
1.  Introduction
In earth science, the reconstruction of the dynamics of a given state or process from a sequence of partial 
and noisy observations is referred to as a data assimilation issue. Data assimilation is at the core of a wide 
range of applications, including operational ones, with the aim to make the most of available observation 
data sets, including for instance both in situ and satellite-derived data, and state-of-the-art numerical mod-
els (Evensen, 2009). Broadly speaking, a vast family of data assimilation methods comes to the minimiza-
tion of some energy or functional which involves two terms, a dynamical prior and an observation term. 
We may distinguish two main categories of data assimilation approaches (Evensen, 2009): variational data 
assimilation and statistical data assimilation. Variational data assimilation relies on a continuous state-
space formulation and results in a gradient-based minimization of the defined variational cost. By contrast, 
statistical data assimilation schemes generally relies on iterative formulations of stochastic filtering tech-
niques such as Kalman and particle filters.

Abstract  Data assimilation is a key component of operational systems and scientific studies for 
the understanding, modeling, forecasting and reconstruction of earth systems informed by observation 
data. Here, we investigate how physics-informed deep learning may provide new means to revisit data 
assimilation problems. We develop a so-called end-to-end learning approach, which explicitly relies on 
a variational data assimilation formulation. Using automatic differentiation embedded in deep learning 
framework, the key novelty of the proposed physics-informed approach is to allow the joint training of 
the representation of the dynamical process of interest as well as of the solver of the data assimilation 
problem. We may perform this joint training using both supervised and unsupervised strategies. Our 
numerical experiments on Lorenz-63 and Lorenz-96 systems report significant gain w.r.t. a classic 
gradient-based minimization of the variational cost both in terms of reconstruction performance and 
optimization complexity. Intriguingly, we also show that the variational models issued from the true 
Lorenz-63 and Lorenz-96 ODE representations may not lead to the best reconstruction performance. We 
believe these results may open new research avenues for the specification of assimilation models for earth 
systems, both to speed-up the inversion problem with trainable solvers but possibly more importantly in 
the way data assimilation systems are designed, for instance regarding the representation of geophysical 
dynamics.

Plain Language Summary  Data assimilation is a key component in the modeling of 
earth systems to simulate their dynamics, forecast their evolution in the short-term or the long-term 
as well as to reconstruct earth systems' states from observation data. State-of-the-art data assimilation 
schemes generally blend prior knowledge on the underlying governing laws with available observation 
data. Here, we turn data assimilation into a physics-informed machine learning problem. Within a 
differentiable framework, we can learn from data not only a data assimilation solver but also jointly some 
representation of the inverse problem. Numerical experiments support the relevance of this end-to-end 
approach for chaotic dynamics informed by noisy and irregularly-sampled observations. This opens new 
research avenues for the design of physics-informed and data-constrained simulation, forecasting and 
reconstruction schemes for earth systems.
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Whereas data assimilation naturally applies to model-driven settings, where the formulation of the dy-
namical and observation models follow from some physical expertise, data-driven strategies have emerged 
relatively recently (Bocquet et al., 2020; Lguensat et al., 2017) as possible alternatives. The focus has mainly 
been given to the identification of data-driven representations of the dynamical model, which may be di-
rectly plugged into state-of-the-art assimilation frameworks, especially statistical ones (Bocquet et al., 2020; 
Lguensat et al., 2017; Ouala et al., 2018). Recent advances have also been reported for the data-driven iden-
tification of the dynamical model from partial, irregularly-sampled and/or noisy observation data (Bocquet 
et al., 2020; Nguyen et al., 2020; Raissi, 2018).

Here, we further explore how data-driven strategies and associated machine learning schemes may be of 
interest for data assimilation issues. Especially, end-to-end learning strategies aim to build so-called end-
to-end neural network (NN) architectures so that one can learn all the trainable components of the archi-
tecture w.r.t. some target to be predicted from input data, whereas the traditional approach usually relies 
on designing each component relatively independently. Many fruitful applications of end-to-end learning 
strategies have been recently reported in the deep learning literature (Busta et al., 2017; Dieleman & Schrau-
wen, 2014; Schwartz et al., 2019), including for solving inverse problems in image and signal processing. 
In this work, we introduce a physics-informed end-to-end learning framework for data assimilation. We 
rely on a variational data assimilation formulation. The resulting end-to-end architecture uses as inputs 
a sequence of observations and delivers as outputs a reconstructed state sequence. The associated main 
contributions are as follows:

1.	 �The proposed physics-informed end-to-end learning architecture combines two main components, a 
neural and differentiable implementation of the variational data assimilation cost and a gradient-based 
neural solver of some target loss function. The latter exploits ideas similar to optimizer learning (Andry-
chowicz et al., 2016; Li et al., 2018; Vilalta & Drissi, 2002) and directly benefits from automatic differen-
tiation tools embedded in deep learning frameworks to implement an adjoint method for the considered 
dynamical model;

2.	 �Given some training criterion, this end-to-end learning architecture provides new means to train all 
the trainable parameters of the considered neural schemes. Interestingly, we may consider as training 
criterion the classic observation-driven data assimilation cost in an unsupervised setup, as well as a re-
construction error assuming we are provided with groundtruthed data in a supervised setup;

3.	 �We report numerical experiments on Lorenz-63 and Lorenz-96 dynamics, which support the relevance of 
the proposed framework w.r.t. classic variational data assimilation schemes. Trained schemes may speed 
up the assimilation process as neural solvers may greatly reduce the number of gradient-based iterations. 
They may also lead to a significant improvement of the reconstruction performance if groundtruthed 
data are available;

4.	 �Intriguingly, our experiments question the way dynamical priors are defined and calibrated in data as-
similation schemes and suggest that approaches based on the sole forecasting performance of the dy-
namical model may not be optimal for assimilation purposes.

This study is organized as follows. Section 2 introduces the considered variational formulation within a 
deep learning paradigm. We detail the proposed end-to-end learning framework in Section 3. Numerical 
experiments on Lorenz-63 and Lorenz-96 dynamics are reported in Section 4. We further discuss our key 
contributions in Section 6.

2.  Problem Statement
We introduce in this section the considered variational formulation which provides the basis for the pro-
posed end-to-end learning framework. Let us consider the following continuous state-space formulation
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with E x the considered time-dependent state in some space E   such that ( ) ,E x t t   , E  the dynamical model 
and 0 0 0{ , .,, }E t t t t N t      the observation times. The proposed framework applies to n DE t  processes, 
including for instance multivariate time processes as well as space-time processes. Observations { ( )}iE y t  may 
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only be partial, meaning that some components of ( )iE y t  are only observed over some observation domain tiE   
at time iE t  . tiE   may refer to a spatial domain for spatio-temporal dynamics or a list of indices for multivariate 
time process. Processes E  and E   represent respectively model errors and observation errors (Evensen, 2009). 
They are usually assumed to be white noises.

The data assimilation issue, that is, the reconstruction of the hidden state sequence E x given a series of obser-
vations { ( )}iE y t  at time steps { }iE t  , may be stated as the minimization of the following cost

U x y x t y t x t x t
i

i i
ti i

i i 
 , , ( ) ( ) ( ) ( )( )       1

2

2

2

� (2)

where  
2  stands for the evaluation of the quadratic norm restricted to domain E  , for example, 

u u p dp 
2 2  ( )  for a scalar 2 d state E u . This accounts both for an irregular space-time sampling of the 

observations as well as an assimilation time step smaller than the observation one. E  is the flow operator

 ( )( ) ( ) ( )t
t tx t x t t x u du


      � (3)

In the cost function (Equation 2), the first term is a weighted measure of the distance from E x to the data 
while the second term evaluates the distance between the empirical and the theoretical dynamics consid-
ering the forecast model as imperfect. This cost function is known as the weak-constraint 4D-Var (see e.g. 
Trmolet, 2007). Note here, for the sake of simplicity we do not consider a background term often used to 
measure the distance from E x to a given background state, and corresponding to a Tikhonov regularization. 
We also assume spherical covariance hypotheses for the model and observation error. More complex and 
spatial-correlated covariance structures could be accounted for in the proposed variational formulation. 
Overall, we may rewrite variational cost ( , , )E U x y   according to the following formulation where the norms 
are implicitly evaluated over some predefined time window, typically from 0E t  to 0E t N t   :

U x y x y x x 
 , , ( )      1

2

2

2

� (4)

with x y 
2

 the observation term and x x ( )
2
 the dynamical prior. In a continuous-time formulation, 

E x and E y refer here to the continuous-time processes, where as in a discrete-time setting E x and E y refers to the 
concatenation of the states tiE x  and tiE y  from 0E t  to 0E t N t   . Similarly, 0 0{ , , }t t N tE        accounts for the 
observation patterns with possible gaps over the considered time window. Within a variational assimilation 
setting, the minimization of this variational cost typically exploits an iterative gradient-based scheme given 
some initial estimate (0)E x  , the simplest one being a fixed-step gradient descent

 ( 1) ( ) ( ), ,k k k
xx x U x y

   � (5)

with E  the gradient step coefficient. In a discrete-time setting, xE U  refers to the gradient of variational cost 
E U w.r.t. E x . In a time-continuous setting, xE U  stands for the functional derivative of variational cost E U 

w.r.t. E x . The computation of gradient operator xE U  typically relies on the adjoint method (Blayo, 2008; Blum 
et al., 2009). The computational implementation of the adjoint method for operator E  Id  may derive from 
the continuous formulation of E  as well as from the discretized version of dynamical model E  to ensure the 
full consistency between the forward integration of model E  and the adjoint formulation (Bannister, 2017). 
We may also point out that data assimilation schemes commonly use optimization schemes which are more 
complex than a fixed-step gradient descent but they also require the computation of the gradient operator.

Within a deep learning framework, given a neural implementation for operator E  , one may straightfor-
wardly use automatic differentiation tools, typically referred to as the backward step in deep learning, to 
compute xE U  . Among the state-of-the-art deep learning framework, we may cite pytorch (https://www.
pytorch.org/), tensorflow (https://www.tensorflow.org/) and jax (https://jax.readthedocs.io/) in Python. We 
may also cite automatic differentiation tools in Julia (https://www.juliadiff.org/). Here, we use pytorch. In 
this paper, we investigate such differentiable numerical schemes for operator E  which may explicitly exploit 
physics-informed differential and integral operators as well as state-of-the-art neural network architectures. 
We also design neural architectures for the associated solver, i.e., an iterative gradient-based inversion al-
gorithm based on variational cost (Equation 4). Interestingly, the resulting end-to-end neural architecture 
provides means both to learn a solver for a predefined variational setting such as (Equation 4) as well as 
to jointly learn operator E  and the solver w.r.t. some performance criterion, which may be different from 
variational cost (Equation 4).

https://www.pytorch.org/
https://www.pytorch.org/
https://www.tensorflow.org/
https://jax.readthedocs.io/
https://www.juliadiff.org/
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3.  End-to-End Learning Framework
In this section, we detail the proposed end-to-end learning framework based on the neural implementation 
of variational formulation (Equation  4). We first introduce two different types of parameterizations for 
operator E  in (Equation 4), which refer to explicit ODE-based and PDE-based representations (Section 3.1) 
and constrained CNN representations (Section 3.2). We then detail the neural solver in the proposed end-
to-end scheme.

3.1.  Explicit ODE/PDE-Based Formulation for Operator 

Here, we assume that we know the dynamical operator E  in (Equation 1), or at least the parametric family 
it belongs to  with NE           with E N the number of parameters of the model:

 ( ) ( )x t x t
t 





� (6)

Given the neural implementation of model E   , we can implement operator E  as a residual network (He 
et al., 2016) using explicit integration schemes. Here, we consider a fourth-order Runge-Kutta scheme (Dor-
mand & Prince, 1980), which leads to:

 
4

1
( )( ) ( ) ( ),i i

i
x t x t k x t 


         � (7)

where  1 4 1 6  /  ,  2 3 2 6  /  , and   1( ), ( ( ) )i i iE k x t x t k          with 0 0E k   , 
  1 2 3 1 2   /  and 4 1E    . In such formulations, operator E  computes a one-step ahead prediction of 
the input state sequence. We may emphasize that the size of the output of the neural implementation of 
operator E  is the same size as the input sequence. In a similar fashion, this also applies to PDE formulations 
and could be combined to the automatic generation of neural architectures from symbolic PDEs as pro-
posed in (Pannekoucke & Fablet, 2020).

3.2.  Constrained CNN Formulation for Operator 

From the interpretation of term x x ( )
2
 in Equation 4 as a projection error, state-of-the-art neural net-

work architectures may also seem appealing. Here, we rely on a discrete-time formulation for E x over the 
considered time window. CNN architectures whose possible parameterization includes the identity opera-
tor ( )E x x   shall be excluded as they would result in meaningless priors in minimization of energy (Equa-
tion 4). We consider the following parameterization (Fablet, Drumetz, & Rousseau, 2021; Fablet, Ouala, 
et al., 2021):

 ( ) ( )x x  � (8)

where operator E   s a convolutional layer where the central values of all convolution kernels is set to zero 
such that ( )( )E x s  at position E s does not depend on variable ( )E x s  where E s refers to a tuple ( , )E k p  of a discrete 
time index E k and a feature index  . It would also apply to multivariate space-time tensors. E  is a CNN which 
composes a number of convolution and activation layers where the kernel size of all convolution layers 
is 1 along time and/or space dimensions of process E x . This guarantees that identity is excluded from the 
possible parameterization for operator E  . We refer to these architectures as GENN (Gibbs Energy Neural 
Network) as they can be regarded as a neural implementation of Gibbs energies (Perez, 1998). Contrary to 
the ODE-based parameterization introduced in the previous Section, the latter parameterization does not 
derive from a prior parameterization of dynamical operator E  . In addition, it does not involve a sequential 
representation as the ODE-derived one. Through the convolutional operator, ( )( )E x t  depends on some time 
neighborhood ( ), , ( )E x t x t     where E   relates to the kernel width of the convolution operators as well as 
the number of convolution layers. We may however interpret operator E  as a discretized numerical scheme 
of an ODE or a PDE (Pannekoucke & Fablet, 2020) as , , ( )( , )E t p x t p   only involves a local neighborhood in 
the time or space-time domain.

Interestingly, within this category of CNN representations for operator E  , we may easily consider multi-scale 
representations to capture patterns of interest at different scales. It comes to combine the architecture 
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defined by (Equation 8) to upsampling and downsampling operators, which are available in deep learning 
frameworks. Here, we consider two-scale representations

  1 2( ) ( ) ( )x x x     � (9)

where operators 1,2E   follow the constrained parameterization introduced above. E  is a downsampling oper-
ator implemented as an average pooling layer and E   an upsampling operator implemented as a ConvTrans-
pose layer. In the deep learning literature, such architectures are referred as U-Nets (Cicek et al., 2016). 
Given that operator 1E   uses as inputs only a downsampled version of the input data through operator E Dw , 
using the same convolution kernel widths for operators 1,2E   they do not access the same scales. Though 
there might be some scale overlap between 1E   and 2E   , they also inform specific scale ranges, the lowest 
frequencies for 1E   and the highest frequencies for 2E   , such that we expect they do not solely arbitrarily 
compensate and embed a representation of key multi-scale features.

3.3.  End-to-End Architecture

Given a neural formulation for operator E  , we design a neural solver for the targeted minimization based 
on criterion (Equation 4). Using automatic differentiation tools embedded in deep learning frameworks, 
we can evaluate the gradient of variational cost (Equation 4) w.r.t. variable E x , denoted as xE U  . Inspired by 
meta-learning schemes (Andrychowicz et al., 2016; Hospedales et al., 2020), we can design recurrent neural 
networks to implement gradient-based solvers for the targeted data assimilation issue. Here, we investigate 
two types of solvers corresponding to the following iterative updates:

�1.	� A LSTM-based solver, which updates the state at the thE k  iteration as

g LSTM U x y h k c k

x x g

k
x

k

k k

( ) ( )

( ) ( ) (

, , , ( ), ( )




    





 

1

1

  

 kk 






 1)

� (10)

where E  is a scalar parameter, { ( ), ( )}E h k c k  the internal states of the LSTM model and E  a linear layer to map 
the LSTM output to the space spanned by state E x . LSTM-based updates are the classical parameterization of 
meta-learning schemes. Through the ability of LSTM models to capture long-term and short-term correla-
tions, the resulting gradient-based updates can be regarded as an alternative to momentum-based gradient 
descent algorithms (LeCun et al., 2015).

�2.	� A CNN solver, which updates the state at the thE k  iteration as

g U x y g

x x g

k
x

k k

k k k

( ) ( ) ( )

( ) ( ) ( )

, , ,


 

    





   




1

1 1





  




� (11)

where E  is a CNN with a sequence of convolutional layers with Relu activations which uses as inputs the 
concatenation of gradient  ( ),k

xE U x y   and previous update ( )kE g  . Here, E  refers to an atan activation to 
avoid exploding updates, especially in the early steps of the learning process.

These two types of updates are used as residual blocks to design a residual network (ResNet) (He et al., 2016) 
with a predefined number of iterations (typically, from 5 to 20 in our experiments). Overall, as sketched in 
Figure 1 the resulting end-to-end architecture uses as inputs an initial state (0)E x  , an observation series E y 
and the associated observation domain E  to account for missing values and aims to reconstruct the hidden 
state E x . In terms of deep learning architectures, it combines the neural implementation of variational cost 

( , )E U x y  and the iterative gradient-based neural solver, denoted as E  . Let us denote by (0)
, ( , , )E x y    the 

resulting end-to-end model.

3.4.  Learning Setting

Given the proposed end-to-end architecture, we may consider different learning strategies. The first strategy 
assumes that a calibrated implementation of operator  is available in the chosen differentiable framework. 
We may be provided with an ODE or PDE representation for dynamical model  or we may perform as 
a preliminary step the supervised identification of operator  using some representative data set for state 
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sequence E x , for example, (Fablet et al., 2018; Raissi et al., 2019; Pannekoucke & Fablet, 2020). In such a 
situation, given some observation data set comprising a number of observation series 1{ , , }NE y y  with as-
sociated missing data masks 1{ , , }NE     , we can address the learning of NN solver E  as the minimization 
of variational cost (Equation 4). For the sake of simplicity, in the following, we drop the subscript index 
corresponding to a time index and we only include a subscript referring to the index of the sample in the 
considered data set. For instance, nE   refers to observation mask for the thE n  sample of the data set, which 
comprises a series of masks , ,0 0{ , , }n t n t NE      at time steps 0E t  to 0E t N  . This first strategy then leads to 
the following learning loss

 (0)
, ( , , ), ,n n n n n

n
U x y y     � (12)

where parameter 1,2E   in the definition of energy E U in (Equation 4) are set a priori. This learning strategy is 
the standard criterion considered in variational data assimilation. It may be regarded as a non-supervised 
setting in the sense no groundtruthed data is available for the reconstruction of state E x from observation 
data ( , )E y   .

Interestingly, we may also consider a second strategy with a supervised setting where the training data set 
comprises observation series 1{ , , }NE y y  , associated missing data masks 1{ , , }NE     and true states 1{ , , }NE x x  . 
Here, we can consider as learning loss the minimization of the reconstruction error

    
n

n n n nx x y  ,
( )

, ,
0

2

� (13)

this is a classic supervised strategy where we aim to train the end-to-end architecture so that the recon-
struction error of the true state given the observation sequence is minimized. We may point out that, in this 
supervised setting, the gradient used as input in the trainable solver is not the gradient of the training loss 
but the gradient of the variational cost, whose computation only involves observation data and not the true 
states.

We may point out that both for the unsupervised and supervised strategies the backpropagation of the 
gradient of the end-to-end architecture involves a gradient of a gradient, more precisely the gradient (w.r.t. 
trainable parameters) of the gradient of variational cost (Equation 4) (w.r.t. state variable E x ). These two gra-
dient stages exploit the automatic differentiation. This means we apply an automatic differentation onto the 
computational graph derived from an automatic differentiation of variational cost (Equation 4).

Figure 1.  Sketch of the proposed end-to-end architecture in the inference mode: given a partial observation E y with 
missing data mask E  and an initialization (0)E x  for the unknown state E x to be reconstructed, the proposed neural network 
architecture relies on an iterative gradient-based solver. It exploits a residual architecture with a predefined number 
of residual blocks, where the k thE  residual unit uses as input the gradient  ( 1), ,k

xE U x y
   of variational cost E U w.r.t. 

state E x evaluated for the output of the previous residual step. Gradient  ( 1), ,k
xE U x y

   derives from automatic 
differentiation tools embedded in deep learning frameworks, e.g., autograd function in pytorch.
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We noted experimentally that additional losses corresponding to projection error x x ( )
2
 averaged over 

true and reconstructed states act as regularization terms for the training and were considered in our exper-
iments. Overall, we implement all models using pytorch framework and the Adam optimizer. We typically 
increase incrementally the number of iterations of the gradient-based NN Solver (typically from 5 iterations 
to 20 ones). We let the reader refer to the code available online (https://doi.org/10.5281/zenodo.5266407) for 
additional details on the implementation.

4.  Numerical Experiments
This Section reports numerical experiments with the proposed framework for Lorenz-63 and Lorenz-96 
systems, which are widely considered for demonstration and evaluation purposes in data assimilation and 
are among the typical case-studies considered in recent data-driven and learning-based studies (Bocquet 
et al., 2020; Lguensat et al., 2017; Raissi, 2018).

When addressing a specific case-study, the proposed framework involves the definition of three main 
components:

1.	 �The definition of the variational cost, especially operator E  (Equation 4). Operator E  may be known a 
priori with predefined parameters or involves trainable parameters within a chosen parametric family 
of operators;

2.	 �The definition of the parameterization of the trainable solver E  ;
3.	 �The selection of a supervised training loss (Equation 13) or of an unsupervised loss (Equation 12), which 

depends on the availability of groundtruthed data sets.

While we can consider any combination of these three components, we specifically investigate in these ex-
periments the relevance of a joint learning of operator E  and solver E  as well as of the impact of the selected 
training loss.

4.1.  Lorenz-63 Dynamics

We first perform numerical experiments for the assimilation of Lorenz-63 dynamics from partial and noisy 
observations. Lorenz-63 system is governed by the following three-dimensional ODE:

dX

dt
X X

dX

dt
X X X X

dX

dt
X

t
t t

t
t t t t

t
t

,
, ,

,
, , , ,
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

11 2 3X Xt t, ,






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



 

� (14)

with the following parameterization: 10E    , 28E    , and   8 3/  . It generates chaotic patterns 
(Lorenz, 1963). In our experiments, we simulate Lorenz-63 time series with a 0.01 time step using a RK45 
integration scheme (Dormand & Prince, 1980). We consider time series with 200 time steps. The observa-
tion data are sampled every 8 time steps for the first component of the Lorenz-63 state only and involve a 
Gaussian additive noise with a variance of 2. The test data set comprises 2,000 sequences and the training 
data with groundtruthed states contain 10,000 sequences.

Regarding operator E  , we consider two approaches as discussed in Section 3:

1.	 �A differentiable implementation of an ODE-based representation using a 4thE  -order Runge-Kutta integra-
tion scheme of the ODE. The ODE operator is implemented as bilinear convolutional layers with a total 
of 9 parameters as proposed in (Fablet et al., 2018);

2.	 �A constrained CNN representation. We consider a two-scale neural architecture introduced in (Equa-
tion 9), where operators 1,2E   involve bilinear convolutional blocks with 30 channels. This architecture 
involves a total of E  15,000 parameters.

https://doi.org/10.5281/zenodo.5266407
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We consider both LSTM-based and CNN-based versions of solver E  . They involve respectively E  3,000 and 
E  4,000 parameters. We let the reader refer to the Python notebook available online (https://doi.org/10.5281/

zenodo.5266407) for implementation details.

We synthesize the performance metrics of these experiments in Table 1 for the different parameterizations 
of operator E  and the associated solvers using either a supervised learning strategy or an unsupervised one 
(See Section 3). As baseline for a standard variational data assimilation scheme, we consider a fixed-step 
gradient descent (FSGD) of assimilation cost (Equation 4) using a fourth-order Runge-Kutta integration 
scheme for the known ODE model. This baseline is also implemented in Pytorch. All trained solvers involve 
20 gradient-based iterations. For the FSGD, we let the minimization converge and chose a small gradient 
step to guarantee the convergence. As evaluation metrics, we consider the reconstruction error of the true 
state (mean square error) (R-score), the assimilation cost (4DVar-score) and the mean square error for the 
one-step-ahead dynamical prior x x ( )

2
 (ODE-score). To compute comparable assimilation costs across 

methods, we report the assimilation cost for all schemes with 1 0.01E    and 2 1.0E    , although these param-
eters may differ from the values learned during the training phase for supervised settings.

From Table 1, we may first notice that all schemes, which aim at minimizing assimilation cost (Equation 4), 
that is, the FSGD and unsupervised solvers, lead to worse reconstruction performance (R-score about 3.5) 
compared with supervised schemes (R-score up to 1.34). Conversely, the former leads to significantly bet-
ter 4DVar-scores. These results emphasize that the assimilation cost may not be a very good indicator of 
the reconstruction performance. For instance, the trained aG-Conv solver leads to a slightly better per-
formance than the FSGD (R-score of 3.52 vs. 3.55) but with a greater assimilation cost (4DVar-score of 
1.05e−2 vs. 7.70e−3). In the unsupervised setting, the use of a GENN prior results in very poor reconstruc-
tion performance, which may relate to a worse prediction performance (ODE-score of 2.0e−4 vs. 3.7e−5 for 
a fourth-order Runge-Kutta scheme with the true ODE model).

Importantly, the supervised schemes greatly improve the reconstruction performance compared with the 
baseline (R-score of 1.34 for the best supervised scheme vs. 3.55 for the FSGD scheme). The best perfor-
mance is indeed reported for a joint learning of operator E  and of the associated solver, using a GENN pa-
rameterization for operator E  . The improvement is also significant compared to the supervised learning of 

Learning scheme Model Optim R-score 4DVar-score ODE-score

No learning L63-RK4 FSGD 3.55 7.70e−3 E  1e−4

Unsupervised learning L63-RK4 aG-Conv 3.52 1.07e−2 E  1e−4

aG-LSTM 4.52 1.40e−2 E  1e−4

L63-  1GENNE aG-Conv 25.3 1.98e−2 5e−3

aG-LSTM 11.6 1.85e−2 5e−3

Supervisd learning L63-RK4 aG-Conv 2.82 9.24e−2 E 1e−4

aG-LSTM 4.00 9.36e−2 E 1e−4

L63-  1GENNE aG-Conv 1.34 1.10e−1 0.16

aG-LSTM 1.62 1.27e−1 0.14

Note. We report the reconstruction performance of the proposed framework using unsupervised and supervised 
learning schemes. We consider two types of representations of the dynamics through operator E  (See the main text 
for details): a differentiable implementation of the known ODE using a RK4 integration scheme (L63-RK4) and a 
two-scale GENN representation (L63-GENN). Regarding NN solver E  , we consider two types of architectures using 
automatic differentiation to compute the gradient of assimilation cost (Equation 4) w.r.t. State E x : LSTM-based solver 
(aG-LSTM) and CNN-based ones (aG-CNN). As baseline for a standard variational data assimilation scheme, referred 
to as FSGD, We report the performance of a fixed-step gradient descent for assimilation cost (Equation 4) with the 
known ODE model and a fourth-order Runge-Kutta (RK4) Integration scheme. We evaluate three performance 
metrics: The mean square error of the reconstruction of the true state (R-score), the value of the assimilation cost 
(Equation 4) for the reconstructed state E x (4DVar-score) and the mean square error of the one-step-ahead prediction of 
the consider dynamical prior E  (ODE-score). Bold values refer to the best score.

Table 1 
Lorenz-63 Experiments

https://doi.org/10.5281/zenodo.5266407
https://doi.org/10.5281/zenodo.5266407
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a solver using the discretized version of the true ODE model for operator E  . Intriguingly, the learnt GENN-
based operator E  is characterized by a relatively poor one-step-ahead prediction error (ODE-score of 0.16 
vs. 3.7e−5 for the ODE-based schemes). These results suggest that the best dynamical prior for assimilation 
purposes might not be the discretization of the true ODE model. The detailed analysis of the values of the 
assimilation cost further points out that its direct minimization may not be the best strategy to optimize the 
reconstruction performance.

We further illustrate these results in Figure 2 and Figure 3. For a randomly-sampled subset of the test data 
set, we report in Figure 2 the energy pathways of different solvers: namely the baseline (FSGD), the best 
unsupervised and supervised solvers using the true ODE model for operator E  , and the best supervised 
solver for a GENN-based operator E  . Here, the FSGD scheme involves more than 150,000 steps, whereas all 
the learned solvers involve only 20 gradient-based iterations. In these experiments, the CNN-based solver 

Figure 2.  Reconstruction of Lorenz-63 dynamics. Upper panel: solvers' energy pathways using different parameterizations for operator E  in (Equation 4) and 
the iterative gradient-based solver. We depict along the sequence of iterations of a solver the evolution of the reconstruction error and of the variational cost. 
We first consider a neural implementation of cost (Equation 4), referred to as ODE cost, with a parameterization of operator E  based on a fourth-order Runge-
Kutta scheme for the known Lorenz-63 ODE. For this ODE cost, we report the energy pathways for a fixed-step gradient descent (magenta dashed) and neural 
solvers trained using unsupervised (magenta, dashed-dotted) and supervised (magenta, solid) learning schemes. We also report the energy pathway for a joint 
supervised learning of the variational model and of the solver. Lower panel: associated pdfs of the reconstruction error for each component of the Lorenz-63 
state.
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always reach a better performance than the LSTM-solver. Interestingly, the joint learning of operator E  and 
of the associated solver leads to a smooth descent, which may indicate that the training phase converges 
towards a new variational cost with a better agreement between the minimization of this cost and the re-
construction performance.

The distributions of the error of the reconstruction for the three components of the Lorenz-63 state in Fig-
ure 2 along with different examples in Figure 3 further emphasize the better reconstruction performance of 
the joint learning of a GENN-based operator E  and a aG-Conv solver, which leads to reconstruction patterns 
very similar to the true ones.

4.2.  Lorenz-96 Dynamics

The second experiment involves Lorenz-96 dynamics which are governed by the following ODE

 ,
, 1 , 2 , 1 ,

t i
t i t i t i t i

dx
x x x x F

dt      � (15)

with i the index from 1 to 40 and E F a scalar parameter set to 8. The above equation involves a periodic bound-
ary constraint along the multivariate dimension of state ( )E x t  . In our experiments, we simulate Lorenz-96 
time series with a 0.05 time step using a RK45 integration scheme (Dormand & Prince, 1980). We consider 
time series with 200 time steps. The observation data are sampled every four time steps and involve a Gauss-
ian additive noise with a variance of 2. Only 20 of the 40 components of the states are observed according 
to a random sampling. The test data set comprises 256 sequences and the training data with groundtruthed 
states 2,000 sequences.

Regarding operator E  , we consider two architectures as discussed in Section 3:

1.	 �A differentiable implementation of an ODE-based representation, referred to as L96-RK4 based on 
a 4thE  -order Runge-Kutta integration scheme of the ODE. Our implementation involves bilinear con-
volutional layers with a periodic boundary conditions. This representation comprises a total of nine 
parameters;

2.	 �A constrained CNN representation referred to as L96-GENN. We consider a two-scale neural architec-
ture (Equation  9), where operators 1,2E   involve bilinear convolutional architectures with a total of E  
50,000 parameters.

As described in Section 3, we consider both LSTM-based and CNN-based versions of solver E  . They involve 
respectively E  1,000 and x E  1,500 parameters. We let the reader refer to the code made available for imple-
mentation details (https://doi.org/10.5281/zenodo.5266407).

Figure 3.  Reconstruction examples for Lorenz-63 dynamics: from left to right, we report four examples of 200-step Lorenz-63 sequences with true states (black, 
solid), observed values for the first component (blue dots). We refer the reader to Figure 2 for the details of the different reconstruction schemes (magenta and 
cyan).

https://doi.org/10.5281/zenodo.5266407
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Similarly to Lorenz-63 experiments, we first report in Table 2 a quantitative comparison of different pa-
rameterizations of operator E  and solver E  . The best unsupervised solver for a variational cost based on the 
known ODE reaches the same reconstruction performance as the baseline using only 20 gradient-based 
iterations, to be compared with several thousands for the FSGD solver. Again, the CNN-based solver out-
performs the LSTM-based one in the unsupervised setting. We do not report the performance for the GENN-
based representation in the unsupervised setting as it behaves very poorly similarly to Lorenz-63 experi-
ments. Besides, the reconstruction performance is greatly improved when considering a supervised setting, 
especially when we jointly learn operator E  and solver E  with a relative gain greater than 50% compared 
with the baseline. In this case, the best performance is achieved with a LSTM-based solver. Again, the best 
reconstruction performance does not come with a good one-step-ahead prediction score for the learned 
GENN-based representation.

We further illustrate these experiments in Figure 4. Here, all solvers' energy pathways are consistent with 
minimization patterns both for the reconstruction error and the assimilation cost. These pathways are very 
similar for the three solvers when using the variational cost based on the known ODE. Visually, they lead 
to similar error distributions and patterns though the FSGD solver involves greater errors. Visually, we can 
note a clear improvement when considering a joint supervised learning of the variational model and solver. 
The latter combines a GENN-based parameterization for operator E  and a LSTM-based solver.

5.  Related Work
In this section, we further discuss how the proposed framework relates to and complements previous works 
according to five different aspects: end-to-end learning framework for inverse problems, learning schemes 
for gradient-based solvers, representation learning for data assimilation, data assimilation for forecasting 
issues and learning for computational fluid dynamics.

5.1.  End-to-End Learning for Inverse Problems

A variety of end-to-end architectures have been proposed for solving inverse problems in signal and image 
processing, for instance for denoising, deconvolution or super-resolution issues (Chen et al., 2015; Lucas 
et al., 2018; McCann et al., 2017; Xie et al., 2012). In these studies, proposed schemes generally rely on a 
global convolutional architecture, but do not explicitly state on one hand a differentiable representation of 
an energy-based setting and, on the other hand, the gradient-based solver of the consisdered variational 
formulation. For instance, in Chen et al. (2015), the end-to-end architecture is inspired by reaction-diffusion 
PDEs derived from the Euler-Lagrange equation of a variational formulation, but does not explicitly embed 
such a variational formulation. Conversely, deep learning frameworks and embedded automatic differen-
tiation tools have been considered to solve for inverse problems through the minimization of variational 
models, where the prior can be given by a pre-trained NN representation (McCann et al., 2017). An other 

Learning scheme Model Optim R-score 4DVar-score ODE-score

No learning L96-RK4 4DVar 1.06 1.47e−2 E  1e−4

Unsupervised learning L96-RK4 aG-Conv 1.00 1.66e−2 E  1e−4

aG-LSTM 1.32 1.91e−2 E  1e−4

Supervised learning L96-RK4 aG-Conv 0.82 2.12e−2 <1e−4

aG-LSTM 0.97 3.15e−2 <1e−4

L96-GENN aG-Conv 0.49 7.47e−2 12.20e−2

aG-LSTM 0.38 5.30e−2 7.20e−2

Note. We report the reconstruction performance of the proposed framework using unsupervised and supervised 
learning schemes. We let the reader refer to Table  1 and the main text for details on the considered schemes and 
evaluation criteria. Bold values refer to the best score.

Table 2 
Lorenz-96 Experiments
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strategy explored in the literature relies on the definition of two independent networks, one correspond-
ing to the generative model and the other one to the inverse model. Raissi et al. (2019) and Raissi (2018) 
were among the first to explore such end-to-end architectures for the data-driven identification of ODE/
PDE representations. This may be regarded as similar in spirit to auto-encoder architectures: the decoder 
aims to solve the inverse of the encoder but it does not explicitly depend on the representation chosen for 
the encoder. Here, the considered end-to-end architecture exploits automatic differentiation to explicitly 
relate the gradient-based inversion model to the considered differentiable variational representation. The 
latter makes explicit the definition of an observation model and of a dynamical prior. This is regarded as of 
great interest to improve the overall interpretability of the architecture. Besides, our experiments support 
that jointly learning the representation of the dynamics and the associated solver can lead to a very signif-
icant improvement compared with pre-training the dynamical prior and solving the resulting variational 
minimization. This is illustrated in this study for a supervised setting but could also apply to unsupervised 
settings as suggested in Fablet, Drumetz, and Rousseau (2021); Fablet, Ouala, et al. (2021). Applications 
to the forecasting and reconstruction of sea surface dynamics (Fablet, Drumetz, & Rousseau, 2021; Fablet, 
Ouala, et al., 2021) support the relevance of the proposed framework to better exploit satellite-derived ocean 
remote sensing data and potential applications in operational systems.

5.2.  Learning Gradient-Based Solvers for Inverse Problems and Data Assimilation

A key novelty of the proposed end-to-end architecture is the gradient-based neural solver for the targeted 
minimization. This is similar to meta-learning and learning-to-learn strategies (Andrychowicz et al., 2016; 
Hospedales et al., 2020), where one can learn jointly some targeted representation and the optimizer of the 
training loss. The LSTM-based architecture of the considered gradient-based neural solver is similar to the 
one considered in learning-to-learn schemes. Such trainable solvers may speed up optimization strategies. 
For instance, in our experiments, we only exploit 20 gradient steps. Interestingly, we do not require as training 

Figure 4.  Reconstruction of Lorenz-96 dynamics. Upper left panel: example of true state sequence and associated partial observations; Upper center panel: 
solvers' energy pathways with the same setting as in Figure 2 adapted to Lorenz-96 case-study; Upper right panel: associated pdfs of the reconstruction 
errors. Lower panel: We depict the first half of an example of 200-time-step series of 40-dimensional Lorenz-96 states, the x-axis being the time axis; first row, 
reconstructed state sequence for the unsupervised and supervised solvers for a variational cost based on the known Lorenz-96 ODE as well as for the jointly 
learned variational model and solver according to a supervised setup; second row, absolute error maps of each of the four reconstructions. All states and errors 
are displayed with the same colormap.
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data for the neural solver minimization path exemplars from some predefined gradient descent algorithms. By 
contrast, we train the solver in an end-to-end fashion so that we optimize a reconstruction score. We may also 
notice that we apply here automatic differentiation to compute the gradient w.r.t. the hidden state and not the 
parameters of the NN representations. Besides, in the supervised learning case, the gradient computed using 
automatic differentiation is not the gradient of the loss to be minimized during the training process but the 
gradient of assimilation criterion (Equation 4). We expect the latter to be a good proxy to minimize the recon-
struction error of the true states. The reported numerical experiments support this assumption and suggest 
extensions to other training losses which could benefit from additional data, not provided as inputs for the 
computation of variational cost (Equation 4). Note that in general, the 4DVar cost can present multiple local 
and global minima, except in the particular case where the dynamics are linear (as well as the observational 
operator that maps the state space to the observational space). In order to avoid falling into local minima or 
to select the absolute minimum a quasi-static approach can be considered (Pires et al., 1996), based on a suc-
cessive small increments of the assimilation period. While this issue is not addressed in the present work, a 
similar quasi-static approach could be considered in the design of the learning gradient-based solver.

5.3.  Representation Learning for Data Assimilation

As stated in the introduction, the data-driven identification of representations of geophysical dynamics is a 
very active research area. Numerous recent studies have investigated different machine learning schemes for 
the identification of governing equations of geophysical processes, including sparse regression techniques 
(Brunton et al., 2016), neural ODE and PDE schemes (Chen et al., 2018; Pannekoucke & Fablet, 2020; Raissi 
et al., 2019) as well as analog methods (Lguensat et al., 2017). Interestingly, advances have been proposed for 
the data-driven identification of such representations, when the processes of interest are not fully observed. 
This covers noisy and irregularly-sampled observations and partially-observed systems. Reduced-order 
modeling, which aims to identify lower-dimensional governing equations, also involves very similar studies 
(Champion et al., 2019). These previous works mainly rely on the identification of an ordinary or partial 
differential equation as this mathematical representation is a very generic one for modeling geophysical dy-
namics. The proposed end-to-end framework explicitly embeds a representation of the considered geophys-
ical dynamics. In line with previous works cited above, we may consider neural ODE/PDE representations 
(Chen et al., 2018; Fablet et al., 2018; Pannekoucke & Fablet, 2020). As we rely on an energy-based setting, 
we can explore other types of representation. In the reported experiments, we have shown that a multi-scale 
energy-based representation for the dynamical prior leads to significantly better reconstruction performance 
than an ODE-based representation at the expense of the relatively coarse approximation of the dynamics. 
These experiments suggest that, for a given process, different representations might be relevant depending on 
the targeted applications or geophysical metrics of interest. For instance, we may expect that reconstruction 
or forecasting schemes for extremes may lead to different representations. Similarly, it also raises the question 
whether the representation should be adapted to the observation operator.

5.4.  Data Assimilation for Forecasting Problems

This work can be adapted to the different classical applications of data assimilation to forecasting problems 
in earth science. Compared with (Equation 4), the data assimilation cost usually involves a discrepancy 
term on the initial condition, called the background term. This term is usually expressed as a Mahalano-
bis distance and involves the inverse of the background covariance matrix. This matrix plays the role of a 
smoothing prior on the solution and its specification is essential, yet difficult to fix or parameterize based 
on physical grounds. In the proposed framework, this would correspond to parameterizing and learning 
this discrepancy term with respect to the initial condition, while the dynamics is fixed and given. While 
the considered formulation (Equation 4) relates to the weak-constraint data assimilation, which accounts 
for modeling errors, we could also explore the proposed framework for the so-called strong constraint data 
assimilation, which amounts to stating operator E  as the forecasting of the state sequence { ( )}i iE x t  over the 
entire time interval from the initial condition 0( )E x t  . Within a weak-constraint data assimilation with a 
known physical model, the proposed framework may provide new means to fit a correction error term in 
the dynamics from a parameterization of operator E  as *E d   with *E   defined as in the strong constraint 
case and E d as in the reported experiments.
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5.5.  Learning for Computational Fluid Dynamics

In the present study, one of the considered NN architecture for operator E  derives from a general time 
evolution model interpreted in terms of iterative integration schemes (i.e., Runge-Kutta, Euler etc.). In 
computational flow dynamics, splitting methods are usually introduced to deal with incompressiblity and 
the computation of the pressure forcing term (Issa et al., 1986; Patankar, 2018). The introduction of such 
splitting in the NN architecture might enable us to enforce the incompressibility of the solution and thus to 
strengthen the physical relevance of the solutions. The synergy between NN architectures and numerical 
schemes is a natural way to enforce some numerical constraints imposed by the deep physical features of 
the dynamics at stake. For instance, splitting in terms of slow 3D internal baroclinic and fast 2D (depth av-
eraged) barotropic motions, as it is usually done in numerical ocean models, also arises as a natural strategy 
to enforce the physical relevance of learning-based schemes applied to ocean dynamics.

6.  Conclusion
We have introduced an end-to-end learning framework for variational assimilation problems. Assuming 
the observation operator is known, it combines a neural-network representation of the dynamics and a 
neural-network solver for the considered variational cost. We may derive the latter from the known differ-
ential operator for the considered dynamics. Here, for Lorenz-63 and Lorenz-96 dynamics, we considered 
NN representations which implement fourth-order Runge-Kutta integration schemes. A similar approach 
can be considered for PDEs, including with automatic NN generation tools from symbolic PDE expressions 
as proposed in (Pannekoucke & Fablet, 2020). Depending on the learning setting, we may learn jointly the 
two NN representations or only the NN solver assuming the NN representation of the dynamics has been 
calibrated previously. We provide a pytorch implementation of the proposed framework.

We report numerical experiments which support the relevance of the proposed framework. For Lorenz-63 
and Lorenz-96 dynamics, we have shown that we may learn fast gradient-based solver that can reach state-
of-the-art performance with only a few gradient iterations (20 in the reported experiments). Interestingly, 
our findings suggest that, when ground truthed data sets are available, the joint learning of the NN rep-
resentation of the dynamics and of the associated NN solver may lead to a very significant improvement 
of the reconstruction performance. Illustrated here for Lorenz systems, future work shall further explore 
whether these findings generalize to other systems, especially higher-dimensional ones.

Our findings also question the design and selection of the dynamical prior in variational assimilation sys-
tem. They suggest that numerical ODE-based representations optimal in terms of forecasting performance 
may not be optimal for reconstruction purposes. Future work shall further explore this question on the 
synergy between the representation of the dynamics and the gradient-based solver to retrieve the best pos-
sible state estimate. The extension of the proposed framework to stochastic representations is also of great 
interest and could be investigated both in the formulation of the variational costs as well as through some 
stochastic conditioning of the iterative solver.

Data Availability Statement
The authors provide the source code to generate all the data sets and experiments used in the manuscript, 
including trained models through the following link https://zenodo.org/badge/latestdoi/248528211.
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