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Abstract
In atmospheric chemistry retrievals and data assimilation systems, observation errors associated

with satellite radiances are chosen empirically and generally treated as uncorrelated. In this work,

we estimate inter-channel error covariances for the Infrared Atmospheric Sounding Interferometer

(IASI) and evaluate their impact on ozone assimilation with the chemistry transport model

MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle). The method used to calculate

observation errors is a diagnostic based on the observation and analysis residual statistics already

adopted in many numerical weather prediction centres. We used a subset of 280 channels

covering the spectral range between 980 and 1100 cm  to estimate the observation-error

covariance matrix. This spectral range includes ozone-sensitive and atmospheric window channels.

We computed hourly 3D-Var analyses and compared the resulting O  fields against ozonesondes

and the measurements provided by the Microwave Limb Sounder (MLS) and by the Ozone

Monitoring Instrument (OMI).

The results show significant differences between using the estimated error covariance matrix with

respect to the empirical diagonal matrix employed in previous studies. The validation of the

analyses against independent data reports a significant improvement, especially in the tropical

stratosphere. The computational cost has also been reduced when the estimated covariance

matrix is employed in the assimilation system, by reducing the number of iterations needed for

the minimizer to converge.
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matrix for IASI radiances and its impact on the assimilation of ozone in a chemistry transport
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1 Introduction
Ozone is an important trace gas that plays a key role in the Earth’s radiative budget (Iglesias-

Suarez et al., 2018), in the chemical processes occurring in the atmosphere, and in climate change

(United Nations Environment Programme (UNEP) 2015). Tropospheric ozone also behaves as a

pollutant with negative effects on vegetation and human health (UNEP2015, 2015). The

stratospheric ozone is, nevertheless, a vital component of life on the Earth since it protects the

biosphere from harmful ultraviolet solar radiation (WMO, 2014). Therefore, monitoring the

atmospheric ozone has been a subject of numerous research studies and projects (e.g. Monitoring

Atmospheric Composition and Climate (MACC) project (Inness et al., 2013)). O  surveillance is

carried out through numerical forecast models and observational systems. The information arising

from these two sources is, thereafter, combined with the data assimilation techniques to improve

the system state and forecasts.

Remote soundings from satellites are an essential component of an observational network

(Clerbaux et al., 2009). Several remote sensors relying on thermal emission of the Earth and the

atmosphere have demonstrated their ability to provide appropriate information for total columns

or vertical profiles of atmospheric gases such as water vapour, carbon dioxide, and ozone (Clarisse

et al., 2008; Clerbaux et al., 2009; Irion et al., 2018). Furthermore, the role of thermal infrared

sounders does not typically end at the monitoring of atmospheric gases. A large number of

applications have taken advantage of these measurements: the estimation of meteorological

parameters (clouds, temperature, and humidity) and climate change studies (e.g. MacKenzie

et al., 2012). The Infrared Atmospheric Sounding Interferometer (IASI) is one of these thermal

infrared sounders on board Metop-A which provides global-scale observations for a series of key

atmospheric species (Clerbaux et al., 2009).

Data assimilation has been introduced relatively recently in atmospheric chemistry, in the

stratosphere (Fisher and Lary, 1995) and for the troposphere (Elbern et al., 1997). Chemical fields

estimated by chemistry transport models (CTMs) are combined with observations to construct a

more accurate description of the atmospheric composition evolution (Lahoz et al., 2007).

Numerous studies have been conducted assimilating satellite retrievals of ozone (Emili et al., 2014;

Massart et al., 2009). However, the quality of analyses might be influenced by the prior information

used for the retrievals. A recent study (Emili et al., 2019) attempted to assimilate satellite radiances

directly in a CTM to overcome this issue. In chemical assimilation systems that assimilate radiances

directly, but also in most of the current satellite retrieval algorithms (Dufour et al., 2012), the

observation errors are empirically adapted from the nominal instrumental noise and assumed to

be uncorrelated. This assumption is questionable since we use a radiative transfer model that may

introduce similar errors among different spectral channels (Bormann et al., 2010). In other words,

an error dependency between channels of the band used is likely to be introduced. The inter-

channel error correlations might originate from observation operator errors. They can also arise

from the instrument calibration and some practices of quality control (Bormann et al., 2010; Waller

et al., 2016; Geer, 2019). The representation errors (Janjić et al., 2018) may also introduce

correlations. Liu and Rabier (2003) have shown that the assimilation can lead to sub-optimal

analysis errors when observation-error correlations are neglected.

The weight given to the observation in the assimilation process is determined by its error

covariance matrix R. Therefore, its estimation plays a crucial role in the assimilation results. While

most chemical assimilation systems assume the observation error to be uncorrelated, many

numerical weather prediction (NWP) centres have estimated non-diagonal observation-error

covariances for satellite instruments such as the Atmospheric Infrared Sounder (Garand

et al., 2007; Bormann et al., 2010), IASI (Stewart et al., 2009; Bormann et al., 2010; Weston

et al., 2014; Campbell et al., 2017; Bathmann et al., 2020), and the Spinning Enhanced Visible and

Infrared Imager (Waller et al., 2016). The results found in the literature for the meteorological

applications incite us to account for a correlated observation error for the chemical assimilation

system as well. Indeed, the studies mentioned above show that the inter-channel observation

errors are correlated and taking such correlated errors into account in the assimilation leads to

improved analysis accuracy. Additionally, Emili et al. (2019) have highlighted some issues when

assimilating radiances in a chemistry transport model (increase in the ozone analysis errors

compared to the control simulation at some specific altitudes), which might be due to too

simplistic observation errors. The main objective of this study is, thus, to improve the ozone

analysis accuracy within a chemistry transport model, by means of using more realistic

observation-error covariances for IASI ozone-sensitive channels.

The estimation of R is not straightforward, but a number of statistical methods are already

evaluated in the literature. Desroziers et al. (2005) have proposed an estimation based on the

observation and analysis residual statistics. By assuming Gaussian errors and no correlations

between observation and background errors, the error covariance matrix is provided by the

statistical average of observation-minus-background times the observation-minus-analysis

residuals. This method has been used in many studies to estimate the observation errors and

inter-channel error correlations (Garand et al., 2007; Weston et al., 2014; Bormann et al., 2016;

Tabeart et al., 2020; Coopmann et al., 2020).

In the present work, we estimate observation errors and their inter-channel correlations for IASI

using the Desroziers method. We evaluate, then, their impact on ozone assimilation in a CTM

(MOCAGE). The paper is organized as follows. The CTM, the radiative transfer model, the

assimilation algorithm, the data, and the experimental framework are described in Sect. 2. The

estimation of R is discussed in Sect. 3. Then, the impact on data assimilation is reported in Sect. 4,

and validation against independent data is discussed in Sect. 5. Finally, the summary and

conclusions are given in the last section.

2 Methods and data

2.1 Methods

2.1.1 Chemistry transport model
MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle) is the CTM used in this study. It is a

three-dimensional CTM providing the space and time evolution of the chemical composition of the

troposphere and the stratosphere. Developed by Centre National de Recherches Météorologiques

(CNRM) at Météo France (Josse et al., 2004), it was used for a large number of applications such as

satellite ozone assimilation (Massart et al., 2009; Emili et al., 2014), climate (Teyssèdre et al., 2007),

and air quality (Martet et al., 2009). MOCAGE provides a number of optional configurations with

varying domains, geometries, and resolutions, as well as multiple chemical and physical

parametrization packages.

A global configuration with a horizontal resolution of 2  and 60 hybrid levels from the surface to

0.1 hPa was used. The vertical resolution goes from about 100 m in the boundary layer to about

500 m in the free troposphere and to almost 2 km in the upper stratosphere. MOCAGE is forced by

meteorological fields from numerical weather prediction models such as the Météo France global

model ARPEGE (Action de Recherche Petite Echelle Grande Echelle, (Courtier et al., 1991)), limited-

area model AROME (Application de la Recherche à l'Opérationnel à Méso-Echelle), and ECMWF

NWP model and assimilation system (Integrated Forecast System, IFS) for air quality predictions

and ARPEGE-Climat (Déqué et al., 1994) for climate simulations. In our study, the ECMWF IFS

meteorological forecasts fields are used. For the chemical scheme, we adopted RACMOBUS, which

bundles the stratospheric scheme (Lefèvre et al., 1994) and the tropospheric scheme (Stockwell

et al., 1997), including about 100 species and 300 chemical reactions.

2.1.2 Radiative transfer model
Remote sensing instruments measure, within a certain wavelength range, the intensity of

electromagnetic radiation passing through the atmosphere (radiances). Radiative transfer models

are used to simulate the radiation measured by the satellite as a function of atmospheric state, to

be able to compare the model state to the observed radiances.

In our study, IASI radiances are simulated using the radiative transfer model RTTOV (Radiative

Transfer for TOVS), which was initially developed for TOVS instruments (Saunders et al., 2018).

Giving an atmospheric profile of temperature, water vapour, and, optionally, trace gases, aerosols,

and hydrometeors, together with surface parameters and a viewing geometry, RTTOV simulates

radiances in the infrared and microwave spectrum. For IASI, it can reproduce radiances with an

accuracy of less than 0.1 K (Matricardi, 2009). In this paper, we use the same version used by Emili

et al. (2019), i.e. version 11.3 (Saunders et al., 2013). The radiative transfer computations are

performed in clear-sky conditions and aerosols are neglected. The surface skin temperature, 2 m
temperature, 2 m pressure, and 10 m wind vector are taken from IFS forecasts. The land surface

emissivity is based on the RTTOV monthly thermal infrared (TIR) emissivity atlas (Borbas and

Ruston, 2010), and the Infrared Surface Emissivity Model (ISEM) (Sherlock, 1999) is used over the

sea. Other chemical variables (CO , CH , CO, N O) were set to the reference profiles of RTTOV.

2.1.3 Assimilation algorithm
The variational data assimilation system of MOCAGE was developed jointly by CERFACS and Météo

France in the framework of the European project ASSET (Assimilation for Envisat data) (Lahoz

et al., 2007). It has been used in several studies such as chemical data assimilation research (Emili

et al., 2014; Massart et al., 2009), aerosol data assimilation (Sič et al., 2015), and tropospheric–

stratospheric exchange using data assimilation (El Amraoui et al., 2010). The MOCAGE data

assimilation system is flexible and allows multiple assimilation options, for example, the choice of

the variational method (3D-Var, 4D-Var), the representation of the background-error covariance,

and the type of observation assimilated. It is also used to produce operational air quality analyses

for the European project CAMS (Marécal et al., 2015).

The background-error covariance matrix is divided into two distinct parts, the diagonal matrix of

the standard deviations and the correlation matrix. The latter, allowing the spatial smoothing of

the assimilation increments, is modelled through a diffusion operator (Weaver and Courtier, 2001).

The 3D-Var implementation has been used with hourly assimilation windows. The variational cost

function is minimized using the BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm (Liu and

Nocedal, 1989). The system is preconditioned with the square root of the B matrix. The control

vector includes only skin surface temperature (SST) and ozone.

As we mentioned before, the aim of this work is to evaluate the impact of the estimated

observation-error covariances on the ozone analysis. Hence, in order to be able to compare our

results to those that have already been discussed and validated, we kept exactly the same

configurations as those used in Emili et al. (2019) in terms of model, radiative transfer, and

assimilation algorithm parameters. The summary of these configurations is given in Table 1.

2.2 Data

2.2.1 IASI
IASI is one of the instruments operating on board the polar-orbiting satellite Metop-A, B, and C

launched by the European organization for the Exploitation of Meteorological Satellites

(EUMETSAT). It is based on a Fourier transform spectrometer (FTS) and measures the spectrum

emitted by the Earth atmosphere system in the spectral range between 645 and 2760 cm  (3.62

and 15.5 µm) with a resolution of 0.5 cm  after apodization, with a spectral sampling of 0.25 cm .

IASI scans the Earth up to an angle of 48.3  on both sides of the satellite track. The cross-track is

observed in 30 successive elementary fields of view, each composed of four instantaneous fields

of view corresponding to a 12 km diameter footprint on the ground (Clerbaux et al., 2009). The

swath width on the ground is 2200 km, which provides global Earth coverage twice a day. The

measurements provide information on atmospheric chemistry compounds such as O , surface

properties (skin surface temperature, SST), and meteorological profiles (humidity and

temperature).

For this study, a subset of 280 channels covering the spectral range between 980 and 1100 cm

was used. The channel selection is inherited from IASI Level 2 O  retrievals (Dufour et al., 2012;

Emili et al., 2019). L1c data have been downloaded from the EUMETSAT Earth Observation data

portal (https://eoportal.eumetsat.int, last access: 1 May 2020) in NetCDF format. Data files also

contain the co-located land–sea mask and cloud fraction values, obtained from the Advanced Very

High Resolution Radiometer (AVHRR) measurements, also on board Metop-A.

2.2.2 MLS
The Microwave Limb Sounder (MLS) provides vertical profiles of several chemical components, by

measuring the microwave thermal emission from the limb of Earth's atmosphere (Waters

et al., 2006). More than 2500 vertical profiles are observed daily, including trace gases with a

vertical resolution of approximately 3 km. Several studies benefited from MLS products, notably

the ozone profiles in assimilation experiments (Emili et al., 2014; Massart et al., 2009), thanks to its

low bias in the stratosphere (<5 %) (Froidevaux et al., 2008).

In our study, we use the ozone profiles retrieved from MLS (V4.2 Products) as independent data to

validate our results. The data have been downloaded from the Goddard Earth Sciences Data and

Information Services Center (GES DISC) web portal (https://disc.gsfc.nasa.gov, last access: 1 May

2020).

2.2.3 OMI
The Ozone Monitoring Instrument (OMI) is a nadir-viewing, ultraviolet–visible (UV-VIS)

spectrometer (Levelt et al., 2018). It provides complete global maps of total column ozone on a

daily basis. The OMI ozone data record starts in October 2004, shortly after the launch of Aura

(McPeters et al., 2015). The total column averaged over the month of the study (July 2010),

resulting from the OMI-TOMS version 8 algorithm (Bhartia, 2002), is used here to validate the

results of the assimilation experiments.

2.2.4 Ozonesondes
Ozonesondes are in situ instruments carried by a radiosonde continuously transmitting the

measurements as it ascends. The profiles of O  are provided up to an altitude that often exceeds

30 km (Jiang et al., 2007) with a vertical resolution of 150–200 m. They have been used for several

applications such as validating satellite products (Jiang et al., 2007). In our study, vertical profiles of

ozone, collected and distributed by the Word Ozone Ultraviolet Radiation Data Centre (

http://www.woudc.org, last access: 1 May 2020), are used to validate the model simulations.

2.3 Setup of the numerical experiments
The main purpose of this study is to estimate the IASI observation-error covariances and verify

their impact on the quality of the ozone assimilation results. The setup of the experiment in terms

of the period of the study, the model configuration, the choice of assimilated observations, and the

background-error covariance matrix is reported in Table 1. The observation-error covariance

matrix will be discussed in the results section (Sect. 3).

The model was initialized with a zonal climatology, and the spin-up time used is 1 month

(June 2010). Then, our simulations were performed for the month of July 2010. The ozone forecast-

error standard deviation was assumed to be proportional to the ozone concentration. In fact, Emili

et al. (2019) have evaluated the standard deviation of the free model simulation against

independent data (profiles from ozonesondes and MLS), and they found a small free forecast error

in the stratosphere, larger error in the free troposphere, and the highest error close to the

tropopause. This strategy was adopted previously by many studies (Emili et al., 2014; Peiro

et al., 2018; Emili et al., 2019). Emili et al. (2014) and Peiro et al. (2018) have used a percentage of

15 % in the troposphere and 5 % in the stratosphere. In this study, we have adopted a detailed

chemical scheme (discussed in Sect. 2.1.1). This scheme was shown to reduce the model bias

compared to the scheme used in Emili et al. (2014) and Peiro et al. (2018) (see Fig. 4 in Emili

et al., 2019). Hence, we chose the same background error as in Emili et al. (2019): 2 % of the O

profile above 50 hPa and 10 % below. An important reason to keep the background errors similar

to the setup of Emili et al. (2019) is also that we wanted to exclusively examine the impact of R, as

mentioned in the introduction.

The ozone background-error covariance matrix is split into a diagonal matrix filled with the

standard deviation and a correlation matrix modelled using a diffusion operator. The correlation,

characterized by the length scale, spreads the assimilation increments in space. The configurations

of horizontal and vertical length scales are described in Table 1.

The same preprocessing described in Emili et al. (2019) has been applied to our data before their

use in the assimilation system. In order to avoid any contamination from clouds, data were filtered

using a cloud mask, and only pixels with cloud fraction less than or equal to 1 % were kept. The

cloud fraction values are obtained from the AVHRR measurements on board Metop-A. Since the

spatial resolution of MOCAGE is coarser than the pixel size, the number of ground pixels was

reduced by thinning the data using a grid of 1  × 1  resolution and only keeping the first pixel that

falls in every two grid boxes. A dynamical rejection of observations – with a threshold of 12 % –

based on the relative differences between simulated and measured values with respect to

simulated values was considered. Some channels affected by H O absorption (1008–1019, 1028–

1030, 1064–1067, 1072–1076, 1089–1092 cm ) were removed. Pixels affected by aerosols are

detected and then removed using the index based on V-shaped sand signature as discussed in

Emili et al. (2019).

Table 1 Summary of the configuration of the MOCAGE assimilation system.
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3 R estimation

3.1 Desroziers diagnostics
The observations used in the assimilation system could have a margin of error. We can identify

two types of errors, systematic and random errors. The systematic error is ordinarily corrected

before the data assimilation process. In NWP, these types of errors in satellite observations are in

general corrected before assimilating the observations or within the data assimilation process by

the VarBC scheme (Auligné et al., 2007). The key assumption is that the background state provided

by the NWP system is unbiased. This assumption is not valid in atmospheric chemistry

applications, where models might have significant biases, which is the case in our study (see Fig. 4

in Emili et al., 2019). In such a case, VarBC requires some independent data (anchor) to prevent the

drift of the analyses to unrealistic values that might be introduced by the model bias. In our case,

we control tropospheric and stratospheric ozone. Identifying an anchor needs to be investigated

carefully. Ozonesondes might be used as an anchor in the troposphere and low stratosphere, but

the number of profiles provided is limited spatially and temporally. This might have an impact on

the capacity of ozonesonde measurements to prevent the drift of the analyses due to the model

bias. Han and McNally (2010) used IASI channel 1585 as an anchor in the assimilation of ozone for

NWP. Dragani and Mcnally (2013) have used the same uncorrected channel as an anchor, and they

showed that its impact was not sufficient to stabilize the bias correction process for a long period.

This aspect needs to be explored carefully in a separate study. On the other side, a good

understanding of sources of the measurement bias is a prerequisite to implement a bias

correction scheme. VarBC in NWP applications, for instance, needs to define a linear model with

some predictors (Auligné et al., 2007). Before adapting this approach in an atmospheric chemistry

framework, the possible sources of systematic errors in the IASI ozone window need to be

assessed.

In atmospheric chemistry, we used to assimilate level 2 products of ozone (Massart et al., 2012;

Emili et al., 2014; Peiro et al., 2018). Only recently has the direct assimilation of IASI radiances been

introduced in our chemistry transport model (Emili et al., 2019). Implementing a bias correction

scheme requires careful diagnosis of the bias from observation monitoring. On the other hand,

choosing an anchor demands particular care, and the choice depends on the full set of assimilated

instruments. In this work, which is not based on a preexisting operational setup, we do not

assimilate other ozone instruments. Thus, we had to assume that our observations are unbiased

and we did not perform any bias correction. This assumption has been adopted in many chemical

analysis studies (e.g. Massart et al., 2012; Peiro et al., 2018; Emili et al., 2019).

Random errors can arise from the measurements (e.g. instrumental error), forward model,

representativeness error (e.g. difference between point measurements and model

representation), or quality control error (e.g. error due to the cloud detection scheme missing

some clouds within clear-sky-only assimilation). These types of errors should be accounted for by

the observation-error covariance matrix R. According to Weston et al. (2014), the instrument noise

could be assumed to be uncorrelated. However, the IASI measurements are apodized, which may

introduce correlations between neighbouring channels, particularly in our case where we are

assimilating a subset of adjacent channels. The radiative transfer model may also introduce

correlations between channels. The error statistics from the instrument noise are known, while the

characteristics of other sources of error are not yet well understood.

In this paper, we estimate the total error using the statistical approach introduced by Desroziers

et al. (2005).

Here x  is the analysis state vector, x  is the background state vector, y is the vector of

observations, and H is the observation operator that computes model counterpart in the

observation space.

This method has been used to estimate observation errors and inter-channel error correlations

(Stewart et al., 2009; Bormann et al., 2016; Tabeart et al., 2020; Coopmann et al., 2020). It can

potentially provide information on imperfectly known observation and background-error statistics

with a nearly cost-free computation (Desroziers et al., 2005). However, this approach assumes that

the R and B matrices used to produce the analysis are exactly correct, which is almost never the

case in practice. Furthermore, Desroziers diagnostics compute the total covariances, but more

efforts are needed to understand and distinguish the sources of the error.

3.2 Error results
The Desroziers method was computed on the output of a 3D-Var experiment using a diagonal

matrix R (with a standard deviation of 0.7 mW m  sr  cm as in Emili et al. (2019)). The diagnosed R

could not be used directly in the assimilation system. In fact, the estimated matrix was asymmetric

and not positive definite. Similar unrealistic features in the diagnosed covariance matrices were

encountered in Stewart et al. (2014) and Weston et al. (2014), where an artificial inflation of

observation errors was applied. R needs to be a valid covariance matrix before being used in the

3D-Var assimilation system. Therefore, we first symmetrize the estimated matrix by taking the

mean of the original matrix and its transpose. Then we impose the negative eigenvalues to be

equal to the smallest positive eigenvalue as in Weston et al. (2014) and Tabeart et al. (2020).

Another method which consists of increasing all eigenvalues of R by the same amount was tested

here to recondition the estimated matrix. We favoured the first method since the standard

deviation and the correlation values remain closer to the initially estimated quantities.

Using outputs (analyses and forecasts) derived from a 3D-Var experiment that used a diagonal R

matrix (hereafter called the first 3D-Var experiment) in the estimation process might have an

impact on the diagnosed R matrix. The matrix derived using these outputs is hereafter called the

first estimation. We performed another 3D-Var experiment (second 3D-Var experiment) using the

first estimation. The outputs (analyses and forecasts) of this experiment (second 3D-Var

experiment) were used to estimate another R matrix called the second estimation. The standard

deviation of the second estimation is larger than that of the first estimation (not shown). The same

goes for correlations (not shown). It should be noted that the second estimation was positive

definite, unlike the first estimation where some unrealistic features were encountered. We have

followed the same process to further estimate two other matrices (third and fourth estimations).

The differences of the estimations in terms of standard deviation and correlations became smaller

as we reestimated the matrices, suggesting a sort of convergence of the estimation. We have

adopted the second estimation for the results shown in this work. The reason for this choice will

be discussed later (Sect. 5.2).

Figure 1 presents the standard deviation diagnosed using the Desroziers approach (solid black

line) and that used in Emili et al. (2019) (dotted blue line). The latter was set equal to 0.7 mW m  
sr  cm for all channels, which is a common setting for most IASI O  retrievals (Dufour et al., 2012).

At first glance, we note that the standard deviation used in previous studies is highly

underestimated for the SST-sensitive channels and overestimated for some ozone-sensitive

channels (around 1040 and 1050 cm ). The diagnosed standard deviation increases to reach 2 mW 
m  sr  cm for SST-sensitive channels (the first and the last 20 channels of the band (980–1000 
cm  and 1080–1100 cm ) and the channels between 1040 and 1045 cm ) and varies from 0.2 to

1.4 mW m  sr  cm for the ozone-sensitive channels. The radiance values for the observations are

greater for the SST channels than those of the ozone. The same goes for the corresponding

background and the analysis values. Since these diagnostics are based on observation,

background and analysis residuals, a larger standard deviation for the SST channels than for ozone

channels might be expected. We have plotted the R standard deviation, the average of

observations, and the average of the background in the observation space on the same figure (not

shown). We have noticed that the estimated standard deviation has a very similar shape to that of

the observed radiances or the equivalent of the background in the observation space. This may

suggest that the larger absolute error in the SST band compared to the ozone channels might be

explained by the large values of the observation and the background for the SST channels in

comparison with respect to the ozone channels. It could also be attributed to greater sensitivity to

emissivity and representativity error.

Figure 1 Standard deviation estimated using the Desroziers method (solid black line) and that

used in the previous studies (blue dotted line) (Emili et al., 2019).
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The IASI instrumental error is provided by the CNES (Centre National d'Etudes Spatiales), taking

into account different known effects such as flight homogeneity and apodization effect (Le Barbier

Laura, personal communication). The instrumental error covariance matrix is computed as

described in Serio et al. (2020). This error remains smaller (about 0.2 mW m  sr  cm) than that

used in the previous studies (0.7 mW m  sr  cm). Then, the large estimated standard deviation

noticed in our estimation might be due to the radiative transfer input error.

To investigate the off-diagonal part of R, we present the diagnosed correlation matrix in Fig. 2. The

results show high correlations between the majority of the channels (larger than 0.4). In particular,

a very high correlation is observed among SST-sensitive channels (around 0.9 to 1). The regions of,

relatively, lower correlation (around 0.4 to 0.7) represent the ozone channel correlations and cross

correlation between ozone- and SST-sensitive channels.

Figure 2 Correlation matrix estimated using the Desroziers method.
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The high correlation found here was expected since previous studies have highlighted the same

behaviour in this spectral region (Bormann et al., 2010; Stewart et al., 2014; Bormann et al., 2016).

In fact, the use of the same radiative transfer model for all channels may introduce similar errors

among these channels.

The diagnostic discussed above is based on a global estimation, without any distinction between

the type of the surface (land or sea) or the time of the observation (day or night). Since the

emissivity varies according to the type of the surface, and the skin temperature is strongly driven

by the sun radiation, we evaluated R taking these differences into account. In terms of standard

deviation, the error over land reveals large values for the SST-sensitive channels in comparison

with that estimated over the sea which, in turn, reproduces a slightly different error in comparison

with the global estimation (not shown). The two surfaces also introduce a slightly different error

regarding the ozone band. The same behaviour as the global estimation is reproduced when the

statistics were performed from the data measured separately from the day and from the night.

The variability in terms of correlations is more pronounced when the surface type is considered

than in the case of the observation time. The difference between the correlations estimated using

all observations and pixels over the sea surface varies between 0 % and 40 % for the majority of the

channels with values that can reach 60 %. These differences are located around 1035 and 1060 
cm , which correspond to the regions of low correlations (not shown).

The separate treatment of land–sea covariance matrices did not yield significant differences in

terms of assimilation results compared with the use of global estimation. Hence, we have adopted

the global estimation in our study. The rationale for this choice will be given during the discussion

of the validation results (Sect. 5.2).

4 Assimilation results

4.1 Ozone fields
In this section, we discuss the impact of the observation-error covariances estimated previously on

the ozone analysis. To this end, three experiments for the month of July 2010 were carried out:

 (i.) model run without data assimilation hereafter called the free run (or Control), and

denoted in the rest of this paper as ControlExp;

 (ii.) 3D-Var assimilation of IASI radiances using a diagonal observation-error covariance

matrix (as in Emili et al. (2019)), referred to here as RdiagExp;

 (iii.) 3D-Var assimilation of IASI radiances using a full matrix estimated with the Desroziers

diagnostic denoted hereafter as RfullExp.

The first experiment (ControlExp) was run to evaluate the benefit of the assimilation experiments

and to quantify the improvements of each of the two analyses when they are validated against

independent data. The same setup of Emili et al. (2019) was adopted for RdiagExp, which was

taken as a reference to characterize the impact of accounting for the estimated R in the third

simulation (RfullExp).

Figure 3 shows the difference between the zonal average of the ozone analysis from the two

assimilation experiments in units of parts per billion volume (ppbv). The zonal values were

averaged over the month of the study before performing the difference. The impact of the

estimated R varies with latitude. It also varies with the height, adding or reducing the amount of

ozone. Overall, the estimated R reduces the amount of ozone in the high latitudes of the free

troposphere and the tropical high stratosphere, whereas the amount is increased in the vicinity of

the lower stratosphere. The maximum reduction of ozone is larger than the amount added. The

amount of ozone reduction reaches 600 ppbv, whereas the increase does not exceed 300 ppbv. In

high northern latitudes (30–90  N), a significant addition is found (300 ppbv) covering almost the

whole stratosphere, in opposition to the other latitudes where the difference changes sign with

altitude. On the other hand, a large reduction of ozone is observed in the tropics at 20 hPa (more

than 600 ppbv). We have performed a t test to evaluate the significance of these differences

between the two experiments in terms of zonal averages. These were obtained by averaging the

analysis over the month of the study and over longitudes. We have used the standard deviation

computed for each average to perform our test. We have noticed that the majority of regions,
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computed for each average to perform our test. We have noticed that the majority of regions,

especially where the differences are large (between 300 and 10 hPa), are statistically significant (not

shown). To better understand the impact of the estimated R, we validate the results with

independent data in the section of validation (Sect. 5).

Figure 3 The difference between the zonal average of the analysis (ppbv) from the two

assimilation experiments, averaged over the month of the study (nonlinear colour map).
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4.2 Surface skin temperature
The assimilated spectra include channels sensitive to both ozone and surface skin temperature.

The IFS skin temperature was taken as a background in the assimilation process. We have

computed the difference between the SST analysis and the background at the end of each

assimilation experiment (RdiagExp and RfullExp). The skin temperature is physically linked to the

ozone measured. In fact, the skin temperature interacts with the ambient atmosphere. An increase

in SST can for example create a convective movement impacting the transport of the ozone.

However, the skin temperature is given only at the observation location in this study, and it is

specified with values interpolated from NWP forecasts (IFS), whereas ozone is a 3D field issued

from the chemistry transport model. Hence, the estimation and potential account of error

correlations between the two variables seem challenging in our system. In this work, we did not

consider the background-error correlation that might exist between O  and SST.

Figure 4a shows the difference between the analysis of the SST given by RdiagExp and the IFS SST

forecast, whereas Fig. 4b shows the difference between the analysis of the SST given by RfullExp

and the IFS SST forecast. In terms of geographical distribution, we notice that the differences are

smaller through the tropics and mid-latitudes, especially over sea, when the estimated R was

adopted. Looking at the average values, RdiagExp decreases the surface skin temperature by

about 0.55  C with respect to the background. The introduction of the estimated R decreases the

difference between the SST analysis and that of IFS to almost −0.18  C instead of −0.55  C. The

standard deviation was also reduced from 1.39 to 1.05  C. Thus, the use of the estimated R lets the

SST analysis stay closer to the IFS forecasts. However, there is an increase in difference on land

using RdiagExp, mainly in Africa and South America. This increase in difference over the land

seems related to the dependence of observation errors on the surface. In fact, the number of

observations over the sea represents almost 70 % of the total observations we have used in this

study. Consequently, our SST analysis stays closer to background values (IFS forecasts) over the

sea than over the land.

Figure 4 Difference ( C) between the IFS SST forecast and the analysis of the SST given by

RdiagExp (with a diagonal matrix) (a) and that given by RfullExp (with a correlated matrix) (b)

averaged by a box of 2 .

Figure 5 (a) Difference of the ozone total column (DU) provided by OMI and that of the

assimilation experiment RdiagExp (b) and that of RfullExp, averaged over the month of the

study.

4.3 Computational cost
In our assimilation setup, the cost function is minimized hourly. For each window, the minimizer

needs to converge after a certain number of iterations. The cost of each iteration is dominated by

the cost of the radiative transfer operators (tangent linear, the adjoint model) and of the

background-error covariance operators. When the observation error was assumed to be

uncorrelated (RdiagExp), the number of iterations needed for each hourly cycle is significantly

higher than when the estimated observation-error covariance matrix is used. In fact, the

introduction of the estimated R reduces the number of iterations from 150 (a fixed value to stop

iterations if the convergence criteria were not attained to save computational time) to 89 iterations

on average. This means that the CPU time is reduced by more than 150 % for each assimilation

cycle. The convergence criteria of the BFGS algorithm are based on either the reduction of the cost

function or the norm of its gradient below some given small thresholds. For the RfullExp, the

convergence is achieved due to the stationarity of the cost function (first criterion). The

widespread correlations (high condition number) and larger variance of the estimated R matrix

lead to a downweight of the observations and are likely the reason for the improved convergence

in RfullExp. This increase in the convergence speed was encountered in the Met Office 1D-Var

system (Tabeart et al., 2020) where a correlated observation matrix was introduced in the system.

Moreover, in Tabeart et al. (2018) the matrix R and the observation-error variance appear in the

expression of the condition number of the Hessian of the variational assimilation problem,

indicating that these terms are important for convergence of the minimization function.

In an attempt to distinguish the impact of the variance on the convergence speed from that of the

correlations, we have performed three assimilation experiments using different R matrices. The

first experiment (first experiment) employed R that was estimated from the analysis computed

using a diagonal R matrix. The minimizer takes 149 iterations on average to converge (average

computed for all the assimilation cycles of the month). We used the analysis given by the first

experiment to estimate another R matrix. We have used this estimation to run another

assimilation cycle (second experiment). We have noticed that the minimizer needs about 89

iterations on average. We have modified the R matrix of the first experiment by keeping its

correlations and replacing its standard deviation with that of R used in the second experiment. The

resulting matrix was used to run a third assimilation experiment. The minimizer needs about 90

iterations to converge. The results of the third experiment seem to suggest that updating the

variance has a larger impact on the convergence speed.

5 Validation of O  analyses

5.1 Total column
Figure 5 shows the difference of the ozone total column (in Dobson units (DU)) provided by OMI

and that of RdiagExp (a) and that of RfullExp (b). At first sight, we note smaller differences over the

tropics between the OMI total column and the total column given by RfullExp in comparison with

that given by RdiagExp. This behaviour was expected since a large reduction of the amount of

ozone was observed in these regions (see Fig. 3). In the high northern latitudes, the differences

were slightly increased when the estimated matrix was adopted. This is a consequence of the

increase in the amount of ozone encountered in these regions in the stratosphere, compared to

the amount reduced in the same region in the troposphere (Fig. 3). On the other hand, the global

mean and the standard deviation of these differences are lower in the case of using the new

estimated matrix (10.1 DU as a mean and 6.3 as a standard deviation when the new estimated

matrix was used instead of 10.6 DU as a mean and 7.3 as a standard deviation when a diagonal

matrix was used). Hence, we conclude that the estimated matrix R has slightly improved the

results in terms of ozone total columns.

5.2 Vertical validation
In this section, we validate the two simulations against radiosoundings and MLS data. We use the

root-mean-square error (RMSE) as the main statistical indicator to quantify the accuracy of the

experiments.

Figure 6 Normalized difference of the RMSE with respect to the ozonesondes for the R

estimated (green) and R diagonal (blue). The difference of the RMSE was computed by

subtracting the RMSE of the analysis from the RMSE of the control for each experiment,

divided by the average profile of the ozonesondes. Negative values mean that the assimilation

improved (decreased) the RMSE of the control simulation, and positive values indicate

degradation (increase) of the RMSE (vertical levels are in hectopascals).
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We compute the relative (to the control simulation) difference of RMSE with respect to

radiosoundings and MLS averages globally and for five different latitude bands. The difference is

computed by subtracting the RMSE of each experiment from that of the control simulation.

Negative values indicate an improvement of the O  profiles. It should be noted that the

representativeness of the statistics given by the MLS in the stratosphere is better than that of the

radiosoundings because the number of profiles provided by MLS is much higher compared to the

radiosounding ones. Consequently, higher confidence is given to the validation using the MLS data

in the stratosphere.

Figure 6 reports the RMSE differences with respect to the radiosoundings. Considering the global

RMSE (ALL), we notice that the experiment with the estimated matrix improves the results above

150 hPa, around 400 hPa, and near the surface. However, it also reduces the improvement from 30 
% (the case of using a diagonal matrix) to 15 % in the vicinity of the upper troposphere–lower

stratosphere (UTLS, 100–300 hPa).

The issue of increasing the ozone analysis errors compared to the control simulation encountered

in Emili et al. (2019) is especially severe in the tropics (30  S–30  N). The use of the estimated R has

substantially enhanced the results in this latitude band, bringing the error from +15 % to −2 %.

Apart from the vicinity of 50 and 400 hPa, the results in the tropics were improved over the entire

vertical profile. Regarding other latitude bands, almost the same feature of the global validation is

found in the Northern Hemisphere. The two experiments show almost the same behaviour in the

southern latitudes, with a slight improvement for RfullExp in the southern high latitudes (60–90  S).

The MLS validation in Fig. 7 shows almost the same behaviour reported by radiosounding

validation in the tropical stratosphere, where the reduction of error is remarkable. In the other

latitude bands, MLS reports a similar behaviour of the two experiments, with some small

differences in the Northern Hemisphere.

Figure 7 Normalized difference of the RMSE with respect to the MLS for the R estimated

(green) and R diagonal (blue). The difference of the RMSE was computed by subtracting the

RMSE of the analysis from the RMSE of the control of each experiment, divided by the average

profile of the MLS. Negative values mean that the assimilation improved (decreased) the RMSE

of the control simulation, and positive values indicate degradation (increase) of the RMSE.

(Vertical levels are in hectopascals.)
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To evaluate the significance of the differences between the analyses of the two experiments with

respect to MLS and ozonesounding measurements, we have performed the t test of the

differences between analyses and observations (ozonesondes then MLS). We have noticed that for

the ozonesoundings, the significance differs among vertical levels. The reduction of the error

between 20 and 50 hPa and between 300 and 400 hPa reported in Fig. 6 is statistically significant.

For the low troposphere the differences are not significant. Unlike the ozonesounding results, the

differences with respect to the MLS measurements are statistically significant for all levels

discussed in MLS validation.

All things considered, the introduction of the estimated R has globally improved the O  profiles in

the stratosphere and in the free troposphere, especially in the tropics. In spite of its degradation in

the vicinity of the UTLS, the improvement always remains advantageous with respect to the

control run.

The matrix used for this study (see Sect. 3.2) will now be discussed in this section since the

decision was also based on the outcome of the assimilation experiments presented in this section.

We sequentially performed three assimilation experiments using the first, second, and third

estimations of R (Sect. 3.2). The results of validation against radiosoundings and MLS showed small

differences (not shown). Therefore, to avoid the initial impact of using a diagonal matrix, we have

adopted the second estimation (which uses the analyses derived from the experiment using the

first estimation). In an operational framework, we may estimate the matrix daily (weekly or

monthly if the period of the study is considerably long) using the analyses of the previous day

(using the analysis of the previous week or month respectively). In other words, we may use a

diagonal matrix to produce analyses for the first day or spin-up period, these analyses will be used

to estimate the matrix that will be used for the second day, and so on throughout the period of the

study.

We have also discussed the type (sea or land) and the time (day or night) of the observations while

estimating the matrices. To check the impact of these differences on the assimilation results, we

ran an additional assimilation experiment using the matrix estimated considering the type of the

surface of each observation (since the differences were more important than if the time of the

observation was considered). Only slight differences among the results have been noticed (not

shown). This behaviour might be explained by the number of observations over the sea and over

the land. In fact, the observations over the sea represent more than 70 % of the total observations.

The differences, in terms of standard deviation, of the global estimation and that using pixels over

the sea is very small in comparison with that using pixels over the land (not shown). The

differences are also small in terms of correlations in the case of the sea surface in comparison with

the land surface (not shown). Hence, we consider that the predominance of observations over sea

averages out the potential differences caused by a separate land–sea specification of R. Thus, for

simplicity, it seems reasonable to adopt the global estimation of the matrix and neglect the effect

of the time and the type of the surface of the observations.

6 Conclusions
The correct specification of the observation error becomes a critical issue to efficiently assimilate

the increasing amount of satellite data available in recent years. We have estimated the

observation errors and their inter-channel correlations for clear-sky radiances from IASI ozone-

sensitive channels. We have evaluated, then, the impact of the estimated R on the SST and ozone

analysis within our 3D-Var assimilation system. The outcome has been compared with an

assimilation experiment where the observation-error covariance matrix was assumed to be

diagonal and the standard deviation assigned empirically like in previous studies. The results of

the experiments were, then, validated against independent data: OMI, MLS, and ozonesondes.

The Desroziers diagnostics were adopted here to estimate R. The diagnostics used the analyses

derived from a variational data assimilation experiment. The results have shown high correlations

between the majority of the IASI spectral channels, particularly among the SST sensitive channels.

Significant differences between the results of the experiments were encountered. The introduction

of the estimated R reduces the amount of ozone in the free troposphere and in the high tropical

stratosphere, whereas ozone is added in the vicinity of the lower stratosphere. A validation against

OMI has shown that the results were closer to the observations when the estimated matrix was

adopted.

The validation against MLS and ozonesondes showed that the introduction of the estimated R has

globally improved the results in the stratosphere, especially in the tropics. In spite of a slight

reduction in accuracy in the vicinity of the UTLS, the improvement always remains advantageous

with respect to the reference assimilation. Concerning the computational cost, the introduction of

the estimated R significantly reduces the number of iterations needed for the minimizer to

converge.

In summary, accounting for an estimated R significantly improves the ozone assimilation results.

This approach might be adopted in the assimilation of other chemical species and also in level 2 O

retrievals.

In this study, the estimation was computed without taking into account any distinction of the error

sources and assuming that the observation error was unbiased. More efforts will be needed to

tackle these points. It should also be noted that we kept the same experiment setup of Emili et al.

(2019) in order to be able to exclusively quantify the impact of the R. The background-error matrix

was still defined using a relatively simple and empirical method. Further research might be needed

to perform a better estimation of the background error. A new channel selection might also be

performed to reduce the computational cost and the information redundancy of the IASI

spectrum. On the other hand, all the experiments are performed in the context where aerosols are

neglected and over 1 month. Including modelled aerosols within the radiative transfer may bring

some improvements to the analyses. These aspects will be covered in future research.
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