Journal of Advances in **JAMES Modeling Earth Systems** # **RESEARCH ARTICLE** 10.1029/2019MS001791 ### **Special Section:** The CNRM Climate and Earth System Models for CMIP6 #### **Key Points:** - This study introduces CNRM-ESM2-1 and describes its set-up for CMIP6 - Represented Earth system processes further impact the model response to external forcing than the model performance over present-day - Represented Earth system processes damp future warming by up to 10% ## **Supporting Information:** Supporting Information S1 ### **Correspondence to:** R. Séférian, roland.seferian@meteo.fr #### Citation: Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A., Colin, J., et al (2019). Evaluation of CNRM Earth-System model, CNRM-ESM2-1: role of Earth system processes in present-day and future climate. Journal of Advances in Modeling Earth Systems, 11, 4182–4227. https://doi.org/10.1029/ # **Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role of Earth System Processes in Present-Day** and Future Climate Roland Séférian¹ D, Pierre Nabat¹ D, Martine Michou¹ D, David Saint-Martin¹ D, Aurore Voldoire (D), Jeanne Colin (D), Bertrand Decharme (D), Christine Delire (D), Sarah Berthet¹, Matthieu Chevallier¹, Stephane Sénési¹, Laurent Franchisteguy¹, Jessica Vial², Marc Mallet¹, Emilie Joetzjer¹, Olivier Geoffroy¹, Jean-François Guérémy¹, Marie-Pierre Moine³, Rym Msadek³ D, Aurélien Ribes¹ D, Matthias Rocher¹, Romain Roehrig¹, David Salas-y-Mélia¹, Emilia Sanchez³, Laurent Terray³ D, Sophie Valcke³ D, Robin Waldman¹ D, Olivier Aumont⁴ D, Laurent Bopp², Julie Deshayes⁴, Christian Éthé⁵, and Gurvan Madec^{4,6} ¹CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France, ²Ecole Normale Supérieure/PSL Res. Univ, Ecole Polytechnique, Sorbonne Université, Paris, France, ³CECI, Université de Toulouse, CNRS, CERFACS, Toulouse, France, ⁴LOCEAN-IPSL, Sorbonne Université-CNRS-IRD-MNHN, Paris, France, ⁵Institut Pierre Simon Laplace, Paris, France, ⁶INRIA, Université Grenoble Alpes, Grenoble, France Abstract This study introduces CNRM-ESM2-1, the Earth system (ES) model of second generation developed by CNRM-CERFACS for the sixth phase of the Coupled Model Intercomparison Project (CMIP6). CNRM-ESM2-1 offers a higher model complexity than the Atmosphere-Ocean General Circulation Model CNRM-CM6-1 by adding interactive ES components such as carbon cycle, aerosols, and atmospheric chemistry. As both models share the same code, physical parameterizations, and grid resolution, they offer a fully traceable framework to investigate how far the represented ES processes impact the model performance over present-day, response to external forcing and future climate projections. Using a large variety of CMIP6 experiments, we show that represented ES processes impact more prominently the model response to external forcing than the model performance over present-day. Both models display comparable performance at replicating modern observations although the mean climate of CNRM-ESM2-1 is slightly warmer than that of CNRM-CM6-1. This difference arises from