
OASIS3-MCT User Guide
OASIS3-MCT 5.0

Edited by:
S. Valcke, T. Craig, E. Maisonnave, L. Coquart

CECI, Université de Toulouse, CERFACS

CERFACS TR/CMGC/21/161

15/12/2021

Copyright Notice
© Copyright 2021 by CERFACS
All rights reserved.
No parts of this document should be either reproduced or commercially used without prior
agreement by CERFACS representatives.

How to get documentation ?
The documentation can be downloaded from the OASIS web site under the URL :
https://oasis.cerfacs.fr/en/

How to get assistance?
Assistance can be obtained by sending a mail to oasishelp(at)cerfacs.fr

Contents

1 Introduction 2
1.1 Step-by-step use of OASIS3-MCT . 3
1.2 OASIS3-MCT sources . 3
1.3 Licenses and Copyrights . 4

1.3.1 OASIS3-MCT license and copyright statement 4
1.3.2 MCT copyright statement . 4
1.3.3 The SCRIP 1.4 license copyright statement . 5

2 Interfacing a component code with OASIS3-MCT 6
2.1 Configurations of components supported . 6
2.2 OASIS3-MCT Fortran API . 9

2.2.1 Module to use in the code . 9
2.2.2 Initialisation . 9
2.2.3 Partition definition . 11
2.2.4 Grid data file definition . 15
2.2.5 Coupling field declaration . 17
2.2.6 End of definition phase . 18
2.2.7 Sending “put” and receiving “get” actions . 19
2.2.8 Termination . 22
2.2.9 Auxiliary routines . 22

2.3 OASIS3-MCT C API . 25
2.4 OASIS3-MCT python API . 30

2.4.1 Fortran python API correspondence . 33
2.5 Additional notes on coupling functionality . 34

2.5.1 A brief overview of MCT . 34
2.5.2 Coupling scalar values . 36
2.5.3 The lag concept . 36
2.5.4 The sequence concept . 39

3 The configuration file namcouple 41
3.1 An example of a simple namcouple . 41
3.2 First section of namcouple file . 43
3.3 Second section of namcouple file . 45

3.3.1 Second section of namcouple for EXPORTED and EXPOUT fields 46
3.3.2 Second section of namcouple for OUTPUT fields 47
3.3.3 Second section of namcouple for INPUT fields 48

4 Transformations and interpolations 49
4.1 Time transformations . 49
4.2 The pre-processing transformations . 50
4.3 The remapping (or interpolation or regridding) . 50

i

ii CONTENTS

4.4 The post-processing stage . 56

5 OASIS3-MCT auxiliary data files 60
5.1 Grid data files . 60
5.2 Coupling restart files . 61
5.3 Input data files . 62
5.4 Transformation auxiliary data files . 62

6 Compiling, running, debugging, load balancing 63
6.1 Compiling OASIS3-MCT . 63
6.2 CPP keys . 64
6.3 Examples on how to run OASIS3-MCT . 64

6.3.1 tutorial communication . 64
6.3.2 spoc . 64
6.3.3 regrid environment . 65
6.3.4 Fortran, C and python equivalent examples . 65

6.4 Debugging . 66
6.4.1 Debug files . 66
6.4.2 Time statistics files . 66

6.5 Load balancing analysis of coupled model components 67

A The grid types for the transformations 69

B Changes between the different versions of OASIS3-MCT 70
B.1 Changes between OASIS3-MCT 5.0 and OASIS3-MCT 4.0 70
B.2 Changes between OASIS3-MCT 4.0 and OASIS3-MCT 3.0 71
B.3 Changes between OASIS3-MCT 3.0 and OASIS3-MCT 2.0 73
B.4 Changes between OASIS3-MCT 2.0 and OASIS3-MCT 1.0 73
B.5 Changes between OASIS3-MCT 1.0 and OASIS3.3 . 74

B.5.1 General architecture . 74
B.5.2 Changes in the coupling interface in the component models 74
B.5.3 Functionality not offered anymore . 75
B.5.4 New functionality offered . 76
B.5.5 Changes in the configuration file namcouple . 77
B.5.6 Other differences . 77

CONTENTS 1

.

ACKNOWLEDGMENTS

The development of this new version of OASIS, OASIS3-MCT 5.0 has been possible thanks the folllowing
fundings:

• EU Centre of Excellence ESiWACE2 , GA #823988
• EU IS-ENES3 - Infrastructure for the European Network for Earth System modelling - Phase 3

project (GA # 824084)

We would like to thank the main past or present developers of OASIS (in alphabetical order, with the name
of their institution at the time of their contribution to OASIS):
Arnaud Caubel (LSCE/IPSL & FECIT/Fujitsu), Laure Coquart (CNRS/CERFACS) Anthony Craig (CER-
FACS - consultant), Damien Declat (CERFACS), Italo Epicoco (CMCC), Rupert Ford (STFC), Philippe
Gambron (STFC), Veronika Gayler (MPI-M&D), Josefine Ghattas (CERFACS), Christopher Goodyer
(NAG) Jean Latour (CERFACS & Fujitsu-Fecit), Eric Maisonnave (CERFACS), Silvia Mocavero (CMCC),
Andrea Piacentini (CERFACS - consultant) Elodie Rapaport (CERFACS), Sami Saarinen (ECMWF), Eric
Sevault (Météo-France), Laurent Terray (CERFACS), Olivier Thual (CERFACS), Sophie Valcke (CER-
FACS), Reiner Vogelsang (SGI Germany), Li Yan (CERFACS).

We also would like to thank the following people for their help and suggestions in the design of the
OASIS software (in alphabetical order, with the name of their institution at the time of their contribution
to OASIS):
Dominique Astruc (IMFT), Chandan Basu (NSC, Sweden), Sophie Belamari (Météo-France), Dominique
Bielli (Météo-France), Yamina Boumediene (CERFACS), Gilles Bourhis (IDRIS), Pascale Braconnot
(IPSL/LSCE), Sandro Calmanti (Météo-France), Christophe Cassou (CERFACS), Yves Chartier (RPN),
Jalel Chergui (IDRIS), Philippe Courtier (Météo-France), Philippe Dandin (Météo-France), Michel Déqué
(Météo-France), Ralph Doescher (SMHI), Jean-Louis Dufresne (LMD), Jean-Marie Epitalon (CERFACS),
Laurent Fairhead (LMD), Uwe Fladrich (SMHI), Marie-Alice Foujols (IPSL), Gilles Garric (CERFACS),
Christopher Goodyer (NAG), Eric Guilyardi (CERFACS), Charles Henriet (CRAY France), Pierre Her-
chuelz (ACCRI), Maurice Imbard (Météo-France), Luis Kornblueh (MPI-M), Stephanie Legutke (MPI-
M&D), Claire Lévy (LODYC), Yann Meurdesoif (IPSL/LSCE) Olivier Marti (IPSL/LSCE), Sébastien
Masson (IPSL/LOCEAN) Claude Mercier (IDRIS), Pascale Noyret (EDF), Marc Pontaud (Météo-France),
Adam Ralph (ICHEC), René Redler (MPI-M), Hubert Ritzdorf (CCRLE-NEC), Tim Stockdale (ECMWF),
Rowan Sutton (UGAMP), Véronique Taverne (CERFACS), Jean-Christophe Thil (UKMO), Nils Wedi
(ECMWF).

Chapter 1

Introduction

In 1991, CERFACS started the development of a software interface to couple existing ocean and atmo-
sphere numerical General Circulation Models. Today, different versions of the OASIS3-MCT coupler are
used by at least 65 modelling groups all around the world to couple more than 80 applications on differ-
ent computing platforms1. OASIS3-MCT sustained development is ensured by a collaboration between
CERFACS and the Centre National de la Recherche Scientifique (CNRS) and its maintainance and user
support is regularly reinforced with additional resources coming from European and national projects.

The current OASIS3-MCT internally uses MCT, the Model Coupling Toolkit2 [Larson et al 2005]
[Jacob et al 2005], developed by the Argonne National Laboratory in the USA. MCT implements fully
parallel remapping, as a parallel matrix vector multiplication, and parallel distributed exchanges of the
coupling fields, based on pre-computed remapping weights and addresses. Its design philosophy, based
on flexibility and minimal invasiveness, is close to the OASIS3-MCT approach. MCT has proven parallel
performance and is, most notably, the underlying coupling software used in National Center for Atmo-
spheric Research Community Earth System Model (NCAR CESM).

OASIS3-MCT is a portable set of Fortran 77, Fortran 90 and C routines. Low-intrusiveness, portability
and flexibility are OASIS3-MCT key design concepts. After compilation OASIS3-MCT is a coupling
library to be linked to the component models, and which main function is to interpolate and exchange the
coupling fields to form a coupled system. OASIS3-MCT supports coupling of 2D logically-rectangular
fields but 3D fields and 1D fields expressed on unstructured grids are also supported using a one dimension
degeneration of the structures. Thanks to MCT, all transformations, including remapping, are performed
in parallel on the set of source or target component processes and all coupling exchanges are now executed
in parallel directly between the component processes via Message Passing Interface (MPI). OASIS3-MCT
also supports file I/O using NetCDF and has python and C language bindings.

The developments realised in the different versions of OASIS3-MCT are described in Appendix B. To
communicate with another component, or to perform I/O actions, a component model needs to include few
specific calls to OASIS3-MCT Application Programming Interface (API). The namcouple configuration
file is also largely unchanged, although several options are either added, deprecated, not used or not
supported.

Results obtained with IS-ENES2 coupling technology benchmarks show that OASIS3-MCT performs as
well as, and even better at very high number of cores, than other coupling technologies, at least for up
to O(10000) cores. It is therefore very likely that OASIS3-MCT will provide an efficient and easy-to-use
coupling solution for many climate modelling groups in the few years to come.

1A list of coupled models realised with OASIS3-MCT can be found at https://oasis.cerfacs.fr/en/oasis-coupled-models/
2www.mcs.anl.gov/research/projects/mct/

2

1.1. STEP-BY-STEP USE OF OASIS3-MCT 3

1.1 Step-by-step use of OASIS3-MCT

To use OASIS3-MCT for coupling codes, one has to follow these steps:
1. Obtain OASIS3-MCT source code (see chapter 1.2).
2. Get familiar with OASIS3-MCT, either by following the Short Private Online Course (SPOC, see

https://cerfacs.fr/online-training/) or by going through the tutorial steps. Tutorial sources are avail-
able in directory examples/tutorial communication and all explanations are provided in
the document tutorial communication.pdf therein.

3. Identify the coupling or I/O fields and adapt the codes to implement the coupling exchanges with
the OASIS3-MCT coupling library based on MPI message passing. The OASIS3-MCT coupling
library uses NetCDF and therefore can also be used to perform I/O actions from/to disk files. For
more detail on how to use the OASIS3-MCT API in the codes, see chapter 2.

4. Define all coupling and I/O parameters and the transformations required to adapt each coupling
field from the source model grid to the target model grid. On this basis, prepare OASIS3-MCT
configuring file namcouple. OASIS3-MCT supports different interpolation algorithms as described
in chapter 4. Remapping files can be computed online using the SCRIP options, or offline using
either the SCRIP, ESMF or XIOS (see examples/regrid environment, section 6.3.3) and
read in during the run using the MAPPING transformation.
We strongly recommend to tests off-line the quality of the chosen transformations and remap-
pings using the environment available in examples/regrid environment and explanations
provided in the document regrid environment.pdf therein.

5. Generate required auxiliary data files (see chapter 5).
6. Compile OASIS3-MCT, the component models and start the coupled experiment. For details on

how to compile and run a coupled model with OASIS3-MCT, see section 6.
If you need extra help, do not hesitate to contact us at oasishelp(at)cerfacs.fr .

1.2 OASIS3-MCT sources

OASIS3-MCT sources are available from CERFACS git server. To obtain more detail on downloading the
sources, please fill in the registration form at https://oasis.cerfacs.fr/en/downloads/ .
OASIS3-MCT directory structure is the following one:

- oasis3-mct/lib/cbindings C language bindings source code
/mct Model Coupling Toolkit Coupling Software
/psmile OASIS3-MCT coupling library
/scrip SCRIP interpolation library

- oasis3-mct/doc OASIS3-MCT User Guide

- oasis3-mct/util/make_dir Utilities to compile OASIS3-MCT
/load_balancing Tool for load balancing analysis

- oasis3-mct/pyoasis Python wrapper source code

- oasis3-mct/examples Environment to compile, run and use
different toy coupled models.

4 CHAPTER 1. INTRODUCTION

1.3 Licenses and Copyrights

1.3.1 OASIS3-MCT license and copyright statement

Copyright © 2021 Centre Européen de Recherche et Formation Avancée en Calcul Scientifique (CER-
FACS).
This software and ancillary information called OASIS3-MCT is free software. CERFACS has rights to use,
reproduce, and distribute OASIS3-MCT. The public may copy, distribute, use, prepare derivative works
and publicly display OASIS3-MCT under the terms of the Lesser GNU General Public License (LGPL)
as published by the Free Software Foundation, provided that this notice and any statement of authorship
are reproduced on all copies. If OASIS3-MCT is modified to produce derivative works, such modified
software should be clearly marked, so as not to confuse it with the OASIS3-MCT version available from
CERFACS.
The developers of the OASIS3-MCT software are researchers attempting to build a modular and user-
friendly coupler accessible to the climate modelling community. Although we use the tool ourselves and
have made every effort to ensure its accuracy, we can not make any guarantees. We provide the software
to you for free. In return, you –the user– assume full responsibility for use of the software. The OASIS3-
MCT software comes without any warranties (implied or expressed) and is not guaranteed to work for
you or on your computer. Specifically, CERFACS and the various individuals involved in development
and maintenance of the OASIS3-MCT software are not responsible for any damage that may result from
correct or incorrect use of this software.

1.3.2 MCT copyright statement

Modeling Coupling Toolkit (MCT) Software
Copyright © 2021, UChicago Argonne, LLC as Operator of Argonne National Laboratory. All rights
reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgment: ”This product includes software developed by the UChicago Argonne, LLC, as
Operator of Argonne National Laboratory.” Alternately, this acknowledgment may appear in the
software itself, if and wherever such third-party acknowledgments normally appear.
This software was authored by:

• Argonne National Laboratory Climate Modeling Group, Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne IL 60439

• Robert Jacob, tel: (630) 252-2983, E-mail: jacob@mcs.anl.gov
• Jay Larson, E-mail: larson@mcs.anl.gov
• Everest Ong
• Ray Loy

4. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED ”AS IS” WITHOUT WARRANTY
OF ANY KIND. THE COPYRIGHT HOLDER, THE UNITED STATES, THE UNITED STATES
DEPARTMENT OF ENERGY, AND THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NON-IN-

1.3. LICENSES AND COPYRIGHTS 5

FRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY OR RESPONSIBILITY FOR
THE ACCURACY, COMPLETENESS, OR USEFULNESS OF THE SOFTWARE, (3) DO NOT
REPRESENT THAT USE OF THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED
RIGHTS, (4) DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION UNINTER-
RUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL BE CORRECTED.

5. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT HOLDER, THE UNITED
STATES, THE UNITED STATES DEPARTMENT OF ENERGY, OR THEIR EMPLOYEES: BE
LIABLE FOR ANY INDIRECT, INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE
DAMAGES OF ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER SUCH LIA-
BILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT (INCLUDING NEGLIGENCE
OR STRICT LIABILITY), OR OTHERWISE, EVEN IF ANY OF SAID PARTIES HAS BEEN
WARNED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGES.

1.3.3 The SCRIP 1.4 license copyright statement

The SCRIP 1.4 copyright statement reads as follows:
“Copyright © 1997, 1998 the Regents of the University of California. This software and ancillary infor-
mation (herein called SOFTWARE) called SCRIP is made available under the terms described here. The
SOFTWARE has been approved for release with associated LA-CC Number 98-45. Unless otherwise in-
dicated, this SOFTWARE has been authored by an employee or employees of the University of California,
operator of Los Alamos National Laboratory under Contract No. W-7405-ENG-36 with the United States
Department of Energy. The United States Government has rights to use, reproduce, and distribute this
SOFTWARE. The public may copy, distribute, prepare derivative works and publicly display this SOFT-
WARE without charge, provided that this Notice and any statement of authorship are reproduced on all
copies. Neither the Government nor the University makes any warranty, express or implied, or assumes
any liability or responsibility for the use of this SOFTWARE. If SOFTWARE is modified to produce
derivative works, such modified SOFTWARE should be clearly marked, so as not to confuse it with the
version available from Los Alamos National Laboratory.”

Chapter 2

Interfacing a component code with
OASIS3-MCT

At run-time, OASIS3-MCT performs parallel exchange of coupling data between parallel components
and sub-components and allows regridding (also called remapping or interpolation), time integration or
accumulation and other transformations of these coupling fields.
This chapter describes how to adapt the component codes to couple them through OASIS3-MCT.
OASIS3-MCT supports coupling exchanges between parallel components and sub-components deployed
in diverse configurations; the different possibilities and how to use the OASIS3-MCT library accordingly
are described in section 2.1.
The OASIS3-MCT Application Programming Interface (API) includes different classes of modules or
routines that are described in detail in sections 2.2, 2.3 and 2.4 for Fortran, C and python codes respec-
tively. In section 2.5, the reader will also find an overview of the MCT library (see 2.5.1) and additional
notes on how to exchange scalars (see 2.5.2), how to to reproduce different coupling algorithms with
OASIS3-MCT using the LAG index (see 2.5.3), and on the SEQ index (see 2.5.4).

2.1 Configurations of components supported

Since OASIS3-MCT 3.0 release, coupling exchanges between components and sub-components deployed
in a much larger diversity of configurations than before are supported. This is illustrated on figure 2.1 and
how to use the OASIS3-MCT library accordingly is detailed on figure 2.2. All OASIS3-MCT API routines
are also described in details in sections 2.2, 2.3 and 2.4.
We call here an “executable” a compiled code forming a part of or the whole coupled system. A “compo-
nent” is the ensemble of processes, or tasks, within the coupled system calling oasis init comp with
the same comp name argument (see section 2.2.2). A “sub-component” is the subset of tasks within a
component sending or receiving coupling fields on a specific grid; of course, a component may have only
one sub-component that gathers all its tasks.
In examples/tutoria communication and examples/regrid environment one finds prac-
tical examples of how to use the OASIS3-MCT library (see sections 6.3.1 and 6.3.3).
With OASIS3-MCT, it is currently possible to (the text between [and] refers to figure 2.1) :

• to implement coupling exchanges between two components or sub-components running concur-
rently on separate sets of tasks within two different executables [A, D, E, J];

• to implement coupling exchanges between two components or sub-components running concur-
rently on separate sets of tasks within one same executable [B, F, I];

• to implement coupling exchanges within one executable between two concurrent sub-components
[C]

6

2.1. CONFIGURATIONS OF COMPONENTS SUPPORTED 7

Comp	 exe1	 -‐	 	 	 	
comp1-‐grid1	 Sub-‐comp	 exe2	 –	 	 	

comp3	 –	 grid3	
	
	

	
	
	
	

Sub-‐comp	 exe2	 –	 comp3	 –	 grid5	
	

	
	
	
	
	

MPI	 tasks	

Comp	 exe2	 –	
comp2	 –	 grid2	

Comp	 exe2	 –	 comp3	

Sub-‐comp	 exe2	 –	
comp3	 –	 grid4	

	
	
	
	
	

A	

D	
C	

E	

J	

G	 H	

Comp	
exe2	 –	 	
comp4	

B	

F	

I	

0	 	 	 	 1	 	 	 	 2	 	 	 	 3	 	 	 	 4	 	 	 	 5	 	 	 	 	 	 	 6	 	 	 	 	 7	 	 	 	 8	 	 	 	 9	 	 	 10	 	 	 11	 	 	 12	 	 13	 	 	 14	 	 	 15	 	 	 16	 	 	 17	 	 	 18	 	 	 19	 	 	 20	 	 	 21	 	 22	 	 23	 	 	 24	 	 	 25	 	 	 26	 	 	 27	 	 28	 	 	 29	 	 	 30	 	 	 31	 	 32	 	 	 33	 	 	 34	 	 35	 	 	 36	 	 37	 	 	 	 	 	 	

Figure 2.1: The different configuration of components supported by OASIS3-MCT. Two executables exe1 and
exe2 are running concurrently on separate sets of MPI tasks (0-5 for exe1 and 6-37 for exe2).
Executable exe1 includes only one component comp1 that has coupling fields defined on only one
grid grid1 (decomposed on all of its 6 tasks). Executable exe2 includes 3 components, comp2,
comp3, and comp4 running concurrently respectively on tasks 6-11, 12-33 and 34-37. Component
comp2 participates in the coupling with fields defined on only one coupling grid grid2 (decomposed
on all of its 5 tasks) while comp4 does not participate at all in the coupling. Component comp3 has
3 sub-components, respectively exchanging coupling fields defined on grid3 (tasks 12-21), grid4
(tasks 22-30) and grid5 (tasks 12-26, therefore overlaping with both grid3 and grid4); finally,
comp3 has 3 tasks (31-33) not involved in the coupling. Sub-componentsexe2-comp3-grid3 and
exe2-comp3-grid5, or sub-components exe2-comp3-grid4 and exe2-comp3-grid5 are
examples of coupling between sub-components running sequentially on overlapping sets of tasks.

8 CHAPTER 2. INTERFACING A COMPONENT CODE WITH OASIS3-MCT

exe1-‐comp1-‐grid1	

exe2	 –	 comp3	 –	 grid3	

exe2	 –	 comp3	 –	 grid5	

MPI	 tasks	

exe2-‐comp2-‐grid2	 exe2	 –	 comp3	

exe2	 –	 comp3	 –	 grid4	

exe2	 –	 	
comp4	

oasis_init_comp	
(…,`comp1`,	 …)	

oasis_def_parBBon	 [grid1]	
oasis_def_var	

oasis_def_parBBon	 [grid3]	
oasis_def_var	

oasis_init_comp	
(…,`comp2`,	 …)	

oasis_def_parBBon	 [grid2]	
oasis_def_var	

oasis_init_	
comp(…,	

`comp4`,	 ...,	
coupled=	
`false`)	

oasis_init_comp	 (…,`comp3`,	 …)	
	

oasis_init_comp	 (…,`comp3`,	 …)	
	

oasis_def_parBBon	
oasis_def_var	

oasis_def_parBBon	
oasis_def_var	

oasis_init_	
comp	 (…,	

`comp3`,	 …)	

oasis_enddef	 oasis_enddef	 oasis_enddef	 oasis_enddef	 oasis_	
enddef	

oasis_put/get	 oasis_put/get	 oasis_put/get	 oasis_put/get	

oasis_terminate	 oasis_terminate	 oasis_terminate	 oasis_teminate	 oasis_	
terminate	

oasis_put/get	

oasis_put/get	 oasis_put/get	 oasis_put/get	 oasis_put/get	

oasis_put/get	

…	 …	 …	 …	

.	

.	

0	 	 	 	 1	 	 	 	 2	 	 	 	 3	 	 	 	 4	 	 	 	 5	 	 	 	 	 	 	 6	 	 	 	 	 7	 	 	 	 8	 	 	 	 9	 	 	 10	 	 	 11	 	 	 12	 	 13	 	 	 14	 	 	 15	 	 	 16	 	 	 17	 	 	 18	 	 	 19	 	 	 20	 	 	 21	 	 22	 	 23	 	 	 24	 	 	 25	 	 	 26	 	 	 27	 	 28	 	 	 29	 	 	 30	 	 	 31	 	 32	 	 	 33	 	 	 34	 	 35	 	 	 36	 	 37	 	 	 	 	 	 	

oasis_get_localcomm	 (lcom,	 …)	 oasis_get_localcomm	 (lcom,	 …)	 oasis_get_	
localcom	
(lcom,	 …)	

oasis_create_couplcomm	 (1,	 lcom,	 …)	 oasis_create_couplcomm	 (1,	 lcom,	 …)	 oasis_create_	
couplcom	 (0,	
lcom,	 …)	

Figure 2.2: The sequence of OASIS3-MCT calls that have to be implemented in the codes so to allow the con-
figuration of components described on figure 2.1. Each MPI tasks has to call oasis init comp
once with the name of its component as 2nd argument. As none of comp4 tasks is participating
to the coupling, comp4 tasks calls oasis init comp with coupled=.false." as 4th argu-
ment and does not call any other OASIS3-MCT routine. As some of comp3 tasks are participat-
ing in the coupling, all comp3 tasks have to call oasis init comp, oasis get localcomm,
oasis create couplcomm, oasis enddef and oasis terminate (these are the only rou-
tine to be called by comp3 tasks 31-33 not participating to the coupling). To initialise the coupling
exchanges, the tasks of a sub-component holding a field decomposed on a specific grid have to call the
oasis def partition to express the decomposition of the grid, oasis def var to declare the
coupling field and oasis enddef. Finally, the tasks of a sub-component exchanging coupling fields
have to call oasis put and oasis get accordingly.

2.2. OASIS3-MCT FORTRAN API 9

• to implement coupling exchanges within one executable between two sub-components running se-
quentially on overlapping sets of tasks (i.e. a task can be coupled to itself calling both the “put” and
the “get” of the exchange) [G, H]

• to have some tasks of a component not participating to the coupling exchanges [tasks 31-33 of
exe2-comp3]

• to have all processes of a component not participating to the coupling exchanges [exe2-comp4,
tasks 34-37]

The sequence of OASS3-MCT API routines that have to be called in the different cases is detailed on
figure 2.2. These routines are also described in detail in the next section.

2.2 OASIS3-MCT Fortran API

To interact with the rest of the coupled system, few calls of the OASIS3-MCT library routines, which
sources can be found in oasis3-mct/lib/psmile directory, have to be implemented in component
Fortran codes. They belong to the following classes:

1. Module to use (section 2.2.1)
2. Initialisation (section 2.2.2)
3. Partition definition (section 2.2.3)
4. Grid data file definition (section 2.2.4)
5. Coupling-I/O field declaration (section 2.2.5)
6. End of definition phase (section 2.2.6)
7. Coupling-I/O field sending and receiving (section 2.2.7)
8. Termination (section 2.2.8)
9. Optional auxiliary routines (section 2.2.9)

2.2.1 Module to use in the code

To use OASIS3-MCT library, a user needs to add in his code:

• USE mod oasis

or
• USE mod prism

Both use statements are valid but only one needs to be used in a particular component. This single use
statement provides all methods required. The methods, datatypes, and capabilities are identical for both the
mod prism or mod oasis interfaces, the only difference being the name of the interface. The interface
in module mod prism is provided for backwards compatability with prior versions of OASIS3. Use of
module mod oasis is recommended and provides access to a set of updated routine names that will
continue to evolve in the future, always ensuring backward compatibility. In the following sections, both
the mod prism and mod oasis interface names are defined and a single description of the interface
arguments is provided.

2.2.2 Initialisation

Coupling initialisation

• CALL oasis init comp (compid, comp name, kinfo, coupled, commworld)

• CALL prism init comp proto (compid, comp name, kinfo, coupled, commworld)

10 CHAPTER 2. INTERFACING A COMPONENT CODE WITH OASIS3-MCT

– compid [INTEGER; OUT]: returned component ID
– comp name [CHARACTER; IN]: component name; maximum length of 80 characters
– kinfo [INTEGER; OUT]: returned error code
– coupled [LOGICAL, OPTIONAL; IN]: flag to specify if the calling task is participat-

ing or not to the coupling (.true. by default).
– commworld [INTEGER, OPTIONAL; IN] : optional argument to specify the global

communicator gathering the components of the coupled model. If not specified, MPI COMM WORLD
will be used as the default communicator to startup. All components of the coupled model
must specify the same commworld argument.

This routine must called by all tasks of all components whether or not they are involved in the
coupling 1.
A component is defined as the ensemble of tasks calling oasis init comp with the same comp
name argument. If and only if all tasks of a component are excluded from the coupling, the logical
coupled can be set to .false. for this component tasks; in this case, oasis init comp
is the only API routine that needs to be called by the component tasks. If at least one tasks of a
component is participating to the coupling, all component tasks have to call oasis init comp
with coupled=.true. (which is the default); in this case, the component tasks not participating
to the coupling will also have to call oasis get localcomm, oasis create couplcomm,
oasis enddef and oasis terminate.

Communicator for internal parallelisation

• CALL oasis get localcomm (local comm, kinfo)

• CALL prism get localcomm proto (local comm, kinfo)

– local comm [INTEGER; OUT]: value of local communicator
– kinfo [INTEGER; OUT]: returned error code.

This routine returns the value of a local communicator gathering only the tasks of the component
(i.e. the tasks that called oasis init comp with the same comp name argument).
This may be needed as all executables of the coupled system are started in a pseudo-MPMD mode
with MPI1 and therefore share automatically the same MPI COMM WORLD communicator. An-
other communicator has to be used for the internal parallelisation of each component. OASIS3-
MCT creates this local communicator local comm based on the value of the comp name argu-
ment in the oasis init comp call.
Retrieving a local communicator local comm is also needed if oasis create couplcomm is
called, as local comm is an argument of this routine (see below).

• CALL oasis create couplcomm(icpl, local comm, coupl comm, kinfo)

• CALL prism create couplcomm(icpl, local comm, coupl comm, kinfo)

– icpl [INTEGER; IN]: coupling process flag
– local comm [INTEGER; IN]: MPI communicator with all processes of the component
– coupl comm [INTEGER; OUT]: returned MPI communicator gathering only component

processes participating in the coupling
– kinfo [INTEGER; OUT; OPTIONAL]: returned error code

This routine creates a coupling communicator for a subset of processes. It is mandatory to call this
routine if only a subset of the component processes participate in the coupling (e.g. comp3 in figure
2.2); in that case, the processes involved in the coupling have to call it with icpl=1 while the other

1The component may also call MPI Init explicitly, but if so, has to call it before calling oasis init comp; in this case,
the component also has to call MPI Finalize explicitly, but only after calling oasis terminate.

2.2. OASIS3-MCT FORTRAN API 11

have to call it with icpl = MPI UNDEFINED. Argument local comm is the MPI communicator
associated with all processes of the component returned by oasis get localcomm. The new
coupling communicator is returned in coupl comm.

If this communicator already exists in the code, the component should simply provide it to OASIS3-MCT
with:

• CALL oasis set couplcomm(coupl comm, kinfo)

• CALL prism set couplcomm(coupl comm, kinfo)

– coupl comm [INTEGER; IN]: MPI communicator gathering only component processes
participating in the coupling

– kinfo [INTEGER; OUT; OPTIONAL]: returned error code
This routine allows users to provide a local coupling communicator to OASIS3-MCT, given that
it already exists in the code. The value of coupl comm must be the value of this local coupling
communicator for the processes participating to the coupling and it must be MPI COMM NULL for
processes not involved in the coupling.

2.2.3 Partition definition

The coupling fields sent or received by a component are usually scattered among the different compo-
nent processes. With OASIS3-MCT, all processes exchanging coupling data have to describe, in a global
index space, the local partitioning of the different grids onto which the data is expressed (see 2.2.4 for
the grid definition). The processes not implied in the coupling do not have to call this routine (for back-
ward compatibility with OASIS3-MCT 2.0, they may still call it describing a null partition, i.e. with
ig paral(:)=0).

• CALL oasis def partition (il part id, ig paral, kinfo, ig size, name)
or

• CALL prism def partition proto (il part id, ig paral, kinfo, ig size,
name)

– il part id [INTEGER; OUT]: partition ID
– ig paral [INTEGER, DIMENSION(:), IN]: vector of integers describing the local

grid partition in the global index space; has a different expression depending on the type of
the partition; in OASIS3-MCT, 5 types of partition are supported: Serial (no partition), Apple,
Box, Orange, and Points (see below).

– kinfo [INTEGER; OUT]: returned error code.
– ig size [INTEGER, OPTIONAL, IN]: Optional argument, mandatory if the coupling

data is exchanged for only a subdomain of the global grid; in this case, ig size must give
the total number of grid points.

– name [CHARACTER, OPTIONAL, IN]: Optional argument associating a name to the
partition, mandatory if oasis def partition is called either for a grid decomposed not
across all the processes of a component or if the related oasis def partition are not called in
the same order on the different component processes; this argument is new since OASIS3-
MCT 3.0 release and is linked to the greater flexibility in the configuration of components
supported (see 2.1); it has a maximum length of 120 characters.

Serial (no partition)

This is the choice for a grid entirely supported by only one process . In this case, we have ig paral(1:3):
• ig paral(1) = 0 (indicates a Serial “partition”)

12 CHAPTER 2. INTERFACING A COMPONENT CODE WITH OASIS3-MCT

Proc 1:
local offset = 0
local size = 4

Proc 2:
local offset = 4
local size = 6

Proc 3:
local offset = 10
local size = 5

Figure 2.3: Apple partition. It is assumed here that the global index starts at 0 in the upper left corner.

• ig paral(2) = 0
• ig paral(3) = the total grid size.

Apple partition

Each partition is a segment of the global domain, described by its global offset and its local size. In this
case, we have ig paral(1:3):

• ig paral(1) = 1 (indicates an Apple partition)
• ig paral(2) = the segment global offset
• ig paral(3) = the segment local size

Figure 2.3 illustrates an Apple partition over 3 processes.

Box partition

Each partition is a rectangular region of the global domain, described by the global offset of its upper left
corner, and its local extents in the X and Y dimensions. The global extent in the X dimension must also
be given. In this case, we have ig paral(1:5):

• ig paral(1) = 2 (indicates a Box partition)
• ig paral(2) = the upper left corner global offset
• ig paral(3) = the local extent in x
• ig paral(4) = the local extent in y

2.2. OASIS3-MCT FORTRAN API 13

Proc 1:
local offset = 0
local x extent = 2
local y extent = 2

Proc 2:
local offset = 2
local x extent = 3
local y extent = 2

Proc 3:
local offset = 10
local x extent = 5
local y extent = 1

global x
extent = 5

Figure 2.4: Box partition. It is assumed here that the global index starts at 0 in the upper left corner.

• ig paral(5) = the global extent in x.
Figure 2.4 illustrates a Box partition over 3 processes.

Orange partition

Each partition is an ensemble of segments in the global domain. Each segment is described by its global
offset and its local extent. In this case, we have ig paral(1:N) where N = 2 + 2*number of
segments

• ig paral(1) = 3 (indicates a Orange partition)
• ig paral(2) = the total number of segments for the partition (limited to 200 presently, see note

for ig paral(4) for Box partition above)
• ig paral(3) = the first segment global offset
• ig paral(4) = the first segment local extent
• ig paral(5) = the second segment global offset
• ig paral(6) = the second segment local extent
• ...
• ig paral(N-1) = the last segment global offset
• ig paral(N) = the last segment local extent

Figure 2.5 illustrates an Orange partition with 3 segments for one process. The other process partitions
are not illustrated.

14 CHAPTER 2. INTERFACING A COMPONENT CODE WITH OASIS3-MCT

Proc 1: 1st segment offset = 0
nbr of segments = 3 1st segment size = 5

 2nd segment offset = 7
 2nd segment size = 2
 3rd segment offset = 10
 3rd segment size = 3

Figure 2.5: Orange partition for one process. It is assumed here that the global index starts at 0 in the upper left
corner.

2.2. OASIS3-MCT FORTRAN API 15

Points partition

This partition is a list of global indices associated with each process. The index naming is arbitrary
but must be consistent between all processes involved in the partition description. In this case, we have
ig paral(1:N) where N = 2 + number of points

• ig paral(1) = 4 (indicates a Points partition)

• ig paral(2) = number of points in the partition

• ig paral(3) = the first global index

• ig paral(4) = the second global index

• ...

• ig paral(N) = the last global index

2.2.4 Grid data file definition

Grid data files are required by OASIS3-MCT for specific operations, see sections 4 and 5.1. These grid
data files can be created by the user before the run or can be written directly at run time by the components
with the following routines. If a grid data files does not exist, the corresponding routine will create it; if
the grid data file exists, the routine can be used to add grid definition fields but it will not overwrite grid
definition fields already existing in the file with the same grid name.

These routines can be called only by one component process to write the whole grid or by each process
holding a part of a grid. In the former case, optional argument il part id is not needed and the arrays
handling the longitudes of the grid points or corners (lon, clon), the latitudes of the grid points or
corners (lat, clat), the masks (mask), fracs (frac), and areas (area) of the grid cells need to cover
the whole grid; in the later case, the il part id returned by oasis def partition needs to be
provided as input argument and the arrays need to cover only the local partition of the grid.

The field names in the grids.nc, masks.nc, and areas.nc follow a well-defined convention. The fields
are normally two-dimensional, and each field name consists of a grid acronym followed by a string that
identifies the field. For instance, the center latitudes for the grid torc will be called torc.lat and the center
longitudes will be called torc.lon in the netcdf file. The grids.nc file contains the center latitudes (.lat) and
longitudes (.lat) as well as the corner latitudes (.cla) and corner longitudes (.clo). The corner fields have
a third dimension associated with the number of corners per gridcell. The area.nc file constains the area
field (.srf). The masks.nc file contains the mask (.msk) and frac (.frc) fields.

• CALL oasis start grids writing (flag) or

• CALL prism start grids writing (flag)

– flag [INTEGER; OUT]: always 1

Must be called to start the grid writing process.

• CALL oasis write grid (cgrid, nx global, ny global, lon, lat, il part id)

• CALL prism write grid (cgrid, nx global, ny global, lon, lat, il part id)

– cgrid [CHARACTER; IN]: grid name prefix (see 3.3 and 5.1); maximum length of 64
characters (4 are usually used for historical reasons)

– nx global [INTEGER; IN] : first dimension of the global grid

– ny global [INTEGER; IN] : second dimension of the global grid (=1 if the grid is
expressed as a 1D vector)

– lon [REAL, DIMENSION(nx,ny); IN] : single or double real array of longitudes
covering the whole grid (nx=nx global, ny=ny global) or only the local partition (de-
grees East).

16 CHAPTER 2. INTERFACING A COMPONENT CODE WITH OASIS3-MCT

– lat [REAL, DIMENSION(nx,ny); IN] : single or double real array of latitudes cov-
ering the whole grid (nx=nx global, ny=ny global) or only the local partition (degrees
North)

– il part id [INTEGER, OPTIONAL; IN]: partition ID returned by oasis def partition,
see 2.2.3; needed if each component task holding a part of a decomposed grid writes its own
part of the grid.

Writes the component grid longitudes and latitudes. Longitudes must be given in degrees East in the
interval -360.0 to 720.0. Latitudes must be given in degrees North in the interval -90.0 to 90.0. Note
that if some grid points overlap, it is recommended to define those points with the same number (e.g.
90.0 for both, not 450.0 for one and 90.0 for the other) to ensure automatic detection of overlap by
OASIS3-MCT (which is essential to have a correct conservative remapping SCRIPR/CONSERV,
see section 4.3).

• CALL oasis write corner (cgrid, nx global, ny global, nc, clon, clat,
il part id))

• CALL prism write corner (cgrid, nx global, ny global, nc, clon, clat,
il part id))

– cgrid , nx global , ny global , il part id : as for oasis write grid

– nc [INTEGER; IN] : number of corners per grid cell (can be any number)

– clon [REAL, DIMENSION (nx,ny,nc);IN] : single or double real array of corner
longitudes covering the whole grid (nx=nx global, ny=ny global) or only the local
partition (in degrees East)

– clat [REAL, DIMENSION (nx,ny,nc);IN] : single or double real array of corner
latitudes covering the whole grid (nx=nx global, ny=ny global) or only the local par-
tition (in degrees North)

Writes the grid cell corner longitudes and latitudes (counterclockwise sense). Longitudes must be
given in degrees East in the interval -360.0 to 720.0. Latitudes must be given in degrees North in the
interval -90.0 to 90.0. Note also that cells larger than 180.0 degrees in longitude are not supported.
Writing of corners is optional as corner information is needed only for SCRIPR/CONSERV (see
section 4.3). If called, needs to be called after oasis/prism write grid.

• CALL oasis write mask (cgrid, nx global, ny global, mask, il part id,
companion)

• CALL prism write mask (cgrid, nx global, ny global, mask, il part id,
companion)

– cgrid , nx global , ny global , il part id : as for oasis write grid

– mask [INTEGER, DIMENSION(nx,ny) ;IN] : mask array covering the whole grid
(nx=nx global, ny=ny global) or only the local partition. Be careful about OASIS3-
MCT historical convention (!): 0 = not masked (i.e. active), 1 = masked (i.e. not active).

– companion [CHARACTER ;IN; OPTIONAL] : the character string value associated with
the mask field attribute coherent with grid’. This will be written to the masks.nc netcdf
file with the mask field. It is purely informational and used in cases where the mask field is
derived from or consistent with another grid.

Writes the component grid mask. The mask field should be consistent with the frac field (see
below) and will define the 0/1 mask of the grid cell. The mask field is used by both the SCRIPR
map generation function and in the global CONSERV operations if defined. The mask field is written
to the masks.nc file.

2.2. OASIS3-MCT FORTRAN API 17

• CALL oasis write frac (cgrid, nx global, ny global, frac, il part id,
companion)

• CALL prism write frac (cgrid, nx global, ny global, frac, il part id,
companion)

– cgrid , nx global , ny global , il part id : as for oasis write grid

– frac [REAL, DIMENSION(nx,ny) ;IN] : single or double real frac array covering
the whole grid (nx=nx global, ny=ny global) or only the local partition.

– companion [CHARACTER ;IN; OPTIONAL] : the character string value associated with
the frac field attribute “coherent with grid”. It should refer to the acronym of the grid which
mask was used to define the fraction of the current grid (see section 4.4). This will be written
to the masks.nc NetCDF file with the fraction field. It is purely informational and used in cases
where the frac field is derived from or consistent with another grid mask.

Writes the component grid cell fractions. This should be consistent with the mask field and defines
the fraction of the grid cell that is active (i.e. not masked). The fraction field is only used in the
global CONSERV operations. Either the mask or fractions must be defined for that operation. If
both are defined, they must be consistent; OASIS3-MCT will abort if they are not coherent or if
both are missing. Note that by OASIS3-MCT conventions for the mask, a gridcell with mask=0
(active) should have a fractions greater than 0 and a gridcell with mask=1 (inactive) should have a
fractions equal to 0. The fraction field is written to the masks.nc file.

• CALL oasis write area (cgrid, nx global, ny global, area, il part id)

• CALL prism write area (cgrid, nx global, ny global, area, il part id)

– cgrid , nx global , ny global , il part id : as for oasis write grid

– area [REAL, DIMENSION(nx,ny); IN] : single or double real array of grid cell ar-
eas covering the whole grid (nx=nx global, ny=ny global) or only the local partition

Writes of the component grid cell areas. Needed for some SCRIPR options and for the CONSERV
operation (see section 4.4). The area field is written to the areas.nc file. The surfaces may be given
in any units but they must be the same on the source and target sides. Furthermore they must be in
square radians if the True Area (TR) correction is activated, see section 4.3.

• CALL oasis write angle (cgrid, nx global, ny global, angle, il part id)

• CALL prism write angle (cgrid, nx global, ny global, angle, il part id)

– cgrid , nx global , ny global , il part id : as for oasis write grid

– angle [REAL, DIMENSION(nx,ny); IN] : single or double real array of grid cell an-
gles covering the whole grid (nx=nx global, ny=ny global) or only the local partition

Writes of the component grid cell angles. The angle field is written to the grids.nc file. This field
does not play a role in OASIS3-MCT implementation and is never needed.

• CALL prism terminate grids writing() or
• CALL oasis terminate grids writing()

The creation of the different grid data files is completed in the routine oasis enddef.

2.2.5 Coupling field declaration

All processes of a component that send or receive a coupling field, or a part of it, needs to declare the
coupling field.
Processes not implied in the coupling do not have to call this routine at all (for backward compatibility
with OASIS3-MCT 2.0, they may still call it with any name and il part id).

18 CHAPTER 2. INTERFACING A COMPONENT CODE WITH OASIS3-MCT

• CALL oasis def var (var id, name, il part id, var nodims, kinout,
var type, kinfo) or

• CALL oasis def var (var id, name, il part id, var nodims, kinout,
var actual shape, var type, kinfo) or

• CALL prism def var proto(var id, name, il part id, var nodims, kinout,
var type, kinfo) or

• CALL prism def var proto(var id, name, il part id, var nodims, kinout,
var actual shape, var type, kinfo)

– var id [INTEGER; OUT]: coupling field ID. Note that all coupling fields appearing in
the namcouple must be defined with a call to oasis def var; not doing so would lead
to an abort. But all fields defined with a call to oasis def var must not necessarily ap-
pear in the namcouple. If a field does not appear in the namcouple, the var id returned
by the oasis def var will be equal to -1; the value of the var id should be tested and
the corresponding oasis put and oasis get should not be called if var id equals -1.
These constraints are imposed to avoid that a typo in the namcouple would lead to coupling
exchanges not corresponding to what the user intends to activate.

– name [CHARACTER; IN]: field symbolic name (as in the namcouple); maximum length
of 80 characters

– il part id [INTEGER; IN]: partition ID returned from oasis def partition (see
section 2.2.3)

– var nodims [INTEGER, DIMENSION(2); IN]: is an integer array of size two. The
first element, var nodims(1), is not used anymore in OASIS3-MCT, so its value can be any-
thing; The second element, var nodims(2), is the number of fields in a bundle (this will be 1
for unbundle fields or greater than 1 for fields that are bundled; note that if var nodims(2)=0,
it will be automatically reset to 1 in the routine, to ensure backward compatibility).

– kinout [INTEGER; IN]: OASIS In or PRISM In (i.e. = 21) for fields received by the
component; OASIS Out, PRISM Out (i.e. = 20) for fields sent by the component 2.

– var actual shape [INTEGER, DIMENSION(2*id var nodims(1)), IN]: is not
used anymore. The interface has recently been overloaded, and this argument is no longer re-
quired. But for backwards compatibility, it can still be passed; if so, it has to be a vector of
integers of any length (for simplicity we advise to pass a vector of length 1).

– var type [INTEGER; IN]: type of coupling field array; put OASIS Real or PRISM Real
(i.e. = 4) for single or double precision real arrays. All coupling data is treated as double pre-
cision in the coupling layer, but conversion to or from single precision data is supported in the
interface.

– kinfo [INTEGER; OUT]: returned error code.

2.2.6 End of definition phase

All processes of components at least partly involved in the coupling (e.g. comp3 in figure 2.2) have to
close the definition phase. Different configurations of components and corresponding use of oasis enddef
are described in section 2.1 and on figures 2.1 and 2.2.

• CALL oasis enddef (kinfo)

• CALL prism enddef proto(kinfo)

– kinfo [INTEGER; OUT]: returned error code.

2Parameters OASIS In, PRISM In, OASIS Out, PRISM Out are defined in oasis3-
mct/lib/psmile/src/mod oasis parameters.F90

2.2. OASIS3-MCT FORTRAN API 19

2.2.7 Sending “put” and receiving “get” actions

This section describes how to send (put) and receive (get) fields through OASIS-MCT API. This coupling
interface supports several ranks and types of coupling fields. First, the fields passed to the interface can
be 4 byte or 8 byte reals. The field decomposition must be consistent with the decomposition defined by
the grid partition (see 2.2.3)3 and the fields can be bundled (i.e. have an extra non-spatial dimension for
something like different ice categories). The bundle dimension is always the last dimension in the field
passed to the get and put routines. And the size of the bundle dimension must match the value defined for
the variable in var nodims(2) in the oasis def var interface (see section 2.2.5).
So in general, the fields passed into the get and put interface can have rank 1, 2, or 3 and include the
following possible options where fld can be a 4 byte or 8 byte real array.

• 1D, fld(:) = a single, unbundle field of decomposition rank 1.
• 2D, fld(:,:) = a single, unbundle field of decomposition rank 2.
• 1D bundle, fld(:,:) = a bundle set of fields of decomposition rank 1. The size of the second dimension

must equal the number of fields in the bundle, defined by var nodims(2) in the oasis def var
interface.

• 2D bundle, fld(:,:,:) = a bundle set of fields of decomposition rank 2. The size of the third dimension
must equal the number of fields in the bundle, defined by var nodims(2) in the oasis def var
interface.

Different bundle fields can have different numbers of fields, but for a given bundle field, the number of
fields must match on the send and receive side. This is explicitly checked within the coupling layer and
will lead to an abort if not done correctly. It is possible to define a 1D bundle or 2D bundle field with a
bundle dimension of 1, for a bundle that contains only one single field.
Finally, the bundle field option can be used to bundle together multi-level variables, multiple related fields,
and other types of fields. The fields must share a common partition and common namcouple settings (e.g.
interpolation) to be bundle. While this is a useful feature for multi-level fields, this does not mean that
3D interpolation is supported. Each field in the bundle is treated internally as a separate field in the
coupling layer without any information about the relationship between the fields in the bundle. In fact, the
bundle field variables are internally renamed and a field number is appended to the variable name to keep
track of the distinct fields in the bundle. That updated variable name will appear in restart and output files.

Sending a coupling (or I/O) field or writing a coupling restart file

In the component time step loop, each process sends its part of the coupling (or I/O) field.

• CALL oasis put (var id,date,fld1,info,fld2,fld3,fld4, fld5,write restart)

• CALL prism put proto(var id, date, fld1, info, fld2, fld3, fld4, fld5,
write restart)

– var id [INTEGER; IN]: field ID (returned from corresponding oasis def var, see
section 2.2.5)

– date [INTEGER; IN]: number of seconds (or any other time units as long as the same
are used in all components and in the namcouple) at the time of the call (by convention at the
beginning of the timestep)

– fld1 [REAL, IN]: coupling (or I/O) field array; can be 1D, 2D, bundle 1D, or bundle 2D,
see above.

– info [INTEGER; OUT]: returned info code:

* OASIS Sent (=4) if the field was sent to another component

3But the decomposition of a field does not necesseraly have to match the rank of the grid partition description (i.e. it can be
expressed in either 1D or 2D).

20 CHAPTER 2. INTERFACING A COMPONENT CODE WITH OASIS3-MCT

* OASIS LocTrans (=5) if the field was only used in a time transformation (not sent, not
output)

* OASIS ToRest (=6) if the field was written to a restart file only

* OASIS Output (=7) if the field was written to an output file only

* OASIS SentOut (=8) if the field was both written to an output file and sent to another
component

* OASIS ToRestOut (=9) if the field was written both to a restart file and to an output
file.

* OASIS WaitGroup (=14) if the field was not sent because it is part of a group. It will
be sent only when the oasis put of the last field in the group will be called; however,
the field is buffered and therefore the field array can be modified in the component code
when returning from the oasis put call.

* OASIS Ok (=0) otherwise and no error occurred.

– fld2 [REAL, IN, OPTIONAL]: optional 2nd coupling field array; can be 1D, 2D, bun-
dle 1D, or bundle 2D. Rank and size must match fld1.

– fld3 [REAL, IN, OPTIONAL]: optional 3rd coupling field array; can be 1D, 2D, bundle
1D, or bundle 2D. Rank and size must match fld1.

– fld4 [REAL, IN, OPTIONAL]: optional 4th coupling field array; can be 1D, 2D, bundle
1D, or bundle 2D. Rank and size must match fld1.

– fld5 [REAL, IN, OPTIONAL]: optional 5th coupling field array; can be 1D, 2D, bundle
1D, or bundle 2D. Rank and size must match fld1.

– write restart [LOGICAL, IN, OPTIONAL]: optional argument to write an inter-
mediate restart file associated with the variable var id at the current timestep (see below).

To ensure a proper use of the oasis put, one has to take care of the following aspects:

• A 2nd, 3rd, 4th and 5th source field can be passed as optional arguments. If so, the 2nd, 3rd, 4th and
5th set of weights present in the remapping file will be applied, respectively (see section 5.4 for the
remapping file format). This will be used for example for the SCRIPR/BICUBIC remapping for
which a 1st, 2nd, 3rd, 4th set of weights should be respectively applied to the field value, its gradient
in the first dimension, its gradient in the second dimension, and its cross-gradient in that order. For
SCRIPR/BICUBIC, fld2, fld3 and fld4 are therefore mandatory.

This will be used also for the CONSERV/SECOND for which a 1st, 2nd, 3rd set of weights should be
respectively applied to the field value, its gradient with respect to the latitude (θ) δfδθ and its gradient
with respect to the longitude (φ) 1

cosθ
δf
δφ in that order. For CONSERV/SECOND, fld2 and fld3

are therefore mandatory.

Bicubic and higher order remapping are therefore supported given that the higher order fields are
provided at each time step as oasis put arguments. Note that if fld3, or fld4, or fld5 are
passed, fld2, or fld3 and fld2, or fld4 and fld3 and fld2 must also be passed respectively.

• Note that from OASIS3-MCT 4.0 onwards, the number of weights in the remapping file and the
number of fields in the coupling restart file (when such a file is needed) must strictly match the
number of source fields passed to the oasis put .

• This routine may be called by the component at each timestep. The convention for the date
argument is to indicate the time at the beginning of the timestep. The sending is actually performed
if the time obtained by adding the field lag (LAG in the namcouple, if any, with LAG=0 by default)
to the date corresponds to a time at which it should be activated, given the coupling or I/O period
indicated by the user in the namcouple (see section 3).

• By convention, the first coupling of a run occurs at date=0.

2.2. OASIS3-MCT FORTRAN API 21

• For a coupling field with a positive lag, the coupling restart file (see section 5.2) is automatically
overwritten by the oasis put when the date+LAG=runtime.

• The total run time should match an integer number of coupling periods.
• If a local time transformation is indicated for the field by the user in the namcouple (INSTANT,

AVERAGE, ACCUMUL, T MIN or T MAX, see section 4), it is automatically performed and the
resulting field is finally sent at the coupling or I/O frequency. For non-instantaneous transforma-
tions, partially transformed fields will be written to the restart file at the end of the run for use on
the next component startup, when needed.

• A coupling field sent by a source component can be associated with more than one target field and
component, with different entries in the namcouple configuration file. In that case, the source com-
ponent needs to send the field only once and the corresponding data will arrive at multiple targets
as specified in the namcouple. Different coupling frequencies and transformations are allowed for
different coupling exchanges of the same field. If coupling restart files are required (either if a LAG
or if a LOCTRANS transformation is specified), it is mandatory to specify different files for the
different fields.

• Trying to send with oasis put a field declared with a oasis def var but not defined in the
configuration file namcouple will lead to an abort. When a field is not defined in the namcouple, the
field ID returned by the oasis def var is equal to -1 and the corresponding oasis put should
not be called.

• Coupling multiple fields via a single communication is supported through colon delimited field
lists in the namcouple (see 3.3.1). All fields will use the namcouple settings for that entry. In the
component model codes, these fields are still sent (“put”) one at a time. Inside OASIS3-MCT, the
fields are stored and a single mapping and send instruction is executed for all fields. This is useful
to reduce communication costs by aggregating multiple fields into a single communication when
multiple fields have the same coupling transformations.
This option does not put any constraint on the order of the related oasis put and oasis get in
the codes.
As they appear in one single entry line, these fields must share the same coupling restart file but this
restart file may contain other fields.

• The optional argument, write restart, in the oasis put routine is false by default. If a user
sets that argument to true, an “intermediate” restart is written for that field only for that timestep.
The write restart saves the data that exists at the time of the call, taking into account LOC-
TRANS operations. In cases where multiple fields are coupled as a single operation in the model
(indicated via a list of colon delimited fields in the namcouple, see 3.3.1), users are encouraged to
specify the write restart flag on ALL oasis put calls at a given time for this set of fields.
Restarts are created with a 9 digit timestamp in their filename, corresponding to the time in seconds
of the oasis put call, e.g. TA000003600 rst4.nc or TC000014400 rst4.nc. A restart file that starts
with TA is a restart file associated with LOCTRANS operations; a restart file that starts with TC
is a restart file associated with coupling operations. The coupling restart filename defined in the
namcouple (e.g. rst4.nc) is used to generate the filename of these intermediate restart files.

Receiving a coupling (or I/O) field

In the component time stepping loop, each process receives its part of the coupling field.

• CALL oasis get (var id, date, fld, info)

• CALL prism get proto(var id, date, fld, info)

– var id [INTEGER; IN]: field ID (returned by the corresponding oasis def var)
– date [INTEGER; IN]: number of seconds (or any other time units as long as the same

are used in all components and in the namcouple) at the time of the call (by convention at the

22 CHAPTER 2. INTERFACING A COMPONENT CODE WITH OASIS3-MCT

beginning of the timestep)
– fld [REAL, OUT]: I/O or coupling field array; can be 1D, 2D, bundle 1D, or bundle 2D.
– info [INTEGER; OUT]: returned info code:

* OASIS Recvd(=3) if the field was received from another component

* OASIS FromRest (=10) if the field was read from a restart file only

* OASIS Input (=11) if the field was read from an input file only

* OASIS RecvOut (=12) if the field was both received from another component and written
to an output file

* OASIS FromRestOut (=13) if the field was both read from a restart file and written to an
output file

* OASIS Ok (=0) otherwise and no error occurred.

To ensure a proper use of the oasis get, one has to take care of the following aspects:

• This routine may be called by the component at each timestep. The date argument is automatically
analysed and the receiving action is actually performed only if date corresponds to a time for which
it should be activated, given the period indicated by the user in the namcouple. An exchange at the
beginning of the run at time=0 is expected.

• Trying to receive with oasis get a field declared with a oasis def var but not defined in
the configuration file namcouple will lead to an abort. In this case, the field ID returned by the
oasis def var is equal to -1 and the corresponding oasis get should not be called.

• If a coupling field has a positive lag, the coupling field that matches the oasis get at time=0
is automatically read in from a coupling restart file and sent to match that oasis get under the
oasis enddef of the source model (see section 2.5.3).

• Coupling multiple fields via a single communication is supported through colon delimited field
lists in the namcouple (see 3.3.1). All fields will use the namcouple settings for that entry. In the
component model codes, these fields are still received (via an oasis get) one at a time. Inside
OASIS3-MCT, the fields are stored and a single mapping and receive instruction is executed for
all fields. This is useful in cases where multiple fields have the same coupling transformations and
to reduce communication costs by aggregating multiple fields into a single communication. If a
LOCTRANS transformation is needed for these multiple fields, it is necessary to define a restart file
for these multiple fields.

2.2.8 Termination

• CALL oasis terminate (kinfo)

• CALL prism terminate proto(kinfo)

– kinfo [INTEGER; OUT]: returned error code.
All processes of components at least partly involved in the coupling (e.g. comp3 in figure 2.2) have
to terminate the coupling by calling this routine4(normal termination). Different configurations of
components and corresponding use of oasis terminate are described in section 2.1 and on
figures 2.1 and 2.2.

2.2.9 Auxiliary routines

The following auxiliary routines are currently available.

• CALL oasis abort (compid, routine name, abort message, file, line, rcode)

4If the process called MPI Init (before calling oasis init comp), it must also call MPI Finalize explicitly, but only
after calling oasis terminate proto.

2.2. OASIS3-MCT FORTRAN API 23

• CALL prism abort proto(compid, routine name, abort message, file, line,
rcode)

– compid [INTEGER; IN]: component ID (from oasis init comp)

– routine name [CHARACTER*; IN]: name of calling routine

– abort message [CHARACTER*; IN]: message to be written out

– file [CHARACTER*; OPTIONAL; IN]: file from which oasis abort is called from

– line [INTEGER, OPTIONAL; IN]: line in file from which oasis abort is called from

– rcode [INTEGER, OPTIONAL; IN]: Optional argument. When OASIS3-MCT aborts,
it returns rcode if it is present, else it returns 1

If a process needs to abort voluntarily, it should do so by calling oasis abort. This will ensure
a proper termination of all processes in the coupled model communicator. This routine writes the
name of the calling component, the name of the calling routine, and the message to the process de-
bug file (see $NLOGPRT in section 3.2). This routine cannot be called before oasis init comp.

• CALL oasis get debug(debug, kinfo)

• CALL prism get debug(debug, kinfo)

– debug [INTEGER; OUT]: output debug value

– kinfo [INTEGER; OUT; OPTIONAL]: returned error code

This routine may be called at any time to retrieve the current OASIS3-MCT internal debug level
(see $NLOGPRT in section 3.2). This is useful if the user wants to return the original debug value
after changing it.

• CALL oasis set debug(debug, kinfo)

• CALL prism set debug(debug, kinfo)

– debug [INTEGER; IN]: input debug value

– kinfo [INTEGER; OUT; OPTIONAL]: returned error code

This routine may be called at any time to change the debug level in OASIS3-MCT. This method
allows users to vary the debug level at different points in the component integration.

• CALL oasis get intercomm(new comm, cdnam, kinfo)

• CALL prism get intercomm(new comm, cdnam, kinfo)

– new comm [INTEGER; OUT]: MPI inter-communicator

– cdnam [CHARACTER*; IN]: other component name (i.e. 2nd argument of the call to
oasis init comp in that component)

– kinfo [INTEGER; OUT; OPTIONAL]: returned error code

This routine sets up an MPI inter-communicator between two components, the local component and
the component associated with cdnam. This call is collective across the tasks of the two components
only. An MPI inter-communicator preserves the rank of the original communicators and does not
allow collective communication within the communicator. It provides point to point communication
between two non-overlapping MPI groups. This method must be called synchronously across all
components involved to minimize the chance of a deadlock, and it should be called only after
oasis enddef is called. See oasis get intracomm below to create an intra-communicator.

• CALL oasis get intracomm(new comm, cdnam, kinfo)

• CALL prism get intracomm(new comm, cdnam, kinfo)

– new comm [INTEGER; OUT]: MPI intra-communicator

– cdnam [CHARACTER*; IN]: other component name (i.e. 2nd argument of the call to
oasis init comp in that component). This argument is a single string.

24 CHAPTER 2. INTERFACING A COMPONENT CODE WITH OASIS3-MCT

– kinfo [INTEGER; OUT; OPTIONAL]: returned error code

This routine sets up an MPI intra-communicator between two components, the local component
and the component defined by the string cdnam. This call is collective across the tasks of the two
components creating the intra-communicator only, and it must be called synchronously across all
tasks of the two components to minimize the chance of a deadlock. It should be called only after
oasis enddef is called. This method creates a new communicator consisting of a new collective
group of tasks with new ranks. This communicator supports collective communications and is
more typically used in MPI applications than inter-communicators (see oasis get intercomm
above). See also oasis get multi intracomm for another method that supports creating an
MPI intra-communicator between two or more components.

• CALL oasis get multi intracomm(new comm, cdnam, root ranks, kinfo)

• CALL prism get multi intracomm(new comm, cdnam, root ranks, kinfo)

– new comm [INTEGER; OUT]: MPI intra-communicator

– cdnam [CHARACTER*; IN]: array of component names (i.e. 2nd argument of the call to
oasis init comp in that component). This argument is a 1d array of character strings (i.e.
cdnam(:)).

– root ranks [INTEGER; OUT]: array of root ranks. This argument is a 1d integer array
(i.e. root ranks(:)) of the same size as cdnam.

– kinfo [INTEGER; OUT]: returned error code

This routine sets up an MPI intra-communicator between two or more components defined by the
component names passed in the cdnam array argument. The local model name MUST BE one of the
models defined in the cdnam array. The component names must be valid names, but empty strings
are allowed and ignored. This call is collective across all the tasks of the components defined in
cdnam, and it must be called synchronously and consistently across all tasks of those components
to minimize the chance of a deadlock. It should be called only after oasis enddef is called.
This method creates a new communicator consisting of a new collective group of tasks with new
ranks. The root ranks of the individual components relative to the new communicator is output
in the root ranks argument. The size of cdnam and root ranks should be identical, and
the values of root ranks are consistent with the order of cdnam.. This communicator supports
collective communications and is more typically used in MPI applications than inter-communicators
(see oasis get intercomm above). See also oasis get intracomm for another method
that supports creating an MPI intra-communicator between two components.

• CALL oasis put inquire(var id, date, kinfo)

• CALL prism put inquire proto(var id, date, kinfo)

– var id [INTEGER; IN]: field ID (from corresponding oasis def var)

– date [INTEGER; IN]: as in oasis put, number of seconds (or any other time units as
long as the same are used in all components and in the namcouple) in the run at the time of the
call

– kinfo [INTEGER; OUT]: returned info code

* OASIS Sent(=4) if the field would be sent to another component

* OASIS LocTrans (=5) if the field would be only used in a time transformation (not sent,
not output)

* OASIS ToRest (=6) if the field would be written to a restart file only

* OASIS Output (=7) if the field would be written to an output file only

* OASIS SentOut (=8) if the field would be both written to an output file and sent to another
component (directly or via OASIS3 main process)

2.3. OASIS3-MCT C API 25

* OASIS ToRestOut (=9) if the field would be written both to a restart file and to an output
file.

* OASIS Ok (=0) otherwise and no error occurred.
This routine may be called at any time to inquire what would happen to the field corresponding
to that var id if it was sent with an oasis put at that same date). This maybe useful if, for
example, the calculation of a coupling field is costly and if one wants to compute it only when it is
really sent out.

• CALL oasis get ncpl(var id, ncpl, kinfo)

• CALL prism get ncpl proto(var id, ncpl, kinfo)

– var id [INTEGER; IN]: field ID (from corresponding oasis def var)
– ncpl [INTEGER; OUT]: number of coupling exchanges in which the field is involved (i.e.

when a field is sent to multiple targets)
– kinfo [INTEGER; OUT]: returned info code

This routine returns the number of coupling exchanges in which the field with that var id is
involved. This number is needed to get the coupling frequencies with the routine oasis get freqs,
see below.

• CALL oasis get freqs(var id, mop, ncpl, cpl freqs, kinfo)

• CALL prism get freqs proto(var id, mop, ncpl, cpl freqs, kinfo)

– var id [INTEGER; IN]: field ID (from corresponding oasis def var)
– mop [INTEGER; IN]: OASIS Out or OASIS In
– ncpl [INTEGER; IN]: number of couplings in which the field is involved (i.e. when a

field is sent to multiple targets)
– cpl freqs [INTEGER; DIMENSION(ncpl); OUT]: coupling period(s) (in number

of seconds) of field var id. There is one coupling period for each coupling exchange in which
the field is involved

– kinfo [INTEGER; OUT]: returned info code
This routine can be used to retrieve the coupling period(s) of field with corresponding var id, as
defined in the namcouple

2.3 OASIS3-MCT C API

OASIS3-MCT is distributed with C bindings and can be called from models written in C and in C++.
These bindings leverage the Fortran ISO C BINDING standard. The C bindings can be compiled into
static or shared libraries by the OASIS3-MCT TopMakefileOasis3 as documented in 6.1.
The C interfaces largely match up with equivalent interfaces in Fortran. An interface named oasis interface
in Fortran can be expected to be named oasis c interface in C.
All of the C interfaces return an integer error code which can be tested against the OASIS Ok (or the
equivalent OASIS Success) constant. The OASIS CHECK ERR macro aborts OASIS3-MCT with a
meaningful message in the debug files in case of failure. For most of the functions, the return code is
consistent with the kinfo argument in the Fortran interfaces (see section 2.2). However, for the put and
get communication functions, the return error code only indicates success or failure, while the detailed
status is returned by the kinfo argument (equivalent to the returned value of info argument for the
Fortran oasis put and oasis get routines, see section 2.2.7).
For example, the following constructs are equivalent in the two languages:

call oasis_get_localcomm(localcomm, kinfo)
if (kinfo .ne. OASIS_Ok) &

& call OASIS_Abort(comp_id, "oasis_get_localcomm", &

26 CHAPTER 2. INTERFACING A COMPONENT CODE WITH OASIS3-MCT

& "Runtime error", __FILE__, __LINE__)

and

OASIS_CHECK_ERR(oasis_get_localcomm(localcomm))

For convenience a similar macro OASIS CHECK MPI ERR has been defined for testing the return code
of any MPI function against MPI SUCCESS and cleanly aborting OASIS3-MCT in case of failure.

Use of these C bindings are illustrated in practical examples in directories /C in the different subdirectories
in pyoasis/examples/. Notes and deviations from the Fortran standard are noted below.

• To use the OASIS3-MCT C bindings, the statement
#include "oasis_c.h"

needs to be added to the C model source code. All available parameters macros and interfaces are
defined there.

• int oasis c init comp(int* compid, const char* comp name, const bool
coupled)

– This oasis c init comp interface includes the coupled flag but NO communicator ar-
gument; use oasis c init comp with comm below to indicate a communicator argu-
ment.

– The coupled argument can receive the predefined mnemonic boolean constants OASIS Coupled
and OASIS Not Coupled

• int oasis c init comp with comm(int* compid, const char* comp name, const
bool coupled, const MPI Comm commworld)

– This alternative init comp interface has the coupled flag and a C MPI Comm communi-
cator

• int oasis c get localcomm(MPI Comm* local comm)

– Returns the local communicator by reference in a C MPI Comm* type argument

• int oasis c create couplcomm(const int icpl, const MPI Comm local comm,
MPI Comm* coupl comm)

– icpl is a C int type input argument (see oasis create couplcomm in section 2.2.2)
– loca comm is a C MPI Comm type input argument (by value)
– coupl comm is a C MPI Comm* type output argument (by reference)

• int oasis c set couplcomm(const MPI Comm coupl comm)

– Takes a C MPI Comm type as an input argument (by value)

• int oasis c def partition(int* il part id, const int ig paral size, const
int* ig paral, const int ig size, const char* name)

– ig paral size is the size of the array ig paral: the oasis c.h header provides a set of
constants and macros for the size of every partition strategy, namely OASIS Serial Params,
OASIS Apple Params, OASIS Box Params, OASIS Orange Params(n segments),
OASIS Points Params(n points)

– the oasis c.h header also provides a set of predefined constants for the storages posi-
tions in ig paral, namely OASIS Strategy, OASIS Segments, OASIS Npoints,
OASIS Offset, OASIS Length, OASIS SizeX, OASIS SizeY, OASIS LdX

– the partition strategy, to be stored in the OASIS Strategy position of ig paral, can
take one of the following predefined constants values: OASIS Serial, OASIS Apple,
OASIS Box, OASIS Orange, OASIS Points

2.3. OASIS3-MCT C API 27

– for the cases in which the ig size and name arguments are not relevant for the partition
definition, the placeholders OASIS No Gsize and OASIS No Name can be used instead

Here an example for the OASIS Part Apple strategy
int part_params[OASIS_Apple_Params];
part_params[OASIS_Strategy] = OASIS_Apple;
part_params[OASIS_Offset] = offset;
part_params[OASIS_Length] = local_size;
int part_id;
OASIS_CHECK_ERR(oasis_c_def_partition(&part_id, OASIS_Apple_Params,

part_params, OASIS_No_Gsize,
OASIS_No_Name));

• int oasis c start grids writing()

• int oasis c write grid(const char* cgrid, const int nx global, const
int ny global, const int nx loc, const int ny loc, const double* lon,
const double* lat, const int il partid)

/local
– nx global and ny global are the first and second dimensions of the global grid
– nx loc and ny loc are the two dimensions of the local arrays lon and lat
– lon and lat are stored with a Fortran compatible (column major) ordering. For example, if

they are declared as double pointers, they have to be lon[ny loc][nx loc]

– il partid is relevant only for parallel writing; in case of single proc invocations, the con-
stant OASIS No Part can be passed as a placeholder

• int oasis c write corner(const char* cgrid, const int nx global, const
int ny global, const int nc, const int nx loc, const int ny loc, const
double* clon, const double* clat, const int il partid)

– nx global and ny global are the first and second dimensions of the global grid
– nc is the maximum number of corners per cell
– nx loc and ny loc are the two dimensions of the local arrays clon and clat
– clon and clat are stored with a Fortran compatible (column major) ordering. If they are

declared as triple pointers, they have to be clon[nc][ny loc][nx loc]

– il partid is relevant only for parallel writing. In case of single proc invocations, the con-
stant OASIS No Part can be passed as a placeholder

• int oasis c write mask(const char* cgrid, const int nx global, const
int ny global, const int nx loc, const int ny loc, const int* mask, const
int il partid, const char* companion)

– nx global and ny global are the first and second dimensions of the global grid
– nx loc and ny loc are the two dimensions of the local array mask
– mask is stored with a Fortran compatible (column major) ordering. If it is declared as a double

pointer, it has to be mask[ny loc][nx loc]

– il partid is relevant only for parallel writing. In case of single proc invocations, the con-
stant OASIS No Part can be passed as a placeholder

– if no companion grid attribute is needed, the constant OASIS No Companion can be
passed as a placeholder

• int oasis c write frac(const char* cgrid, const int nx global, const
int ny global, const int nx loc, const int ny loc, const double* frac,

28 CHAPTER 2. INTERFACING A COMPONENT CODE WITH OASIS3-MCT

const int il partid, const char* companion)

– nx global and ny global are the first and second dimensions of the global grid
– nx loc and ny loc are the two dimensions of the local array frac
– frac is stored with a Fortran compatible (column major) ordering. If it is declared as a double

pointer, it has to be frac[ny loc][nx loc]

– il partid is relevant only for parallel writing. In case of single proc invocations, the con-
stant OASIS No Part can be passed as a placeholder

– if no companion grid attribute is needed, the constant OASIS No Companion can be
passed as a placeholder

• int oasis c write area(const char* cgrid, const int nx global, const
int ny global, const int nx loc, const int ny loc, const double* area,
const int il partid)

– nx global and ny global are the first and second dimensions of the global grid
– nx loc and ny loc are the two dimensions of the local array area
– area is stored with a Fortran compatible (column major) ordering. If it is declared as a double

pointer, it has to be area[ny loc][nx loc]

– il partid is relevant only for parallel writing. In case of single proc invocations, the con-
stant OASIS No Part can be passed as a placeholder

• int oasis c write angle(const char* cgrid, const int nx global, const
int ny global, const int nx loc, const int ny loc, const double* angle,
const int il partid)

– nx global and ny global are the first and second dimensions of the global grid
– nx loc and ny loc are the two dimensions of the local array angle
– angle is stored with a Fortran compatible (column major) ordering. If it is declared as a

double pointer, it has to be angle[ny loc][nx loc]

– il partid is relevant only for parallel writing. In case of single proc invocations, the con-
stant OASIS No Part can be passed as a placeholder

• int oasis c terminate grids writing()

• int oasis c def var(int* var id, const char* name, const int il part id,
const bundle size, const int kinout, const int var type)

– bundle size is a scalar integer, corresponding to the second entry of the Fortran var nodims
array

– kinout can receive one of the two predefined constants OASIS In or OASIS Out (also in
the form OASIS IN or OASIS OUT)

– var type can receive one of the two predefined constants OASIS Real or OASIS Double
(also in the form OASIS REAL or OASIS DOUBLE)

• int oasis c enddef()

• int oasis c put(const int var id, const int date, const int x size, const
int y size, const int bundle size, const int fkind, const int storage,
const void* fld1, const bool write restart, int* kinfo)

– This interface does not support higher order mapping through optional fields at this time.
– x size and y size are the dimensions of the local portion of the domain (i.e. fld1). The

order of these dimensions must be the same than the order of the dimensions of the arrays
in the grids.nc file, which corresponds to the storage order in the corresponding internal

2.3. OASIS3-MCT C API 29

OASIS3-MCT Fortran work arrays.
Notice that for unstructured grids y size=1

– bundle size should be coherent with the argument of same name in the corresponding
oasis c def var

– fkind can take one of the two predefined constants OASIS Real or OASIS Double (also
in the form OASIS REAL or OASIS DOUBLE) should be coherent with the argument ktype
in oasis c def var

– storage can take one of the two predefined constants OASIS COL MAJOR or
OASIS ROW MAJOR.
In the first case, the array containing the field has to be declared as
field[bundle size][y size][x size] (or any equivalent storage of total size
bundle size*y size*x size stored in column major order.
In the second case, the field has to be declared as
field[x size][y size][bundle size] (or any equivalent row major storage).
Notice that this choice implies an extra memory copy performed internally by OASIS3-MCT
before acting on the field and is therefore to be avoided whenever possible.

– write restart can take one of the two predefined constants OASIS Write Restart
or OASIS No Restart

– kinfo contains a return status to be compared against the values of the return codes enu-
meration in oasis c.h (equivalent to the returned value of info argument for the Fortran
oasis put routine, see section 2.2.7)

• int oasis c get(const int var id, const int date, const int x size, const
int y size, const int bundle size, const int fkind, const int storage,
void* fld1, int* kinfo)

– arguments are the same than for oasis c put, except that kinfo return status is equivalent
to the returned value of info argument for the Fortran oasis get routine, see section 2.2.7.

• int oasis c terminate()

• int oasis c abort(const int compid, const char* routine name, const char*
abort message, const char* file, const int line)

• int oasis c get debug(int* debug)

• int oasis c set debug(const int debug)

• int oasis c get intercomm(MPI Comm* new comm, char* cdnam)

– Returns a C MPI Comm type by reference

• int oasis c get intracomm(MPI Comm* new comm, char* cdnam)

– Returns a C MPI Comm type as by reference

• int oasis c get multi intracomm(MPI Comm* new comm, const int cdnam size,
char** cdnam, int* root ranks)

– Returns a C MPI Comm type as by reference
– cdnam size is the size of the array cdnam

• int oasis c put inquire(int var id, int date, int* kinfo)

– kinfo contains a return status to be compared against the values of the return codes
enumeration in oasis c.h

• int oasis c get ncpl(const int var id, int* ncpl)

30 CHAPTER 2. INTERFACING A COMPONENT CODE WITH OASIS3-MCT

• int oasis c get freqs(const int var id, const int mop, const int ncpl,
int* cpl freqs)

2.4 OASIS3-MCT python API

The source code of pyOASIS is in the directory pyoasis/src. Complete documentation is available
in pyoasis/pyoasis.pdf. The pyoasis interface ultimately call the Fortran version. This is done
by wrapping the Fortran in ISO-C bindings (see lib/cbindings/fortran isoc), then wrapping
the Fortran ISO-C bindings in C (see lib/cbindings/c), then wrapping the C bindings in python
(see pyoasis/src). This method provides both the C and python bindings. Examples on how to
use pyOASIS are provided in pyoasis/examples. To run all tests including python, C, and Fortran
examples, use make test. The python wrapper functions are briefly described next.

• Creating a component using MPI
In pyOASIS, components are instances of the Component class. To initialise a component, its
name has to be supplied. It is also possible to provide an optional coupling flag argument
which defaults to “True”, which means the component is coupled through OASIS3 MCT.
OASIS3 MCT couples models which communicate using MPI. If the global communicator at the
start of the run is different from the default MPI COMM WORLD communicator, the global commu-
nicator has to be passed to the Component class through the third optional argument. By default,
the Component class will set up MPI internally and provides methods to get access to information
such as rank and number of processes in the local communicator gathering only the component
processes.

__
import pyoasis
[...]
comm = my_global_comm
component_name = "component"
coupling_flag = True
comp = pyoasis.Component(component_name, coupling_flag, comm)
print("Hello world from process " + str(comp.localcomm.rank)

+ " of " + str(comp.localcomm.size))
__

To create a coupling communicator for a subset of processes, one can use the method create couplcomm,
with a flag being True for all these processes; see pyoasis/examples/4-orange/python
for a practical example.
If such a communicator already exists in the code, it should simply be provided to OASIS3 MCT
with the method set couplcomm; as in pyoasis/examples/6-apple and orange/python.
To set up an MPI intra communicator or inter communicator between the local component and
another component, one can use the methods get intracomm or get intercomm;
as in pyoasis/examples/3-box/python .
To set up an MPI intra-communicator among some of the coupled components, listed in the comp list
list, one can use the method get multi intracomm, as in 9-python fortran C-multi intracomm.
Also, the current OASIS3-MCT internal debug level ($NLOGPRT value in the namcouple), can be
retrieved as a property of a component, namely debug level, and can be changed by directly
modifying this property, as in pyoasis/examples/7-multiple-puts/python.

• Creating a partition
The data can be partitioned in various ways. These correspond to the SerialPartition,
ApplePartition, BoxPartition, OrangePartition and PointsPartition classes

2.4. OASIS3-MCT PYTHON API 31

which are inherited from the Partition abstract class. For details on the different ways to
describe the partitions, see OASIS3 MCT User Guide, section 2.2.3 and examples 1 serial,
2 apple, 3 box, 4 orange, 5 points in pyoasis/examples.
The simplest situation is the serial partitioning where all the data is held by a single process and
only the number of points has to be specified (see example 1 serial)
In the case of the Apple partitioning, each process contains a segment of a linear domain. To
initialise such a partitioning, an offset has to be supplied for each rank as well as the number of data
points that will be stored locally (see example 2 apple).
When we use the Box partitioning, a two-dimensional domain is split into several rectangles. The
global offset, local extents in the x and y directions and the global extent in the x direction have to
be supplied to the constructor. The global offset is the index of the corner of the local rectangle (see
example in 3 box) .
The Orange partitioning consists of several segments of a linear domain (see an example with only
one segment per process in 4 orange.)
The last type of partitioning is Points, where we have to specify, in a list, the global indices of the
points stored by the process (see example in 5 points).

• Defining the coupling grids
The grid data files, containing the definition of the grids onto which the coupling data is defined,
can be created by the user before the run or can be written directly at run time by the components,
either by one component process to write the whole grid or by each process holding a part of a grid.
Details about the grid definition can be found in section 2.2.4 of OASIS3 MCT User Guide. A full
example of writing a grid in sequential and parallel models can be found in examples/10 grid
.
To initialise a grid and write the grid longitudes and latitudes, one has to create an instance of the
Grid class. Then to write the grid cell corner longitudes and latitudes, areas, mask, cell valid frac-
tion, angle, the set corners, set area, set mask, set frac, and set angle methods
can be used respectively.

• Declaring the coupling data
The coupling data is handled by the class Var. Its constructor requires its symbolic name, as it ap-
pears in the namcouple file, the partition and a flag indicating whether the data is incoming or outgo-
ing. The latter is an enumerated type and can have the values pyoasis.OasisParameters.OASIS OUT
or pyoasis.OasisParameters.OASIS IN.
The property is active can be tested to check if the variable is activated in the namcouple con-
figuring file (see example 3-box/python).
The coupling period(s) of the data, as defined in the namcouple, can be accessed with the property
cpl freqs and the number of coupling exchanges in which the data is involved by len(cpl freqs)
(see example 7-multiple-puts/python).
The property put inquire of the variable tells what would happen to the corresponding data at
that date below the corresponding send action. This maybe useful if, for example, the calculation of
a coupling field is costly and if one wants to compute it only when it is really sent out. The different
possible return codes are listed in section 2.2.9 of OASIS3 MCT User Guide.

• Ending the definition phase
Then the definition of the component must be ended by calling the enddef() method. This must
be done only once the partitioning and the variable data have been initalised.

• Sending and receiving data
pyOASIS expects data to be provided as a pyoasis.asarray object:

__
field = pyoasis.asarray(range(n_points))

32 CHAPTER 2. INTERFACING A COMPONENT CODE WITH OASIS3-MCT

__

This is a numpy array but ordered in the Fortran way. In C, multidimensional arrays store data
in row major order where contiguous elements are accessed by incrementing the rightmost index
while varying the other indices will correspond to increasing strides in memory as we use indices
further towards the left. By default, numpy arrays use that ordering as well. Fortran, on the other
hand, uses column major order. In that case, contiguous elements are accessed by incrementing the
leftmost index. pyoasis.asarray objects use the same ordering as Fortran. As a consequence,
it is not necessary to transform data in order to use it in the OASIS3 MCT Fortran library.
The sending and receiving actions may be called by the component at each timestep. The date
argument is automatically analysed and actions are actually performed only if date corresponds to a
time for which it should be activated, given the period indicated by the user in the namcouple. See
OASIS3 MCT User Guide section 2.2.7 for details.
The data is sent with the put function.

__
date = int(0)
variable.put(date, field)
__

Conversely, it is received with the get function, which fills the pyoasis.asarray object.

__
variable.get(date, field)
__

• Termination
Finally, the coupling is terminated with the destruction of the component:

__
del comp
__

• Exceptions and aborting
When an error occurs in OASIS3 MCT, the code coupler returns an error code and an OasisException
is raised. In practice, OASIS3 MCT will internally handle the error, write an error message in its
debug log files and to the screen, and abort before the exception is raised. It may also happen that
the code aborts before the error message appears on the screen.
When an error is caught by the pyOASIS wrapper, such as an incorrect parameter or a wrong
argument type, a PyOasisException is raised.
In the following example, where we attempt to initialise a component, a PyOasisException
will be raised as the user supplies an empty name :

__
try:

comp = pyoasis.Component("")
except (pyoasis.PyOasisException) as exception:

pyoasis.pyoasis_abort(exception)
__

The function pyoasis.pyoasis abort takes an exception as argument. It stops the execution
of all the processes after having displayed an error message and written information in the log files
about the error and the context in which it took place.
Another function is available, pyoasis.oasis abort, for the cases where a voluntary abort is
needed in the code where or not an exception has been raised. Its interface mimics the corresponding
OASIS3 MCT functio oasis abort.

2.4. OASIS3-MCT PYTHON API 33

2.4.1 Fortran python API correspondence

Figures 2.6 , 2.7 and 2.8 show the Fortran python API correspondence for different parts of the API.
Different examples implementing the different parts of the API with the Fortran, C and python interfaces
are also provided as practical illustrations in directory pyoasis/examples and are described in section
6.3.4.

Figure 2.6: Fortran python AP correspondence for the initialisation, communication and partition definition.

34 CHAPTER 2. INTERFACING A COMPONENT CODE WITH OASIS3-MCT

Figure 2.7: Fortran python AP correspondence for the grid definition, variable declaration and end of definition
phase.

2.5 Additional notes on coupling functionality

2.5.1 A brief overview of MCT

As described elsewhere, OASIS3-MCT leverages the MCT 2.11 coupling infrastructure developed at Ar-
gonne National Laboratory. That infrastructure is designed to couple fields on static grids between model
components. The fields can be decomposed using MPI across mutiple processes, and the decomposition
and number of proceses involved can be arbitrary in each component. MCT supports both communica-
tion of data between unique MPI non-overlapping communicators and within a single MPI communicator,
although these two operations are functionally independent within MCT.
MCT also provides the ability to map (i.e. interpolate or regrid) data between grids as long as the in-
terpolation is linear and can be computed by a linear sparse matrix multiply. MCT does not compute
interpolation weights, but it has interfaces that allow those weights to be passed into MCT. Within MCT,
mapping and communication are also treated as independent features.
OASIS3-MCT supports both mapping and communication of data through MCT. As a results, mapping
and coupling are implemented, in many ways, as separate steps in the underlying implementation. A
coupling field that also requires mapping will carry out the mapping on either the source or destination
component on the associated processes, while coupling between components will be done either before or
after mapping. In other words, a coupling field can be interpolated to the destination grid on the source
processes then communicated to the destination component OR a coupling field can be communicated
to the destination component on the source grid then mapped to the destination grid on the destination

2.5. ADDITIONAL NOTES ON COUPLING FUNCTIONALITY 35

Figure 2.8: Fortran python AP correspondence for the coupling field exchanges, termination and auxialiary routines.

component. At the present time, it is not possible to map the field as part of the communication rearrange-
ment, although in theory, that capability should be possible to implement in the future, and OASIS3-MCT
developers are considering it. The separation of mapping and communication is handled by the OASIS
layer. Users only need to be aware of a few options that can be set to fine tune the performance of these
operations.

OASIS3-MCT also imposes a few other constraints on the usage. MCT does NOT support haloed com-
munication. There must be a 1-to-1 relationship between grid point values on the source grid and on the
destination grid. A user cannot send a single grid point value to multiple destination gridcells or processes
via OASIS3-MCT. The partitions defined by the user that define the field decomposition cannot reference
the same global gridcell more than once.

OASIS3-MCT does not support dynamically varying grids nor dynamically varying decompositions at the
present time. MCT is NOT currently setup to support those features. In the future, it is possible that some
dynamic grid capabilities might be supported through OASIS3-MCT but requirements and implementation
are still being assessed.

Since the OASIS3-MCT 4.0 release, OASIS3-MCT includes a mixed MPI+OpenMP parallel version of
the SCRIP library for the calculation of the remapping weights (see section 4.3). But besides this aspect,

36 CHAPTER 2. INTERFACING A COMPONENT CODE WITH OASIS3-MCT

MCT itself, and therefore the communication layer in OASIS, has only minimal OpenMP support at the
present time. Users are discouraged from calling OASIS3-MCT oasis put and oasis get from a
threaded region. And it is not possible to define a partition (decomposition) across multiple active threads.
Most of the work that OASIS3-MCT does related to decomposition rearrangement for communication or
mapping per se is MPI-based. There are some floating point operations in the sparse matrix multiple as
well as in some of the OASIS3-MCT transforms; but generally, these are highly parallel and would often
not benefit from use of OpenMP. OASIS3-MCT is designed primarily to support large memory parallel
applications that require efficient and scalable coupling and mapping capabilities.
MCT only supports coupling of integer or floating point data. Fields based on logicals and character
strings cannot be coupled.

2.5.2 Coupling scalar values

OASIS3-MCT does not have a distinct feature to support scalar coupling. By scalar coupling, we mean
scalar variables such as date and time, logical flags, integer or real parameters, or other scalar data that
might be defined identically across all MPI tasks in a component or even just on the root task or a subset
of tasks. It is often desirable to communicate scalar data between components to coordinate scientific or
technical features. There isn’t a feature that supports this type of coupling specifically, but it is possible to
do so using available interfaces. The most robust implementation is probably to setup root to root coupling
of scalars between components. To do so :

• Determine the number and type of scalars to couple
• Allocate an array in each component of that size
• Initialize a partition using the POINTS approach (see section 2.2.3) with the size of the array as-

signed to the root process in each component and no portion of the partition allocated to other
processes.

• Define coupling field names for use in both the model components and the namcouple file and
declare variables as usual. Create a set of namcouple inputs. You will not need any mapping.

• Use the oasis get and oasis put interfaces to communicate data between components.
• If required, broadcast the scalars after being received from the root process to the other processes,

outside the OASIS3-MCT layer.

This can be extended as needed to send or receive from non root processes. But you cannot send the
scalar data to multiple processes as this violates the halo restriction in MCT. Users need to be aware
which processes contain valid scalar data both on the source and destination side and to manage data
synchronization between processes within a component outside the OASIS3-MCT layer.

2.5.3 The lag concept

Using the OASIS3-MCT coupling library, the user has the flexibility to reproduce different coupling algo-
rithms defining LAG values for the different coupling fields . In the components, the sending and receiving
routines, respectively oasis put and oasis get, can be called at each component timestep, with the
appropriate date argument giving the actual time (at the beginning of the timestep), expressed in number
of seconds since the start of the run, or in any other time units as long as the same are used in all com-
ponents and in the namcouple (see section 2.2.7). This date argument is automatically analysed by the
coupling library and depending on the coupling period and the lag chosen by the user for the coupling
field in the namcouple (LAG), different coupling algorithms can be reproduced without modifying the
component codes themselves.
The lag (LAG) must be expressed in the time unit used (that must be the same in the components and in
the namcouple, see section 2.2.7) and can be positive or negative but should never be larger (in absolute
magnitude) than the coupling period of any field due to problems with restartability and dead-locking.
When a component calls a oasis put, the value of the lag is automatically added to the value of the

2.5. ADDITIONAL NOTES ON COUPLING FUNCTIONALITY 37

F1

F2

F1 F2

F2 F1
F1

F2 F2 F2 F2 F2 F2F1 F1F1 F1 F1 F1 F1

F2 F2
F2F2

F2
F1

F2

F1 F1

0

0 12

12

24

24 120

120

6

4 8 16 20 28

18 30

Model A timestep = 4

Model B timestep = 6

Cpl_period(F1) = 12
Cpl_period(F2) = 24
LAG(F1) = 4
LAG(F2) = 6

prism_put_proto/prism_get_proto leading to
writing/reading to/from coupling restart file

prism_put_proto/prism_get_proto not leading to
sending/receiving actions

prism_put_proto/prism_get_proto leading to
sending/receiving actions

Figure 2.9: LAG concept first example

date argument and the “put” is actually performed when the sum date+lag is a coupling time; in the
target component, this “put” will match a oasis get for which the date argument is the same coupling
time. So the lag only shifts the time at which the data is sent but not the time at which the data is received.

When the lag is positive, a restart file must be available to initiate the coupling. For a field with positive
lag, the source component automatically reads the field in the restart file during the coupling initialization
phase (below the oasis enddef) and send the data to match the oasis get performed at time=0 in
the target component. The final coupling data on the source side will then be automatically written to the
restart file for use in the next run5.

On the 4 figures in this section, short black arrows correspond to oasis put or oasis get called in the
component that do not lead to any “put” or receiving action; long black arrows correspond to oasis put
or oasis get called in the components that do actually lead to a “put” or “get” action; long red arrows
correspond to oasis put or oasis get called in the component models that lead to a reading or
writing of the coupling field from or to a coupling restart file.

1. LAG concept first example

A first coupling algorithm, exploiting the LAG concept, is illustrated on figure 2.9.

During a coupling timestep, model A receives F2 and then sends F1; its timestep length is 4. During
a coupling timestep, model B receives F1 and then sends F2; its timestep length is 6. F1 and F2

coupling periods are respectively 12 and 24. If F1/F2 “put” action by model A/B was used at a
coupling timestep to match the model B/A “get” action, a deadlock would occur as both models

5When there is a lag, the first and last instance of the source field in the debug netCDF file (EXPOUT fields, see section 3.3)
always correspond respectively to the field read from and written to the restart file.

38 CHAPTER 2. INTERFACING A COMPONENT CODE WITH OASIS3-MCT

F1

F2

F2
F1

F1

F2F1 F1 F1

F2 F2
F2F2 F1

F2

F1 F1

0

0 12

12

24

24 120

120

6 18 30

prism_put_proto/prism_get_proto leading to
writing/reading to/from coupling restart file

prism_put_proto/prism_get_proto NOT leading to
sending/receiving actions

prism_put_proto/prism_get_proto leading to
sending/receiving actions

Model A timestep = 6

Model B timestep = 6

Cpl_period(F1) = 12
Cpl_period(F2) = 12
Cpl_period(F3) = 12
LAG(F1) = 6
LAG(F2) = 6
LAG(F3) = 0

F1 F2

6

F1 F2

18

F2

F2

F3

F3

F3

F3 F3 F3

F3 F3F3 F3

F3F3

Figure 2.10: LAG concept second example

would be initially waiting on a “get” action. To prevent this, F1 and F2 produced at the timestep
before have to be used to match respectively the model B and model A “get” actions.

This implies that a lag of respectively 4 and 6 seconds must be defined for F1 and F2. For F1, the
oasis put performed at time 8 and 20 by model A will then lead to “put” actions (as 8 + 4 = 12
and 20 + 4 = 24 which are coupling periods) that match the “get” actions performed by oasis get
called by model B at times 12 and 24. For F2, the oasis put performed at time 18 by model B
then leads to a “put” action (as 18 + 6 = 24 which is a coupling period) that matches the “get” action
performed at time 24 by the oasis get called by model A.

At the beginning of the run, as their LAG index is greater than 0, the first oasis get of F1 and F2

will automatically be fulfilled with fields read from their respective coupling restart files. The user
therefore has to create those coupling restart files before the first run in the experiment. At the end
of the run, F1 having a lag greater than 0, is automatically written to its coupling restart file below
the last F1 oasis put as the date+lag equals the total run time. The analogue is true for F2.
These coupling restart fields will automatically be read in at the beginning of the next run below the
respective oasis get.

2. LAG concept second example

A second coupling algorithm exploiting the LAG concept is illustrated on figure 2.10. During its
timestep, model A receives F2, sends F3 and then F1; its timestep length is 6. During its timestep,
model B receives F1, receives F3 and then sends F2; its timestep length is also 6. F1, F2 and F3

coupling periods are both supposed to be equal to 12.

For F1 and F2 the situation is similar to the first example. Without any lag specified and without any
restart file, a deadlock would occur as both models would be waiting on a “get” action. To prevent

2.5. ADDITIONAL NOTES ON COUPLING FUNCTIONALITY 39

this, F1 and F2 produced at the timestep before have to be used to match the model A and model B
“get” actions, which means that a lag of 6 must be defined for both F1 and F2. For both coupling
fields, the oasis put performed at times 6 and 18 by the source model then lead to “put” actions
(as 6 + 6 = 12 and 18 + 6 = 24 which are coupling periods) that match the “get” action performed at
time 12 and 24 by the oasis get called by the target model.
For F3, sent by model A and received by model B, no lag needs to be defined: the coupling field
produced by model A at the coupling timestep can be “consumed” by model B without causing a
deadlock situation.
As in the first example, the oasis get performed at the beginning of the run for F1 and F2, will
automatically receive data read from their coupling restart files, and the last oasis put performed
at the end of the run automatically write them to their coupling restart file. For F3, no coupling
restart file is needed.
We see here how the introduction of appropriate LAG indices results in receiving in the target
component the coupling fields produced by the source component the time step before; this is, in
some coupling configurations, essential to avoid deadlock situations.

2.5.4 The sequence concept

The order of coupling operations in the system is determined solely by the order of calls to send (oasis put
or “put”) and receive (oasis get or “get”) data in the components in conjunction with the setting of the
lag in the namcouple. Data that is received is always blocking while data that is sent is non-blocking with
respect to the component making that call. It is possible to deadlock the system if the relative orders of
puts and gets in different components are not compatible.
With OASIS3-MCT, the sequence (SEQ) index in the namcouple file now provides the coupling layer with
an ability to detect a deadlock before it happens and exit. It does this by tracking the order of get and put
calls in components compared to the SEQ specified in the namcouple. If there are any inconsistencies, the
component will abort gracefully with a useable error message before the system deadlocks. If there are
any coupling dependencies in the system, use of the SEQ index is recommended for diagnosis but has no
impact on the ultimate solution and is NOT required.
In the following two examples, there are two models, each “put” a field to the other at every coupling
period without any lags. In the first case, there is no dependency as each model first sends and then
receives some data.

model1 model2
------ ------
put(fld1) put(fld2)
get(fld2) get(fld1)

In this case, there is no sequencing dependency and the value of SEQ must be identical (or unset) in the
namcouple description of the fld1 and fld2 coupling. If by mistake, SEQ is set to 1 for fld1 and 2 for fld2,
then the coupled model will abort because at runtime, the coupler will detect in model 2 that fld2 was sent
before fld1 was received which is out of sequence as defined by the SEQ settings.
In the next example, there is a dependency in the sequencing.

model1 model2
------ ------
put(fld1) get(fld1)

fld2=g(fld1)
get(fld2) put(fld2)

In model2, fld2 depends on fld1. If SEQ is not used and if, for example, model1 does not have the
consistent ordering of the put and get shown above (required by model2), then the models would deadlock
and hang. If this dependency is known, there is a benefit in setting SEQ=1 for fld1 and SEQ=2 for fld2;

40 CHAPTER 2. INTERFACING A COMPONENT CODE WITH OASIS3-MCT

at runtime, if the sequencing of model1 or model2 does not match the above diagram, then the coupling
layer will detect it and will exit gracefully with an error message.
Again, the SEQ namecouple setting is only diagnostic and is not required.

Chapter 3

The configuration file namcouple

The OASIS3-MCT configuration file namcouple contains, below pre-defined keywords, all user-defined
information necessary to configure a particular coupled run.
The namcouple is a text file with the following characteristics:

• the keywords used to separate the information can appear in any order;
• the number of blanks between two character strings is non-significant;
• all lines beginning with # are ignored and considered as comments;
• blank lines are supported, but only since OASIS3-MCT 4.0 version.

The first part of namcouple is devoted to configuration of general parameters such as the total run time
or the desired debug level. The second part gathers specific information on each coupling (or I/O) field,
e.g. their coupling period, the list of transformations or remapping to be performed by OASIS3-MCT and
associated configuring lines (described in more details in chapter 4).
In OASIS3-MCT, several namcouple inputs have been deprecated but, for backwards compatibility, they
are still allowed. These inputs will be noted in the following text using the notation “UNUSED” and not
fully described. Information below these keywords is obsolete; they will not be read and will not be used.
In the next sections, a namcouple example is given and all configuring parameters are described. Addi-
tional lines containing different parameters for each transformation are described in section 4. A realistic
namcouple can be found in oasis3-mct/examples/tutorial/data oasis3/ directory.

3.1 An example of a simple namcouple

The following simple namcouple configures a run into which e.g. an ocean, an atmosphere and an at-
mospheric chemistry components are coupled. The ocean running on grid toce provides only the
SOSSTSST field to the atmosphere (grid atmo), which in return provides the field CONSFTOT to the
ocean. One field COSENHFL is exchanged from the atmosphere to the atmospheric chemistry (also run-
ning on grid atmo), and one field SOALBEDO is read from a file by the ocean.

########## First section ###
$NFIELDS

4
#
$RUNTIME

432000
#
$NLOGPRT
2 1 0

41

42 CHAPTER 3. THE CONFIGURATION FILE NAMCOUPLE

#
$NCDFTYP

cdf1
#
$NUNITNO

901 920
#
$NMAPDEC

decomp_wghtfile
#
$NMATXRD

ceg
#
$NWGTOPT

ignore_bad_index
#
$SEQMODE
$CHANNEL
$JOBNAME
$NBMODEL
$INIDATE
$MODINFO
$CALTYPE

#
########## Second section ###
#
$STRINGS

#
Field 1
SOSSTSST SISUTESU 1 86400 5 sstoc.nc EXPOUT
182 149 128 64 toce atmo LAG=+14400 SEQ=+1
P 2 P 0
LOCTRANS CHECKIN MAPPING BLASNEW CHECKOUT

#
AVERAGE
INT=1
map_toce_atmo_120315.nc src opt
1.0 1
CONSTANT 273.15
INT=1

#
Field 2
CONSFTOT SOHEFLDO 6 86400 4 flxat.nc EXPORTED
atmo toce LAG=+14400 SEQ=+2
P 0 P 2
LOCTRANS CHECKIN SCRIPR CHECKOUT

#
ACCUMUL
INT=1
BILINEAR LR SCALAR LATLON 1
INT=1

3.2. FIRST SECTION OF NAMCOUPLE FILE 43

#
Field 3
CONSFTOT CONSFTOT 1 86400 1 flda3.nc OUTPUT
128 64 128 64 atmo atmo
LOCTRANS
AVERAGE

#
Field 4
SOALBEDO SOALBEDO 17 86400 0 SOALBEDO.nc INPUT

3.2 First section of namcouple file

The first section of namcouple uses some predefined keywords prefixed by the $ sign to locate the related
information. The $ sign must be the first non-blank character on the line but can be in any column. 8
keywords are used by OASIS3-MCT and 5 of these are optional :

• $NFIELDS: On the line below this keyword, put a number equal (or greater) to the total number of
field entries in the second part of the namcouple. If more than one field are described on the same
line, this counts as only one entry.

• $RUNTIME: On the line below this keyword, put the total simulated time of the run, expressed
in seconds (or any other time units as long as the same are used in all components and in the
namcouple, see 2.2.7). Note that by convention the first coupling of a run occurs at the beginning
of the run and all other couplings occur at a time strictly smaller than $RUNTIME.

• $NLOGPRT: The first, second and third numbers on the line below this keyword refer to (i) the
debug verbosity, (ii) internal timing statistics and (iii) component load balancing analysis. The
information is written by OASIS3-MCT for each component and (optionnally) for each process.

The first number (that can be modified at runtime with the oasis set debug routine, see section
2.2.9) may be:

– 0 : production mode. One file debug.root.xx is open by the master process of each component
and one file debug notroot.xx is open for all the other processes of each component to write
only error information.

– 1 : one file debug.root.xx is open by the master process of each component to write informa-
tion equivalent to level 10 (see below) and also to write memory usage information; one file
debug notroot.xx is open for all the other processes of each component to write error informa-
tion.

– 2 : one file debug.yy.xxxxxx is open by each process of each component (with “yy” being the
component number and “xxxxxx” the process number) to write normal production diagnostics
and memory usage information

– 5 : as for 2 with in addition some initial debug info

– 10: as for 5 with in addition the routine calling tree

– 12: as for 10 with in addition some routine calling notes

– 15: as for 12 with even more debug diagnostics

– 20: as for 15 with in addition some extra runtime analysis

– 30: full debug information

The second number defines how time statistics are written out to file comp name.timers xxxx (with
comp name being the component name, see section 2.2.2); it can be:

– 0 : nothing is calculated or written.

44 CHAPTER 3. THE CONFIGURATION FILE NAMCOUPLE

– 1 : some time statistics are calculated and written in a single file by the processor 0 as well as
the min and the max times over all the processors.

– 2 : some time statistics are calculated and each processor writes its own file ; processor 0 also
writes the min and the max times over all the processors in its file.

– 3 : some time statistics are calculated and each processor writes its own file ; processor 0 also
writes in its file the min and the max times over all processors and also writes in its file all the
results for each processor.

For more information on the time statistics written out, see section 6.4.2.
The third number (new in OASIS3-MCT 5.0) can be set to 1 to activate a load balancing diagnostic.
An efficient use of the allocated computing resources in a coupled system requires the harmonisation
of the components speed. This operation, called load balancing, is often neglected, either because of
the apparent resource abundance and practical difficulties. To facilitates this work, OASIS3-MCT
can output the full timeline of all coupling related events, for any of the allocated resources. This
timeline is saved in one netCDF file per coupled component (timeline XXX component.nc).
It provides the comprehensive sequence of any operations related to the coupling (field exchange
through MPI, field output on disk, field interpolation and mapping, field reading on disk, restart
writing, initialisation and termination phase of the OASIS3-MCT setup) so that any simulation slow
down in link with the use of the OASIS library can be identified. The analysis of the coupling
field exchanges, amongst all the coupling events, allows not only to identify the resources waste of
components which are recurrently waiting for their coupling fields but it also reveals other bottle-
necks such as disk access, OS interruptions or model internal load imbalance. The full picture of
these events makes possible an optimum load balancing, even for the most complex configurations.
For a detailed information on load balancing analysis and timeline visualisation see respectively
[Maisonnave et al 2020] and in [Piacentini and Maisonnave 2020]. In addition to the timeline, com-
puting information (time to solution, speed, cost) and a synthesis of the time spent on MPI routines
for each coupled component can also help, in the simpler cases, to allocate resources in a balanced
way (see file load balancing info.txt).

• $NCDFTYP: Optional (new in OASIS3-MCT 5.0); on the line below this keyword is a character
string that indicates the NetCDF file type for all (i.e. mapping, restart, output) new NetCDF files
generated by OASIS3. The options are cdf1, cdf2, and cdf5. The mode cdf1 is also known as
classic mode, cdf2 as large file format or 64bit offset and supports larger files, cdf5 as 64bit data
and supports both larger files and larger variables. More information about these file types can be
found in NetCDF documentation. Because cdf5 may not be generally available in all NetCDF
installations, use of this option requires that the C preprocessor directive CDF 64BIT DATA be
used when compiling OASIS3-MCT. If that preprocessor is not used, cdf5 is not a valid option.
The file format for any NetCDF file can be diagnosed by using “ncdump -k filename”. $NCDFTYP
only affects new files created by OASIS3-MCT. NetCDF will read and/or overwrite existing files of
any NetCDF file type, and the file type will remain unchanged in that case.

• $NUNITNO: Optional (new in OASIS3-MCT 4.0); on the line below this keyword are two integers
that indicate the minimum and maximum unit numbers to be used for input and output files in the
coupling layer. The user should choose values that will NOT conflict or overlap with unit numbers
in use in any of the component models. The defaults are 1024 for the minimum and 9999 for the
maximum unit number if not explicitly set by the user.

• $NMAPDEC: Optional (new in OASIS3-MCT 4.0); on the line below this keyword is a character
string that indicates the mapping decomposition value to be used during local mapping. The options
are decomp 1d and decomp wghtfile. Option decomp 1d decomposes the grid in a simple
one dimensional way while decomp wghtfile decomposes the grid using the information in the
remapping weight file to reduced mapping communication. Option decomp wghtfile will take
some extra time in initialization but it should result in faster mapping. The default is decomp 1d
but it is recommended to test decomp wghtfile to see if that option improves performance.

3.3. SECOND SECTION OF NAMCOUPLE FILE 45

More details can be found in [Craig et al 2018] and in [Valcke et al 2018].
• $NMATXRD: Optional (new in OASIS3-MCT 4.0); on the line below this keyword is a character

string that indicates the method used to read remapping weights. There are two options, orig and
ceg. In both, the weights are read in chunks by the root process. In the orig option, the weights
are then broadcasted to all processes and each process then saves the weights needed in order to be
consistent with the mapping decomposition. In the ceg option, the root process reads the weights
and then decides which process each weight should be assigned to. A series of exchanges are then
done and just the weights needed on each process are sent. The orig method sends much more
data but is more parallel. The ceg method does most of the work on the root process but less data
is communicated. The default option is ceg. More details can be found in [Craig et al 2018].

• $NWGTOPT : Optional (new in OASIS3-MCT 4.0); on the line below this keyword is a character
string that indicates how to handle bad remapping weights. There are four options
abort on bad index, ignore bad index, ignore bad index silently, and
use bad index. Bad weights are defined as weights in the mapping file for which either the
source or destination index are out of bounds relative to the number of grid cells in the grid; in that
case, the weight is referencing a gridcell that does not physically exist. Note that an index equal
to zero will not be considered as a bad index if the associated weight is also zero. There are other
situations where the value of the actual mapping weight is scientifically incorrect, but this is not
easy to detect and is not dealt with in OASIS3-MCT.

– abort on bad index will write error messages to the log files and abort if a bad weight
index is detected. This is the default option.

– ignore bad index will write an error message and then remove bad weights internally
before continuing.

– ignore bad index silently will remove bad weights and continue without writing an
error message.

– use bad index will attempt to keep bad weights in the interpolation computation, but this
can result in memory corruption, silent dropping of weights, and incorrect results ; this is not
recommended.

Note that the ability to check mapping files at runtime in OASIS3-MCT is limited. It is always
recommended that mapping files be analyzed offline before long production runs are carried out.
Checks can be done to make sure the source and destination indices are valid, that weights values
are reasonable (for instance, between 0 and 1, although this will depend on the mapping method),
and that the sum of weights on the destination cells are reasonable (for instance, 1, in many cases). In
addition, offline tests can be run with analytical functions to verify conservation, gradient preserving
features and other characteristics associated with the particular mapping approach.

• $NNOREST: Optional (new in OASIS3-MCT 4.0); on the line below this keyword is a character
string that can override the requirement that restart files must exist if they are needed. If the character
string value starts with T, t, .T, or .t (as in true), then OASIS3-MCT will initialise with zero any
variable that normally requires a restart (for instance, variables with LAG> 0) if the restart file does
not exist. By default, missing restart files will cause the model to abort. It is strongly recommended
that this keyword NOT be used in production runs. It exists to provide a quick shortcut for running
technical tests. Note that if $NNOREST is true but the restart file nonetheless exists, it will be used.

• Keywords $SEQMODE, $CHANNEL, $JOBNAME, $NBMODEL, $INIDATE, $MODINFO,
$CALTYPE are not used anymore.

3.3 Second section of namcouple file

The second part of the namcouple, starting after the keyword $STRINGS, contains coupling information
for each coupling (or I/O) field. Its format depends on the field status given by the last entry on the field

46 CHAPTER 3. THE CONFIGURATION FILE NAMCOUPLE

first line (EXPORTED, IGNOUT or INPUT in the example above). The field may be (status AUXILARY is
now UNUSED) :

• EXPORTED: exchanged between components and transformed by OASIS3-MCT
• EXPOUT: exchanged, transformed and also written to two debug NetCDF files, one before the

sending action in the source component below the oasis put call (after local transformations
LOCTRANS and BLASOLD if present), and one after the receiving action in the target component
below the oasis get call (after all transformations). EXPOUT should be used only when debug-
ging the coupled model. The name of the debug NetCDF file (one per field) is automatically defined
based on the field and component names.

• IGNORED: with OASIS3-MCT, this setting is equivalent to and converted to EXPORTED
• IGNOUT: with OASIS3-MCT, this setting is equivalent to and converted to EXPOUT
• INPUT: read in from the input file by the target component below the oasis get call at appropri-

ate times corresponding to the input period indicated by the user in the namcouple. See section 5.3
for the format of the input file.

• OUTPUT: written out to an output debug NetCDF file by the source component below the oasis put
call, after local transformations LOCTRANS and BLASOLD, at appropriate times corresponding to
the output period indicated by the user in the namcouple.

3.3.1 Second section of namcouple for EXPORTED and EXPOUT fields

The first 3 lines for fields with status EXPORTED and EXPOUT are as follows:
SOSSTSST SISUTESU 1 86400 5 sstoc.nc EXPOUT
182 149 128 64 toce atmo LAG=+14400 SEQ=+1
P 2 P 0

where the different entries are:
• Field first line:

– SOSSTSST : symbolic name for the field in the source component (80 characters maximum).
It has to match the argument name of the corresponding field declaration in the source com-
ponent; see oasis def var in section 2.2.5

– SISUTESU : symbolic name for the field in the target component (80 characters maximum).
It has to match the argument name of the corresponding field declaration in the target compo-
nent; see oasis def var in section 2.2.5

– 1 : UNUSED but still required for parsing
– 86400 : coupling and/or I/O period for the field, in seconds
– 5 : number of transformations to be performed by OASIS3 on this field
– sstoc.nc : name of the coupling restart file for the field (32 characters maximum); mandatory

even if no coupling restart file is effectively used (for more detail, see section 5.2)
– EXPOUT : field status

• Field second line:
– 182 : number of points for the source grid first dimension (optional)
– 149 : number of points for the source grid second dimension (optional)1

– 128 : number of points for the target grid first dimension (optional)
– 64 : number of points for the target grid second dimension (optional)1

These source and target grid dimensions are optional but note that in order to have 2D fields
written as 2D arrays in the debug files, these dimensions must be provided in the namcouple;
otherwise, the fields will be written out as 1D arrays.

1For 1D field, put 1 as the second dimension

3.3. SECOND SECTION OF NAMCOUPLE FILE 47

– toce : prefix of the source grid name in grid data files (see section 5.1) (80 characters maxi-
mum)

– atmo : prefix of the target grid name in grid data files (80 characters maximum)
– LAG=+14400: optional lag index for the field (see section 2.5.3)
– SEQ=+1: optional sequence index for the field (see section 2.5.4)

• Field third line
– P : source grid first dimension characteristic (‘P’: periodical; ‘R’: regional).
– 2 : source grid first dimension number of overlapping grid points.
– P : target grid first dimension characteristic (‘P’: periodical; ‘R’: regional).
– 0 : target grid first dimension number of overlapping grid points.

• The fourth line gives the list of transformations to be performed for this field. In addition, there is
one or more configuring lines describing some parameters for each transformation. These additional
lines are described in more details in the chapter 4.

Support to couple multiple fields via a single communication
With OASIS3-MCT, it is possible to couple mutiple fields via a single communication. To activate this
option, the user must list the related fields on a single entry line (with a maximum of 5000 characters on
one line) through a colon delimited list in the namcouple, for example:
ATMTAUX:ATMTAUY:ATMHFLUX TAUX:TAUY:HEATFLUX 1 3600 3 rstrt.nc EXPORTED

All fields will then use the same namcouple settings (source and target grids, transformations, etc.) for
that entry. In the component model codes, these fields are still apparently sent or received one at a time
through individual oasis put and oasis get. Inside OASIS3-MCT, the fields are stored and a single
mapping and send or receive instruction is executed for all fields. This is useful in cases where multiple
fields have the same coupling transformations and to reduce communication costs by aggregating multiple
fields into a single communication.
This option does not put any constraint on the order of the related oasis put and oasis get in the
codes.
As they appear in one single entry line, these fields must share the same coupling restart file but this restart
file may contain other fields.

3.3.2 Second section of namcouple for OUTPUT fields

The first 3 lines for fields with status OUTPUT are as follows:
CONSFTOT CONSFTOT 1 86400 1 flda3.nc OUTPUT
128 64 128 64 atmo atmo
LOCTRANS

where the different entries are:
• Field first line:

– the source symbolic name must be repeated twice on the field first line
– 1 : UNUSED but still required for parsing
– 86400 : output period for the field, in seconds
– 1 : number of transformations to be performed by OASIS3-MCT on this field
– flda3.nc : name of the coupling restart file for the field (32 characters maximum); needed only

if a LOCTRANS transformation is present
– OUTPUT : field status

• Field second line:
– 128 : number of points for the source grid first dimension (optional)

48 CHAPTER 3. THE CONFIGURATION FILE NAMCOUPLE

– 64 : number of points for the source grid second dimension (optional)2

– 128 : number of points for the target grid first dimension (optional)
– 64 : number of points for the target grid second dimension (optional)1

– atmo : prefix of the source grid name in grid data files repeated twice (80 characters maximum)
• The third line is LOCTRANS if this transformation is chosen for the field. Note that LOCTRANS is

the only transformation supported for OUTPUT fields.

3.3.3 Second section of namcouple for INPUT fields

The first and only line for fields with status INPUT is:

SOALBEDO SOALBEDO 1 86400 0 SOALBEDO.nc INPUT

where the different entries are:
• SOALBEDO: symbolic name for the field in the target component (80 characters maximum, repeated

twice)
• 1: UNUSED but still required for parsing (as for EXPORTED fields above)
• 86400: input period in seconds
• 0: number of transformations (always 0 for INPUT fields)
• SOALBEDO.nc: the input file name (32 characters maximum) (for more detail on its format, see

section 5.3)
• INPUT: field status.

2For 1D field, put 1 as the second dimension

Chapter 4

Transformations and interpolations

Different transformations and 2D interpolations are available in OASIS3-MCT to adapt the coupling fields
from a source model grid to a target model grid. In the following paragraphs, a description of each
transformation with its corresponding configuration lines that the user has to write in the namcouple file
is given. Features that are now deprecated (non functional) compared to prior versions will be noted with
the string UNUSED and not described.

4.1 Time transformations

• LOCTRANS:
LOCTRANS requires one configuring line on which a time transformation, automatically performed
below the call to oasis put, should be indicated:

LOCTRANS operation
$TRANSFORM

where $TRANSFORM can be
– INSTANT: no time transformation, the instantaneous field is transferred;
– ACCUMUL: the field accumulated over the previous coupling period is exchanged (the accu-

mulation is simply done over the arrays field array provided as third argument to the
oasis put calls without any specific weighting);

– AVERAGE: the field averaged over the previous coupling period is transferred (the average is
simply done over the arrays field array provided as third argument to the oasis put
calls without any specific weighting);

– T MIN: the minimum value of the field for each source grid point over the previous coupling
period is transferred;

– T MAX: the maximum value of the field for each source grid point over the previous coupling
period is transferred;

– ONCE: UNUSED, not supported in OASIS3-MCT.
Time transformations are now supported more generally than with previous versions of the coupler
with use of the coupling restart file. The coupling restart file allows the partial time transformation
at the end of the run, if any (e.g. if the AVERAGE period specified is longer than the run), to be saved
at the end of a run for exact restart at the start of the next run. When LOCTRANS transformations
are specified, the initial coupling restart file should not contain any LOCTRANS restart fields. For
the following runs, it is mandatory that the coupling restart file contains LOCTRANS restart fields
coherent with the current namcouple entries. For example, it will not be possible to restart a run with
a multiple field entry in the namcouple with a coupling restart file created by a run not activating
this multiple file option. This is the reason why it is now possible to specify a restart file name on

49

50 CHAPTER 4. TRANSFORMATIONS AND INTERPOLATIONS

the OUTPUT namcouple input line. Note that if there is no partial transformation to be saved, the
restart file will still contain a restart field with 0 everywhere.

4.2 The pre-processing transformations

• REDGLO UNUSED
• INVERT: UNUSED
• MASK: UNUSED
• EXTRAP: UNUSED
• CHECKIN:
CHECKIN calculates the global minimum, maximum, mean, and sum of the source field values
taking the mask into consideration. If a grid area or fraction field is also available, (respectively
in the file areas.nc or masks.nc), then the area and/or fraction weighted mean and sum are also
diagnosed and written. Information about masking and weighting is written to the output file. All
diagnotics are written to the master process OASIS3-MCT debug file (under the attribute “CHECK*
diags”). This operation does not transform the field. CHECKIN operations can slow down the
simulation and should not be used in production mode. For backward compatibility, CHECKIN has
one generic input line that is no longer used but is still required and can contain anything. See also
CHECKOUT.
The generic input line is as follows:
CHECKIN operation

INT = 1

• CORRECT: UNUSED
• BLASOLD:
BLASOLD allows the source field to be scaled and allows a scalar to be added to the field. The prior
ability to perform a linear combination of the current coupling field with other coupling fields has
been deprecated in OASIS3-MCT. This transformation occurs before the interpolation per se.
This transformation requires at least one configuring line with two parameters:
BLASOLD operation

$XMULT $NBFIELDS

where $XMULT is the multiplicative coefficient of the source field. $NBFIELDS must be 0 if no
scalar needs to be added or 1 if a scalar needs to be added. In this last case, an additional input line
is required where $AVALUE is the scalar to be added to the field, which must also be given as a
REAL value :

CONSTANT $AVALUE

4.3 The remapping (or interpolation or regridding)

• MAPPING:
The MAPPING keyword is used to specify an input file to be read and used for remapping. The
MAPPING file must follow the SCRIPR format (see section 5.4) but can be generated by another
library, for example ESMF or XIOS (see details in section 6.3.3). As for the other transformations
and interpolations, different mappings can be specified for the different coupling fields. Grid data
files grids.nc, masks.nc, and areas.nc are not needed for MAPPING.
Since OASIS3-MCT 2.0, MAPPING can be used for higher order remapping. Up to 5 different
sets of weights (see section 5.4 for the weight file format) can be applied to up to 5 different fields
transfered through the oasis put argument (see section 2.2.7).

4.3. THE REMAPPING (OR INTERPOLATION OR REGRIDDING) 51

This transformation requires at least one configuring line with one filename and two optional string
values:

$MAPNAME $MAPLOC $MAPSTRATEGY

– $MAPNAME is the name of the mapping file to read. This is a NetCDF file consistent with the
SCRIPR map file format (see section 5.4).

– $MAPLOC is optional and can be either src or dst. With src, the mapping will be done
in parallel on the source processors before communication to the destination model processes;
this is the default. With dst, the mapping is done on the destination processes after the source
grid data is sent from the source model.

– $MAPSTRATEGY is optional and can be either bfb, sum, or opt. In bfb mode, the mapping
is done using a strategy that produces bit-for-bit identical results regardless of the grid decom-
positions; this is the default. With sum, the transform is done using the partial sum approach
which generally introduces roundoff level changes in the results on different processor counts.
Option opt allows the coupling layer to choose either approach based on an analysis of which
strategy is likely to run faster. Usually, partial sums will be used if the source grid has a higher
resolution than the target grid as this should reduce the overall communication (in particular
for conservative remapping). By default $MAPSTRATEGY = bfb.

Note that if SCRIPR (see below) is used to calculate the remapping file, MAPPING can still be listed
in the namcouple, for example to use it with a specific $MAPLOC or $MAPSTRATEGY option.

• SCRIPR:
SCRIPR gathers the interpolation techniques offered by Los Alamos National Laboratory SCRIP
1.4 library [Jones 1999]1. SCRIPR routines are in oasis3-mct/lib/scrip. See the SCRIP
1.4 documentation in oasis3/doc/SCRIPusers.pdf for more details on the interpolation
algorithms.
Since OASIS3-MCT 4.0 release, a hybrid MPI+OpenMP parallel version of the SCRIP library is
available. It relies on the MPI parallel layout of the calling model but only uses one MPI pro-
cess per node. The number of OpenMP threads per MPI process used by SCRIP is set by a ded-
icated environment variable OASIS OMP NUM THREADS, which can be different from the de-
fault number of threads per MPI process used elsewhere in the application, set by the environment
variable OMP NUM THREADS ; in practice, OASIS OMP NUM THREADS has to be smaller
or equal to OMP NUM THREADS. For optimum performance, it is recommended to set OA-
SIS OMP NUM THREADS to the number of cores on the node. The regrid environment di-
rectory (see section 6.3.3) in oasis3-mct/examples/regrid environment gives a prac-
tical example on how to use the SCRIP library2 in parallel to calculate regridding weight-and-
address files. The details of the SCRIP parallelisation can be found in [Piacentini et al 2018] and
[Valcke et al 2018]3 .
When the SCRIP library performs a remapping, it first checks if the file containing the correspond-
ing remapping weights and addresses exists; if it exists, it reads them from the file; if not, it calcu-
lates them and store them in a file. In the later case, SCRIP needs the grid data files grids.nc and
masks.nc (see section 5.1). The weight-and-address file is created in the working directory and is
by default called rmp src to tgt INTTYPE NORMAOPT.nc, rmp src to tgt INTTYPE NBR.nc,

1See also http://climate.lanl.gov/Software/SCRIP/ and the copyright statement in appendix 1.3.3.
2The regrid environment directory provides a practical example on how to calculate the regridding weight-and-address

files with the SCRIP library but also with ESMF and XIOS, see section 6.3.3
3A few bugs were fixed in the SCRIP library available since OASIS3-MCT 4.0 release, in particular in the bounding box

definition of the grid cells. This solves an important bug observed in the Pacific near the equator for the bilinear and bicubic
interpolations for Cartesian grids. However, given these modifications, one cannot expect to get exactly the same results for the
weight-and-address remapping files with this new parallel SCRIP version as compared to the previous SCRIP version in OASIS3-
MCT 3.0. We checked in many different cases that the interpolation error is smaller or of the same order than before. We also
observed that the parallelisation does not ensure bit reproducible results when varying the number of processes or threads.

52 CHAPTER 4. TRANSFORMATIONS AND INTERPOLATIONS

or rmp src to tgt INTTYPE.nc. src and tgt are the acronyms of respectively the source and
the target grids, INTTYPE is the interpolation type (i.e. DISTWGT, GAUSWGT, GAUSWGTNF,
DISTWGTNF, LOCCUNIF, LOCCDIST, LOCCGAUS, BILINEAR, - not BILINEA as in OA-
SIS3.3, BILINEARNF, BICUBIC, BICUBICNF, or CONSERV). Then NORMAOPT is the normal-
ization option, for SCRIPR/CONSERV only (i.e. DESTAREA, DESTARTR, DESTNNEI, DESTNNTR,
FRACAREA, FRACARTR, FRACNNEI or FRACNNTR, see below). NBR is the number of neighbors
used for DISTWGT, DISTWGTNF, GAUSWGT, GAUSWGTNF LOCCUNIF, LOCCDIST or LOCCGAUS
only. One has to take care that the remapping file will have the same name even if other details,
like the grid masks or the $MAPLOC or $MAPSTRATEGY options, are changed. When reusing a
remapping file, one has to be sure that it was generated in exactly the same conditions than the ones
it is used for.
The following types of interpolations are available:

– DISTWGT performs a distance weighted nearest-neighbour interpolation (N neighbours) with
a nearest neighbor fill for non-masked target points that do not receive a value. All types of
grids are supported.

– DISTWGTNF performs a distance weighted nearest-neighbour interpolation (N neighbours)
without the nearest neighbor fill for non-masked target points. All types of grids are supported.
The configuring line is:

SCRIPR (for DISTWGT or DISTWGTNF)
$CMETH $CGRS $CFTYP $REST $NBIN $NV $ASSCMP $PROJCART

where:

* $CMETH = DISTWGT or DISTWGTNF.

* $CGRS is the source grid type (LR, D or U)- see appendix A.

* $CFTYP is the field type: SCALAR. The option VECTOR, which in fact leads to a scalar
treatment of the field (as in the previous versions), is still accepted. VECTOR I or
VECTOR J (i.e. vector fields) are not supported anymore in OASIS3-MCT. See
“Support of vector fields with the SCRIPR remappings” below.

* $REST is a bin search restriction type: LATLON or LATITUDE, see SCRIP 1.4 docu-
mentation SCRIPusers.pdf.

* $NBIN the number of restriction bins that must be equal to 1 for DISTWGT, DISTWGTNF,
GAUSWGT, GAUSWGTNF, BILINEAR, BILINEARNF, BICUBIC or BICUBICNF
(i.e. the bin restriction is not allowed4; for details, see
[Piacentini et al 2018]).

* $NV is the number of neighbours used.

* $ASSCMP, $PROJCART: UNUSED; vector fields are not supported anymore in OASIS3-
MCT. See “Support of vector fields with the SCRIPR remappings” below.

– GAUSWGT performs a N nearest-neighbour interpolation weighted by their distance and a
gaussian function with a nearest neighbor fill for non-masked target points that do not receive
a value. All grid types are supported.

– GAUSWGTNF performs a N nearest-neighbour interpolation weighted by their distance and a
gaussian function without the nearest neighbor fill for non-masked target points. All grid types
are supported.
The configuring line is:

4The only exceptions are for Gaussian Reduced (D) grids for (BILINEAR, BILINEARNF, BICUBIC and BICUBICNF;
in that case, if the Gaussian-reduced grid is stored from North to South the number of bins is the number of latitude circles
of the grid (minus one, to be precise), independently of $NBIN; for Gaussian-reduced grid stored from South to North to
South, the bin definition will not work and the interpolation will become a 4 distance-weighted nearest-neighbour for all
target points.

4.3. THE REMAPPING (OR INTERPOLATION OR REGRIDDING) 53

SCRIPR (for GAUSWGT or GAUSWGTNF)
$CMETH $CGRS $CFTYP $REST $NBIN $NV $VAR

where all entries are as for DISTWGT, except that:

* $CMETH = GAUSWGT or GAUSWGTNF

* $VAR defines the weight given to a neighbour source grid point as proportional to exp(−1/2·
d2/σ2) where d is the distance between the source and target grid points, and σ2 =

$V AR · D2 where D2 is, for each target grid point, the square of average distance be-
tween its source grid points (calculated automatically by OASIS3-MCT).

– LOCCUNIF, LOCCDIST and LOCCGAUS perform a locally conservative interpolation by
associating N target nearest neighbours to every SOURCE grid point, and applying a weight
normalization taking into account the source/target mesh area ratio. Interpolation weights can
additionally be modulated by the source/target distances (LOCCDIST) or by the source/target
distances and a gaussian function (LOCCGAUS). All types of grids are supported. These in-
terpolations are convenient to transfer coupling fields from disjoints areas, such as the river
runoff flux, as studied in [Voldoire 2020].

The configuring line is:

SCRIPR (for LOCCUNIF or LOCCDIST)
$CMETH $CGRS $CFTYP $REST $NBIN $NV

or

SCRIPR (for LOCCGAUS)
$CMETH $CGRS $CFTYP $REST $NBIN $NV $VAR

where:

* $CMETH $CGRS $CFTYP $REST $NBIN $NV entries are as for DISTWGT and $VAR
is as for GAUSWGT. Note that for these interpolations, $NV represents the number of tar-
get (and not source) neighbours. For details, see [Maisonnave 2020].

– BILINEAR performs an interpolation based on a local bilinear approximation (see details
in chapter 4 of SCRIP 1.4 documentation SCRIPusers.pdf). Logically-Rectangular (LR) and
Reduced (D) source grid types are supported. It also generates regridded values with a near-
est neighbor fill for non-masked target points that do not receive any value with the original
algorithm.

– BILINEARNF is identical to BILINEAR but without the nearest neighbor fill.

– BICUBIC performs an interpolation based on a local bicubic approximation for Logically-
Rectangular (LR) grids (see details in chapter 5 of SCRIP 1.4 documentation SCRIPusers.pdf),
and on a 16-point stencil for Gaussian Reduced (D) grids. Note that for Logically-Rectangular
grids, 4 weights for each of the 4 enclosing source neighbours are required corresponding to
the field value at the point, the gradients of the field with respect to i and j, and the cross
gradient with respect to i and j in that order. OASIS3-MCT will calculate the remapping
weights and addresses (if they are not already provided) but will not, at run time, calculate
the two gradients and the cross-gradient of the source field (as was the case with OASIS3.3).
These 3 extra fields need to be calculated by the source code and transfered as extra arguments
of the oasis put (see fld2, fld3, fld4 in section 2.2.7). Finally, this interpolation
will fill non-masked target points that do not receive a value with a nearest neighbor fill.

– BICUBICNF is identical to BICUBIC but without the nearest neighbor fill.

For BILINEAR, BILINEARNF, BICUBIC, and BICUBICNF, the configuring line is:

SCRIPR (for BILINEAR, BILINEARNF, BICUBIC, or BICUBICNF)
$CMETH $CGRS $CFTYP $REST $NBINwhere:

* $CMETH = BILINEAR, BILINEARNF, BICUBIC, or BICUBICNF

54 CHAPTER 4. TRANSFORMATIONS AND INTERPOLATIONS

* $CGRS is the source grid type: LR or D.

* $CFTYP, $REST, $NBIN are as for DISTWGT.

Note that for DISTWGT, GAUSWGT, BILINEAR and BICUBIC:

* Masked target grid points: the zero value is associated to masked target grid points.

* Non-masked target grid points having some of the source points normally used in the
interpolation masked: a N nearest neighbour algorithm using the remaining non masked
source points is applied.

* Non-masked target grid points having all source points normally used in the interpolation
masked: by default, the nearest non-masked source neighbour is used (ll nnei is set to
.true. in the SCRIP run).

Note that for DISTWGTNF, GAUSWGTNF, BILINEARNF and BICUBICNF:

* Identical behavior to non-NF options but no nearest non-masked source neighbour fill is
done (ll nnei is set to .false in the SCRIP run). Non-masked target grid points that
do not receive any interpolated value are set to 0 .

– CONSERV performs 1st or 2nd order conservative remapping, which means that the weight
of a source cell is proportional to area intersected by the target cell (plus some other terms
proportional to the gradient of the field in the longitudinal and latitudinal directions for the
second order).

The configuring line is:

SCRIPR (for CONSERV)
$CMETH $CGRS $CFTYP $REST $NBIN $NORM $ORDER $NTHRESH $STHRESHwhere:

* $CMETH = CONSERV

* $CGRS is the source grid type: LR, D and U. Note that the grid corners have to given by
the user in the grid data file grids.nc or by the code itself in the initialisation phase
by calling routine oasis write corner (see section 2.2.4) ; OASIS3-MCT will not
attempt to automatically calculate them as OASIS3.3.

* $CFTYP, $REST are as for DISTWGT.

* $NBIN is the number of restriction bins that can be more than 1 as bin restriction is
effectively allowed for CONSERV; for details, see [Piacentini et al 2018].

* $NORM is the normalization option:

· FRACAREA or FRACARTR: The sum of the non-masked source cell intersected areas
is used to normalise each target cell field value: the flux is not locally conserved,
but the flux value itself is reasonable. With FRACARTR, an additional correction
involving the “true” area of the grid cells provided in the file areas.nc is also
applied, see details in the paragraph on the “True Area” (TR) correction below.

· FRACNNEI or FRACNNTR: as FRACAREA or FRACARTR, except that an additional
unmasked source nearest neighbour is used for unmasked target cells that intersect
only masked source cells.

· DESTAREA or DESTARTR: The total target cell area is used to normalise each target
cell field value even if it only partly intersects non-masked source grid cells: local flux
conservation is ensured, but unreasonable flux values may result. With DESTARTR,
an additional correction involving the “true” area of the grid cells provided in the
file areas.nc is also applied, see details in the paragraph on the “True Area” (TR)
correction below.

· DESTNNEI or DESTNNTR: as DESTAREA or DESTARTR, except that an additional
unmasked source nearest neighbour is used for unmasked target cells that intersect
only masked source cells.

4.3. THE REMAPPING (OR INTERPOLATION OR REGRIDDING) 55

* $ORDER: FIRST or SECOND for first or second order conservative remapping respec-
tively (see SCRIP 1.4 documentation).

For CONSERV/SECOND, 3 weights are needed; OASIS3-MCT will calculate these weights
and corresponding addresses (if they are not already provided) but will not, at run time,
calculate the two extra terms to which the second and third weights should be applied.
These terms, respectively the gradient of the field with respect to the latitude (θ) δf

δθ and
the gradient of the field with respect to the longitude (φ) 1

cosθ
δf
δφ need to be calculated by

the source code and transferred as extra arguments of the oasis put as fld2 and fld3
respectively (see section 2.2.7). Note that CONSERV/SECOND is not positive definite.

* $NTHRESH is the value of the northern latitude threshold in radians where conservative
area computation switches from linear boundaries in longitude and latitude at the equator
to a Lambert equivalent azimuthal projection toward the north pole. This value is op-
tional and the default is 2.0 radians (greater than 90 degrees) which means the Lambert
projection is never invoked. If this value is set, $STHRESH must be set as well.

* $STHRESH is the value of the southern latitude threshold in radians where conservative
area computation switches from linear boundaries in longitude and latitude at the equator
to a Lambert equivalent azimuthal projection toward the south pole. This value is optional
and the default is -2.0 radians (less than -90 degrees) which means the Lambert projection
is never invoked. If this value is set, $NTHRESH must be set as well.

Precautions related to the use of the SCRIPR/CONSERV remapping
1. Lambert projection above/below north thresh/south thresh

For the 1st order conservative remapping, the weight of a source cell is proportional to area
of the source cell intersected by target cell. Using the divergence theorem, the SCRIP library
evaluates this area with the line integral along the cell borders enclosing the area. As the real
shape of the borders is not known (only the location of the corners of each cell is known), the
library assumes that the borders are linear in latitude and longitude between two corners. This
assumption becomes less valid closer to the pole.

Therefore for latitudes above the north thresh or below the south thresh values (see
oasis3-mct/lib/scrip/remap conserv.F90), the library evaluates the intersec-
tion between two border segments using a Lambert equivalent azimuthal projection. However,
by default, north thresh and south thresh are set to 2.0 and -2.0 radians respectively and
the Lambert projection is not activated. (Note that north thresh was set to 1.45 in
previous versions prior to OASIS3-MCT 4.0.)

The value of the north and south threshhold can be defined in the namcouple file via the
$NTHRESH and $STHRESH optional settings on the SCRIPR input line.

[Valcke and Piacentini 2019] analyses the impact of the Lambert projection for specific grids.

2. Another limitation of the SCRIP 1st order conservative remapping algorithm is that it assumes,
for line integral calculation, that sin(latitude) is linear in longitude on the cell borders which
again is in general not valid close to the pole.

3. For a proper consevative remapping, the corners of a cell have to coincide with the corners of
its neighbour cell, with no “holes” between the cells.

4. Overlying cells

If two cells of one same grid overlay, the one with the greater numerical index must be masked
in masks.nc for a proper conservative remapping. For example, if the grid cells with i=1
overlays the grid cells with i=imax, the latter must be masked. If none of overlying cells is
masked (given the original mask defined in masks.nc), OASIS3-MCT must be compiled with
the CPP key TREAT OVERLAY which will ensure that these rules are respected. This CPP
key was introduced in OASIS3.3.

56 CHAPTER 4. TRANSFORMATIONS AND INTERPOLATIONS

5. Masked (non-active) target grid cells are set to 0.

6. If a target grid cell intersects only masked source cells, or falls outside the source grid domain,
it will get a zero value unless the DESTNNEI, DESTNNTR, FRACNNEI, or FRACNNTR nor-
malisation options are used, in which case it will get the source nearest non masked neighbour
value. Note that the option of having the value 1.0E+20 assigned to these target grid cell inter-
secting only masked source cells (for easier identification) is not yet availble in OASIS3-MCT.

The “True Area” (TR) correction: DESTARTR, DESTNNTR, FRACARTR, or FRACNNTR
The approximations and hypotheses adopted by the SCRIP impact its estimation of the grid cell
areas. Therefore, to have an exact conservation of the field surface-integrated values, a correction
based on the ”TRue” (TR) area of the cells can be applied by choosing DESTARTR, DESTNNTR,
FRACARTR or FRACNNTR options. These are based respectively on DESTAREA, DESTNNEI,
FRACAREA and FRACNNEI normalisations adding the so-called “TR correction”. The true area of
the cell, i.e. the one considered by the component model itself, must be provided in the auxiliary
file areas.nc in square radians. Equations from [Chavas et al 2013] (eqn. (27) in particular) are
implemented.

Special care is taken in the implementation for “polar” cells in the SCRIP sense. The SCRIP detects
cells encompassing a pole or cells with a side going through a pole as “polar” cells and a specific
treatment is applied for those cells modifying its area. The resulting estimated area serves as a
normalisation factor but its value is not representative of the surface of the cell anymore. For this
reason, the TR correction is not activated for those “polar” cells.

More details can be found in section 6 of [Valcke and Piacentini 2019]. A full validation of the TR
correction can be found in that report. It is noted there that the TR correction always improves the
results even if, in the cases tested, the misfit between the true area and the are evaluated by the
SCRIP is always small (except for “polar” cells of course).

Support of vector fields with the SCRIPR remappings
Vector mapping is NOT supported and will not be supported by OASIS3-MCT. For proper treatment
of vector fields, the source code has to send the 3 components of the vector projected in a Cartesian
coordinate system as separate fields. The target code has to receive the 3 interpolated Cartesian
components and recombine them to get the proper vector field.

• INTERP: UNUSED

• MOZAIC: UNUSED; note that MAPPING (see above) is the NetCDF equivalent to MOZAIC.

• NOINTERP: UNUSED

• FILLING: UNUSED

4.4 The post-processing stage

• CONSERV:

CONSERV performs a global modification of the coupling field such that the area integrated fields
are conserved.

This analysis requires the source and target grid mesh areas be defined in file areas.nc file and the
source and target grid mask be defined in file masks.nc.

The areas must be expressed in matching units on the source and destination sides. Futher-
more, these must be square radians if the TR correction is activated (see paragraph The “True
Area” (TR) correction in section 4.3).

A grid cell mask must be defined for that operation in the masks.nc file. If grid cell fractions are
also defined in that file, the mask and fractions are considered and must be consistent; OASIS3-
MCT will abort if they are not or if both are missing. Note that by OASIS3-MCT conventions for

4.4. THE POST-PROCESSING STAGE 57

the mask, a gridcell with mask=0 (active) should have fractions greater than 0 and a gridcell with
mask=1 (inactive) should have fractions equal to 0.
Best practice for fraction definition in ocean-atmosphere coupling
In principle, the fractions can be defined for both the source and target grids. But for ocean-
atmosphere coupling, we strongly encourage the following best practice for a consistent ocean-
atmosphere coupled system. Indeed, to have a well-posed coupled problem, the ocean and the
atmospheric total surfaces must be the same allowing global conservation of integrated quantities.
To do so, the original ocean mask should be taken as it is from the ocean model. For the atmo-
sphere, cell fractions should be defined by the conservative remapping of [1 - ocean mask] on the
atmospheric grid, retaining fractions above a certain threshold, to be fixed by the user. These at-
mospheric cell fractions should be used in the atmospheric model to define the % of ocean (water)
subsurface to be considered. Then the atmospheric coupling mask should be adapted associating a
non-masked index (i.e. 0) to all cells with a water fraction above the chosen threshold. The global
water surface as seen by the atmosphere model is then the sum of its cell areas multiplied by its
respective cell fractions. Note that invalid masked atmospheric cells should have null ocean frac-
tions. If we follow this best practice, the atmospheric cell fractions and mask will be specific to
the coupling with each particular ocean grid. A specific attribute named coherent with grid
indicating the grid prefix of the companion grid may be defined for mask and fractions. If the
OASIS API is used to define the mask and fractions, this can be done via the optional argument
companion indicating the grid prefix of the companion grid (see section 2.2.4).
In the namcouple, CONSERV requires one input line with one argument and one optional argument:

CONSERV operation
$CMETH $CONSOPTwhere:

– $CMETH is the method desired with the following choices; a detailed analysis of these choices
can be found in [Craig 2019] :

* with $CMETH = GLOBAL, the field is integrated on both source and target grids, with-
out considering values of masked points, and the residual (target - source) is uniformly
distributed on the target grid as an additive term; this option ensures global conservation
of the field;

* with $CMETH = GLBPOS, the same operation as GLOBAL is performed except that the
residual is distributed proportionally to the value of the original field as a multiplicative
term; this option ensures the global conservation of the field, and it does not change the
sign of the field if the field is well behaved; if the field is well behaved, multiplication
factors close to 1 are expected.

* with $CMETH = GSSPOS, the same operation as GLBPOS is performed except that the
multiplicative term is computed separately for positive and negative values of the field;
this option ensures the global conservation of the field and, as $GLBPOS, does not change
the sign of the field, but it is more expensive because many extra global sums are required;
this should be used in cases where the area averaged field value tends to 0 as these cases
can generate poor corrections, even leading to changes of sign, when carried out with the
GLBPOS option.

* with $CMETH = BASBAL, the operation is analogous to GLOBAL as an additive term
except the non masked active surface of the source and the target grids are taken into
account in the calculation of the residual; this option does not ensure global conservation
of the field but ensures that the energy received is proportional to the non masked active
surface of the target grid;

* with $CMETH = BASPOS, the operation is analgous to GLBPOS as a multiplicative term
except the non masked surface of the source and the target grids are taken into account
and the residual is distributed proportionally to the value of the original field; this option

58 CHAPTER 4. TRANSFORMATIONS AND INTERPOLATIONS

does not ensure global conservation of the field but ensures that the energy received is
proportional to the non masked surface of the target grid and it does not change the sign
of the field if the field is well behaved.

* with $CMETH = BSSPOS, the same operation as BASPOS is performed except that the
multiplicative term is computed separately for positive and negative values of the field;
this option has the same characteristics as BASPOS except it does not change the sign of
the field, but is more expensive because many extra global sums are required; this should
be used in cases where the area averaged field value tends to 0 as these cases can generate
poor corrections, even leading to changes of sign, when carried out with the BASPOS
option.

– $CONSOPT is an optional argument specifying the algorithm. $CONSOPT can be bfb,
gather, lsum16, lsum8, ddpdd, reprosum or opt. Details on the perfromance of
these different options can also be found in [Craig et al 2017] and references there in.

* The bfb option is the default for CONSOPT and uses the reprosum option (see below).

* The gather option computes global sums by gathering a decomposed array onto the
root process before doing an index ordered sum. This is guaranteed to produce identical
results for different numbers of processors and decompositions but is expensive both with
respect to performance and memory use. This is equivalent to the bfb option in previous
OASIS3-MCT versions.

* The lsum16 option computes a local sum at quadruple precision before doing an MPI
reduction on the local sums at quadruple precision. This is likely to be bit-for-bit for
different numbers of processors and decompostions but that’s not guaranteed. This is just
like lsum8 but at quadruple precision and a little slower.

* The lsum8 option computes a local sum at double precision before doing an MPI re-
duction on the local sums at double precision. This is NOT likely to be bit-for-bit for
different numbers of processors and decompostions. This is just like lsum16 but at
double precision and faster.

* The ddpdd option is a parallel double-double algorithm using a single scalar reduction.
It should behave between lsum8 and lsum16 with respect to performance and repro-
ducibility. See [He and Ding 2001].

* The reprosum option is a fixed point method based on ordered double integer sums
that requires two scalar reductions per global sum. The cost of reprosum will be higher
than some of the other methods but it will be bit-for-bit for different processor counts or
different decompostions except in extremely rare cases and the cost is significantly less
than the gather option. See [Mirin and Worley 2012].

* The opt option carries out the global sum using the fastest algorithm generally available.
Currently, this is set to lsum8.

• SUBGRID: UNUSED

• BLASNEW:

BLASNEW performs a scalar multiply or scalar add to any destination field. This is the equivalent
of BLASOLD on the destination side. In addition, unlike BLASOLD, other fields on the destination
side can be added with a multiplier and addition weight.

This transformation requires at least one configuring line with two parameters:

BLASNEW operation
$XMULT $NBFIELDS

where $XMULT is the multiplicative coefficient of the destination field. $NBFIELDS will be 0 if
no additional fields or scalars are needed, 1 if a single scalar needs to be added, and greater than 1

4.4. THE POST-PROCESSING STAGE 59

if additional fields are to be added. The number of $NBFIELDS indicates the number of additional
lines. If $NBFIELDS is greater than 0, the first additional input line must be the string CONSTANT
and then a real value, $AVALUE, which will be added to the field. Even if $AVALUE is zero, this
line must still be included if $NBFIELDS is greater than 0. If $NBFIELDS is greater than 1, then
additional input lines have the format $FNAME $XMULT $AVALUEwhere $FNAME is the name of
a field received in OASIS3-MCT in the same model and $XMULT and $AVALUE are the multipliers
and additive terms to be applied to $FNAME :

CONSTANT $AVALUE
$FNAME1 $XMULT1 $AVALUE1
$FNAME2 $XMULT2 $AVALUE2

For example :
2.0 3
CONSTANT 0.0
FLD001 1.0 0.0
FLD002 5.0 -100.

will multiply the destination field by 2.0 and then add (FLD001 + FLD002*5.0 - 100) to that desti-
nation field. All combined fields must be received by the same model component in OASIS3-MCT
(either via coupling or input), and the field size and decomposition must be consistent across all
fields being combined. The value of the field being combined is associated with the last valid cou-
pled value. This allows fields to be combined that are not coupled at the same frequency by using
valid lagged values. The order of the receive calls is also important. If a field to be combined is
received after the destination field, then the values used are from an earlier timestep. Note that while
this feature is supported in OASIS3-MCT, a more transparent implementation might be to combine
fields in the model (not in OASIS3-MCT) after they are received independently.

• MASKP: UNUSED
• REVERSE: UNUSED
• CHECKOUT:
CHECKOUT calculates the global minimum, maximum, mean, and sum of the destination field val-
ues taking the mask into consideration. If a grid area or fraction field is also available, (respectively
in the file areas.nc or masks.nc), then the area and/or fraction weighted mean and sum are also
diagnosed and written. Information about masking and weighting is written to the output file. All
diagnotics are written to the master process OASIS3-MCT debug file (under the attribute “CHECK*
diags”). This operation does not transform the field. CHECKOUT operations can slow down the
simulation and should not be used in production mode. For backward compatibility, CHECKOUT
has one generic input line that is no longer used but is still required and can contain anything. See
also CHECKIN.
The generic input line is as follows:
CHECKOUT operation

INT = 1

• GLORED: UNUSED

Chapter 5

OASIS3-MCT auxiliary data files

OASIS3-MCT uses auxiliary data files, e.g. defining the grids of the models being coupled, containing
the field coupling restart values or input data values, or the remapping weights and addresses.

5.1 Grid data files

With OASIS3-MCT, the grid data files grids.nc, masks.nc and areas.nc are required for certain operations:
• grids.nc and masks.nc for all SCRIPR regriddings (see section 4.3)
• in addition, areas.nc for SCRIPR conservative remapping for which the normalisation by the true

area of the cells is activated (i.e. DESTARTR, DESTNNTR, FRACARTR, or FRACNNTR
• masks.nc and areas.nc for global CONSERV, see section 4.4).

These NetCDF files can be created by the user before the run or can be written directly at run time by the
processes of each component model using the grid data definition routines (see section 2.2.4).
The arrays containing the grid information are dimensioned (nx, ny), where nx and ny are the grid
first and second dimension. Unstructured grids or other grids expressed with 1D vectors are supported by
setting nx to the total number of grid points and ny to 1.

1. grids.nc: contains the model grid longitudes and latitudes in double precision REAL arrays. The
array names must be composed of a prefix (4 characters), given by the user in the namcouple on the
second line of each field (see section 3.3), and of a suffix,.lon or .lat, for respectively the grid
point longitudes or latitudes.
If the SCRIPR/CONSERV remapping is specified, longitudes and latitudes for the source and target
grid corners must also be available in the grids.nc file as double precision REAL arrays dimen-
sioned (nx,ny,nc) where nc is is the maximum number of corners (in the counterclockwize
sense, starting by any corner) over all cells; nc can be any number. For cells that do not have the
maximum number of distinct corners, we recommend to repeat the last corner as many times as
needed to describe nc corners. The names of the arrays must be composed of the grid prefix and
the suffix .clo or .cla for respectively the grid corner longitudes or latitudes. As for the other
grid information, the corners can be provided in grids.nc before the run by the user or directly by
the component code through specific calls (see section 2.2.4).
Longitudes must be given in degrees East in the interval -360.0 to 720.0. Latitudes must be given in
degrees North in the interval -90.0 to 90.0. Note that if some grid points overlap, it is recommended
to define those points with the same number (e.g. 360.0 for both, not 450.0 for one and 90.0 for the
other) to ensure automatic detection of overlap by OASIS3-MCT.
The corners of a cell cannot be defined modulo 360 degrees. For example, a cell located over
Greenwich will have to be defined with corners at -1.0 deg and 1.0 deg but not with corners at 359.0
deg and 1.0 deg.

60

5.2. COUPLING RESTART FILES 61

Cells larger than 180.0 degrees in longitude are not supported.
Longitudes and latitudes of grid points or corners can be defined through the oasis write grid
or oasis write corner API routines respectively, see section 2.2.4.

2. masks.nc: contains the masks for all component model grids in INTEGER arrays. Be careful to
use the historical OASIS3-MCT convention: 0 = not masked (i.e. active), 1 = masked (i.e. not
active) for each grid point. The array names must be composed of the grid prefix and the suffix
“.msk”. Mask can be defined through the oasis write mask API routine, see section 2.2.4.
File masks.nc may also contain the grid cell fractions that defines the active (i.e. not masked) part of
the cells. Fractions should be consistent with the mask field. The fraction fields, if present, are only
used in the global CONSERV, CHECKIN and CHECKOUT operations. If both a mask and fractions
are defined for a grid, they must be consistent; OASIS3-MCT will abort if they are not coherent or
if both are missing. Note that by OASIS3-MCT convention for the mask, a gridcell with mask=0
(active) should have a fractions greater than 0 and a gridcell with mask=1 (inactive) should have a
fractions equal to 0. The fraction array name must be composed of the grid prefix and the suffix
.frc. Fractions can be defined through the oasis write frac API routine, see section 2.2.4.

3. areas.nc: this file contains mesh surfaces for the component model grids in double precision REAL
arrays. The array names must be composed of the grid prefix and the suffix .srf. The surfaces
may be given in any units but they must be the same on the source and target sides; furthermore
they must be in square radians if the True Area (TR) correction is activated, see section 4.3.
Surfaces can be defined through the oasis write area API routine, see section 2.2.4.
This file areas.nc is mandatory for the global CONSERV post-processing operation; it is not required
otherwise.

5.2 Coupling restart files

At the beginning of a coupled run, some coupling fields may have to be initially read from their coupling
restart file on their source grid (see the LAG concept in section 2.5.3). When needed, these files are also
automatically updated by the last active oasis put or prism put proto call of the run (see section
2.2.7) . Warning: the date is not written or read to/from the restart file; therefore, the user has to make
sure that the appropriate coupling restart file is present in the working directory. The coupling restart files
must follow the NetCDF format.
The name of the coupling restart file is given by the 6th character string on the first configuring line for
each field in the namcouple (see section 3.3). Coupling fields coming from different models cannot be
in the same coupling restart files, but for each model, there can be an arbitrary number of fields written
in one coupling restart file. One exception is when a coupling field sent by a source component model is
associated with more than one target field and model; in that case, if coupling restart files are required, it
is mandatory to specify different files for the different fields.
The coupling restart files are also used automatically by OASIS3-MCT to allow partial LOCTRANS time
transformation to be saved at the end of a run for exact restart at the start of the next run. When LOC-
TRANS transformations are specified, the initial coupling restart file should not contain any LOCTRANS
restart fields. For the following runs, it is mandatory that the coupling restart file contains LOCTRANS
restart fields coherent with the current namcouple entries. For example, it will not be possible to restart a
run with a multiple field entry in the namcouple with a coupling restart file created by a run not activating
this multiple file option.
In the coupling restart files, the fields must be provided on the source grid in single or double precision
REAL arrays and, as the grid data files, must be dimensioned (nx, ny), where nx and ny are the grid
first and second dimension (see section 5.1 above). The shape and orientation of each restart field (and of
the corresponding coupling fields exchanged during the simulation) must be coherent with the shape of its
grid data arrays.

62 CHAPTER 5. OASIS3-MCT AUXILIARY DATA FILES

5.3 Input data files

Fields with status INPUT in the namcouple will, at runtime, simply be read in from a NetCDF input file
by the target model below the oasis get call, at appropriate times corresponding to the input period
indicated by the user in the namcouple.
The name of the file must be the one given on the field first configuring line in the namcouple (see section
3.3.3). There must be one input file per INPUT field, containing a time sequence of the field in a single
or double precision REAL array named with the same field symbolic name as in the namcouple and
dimensioned (nx,ny,time). The time variable has to be an array time(time) expressed in “seconds
since beginning of run” (or any other time units as long as the same are used in all components and in the
namcouple) . The “time” dimension has to be the unlimited dimension.

5.4 Transformation auxiliary data files

The mapping files to be used for the MAPPING option must be consistent with the files generated by the
SCRIP library to be used for the SCRIPR transformations (see also section 4.3). The files are NetCDF
containing the following fields:
dimensions:

src_grid_size = xxx ;
dst_grid_size = xxx ;
num_links = xxx ;
num_wgts = xxx ;

variables:
int src_address(num_links)
int dst_address(num_links)
double remap_matrix(num_links, num_wgts)

where
• src grid size is a scalar integer indicating the total number of points in the source grid. This

field is a netCDF dimension.
• dst grid size is a scalar integer indicating the total number of points in the target grid. This

field is a netCDF dimension.
• num links is a scalar integer indicating the total number of associated source and target grid point

pairs in the file. This field is a netCDF dimension.
• num wgts is a scalar integer indicating the number of weights per associated grid point pair (up to

5 are supported, see sections 2.2.7 and 4.3 for BICUBIC and CONSERV/SECOND). This field is a
netCDF dimension.

• src address is a one dimensional array of size num links. It contains the integer source
address associated with each weight. This field is a netCDF variable.

• dst address is a one dimensional array of size num links. It contains the integer destination
address associated with each weight. This field is a netCDF variable.

• remap matrix is a two dimensional array of size (num links, num wgts). It contains the
real weight value(s) associated with the source and destination address. For each link, up to 5
weights are supported, see sections 2.2.7 and 4.3 especially for BICUBIC and CONSERV/SECOND.
This field is a netCDF variable.

Chapter 6

Compiling, running, debugging, load
balancing

6.1 Compiling OASIS3-MCT

OASIS3-MCT is a mixed MPI-OpenMP parallel code. Compiling OASIS3-MCT libraries can be done
from the oasis3-MCT/util/make dir directory with the makefile TopMakefileOasis3.
TopMakefileOasis3 includes the header file make.inc which should then point to (include) your
own make.your platform file. That file is specific to the hardware and compiling platform used.
Several header files are distributed with the release and can by used as a template to create a custom
file for your machine. The root of the OASIS3-MCT tree can be anywhere, but it must be defined by
the variable COUPLE. Similarly, the variable ARCHDIR defines the location of the compilation directory.
Finally, the OASIS3-MCT library should be compiled with the same compilers and system software as
any coupled model component using it. After successful compilation, resulting libraries are found in the
directory in $ARCHDIR/lib while object and module files are found in $ARCHDIR/build-static
and $ARCHDIR/build-shared.
OASIS3-MCT has historically created static libraries for use in Fortran source codes. However, C lan-
guage bindings are now available, and python codes are now fully supported. Therefore, the OASIS3-
MCT makefile TopMakefileOasis3 supports compilation of both static and shared libraries.
TopMakefileOasis3 has several targets including:

• oasis3-psmile = static-libs-fortran (for backwards compatibility)
• static-libs-fortran = static OASIS3-MCT libraries for Fortran only (default)
• shared-libs-fortran = shared (dynamic) OASIS3-MCT libraries for Fortran only
• static-libs = static OASIS3-MCT libraries including Fortran and c-bindings
• shared-libs = shared (dynamic) OASIS3-MCT libraries including Fortran and c-bindings
• pyoasis = builds and installs shared-libs plus higher and intermediate python classes
• realclean = cleans and resets the build

The names of the libraries produced are mct, mpeu, scrip, psmile.MPI1, and oasis.cbind with standard
prefixes (lib) and suffixes (.a or .so).
The following targets have been used historically to compile OASIS3-MCT for Fortran codes and they are
all still supported:

• make -f TopMakefileOasis3 help

provides a current list of available targets.
• make -f TopMakefileOasis3 realclean

63

64 CHAPTER 6. COMPILING, RUNNING, DEBUGGING, LOAD BALANCING

removes all OASIS3-MCT compiled sources and librairies.
• make -f TopMakefileOasis3 or
make -f TopMakefileOasis3 oasis3 psmile

compiles static versions of OASIS3-MCT Fortran libraries mct, mpeu, scrip and psmile;

Log and error messages from compilation are normally saved in the directory /util/make dir in the
files COMP.log and COMP.err or similar. The TopMakefileOasis3 output will direct users to the
compile output files.
To interface a component code with OASIS3-MCT and use the module mod oasis (see section 2.2.1),
it is required to include OASIS3-MCT modules from $ARCHDIR/include and link with appropriate
libraries in $ARCHDIR/lib during the compilation and linking.
Exchange of coupling fields in single and double precision is now supported directly through the interface
(see section 2.2.5). Single precision fields are converted to double precision fields internally and tem-
porarily. For double precision coupling fields, there is no need to promote REAL variables to DOUBLE
PRECISION at compilation; this is done automatically within the OASIS3-MCT library.

6.2 CPP keys

The following OASIS3-MCT CPP keys can be specified in CPPDEF in make.your platform file:
• TREAT OVERLAY: ensures, in SCRIPR/CONSERV remapping (see section 4.3), that if two cells

of the source grid overlay and none is masked a priori, the one with the greater numerical index
will not be considered (they also can be both masked); this is mandatory for this remapping. For
example, if the grid line with i=1 overlaps the grid line with i=imax, it is the latter that must be
masked; when this is not the case with the mask defined in masks.nc, this CPP key forces these
rules to be respected.

• NO 16BYTE REALS: must be specified if you compile with PGF90.

6.3 Examples on how to run OASIS3-MCT

The following examples of running environments are provided with the sources in the oasis3-mct/examples
directory.

6.3.1 tutorial communication

The directory oasis3-mct/examples/tutorial communication contains the files of a tutorial
to learn how to instrument codes with calls to the OASIS3-MCT library in order to couple them together.
The tutorial involves two toy model codes, ocean.F90 and atmos.F90, to be instrumented with calls
to OASIS3-MCT API (Application Program Interface) routines. Toy models are skeleton programs that do
not contain any real physics or dynamics but that can reproduce real exchanges of coupling fields. Instru-
menting those toy models gives a practical experience of using the OASIS3-MCT library. All information
about this tutorial is provided in the document tutorial communication.pdf therein.
This tutorial is extracted from the Short Online Private Course (SPOC) on “Code Coupling with OASIS3-
MCT” shortly described in the next section.

6.3.2 spoc

This directory contains the sources used in the Short Online Private Course (SPOC) on “Code Coupling
with OASIS3-MCT” developed in the framework of the ESiWACE Centre of Excellence. This SPOC is

6.3. EXAMPLES ON HOW TO RUN OASIS3-MCT 65

composed of videos, quizzes and hands-on. The goal is to instrument two toy models to set-up a real cou-
pled model exchanging coupling fields (directory /spoc communication) and to learn more about OASIS3-
MCT regridding functionality (directory /spoc regridding). If you are interested in attending the
SPOC, please visit the online training section of CERFACS web site at https://cerfacs.fr/online-training/.
Videos and quizzes extracted from the SPOC are also available as Open Education Resources (OER)
material at https://www.oercommons.org/courseware/lesson/85340 .

6.3.3 regrid environment

The regrid environment directory offers a scripting environment to calculate the regridding weights
and the regridding error for specific couple of grids and specific regridding algorithms with either the
SCRIP library, ESMF or XIOS. The document regrid environment documentation.pdf therein
contains all instructions on how to run this tutorial.

6.3.4 Fortran, C and python equivalent examples

Different examples implementing the different parts of the API with the Fortran, C and python interfaces
are provided as practical illustrations in directory /pyoasis/examples :

• 1-serial: one coupling exchange between a serial sender and a serial receiver.
• 2-apple: one coupling exchange between an Apple-parallel sender and a serial receiver; an ad-

ditonal component, not part of the coupling, is also started and the example shows how to use the
commworld argument, in Fortran and C, and the communicator optional argument when setting
the component in python.

• 3-box: one coupling exchange between an Box-parallel sender and a serial receiver; it shows also
how to check if a coupling field declared in the code is activated in the configuration file namcouple.

• 4-orange: one coupling exchange between an Orange-parallel sender and a serial receiver; not all
processes of the sender participate in the coupling and this example shows how to use create couplcomm.

• 5-points: one coupling exchange between a Point-parallel sender and a serial receiver.
• 6-apple and orange: one coupling exchange between an Apple-parallel sender and an Orange-

parallel receiver; not all processes of the sender participate in the coupling and this example shows
how to use set couplcomm.

• 7-multiple-puts: two coupling fields are both sent from a serial sender to two different serial
receivers; this example also sets up an intra communicator between the sender and one receiver and
an inter communicator between the sender and the other receiver.

• 8-interoperability/fortran and C: implements a coupling of a bundle field, with two
bundle elements, between a Fortran Apple-parallel sender and a C component. This C component
is Orange-parallel for the reception of the bundle field; it also defines another partition of type Box
onto which a second coupling field is defined and sent to a third Fortran serial receiver. The sum
of the Box partitions in the C component does not cover the global grid, hence the fourth argument
ig size is used to specify the grid global size. The C component also illustrates how the order of
the partition definition does not need to be the same for the different processes but that, in that case,
a meaningful name fifth argument must be used.

• 8-interoperability/fortran and python: implements the same coupling exchanges
than 8-interoperability/fortran and C but with the C component replaced by a python
component.

• 9-python fortran C-multi intracomm: illustrates the set-up of an intracommunicator
between a Fortran, a C and a python components using OASIS3-MCT; a bcast is then realised
to share some data. In this example, an additional component is also launched at start but does not
participate in the coupling and hence uses the coupled third argument of oasis initi comp.

66 CHAPTER 6. COMPILING, RUNNING, DEBUGGING, LOAD BALANCING

• 10-grid: a single Box-parallel component defines and writes two grids pyoa and mono, the first
one with distributed calls from all the processes, the second one from the master process only.

• 11-test-interpolation: one exchange of a coupling bundle field defined on real grids
involving a first-order concervative regridding between an Apple-parallel sender and a serial re-
ceiver. In the Fortran and C examples, the grids are fixed, while in the python example, the user
chooses the source and target grids interactively, among the ones available in the files available in
the common data directory. This example produces graphical output of the received fields if the
following packages are installed

– pip3 install matplotlib
– pip3 install scipy
– pip3 install cartopy
– pip3 uninstall shapely
– pip3 install shapely –no-binary shapely

• 12-grid-functions: Graphical version of 10-grid (i.e. the pyoa grid layout is displayed
if the same graphical packages than for 11-test-interpolation are installed).

The different examples can be launched with the Makefile from directory /pyoasis using targets
examples, examples f or examples c to run respectively python, Fortran and C examples.

6.4 Debugging

6.4.1 Debug files

If you experience problems while running your coupled model with OASIS3-MCT, you can obtain more
information on what is happening by increasing the $NLOGPRT value in your namcouple, see section 3.2
for details.

6.4.2 Time statistics files

The variable TIMER Debug, defined in the namcouple (second number on the line below $NLOGPRT
keyword), is used to obtain time statistics over all the processors for each routine.
Different output are written (in files named *.timers xxxx) depending on TIMER Debug value :

• TIMER Debug=0 : nothing is calculated, nothing is written.
• TIMER Debug=1 : the times are calculated and written in a single file by the process 0 as well as

the min and the max times over all the processes.
• TIMER Debug=2 : the times are calculated and each process writes its own file ; process 0 also

writes the min and the max times over all the processes in its file.
• TIMER Debug=3 : the times are calculated and each process writes its own file ; process 0 also

writes in its file the min and the max times over all processes and also writes in its file all the results
for each process.

The time given for each timer is calculated by the difference between calls to oasis timer start()
and oasis timer stop() and is the accumulated time over the entire run. Here is an overview of the
meaning of the different timers as implemented by default. 1

• ’total’ : total time of the simulation, implemented in mod oasis method (i.e. between the end
of oasis init comp and the mpi finalize in routine oasis terminate).

1Many other measures can be obtained by defining the logical local timers on as .true. in different routines or by
implementing other timers. Of course, OASIS3 MCT and the model code then have to be recompiled.

6.5. LOAD BALANCING ANALYSIS OF COUPLED MODEL COMPONENTS 67

• ’init thru enddef’ : time between the end of oasis init comp and the end of oasis enddef,
implemented in mod oasis method.

• ’part definition’ : time spent in routine oasis def partition.
• ’oasis enddef’ : time spent in routine oasis enddef; this routine performs basically all the im-

portant steps to initialize the coupling exchanges, e.g. the internal management of the partition and
variable definition, the definition of the patterns of communication between the source and target
processes, the reading of the remapping weight-and-address file and the initialisation of the sparse
matrix vector multiplication.

• ’grcv 00x’ : time spent in the reception of field x in mct recv (including communication and
possible waiting time linked to unbalance of components).

• ’wout 00x’ : time spent in the I/O for field x in routine oasis advance run.
• ’gcpy 00x’ : time spent in routine oasis advance run in copying the field x just received in a

local array.
• ’pcpy 00x’ : time spent in routine oasis advance run in copying the local field x in the array

to send (i.e. with local transformation besides division for averaging).
• ’pavg 00x’ : time spent in routine oasis advance run to calculate the average of field x (if

done).
• ’pmap 00x’/’gmap 00x’ : time spent in routine oasis advance run for the matrix vector mul-

tiplication for field x on the source/target processes.
• ’psnd 00x’ : time spent in routine oasis advance run for sending field x (i.e. including call to
mct waitsend and mct isend).

• ’wtrn 00x’ : time spent in routine oasis advance run to write fields associated with non-
instant loctrans operations to restart files (see section 5.2 for details).

• ’wrst 00x’ : time spent in routine oasis advance run to write fields to restart files (see section
5.2 for details).

6.5 Load balancing analysis of coupled model components

An efficient use of the allocated computing resources in a coupled system requires the harmonisation of
the component execution speed. This operation, called load balancing, is often neglected, either because of
the apparent resource abundance or practical difficulties. To facilitate this work, a load balancing analysis
functionality is included in OASIS3-MCT and can be activated by setting to 1 the third number under
$NLOGPRT in the namcouple configuration file (see section 3.2). Some details on this functionality are
provided here and more information can be found in the balancing documentation.pdf file in
oasis3-mct/util/load balancing directory.
When activated, the load balancing analysis functionality outputs the full timeline of all OASIS3-MCT
related events, for any of the allocated resources. This timeline is saved in one NetCDF file per coupled
component, timeline XXX component.nc where XXX is the component name. It provides the com-
prehensive sequence of all operations related to the coupling (field send and receive through MPI, field
output on disk, field interpolation and mapping, field reading on disk, restart writing, initialisation and
termination phase of the OASIS3-MCT setup) so that any simulation slow down in link with the use of
the OASIS3-MCT library can be identified.
The analysis of the coupling field exchanges, amongst all coupling events, allows to not only identify the
waste of resources by components which are recurrently waiting for their coupling fields but it also reveals
other bottlenecks such as disk access or model internal load imbalance. The full picture of these events
makes possible an optimal load balancing, even for the most complex configurations.
In addition to the detailed timeline saved in the NetCDF file, more general computing information (sim-
ulation time, speed, waiting time, etc.) is also provided in a text file load balancing info.txt for

68 CHAPTER 6. COMPILING, RUNNING, DEBUGGING, LOAD BALANCING

the coupled model and for each component. In simple cases, this global information can help to allocate
resources in a balanced way.

Appendix A

The grid types for the transformations

As described in section 4 for the different SCRIP remappings, OASIS3-MCT support different types of
grids. The characteristics of these grids are detailed here:

• ‘LR’ grid: The longitudes and the latitudes of 2D Logically-Rectangular (LR) grid points can be
described by two arrays longitude(i,j) and latitude(i,j), where i and j are respectively
the first and second index dimensions. Streched or/and rotated grids are LR grids. Note that previous
OASIS3 A, B, G, L, Y, or Z grids are all particular cases of LR grids.

• ‘U’ grid: Unstructured (U) grids do have any particular structure. The longitudes and the lati-
tudes of 2D Unstructured grid points must be described by two arrays longitude(nbr pts,1)
and latitude(nbr pts,1), where nbr pts is the total grid size.

• ‘D’ grid: The Gaussian Reduced (D) grid is composed of a certain number of latitude circles,
each one being divided into a varying number of longitudinal segments. In OASIS3-MCT, the grid
data (longitudes, latitudes, etc.) must be described by arrays dimensioned (nbr pts,1), where
nbr pts is the total number of grid points. There is no overlap of the grid, and no grid point at the
equator nor at the poles. There are grid points on the Greenwich meridian.

69

Appendix B

Changes between the different versions of
OASIS3-MCT

The evolution between the different versions of OASIS3-MCT can be followed in real-time by registering
on the Redmine project management site at https://inle.cerfacs.fr/ (see ”Register” at the right top of the
page). On this site, registered users can browse the sources and consult tickets describing bug fixes and
developments. To follow day to day evolution of the OASIS3-MCT sources, it is also possible to have
your e-mail added to the list of addresses to which the log files of the SVN checkins are automatically
sent; contact oasishelp@cerfacs.fr if you wish to be added to that list.

B.1 Changes between OASIS3-MCT 5.0 and OASIS3-MCT 4.0

The last version of the coupler, OASIS3-MCT 5.0, comes with the following novelties:

• Python, C and C++ bindings, see sections 2.3, 2.4 and 6.3.4
• A new load balancing analysis tool, see section 6.5
• An environment to use either SCRIP, ESMF or XIOS to generate regridding weights and to analyse

the quality of the regridding, see directory examples/regrid environment and section 6.3.3
• A new locally conservative remapping, to be used in particular for runoffs, see LOCCUNIF, LOCCDIST

and LOCCGAUS in section 4.3
• Extension of BLASNEW operation to support combination of coupling fields, see section 4.4
• Improved and additional diagnostics in CHECKIN and CHECKOUT, see sections 4.2 and 4.4
• SCRIPR/CONSERV option for normalisation by the true area of the grid cells, see DESTARTR,
FRACARTR or FRACNNTR in section 4.3

• New GSSPOS and BSSPOS options for global CONSERV (as GLBPOS and BASPOS options re-
spectively except that the multiplicative term is computed separately for positive and negative values
of the field), see section 4.4

• Extension of oasis get intracomm to support multiple components, see oasis get multi intracomm
in section 2.2.9

• Communication/exchange of simple scalars, see section 2.5.2
• Update examples in oasis3-mct/examples directory, see section 6.3
• Update to MCT 2.11
• Update of compiling environment, see 6.1
• Migration from SVN to GIT for source management
• Migration of the OASIS3-MCT web site from DKRZ (content manager Plone) to Cerfacs (content

manager Wordpress), see the new site at https://oasis.cerfacs.fr/en/

70

B.2. CHANGES BETWEEN OASIS3-MCT 4.0 AND OASIS3-MCT 3.0 71

• For DISTWGT, DISTWGTNF, GAUSWGT, GAUSWGTNF LOCCUNIF, LOCCDIST or LOCCGAUS,
inclusion of the number of neighbours used in the remapping file name

• For SCRIPR/CONSERV, specification through the namcouple of North thresh $NTHRESH and
South thresh $STHRESH values, above which a Lambert projection is activated

• New $NCDFTYP NetCDF file format setting through the namcouple, see section 3.2

• Overload oasis def var interface to support excluding the argument id var shape from the
argument list

• Systematic tests of NetCDF returned error code

• Update oasis abort to also write to unit 0 (stderr)

• Bugfixes

1. Component name argument in oasis get intercomm (ticket #2776)

2. BICUBIC/BILINEAR sequence in weights generation (ticket # 2725)

3. Array bounds check for cplfind (ticket # 2655)

4. Fix error in maxloops/kfac computation in oasis mpi reducelists (ticket # 2654)

5. Exact calculation of local distance in GAUSWGT interpolation (ticket #2500)

6. Compatibility of load balancing analysis tool with CRAY compiler (ticket # 2473)

7. Problem with SCRIPR/BILINEAR periodicity (ticket # 2419)

8. Problem in m MCTWorld.F90 in the routine initm (ticket # 1321)

9. Argument id var nodim defined as IN in mod oasis var.F90 to compile with NEMO 4.0
and NEMO trunk (git commit 28f4fe59)

10. In SCRIPR/CONSERV , condition on coincidence of segments is reinitialised to false for each
cell (bugfix “lcoinc” ; see [Valcke and Piacentini 2019])

B.2 Changes between OASIS3-MCT 4.0 and OASIS3-MCT 3.0

Different developments were realised to improve the parallel performance of OASIS3-MCT 4.0. These
developments are detailed in [Valcke et al 2018] .

• A new communication method, using the remapping weights to define the intermediate mapping
decomposition, offers a significant gain at run time, especially for high-resolution cases running on
a high number of tasks, thanks to reduced communication. However, as expected, the new method
takes longer to initialize, partly due to the fact that the mapping weight file has to be read twice but
also due to the extra cost for the initialization of the different MCT routers. That initialization cost
is largely mitigated by an upgrade to MCT 2.10.beta1 which reduces the penalty to few seconds.
Generally, it should be worth the extra initial cost to speed up the run time. See $NMAPDEC in
section 3.2.

• The hybrid MPI+OpenMP parallelisation of the SCRIP library (previously fully sequential) leads to
great improvement in the calculation of the remapping weights. The results obtained here show
a reduction in the weight calculation time of 2 to 3 orders of magnitude with the new paral-
lel SCRIP library for high-resolution grids. Details are available in [Piacentini et al 2018]. The
test interpolation environment (see section ??) gives a practical example on how to use
OASIS3-MCT 4.0 to pre-calculate (i.e. in a separate job prior to the “real” simulation) the remap-
ping weight and address file.

Thanks to some preliminary work, few bugs were fixed, in particular in the bounding box definition
of the grid cells. This solves an important bug observed in the Pacific near the equator for the
bilinear and bicubic interpolations for Cartesian grids.

72 APPENDIX B. CHANGES BETWEEN THE DIFFERENT VERSIONS OF OASIS3-MCT

However, given these modifications, one cannot expect to get exactly the same results for the inter-
polation weight-and-adress remapping files with this new parallel SCRIP version as compared to the
previous SCRIP version in OASIS3-MCT 3.0. We checked in many different cases that the inter-
polation error is smaller or of the same order than before. We also observed that the parallelisation
does not ensure bit reproducible results when varying the number of processes or threads.

• The new methods introduced in the global CONSERV operation reduce its calculation costs by one
order of magnitude while still ensuring an appropriate level of reproducibility. This removes the
bottleneck foreseen at high resolution with this important, and in few cases still unavoidable, global
operation. These new methods are detailed in section 4.4 .

The other new features offered by OASIS3-MCT 4.0 are the following:

• Support for bundled coupling fields.

Bundled fields is now supported in the oasis put and oasis get interfaces to allow easier
coupling of multi-level or other related fields via a single namcouple coupling definition and a
single call to oasis put or oasis get. Further details are provided in sec 2.2.7

• Automatic coupling restart writing

An optional argument write restart was added to the oasis put routine. This argument is
false by default but if it is explicitly set to true in the code, a coupling restart file will be written
for that field only for that coupling timestep, saving the data that exists at the time of the call (see
section 2.2.7).

• Exact consistency between the number of weights and fields

Exact consistency is now required between number of weights fields in the coupling restart file
and the arrays passed as arguments to the oasis put routine. For example, for a 2nd order
conservative remapping (CONSERV SECOND), 3 weights are needed and 3 fields must be provided
as arguments: the value of the field, its gradient with respect to the longitude and its gradient with
respect to the latitude. For a first order conservative remapping (CONSERV FIRST), only one
weight and one field are needed. Using a weight file with 3 weights for a first order conservative
remapping is no longer allowed.

• Upgrade in the namcouple configuration file

The namcouple reading routine was cleaned up including a refactoring of the gotos and continue
statements, addition of few reusable routines including an abort routine, removal of some dead code,
addition of support for blank lines (which are now considered comments), removal of requirement
that keywords start at character 2 on a line, removal of requirement for $END in the namcouple, and
updates to some error messages.

• Other new functionalities with corresponding new namcouple keywords (see section 3.2)

– $NUNITNO: specifies the minimum and maximum unit numbers to be used for input and
output files in the coupling layer.

– $NMATXRD: indicates the method used to read mapping weights, either orig or ceg. In both
methods, the weights are read in chunks by the model master task. With the orig option, the
weights are then broadcast to all other tasks and each task then saves the weights that will be
applied to its grid points. With the ceg option, the master task reads the weights and then
identifies to which other task each weight should be sent. A series of exchanges are then done
with each other task involving just the weights needed by that other task. The orig method
sends much more data but is more parallel, while the ceg method does most of the work on
the master task but less data is communicated.

– $NWGTOPT: indicates how to handle bad interpolation weights.

– $NNOREST : if true, OASIS3-MCT will initialise any variable that normally requires a cou-
pling restart file with zeros if that file does not exist.

B.3. CHANGES BETWEEN OASIS3-MCT 3.0 AND OASIS3-MCT 2.0 73

B.3 Changes between OASIS3-MCT 3.0 and OASIS3-MCT 2.0

The main evolution of OASIS3-MCT 3.0 with respect to OASIS3-MCT 2.0 is the support of coupling
exchanges between parallel components deployed in much more diverse configurations than before, for
example, within one same executable between components running concurrently on separate sets of tasks
or between components running sequentially on overlapping sets of tasks. All details are provided in
section 2.1.

This new version also includes:

• memory and performance upgrades

• a new LUCIA tool for load balancing analysis

• new memory tracking tool (gilt)

• improved error checking and error messages

• doxygen documentation

• expanded test cases and testing automation

• testing at high resolution (¿ 1M gridpoints), high processor counts (32k pes), and with large variable
counts (¿ 1k coupling fields)

• many bug fixes

B.4 Changes between OASIS3-MCT 2.0 and OASIS3-MCT 1.0

The main changes and bug fixes new in OASIS3-MCT 2.0 are the following:

• Support of BICUBIC interpolation, see paragraph BICUBIC in section 4.3. If the source grid
is not a gaussian reduced grid (D), the gradient in the first dimension, the gradient in the second
dimension, and the cross-gradient of the coupling field must be calculated by the model and given
as arguments to oasis put, as explained in section 2.2.7. If the source grid is a gaussian reduced
grid (D), OASIS3-MCT 2.0 can calculate the interpolated field using only the values of the source
field points.

• Support of CONSERV/SECOND remapping, see paragraph CONSERV/SECOND in section 4.3.

• Support of components exchanging data on only a subdomain of the global grid: a new optional
argument, ig size was added to oasis def partition, that provides the user with the ability to define
the total number of grid cells on the grid (see section 2.2.3).

• The variable TIMER Debug controlling the amount of time statistics written out is now an optional
argument read in the namcouple; see the NLOGPRT line in 3.2 and all details about time statistics
in section 6.4.2.

• Specific problems in writing out the time statistics when all the processors are not coupling were
solved (see Redmine issue #497)

• The problem with restart files when one coupling field is sent to 2 target components was solved
(see Redmine ticket #522)

• A memory leak in mod oasis getput interface.F90 was fixed thanks to R. Hill from the MetOffice
(see Redmine ticket #437)

• A bug fix was provided to ensure that the nearest neighbour option is activated when the option
FRACNNEI is defined in the namcouple for the conservative interpolation .

• The behaviour of OASIS3-MCT was changed in the case a component model tries to send with
oasis put a field declared with a oasis def var but not defined in the configuration file nam-
couple; this will now lead to an abort. In this case, the field ID returned by the oasis def var is
equal to -1 and the corresponding oasis put should not be called. Conversely, all coupling fields

74 APPENDIX B. CHANGES BETWEEN THE DIFFERENT VERSIONS OF OASIS3-MCT

appearing in the namcouple must be defined with a call to oasis def var; this constraint is im-
posed to avoid that a typo in the namcouple would lead to coupling exchanges not corresponding to
what the user intends to activate.

• OASIS3-MCT developments are now continuously tested and validated on different computers with
a test suite under Buildbot, which is a software written in Python to automate compile and test
cycles required in software project (see https://inle.cerfacs.fr/projects/oasis3-mct/wiki/Buildbot on
the Redmine site).

B.5 Changes between OASIS3-MCT 1.0 and OASIS3.3

B.5.1 General architecture

• OASIS3-MCT is (only) a coupling library

Much of the underlying implementation of OASIS3 was refactored to leverage the Model Coupling
Toolkit (MCT). OASIS3-MCT is a coupling library to be linked to the component models and that
carries out the coupling field transformations (e.g. remappings/interpolations) in parallel on either
the source or target processes and that performs all communication in parallel directly between the
component models; there is no central coupler executable anymore1.

• MAPPING transformation to use a pre-defined mapping file

With MAPPING, OASIS3-MCT has the ability to read a predefined set of weights and addresses
(mapping file) specified in the namcouple to perform the interpolation/remapping. The user also
has the flexibility to choose the location and the parallelization strategy of the remapping with
specific MAPPING options (see section 4.3).

• Mono-process mapping file generation with the SCRIP library

But as before, OASIS3-MCT 1.0 can also generate the mapping file using the SCRIP library [Jones 1999].
When this is the case, the mapping file generation is done on one process of the model compo-
nents; all previous SCRIPR remapping schemes available in OASIS3.3 are still supported besides
BICUBIC and CONSERV/SECOND. (Note: these remapping schemes, not available in OASIS3-
MCT 1.0 were reactivated in OASIS3-MCT 2.0, see B.4.)

• MPI2 job launching is NOT supported.

Only MPI1 start mode is allowed. As before with the MPI1 mode, all component models must
be started by the user in the job script in a pseudo-MPMD mode; in this case, they will automat-
ically share the same MPI COMM WORLD communicator and an internal communicator created by
OASIS3-MCT needs to be used for internal parallelization (see section 2.2.2).

B.5.2 Changes in the coupling interface in the component models

• Use statement

The different OASIS3.3 USE statements were gathered into one USE mod oasis (or one USE
mod prism), therefore much simpler to use.

• Support of previous prism xxx and new oasis xxx interfaces

OASIS3-MCT retains prior interface names of OASIS3.3 (e.g. prism put proto) to ensure full
backward compatibility. However, new interface names such as oasis put are also available and
should be prefered. Both routine names are listed in chapter 2.

1As with OASIS3.3, the “put” calls are non-blocking but the “get” calls are blocking. As before, the user has to take care of
implementing a coupling algorithm that will result in matching “put” and “get” calls to avoid deadlocks (see section 2.2.7). The
lag (LAG) index works as before in OASIS3.3 (see section 2.5.3)

B.5. CHANGES BETWEEN OASIS3-MCT 1.0 AND OASIS3.3 75

• Auxiliary routines not supported yet

Auxiliary routines prism put inquire, prism put restart proto, prism get freq
are not supported yet. (Note: prism put inquire and prism get freqs were reintroduced
in OASIS3-MCT 3.0 and equivalent of prism put restart proto in OASIS3-MCT 4.0.)

• Support of components for which only a subset of processes participate in the coupling

New routines oasis create couplcomm and oasis set couplcomm are now available to
create or set a coupling communicator in the case only a subset of the component processes partic-
ipate in the coupling. But even in this case, all OASIS3-MCT interface routines, besides the grid
definition (see section 2.2.4) and the “put” and “ get” call per se (see section 2.2.7), are collective
and must be called by all processes. (Note: this has changed with OASIS3-MCT 3.0.)

• New routines oasis get debug and oasis set debug

New routines oasis get debug and oasis set debug are now available to respectively re-
trieve the current OASIS3-MCT internal debug level (set by $NLOGPRT in the namcouple) or to
change it (see section 2.2.9).

B.5.3 Functionality not offered anymore

• SCRIPR/BICUBIC and SCRIPR/CONSERV/SECOND remappings

As in OASIS3.3, the SCRIP library can be used to generate the remapping/interpolation weights
and addresses and write them to a mapping file. All previous SCRIPR remapping schemes available
in OASIS3.3 are still supported in OASIS3-MCT 1.0 besides BICUBIC and CONSERV/SECOND
because these remapping involve at each source grid point the value of the field but also the value
of the gradients of the field (which are not known or calculated). (Note: these remapping schemes,
not available in OASIS3-MCT 1.0 were reactivated in OASIS3-MCT 2.0, see B.4.)

• Vector field remapping

Vector field remapping is not and will not be supported (see “Support of vector fields with the
SCRIPR remappings” in section 4.3).

• Automatic calculation of grid mesh corners in SCRIPR/CONSERV

For SCRIPR/CONSERV remapping, grid mesh corners will not be compute automatically if they
are needed but not provided.

• Other transformations not supported

– The following transformations are not available in OASIS3.3 and will most probably not be
implemented as it should be not too difficult to implement the equivalent operations in the
component models themselves: CORRECT, FILLING, SUBGRID, MASKP

– LOCTRANS/ONCE is not explicitely offered as it is equivalent to defining a coupling period
equal to the total runtime.

– The following transformations are not available as they were already deprecated in OASIS3.3
: REDGLO, INVERT, REVERSE, GLORED

– MASK and EXTRAP are not available but the corresponding linear extrapolation can be re-
placed by the more efficient option using the nearest non-masked source neighbour for tar-
get points having their original neighbours all masked. This is now the default option for
SCRIPR/DISTWGT, GAUSWGT and BILINEAR interpolations. It is also included in
SCRIPR/CONSERV if FRACNNEI normalization option is chosen (see section 4.3).

– INTERP interpolations are not available; SCRIPR should be used instead.

– MOZAIC is not available as MAPPING should be used instead.

– NOINTERP does not need to be specified anymore if no interpolation is required.

76 APPENDIX B. CHANGES BETWEEN THE DIFFERENT VERSIONS OF OASIS3-MCT

– Field combination with BLASOLD and BLASNEW; these transformations only support multi-
plication and addition terms to the fields (see section 4.2).

• Using the coupler in interpolator-only mode
This is not possible anymore as OASIS3-MCT is now only a coupling library. However, it is
planned, in a further release, to provide a toy coupled model that could be use to check the quality
of the remapping for any specific couple of grids. (Note: this was done in OASIS3-MCT 2.0.)

• Coupling field CF standard names
The file cf name table.txt is not needed or used anymore. The CF standard names of the coupling
fields are not written to the debug files.

• Binary auxiliay files
All auxiliary files, besides the namcouple must be NetCDF; binary files are not supported anymore.

B.5.4 New functionality offered

• Better support of components for which only a subset of processes participate in the coupling
In OASIS3.3, components for which only a subset of processes participated in the coupling were
supported in a very restricted way. In fact, this subset had to be composed of the N first processes
and N had to be specified in the namcouple. Now, the subset of processes can be composed of any
of the component processes and does not have to be pre-defined in the namcouple. New routines
oasis create couplcomm and oasis set couplcomm are now available to create or set a
coupling communicator gathering only these processes (see section 2.2.2). (Note: this was further
improved in OASIS3-MCT 3.0.)

• Exact restart for LOCTRANS transformations
If needed, LOCTRANS transformations write partially transformed fields in the coupling restart
file at the end of a run to ensure an exact restart of the next run (see section 4.1). For that reason,
coupling restart filenames are now required for all namcouple entries that use LOCTRANS (with
non INSTANT values). This is the reason an optional restart file is now provided on the OUTPUT
namcouple input line. If the coupling periods of two (or more) coupling fields are different, it is
necessary to define two (or more) restart files, one for each field.

• Support to couple multiple fields via a single communication.
This is supported through colon delimited field lists in the namcouple, for example
ATMTAUX:ATMTAUY:ATMHFLUX TAUX:TAUY:HEATFLUX 1 3600 3 rstrt.nc EXPORTED

in a single namcouple entry. All fields will use the namcouple settings for that entry. In the com-
ponent model codes, these fields are still sent (“put”) or received (“get”) one at a time. Inside
OASIS3-MCT, the fields are stored and a single mapping and send or receive instruction is executed
for all fields. This is useful in cases where multiple fields have the same coupling transformations
and to reduce communication costs by aggregating multiple fields into a single communication. If a
LOCTRAN transformation is needed for these multiple fields, it is necessary to define a restart file
for these multiple fields. The coupling fields must be sent and received in the same order as they
are defined in the corresponding single entry of the namcouple (not relevant in further versions of
OASIS3-MCT).

• Matching one source filed with multiple targets
A coupling field sent by a source component model can be associated with more than one target field
and model (get). In that case, the source model needs to send (“put”) the field only once and the
corresponding data will arrive at multiple targets as specified in the namcouple configuration file.
Different coupling frequencies and transformations are allowed for different coupling exchanges of
the same field. If coupling restart files are required (either if a LAG or if a LOCTRANS transformation
is specified), it is mandatory to specify different files for the different fields.

B.5. CHANGES BETWEEN OASIS3-MCT 1.0 AND OASIS3.3 77

The inverse feature is not allowed: a single target (get) field CANNOT be associated with multiple
source (put) fields.

• The debug files
The debug mode was greatly improved as compared to OASIS3.3. The level of debug information
written out to the OASIS3-MCT debug files for each model process is defined by the $NLOGPRT
value in the namcouple. All details are provided in section 3.2.

B.5.5 Changes in the configuration file namcouple

• The namcouple configuration file of OASIS3-MCT is fully backward compatible with OASIS3.3.
However, several namcouple keywords have been deprecated even if they are still allowed. These
keywords are noted “UNUSED” in sections 3.2 and 3.3 and are not fully described. Information
below these keywords will not be read and will not be used: $SEQMODE , $CHANNEL, $JOB-
NAME, $INIDATE, $MODINFO, $CALTYPE.

• Also the following inputs should not appear in the namcouple anymore as the related functionality
are not supported anymore in OASIS3-MCT (see above): field status AUXILARY, time transforma-
tion ONCE, REDGLO, INVERT, MASK, EXTRAP, CORRECT, INTERP, MOZAIC, FILLING,
SUBGRID, MASKP, REVERSE, GLORED.

• To get 2D fields in the debug output NetCDF files, the 2D dimensions of the grids must be provided
in the namcouple (except if the field has the status OUTPUT); otherwise, the fields in the debug
output files will be 1D.

B.5.6 Other differences

• IGNORED and IGNOUT fields are converted to EXPORTED and EXPOUT respectively.
• The file areas.nc is not needed anymore to calculate some statistics with options CHECKIN

and/or CHECKOUT.
• SEQ index is no longer needed to ensure correct coupling sequencing within the coupler. Use of

SEQ allows the coupling layer to detect potential deadlocks before they happen and to exit grace-
fully (see section 2.5.4).

• The I/O library mpp io is no longer used to write the restart and output files.

Bibliography

[Cassou et al 1998] Cassou, C., P. Noyret, E. Sevault, O. Thual, L. Terray, D. Beaucourt, and M. Im-
bard: Distributed Ocean-Atmosphere Modelling and Sensitivity to the Coupling Flux Precision: the
CATHODe Project. Monthly Weather Review, 126, No 4: 1035-1053, 1998.

[Chavas et al 2013] Chavas, J., E. Audit, L. Coquart, and S. Valcke: Conservative Regridding When Grid
Cell Edges Are Unknown - Case of SCRIP Cerfacs Technical Report, TR-CMGC-13-6, Technical
Report No 0001, Maison de la Simulation, 91400 Saclay, France, CECI, Université de Toulouse,
CNRS, Toulouse, France

[Coquart et al 2018] Coquart, L., E. Maisonnave, E. and S. Valcke: Using Open MP in OASIS3-MCT
for the N-nearest-neighbor remapping Technical Report, WN/CMGC/18/19, CECI, Université de
Toulouse, CNRS, Toulouse, France

[Craig et al 2017] Craig, A., S. Valcke and L. Coquart : Development and performance of a
new version of the OASIS coupler, OASIS3-MCT 3.0 Geosci. Model Dev., 10: 3297–3308
https://doi.org/10.5194/gmd-10-3297-2017

[Craig et al 2018] Craig, A., S. Valcke: OASIS3-MCT4.0 Timing Study with MCT 2.10.beta1 Technical
Report, WN/CMGC/18/38, CECI, Université de Toulouse, CNRS, Toulouse, France

[Craig 2019] Craig, A. : GSSPOS and BSSPOS options for the global con-
servation in OASIS3-MCT Technical Report, WN/CMGC/19/128, CECI,
Université de Toulouse, CNRS, Toulouse, France https://oasis.cerfacs.fr/wp-
content/uploads/sites/114/2021/08/GLOBC TR Craig oasis map conserv 092019.pdf

[Guilyardi et al 1995] Guilyardi, E., G. Madec, L. Terray, M. Déqué, M. Pontaud, M. Imbard,
D. Stephenson, M.-A. Filiberti, D. Cariolle, P. Delecluse, and O. Thual. Simulation couplée océan-
atmosphère de la variabilité du climat. C.R. Acad. Sci. Paris, t. 320, série IIa:683–690, 1995.

[He and Ding 2001] He, Y. and C. H. Q Ding. Using Accurate Arithmetics to Improve Numerical Re-
producibility and Stability in Numer- ical Applications. The Journal of Supercomputing, 18, 259
https://doi.org/10.1023/A:1008153532043, 2001.

[Jacob et al 2005] Jacob, R., J. Larson, and E. Ong: MxN Communication and Parallel Interpolation in
CCSM3 Using the Model Coupling Toolkit. Int. J. High Perf. Comp. App., 19(3), 293-307 2005

[Jones 1999] Jones, P.: Conservative remapping: First- and second-order conservative remapping. Mon
Weather Rev, 127, 2204-2210, 1999.

[Jonville and Valcke 2019] Jonville, G. and S. Valcke: Analysis of SCRIP conservative remap-
ping in OASIS3-MCT – Part B Technical Report, TR/CMGC/19/155, CERFACS, Toulouse,
France, 2020. https://oasis.cerfacs.fr/wp-content/uploads/sites/114/2021/08/GLOBC TR Jonville-
SCRIP CONSER TRNORM partB 2019.pdf

[Larson et al 2005] Larson, J., R. Jacob, and E. Ong: The Model Coupling Toolkit: A New Fortran90
Toolkit for Building Multiphysics Parallel Coupled Models. Int. J. High Perf. Comp. App., 19(3),
277-292, 2005

[Maisonnave 2020] Maisonnave, E. Locally conservative OASIS interpolation using target grid
nearest neighbours Technical Report, TR/CMGC/20/12, CERFACS, Toulouse, France,

78

BIBLIOGRAPHY 79

2020. https://oasis.cerfacs.fr/wp-content/uploads/sites/114/2021/08/GLOBC TR Maisonnave-
locally conserv interpolation 2020.pdf

[Maisonnave et al 2020] Maisonnave, E., L. Coquart, and A. Piacentini: A better di-
agnostic of the load imbalance in OASIS based coupled systems Technical Re-
port, TR/CMGC/20/176, CERFACS, Toulouse, France, 2020. https://oasis.cerfacs.fr/wp-
content/uploads/sites/114/2021/08/GLOBC TR Maisonnave-load-balancing 2020.pdf

[Mirin and Worley 2012] Mirin, A. A., and P. H. Worley : Improving the Per- formance Scal-
ability of the Community Atmosphere Model. Int. J. High Perf. Comp. App., 26, 17–30
https://doi.org/10.1177/1094342011412630, 2012.

[Noyret et al 1994] Noyret, P., E. Sevault, L. Terray and O. Thual. Ocean-atmosphere coupling. Pro-
ceedings of the Fall Cray User Group (CUG) meeting, 1994.

[Piacentini et al 2018] Piacentini, A., E. Maisonnave, G. Jonville, L. Coquart and S. Val-
cke: A parallel SCRIP interpolation library for OASIS, Technical Report,
WN/CMGC/18/34, CERFACS, Toulouse, France, 2018. https://oasis.cerfacs.fr/wp-
content/uploads/sites/114/2021/08/GLOBC WN Piacentini Parallel SCRIP cmgc 18 34 2018.pdf

[Piacentini and Maisonnave 2020] Piacentini, A. and E. Maisonnave: Interactive
visualisation of OASIS coupled models load imbalance Technical Report,
TR/CMGC/20/177, CERFACS, Toulouse, France, 2020. https://oasis.cerfacs.fr/wp-
content/uploads/sites/114/2021/08/GLOBC TR Piacentini Interactive visualisation of OASIS 2020.pdf

[Pontaud et al 1995] Pontaud, M., L. Terray, E. Guilyardi, E. Sevault, D. B. Stephenson, and O. Thual.
Coupled ocean-atmosphere modelling - computing and scientific aspects. In 2nd UNAM-CRAY su-
percomputing conference, Numerical simulations in the environmental and earth sciences Mexico-
city, Mexico, 1995.

[Sevault et al 1995] Sevault, E., P. Noyret, and L. Terray. Clim 1.2 user guide and reference manual.
Technical Report TR/CGMC/95-47, CERFACS, 1995.

[Terray and Thual 1995b] Terray, L. and O. Thual. Oasis: le couplage océan-atmosphère. La
Météorologie, 10:50–61, 1995.

[Terray and Thual 1993] Terray, L. and O. Thual. Coupled ocean-atmosphere simulations. In High Per-
formance Computing in the Geosciences, proceedings of the Les Houches Workshop F.X. Le Dimet
Ed., Kluwer Academic Publishers B.V, 1993.

[Terray et al 1995] Terray, L., E. Sevault, E. Guilyardi and O. Thual OASIS 2.0 Ocean Atmosphere Sea
Ice Soil User’s Guide and Reference Manual Technical Report TR/CGMC/95-46, CERFACS, 1995.

[Terray et al 1995b] Terray, L. O. Thual, S. Belamari, M. Déqué, P. Dandin, C. Lévy, and P. Delecluse.
Climatology and interannual variability simulated by the arpege-opa model. Climate Dynamics,
11:487–505, 1995

[Terray et al 1999] Terray, L., S. Valcke and A. Piacentini: OASIS 2.3 Ocean Atmosphere Sea Ice Soil,
User’s Guide and Reference Manual, Technical Report TR/CMGC/99-37, CERFACS, Toulouse,
France, 1999.

[Valcke et al 2021] Valcke, S., Piacentini, A. and Jonville, G. Benchmarking of regridding li-
braries used in Earth System Modelling: SCRIP, YAC, ESMF and XIOS Technical Re-
port, WN/CMGC/21/145, CERFACS, Toulouse, France, 2021. https://oasis.cerfacs.fr/wp-
content/uploads/sites/114/2021/11/GLOBC-TR Valcke Report regridding analysis final 2021.pdf

[Valcke and Piacentini 2019] Valcke, S. and A. Piacentini Analysis of SCRIP conservative
remapping in OASIS3-MCT Technical Report, WN/CMGC/19/129, CERFACS, Toulouse,
France, 2019. https://oasis.cerfacs.fr/wp-content/uploads/sites/114/2021/08/GLOBC TR Valcke-
SCRIP CONSERV TRNORM partA 2019.pdf

[Valcke et al 2018] Valcke, S., L. Coquart, A. Craig, G. Jonville, E. Maisonnave, A. Piacentini Mul-
tithreaded or thread safe OASIS version including performance optimizations to adapt to many-

80 BIBLIOGRAPHY

core architectures, IS-ENES2 deliverable D2.3 Technical Report, WN/CMGC/18/74, CERFACS,
Toulouse, France, 2018.

[Valcke et al 2017] Valcke, S., G. Jonville, R. Ford, M. Hobson, A. Porter and G. Riley Report
on benchmark suite for evaluation of coupling strategies Technical Report, TR/CMGC/17/87,
CERFACS, Toulouse, France, 2018. http://cerfacs.fr/wp-content/uploads/2017/05/GLOBC-TR-IS-
ENES2 D10.3 MAI2017.pdf

[Valcke et al 2015] Valcke, S., T. Craig, L. Coquart: OASIS3-MCT User Guide, OASIS3-MCT 3.0,
Technical Report, WN/CMGC/15/38, CERFACS, Toulouse, France, 2010.

[Valcke 2013] Valcke, S.: The OASIS3 coupler: a European climate modelling community software
Geosci. Model Dev., 6:373–388

[Valcke et al 2013] Valcke, S., T. Craig, L. Coquart: OASIS3-MCT User Guide, OASIS3-MCT 2.0,
Technical Report, WN/CMGC/13/17, CERFACS, Toulouse, France, 2013.

[Valcke et al 2012] Valcke, S., T. Craig, L. Coquart: OASIS3-MCT User Guide, OASIS3-MCT 1.0,
Technical Report, WN/CMGC/12/49, CERFACS, Toulouse, France, 2012.

[Valcke et al 2011] Valcke, S., M. Hanke, L. Coquart: OASIS4 1 User Guide Technical Report
TR/CMGC/11/50, CERFACS, Toulouse, France, 2011.

[Valcke 2006b] Valcke, S.: OASIS3 User Guide (prism 2-5) Technical Report TR/CMGC/06/73, CER-
FACS, Toulouse, France, 2006.

[Valcke 2006a] Valcke, S.: OASIS4 User Guide (OASIS4 0 2), Technical Report TR/CMGC/06/74,
CERFACS, Toulouse, France, 2006.

[Valcke et al 2004] Valcke, S., A. Caubel, R. Vogelsang, and D. Declat: OASIS3 User’s Guide (oa-
sis3 prism 2-4), PRISM Report No 2, 5th Ed., CERFACS, Toulouse, France, 2004.

[Valcke et al 2003] Valcke, S., A. Caubel, D. Declat and L. Terray: OASIS3 Ocean Atmosphere Sea Ice
Soil User’s Guide, Technical Report TR/CMGC/03-69, CERFACS, Toulouse, France, 2003.

[Valcke et al 2000] Valcke, S., L. Terray and A. Piacentini: OASIS 2.4 Ocean Atmosphere Sea Ice Soil,
User’s Guide and Reference Manual, Technical Report TR/CMGC/00-10, CERFACS, Toulouse,
France, 2000.

[Voldoire 2020] Voldoire, A. River to ocean models interpolation Research Report, CNRM, Univer-
sité de Toulouse, Météo-France, CNRS, Toulouse, France, 2020 https://hal-meteofrance.archives-
ouvertes.fr/meteo-02986574/file/interpolation runoffs en.pdf

