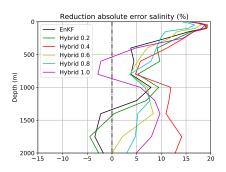

20-member hindcast experiment initialised from NorCPM-SSTA reanalysis

after 1994 – hindcast trends match observed trends  $\checkmark$  prior 1994 – hindcasts opposite to observed trends X

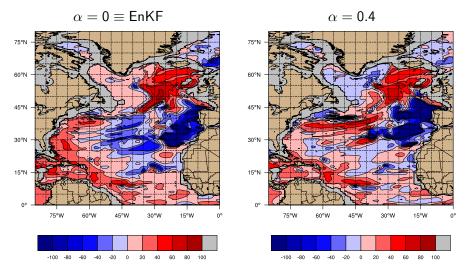
Causes for false SPG warmings?
Possible to rectify?

Courtesy: Ingo Bethke & Yiguo Wang

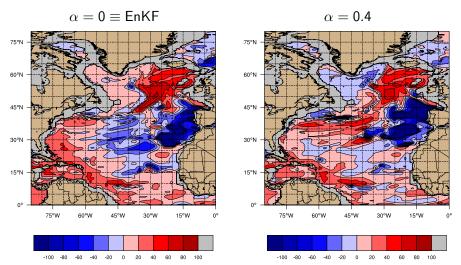

# Composite anomaly patterns of 0-2000m temperature and salinity



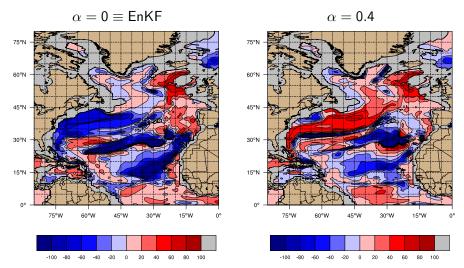

start years: 1983, 1985, 1987, 1989, 1991, 1993


Courtesy: Ingo Bethke & Yiguo Wang

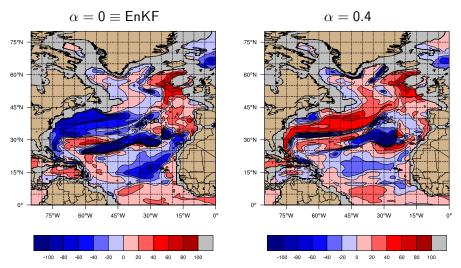
• Résultats du *static hybrid* sur l'Atlantique nord: pourcentage de réduction de l'erreur absolue par rapport au free run de 0 à 2000 m.







 Pourcentage de réduction de l'erreur absolue de température par rapport au free run à 750 m de profondeur.




• Pourcentage de réduction de l'erreur absolue de **salinité** par rapport au free run à 750 m de profondeur.



 Poucentage de réduction de l'erreur absolue de température par rapport au free run à 1500 m de profondeur.



• Pourcentage de réduction de l'erreur absolue de **salinité** par rapport au free run à 1500 m de profondeur.



- 1. Une courte introduction
- 2. Assimilation de données et hybridation des covariances
- 3. Expériences numériques sur le modèle QG
- 4. Expériences numériques avec NorCPM
- 5. Conclusion

#### Conclusion

#### **Conclusion**

- Développement et implémentation de différentes méthodes d'hybridation des covariances sur le modèle QG et dans NorCPM (static hybridization);
- Amélioration des résultats par rapport à l'EnKF (QG et NorCPM);
- Amélioration des résultats du dual resolution par rapport au static hybridization (QG);

#### **Perspectives**

- Tester l'hybridation en mode prévision avec NorCPM et avec des données réelles;
- Implémenter le dual resolution dans NorCPM;
- Estimation adaptative des coefficients d'hybridation (Ménétrier & Auligné, 2015);
- o Tester la prévision de la gyre sub-polaire avec l'hybridation ;
- Initialistation de la version haute-résolution de NorCPM.