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Objectives & methodology
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Verdier et al. 2016

Safran Silvercrest

The objective is to provide accurate and reliable predictions
of combustion in real conditions



Objectives & methodology
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Darabiha et al. JEM 2015

J-F. Bourgouin et al., C&F (2013)
M. Philip et al., PCI (2014)

Verdier et al. 2016

Quartz tubes!

Plenum!

Swirl injector!

Plenum supply  
channel!

L = 400 mm!

H = 200 mm!

l = 300 mm!

6.5!

10!
C3H8/Air!

From simple laminar flames to complex geometries



Involved physics

Complex chemical 
processes

Multiple
Timescales

Flame and
Pollutant chemistry

From Gas Turbine Emissions, 2013

Spray physics

Two-phase
flow

Multiple 
combustion 

regimes

Turbulence and 
turbulent flame

structure

Complex burner 
geometries
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Esclapez et al., 2017

Spray flame



Turbulent combustion modeling
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Flame front scales

+ wrinkling

+ / - stretching

- quenching

Turbulence scales

• Integral scales : L , u’
• Komogorov scales : h, u’h

• Thickness d
• Laminar speed SL

1

Da =1

Recrit

Laminar

Distributed
(local quenching)

Wrinkled, thin flames

Corrugated, thick flames

Ka =1
Klimov-Williams criterion

Well stirred
reactor Da < 1

Ka < 1

Combustion regime diagram

Flame-turbulence interaction



Turbulent combustion modeling

6

Turbulence scales

Wave 
number k

Energy
E(k)

Production DissipationInertial range

Taylor microscale lIntegral scale L 

Re3/4

LES resolved

Cutting scale kc

Subgrid model

The LES approach



Turbulent combustion modeling
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Turbulence scales

Wave 
number k

Energy
E(k)

Production DissipationInertial range

Taylor microscale lIntegral scale L 

Re3/4

LES resolved

Cutting scale kc

Subgrid model

The LES approach

Flame scale d



Turbulent combustion modeling
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Flame front scales The Thickened Flame
approach

Premixed flame

• Thickness

• Speed

• Both equations propagate flames at the same speed sL

• But the flame thickness is increased by a factor F in the second 
case ==> the flame front can be resolved on any mesh

! = #/%

&' = #%

# −→ #*

% −→ %/*

!∗ = * #/% = *!

&'∗ = #% = &'



Turbulent combustion modeling
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Flame front scales The Thickened Flame
approach

Premixed flame

• Thickness

• Speed

• Both equations propagate flames at the same speed sL

• But the flame thickness is increased by a factor F in the second 
case ==> the flame front can be resolved on any mesh

! = #/%

&' = #%

# −→ #*

% −→ %/*

!∗ = * #/% = *!

&'∗ = #% = &'Allows to resolve the flame front, even if d < kc
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The Thickened Flame approach

Thickened and non-
thickened laminar flames

• CH4- air 
• simple chemistry
• F=20

Temperature

Heat release



Turbulent combustion modeling
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Flame front scales Turbulence scales

Thickened Flame

Flame-turbulence interaction

F = 1 F = 5

LES



Turbulent combustion modeling
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Thickened Flame

Flame-turbulence interaction

LESThe efficiency function E1-3

Local turbulent velocity Local integral scale

Laminar flame speed Laminar flame thickness

1 Colin et al, Phys. Fluids 2000 3 Schmitt et al., Flow. Turb. Comb. 2014
2 Charlette et al, C&F 2002



Turbulent combustion modeling
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Thickened Flame

Flame-turbulence interaction

LESThe efficiency function E

! −→ !$%
& −→ &$/%

( −→ (∗ = %(
+, −→ +,∗ = $+, ≈ +.



Turbulent combustion modeling
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Thickened Flame

Flame-turbulence interaction

LES

• Thicken only where reaction takes place:

d
dt
(ρYk ) =
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outside reaction zones :

The Dynamic Thickened Flame model (DTF):
A sensor (S) is introduced to identify burning vs mixing regions

F =1+ (Fmax −1)S



Turbulent combustion modeling : validation
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PIV
window

Acoustic
Probe

Raman
Probes

Exhaust
Leakage

Window
Leakage

Panel
Leakage

Transverse
wall

Siemens SGT-1001-3

1 Stopper et al C&F 2013
2 Bulat et al C&F 2014

3Jaravel et al. PCI 2017)



Turbulent combustion modeling : validation
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Challenges of chemistry in combustion LES
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Large size, non-linear, stiff system Coupling with the flow

• Heat losses
• Dilution
• Spray flames

Lu&Law, PECS, 2009



Challenges of chemistry in combustion LES
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Large size, non-linear, stiff system Coupling with the flow

• Heat losses
• Dilution
• Spray flames

Lu&Law, PECS, 2009

Thickened Flame model



Challenges of chemistry in combustion LES
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Large size, non-linear, stiff system Coupling with the flow

• Heat losses
• Dilution
• Spray flames

Thickened Flame modelAnalytically reduced
chemistry (ARC) 



Analytically Reduced Chemistry

Detailed
mechanism

Skeletal
mechanism

Many reactions
Many species

~300 reactions
~75 species

ARC

~20-30 species

1. Skeletal reduction = Elimination of 
unimportant species and reactions 
• DRGEP [Pepiot, C&F, 2008]

1 2

2. Analytical reduction = Quasi Steady State 
(QSS) assumption à elimination of species
• Level Of Importance [Lovas, PCI, 2000)

20

Reduce CPU (number of species)

Reduce stiffness

• Derives from a detailed mechanism
• Keeps relevant chemical pathways without constant fitting
• Reduction in two steps:



OUTPUT

ARC can be derived automatically

ARCANE1

Detailed
Mechanism

Target canonical cases

Te
m

pe
ra

tu
re

Target quantities
• SL
• T° profile
• Species profiles
• etc.

CANTERA

INPUT

Apply reduction
techniques

Computes
test cases

• List of ARC schemes : CHEMKIN/CANTERA format 
+ .f90 routine for source terms

• Ordered list of QSS species
• Errors on the targeted quantities

Minimum number of 
species to retain to 
satisfy the error 
tolerances

211 In collab. with Cornell Univ. (P. Pepiot)



Example of ARC derivation for methane-air flames

Detailed Chemistry
GRI-2.11

ARCANE

ARC_22_GRI211
(22 transported species)

• Target problem

� Premixed flame: ϕ=0.6 → 1.4

� Target conditions: 1 bar, 300K

• Target quantities :

� Global quantities: flame speed

� Local quantities: Heat release, 

CO and NO concentrations

Objective: build a scheme for methane-air able to accurately reproduce NO 
and CO formation

22



Example of ARC derivation for methane-air flames

300 K, 1 bar (Scheme derivation conditions)

O ARC_22_GRI211
— GRI2.11

23



Example of ARC derivation for methane-air flames

300 K, 1 bar (Scheme derivation conditions)

O ARC_22_GRI211
— GRI2.11

680 K, 3-6 bars (Gas turbine conditions)

3 bars

6 bars

3 bars

6 bars

GRI2.11: 3 bars (—) and 6 bars (- - -)
ARC_22_GRI211: 3 bars (O) and 6 bars ( � )

6 bars
3 bars

➡ Accurate description far beyond the range of derivation 24



Example of ARC derivation for methane-air flames

Rich air-fuel mixture
(ϕ=3.2, T=300 K)

Air
(ϕ=0, T=300 K)

— GRI2.11
O ARC_22_GRI211

➡ Accurate response to strain although it is not part of the target canonical case

25



Validation : the turbulent SANDIA-D jet flame1
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• Highly resolved LES
• Direct resolution of the 

chemistry on the grid

• 3 coaxial jets :
• Main: methane-air mixture, 

ϕ=3.2, T=300 K
• Pilot: burnt gases, ϕ=0.77, 

T = 1900 K
• Co-Flow: fresh air , T= 300 K

1Jaravel et al. C.&F. 2018
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Injection

Atomisation
1. Primary atomisation
2. Secondary breakup

Drop/drop & drop/wall 
interactions

Evaporation

Turbulent dispersion

Combustion

Turbulent spray flames
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Injection

Atomisation
1. Primary atomisation
2. Secondary breakup

Drop/drop & drop/wall 
interactions

Evaporation

Turbulent dispersion

Combustion

Turbulent spray flames

Thickened Flame model
+

Lagrangian particle tracking
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Turbulent spray flames

Droplets at moderate Stokes 
number in decaying HIT

Turbulence – spray interaction Spray – flame interaction

Swirled spray flame1

1 Paulhiac PhD, 2016



How to combine droplets with the TFLES model?

1

2

3

4

1 2 3 4
Tgaz

Evaporation

Reaction

YF

Gas pre-heating

Liquid pre-heating

Evaporation/combustion

Gas only

Premixed flame burning a saturated mixture of air, fuel vapor and droplets.

Burnt gas

x0

Flame



How to combine droplets with the TFLES model?

1

2

3

4

1 2 3 4
Tgaz

Evaporation

Reaction

YF

Gas pre-heating

Liquid pre-heating

Evaporation/combustion

Gas only

Burnt gas

x0

Flame

with thickening...

Premixed flame burning a saturated mixture of air, fuel vapor and droplets.



How to combine droplets with the TFLES model?

d = 25 µm

d = 50 µm

Ballal & Lefebvre (1981)

no scaling

Evaporation
F

Evaporation drag
F F

&

Laminar flame speed as a function of the droplet diameter
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Photographie 
Exp.

LES of the unswirled burner of CORIA1,2

1Verdier et al. 2016

Shumkivan 2016

2Shum-Kivan et al., PCI 2017

Turbulent spray flames : validation



Heat release with droplets colored with their size

(A) Fresh air (+ small droplets)
(S)   Flame stabilization

(B2) External reaction zone
(B1) Internal reaction zone (C) Hot gas + fuel vapor

34

LES of the unswirled burner of CORIA1,2

1Verdier et al. 2016 2Shum-Kivan et al., PCI 2017

Turbulent spray flames : validation
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AVBP – An unstructured LES solver

§ External, internal flows
§ Fully compressible turbulent reacting flows (ideal & real gas 

thermo.)
§ DNS / LES approach

§ Unstructured hexaedral, tetraedral, prisms & hybrid meshes
§ Massively parallel, SPMD approach
§ Explicit in time 
§ Centered schemes

Finite Volumes / Finite Elements (2nd/3rd ordera)

§ SGS  models : Smagorinsky(dynamic)/WALEb

§ NSCBCc boundary cond. + wall laws
§ Reducedd or tabulatede chemical kinetics 
§ Thickened flame turb. combustion model (TFLES)f

§ Multi-phase solvers (Lagrangian & Eulerian)

u Gas turbines
u Aeronautical engines
u Piston engines
u Statoreactor
u Rocket engines
u Furnaces
u Heat exchangers

Applications

aColin 2000  bNicoud 1999  cPoinsot 1992
dFranzelli 2010 eFiorina 2010 fColin 2000

Jointly developed by IFPEN and CERFACS
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MPI strong scaling of AVBP for REAL industry type configurations

High Performance Computing (HPC) 



Application to a two-phase kerosene-air burner3
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• 6 blades axial swirler

• Kerosene (Jet-A) combustion

• Pressure-swirl atomizer

• Large quartz optical access

• Ambient conditions, 8.16 g/s air, 

0.415 g/s Jet-A2 -> φ = 0.75

• Experimental data

PIV, PDPA, T, CO, CO2, H2O, NO

1 Cai et al., AIAA, 2005 
2 Iannetti et al., 2008, NASA Report

NASA-LDI configuration1-3

3Felden et al. C. & F. 2018)



Application to a two-phase kerosene-air burner3
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• 6 blades axial swirler

• Kerosene (Jet-A) combustion

• Pressure-swirl atomizer

• Large quartz optical access

• Ambient conditions, 8.16 g/s air, 

0.415 g/s Jet-A2 -> φ = 0.75

• Experimental data

PIV, PDPA, T, CO, CO2, H2O, NO

1 Cai et al., AIAA, 2005 
2 Iannetti et al., 2008, NASA Report

NASA-LDI configuration1-3

3Felden et al. C. & F. 2018)

Thickened Flame model
+

ARC chemistry (29 species)
+

Lagrangian solver



The two-phase flow and flame
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Temperature [K]
300 2100

Heat release rate [W.m-3]
-1e9 2e9



Comparison with experiment
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Temperature and species

YCO[K] YH2O[K]



Analysis of CO formation
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YCO[K]

CO produced in 
the back 
diffusion flame, 
enhanced by 
evaporation

CO consumed
in the lean
premixed flame

CO produced
along the walls



What about NO?

42



• Sooting turbulent swirled
non-premixed C2H4 – Air 
flame

• Three concentric swirled
nozzles providing air and 
fuel

• secondary air injection

Soot modelling applied to a gas turbine combustor2

43

Application to soot production1

1Gallen et al. PCI 2019 2Geigle et al. PCI 2015



• Sooting turbulent swirled
non-premixed C2H4 – Air 
flame

• Three concentric swirled
nozzles providing air and 
fuel

• secondary air injection

Soot modelling applied to a gas turbine combustor2
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Application to soot production1

1Gallen et al. PCI 2019 2Geigle et al. PCI 2015

Thickened Flame model
+

ARC chemistry (18 species)
+

Lagrangian solver for soot



LESEXP.
Mean soot presence

Soot presence superimposed on 
mean tangential velocity

~ 30 Millions of 
numerical particles

45

Application to soot production1

1Gallen et al. PCI 2019



Nuclei (1nm)
C = 0.5≈ 5 nm

≈ 10 nm

≈ 15 nm

Legend
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0.0 0.25
Y O2 Sidejet stream

P3

P2

P1

Application to soot production1

1Gallen et al. PCI 2019

Direct access to soot particle size distribution

P4



Ignition of the MICCA-Spray burner of EM2C1,2
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Philip et al, ASME 2013
Prieur et al, PCI 2017

1Lancien PhD, 2018
2Collin PhD, 2019

• 16 swirled injectors
• n-heptane – air

• 320 Million cells
• 50 Million droplets



Ignition of the MICCA-Spray burner of EM2C1,2
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Philip et al, ASME 2013
Prieur et al, PCI 2017

1Lancien PhD, 2018
2Collin PhD, 2019



Conclusions
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ü LES may be coupled to other physics
(thermal radiation, conduction, etc)

Wall radiative heat flux in an 
industrial combustor

Amaya PhD 2010

ü LES with DTFLES, ARC chemistry and Lagrangian
solver is able to describe turbulent gaseous and 
spray flames, their pollutant emissions, and 
transient behaviors with good accuracy in complex
geometries.

ü Improvements are still necessary:
• Soot chemistry
• Multi-component liquid fuel
• ARC for fuel blends
• Turbulent combustion model
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Training convolutional neural networks to estimate turbulent 
sub-grid scale reaction rates.
Lapeyre et al, C. & F. 2019

Can Machine Learning help?
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