

EUROPEAN CENTRE FOR RESEARCH AND ADVANCED TRAINING IN SCIENTIFIC COMPUTING

Large Eddy Simulation of turbulent reacting flows: methods & applications

B. Cuenot & the CFD team*, Cerfacs

* T. Poinsot, L. Gicquel, O. Vermorel, F. Duchaine, E. Riber, A. Dauptain, G. Staffelbach, J. Dombard, A. Misdariis, C. Lapeyre

www.cerfacs.fr

Objectives & methodology

The objective is to provide accurate and reliable predictions of combustion in real conditions

Turbulent combustion modeling

Flame front scales

- Thickness δ
- Laminar speed S_L

Turbulence scales

- Integral scales : L , u'
- Komogorov scales : η , u'_{η}

5

Flame-turbulence interaction

The Thickened Flame approach

Thickened and nonthickened laminar flames

- CH4- air
- simple chemistry
- F=20

Turbulence scales

LES

Flame-turbulence interaction

Turbulent combustion modeling

Flame-turbulence interaction

The Dynamic Thickened Flame model (DTF):

<u>A sensor</u> (S) is introduced to identify burning vs mixing regions

 $F = 1 + (F_{\text{max}} - 1)S$

• Thicken only where reaction takes place:

$$\frac{d}{dt}(\rho Y_k) = \frac{\partial}{\partial x_i} \left[\rho(EDF + (1 - S)D_t) \frac{\partial Y_k}{\partial x_i} \right] + E \frac{A}{F} \rho Y_1 ... Y_n \exp\left(-\frac{T_a}{T}\right)$$

 Standard LES equation outside reaction zones :

$$\frac{d}{dt}(\rho Y_k) = \frac{\partial}{\partial x_i} \left(\rho (D + D_t) \frac{\partial Y_k}{\partial x_i} \right)$$

Turbulent combustion modeling : validation

Turbulent combustion modeling : validation

Challenges of chemistry in combustion LES

Large size, non-linear, stiff system Lu&Law, PECS, 2009 R = 5KNumber of reactions, R 104 ecanoa LUNU3 iso-octane (LLNL) iso-octane (ENSIC-CNRS) A/A n-heptane (LLNL) CH4 (Kenney 10³ skeletal iso-octane (Lu & Law) eletal n-heptane (Lu & Law) n-butane (LLNL) neo-pentane (LLNL) before 2000 C2H4 (San Diego) CH4 (Leeds) 2000 to 2005 10² after 2005 10² 10^{3} 104 101 Number of species, K Chemical time scales (s) Physical time scales (s) Slow timescales 100 (NO-Formation) 10-2 Timescales of the flow Intermediate (transport, turbulence) 10-4 timescales 10-6 Fast timescales 10-8 (Equilibrium chemistry)

Coupling with the flow

- Heat losses
- Dilution
- Spray flames

Challenges of chemistry in combustion LES

Challenges of chemistry in combustion LES

Coupling with the flow

- Heat losses
- Dilution
- Spray flames

Thickened Flame model

Analytically Reduced Chemistry

- Derives from a detailed mechanism
- Keeps relevant chemical pathways without constant fitting
- Reduction in two steps:

Example of ARC derivation for methane-air flames

Objective: build a scheme for methane-air able to accurately reproduce **NO** and **CO formation**

- Target problem
 - **Premixed flame:** ϕ =0.6 \rightarrow 1.4
 - ➡ Target conditions: 1 bar, 300K
- Target quantities :
 - ➡ Global quantities: flame speed
 - Local quantities: Heat release,
 CO and NO concentrations

Example of ARC derivation for methane-air flames

Example of ARC derivation for methane-air flames

Example of ARC derivation for methane-air flames $\int_{1000}^{2000} \int_{1000}^{2000} T_{max} \\ \int_{1000}^{1000} \int_{1000}^{1000} C_{QQQQ} \\ \int_{1000}^{1000} \int_{1000}^{1000} T_{max} \\ \int_{1000}^{1000} T_$

Accurate response to strain although it is not part of the target canonical case

Validation : the turbulent SANDIA-D jet flame¹

- Highly resolved LES
- Direct resolution of the chemistry on the grid

CO

0.04

0.02

0.000e+00

- 3 coaxial jets :
- Main: methane-air mixture, $\overline{\$} \phi$ =3.2, T=300 K
- Pilot: burnt gases, φ=0.77, T = 1900 K
- Co-Flow: fresh air , T= 300 K

ZCERFACS ¹Jaravel et al. C.&F. 2018

26

Turbulent spray flames

Turbulent spray flames

29

<u>Turbulence – spray interaction</u>

Droplets at moderate Stokes number in decaying HIT

<u>Spray – flame interaction</u>

Swirled spray flame¹

How to combine droplets with the TFLES model?

Premixed flame burning a <u>saturated</u> mixture of air, fuel vapor and droplets.

How to combine droplets with the TFLES model?

Premixed flame burning a <u>saturated</u> mixture of air, fuel vapor and droplets.

Turbulent spray flames : validation

LES of the unswirled burner of CORIA^{1,2}

Photographie Exp.

¹Verdier et al. 2016

²Shum-Kivan et al., PCI 2017

Turbulent spray flames : validation

AVBP – An unstructured LES solver Jointly developed by IFPEN and CERFACS

- External, internal flows
- Fully compressible turbulent reacting flows (ideal & real gas thermo.)
- DNS / LES approach
- Unstructured hexaedral, tetraedral, prisms & hybrid meshes
- Massively parallel, SPMD approach
- Explicit in time
- Centered schemes
 Finite Volumes / Finite Elements (2nd/3rd order^a)
- SGS models : Smagorinsky(dynamic)/WALE^b
- NSCBC^c boundary cond. + wall laws
- Reduced^d or tabulated^e chemical kinetics
- Thickened flame turb. combustion model (TFLES)
- Multi-phase solvers (Lagrangian & Eulerian)

^eColin 2000 ^bNicoud 1999 ^cPoinsot 1992 ^dFranzelli 2010 ^eFiorina 2010 ^fColin 2000

Application to a two-phase kerosene-air burner³

NASA-LDI configuration¹⁻³

- 6 blades axial swirler
- Kerosene (Jet-A) combustion
- Pressure-swirl atomizer
- Large quartz optical access
- Ambient conditions, 8.16 g/s air,
 0.415 g/s Jet-A2 -> φ = 0.75
- Experimental data
 PIV, PDPA, T, CO, CO₂, H₂O, NO

¹ Cai et al., AIAA, 2005 ² Iannetti et al., 2008, NASA Report

³Felden et al. C. & F. 2018)

Application to a two-phase kerosene-air burner³

NASA-LDI configuration¹⁻³

- 6 blades axial swirler
- Kerosene (Jet-A)
 Thickened Flame model
- Pressure-swirl at
- Large quartz opti ARC chemistry (29 species)
- Ambient conditio +
 0.415 g/s Jet-A2
 Lagrangian solver
- Experimental data

PIV, PDPA, T, CO, CO₂, H₂O, NO

¹ Cai et al., AIAA, 2005 ² Iannetti et al., 2008, NASA Report

³Felden et al. C. & F. 2018)

The two-phase flow and flame

Time = 0.332260

Comparison with experiment

- Sooting turbulent swirled non-premixed C₂H₄ – Air flame
- Three concentric swirled nozzles providing air and fuel

Soot modelling applied to a gas turbine combustor²

• secondary air injection

CERFACS

¹Gallen et al. PCI 2019

²Geigle et al. PCI 2015

Ignition of the MICCA-Spray burner of EM2C^{1,2}

Philip et al, ASME 2013 Prieur et al, PCI 2017

- 16 swirled injectors
- n-heptane air
- 320 Million cells
- 50 Million droplets

Ignition of the MICCA-Spray burner of EM2C^{1,2}

Philip et al, ASME 2013 Prieur et al, PCI 2017

Conclusions

 LES with DTFLES, ARC chemistry and Lagrangian solver is able to describe <u>turbulent gaseous and</u> <u>spray flames</u>, their <u>pollutant emissions</u>, and <u>transient behaviors</u> with good accuracy in complex geometries.

 ✓ LES may be coupled to other physics (thermal radiation, conduction, etc)

✓ Improvements are still necessary:

- Soot chemistry
- Multi-component liquid fuel
- ARC for fuel blends
- Turbulent combustion model

Can Machine Learning help?

Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates. *Lapeyre et al, C. & F. 2019*

Special thanks to

Thomas Jaravel Damien Paulhiac Lucas Esclapez Francis Shum-Kivan

Anne Felden

Félix Collin-Bastiani

Lucien Gallen

