energies

Article

Generalization Capability of Convolutional Neural Networks
for Progress Variable Variance and Reaction Rate
Subgrid-Scale Modeling

Victor Xing *{, Corentin Lapeyre 1, Thomas Jaravel !

check for

updates
Citation: Xing, V.; Lapeyre, C.;
Jaravel, T.; Poinsot, T. Generalization
Capability of Convolutional Neural
Networks for Progress Variable
Variance and Reaction Rate
Subgrid-Scale Modeling. Energies
2021, 14, 5096. https://doi.org/
10.3390/en14165096

Academic Editor: Pinaki Pal

Received: 10 July 2021
Accepted: 10 August 2021
Published: 18 August 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Thierry Poinsot 1

1 CERFACS, 42 Avenue Gaspard Coriolis, 31057 Toulouse, France; lapeyre@cerfacs.fr (C.L.);
jaravel@cerfacs.fr (T.].); poinsot@cerfacs.fr (T.P.)

2 IMFT, Allée du Professeur Camille Soula, 31400 Toulouse, France

*  Correspondence: xing@cerfacs.fr

Abstract: Deep learning has recently emerged as a successful approach to produce accurate subgrid-
scale (SGS) models for Large Eddy Simulations (LES) in combustion. However, the ability of these
models to generalize to configurations far from their training distribution is still mainly unexplored,
thus impeding their application to practical configurations. In this work, a convolutional neural
network (CNN) model for the progress-variable SGS variance field is trained on a canonical premixed
turbulent flame and evaluated a priori on a significantly more complex slot burner jet flame. Despite
the extensive differences between the two configurations, the CNN generalizes well and outperforms
existing algebraic models. Conditions for this successful generalization are discussed, including the
effect of the filter size and flame—-turbulence interaction parameters. The CNN is then integrated
into an analytical reaction rate closure relying on a single-step chemical source term formulation
and a presumed beta PDF (probability density function) approach. The proposed closure is able to
accurately recover filtered reaction rate values on both training and generalization flames.

Keywords: large eddy simulation; turbulent combustion; deep learning; convolutional neural
network; progress variable variance; generalization

1. Introduction

In LES of turbulent premixed combustion, the large-scale disparity between the
domain size and the flame thickness typically does not allow adequate resolution of the
internal flame front structure. As a consequence, one of the main challenges for LES is the
modeling of the SGS reaction source term. To this end, recent studies have successfully
used machine learning to train artificial neural networks as SGS models. They have been
applied to the modeling of scalar dissipation rates [1], filtered density functions [2,3],
wrinkling functions [4,5], and have also been used to predict LES filtered reaction rates
directly [6,7] or by deconvolution [8]. These studies have consistently shown that neural
networks can outperform physical algebraic models on test cases identical or similar to
their training configuration.

A major unknown for all machine learning models is their ability to generalize to
unseen configurations that can greatly deviate from the data they were trained on. Existing
works in combustion operate in a supervised learning framework [9], where Direct Nu-
merical Simulations (DNS) are used to produce paired input/output data for the training
procedure. If machine learning models cannot guarantee some form of generalizability,
their predictive ability will be limited to applications for which DNS data is available, which
typically require petascale levels of computing power for realistic configurations [10].

This paper addresses this issue by exploring under what conditions a model trained
on a canonical turbulent flame performs on a very different complex configuration. A
CNN model is built for the SGS variance of the progress variable, a key quantity in many
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turbulent combustion closures [11-14]. Nikolaou et al. [8] had previously developed a
CNN model for the variance, but it relied on the deconvolution of filtered quantities
instead of direct computation of the variance, and was tested on cases similar to the
training configuration.

The potential of the CNN model is illustrated by its integration in a new reaction
rate closure. In a simplified single-step chemistry context, the mean LES reaction rate is
analytically computed by a combination of a reaction source term formulation recently
proposed by Pfitzner et al. [15,16] and a presumed beta probability density function (PDF)
model, forming the so-called Pfitzner beta PDF CNN (PB-CNN) reaction rate closure. The
CNN guarantees accurate predictions of the progress-variable variance, which parametrizes
the beta PDF. Crucially, the analytical nature of the closure is expected to induce very fast
evaluations, making this formulation a compelling alternative to tabulated chemistry
methods that incur storage and computational costs [17-19].

The paper is organized as follows: the Pfitzner formulation for the reaction rate of
a premixed flame is described in Section 2.1 while its coupling with a beta PDF model is
presented in Section 2.2. Existing algebraic models for the progress variable variance are
discussed in Section 2.3 before the rationale for using a CNN is discussed in Section 2.4.
The training and generalization configurations are described in Section 3. The training
procedure of the CNN is then detailed in Section 4. Results of the a priori evaluation of the
CNN model and the PB-CNN closure are shown in Sections 5 and 6.

2. Combustion Modeling Framework
2.1. Pfitzner Source Term

The derivation of the chemical source term formulation proposed by Pfitzner et al. [15,16]
is summarized here. Assuming adiabaticity, constant pressure, unity Lewis number, and
single-step chemistry, the evolution of a steady, one-dimensional (1D) fully premixed flame

is fully determined by a progress variablec = 1 — %, where Yr is the fuel mass fraction
F

and Yg is its value in the fresh gases. The transport equation for ¢ reads [11]

dc. 0 dc WEg
P”ax—ax(PDax) _7{3“ ¢))

where x, p, u, D, wr are the spatial coordinate, density, velocity, diffusivity, and fuel reaction
rate, respectively. It is convenient to introduce a reduced spatial variable

_[* PssL
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with p the fresh gas density and s, the laminar flame speed, in order to convert Equation (1)
to a nondimensional form

ac 9%¢ oD . 9%¢

Tt P =l hw(o), )

where the nondimensional source term w(c) has been introduced. Pfitzner et al. [15,16]
showed that ¢y, (&) = [1 4+ e~¢]~1/™ is a solution of Equation (3) parametrized by a model
coefficient m. It is associated with the nondimensional source term

W (c) = (m+1)(1—c™)c"H, 4)
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which is a polynomial alternative to the exponential Arrhenius formulation typically used

to compute the reaction rate. A constant prefactor is defined as A = (p¢s L)ZYI{ and the
reaction rate wr is linked to the nondimensional source term wy, by

Equation (5) describes what will be referred to as the Pfitzner reaction rate term.
Pfitzner et al. [15,16] chose the model parameter m to match the profile of an Arrhenius
reaction rate. For all m values, the laminar flame speed obtained from the total fuel
consumption rate is equal to the input sy, value used in the prefactor A:

— [ () dx =1, (©)
ppYf I

On the other hand, the thermal flame thickness 4! is inversely proportional to m and
has the following analytical expression in ¢ space
m+1
(m+1)"
09 = — 7)
The Pfitzner formulation can therefore be a substitute to any flame computed with
Arrhenius chemistry, by matching independently the flame speed with the A parameter
and the flame thickness with the m parameter.

2.2. Pfitzner Beta PDF Closure for the Filtered Reaction Rate

In LES, any quantity of interest ¢ is split into the sum of a mean and fluctuating
component: ¢ = ¢ + ¢'. Mean components are resolved by the numerical simulation on
the LES mesh, while fluctuating components correspond to unresolved SGS activity that
requires modeling. Mean components are related to the original quantity through a spatial
filtering operation

9(x) = [ Glx—)9()ax, ®

where G is a low-pass filter with a cutoff scale equal to the LES mesh size. The filtered
balance equations for reacting flows naturally introduce Favre-filtered (density-weighted)
quantities ¢ = p¢/ .

The evolution of all species mass fractions can be recovered from the transport equa-
tion of the Favre-filtered fuel mass fraction Yr

aﬁYp S —_— e - —

—5; TV (puYr) = V- (pDVYF) = V- (puYp — pitYr) + wr, )
where wr is the filtered fuel reaction rate, which needs to be modeled to account for the
unresolved SGS scales. To this end, PDF models rely on modeling the SGS distribution
of ¢, noted as p(c), to express the filtered reaction rate as the expected value of the DNS
reaction rate

1
EP:/O p(c)we(c)dc. (10)

A common approach [20-24] is to presume that p(c) belongs to the family of beta
PDFs that have the expression

pp(c) = WC 1-o)t, (11)
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where I is the gamma function, and a and b are two parameters linked to the mean ¢ and
variance ¢’2 = c2 — ¢ of the distribution by the relations

9y ST CLE I B

In combination with the Pfitzner source term, the beta PDF approach is particularly

interesting because the LES nondimensional reaction rate (wy)p has an analytical expres-
sion [16]

@nls = [ poleon(@ )
B T(a+b) [ T@a+m+1) T'(a+2m+1)
=M+ D)= (r(a+b+m+1)_r(a+b+2m+1)>' 14

This is not the case with Arrhenius chemistry, and this property paves the way
for computationally efficient evaluations of the filtered reaction rate. Using Equation (5),
a similar formula can be derived for the fuel reaction rate under the simplifying assumption
pD ~ pD = pD:

1 1 wm(c
WF :/0 pp(c)wrde = A/O pﬁ(c)p(c)é()c) dc (15)
A
= ﬁfﬁ(wm),;. (16)

with a Pfitzner beta PDF formulation, the turbulent LES reaction rate can be computed
without needing on-the-fly integration of the PDF or tabulated chemistry.

2.3. Algebraic SGS Variance Models

To fully close the reaction rate, an SGS model is required for 2. Many closures rely
on algebraic expressions based on the gradient of the resolved progress variable. One such
model [21,25,26] is given by

2 = CsN*| V. (17)

where A is the local filter size and C; is the model parameter. It is important to note that
this model was originally proposed for nonreactive scalars, and for reactive scalars such as
the progress variable, it should be modified to account for the correlation of the scalar with
its source term [27]. Nevertheless, it is still commonly found in the literature whenever an
algebraic model for the progress variable is needed [25,26,28-31]. It is therefore used here
as a basis of comparison for the CNN, which plays the same role as a traditional algebraic
model. The simplest way of estimating C; is to use a global constant, and values such as
1/12[26,28], 0.18 [25], or 0.5 [30] have been proposed in the literature. However, a constant
value is not expected to be accurate for all flow configurations and filter sizes [26,29], and
the best model constant is a priori unknown. The model of Equation (17) with a constant Cs
parameter will be called the CST model.

Cs can also be determined by a dynamic procedure [26,27,32,33] recalled in the fol-
lowing. A test filter of size A = 2A is used to generate test-filtered quantities, noted as
$. Tt is assumed that the model coefficient varies slowly in space, and that Equation (17)
holds at the filter and test filter levels with the same model coefficient. Its expression at the
standard filter level is filtered to the test-filter level

~

2 Tt = CA2[ViE]?, (18)

and independently expressed directly at the test-filter level

~

2 —¢c = CA?|VeE)?. (19)
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After introducing a Leonard term defined as

o~

L=¢cc—

Qb

c, (20)

and a model term /\
M = A?|Ve]2 — A%|Ve?, (21)

the combination of Equations (18) and (19) leads to
L=CM. (22)

As in [34], a least-squares procedure consisting of averaging over homogeneous
directions of the flow is used to remedy stability issues. The final expression of the model
coefficient is
{(LM)

“= ey

(23)

where the averaging operation is denoted by the brackets (-). The resulting model for ?is
called DYN.

2.4. Convolutional Neural Networks for SGS Variance Modeling

The simple algebraic model formulation of Equation (17) is driven by sound physical
arguments, but also limits the family of ¢’2 fields that these models can fit. As a consequence,
algebraic models are often inaccurate [26,31,33] and transport equations for c’2 are usually
preferred [35-37] but they induce additional computations and require supplementary
modeling. To combine computational efficiency and accuracy, ¢ is modeled using a
CNN, which can be trained to model nearly arbitrarily complex functions due to its large
representational capacity [9]. Compared with fully-connected architectures used in some
studies for SGS modeling [3,7], CNNs benefit from locality and translation invariance
inductive biases that are helpful to process grid elements [38], and have been empirically
observed to generalize better on reconstruction tasks in computer vision [39].

A CNN model for ¢’ is trained on a planar flame wrinkled by homogeneous isotropic
turbulence with simplified Pfitzner chemistry and evaluated a priori on the DNS of a
slot burner jet flame with skeletal chemistry. Since most thermophysical and chemical
parameters are purposefully different from one configuration to the other, this is a difficult
generalization test for the model. It is assumed that local values of ¢’2 can be determined
from three main elements:

1. The profile of the ¢ field in the neighboring flame brush;
2. The amount of unresolved SGS scales;
3.  The effect of local turbulence on the SGS distribution of c.

If they are known by the model or kept similar in the training and generalization
configuration, the model should be able to generalize properly. The essential nature of
these elements is highlighted by their presence in the algebraic model of Equation (17),
respectively, in the form of the terms |V¢|, A, and C;. They therefore guide some of the key
choices in the present work:

1. A CNNiis used because of its ability to accurately learn spatial patterns in an extended
area around a location of interest (Section 4.1);

2. the flame fronts seen in the training and evaluation contexts belong to the same
turbulent combustion regime (Sections 3.1 and 3.2);

3. DNS snapshots are filtered and downsampled to a coarse grid with a well-chosen
resolution (Section 4.2).
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3. Training and Generalization Flow Configurations
3.1. Training Configuration: Planar Flame in Homogeneous Isotropic Turbulence

The training database is built from the DNS of a freely-propagating, initially planar flame
immersed in decaying homogeneous isotropic turbulence (HIT), similar to [31,40-42]. The cubic
domain is uniformly meshed with 3843 hexahedral elements and a mesh size Ax = 36 pm.
In the x direction, NSCBC inlet and outlet boundary conditions are prescribed [43], while
the other boundary conditions are periodic (Figure 1). The flame front is initialized along
the x direction using a DNS solution of a 1D laminar propane-air flame at stoichiometry,
temperature T = 300K, and pressure P = 1bar. Chemistry is represented by a single
irreversible reaction C3Hg + 50, — 3 CO; + 4 H,O and the fuel reaction rate is computed
using the Pfitzner DNS formulation of Equation (5). As key inputs needed in the formu-
lation, the laminar flame speed s; = 0.383ms™! and the model parameter m = 3.8 are
chosen to match the laminar flame speed and flame thickness é;, = 352 pm obtained with
single-step Arrhenius chemistry [44]. The flame thickness is based on the gradient of c:

1

oL = .
max g;

(24)

The initial laminar flame front in the HIT is therefore resolved on approximately 10
mesh points.

In the fresh gases, turbulent velocity fluctuations are superimposed on the velocity
field of the laminar flame. They are generated by a von Karman-Pao spectrum [45]:

u? (k/ke) k2
E) = o A (ke 76 P l_2<kq> ] )

where E(k), t/, ke, ky are the turbulent kinetic energy at the wavenumber k, turbulent
fluctuation, wavenumber of the most energetic eddies, and wavenumber of the Kolmogorov
scale 77, respectively. &« = 1.453 is a numerical constant. The integral length scale I; is related
to k, through I; ~ 0.747 /k, [45]. 1’ and k. are chosen so that

u//sL:IO, lt/5L:4.8, (26)

leading to ' = 3.83ms™! and k, = 423m™'. k, is obtained via the dissipation rate
€ ~ u"®/1;, which leads to ky =2m/n = 2~ 3/4el/4 = 349 x 10° m~!. The ratio of the
mesh size to the Kolmogorov scale is Ax /7 = 2, so that the mesh is fine enough to resolve
all the eddies of the initial spectrum. Table 1 summarizes the main flame and turbulence
parameters at initialization, including the Damkéhler number Da = (I;/61)/(u'/sr),
Karlovitz number Ka = (u'/sL)e’/z(lt/(SL)’l/Z, turbulent Reynolds number Re; = u'l; /v,
Taylor-scale Reynolds number Re) = u’A¢/v based on the Taylor microscale A¢, and eddy
turnover time T = I; /u/’.

Table 1. HIT initial parameters.

SL. oL u’ 1 7 Da Ka Re; Rey T
0.383ms~! 352um 3.83ms ! 1.77mm 18pm 048 14 450 82 0.46 ms

The DNS is run using the fully compressible explicit code AVBP [46,47] with the TTGC
Taylor—Galerkin finite element scheme of third-order accuracy in time and space [48]. The
simulation is run for 1.84 ms, corresponding to 4-eddy turnover times.
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Figure 1. Slices of the HIT DNS at t = 27: velocity magnitude in the xz-plane and heat release rate in
the xy-plane.

3.2. Generalization Configuration: R2 Slot Burner Jet Flame

The configuration used to assess the generalizability of the CNN is the DNS of the
R2 slot jet flame studied by Luca et al. [49-51]. A fully premixed methane—-air mixture
at temperature T = 800K, pressure P = 4bar, equivalence ratio ¢ = 0.7, and bulk
velocity U = 100ms~! is injected through a slot of width H = 1.2mm and surrounded
by a coflow of burnt gases. Chemistry is described by a skeletal chemical mechanism
containing 16 species and 72 reactions [50]. The corresponding laminar flame has a speed of
s; = 1ms~! and a thermal thickness §;, = 110ms~!. The domain dimensions are 28.8 mm,
19.2mm, and 5.16 mm in the streamwise (x), crosswise (y), and spanwise (z) directions,
respectively. It is uniformly meshed with a resolution Ax = 20 pm. The progress-variable
field of the fully developed jet flame is shown in Figure 2. 5 uncorrelated snapshots from
instants where the jet is fully developed are used in this study, and form what will be called
the generalization set.

1.0

0.5

0.0

x [mm)]

Figure 2. Slice of progress-variable field in R2 DNS.

3.3. Comments on the Differences and Similarities between the Two Configurations

The HIT and R2 flames feature very different domain geometries, flow dynamics, and
simulation parameters (Table 2). In addition, turbulence in the flame brush is induced by
homogeneous isotropic turbulence in one case and shear between the jet and the coflow in
the other. Previous studies involving CNNs investigated minor parametric variations in the
inlet condition [4], fuel species, and Karlovitz number [1], or turbulence intensity [5,8]. Sub-
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stantial generalization was observed by Wan et al. [7] for a fully connected neural network
trained as a surrogate model for the filtered reaction rate on a micromixing database.

The present work investigates the capacity of the CNN trained on the HIT to gen-
eralize well to flames in the same premixed turbulent combustion regime, characterized
by the velocity and length ratios u’/sy, Iy /51 [11,52,53]. To this end, in Equation (26), the
parameters of the initial turbulence spectrum of the HIT were chosen to match the u' /sy,
It/ 61, values computed by Luca et al. [51] at the crosswise location of maximum heat release
and 60% of the flame length. They are considered to be representative of the turbulent
combustion regime of the R2 flame.

Table 2. Main differences in the simulation parameters of the HIT and R2 DNS.

HIT R2
Fuel C3 Hg CH4
Reactions 1 72
Species 5 16
¢ 1 0.7
T 300K 800K
P 1bar 4 bar
S 0.383ms! 1ms~!
oL 352 um 85 um
Ax 36 um 20 pm

Finally, three orders of magnitude separate the computational cost of the two DNS
simulations. To simulate 0.9 ms of physical time, R2 requires 1 million CPU hours on an
Intel Xeon Haswell-based supercomputer [49], while the HIT only needs 1600 CPU hours
on a comparable Intel Xeon Skylake-based cluster. This highlights the greatly reduced
computational demands of training an ML model on simple canonical configurations
instead of full-scale realistic flames.

4. Machine Learning Framework
4.1. U-Net Architecture

The CNN trained in this study is a U-Net [54] with the same architecture used by
Lapeyre et al. [4] to model SGS flame wrinkling. U-Nets are convolutional neural networks
that are well-suited to field-to-field visual pattern recognition tasks, and are commonly
used in computer vision for 2D and 3D image segmentation [54-56]. They rely on a
succession of convolutional layers and downsampling operations to learn visual patterns
in a wide area around the location of the prediction [4,9]. This is an appealing approach for
combustion SGS modeling since the CNN is able to make local predictions based on the
knowledge of the full spatial structure of the flame front.

The full architecture is detailed in Figure 3. It follows a fully convolutional, symmetri-
cal encoder—decoder structure. Each stage is composed of two successions of

¢ A 3D convolution with a 3 x 3 x 3 kernel with “same” padding;

* A batch normalization layer [57];

e A rectified linear unit (ReLU) nonlinear activation unit;

¢ A2 x2x2 max-pooling downsampling operation in the encoder or a 2 x 2 x 2
upsampling operation in the decoder.

The specificity of the U-Net architecture lies in the skip connections that concatenate
the end of each encoder stage to the start of the corresponding decoder stage. Due to
the downsampling operations, each stage of the encoder processes feature maps at de-
creasing resolutions. The combination of the upsampling and concatenation encourages
each decoder stage to aggregate information from two separate spatial scales. Skip con-
nections also allow the network to combine low-level features learned by the shallow
layers of the encoder with the more complex, abstract features learned by the decoder, and
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accelerate training convergence [56]. Multiscale CNN architectures for field-to-field fluid
predictions were successfully used by Lapeyre et al. [4] to model SGS flame wrinkling and
Ajuria et al. [58] to solve the Poisson equation in incompressible flows. In the following,
the U-Net model will simply be called the CNN. In the context of SGS modeling, this
multiscale approach can be thought of as an extension of the dynamic procedure, which
extracts information at a test-filtered scale to inform local predictions. Its ability to predict
the entire output field at once is also attractive in terms of computational efficiency, as a
single inference of the network is needed for the whole domain.

Input

3x3x3 convolution
—> + batch normalization

% ,/ + ReLU
64 128 128 —> Skip connection

— Up/downsampling x2

Figure 3. U-Net architecture. Each feature map is represented with 2 out of its 3 spatial dimensions as
height and depth, and the channel dimension as width. The number of channels is noted below each
feature map. The hidden layers connecting the feature maps are represented by the arrows. The input
and output fields are colored in pink, and the feature maps concatenated by the skip connections are
colored in blue. The network contains a total of 1.4 million trainable parameters.

4.2. Data Preparation

The CNN is trained to process ¢ input fields and predict associated ¢’? output fields.
Following the LES framework, the filtered fields are represented on a grid of size A that is
coarser than the DNS mesh. To generate these filtered coarse fields, 3D fields of c are first
extracted from instantaneous snapshots of the DNS simulations. ¢ is computed as

Y;
cair =1— *? , (27)
Yi

with the fresh gas fuel mass fraction Yg .
The DNS progress variable fields are then filtered with a Gaussian filter

3/2 G2
G(x) = (716A2> exp [Aéf] , (28)

and downsampled to a coarse-mesh-structured grid with a resolution A.

The filtering and coarsening procedure for HIT and R2 is illustrated in Figure 4. The
value of the coarse mesh resolution for the HIT and R2 is chosen to ensure that the ratio
A/6;1, = 0.81 is the same for both cases. This is key to the ability of the CNN to generalize
from one configuration to the other despite their different flame thickness and DNS mesh
sizes. Since A/¢y, is kept constant, the ratio of filtered laminar flame thickness to filter size
(5{1” /A is also approximately equal. It can be interpreted as the number of coarse mesh
points on which the filtered flame brushes are resolved. This therefore guarantees that
similar flame front patterns and gradients are found in the coarse HIT and R2, allowing
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the CNN to transfer from one case to the other. Additionally, the conservation of A/Jy.
establishes that these similar flame front gradients are unequivocably related to equivalent
SGS activity, and equivalent values of ¢’2 predicted by the CNN. In this regard, the filter
sizes are chosen as equal to 288 pm and 70 pm for the HIT and R2, respectively.

o, = 352um /
Az = 36pm Az = 20um ‘
Filter Filter
A = 288um A =T0pm
N \ (2 s | —
&1 — 411 pum 871 = 103um
Ax = 36um Az = 20pum

Downsample 2

C
\ R2 coarse
filtered DNS

67" = 103um
Azcoarse = 70Mm

Figure 4. Summary of the filtering process for the HIT and R2 for A/é; = 0.81, illustrated with

enlargements of the corresponding flame.

Downsample

\ HIT coarse
filtered DNS

oI — a11pm
Amcoarsc = 288/’“”

4.3. Training Procedure

The training database is built from 46 instantaneous snapshots of the HIT DNS,
extracted at regular intervals of 0.04ms. The first 38 constitute the training set for the
CNN, while the next 4 form the validation set and the final 4 are kept as a hold-out test
set for the results shown below. Instead of directly predicting c¢’2, the CNN is trained to
predict the unmixedness factor ¢’2/(¢(1 — ¢)), a normalized version of the variance that
was empirically found to lead to slightly better results. As a preprocessing step, the input
and output fields are periodically padded in the y and z directions to enforce the periodicity
boundary conditions of the DNS.

At each training iteration, 16 snapshots from the training set are sampled and, for each
snapshot, 4 randomly cropped 323 cubes are passed through random 90° rotations and
mirror operations before being added to the training batch. Gradient descent optimization
is performed by an Adam optimizer [59] with an initial learning rate of 0.01. A mean
squared error loss function encourages the CNN outputs to match the ground truth ¢’z
fields. Training was performed with the Tensorflow 2 Python library and stopped after
10,000 iterations when convergence was well-established. On an NVIDIA Tesla V100 GPU,
this equates to one hour of training time. This training procedure only needs to be done
once, after which the weights of the CNN are frozen and the trained model can predict ¢’2
from a given ¢ field in a few milliseconds.

5. A Priori Evaluation of the ¢’2 Model
5.1. Evaluation on the HIT Test Set

The a priori performance of the CNN on the test set of the HIT is assessed to ensure
that it has successfully learned to represent c”> on samples from the same distribution
as the training database. The CNN model predictions are compared to ground truth ¢’2
values computed from the filtered downsampled DNS, called true values, and to the CST
model predictions. The constant coefficient Cs = 0.18 [25] was chosen by picking the value
in the literature [25,26,28,30] that best matched the true ¢”2 values. For the DYN model,
since there are no fully homogeneous directions, the averaging procedure is conducted
on isocontours of ¢. Another possibility is to perform averaging over the whole model,
leading to a dynamically determined constant Cs = 0.17, which is very close to the value
chosen for the CST model.
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Figure 5 shows sample slices of ¢, true 2, and modeled (2 fields from the test set.
The CNN matches the ground truth faithfully in all regions of the flow, while the gradient
model does not seem as accurate.

Il.O

0.8 0.05
0.04
0.6
0.03
0.4
0.02
I 0.2 0.01
! 0.0 0.00
(a) (b)

Figure 5. Sample slices of € (a), and o2 (b): ground truth (top-left), CNN (top-right), CST (bottom-left),
and DYN (bottom-right) model on the HIT test set.

Model predictions are aggregated on the whole test set and plotted against true values
in Figure 6. The excellent performance of the CNN is confirmed by the tight spread of
its predictions around the perfect model line, and the lack of bias of their linear trend. In
comparison, CST and DYN model predictions display significantly higher variance and
nonzero bias. Note that with prior knowledge of the ground truth, a Cs value that leads to
an unbiased CST model can be chosen but this would have little effect on the variance. The
dynamic procedure proves to be effective at estimating a local model coefficient without
any prior knowledge and leads to a slightly smaller error than the CST model.
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Figure 6. Hexbin plots of model predictions against ground truth: (a) CNN model, (b) CST model, (c) DYN model. Data
points are gathered in hexagonal bins and colored according to the number of data points they contain. The red line y = x
represents a perfect model. Cyan lines represent linear trends of the model.

Most of the data points plotted in Figure 6 are in regions of the flow where no flame

front is present and using ¢’ for SGS closure is not important. The critical zones for ¢/
models are located in the reaction zone of the flame, identified as the regions where the
laminar Pfitzner reaction rate is greater than 10% of its maximum value:

Z ={c:wp(c) > 0.1 x max (wr(c))}.

29
0<c<1 @9)
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Hexplots conditioned on ¢ € Z are plotted in Figure 7, and error values are also
reported in Table 3. It is interesting to note that the CNN performs even better in these
critical regions, and is very close to a perfect model. On the other hand, the performances
of the gradient models are significantly worse. Error values computed using a normalized
mean square metric

o Z(ymodel - yt‘rue)2
€= 2
Zytrue

are reported in Table 3 and confirm the excellent a priori performance of the CNN on the
HIT test set.
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Figure 7. Hexbin plots of model predictions against ground truth conditioned on ¢ € Z: (a) CNN model, (b) CST model,
(c) DYN model.

Table 3. HIT test set error values for ¢’2.

Model € €,cEZ
CNN 0.060 0.054
CST 0.417 0.733
DYN 0.398 0.730

5.2. Evaluation on the R2 Generalization Set

The various models are now assessed on the 5 snapshots of R2 composing the gen-
eralization set. For the DYN model, averaging is performed in the spanwise direction of
the burner.

Figure 8 shows a sample slice of the ¢ field in a filtered snapshot of R2 and the predic-
tions of the CNN, CST, and DYN model for the corresponding SGS variance. Once again,
the value C; = 0.18 is retained for the CST model. All models reproduce qualitatively the
evolution of the filtered DNS ¢”2. The hexplots of Figure 9 and the error values reported
in Table 4 reveal that the CNN performs the best out of all the models, which is a demon-
stration of its ability to transfer its predictive power from the HIT flame to the R2 flame.
However, it is naturally less accurate than on the test of the HIT, which contained samples
from the same distribution as its training set. In comparison, the CST and DYN models
show zero bias but a higher variance. Unlike in the HIT, all the models perform similarly
when evaluated on the whole domain or only the reaction zone Z, as indicated by the error
values in Table 4.
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Figure 8. Sample R2 slices of ¢, true 072, CNN, CST, and DYN model predictions.

6 6 6
0.10 1% o.10 1% 010 £ 10
0.08 008 o 0.08
10t 3 10t 5 104
= =
0.06 2 0.06 2 0.06
£ =
|5\.o |5\',Q
. 041 04 4
0.04 102 0.0 d 102 0.0 A 10?
0.02 0.02 0.02
100 e 10° S 10°
0.000  0.025 0050 0.075 0.100 0000 0.025 0050 0.075 0.100 0.000  0.025 0050 0.075 0.100
¢'? true ¢'? true ¢'? true
(a) CNN (b) CST (c) DYN

Figure 9. Hexbin plots of model predictions against ground truth on the R2 generalization set: (a) CNN model, (b) CST
model, (¢) DYN model.

Table 4. R2 error values for c’2.

Model € €CcEZ
CNN 0.241 0.214
CST 0.371 0.331
DYN 0.358 0.322

For a sample snapshot, the spatial distribution of model predictions is investigated
by plotting ¢’2 values averaged on transverse slices in Figure 10. The CNN recovers the
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filtered DNS values nearly perfectly, while the algebraic models consistently overestimate
the variance. L

This a priori evaluation of ¢> models has shown that the CNN trained on the HIT
configuration was able to generalize accurately to the R2 flame and outperform constant
coefficient and dynamic algebraic models.

x1073
12 True
1.0 ——CNN
= —— CST
0.8 —DYN
=
— 06
o)
% 04
0.2
0 5 10 15 20

x [mm)]

Figure 10. Evolution of transverse averages of the true ¢’ and model predictions along the streamwise
direction x.

5.3. Discussion on the Conditions for Generalization

Between the HIT training/test sets and the R2 generalization set, three key ratios
are conserved: u' /sy, I;/6;, and A/éy. Tt is important to understand the sensitivity of the
generalization of the CNN to these ratios, as they could place strict limits on the practical
applicability of the model.

The influence of u’ /s and I;/} is analyzed by training a second CNN on the same
HIT configuration with halved initial values of u' /sy, I/ 51, leading to lesser wrinkling in
the turbulent flame front. When evaluated on R2, this second CNN had an error ¢ = 0.301,
which is 30% higher than the reference CNN. Figure 11 shows that the effect of training on
a weaker HIT is noticeable in the first 4 mm of the flame near the inlet. The second CNN
underpredicts the SGS variance compared with the reference CNN and the filtered DNS.
This is coherent with the fact that it is trained on a weaker HIT, which contains lower ¢’2
values than the original configuration. This brief study seems to indicate that the choice
of u' /sy, 1;/61 is indeed impactful on the generalization accuracy of the CNN, but more
extensive work should be performed to fully understand the effect of these ratios.

The restriction to relying on a single value of A/J; can be relaxed by training the
CNN on a range of filter size values. An instance of the CNN was trained on a dataset
comprising the collection of training HIT snapshots, which were filtered at A/é;, = 0.8,
1.2 and 1.6, for a total of 126 snapshots with 3 separate filter sizes. It was then tested
on R2 for the same filter sizes, as well as unseen values A/é;, = 1, 1.4, and 2. Figure 12
shows the evolution of the error made by the CNN and DYN models with A/J;. When
A/ 61, increases, the performance of the DYN model deteriorates as the SGS modeling task
becomes more difficult. In contrast, the error made by the CNN is stable across all filter
sizes, including unseen ones. This suggests that with proper training, the CNN can be
accurate on a range of A/¢; values instead of a single one. Note that the error made by this
CNN on A/é;, = 0.8 is higher than the one reported in Table 4 for the CNN solely trained
on this filter size. This implies that a balance must be found between accuracy at a single
filter size, and validity across a range of values. Interestingly, providing the A/¢; value as
an additional input channel for the CNN did not improve the results. The rest of this work
is presented with the original CNN trained with A/J; = 0.8.
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Figure 11. Evolution of transverse averages of the true ¢”2 and both CNN predictions in the first
4 mm of the R2 flame.
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Figure 12. CNN and DYN model errors on R2 for various filter sizes.

6. A Priori Evaluation of the PB-CNN Model for wr
6.1. Evaluation on the HIT Test Set

In the previous section, the CNN was shown to be able to learn a model for ¢2, which
is accurate on the test and generalization configurations. In the following, modeled values
of ¢2 are incorporated in the presumed beta PDF approach detailed in Section 2.2 to form
the PB-CNN model for wr. Beta PDFs are known to sometimes be inaccurate models for
the SGS distribution of ¢ in premixed combustion [22,26,35]. Therefore, the presumed beta
PDF approach needs to be justified independently from the model for ¢2. For the HIT,
Figure 13 shows the conditional median, 5% and 95% quantiles plotted against ¢ for the
true filtered reaction rate, and the Pfitzner beta PDF reaction rate with true 2 values. The
beta PDF appears to be a good approximation for the true SGS PDF, showing that the
presumed beta PDF assumption is sound in the case of the HIT.
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Figure 13. Distribution of the filtered reaction rate computed from a beta PDF assumption with true

o2 (blue) and the filtered DNS (red): conditional mean (solid line); 5% and 95% conditional quantiles
(delimiting the shaded area). The statistics are aggregated over the HIT test set.

Given the accuracy of the CNN model, replacing the true ¢’ values with the CNN
predictions does not noticeably affect the shape of the beta PDF. The isolated effect of the
CNN model on the beta PDF reaction rate appears minimal in Figure 14, where the beta
PDF reaction rates with CNN values of ¢’ are compared with beta PDF reaction rates with
true values of 2.
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Figure 14. Hexbin plot of beta PDF reaction rates with CNN values of ¢’ against beta PDF reaction
rates with true values of ¢2.

Finally, the combined effect of the beta PDF assumption and the ¢’2 model is shown in
Figure 15. The high variance values predicted by the DYN model lead to underpredictions
of the reaction rate when combined with the Pfitzner beta PDF closure. In contrast, using
CNN predictions leads to a much closer fit to the true filtered reaction rate. Figure 16, where
true and modeled reaction rates averaged on yz-planes are plotted against the streamwise
x coordinate, illustrates how the quality of the CNN model for ¢2 leads to a good very
estimate of fuel consumption rates using a beta PDF assumption.
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Figure 15. Hexbin plots comparing true filtered reaction rates to beta PDF reaction rates using
modeled c’? values: (a) CNN model, (b) DYN model.
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Figure 16. Evolution in the streamwise x direction of the true and modeled reaction rates averaged
on yz-planes, for a sample in the HIT test set. PB-DYN denotes the Pfitzner beta PDF closure with
the DYN model for 2.

6.2. Evaluation on the R2 Generalization Set

The PB-CNN closure is finally evaluated on R2. From the R2 coarse fields of ¢, beta
PDF reaction rates are computed according to Equation (15) and using either true c¢’?
or predictions from the CNN. A reference 1D laminar flame matching the conditions of
the R2 simulation is used to compute the prefactor A = (pys L)ij; . The value for the
Pfitzner model parameter m = 4.7 was chosen so that the total fuel consumption rate of
the reference 1D flame is matched by the Pfitzner reaction rate based on the c field of the
reference 1D flame. As a result, by construction, both reaction rates would lead to the same
total fuel consumption rate on a planar laminar flame. Figure 17 shows the close match of
the resulting Pfitzner reaction rate to the fuel reaction rate of the skeletal mechanism.
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Figure 17. DNS fuel reaction rates for skeletal and Pfitzner chemistry vs. progress variable in a 1D
laminar flame.

Figure 18 compares the PB-CNN reaction rates with the true filtered values of R2.
For clarity, only the points where the filtered DNS reaction rate is greater than 10% of its
maximum value are plotted. This corresponds to the same condition as Equation (29).
Compared with the HIT flame, the scatter plot still exhibits low bias, with a large portion
of the predictions concentrated around the reference linear trend, but it also has a higher
variance, which is emphasized by the logarithmic scale of the color bar. This indicates that
some local values of the reaction rate are not well predicted by the PB-CNN model.
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Figure 18. Hexbin plots comparing true filtered reaction rates with PB-CNN reaction rates for points
in the reaction zone of the filtered DNS of R2. The black line represents the linear trend of the model.

One particular group of mispredicted points is located on the x-axis of the plot and
corresponds to regions in the reaction zone where the PB-CNN model erroneously predicts
a reaction rate of exactly 0. Analyzing the reason for this misprediction is insightful to
understand the behavior of the model in difficult edge cases. This group of points is
characterized in Figure 19 by the distribution of their values of the true filtered reaction
rate, filtered progress variable, true SGS variance, and CNN predictions for the variance. It
appears that these points are located in the postflame region, where ¢ ~ 1 and the skeletal
mechanism still predicts some chemical activity. On the other hand, the SGS variance is
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extremely small and estimated by the CNN to be 0, causing the beta PDF-based reaction
rate to also be exactly 0. This highlights a limitation of comparing a simplified reaction rate
formulation relying on the SGS variance against a skeletal mechanism. However, these
mispredictions are a rare occurrence since this group of points only constitutes 0.1% of the
points in the reaction zone.

@r [mol/m¥/s] ¢ c'? true ¢'? CNN
2
102 10 102
10!
101 ]01 101
100 100 100 100 '
0.0 2.5 5.0 0.9 1.0 0 5 0.0 2.5
x10* x1074 %1076

Figure 19. Histograms of &, ¢, true ¢2, and CNN ¢ for the points in the reaction zone where the
PB-CNN reaction rate is exactly zero.

Despite discrepancies in local predictions of the reaction rate, the PB-CNN model
provides correct estimates of spatially averaged reaction rates. This is important as it shows
that the model would be useful in LES to recover key integral quantities of the burner such
as the mean length of the flame. This is shown in Figure 20, which compares the streamwise
evolution of the filtered DNS and PB-CNN reaction rates averaged on transverse slices.
The PB-CNN closure recovers the correct averaged reaction rate in all regions of the flame.
This leads to a fuel consumption rate in the whole domain within 5% of the reference value.
A posteriori simulations could be carried out in the future to assess if the PB-CNN reaction
rate leads to an LES flame with the same length and total burning rate as the R2 DNS.

3000
—— Filtered DNS

—PB-CNN

N
W
j =
(e

2000

x) [mol/m?/s]

1500

1000

(F(x

0 5 10 15 20
x [mm]

Figure 20. Evolution of transverse averages of skeletal and beta PDF reaction rates along the
streamwise direction x.

7. Conclusions

A deep convolutional neural network was trained to model the progress variable
SGS variance ¢’? on a planar flame in homogeneous isotropic turbulence, and was shown
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to generalize accurately to the R2 complex slot burner jet flame in an a priori evaluation.
Despite very different flow dynamics, thermophysical parameters, and chemistry, the
conservation of the normalized filter size A/¢; and the turbulence—flame interaction ratios
u' /sy, ¢/ 51 were assumed to be key to the generalizability of the CNN, and their influence
on the results was discussed. This work indicates that CNNs can be trained on canonical
simple cases and used in practical configurations. Future studies could focus on applying
this methodology to different combustion models. The universal nature of the conditions
for generalization that are exhibited here should also be investigated, as well as ways to
integrate them into the machine learning model.

In an effort to combine computational efficiency and modeling accuracy, the PB-CNN
closure for the mean LES fuel reaction rate was proposed. It combines the reaction source
term formulation of Pfitzner et al. [15,16], a presumed beta PDF assumption, and the CNN
model for ¢”2 in an analytical formula for the reaction rate. It showed excellent a priori
results on the R2 flame when compared with the burning rate produced by the original
skeletal chemistry. In the future, an a posteriori evaluation would be a challenging test of
the accuracy of the 2 model given by the CNN and the PB-CNN closure for @. This
formulation would be especially well suited to simulating large-scale premixed combustion
configurations, such as explosions in venting chambers. The resulting overpressure can
be accurately captured using simplified chemistry, but remains a challenge at scale due
to insufficient mesh resolution, prohibitive computational costs, and strong sensitivity to
turbulent reaction rates [44,60].
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Abbreviations

CNN Convolutional Neural Network
DNS Direct Numerical Simulation

HIT Homogeneous Isotropic Turbulence
LES Large Eddy Simulation

PB-CNN Pfitzner Beta PDF CNN

PDF Probability Density Function

ReLU Rectified Linear Unit
SGS Subgrid-Scale
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