
Clarifying the Relation between AMOC and Thermal Wind: Application to the Centennial
Variability in a Coupled Climate Model

ROBIN WALDMAN ,a JOËL HIRSCHI ,b A URORE VOLDOIRE ,a CHRISTOPHE CASSOU,c AND RYM MSADEK c

a Centre National de Recherches Météorologiques, Toulouse, France
b National Oceanographic Centre, Southampton, United Kingdom

c CECI, Universit é de Toulouse, CNRS, CERFACS, Toulouse, France

(Manuscript received 25 November 2019, in Þnal form 9 October 2020)

ABSTRACT: This work aims to clarify the relation between the Atlantic meridional overturning circulation (AMOC) and the
thermal wind. We derive a new and generic dynamical AMOC decomposition that expresses the thermal wind transport as a
simple vertical integral function of eastern minus western boundary densities. This allows us to express density anomalies at any
depth as a geostrophic transport in Sverdrups (1 Sv[ 106 m3 s2 1) per meter and to predict that density anomalies around the
depth of maximum overturning induce most A MOC transport. We then apply this formalis m to identify the dy namical drivers of
the centennial AMOC variability in the CNRM-CM6 climate model. The dynamical reconstructionand speciÞcally the thermal
wind component explain over 80% of the low-fr equency AMOC variance at all latitudes, which is therefore almost exclusively
driven by density anomalies at both zonalboundaries. This transport variability is dominated by density anomalies between
depths of 500 and 1500 m, in agreement with theoretical predictions. At those depths,southward-propagating western boundary
temperature anomalies induce the centennial geostrophic AMOC transport variability in the North Atlantic. They are originated
along the western boundary of the subpolar gyre through the Labrador Sea deep convection and the Davis Strait overßow.
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1. Introduction

The Atlantic meridional overturning circulation (AMOC) de-
Þnes the zonally integrated Eulerian mean circulation in the me-
ridional plane over the Atlantic Ocean. At its main observation
site, in the subtropical North Atlantic Ocean (26.58N), it displays
two main overturning cells, an upper cell (above typically 4000-m
depth) of magnitude 17.2 Sv (1 Sv[ 106m3s2 1) associated with
the formation and subsequent southward transport of the North
Atlantic Deep Water (NADW) and a much weaker ( ;2 2 Sv)
bottom cell related to the northward transport and transformation
of the Antarctic Bottom Waters (AABW) ( McCarthy et al. 2015).
The upper cell, tightly related to the formation of deep waters in
the subpolar North Atlantic ( Buckley and Marshall 2016), largely
dominates the oceanic meridional heat transport by advecting
warm upper-limb (typically upper 1000 m) waters northward and
colder lower-limb waters southward, causing a net northward
heat transport at all latitudes (Ganachaud and Wunsch 2003;
Trenberth and Fasullo 2017). Therefore, the AMOC has long
been believed to regulate the climate of the Atlantic Ocean and
adjacent continents (Zhang et al. 2019).

However, the relation between the AMOC variability and
surface climate ßuctuations is not evident in observations due to
the very limited measurements of the former. So far, it can only be

investigated with paleoclimatic proxies, which suggest that such a
link exists (Stocker 1998; Clark et al. 2002), and with coupled
climate models. Over the last two decades, an ever-increasing
number of numerical studies have analyzed the relation between
the AMOC and the climate of the Atlantic region (e.g., Ruprich-
Robert and Cassou (2015)andCassou et al. (2018), and references
therein). The ocean circulation forces the atmosphere mostly by
modulating, as a result of transport and mixing processes, the sea
surface temperature (SST), which in turn modulates airÐsea heat,
momentum, and water ßuxes. The AMOC is one of those drivers,
and its anomalies are generallyfound to lead a sea surface tem-
perature anomaly consistent with the anomalous heat transport
(Buckley and Marshall 2016). It is believed to be a major driver of
decadal to centennial SST variability (Muir and Fedorov 2015),
and although the related atmospheric response is generally weak
(e.g., Gastineau and Frankignoul 2012), it can be interpreted as
one of the dominant modes of internal climate variability at those
time scales (Kushnir 1994). In particular, recent studies have
shown that the AMOC has predictive skills at the decadal time
scale (Desbruyères et al. 2019), which provides some skill for the
decadal prediction of SST over the subpolar North Atlantic and
GreenlandÐIcelandic and Norwegian (GIN) Seas (Yeager and
Robson 2017).

Because of presence of intense peaks in the AMOC low-
frequency spectrum of long climate simulations, this variability
cannot simply be a ÔÔred noiseÕÕ signal resulting from the temporal
integration of some stochastic atmospheric forcing (e.g., a Þrst-
order autoregressive process;Frankignoul and Hasselmann 1977).
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Hence it is accepted that oceanic dynamical processes impose an
AMOC variability at speciÞc frequencies (Frankignoul et al.
1997). Statistically, this behavior can be reasonably well Þtted to a
ÔÔdelayed oscillatorÕÕ model in which an ocean feedback delay term
is added to the red-noise model, which accounts for internal os-
cillations driven by ocean dynamics (Tulloch and Marshall 2012).
However, no consensus has emerged either on the dominant time
scales or on the nature of the forcing and the internal oscillation
mechanism that, altogether, give rise to the AMOC low-frequency
spectral peaks (Menary et al. (2015) and references therein).

Only one constraint is commonly accepted, which stems from
the thermal wind relation: all those drivers must ultimately man-
ifest themselves as a zonally integrated density gradient (Hirschi
and Marotzke 2007; Tulloch and Marshall 2012). Indeed, at any
latitude density anomalies at the western and eastern boundaries
of the Atlantic Ocean drive the geostrophic component of the
AMOC, which is believed to dominate its low-frequency vari-
ability ( Buckley and Marshall 2016). The very accurate geostrophic
approximation in the interior ocean has permitted the design of
the RAPID array, which was the Þrst continuous AMOC moni-
toring program (Hirschi et al. 2003;Baehr et al. 2004; Rayner et al.
2011). Most studies relating the AMOC to this zonally integrated
thermal wind put forward the dominant role of western boundary
density anomalies in driving the low-frequency AMOC variability.

The thermal wind relation requires a reference level of
integration that implies a formal separation between baro-
tropic (viz., depth-independent) and baroclinic (viz., depth-
dependent) contributions. In addition, deducing a vertically
integrated transport requires a double vertical integration
of density gradients, Þrst to retrieve geostrophic velocities
and then to integrate the transport (e.g., Lee and Marotzke
1998; Sime et al. 2006; Hirschi and Marotzke 2007; Cabanes
et al. 2008; K öhl and Stammer 2008; Tulloch and Marshall
2012). This has limited our understanding of the relationship
between zonal density gradients and the AMOC.

The aim of the present study is twofold: Þrst to reformulate
an AMOC decomposition that clariÞes the contribution of
the zonally integrated density gradient; and then to inves-
tigate the low-frequency AMOC variability in the latest
generation of the CNRM-CM coupled climate model (here-
inafter CNRM-CM6; Voldoire et al. 2019). For that, we for-
mulate in section 2a new AMOC decomposition that clariÞes
the contributions of density anomalies at the zonal boundaries.
We then make use of this decomposition insection 3to identify
the geostrophic driver of the strong centennial AMOC vari-
ability found in the CNRM-CM6 model. In section 4, we relate
this geostrophic AMOC driver to the sources of dense water
variability in the North Atlantic subpolar region.

2. Relation between the AMOC and zonal
density anomalies

a. AMOC deÞnition and decomposition

For the remainder of this paper the term AMOC will refer to
the vertical maximum of the Eulerian mean meridional over-
turning streamfunction C(y, z, t) (see section SI1 in the online
supplemental material for a discussion on the residual mean
overturning streamfunction). This streamfunction is deÞned as

C(y, z, t) 5
ð0

z

ðxE

xW

y(x, y, z0, t) dx dz0, (1)

where xW and xE are the western and eastern boundaries,y is
the meridional velocity, and z0 is the variable of vertical inte-
gration and neglecting sea level. The AMOC is then

AMOC( y, t) 5 C [y, zm(y, t), t]

5
ð0

zm(y,t)

ðxE

xW

y(x, y, z, t) dx dz, (2)

with zm , 0 being the depth of maximum overturning. It
quantiÞes the total northward volume transport associated
with the upper limb of the main meridional overturning cell in
the Atlantic. This deÞnition corresponds to the depth coordi-
nate AMOC, as opposed to the density coordinate AMOC. As
discussed in section SI2 of the online supplemental material, the
latter has no simple expression as a function of hydrographic
properties at the boundaries because the interface depth is a
zonally variable isopycnal depth. Therefore, we focus in this
study on the vertical coordinate AMOC. Although zm can be
chosen to be variable in time and latitude, in the following we
will consider the time and latitude average depth of maximum
overturning over the Atlantic Ocean (30 8SÐ608N). Henceforth,
we only mention dependency on space and time when relevant.

Over scales longer than a few days and outside the deep
tropics (within ; 28of the equator, excluded in what follows),
the AMOC can be approximated by Ekman plus geostrophic
dynamics (e.g.,Baehr et al. 2004):

AMOC ’ AMOC E 1 AMOC g

5
ð0

zm

ðxE

xW

(yE 1 yg) dx dz, (3)

with yE and yg being the Ekman and geostrophic velocities.
Table 1 summarizes all of the physical AMOC decompositions
used in this work. The vertically integrated Ekman transport is
given by Ekman theory as

VE 5
ð0

2 hE

yE dz

5 2
t x

r 0 f
, (4)

where hE is the Ekman depth restricted to the upper limb
(hE � 2 zm), t x is the surface zonal wind stress,r 0 is a reference
average density, andf is the Coriolis parameter. Geostrophic
transports result both from the surface pressure gradient due to
sea level variations and the hydrostatic pressure gradient due
to density variations within the water column. However, both
terms generally compensate each other at depth so that bottom
velocities are much reduced compared to surface currents.
Therefore, it is simpler and more convenient to deduce geo-
strophic currents from the thermal wind relation, which com-
bines the geostrophic and hydrostatic balances:

›y g

› z
5 2

g
r 0 f

›r
› x

, (5)
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with g being the gravity acceleration andr being the seawater
in situ density. Integrating vertically from the ocean bottom
depth 2 h (with h . 0) gives

yg(z) 5 yg(2 h) 2
g

r 0 f

ðz

2 h

›r
› x

dz0, (6)

with yg(2 h) being the bottom geostrophic velocity. In what
follows, yg(2 h) is referred to as the barotropic component
because it does not depend on depth, whereas the second term
depends on the density proÞle and is named the baroclinic
component. For simplicity we Þrst consider a rectangular basin
with constant depth. The AMOC is then ( Table 1)

AMOC 5 2
1

r 0 f

ðxE

xW

t x dx 1
ð0

zm

ðxE

xW

�
yg(2 h) 2

g
r 0 f

ðz

2 h

›r
› x

dz0

�
dx dz

5 2
Dx
r 0 f

t x 2 zmDxyg(2 h) 2
g

r 0 f

ð0

zm

ðz

2 h
Dr dz0dz

5 AMOC E 1 AMOC BTg 1 AMOC BCg , (7)

TABLE 1. Decompositions, reference equation, and physical interpretation for the total AMOC, its geostrophic shear contribution
(AMOC gÐsh), and the thermal wind transport per unit depth [TW( z)].

Decomposition Formula Physical interpretation

AMOC
AMOC E 1 AMOC g Eq. (3) Ekman plus geostrophic AMOC decomposition: AMOC E is Ekman component;

AMOC g is geostrophic component
AMOC E 1 AMOC BCg1

AMOC BTg

Eq. (7) Use of the thermal wind relation to decompose the geostrophic AMOC into
baroclinic and a barotropic contributions: AMOC BTg is barotropic geostrophic
AMOC transport related to the reference velocities used for the thermal wind
integration (in this study, bottom velocities); AMOC BCg is baroclinic geostrophic
AMOC transport related to velocity anomalies with respect to the reference depth
velocities

AMOC EÐsh1 AMOC gÐsh Eq. (12) Use of the no-net-integral-ßow condition to include the barotropic geostrophic
transport as a compensation within the Ekman and baroclinic geostrophic com-
ponents: AMOC EÐshis sheared Ekman component including the barotropic
compensation that ensures no net integral transport; AMOCgÐshis sheared geo-
strophic component including the barotropic compensation that ensures no net
integral transport

AMOC EÐsh1 AMOC gÐsh1
AMOC gÐEM

Eq. (19) Inclusion of the external mode with variable topography: AMOC gÐEM is external-
mode AMOC transport induced by variable bottom velocities over variable to-
pography and upper-limb depth

AMOC gÐshð0

2 h
TW( z) dz Eqs. (15)

and (16)
Expression of the AMOC gÐshas a single vertical integral: TW(z) is thermal wind

transport per unit depth (Sv m2 1) caused by density differences at both zonal
boundaries

AMOC gTÐsh1 AMOC gSÐsh Eq. (22) Decomposition into thermal and haline contributions: AMOC gTÐshis geostrophic
shear AMOC transport due to temperature differences at both zonal boundaries;
AMOC gSÐshis geostrophic shear AMOC transport due to salinity differences at
both zonal boundaries

AMOC gWÐsh1 AMOC gEÐsh Eq. (24) Decomposition into western and eastern boundary contributions (only meaningful in
anomaly with respect to a mean state): AMOCgWÐshis geostrophic shear AMOC
transport due to density anomalies at the western boundary; AMOC gEÐshis
geostrophic shear AMOC transport due to density anomalies at the eastern boundary

TW( z)
TWT(z) 1 TWS(z) Eq. (22) Decomposition into thermal and haline contributions: TW T(z) is thermal wind

transport due to temperature differences between both zonal boundaries; TWS(z) is
thermal wind transport due to salinity differences between both zonal boundaries

TWW(z) 1 TWE(z) Eq. (24) Decomposition into western and eastern boundary contributions (only meaningful in
anomaly with respect to a mean state): TWW(z) is thermal wind transport due to
density anomalies at the western boundary; TWE(z) is thermal wind transport due
to density anomalies at the eastern boundary

FEBRUARY 2021 W A L D M A N E T A L . 345

�8�Q�D�X�W�K�H�Q�W�L�F�D�W�H�G���_���'�R�Z�Q�O�R�D�G�H�G���������������������������������3�0���8�7�&



with Dx 5 xE 2 xW and Dr 5 r (xE) 2 r (xW) being the basin
zonal width and integrated density gradient and the over-
bar denoting a zonal average over the basin width. AMOCE

is the zonally integrated Ekman transport, AMOC BTg is
the barotropic upper-limb transport due to bottom geo-
strophic velocities, and AMOC BCg is the baroclinic geo-
strophic transport due to the basin-integrated zonal density
gradient.

b. Baroclinic transport as a simple integral of density

Let us simplify the baroclinic geostrophic transport [last
term of Eq. (7)]. So far, it has been expressed as a double
vertical integral over depth (as above), which hides the con-
tribution of density anomalies at individual depths to the
AMOC ( Buckley and Marshall 2016, and references therein).
We now use the double integration rule to write this last term
as a simple vertical integral of densities:

AMOC BCg 5 2
g

r 0 f

ð0

zm

ðz

2 h
Dr (z0) dz0dz

5 2
g

r 0 f

" ðzm

2 h

ð0

zm

Dr (z0) dz dz02
ð0

zm

ð0

z0
Dr (z0) dz dz0

#

5 1
zmg
r 0 f

ðzm

2 h
Dr (z0) dz01

g
r 0f

ð0

zm

z0Dr (z0) dz0.

(8)

We have reversed the order of integration in order to in-
tegrate vertically Dr (z0), which depends on the variable of
vertical integration of density z0 but not on that of vertical
integration of velocities z. The Þrst term of Eq. (8) repre-
sents baroclinic geostrophic transports due to density
anomalies below the depth zm, which by construction of
the baroclinic component affect velocities throughout the
upper-limb thickness 2 zm. The second term relates to
density anomalies above the depthzm, which by construc-
tion only affect velocities above the depth z0, that is over a
fraction of the upper limb.

c. Barotropic transport from mass conservation

Let us now determine the barotropic geostrophic transport
[second term of Eq. (7)], which depends on the zonal proÞle of
bottom geostrophic velocities. So far it has been considered
separately from the baroclinic contribution (e.g., Hirschi and
Marotzke 2007), although both can be combined by mass
continuity. Indeed, over scales longer than a few days, the
water volume north of any zonal section is reasonably well
conserved (Bryden et al. 2009), so that the net northward ßow

must vanish. We neglect the net transport arising from the
small imbalance between Bering Straits transport and the
surface water budget north of the latitude considered,
which is typically oneÐtwo orders of magnitude weaker
than the AMOC magnitude ( Bryden and Imawaki 2001).
This means that

C(2 h) 5
ð0

2 h

ðxE

xW

(yE 1 yg) dx dz ’ 0. (9)

Resolving this equation yields a formulation for the zonally
averaged bottom geostrophic velocities, as follows:

C(2 h) 5 AMOC E 1
ð0

2 h

ðxE

xW

�
yg(2 h) 2

g
r 0 f

ðz

2 h

›r
› x

dz0

�
dx dz

5 AMOC E 1 hDxyg(2 h) 1
g

r 0 f

ð0

2 h
z0Dr (z0) dz0.

(10)

As in Eq. (8), we have used the double integration rule to
simplify the last term. In the case of constant bathymetry,
this last term times the Coriolis parameter is the baro-
clinic potential energy difference already used to diagnose
Southern Ocean transports (Hughes and Killworth 1995;
Borowski et al. 2002; Olbers et al. 2004; Saenko et al. 2005;
Böning et al. 2008). It corresponds to the baroclinic geo-
strophic transport integrated throughout the water column.
Hence, we have

C(2 h) 5 05 yg(2 h) 5 2
1

hDx

�
AMOC E 1

g
r 0 f

ð0

2 h
z0Dr (z0) dz0

�
.

(11)

The Þrst term on the right-hand side of Eq. (11) is the geo-
strophic compensation for the net meridional Ekman trans-
port, which applies to the whole ocean depth because it is
barotropic. The second term is the barotropic geostrophic
compensation for the baroclinic geostrophic transport, whose
net transport does not necessarily cancel out. It does not
modify the vertical geostrophic velocity proÞle, but it ensures
that its vertical integration is null. In other words, it ensures
that what ßows north abovezm depth is exactly equal to what
ßows south below that depth.

d. AMOC as a simple integral of density

We can Þnally write the AMOC transport [Eq. (7)] as a
simple integral function of density, plus a function of zonal
wind stress (Table 1):

AMOC 5 AMOC E 1
zm

h

�
AMOC E 1

g
r 0 f

ð0

2 h
z0Dr (z0) dz0

�
1

zmg
r 0 f

ðzm

2 h
Dr (z0) dz01

g
r 0 f

ð0

zm

z0Dr (z0) dz0

5 2
�

11
zm

h

� Dx
r 0 f

t x 1
g

r 0 f

" ðzm

2 h
zm

�
11

z0

h

�
Dr (z0) dz01

ð0

zm

z0
�

11
zm

h

�
Dr (z0) dz0

#

5 AMOC E2 sh 1 AMOC g2 sh, (12)

with
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AMOC E2 sh 5 2
�

11
zm

h

� Dx
r 0 f

t x 5
�

11
zm

h

�
AMOC E and

(13)

AMOC g2 sh 5
g

r 0 f

" ðzm

2 h
zm

�
11

z0

h

�
Dr (z0) dz0

1
ð0

zm

z0
�

11
zm

h

�
Dr (z0) dz0

#

. (14)

AMOC EÐshis the sheared (i.e., vertically compensated) Ekman
transport. AMOC gÐshis the so-called geostrophic shear trans-
port, which is the baroclinic geostrophic AMOC compensated
to ensure the no-net-ßow condition (Hirschi and Marotzke
2007). Hence, the barotropic geostrophic velocity reduces the
contributions of both the Ekman and baroclinic geostrophic
velocities to the AMOC. Indeed, to ensure mass conservation,
AMOC BTg will oppose any AMOC E or AMOC BCg anomaly,
of either sign, so that the depth-integrated transport cancels
out. Note that both AMOC EÐsh and AMOC gÐsh include a
fraction of the barotropic geostrophic transport, so that they
cannot be considered as purely forced by the wind stress and
zonal density anomalies, respectively. However, this decom-
position has the convenience of separating the AMOC as a
function of zonal wind stress plus a function of the basin-
integrated density gradient proÞle.

To clarify the interpretation, let us consider typical values of
h 5 4000 m andzm 5 2 1000 m. In this case,

d AMOC BTg opposes by a factor of1/4 the Ekman transport:
indeed, the vertically integrated barotropic adjustment must be
exactly opposed to AMOCE. The upper limb of AMOC
represents only1/4 of the total depth, so this barotropic adjust-
ment only opposes by1/4 Ekman transports abovezm [the factor
zm/h of Eq. (13)], with the remaining 3/4 occurring below zm.

d Similarly, any baroclinic geostrophic transport induced by
density anomalies abovezm is reduced by a factor of 1/4 by
the barotropic contribution [the factor 1 1 (zm/h) within the
second integral of Eq. (14)].

d Baroclinic geostrophic transports induced by density anom-
alies belowzm are reduced by a factor of1/4Ð1 depending on
the depth of such density anomalies [the factor 11 (z0/h)
within the Þrst integral of Eq. (14)]. The deeper the density
anomaly is, the larger is the barotropic correction because of
an ever-larger vertically integrated baroclinic transport. In
the extreme case of a density anomaly at the bottom depth,
the baroclinic velocity anomaly is constant with depth, so
that the barotropic adjustment exactly cancels it.

e. Thermal wind transport as a function of depth

The geostrophic shear AMOC transport [AMOC gÐsh; Eq. (14)]
can be written as the vertical integral of a zonally integrated
transport as follows (Table 1):

AMOC g2 sh 5
ð0

2 h
TW( z) dz, (15)

with TW( z) standing for the depth-dependent thermal wind
transport (Sv m2 1) deÞned from Eq. (14) as

TW( z) 5

8
>>>><

>>>>:

z
�

11
zm

h

� gDr (z)
r 0 f

if z $ zm

zm

�
11

z
h

� gDr (z)
r 0 f

if z , zm

. (16)

TW(z) is the zonally integrated geostrophic AMOC transport (i.e.,
the transport above the depth zm) induced by boundary density
anomalies Dr at a particular depth z (see Fig. 1 for its vertical
proÞle). Note that TW( z) is not the zonally integrated geostrophic
transport at a particular depth (although they both have the same
units of Sverdrups per meter): it quantiÞes at all depths a contri-
bution to the upper-limb AMOC transport. It is explicit only in the
single-integral AMOC formulation derived above. It directly re-
lates boundary density anomalies at any depth to the AMOC.

We illustrate in Fig. 1 the depth dependency of the thermal
wind transport considering a constant density anomaly. For a
given density anomaly Dr , the thermal wind transport in-
creases linearly from zero at the surface and bottom to a
maximum transport of

TW( zm) 5 zm

�
11

zm

h

� gDr
r 0 f

(17)

at the depth zm. For a typical upper-limb depth zm 5 2 1000 m
and bathymetry h 5 4000 m, the thermal wind transport reaches

FIG . 1. Depth dependency of the thermal wind transport TW(z)
(Sv m2 1) for a constant density anomaly Dr , 0. Thermal wind
transports are positive (Northern Hemisphere) and increase line-
arly, from both surface (red) and bottom (blue), to reach a maxi-
mum value at the depth zm of separation between the upper and
lower AMOC limbs.
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over two-thirds of its maximum value in the depth range
(2 h/2 5 2 2000 m;2/3zm ’ 2 670 m). Therefore, density anom-
alies located around the depth of maximum overturning, that is,
at the separation between the upper and lower limbs of the
AMOC cell, induce most vertically compensated thermal wind
transport. In our example and in the observed AMOC at 26.58N,
this depth is closer to the surface than to the bottomÑhence, the
asymmetry in the vertical dependency of TW(z).

The thermal wind transport and the resulting geostrophic
shear AMOC transport also crucially depend on the vertical
proÞle of density anomalies, as discussed and illustrated in
section SI3 of the online supplemental material. In addition, the
depth zm largely determines the vertical proÞle of the thermal
wind transport TW( z), as illustrated in Fig. 1. In section SI3, we
formulate the dependency of AMOC gÐshto the reference depth
zm to show again the key role of the density anomaly proÞle that
determines this depth in the Þrst place.

f. Effect of variable topography

The new AMOC decomposition [Eq. (12)] is exact only in
the case of a rectangular zonal basin section. However, the
Atlantic Ocean generally has a sloping bathymetry with to-
pographic obstacles such as midoceanic ridges and islands. In
section SI4 of the online supplemental material, we formulate
an AMOC decomposition that includes the effect of variable
topography. The AMOC formulation in the Ekman plus geo-
strophic approximations is modiÞed in two ways.

In the Þrst modiÞcation, the so-called external mode arises
from the net contribution of a zonally variable barotropic ve-
locity over variable bathymetry ( Hirschi and Marotzke 2007).
Indeed, as developed in supplemental section SI4, if a zonal
covariance exists between bottom geostrophic velocities and
either bathymetry or the upper-limb depth, the following ex-
ternal mode must be added to the AMOCBTg:

AMOC g2 EM 5 1D x(0)
�

zm

h
h0yg(2 h)01 min(h,2 zm)0yg(2 h)0

�
,

(18)

where Dx(0) 5 xE(0) 2 xW(0) is the section width at the
surface; overbars and primes denote zonal means and

anomalies, respectively;h is the zonal average bathymetry;
zm 5 2 min(h, 2 zm) is the zonal average upper-limb depth;
h0yg(2 h)0 is the zonal covariance between bathymetry and bot-
tom geostrophic velocities; andmin(h,2 zm)0yg(2 h)0 is the zonal
covariance between upper-limb depth and bottom geostrophic
velocities. As developed in section SI5 of the online supplemental
material, AMOC gÐEM is identical to the overturning transport
due to bottom velocities of Baehr et al. (2004) and to the
external-mode AMOC transport due to barotropic velocities of
Hirschi and Marotzke (2007). As a consequence, it can be in-
terpreted as a projection of the barotropic circulation onto the
AMOC. Indeed, if yg(2 h) is larger over shallow than deep ba-
thymetry, the resulting AMOC gÐEM is positive because a larger
fraction of the barotropic geostrophic transport occurs near sur-
face, in the upper AMOC limb. It results from the full zonal
section of dynamic sea level and density gradients, which limits the
interpretation of the AMOC in terms of the zonally integrated
thermal wind. The external mode plays an important role for the
full AMOC reconstruction ( Baehr et al. 2004) but has a minor
contribution to the AMOC low- frequency variability ( Hirschi and
Marotzke 2007), as will be shown in section 3.

With regard to the second modiÞcation, in the presence of to-
pographic obstacles, the thermal wind integration must be per-
formed separately for each subbasin bounded by those obstacles
so that both ßanks of the obstacles constitute new boundaries.
Neglecting them is equivalent to assuming a strictly monotonic
topography, and therefore a single zonal boundary, on both sides
of the deepest bathymetryhb. In online supplemental section SI4,
we derive both the general AMOC gÐshexpression with multiple
zonal boundaries and its simpliÞed formulation assuming a single
western and eastern boundary. In supplemental section SI6, we
show with a numerical simulation that results are insensitive to
this simpliÞcation, so that henceforth we analyze the single
boundary AMOC gÐshformulation. North of 60 8N, the presence of
Greenland breaks this hypothesis so that we only analyze the
decomposition south of this latitude.

As a consequence, and as developed in supplemental
section SI4, the AMOC decomposition under variable but
monotonic topography on both sides of the deepest bathyme-
try hb is (Table 1)

AMOC 5 2
�

11
zm

h

�
Dx(0)
r 0 f

t x 1
g

r 0 f

" ðzm

2 hb

�
zm 1

zm

h
z
�

Dr (z) dz 1
ð0

zm

z
�

11
zm

h

�
Dr (z) dz

#

1 D x(0)
�

zm

h
h0yg(2 h)01 min(h, 2 zm)0yg(2 h)0

�

5 AMOC E2 sh 1 AMOC g2 sh 1 AMOC g2 EM , (19)

with Dr (z) 5 r [xE(z), z] 2 r [xW(z), z]. The only differences
with the rectangular basin case are as follows:
1) The factor zm/h is replaced by its zonal averagezm/h,

which still represents the fraction of the depth-integrated
barotropic transport that is located in the upper AMOC
limb.

2) Both zonal boundaries vary with depth so that density
anomalies must be evaluated at depth-varying boundary

locations down to the maximum bathymetry 2 hb (see
section SI6 of the online supplemental material for a dis-
cussion on the boundary deÞnition).

3) An extra term, the external mode, arises as a result of the
covariance of bottom geostrophic velocities with either
bathymetry or the upper-limb depth (see section SI5 of
the online supplemental material for its alternative for-
mulations and supplemental section SI6 for a discussion on
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the inclusion of the external mode). Henceforth, we assume
bottom velocities to be geostrophic.

Although we focus here on the AMOC deÞned as the depth
maximum of the meridional overturning streamfunction, the
above developments are generic to the meridional transport

above any depth below the Ekman layer. Therefore, the full
overturning streamfunction can be reconstructed from the
new AMOC decomposition. Replacing zm by any depth z in
Eq. (19), we obtain a general formulation for the meridional
overturning streamfunction:

C(z) 5 2
�

11
z

h

�
Dx(0)
r 0 f

t x 1
g

r 0 f

" ðz

2 hb

�
z 1

z

h
z0

�
Dr (z0) dz01

ð0

z
z0

�
11

z

h

�
Dr (z0) dz0

#

1 D x(0)
�
z

h
h0yg(2 h)01 min(h,2 z)0yg(2 h)0

�

5 C E2 sh(z) 1 C g2 sh(z) 1 C g2 EM (z), (20)

with again the notation z 5 2 min(h, 2 z) for the zonal average
depth of the section above z, and the variable of vertical in-
tegration denoted asz0.

g. Contribution of heat, salt, and both boundaries to
the geostrophic shear transport

We can separate the geostrophic shear transport into a
thermal and haline contribution by decomposing zonal density
gradients as follows:

Dr (z) 5 r 0[2 aDQ(z) 1 bDSA (z)] (21)

where a and b are the nonlinear thermal expansion and haline
contraction coefÞcients, respectively;Q is the Conservative
Temperature, and SA is the Absolute Salinity of seawater. By
replacing in Eqs. (14) and (16), we obtain a decomposition of
TW( z) and AMOC gÐsh(Table 1):

TW( z) 5 TWT (z) 1 TWS(z) and

AMOC g2 sh 5 AMOC gT2 sh 1 AMOC gS2 sh, (22)

with the subscriptsT and Sstanding for the thermal and haline
contributions.

A similar decomposition can be performed between the
western and eastern boundary contributions to the geostrophic
shear transport. We simply separate zonally integrated density
anomalies into the western and eastern contribution (Table 1):

Dr (z) 5 2 r (xW, z) 1 r (xE, z). (23)

We obtain

TW( z) 5 TWW(z) 1 TWE(z) and

AMOC g2 sh 5 AMOC gW2 sh 1 AMOC gE2 sh, (24)

which is only meaningful as an anomaly with respect to a mean
state. The subscriptsW andE stand for the western and eastern
boundary contributions.

3. Dynamical drivers of the centennial AMOC variability
in the CNRM-CM6 climate model

a. CNRM-CM6 preindustrial control simulation

The aim of this section is to use a climate model partici-
pating in the sixth Climate Model Intercomparison Programme

(CMIP6; Eyring et al. 2016) to validate the dynamical AMOC
reconstruction that was proposed insection 2and to interpret its
simulated low-frequency AMOC variability. We analyze 1000
years of a preindustrial control simulation of the CNRM-CM6
climate model. This model was recently described and evaluated
by Voldoire et al. (2019). It includes the atmospheric model
ARPEGE-Climat ( Voldoire et al. 2013) coupled via the OASIS
coupler (Craig et al. 2017) to the SURFEX land surface model
(Decharme et al. 2019), the NEMO, version 3.6, ocean model
(Madec and NEMO Team 2016), and the imbedded GELATO
sea ice model (Chevallier et al. 2013). Horizontal resolutions are
1.48over the spectral atmospheric and land surface grid and the
nominal 18resolution over the ocean and sea ice tripolar curvi-
linear ORCA grid. The atmospheric component has 91 vertical
levels, and the ocean component has 75 levels (resolution from
1 m at surface to 200 m at deepest levels). The main ocean physical
parameterizations are the turbulent kinetic energy prognostic
scheme for vertical turbulence (Blanke and Delecluse 1993), the
enhanced vertical diffusion scheme for convection (Madec and
NEMO Team 2016), the mesoscale and submesoscale isoneutral
mixing (Redi 1982) and eddy-induced velocities (Gent and
McWilliams 1990; Fox-Kemper et al. 2008) for tracers, and the
tidal mixing parameterization of de Lavergne et al. (2019). In
this preindustrial simulation, external forcings (solar, greenhouse
gases, and aerosols) are kept constant to their estimated value of
year 1850. An 800-yr spinup has been performed prior to the
analyzed period and ensures an equilibration of net airÐsea heat
ßuxes at 0.15 W m2 2, equivalent to a surface drift of 0.02 K per
century. Unless stated otherwise, all model outputs are extracted
at the yearly frequency. In what follows, we analyze yearly time
series of Atlantic meridional overturning computed ofßine from
the model yearly mean meridional velocities, and its decomposi-
tion into an Ekman and geostrophic component deduced from the
yearly mean zonal wind stress, Conservative Temperature, and
Absolute Salinity at zonal boundaries, and bottom velocities
[Eq. (19)].

b. Modeled AMOC and its centennial variability

The modelÕs Atlantic meridional overturning stream-
function C (Fig. 2a) displays an intense clockwise overturning
cell down to 3000-m depth, and a weak counterclockwise cell
below. The former is the AMOC cell and will be the focus of
this work, whereas the latter is associated with the transport
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and transformation of Antarctic Bottom Water. The AMOC
cell reaches a maximum at the model levelzm 5 2 997 m on
average in the 308SÐ608N latitude range, being relatively
constant south of 458N and then weakening toward high
latitudes. zm has a temporal standard deviation of 22 m,
that is, 2% of its long-term average, so that assuming it to
be constant is a reasonable approximation. The associated
mean meridional currents of its upper limb (above zm;
Fig. 2b) are western intensiÞed at all latitudes except in
the subpolar North Atlantic where they are also intense in
the interior and eastern boundary. The northward trans-
port occurs predominantly at the western boundary from

158S to 408N and in the interior oc ean outside those lati-
tudes. Bottom velocities are also intensiÞed along western
boundaries and in most of the subpolar North Atlantic
(Fig. 2c), illustrating the external-mode contribution to
the mean AMOC transport.

The yearly AMOC time series at 308N (Fig. 3a) reveals an
intense low-frequency variability of centennial time scale and
of typical peak to peak magnitude 6 25% of its long-term av-
erage. This centennial cycle is the dominant feature of the 25-yr
running average AMOC at all latitudes between 308S and
608N. It is very well reproduced by the Þrst principal compo-
nent of the 25-yr average overturning streamfunction (Fig. 3a),

FIG . 2. (a) Mean Atlantic meridional overturning streamfunction C (color shading) and its regression onto the
leading multidecadal principal component (contours) in CNRM-CM6. The leading principal component is computed
from the 25-yr running average streamfunction and explains 91% of its variance. The horizontal dashed black line
shows the depth of maximum overturning. Average currents (vectors) and meridional velocities (shades) over (b) the
upper AMOC limb (top 997 m) and (c) at the bottom level in CNRM-CM6. Isobaths are displayed as contours.
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whose main empirical orthogonal function (EOF) has an in-
terhemispheric structure that resembles the average stream-
function and explains 91% of its variance (Fig. 2a). The scale-
adjusted wavelet power spectrum (Fig. 3b; Torrence and

Compo 1998; Liu et al. 2007) conÞrms this signiÞcant centen-
nial variability throughout the analysis period, with an energy
peak centered at 150 years. Some signiÞcant subdecadal vari-
ability is also evident, although weaker and more intermittent.

FIG . 3. (a) AMOC time series at 308N (thin black), its 25-yr running average (thick black)
and its regression onto the Þrst principal component of the overturning streamfunction (red)
in CNRM-CM6. (b) AMOC at 30 8N scale-adjusted wavelet power spectrum (left panel) and
its time average (right panel) (Torrence and Compo 1998; Liu et al. 2007). The p value p 5
0.05 of an AR1 process is shown by white contour and dashed black line. (c) Lagged re-
gression of the 25-yr average AMOC onto the AMOC at 308N ( p value . 0.05 in white;
Thomson and Emery 2014).
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Henceforth, it is removed by only analyzing the 25-yr running
average AMOC time series. In what follows, all 25-yr running
averages are referred to as multidecadal values.

The regression of the multidecadal AMOC at all latitudes
onto its value at 308N reveals a signiÞcant southward propa-
gation of AMOC anomalies from subpolar latitudes (between
458and 608N, Fig. 3c). This is consistent with the interhemi-
spheric structure and the large variance explained by the
leading EOF of the multidecadal AMOC ( Fig. 2a). The max-
imum lagged regression is reached at 11 years of lag at 308S,
which corresponds to a propagation velocity of 1.9 cm s2 1,
consistent with wave propagation (Johnson and Marshall 2002;
Nieves and Spall 2018). We conclude that the AMOC low-
frequency variability in CNRM-CM6 is mostly centennial and
driven by northern subpolar latitudes. In what follows we will
use the decomposition proposed in the previous section to
determine how density variations at zonal boundaries drive
this cycle.

c. AMOC reconstruction

Following Eq. (19), we reconstruct the sheared Ekman
(AMOC EÐsh), geostrophic shear (AMOCgÐsh), and external-mode
(AMOC gÐEM) contributions to the AMOC transport from 30 8S to
608N, the sum of which make up the AMOC reconstruction
(AMOC E 1 AMOC g). Figure 4shows the Hovmöller diagram of
the multidecadal AMOC time anomaly, the total reconstruction
AMOC E 1 AMOC g [Eq. (19)], and its geostrophic shear com-
ponent AMOC gÐsh [Eq. (14)]. Note that, as mentioned in the
previous section, the deep tropics (within 28of the equator) are
excluded from the analysis because the dynamics cannot be as-
sumed to be quasigeostrophic there. The meridionally coherent
centennial AMOC anomalies are the dominant feature. They are
reasonably well reproduced by the total AMOC reconstruction,
both in terms of timing and magnitude. The magnitude of vari-
ability is locally overestimated in the Tropical and Subtropical
North Atlantic. This feature w as also evident in previous AMOC
reconstructions (e.g.,Hirschi and Marotzke 2007). In the 108Ð
208N latitude band, errors are related to AMOC gÐsh (Fig. 4c).
They are mostly due to the neglect of topographic obstacles such
as the Antilles archipelago, as shown in the sensitivity study on the
boundary deÞnition (section SI6 of the online supplemental ma-
terial). In the 208Ð308N latitude band, errors are dominated by
AMOC gÐEM (not shown). They are likely related to the assump-
tion of geostrophic bottom velocities and to approximations re-
lated to the modelÕs Arakawa C grid. Most signiÞcantly, the
geostrophic shear component alone is able to reproduce most of
this centennial AMOC variability. This indicates that the low-
frequency AMOC variability of CNRM-CM6 can largely be ex-
plained by the zonally integrated thermal wind balance, itself by
deÞnition solely determined by density anomalies at the zonal
boundaries of the Atlantic Ocean. Results are mostly unchanged
when using an AMOCgÐsh formulation with multiple zonal
boundaries (see supplemental section SI6), which conÞrms the
dominant role of westernmost and easternmost densities in driv-
ing the AMOC variability in CNRM-CM6.

For a more quantitative assessment of the AMOC recon-
struction, we turn to the Taylor diagram of all terms of the
reconstruction as a function of the total multidecadal AMOC

(Fig. 5a; Taylor 2001). It displays in a single diagram the tem-
poral correlation r, the normalized standard deviation s n, and
the normalized root mean square errors (RMSEn) of every
component with respect to the total AMOC averaged over
latitude bands (colored symbols) and its full meridional aver-
age over the 308SÐ608N latitude band excluding the deep
tropics (black symbols). The s n and RMSEn are deÞned at a
given latitude band as

s n 5 s /s tot and (25)

RMSEn 5 RMSE/s tot , (26)

with s tot being the temporal standard deviation of the total
AMOC and s and RMSE being the temporal standard devi-
ation and root-mean-square error, respectively, of each term of
the AMOC decomposition with respect to the total AMOC.
The sheared Ekman component AMOCEÐsh has almost no
low-frequency variability, with s n , 0.1 at all latitudes,
meaning that its variability is over one order of magnitude
lower than the total AMOC. In addition, it has weak to nega-
tive correlations to the AMOC, with r , 0.3 at all latitude
ranges. Therefore, it does not contribute to the AMOC low-
frequency variability. By contrast, the geostrophic shear
transport AMOC gÐshlargely dominates the total AMOC var-
iability. Indeed, its temporal correlation is r . 0.9 at all lati-
tudes, meaning that it explains over 80% of the total AMOC
variance. Its variability compares well to that of the total
AMOC, with s n falling within 30% of unity. As a consequence,
its RMSE is below half the multidecadal AMOC standard
deviation (RMSE n , 0.5). The external-mode transport
AMOC gÐEM generally correlates positively with the total
AMOC, with 2 0.2 , r , 0.8, but its normalized standard de-
viation is s n , 0.2 at all latitudes. This means that its contri-
bution to the AMOC low-frequency variability of CNRM-
CM6 is minor. The total AMOC reconstruction AMOC E 1
AMOC g largely resembles the geostrophic shear component,
with some marginal improvement related to the inclusion of
the external mode. It also explains over 80% of the AMOC
variance at all latitudes and its RMSEn is reduced on average.
The meridional mean AMOC reconstruction summarizes well
the main results, with even better scores than individual lat-
itudinal bands: the reconstruction proposed in Eq. (19) is ex-
cellent at reproducing the low-frequency AMOC variability of
CNRM-CM6, which is overwhelmingly driven by the geo-
strophic shear component.

d. Drivers of the thermal wind AMOC variability

We have previously diagnosed that most of the multidecadal
AMOC variability is driven in CNRM-CM6 by its geostrophic
shear component, itself entirely determined by densities at
both zonal boundaries. Figure 6 displays the hydrographic
signature at superÞcial (0Ð500 m) and intermediate (500Ð
1500 m) depths of this variability as the hydrographic re-
gression onto the multidecadal geostrophic shear transport
AMOC gÐsh(results are almost identical when regressed onto
the total AMOC). At each location, the layer-averaged hy-
drography is regressed onto the multidecadal geostrophic
shear AMOC gÐshtransport time series at the same latitude, in
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agreement with the diagnostic nature of the thermal wind re-
lation. We Þrst analyze the density anomaly associated with the
AMOC gÐsh variability ( Figs. 6a,b). Potential density at the
reference pressure 1000 dbar (s 1) is displayed because it gives
very similar results to in situ density and allows us to com-
pare the average densities at different depths (contours in
Figs. 6a,b). At superÞcial depths, the AMOC gÐshvariability is
associated with a dense anomaly along the western boundary

of the North Atlantic and the eastern boundary of the South
Atlantic. At the opposite boundary, the density anomaly is
generally weaker, with the exception of the 158SÐ58N latitude
range where anomalies are zonally coherent. This is consistent
with a northward geostrophic AMOC transport associated
with a westward density gradient in the North Atlantic and an
eastward density gradient in the South Atlantic, in agreement
with the changing sign of the Coriolis parameter across the

FIG . 4. (a) Hovmöller diagrams of the 25-yr running average (a) AMOC time anomaly,
(b) total Ekman plus geostrophic AMOC reconstruction (AMOC E 1 AMOC g), and (c) its
geostrophic shear component (AMOCgÐsh) as a function of latitude in CNRM-CM6.
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