
Row Replicated Block Cimmino

Iain Duff 1,2, Philippe Leleux 1, Daniel Ruiz 3, F. Sukru Torun 4

1 CERFACS, Toulouse, France
2 Scientific Computing Dpt., Rutherford Appleton Laboratory, Oxon, England
3 IRIT - Institut de recherche en informatique de Toulouse, Toulouse, France

4 Ankara Yildirim Beyazit University, Ankara, Turkey

Technical Report TR-PA-22-51

Publications of the Parallel Algorithms Team

http://www.cerfacs.fr/publication/

Row Replicated Block Cimmino

Iain Duff 1,2, Philippe Leleux 1, Daniel Ruiz 3, F. Sukru Torun 4

May 23, 2022

Abstract

We study a new technique for reducing the number of iterations of the block Cimmino
method by replicating rows in the partitioned system, so that we obtain a non-disjoint parti-
tioning of the rows. Since rows in different partitions that are close to colinear produce a poorly
conditioned iteration matrix for the block Cimmino method, row replication can get around
this problem. With intelligent replication choices, we can reduce the number of iterations for
convergence of the replicated block Cimmino method. The downside is a slight increase of
the computational work associated with each partition. In order to find a trade-off between a
lower number of iterations and a higher cost per iteration, selecting the proper set of rows for
replication is crucial. In this paper, we use graph-based techniques to find good candidates for
replication. Since the block Cimmino method can be interpreted as a non-overlapping additive
Schwartz method applied to the normal equations, the replication techniques correspond to
introducing an overlap between the subdomains defined by the partitions. We show analyt-
ically in the case of a two-block partitioning how the replication improves the conditioning
of the block Cimmino iteration matrix. We then use challenging 2D PDE problems to show
that our algebraic approach targets physically meaningful phenomena on the interface between
partitions. Finally, we demonstrate the efficiency of the proposed method in improving the per-
formance of the block Cimmino solver, even with a small amount of replication, on problems
from the SuiteSparse Matrix Collection.

Keywords: block Cimmino, hybrid methods, row replication, graph partitioning, overlapping
domain decomposition methods

1 Introduction

In this work, we study the block Cimmino method [6], an iterative block row-projection method,
for the solution of linear systems of the form

Ax = b, (1)

where A is a real full rank square sparse matrix of dimension n, and x and b are vectors of size n.
We partition the matrix into p mutually disjoint row-blocks as

A1

A2

...
Ap

x =

b1
b2
...
bp

 , (2)

1

where b is partitioned according to the partitioning of A. The row sizes of Ai and bi are ni,
i ∈ {1..p}, such that

∑p
i=1 ni = n.

Using this partitioned system, an iteration of block Cimmino consists in projecting the current
iterate on the subspaces spanned by each partition then taking a weighted sum of these projections
as the new approximate solution. In practice the standard block Cimmino method has been found
to converge slowly on many problems [6]. Our work is based on an acceleration of this scheme using
a stabilized block conjugate gradient algorithm (block-CG) [1] applied to the symmetric positive
definite (SPD) system

Hx = f with

H =

p∑
i=1

A+
i Ai,

f =
p∑

i=1

A+
i bi,

(3)

where H corresponds to the sum of the projections on the range of AT
i . We use the notation

BC to refer to this accelerated version of the block Cimmino iterations. This scheme is imple-
mented in the ABCD-Solver 1 using MPI parallelism [16]. In this implementation, each partition
is distributed to a separate MPI process. Then, at each iteration, all the processes simultaneously
compute in parallel the projection associated to their respective partition, through the direct solu-
tion of so-called projection systems [16]. The independence between all of the projections is a key
point for the hybrid parallelism scheme of the ABCD-Solver. The workload associated with the
computation of the projections must be evenly distributed among the MPI processes to get good
parallel efficiency. In order to compute the global sum of the local projection vectors, only the
common nonzero columns between each pair of partitions, called interconnection columns, must be
considered. This distributed sum is then computed in parallel through point-to-point communica-
tions between interconnected processes, and the amount of communicated data should be as low as
possible.

In [6], the author proves that the spectrum of the iteration matrix H, and thus the convergence
of the method, is dependent on the cosines of the principal angles between the subspaces of each
partition. The wider the angles are, the faster the convergence. The cosines of the principal angles
between R(AT

i) and R(AT
j) (see [10, pages 329-330]) are successively defined as

cos(Ψk) =
uT
k vk

∥uk∥∥vk∥

= max
u∈R(AT

i)
max

v∈R(AT
j)

uT v
∥u∥∥v∥

s.t. uTup = 0 and vT vp = 0, p = 1, . . . , k − 1,

(4)

with k varying from 1 to mij = min(dim(R(Ai
T)),dim(R(Aj

T))). When we normalise the rows of
the matrix in the 2-norm, these cosines are then directly linked to the inner products between rows
in separate partitions, also called inter-block inner products.

Here, we will use this link between the spectrum of the iteration matrix and inter-block inner
products to improve the convergence of BC with a two-step approach. In the first step, the ma-
trix is partitioned to minimize the sum of inter-block inner product values between row-blocks,
while balancing the computational load corresponding to the solution on each block. This in turn
leads to an increase in the angles between subspaces spanned by the partitions, and thus to faster
convergence of BC. In the second step, starting from the computed partitioning, the convergence

1http://abcd.enseeiht.fr/

2

http://abcd.enseeiht.fr/

rate of BC is further improved via the application of row replication techniques. These replications
lead to a non-disjoint partitioning of the matrix, on which the associated iteration matrix is better
conditioned than the original iteration matrix H.

In this paper, we first extend the theory for the block Cimmino method to the use of a non-
disjoint partitioning in Section 2. Then, in Sections 2.1 and 2.2, we give geometric and algebraic
interpretations which explain why replication helps to accelerate BC. Based on these ideas, in
Section 3, we introduce the actual replication techniques based on graph partitioning methods.
Finally, in Section 4, we demonstrate the efficiency of this approach on the solution of challenging
PDE problems, as well as the parallel solution of matrices from the SuiteSparse Matrix Collection[4].

2 Row-replicated block Cimmino

We consider that the system (1) is partitioned into p blocks of rows, which are now potentially no
longer mutually disjoint, contrary to (2). We have the consistent and partitioned system

Ã =

Ã1

Ã2

...

Ãp

x =

b̃1
b̃2
...

b̃p

 , (5)

where Ãi and Ãj (as well as b̃i and b̃j), i ̸= j, may contain identical rows. These partitions are

derived from those in (2), i.e. Ãi contains the rows of Ai, and the additional rows are obtained
from a replication technique which we detail in Section 3.

More precisely, we consider that each partition has the structure

Ãi =

(
Ai

Ri

)
∈ Rñi×n, b̃i =

(
bi
fi

)
∈ Rñi , i ∈ {1, . . . , p}, (6)

where Ri (resp. fi) is a full rank block of ri ≥ 0 rows replicated from several other partitions Aj

(resp bj), j ̸= i. The row size of Ãi is ñi = ni + ri, with
∑p

i=1 ñi ≥ n. In other words, Ri is a
set of ri distinct replicated rows which were originally in different partitions than Ai, and fi is the
corresponding part of the right-hand side, such that the system stays consistent, b̃ ∈ R(Ã). The

partitions Ãi do not contain multiple copies of any rows, and thus stay full rank, since A in (1)

has full rank. Note that the internal ordering of the rows within Ai, Ãi and Ri does not affect the
numerical properties of the block Cimmino method [12].

We now describe the row-replicated block Cimmino method which finds the solution through
successive sums of projections onto the row-blocks of Ã as in the classical block Cimmino [6]. From
the current iterate x(k), an iteration of the row-replicated block Cimmino is given by

δi = Ã+
i (̃bi − Ãix

(k)), i = 1, . . . , p,

x(k+1) = x(k) + ω

p∑
i=1

δi,
(7)

where Ã+
i Ãi = PR(ÃT

i) is the projection onto R(ÃT
i), Ã

+
i is the pseudo-inverse of Ãi, and ω is a

relaxation parameter. This relaxation parameter is essential to obtain convergence, given that the

3

matrix Ã has replicated rows, and thus no longer has full row rank [6]. Since the system stays
consistent, starting from any initial solution x(0), the iterations of block Cimmino are guaranteed

to converge to the minimum norm solution of (5) if 0 < ω < 1/ρ(
p∑

i=1

PR(ÃT
i)) [6]. The iteration (7)

of block Cimmino can be reformulated as

x(k+1) = x(k) + ω

p∑
i

Ã+
i (̃bi − Ãix

(k)),

= Q̃ωx
(k) + ωF̃ ,

(8)

where F̃ =
p∑

i=1

Ã+
i b̃i, and Q̃ω = I − ωH̃, with H̃ defined as

H̃ =

p∑
i=1

Ã+
i Ãi =

p∑
i=1

PR(ÃT
i). (9)

In the following, we refer to H̃ as the iteration matrix. Looking at the fixed point of the iterations
(8), where ω > 0, we obtain the system

H̃x = F̃ , (10)

where H̃ is semi-positive definite, being a sum of symmetric orthogonal projections. Since the
system stays consistent, we use a stabilized block-CG following the approach introduced in [1] for
full rank matrices.

This approach is identical to what is already used in the ABCD-Solver [1] except that we consider
partitions with replicated rows. In this paper, when we refer to the replicated block Cimmino
method, we also include the use of a block-CG acceleration. Thus, we also denote the replicated
block Cimmino method by BC. We now introduce two complementary explanations, one geometric
and the other algebraic, for how the replication of rows is able to accelerate the convergence of the
block Cimmino method.

2.1 Geometric interpretation as overlapping domain decomposition

In [12, Chapter 2], we propose an interpretation of the block Cimmino row projection method,
introduced in Section 1, as a Domain Decomposition Method (DDM) where the subdomains are
defined by the partitions Ai. In fact, the block Cimmino iterations are equivalent to applying
damped block-Jacobi iterations on the normal equations of the partitioned system [6]. The damped
block-Jacobi iterations are shown to be an additive Schwartz method without overlap in Section
1.2 of [5]. This interpretation gives a natural explanation of how the block Cimmino iterations
construct a solution. First, the solution inside the subdomains are computed independently, which
corresponds to the local computation of the projection for each partition. Then the information
from these local solutions is propagated to the neighbouring subdomains via the interface separating
them, which corresponds to the global sum of projections performed on the columns interconnecting
the partitions pairwise.

Starting from this interpretation of the classical block Cimmino iterations, we now consider the
replicated block Cimmino method, as defined in (7). In this method, a row is no longer associated

4

with a single partition Ai, but can instead be common to several pairwise non-disjoint partitions
Ãi. Hence, this approach can be naturally interpreted as an overlapping DDM where the overlap
between subdomains is defined by the replicated rows.

In the context of systems obtained from discretized PDEs, there is an extensive literature show-
ing how increasing the size of the overlap between subdomains improves the convergence of classical
overlapping DDM. For more details, see e.g. [5, 15]. In the context of BC, the partitions, or sub-
domains, are typically constructed using algebraic methods [14, 3]. Techniques for the algebraic
construction of overlapping subdomains were proposed, based on the extensive scan of the system
matrix to group strongly coupled degrees of freedom, e.g. in [13], and their positive effect was
shown for some classical domain decomposition methods. The replication methods we propose in
this paper, see Section 3.3, are also based on the algebraic properties of the matrix, combined with
graph partitioning approaches.

Based on this interpretation, we expect that, by introducing carefully chosen replicated rows
inside the partitions, we are actually introducing overlaps between subdomains defined by the
partitions, and may thus accelerate the convergence of BC.

2.2 Algebraic effect of replication

For the sake of clarity and simplicity, we consider the classical case of a disjoint two-block par-
titioning to construct the partitions Ai ∈ Rni×n. figure 1a shows a matrix in block tridiagonal
form that has been partitioned with two-block partitioning. A two-block partitioning implies that
the odd-numbered partitions (resp. even-numbered) are mutually orthogonal. We then reorder

the matrix in the form A =

[
B1

B2

]
, where B1 ∈ Rm1×n contains the odd-numbered partitions

and B2 ∈ Rm2×n contains the even-numbered partitions. It was proved by [6] that, in this case, if
mmin = min(m1,m2), the spectrum of the block Cimmino iteration matrix contains the eigenvalues

λk = 1 + cosΨk

λk = 1− cosΨk−mmin

λk = 1

k = 1, . . . ,mmin

k = mmin + 1, . . . , 2mmin

k = 2mmin + 1, . . . , n
, (11)

where Ψk, k = 1, . . . ,mmin, are the principal angles between R(BT
1) and R(BT

2) as defined in (4).
A conjugate gradient algorithm applied to (3) for such a two-block partitioning would not take more
than 2mmin iterations to converge.

We now apply a row replication technique to the partitioned matrix in order to improve the
convergence. Here, we force the replication to respect the two-block partitioning, i.e. no inter-
connections are introduced between two odd-numbered partitions or between two even-numbered
partitions. We obtain the partitions Ãi of size ñi = ni + ri, with ri the number of rows repli-
cated from other partitions inside Ãi. figure 1b shows the block tridiagonal example matrix after
such a replication. Since the replication respects the two-block partitioning, we obtain the form

Ã =

(
B̃1

B̃2

)
. We reorder the two partitions such that

B̃1 =

(
B1

R

)
and B̃2 =

(
R
B2

)
, (12)

5

A1

A2

A3

A4

Interconnections Nonzeros

(a) Partitioned matrix

Ã1

Ã2

Ã3

Ã4

Original row Replicated row

(b) Matrix after replication.

Figure 1: figure 1a shows the interconnection between partitions obtained from a two-block parti-
tioning applied to a block tridiagonal matrix. figure 1b shows the same matrix after a replication
preserving the two-block partitioning.

where R ∈ Rnr×n contains the rows shared by the two partitions. Now, let Qi = B̃T
i D̃

− 1
2

i , with

D̃i = B̃iB̃
T
i , be an orthonormal matrix obtained from the QR factorization of B̃T

i . Then, the
iteration matrix of the replicated BC is

H̃ =

p∑
i=1

Ã+
i Ãi

=

2∑
i=1

B̃+
i B̃i

= (Q1, Q2)(Q1, Q2)
T .

(13)

From the singular value theory [9, 10], the nonzero spectrum of (13) is then the same as the nonzero
spectrum of the block tridiagonal matrix

(
Q1, Q2

)T (
Q1, Q2

)
=

(
Iñ1

QT
1 Q2

QT
2 Q1 Iñ2

)
, (14)

where the QT
i Qj are matrices whose singular values represent the cosines of the principal angles

between the subspaces R(B̃1) and R(B̃2), and thus between the subspaces R(Ãi) and R(Ãj), as
defined in [2]. If we consider (12), we can write the splitting

Q1 =
(
W1 WR

)
and Q2 =

(
WR W2

)
, (15)

where Wi corresponds to Bi and WR corresponds to R. Then their scalar product is reduced to

QT
1 Q2 =

(
WT

1

WT
R

)(
WR W2

)
=

(
0 WT

1 W2

Inr
0

)
. (16)

6

Since the eigenvalues of QT
1 Q2 give the cosines of the principal angles between R(Ãi) and R(Ãj),

we obtain nr cosines equal to 1 when using the replication technique. In the two-block partitioning
case, the iteration matrix H̃ from (9) has a spectrum similar to that presented in (11). For each
replication, an eigenvalue has been shifted to 0 and another one to 2. The issue is then to know
the part of the spectrum corresponding to what has not been replicated, i.e. WT

1 W2 in (16).
In conclusion, in the case of a two-block partitioning combined with a replication strategy which

respects the two-block form, we expect better convergence of BC thanks to the shifted eigenvalues.
We see empirically that replication still shifts eigenvalues for any general partitioning but it is
not easy to define what happens to the rest of the spectrum. The links between the subspaces
corresponding to the partitions can be visualized as a large net where a row may connect more than
two partitions. In this case, a row replication still shifts eigenvalues to 0 and 2. However, it is hard
to control what is left in the spectrum of H̃, since links can appear between previously unlinked
partitions. In the worst case, the conditioning of the iteration matrix H̃ for the replicated block
Cimmino method may then be worse than the conditioning of the original iteration matrix H.

We consider the sample matrix from figure 2a that we use to illustrate the proposed method in
the rest of this paper. The matrix is a 9 × 9 sparse unsymmetric matrix with 25 nonzero values
and is partitioned into the three sets of rows {2, 6, 8}, {1, 4, 5}, and {7, 3, 9} as seen in figure 2b.
The spectrum of the associated iteration matrix H provides an insight into the convergence rate
of block Cimmino. If the eigenvalues are well clustered around one, we expect a good convergence
of the underlying block-CG algorithm. figure 3 shows the effects of various replications on the
spectrum of H̃ and its conditioning. Depending on the choice of replicated rows, the spectrum of H̃
may be clustered around 1, e.g. replicating rows 4 and 7 into partition 3 as in figure 3b lowers the
conditioning. Alternatively, e.g. by replicating row 8 into partition 3 as in figure 3c, a poor choice
of replicated row can increase the conditioning of H̃, since the small eigenvalues are unchanged but
the largest eigenvalues increase. This shows that the choice of replicated rows is crucial.

0.94

0.22

0.16

0.95

0.44

0.37

0.93

0.24

0.27

-0.13

0.87

0.13

0.99

0.13

0.27

0.88

0.18

0.44

0.89

0.12

0.15

0.91

0.37

0.45

0.96

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(a) Original matrix (b) 3-Way partitioned matrix

Figure 2: Sample Matrix before and after partitioning of the rows.

In the next section, we describe two methods to choose these rows based on graph partitioning
techniques. In these replication methods, the idea is to target rows with high interconnections, hop-
ing that the gain from replication is higher than the loss from added interconnections. These same
rows correspond to the interface between algebraically constructed subdomains that we introduced

7

0 0.5 1 1.5 2 2.50 0.5 1 1.5 2 2.5

(a) Partitioned Matrix from figure 2b. Cond(H) = 3.08

0 0.5 1 1.5 2 2.50 0.5 1 1.5 2 2.5

(b) Rows 4 and 7 replicated into parts 3 and 2, resp. Cond(H̃) = 2.54

0 0.5 1 1.5 2 2.50 0.5 1 1.5 2 2.5

(c) Row 8 replicated into part 3. Cond(H̃) = 4.07

Figure 3: Eigenvalue spectrum of H for the partitioned matrix A before and after two choices of
replication.

in the previous section.

3 Graph-based approaches for row replication

In this section, we propose two methods of choosing rows for replications. We first obtain an
initial partitioning of the matrix, on which we then apply our replications. For this purpose, we
use the GRIP row-block partitioning method [14] since it is shown in practice to give the lowest
number of iterations for BC for the majority of the test problems, see e.g. [12, Chapter 3] and
[14]. Furthermore, the proposed replication methods are based on the row inner product graph
which is already constructed and used by GRIP. We can thus reuse the same graph, and reduce
the preprocessing overhead. In this section, we first give background information on the row inner
product graph and the GRIP partitioning, then we describe the two replication methods in detail
using a simple example.

3.1 Background

In the row inner product graph model [14], a graph G(A) = (V, E) is defined where the vertices V
correspond to the rows of A, and the edges E correspond to the nonzero inner products between
the rows of A. In other words, there is a vertex vi ∈ V for each row ri of A, and there is an edge
(vi, vj) ∈ E for each nonzero inner product between distinct rows ri and rj , i.e. if ⟨ri, rj⟩ ̸= 0. In
G(A), each edge (vi, vj) is assigned the cost cost(vi, vj) = |⟨ri, rj⟩|, i.e. the absolute value of the
corresponding inner product.

8

Let Π = {V1,V2, . . . ,Vp} be a mutually disjoint vertex partitioning of V, i.e. we have

Vi ∩ Vj = ∅, i ̸= j,
p⋃

i=1

Vi = V.
(17)

An edge (vi, vj) is said to be a cut-edge if the vertices vi and vj lie in different vertex parts. The
cut-edge (vi, vj) is said to connect Vk and Vl if vi ∈ Vk and vj ∈ Vk. The cutsize is then defined
as the sum of the cut-edges costs. If (vi, vj) is a cut-edge then vi and vj are called border vertices.
Each vertex is assigned a weight, here always equal to 1, and the weight of a part is the sum of the
vertex weights in that part.

In the graph partitioning problem, the objective is to partition V into p disjoint parts such
that the cutsize is minimized and part weights are balanced. In the partitioner GRIP, the row
inner product graph is partitioned by using the state-of-the-art partitioning tool METIS [11]. The
partitioning Π obtained in GRIP is used to determine the row-blocks of A, where the vertices in
Vi determine the rows in Ai [14]. The partitioning objective is then to minimize the sum of inner
products between different row-blocks, while maintaining a balance on the number of rows among
row-blocks.

We consider again the test matrix A given in figure 2a. figure 4a shows a 3-way vertex parti-
tioning Π obtained by GRIP which exploits the row inner product graph G(A). In G(A), there are
9 vertices and 15 edges that correspond to 15 nonzero row inner products. For instance, there is
an edge (v1, v4) with cost(v1, v4)=0.44 since |⟨r1, r4⟩|=(0.94× 0.22+ 0.27× 0.87)=0.44. However,
G(A) does not contain (v1, v2) since |⟨r1, r2⟩|= (0.27 × −0.13 + 0.13 × 0.27) = 0. figure 4b shows
a permuted 3-way row-block partitioning of the matrix A where the row-blocks are defined by Π.
With this row–block partitioning, the row inner product values between row–blocks are minimized
and a good load balance is maintained by having three rows in each part.

0.02

0.09 0.05

0.66

0.17

0.290.44

0.12

0.120.40

0.58

0.04

0.39

0.46

0.54 7

2

3

9

58

6

4

1

(a) Graph G(A) with a 3-way partitioning Π (b) Sample matrix with rows permuted according
to Π

Figure 4: Row-block partitioning of the test matrix from figure 2, computed by the GRIP method.

9

3.2 Row replication

Once the vertex partitioning Π has been computed using the GRIP algorithm, we expect to have
a good row–block partitioning of A in the sense that the eigenvalues of H have a good clustering
around one, leading to good convergence of the block Cimmino method. Although most edges with
a high cost should be kept inside the parts of the graph after the partitioning, some edges may still
remain between the parts, i.e. in the cut of Π. This may be caused by several factors such as a
strong load balance constraint in the partitioning, some vertices having a high degree, or the graph
partitioning tool getting stuck in a local optimum.

If edges with high costs remain in the cut of Π, then it may affect the conditioning of H
adversely, resulting in slower convergence than expected. The replication schemes that we propose
in Section 3.3 aim to reduce the negative effects of these cut-edges on the eigenvalues of H.

Given a graph G(A) = (V, E), we define a replicated partitioning of G(A) as any partitioning
Πr = {Vr

1 ,Vr
2 , . . .Vr

p} where the vertex parts are not necessarily pairwise disjoint, i.e.

Vr
i ∩ Vr

j ̸= ∅ for some i ̸= j,
p⋃

i=1

Vr
i = V.

(18)

In the matrix representation, the replication of vertices corresponds to replicating rows between
partitions. Since a cut-edge (vi, vj) in Π corresponds to a row couple ri and rj which adversely affects
the angles between the subspaces spanned by the corresponding row-blocks, the row replication aims
to improve the spectrum of the iteration matrix H̃ of the replicated BC.

figure 5 shows an example of replication, giving overlapping parts, applied to the partitioned
matrix in figure 4b. In figure 5a, v4 is replicated into Vr

3 from V2. Thus, the edges (v4, v7) and
(v4, v9) do not contribute to the cutsize after the replication of v4. On the other hand, after
replicating v4 into Vr

3 , a new cut-edge (v4, v2) appears, which connects Vr
3 and Vr

1 . figure 5b shows
the corresponding replication in the matrix representation. Here, row r4 is replicated into Ã3, which
incurs an overlapping partitioning by having r4 in both Ã2 and Ã3.

0.02

0.09 0.05

0.66

0.17

0.290.44

0.12

0.120.40

0.58

0.04

0.39

0.46

0.54 7

2

3

9

58

6

4

1

(a) Replicated partitioning Πr of graph G(A),
where v4 is replicated to Vr

3

(b) Partitioned Matrix according to Πr

Figure 5: Row replication applied to the test matrix from figure 4.

10

3.3 The replication methods

We propose two graph-based replication methods using the graph G(A).

3.3.1 Duplication method (DM)

In this method, the resulting vertex partitioning Π of G(A) is used directly to determine the candi-
dates for replication. The method successively chooses the cut-edge with highest cost, and replicates
the corresponding border vertices into the connected parts. The replication selection continues un-
til the total number of replicated vertices reaches a predefined limit, or all the border vertices are
replicated.

figure 6 shows the graphs before and after replication of two vertices. figure 6a shows the
sample partitioning Π which is given to DM as an input. As shown in figure 6a, the red edge
(v4, v7) is the cut-edge with the highest cost and, therefore, border vertices v4 and v7 are selected
for replication. figure 6b shows the replicated partitioning Πr after v4 and v7 are replicated into Vr

3

and Vr
2 , respectively. With those replications, the edges (v4, v7) and (v4, v9) are no longer cut-edges.

Note that after this replication, the cut-edge (v4, v2) now links Vr
3 and Vr

1 , but we do not take this
information into account in DM.

0.02

0.09 0.05

0.66

0.17

0.290.44

0.12

0.120.40

0.58

0.04

0.39

0.46

0.54 7

2

3

9

58

6

4

1

(a) Partitioning Π where the highest cut-edge
cost is highlighted

0.02

0.09 0.05

0.66

0.17

0.290.44

0.12

0.120.40

0.58

0.04

0.39

0.46

0.54 7

2

3

9

58

6

4

1

(b) Replicated partitioning Πr after replication
of v4 and v7

Figure 6: Graph illustration of before and after replication of two vertices 4 and 7 for the partitioned
graph of the sample matrix. This is one step of the DM replication applied to the test matrix from
figure 2.

DM Algorithm: All pairs of border vertices vi ∈ Vk and vl ∈ Vz connected by a cut-edge
(vi, vj), where k ̸= l, are kept in a max-heap, where cost(vi, vj) is used as the key value. After
generating the heap, the edge with the highest cost from the top of the heap is extracted, and the
corresponding vertices are replicated into the respective parts. The replication of a row into its own
part is prevented to avoid making the row-blocks rank deficient. For example, vi is replicated into
Vr
z unless vi is already a member of Vr

z , and similarly for vj into Vr
y . The algorithm stops when

the predefined replication ratio is reached, i.e. the number of replicated rows reaches a certain
percentage of the matrix size, or the heap is empty.

11

3.3.2 Gain-based replication (GR)

The second method takes the additional cost of the newly introduced cut-edges into account after
replication. In GR, we define a replication gain for each border vertex to estimate the reduction in
the cut after replication of a vertex. The replication gain of replicating vi ∈ Vy into Vz is the sum
of the costs of all cut-edges connecting vi to Vz minus the sum of all cut-edges that are connecting
vi to other parts than Vy and Vz. Formally, for each vertex-part pair (vi,Vz), where vertex vi ∈ Vy

is connected to Vz (z ̸= y), the gain is calculated as

gain(vi,Vz) =
∑

vj∈Vz

cost(vi, vj)−
∑

vk∈V\(Vy∪Vz)

cost(vi, vk). (19)

Then, the vertex with highest gain is selected for replication. The replication continues until the
total number of replicated vertices reaches a predefined limit.

table 1 gives the replication gains of the border vertices of the sample graph G(A) shown in
figure 4a. In the table, there are two rows for each cut-edge, resulting in a total of 12 rows for
6 cut-edges. Each row shows how much gain is obtained in the cut, if that vertex is replicated
into the specified part. In the third column of the table, we show the detailed computation of the
replication gain using (19). For instance, the gain of the pair (v4,V3) is calculated as follows: in
figure 6a, v4 connects three cut-edges, two of which connect to V3, namely (v4, v7) and (v4, v9). The
sum of costs of these edges is 0.44 (i.e. 0.39+0.05). However, the cut-edge (v4, v2) connects to the
different part V1, and cost(v4, v2) = 0.12 must be subtracted. Thus, the replication of v4 into V3

has a gain of 0.44−0.12=0.32.

Table 1: Replication gains of border vertices sorted in decreasing order.

Vertex Part Calculation (Eq. (19)) Replication gain

v7 V2 0.39 0.39
v4 V3 0.39 + 0.05− 0.12 0.32
v1 V1 0.12 + 0.02 0.14
v6 V2 0.12 0.12
v9 V1 0.09− 0.05 0.04
v2 V2 0.12− 0.09 0.03
v8 V2 0.02 0.02
v2 V3 0.09− 0.12 -0.03
v9 V2 0.05− 0.09 -0.04
v4 V1 0.12− 0.39− 0.05 -0.34

GR Algorithm: In the GR algorithm, a max-heap contains all the vertex-part couples (vi,Vz)
with their replication gain as the key value, where each pair corresponds to a border vertex vi ∈ Vy

connected to a separate part Vz (z ̸= y). Then, the algorithm chooses the couple with the highest
gain and replicates the vertex into the specified part. For our sample graph, the replication of v7
to V2 has the highest replication gain as seen in table 1. The algorithm stops when a predefined
replication ratio is reached.

12

4 Numerical experiments

In this section, we assess the potential of the row replication techniques to accelerate the convergence
of the block Cimmino method (BC). First, we consider linear systems arising from the discretization
of challenging 2D PDE problems [7]. We emphasize the interpretation of our algebraic approach
as an overlapping domain decomposition method [5] and show its ability to capture physically
meaningful effects. Then we show parallel experiments on matrices from the SuiteSparse Matrix
Collection2 [4] with the replication method implemented inside the MPI-OpenMP parallel ABCD-
Solver3 code [16]. All runs are performed using the default block size of 4 for the block-CG in the
solver.

4.1 Effect of the replication techniques on PDE problems

We are interested here in the solution of discretized 2D PDE problems, inspired from [7]. These
problems are defined on either the square domain Ω□ = (−1, 1)× (−1, 1), or an L-shaped domain
ΩL built as the union of the three smaller square domains (−1, 0) × (−1, 0), (−1, 0) × (0, 1), and
(0, 1)× (0, 1).

On these domains, we define a grid by applying several uniform refinement steps to an initial
grid. figures 7a and 7b show the grids obtained with 2 refinement levels for Ω□ and ΩL, respectively.
Concerning ΩL, the initial grid splits the domain into several subdomains, and in particular two
rectangular patches, C2 and C3, on which the PDE problem has specific properties.

(a) Ω□ grid 2 (b) ΩL grid 2 (c) Diffusivity:
c1 = 1, c2 = 10, c3 = 104

Figure 7: (a, b) Structured grid after two levels of refinement on the initial grid. (c) Diffusivity
and boundary conditions for the heterogeneous diffusion problem.

On these domains, we consider the three PDE problems:

1. a Helmholtz problem on Ω□, with the wave number 40, see figure 8a,

2. a convection-diffusion problem with recirculating wind on Ω□, see figure 8b,

3. a heterogeneous diffusion problem on ΩL, based on diffusivity and boundary conditions
defined as in figure 7c, see the corresponding solution in figure 8c.

13

(a) Helmholtz (b) convection-diffusion (c) diffusion

Figure 8: Shape of the solution for the three PDE problems.

The three PDE problems are discretized on these grids using P1 finite elements. To apply our
approach based on the BC method, we define a partitioning using the geometry of the domains.
The solution to these linear systems is known to be challenging for linear solvers due to either
heterogeneous coefficients in the domain, or to high frequencies that are difficult to capture on a
coarse grid in the case of Helmholtz problems, or due to strong non-ellipticity with a dominant
convection effect.

Small PDE problems with two-block partitioning
We first consider matrices obtained from the 3 discretized PDE problems above with 3 levels of
refinement, obtaining systems of size 9.2 × 102 and 1.4 × 103 for the problems defined on Ω□

and ΩL, respectively. Here, we partition the system using the geometry so that we obtain a two-
block partitioning for the matrix, see figure 9. As in Section 2.2, each row-block in the matrix is
thus interconnected to only the previous and next row-blocks, in the sense that they share non-zero
columns in the sparse structure.

(a) Ω□ (p = 9) (b) ΩL (p = 10)

Figure 9: Two-block partitioning into p subdomains based on the geometry.

2https://sparse.tamu.edu/
3http://abcd.enseeiht.fr/

14

https://sparse.tamu.edu/
http://abcd.enseeiht.fr/

We now apply the replication methods DM and GR from Section 3.3, with an additional step
which ensures that each replication respects the two-block partitioning structure. For each problem,
and each replication method, we increase the number of replicated rows starting from 0 up to a
number equivalent to the size of the original matrix. The results in terms of convergence of BC (or its
replicated version) are displayed in figure 10. We observe for both DM and GR replication methods
that increasing the number of replications steadily accelerates the convergence. In fact, in the case
of the diffusion problem, we get up to a 50% and 70% decrease in the number of iterations for
convergence using DM and GR, respectively, and the better performance of GR reflects the greater
choice of replicable rows available to it.

1 5 10 20 40 50 75 100
0

50

100

Replications (%)

It
er
at
io
n
s
(%

)

DM
GR

Replication

Diffusion
Helmholtz
Convection-
Diffusion

PDE problem

Figure 10: Effect of the replication on the convergence of BC for the three small PDE problems with
two-block partitioning. The number of iterations is given relative to the case without replication.
The number of replications is given as a percentage of the matrix size.

However, the application of a step to check that each replication respects the two-block parti-
tioning is crucial. In figure 11, we include results for the Helmholtz problem when the replication
is not forced to respect the two-block partitioning. For the case of the DM replication, although
not respecting the two-block partitioning structure can increase the number of iterations above
that with no replication (e.g. with a 10% replication ratio), the difference stays negligible. On
the contrary, in the case of the GR replication, starting from a 20% replication ratio the number
of iterations for convergence starts to increase dramatically. This increase can be explained by
interconnections between previously unlinked partitions which hinders the convergence.

Small PDE problems with generic partitioning
In an actual application, the two-block partitioning of such PDE problems would not be realistic
to handle. We now partition the same small systems using a more generic partitioning based on
the geometry of the problem, see figure 12.

figure 13 displays for each problem and each replication method the finite elements corresponding
to the replicated rows. In this figure, the color indicates the number of replications for each row
(blue≡0, light blue≡1, red≡2). The color values are interpolated between finite elements, which
explains the apparent color gradient between different areas. As expected, we observe that the

15

1 5 10 20 40 50 75 100
40

60

80

100

Replications (%)

It
er
at
io
n
s
(%

)

2-blocks
no check

Replication

DM
GR

PDE problem

Figure 11: Effect of the replication on the convergence of BC for the small Helmholtz problem
with two-block partitioning. The 2 replication methods, DM and GR, are applied with and without
respecting the two-block partitioning. The number of iterations is given relative to the case without
replication. The number of replications is given as a percentage of the matrix size.

(a) Ω□ (p = 9) (b) ΩL (p = 12)

Figure 12: Generic partitioning into p subdomains based on the geometry.

replications are located around the interface between subdomains. Through the row replication,
we are introducing an overlap between subdomains. This is particularly clear with the GR method
where most of the interface nodes are replicated. In fact, by increasing the amount of replications,
we would observe that the whole interface becomes replicated.

In the case of the DM method, the resulting overlapping is harder to interpret. By looking
at the shape of the solution expected for the PDE problems, we observe some similarities. Our
interpretation is that the DM method targets some physical effects of the PDE problem inside the
overlapping. This means that by targeting the cut-edges with highest cost, the replication method
focuses on strongly connected degrees of freedom (DOFs) from separate subdomains in the problem,
and these DOFs correspond to nodes affected by the same physical effect in the PDE problem. In
the case of the convection-diffusion problem, the overlapping resulting from DM follows the

16

Helmholtz Convection-diffusion Diffusion
D
M

G
R

Figure 13: Location of the elements corresponding to replicated rows for the three discretized PDE
problems. Both methods, DM and GR, use a number of replications up to 10% of the matrix size.
The color indicates the number of replications: blue≡0, light blue≡1, red≡2.

recirculating wind surface lines around the interface between subdomains defined by the partitions.
In the case of the Helmholtz problem, the overlapping is located on elements separated by fixed
lengths which correspond to vibrations from the Helmholtz equation. figure 14 shows the result of
the same replication method DM applied to the Helmholtz problem, with a wave number divided
by four. The space separating the replications increases, and their form flattens, which suggests
that the replications follow the wave form of the Helmholtz equation, supporting our previous
interpretation.

Large PDE problems with generic partitioning
We now run the replicated BC method on larger systems to assess the effect of replicated rows on the
convergence. We consider matrices of size 8.7×105 and 6.5×105 for the three PDE problems defined
on Ω□ and ΩL, respectively, using the grids obtained from five refinement steps. figure 15 displays
the number of iterations for convergence, relative to the number of iterations without replication,
depending on the amount of replication. We vary the amount of replication from 0 (no replication)
to 20% of the matrix size. In the case of the DM method, the replication of rows is overall positive,
and we observe up to a 70% decrease in the number of iterations for the diffusion problem, and
50% for the Helmholtz and convection-diffusion problems. Only in the case of the Helmholtz
problem, does the number of iterations first increase by around 10% then there is a dramatic
decrease until 10% of replicated rows. However, in the case of GR, while the convergence is faster
than using DM up to 5% replications, we then observe a steady increase in the number of iterations

17

(a) k = 40 (b) k = 10

Figure 14: Location of the elements corresponding to replicated rows, using DM, for the Helmholtz
problem depending on its wave number k. The color indicates the number of replications: blue≡0,
light blue≡1, red≡2.

when increasing the amount of replication. This slower convergence has also been observed by the
domain decomposition community, for example when solving the discretized Helmholtz problem [8,
Section 2.3].

0 1 2 5 10 20
0

50

100

Replications (%)

It
er
a
ti
on

s
(%

)

DM
GR

Replication

Diffusion
Helmholtz
Convection-
Diffusion

PDE problem

Figure 15: Effect of the replication on the convergence of the BC for the three PDE problems. The
number of iterations is given relative to the case without replication. The number of replications is
given as a percentage of the matrix size.

4.2 Parallel performance of the ABCD-Solver with replication

The block Cimmino method is intended for the solution of unsymmetric systems and, combined
with the GRIP partitioner and our replication methods, is a purely algebraic approach. In this
section, we are interested in the behaviour of the replicated BC, as implemented in the parallel

18

ABCD-Solver4, when applied to the matrices from table 2, extracted from the SuiteSparse Matrix
Collection5 [4]. These matrices were selected in order to represent the different behaviours we
encountered in practice when running the replicated BC.

Table 2: Characteristics of the test matrices. m: the size of the matrix. elts per row: the number
of nonzero entries per row. #Parts: the number of partitions used.

Matrix m (×106) elts per row #Parts Application

atmosmodl 1.49 6.93 256 Computational Fluid Dynamics
circuit5M dc 3.52 4.22 512 Circuit Simulation
Goodwin 127 0.18 32.38 32 Computational Fluid Dynamics
memchip 2.71 4.93 32 Circuit Simulation
ss 1.65 21.03 256 Semiconductor Process

Our experiments are performed on the cluster Kraken6 from CERFACS. Kraken is a cluster
with 6660 Skylake Intel Xeon Gold cores at 2.3GHz, for a theoretical peak performance of 490
TFLOPS/s. Each of its 185 compute nodes is a 2-socket system with 96 GB memory, where the 18
cores of each processor constitute a separate NUMA (non-uniform memory access) domain. Kraken
uses the Intel OmniPath interconnect.

As a first step, we run the block Cimmino method on all the matrices from table 2 using 30 MPI
processes (2 processes per node) with an amount of replication between 0 and 20% of the matrix
size. All results were obtained as the average from using 10 different seeds in the GRIP partitioner
[14] and running each configuration 5 times.

figure 16 shows the total execution time of the replicated BC, relative to the case without repli-
cation, depending on the amount of replication. Very similar to the results obtained with the PDE
problems, we observe that the GR method gives better results in terms of convergence compared
to DM for up to 2% replication. Then, GR starts to stagnate and eventually the convergence
worsens for large amounts of replication. In the case of DM, we get an improvement in the total
execution time up to 70% for the matrix memchip, and 60% for the other matrices. The matrix
circuit5M dc is a special case where the replicated BC systematically shows a larger execution
time. For this matrix, convergence is obtained with BC in only 7 iterations whether or not we are
applying replication. Thus, the extra cost induced by the replication cannot be amortized.

We now choose for each matrix and replication technique the best amount of replication in terms
of execution time, and provide detailed execution times for specific parts of the parallel solver. The
results are reported in table 3. In order to compute each projection, the linear system for each
partition is solved using the direct solver MUMPS7, see e.g. [16]. With respect to the factorization
of these systems, we give the imbalance ratio computed as the longest factorization time for a
projection system minus the shortest time divided by the average time. Once each process has
computed its local projection, the distributed sum must be computed. These sums are performed
using point-to-point communications between processes, restricted to the interconnections between
their respective partitions. We thus give in table 3 the increase in the amount of communication, i.e.
the number of shared columns between partitions, relative to the case without replication. Then,
together with the number of iterations, we display the total execution time for the factorization and

4http://abcd.enseeiht.fr/
5https://sparse.tamu.edu/
6https://cerfacs.fr/les-calculateurs-du-cerfacs/
7http://mumps.enseeiht.fr/

19

http://abcd.enseeiht.fr/
https://sparse.tamu.edu/
https://cerfacs.fr/les-calculateurs-du-cerfacs/
http://mumps.enseeiht.fr/

0 1 2 5 10 20
0

50

100

Replications (%)

E
x
e
c
u
ti
o
n

ti
m
e
(%

)

DM
GR

Replication

atmosmodl
bayer01

circuit5M dc
Goodwin 127
memchip

ss

Matrix

Figure 16: Effect of the replication on the ABCD-Solver. The execution time is given relative to
the case without replication. The number of replications is given as a percentage of the matrix size.

the block conjugate gradient (block-CG) iterations, used in BC as introduced in Section 1. Finally,
“sum proj. avg.” is the timing to compute the local projections and their global sum (which is
included in block-CG) averaged over the iterations.

Table 3: Impact of the replication on the efficiency of the ABCD-Solver. For each replication
method, the best replication amount in terms of total runtime is chosen.

Matrix
Replication Facto. Comm.

Iterations
Execution time (s)

method amount(%) imbalance increase facto. block-CG sum proj. avg.

atmosmodl
None 0.66 1.00 280 20.28 154.37 0.46

DM 20 0.68 3.17 63 24.43 38.74 0.49
GR 10 0.67 2.76 89 23.60 53.62 0.48

circuit5M dc
None 0.50 1.00 7 3.15 13.47 1.86

DM 0.1 0.50 1.00 7 3.15 13.52 1.87
GR 0.1 0.50 1.00 7 3.15 13.51 1.86

Goodwin 127
None 0.23 1.00 3072 0.55 68.70 0.02

DM 20 0.24 4.11 419 0.34 12.40 0.02
GR 20 0.34 4.55 519 0.38 47.60 0.09

memchip
None 0.58 1.00 211 2.24 249.55 1.09

DM 1 0.54 2.90 49 2.09 60.65 1.14
GR 1 0.59 2.86 51 2.25 62.85 1.09

ss
None 0.51 1.00 502 53.45 366.65 0.63

DM 20 0.50 3.88 85 73.46 77.11 0.85
GR 10 0.53 2.38 161 67.18 135.37 0.79

As expected, we observe that the amount of communication as well as the time to compute the
sum of projections always increases when we include replications. In fact, the common nonzero
columns between partitions, or interconnections, cause extra communications in the ABCD-Solver
for the computation of the sum of projections, as explained in Section 1. Then, when we replicate
a row inside a partition, all the columns corresponding to the entries in this row are interconnected
with the partition from which the row originates. All the interconnections that were not originally
present are then added, which increases the total number of communications. Additionally, while

20

the imbalance of the factorizations can increase or decrease depending on the matrix, we observe
longer execution times for this step in the case of the matrices atmosmodl and ss. This is natural
since, through the replication, we add rows to some of the partitions. However, in the case of the
matrices circuit5M dc, Goodwin 127, and memchip, the execution time for factorization stays very
similar or even smaller compared to the non-replicated case. These small variations could be caused
by instabilities of the supercomputer.

The most important observation is that the execution time of the block-CG iterations, which
is the main part of the computation in these cases, directly follows the decrease in the number of
iterations. As observed before, we obtain an improvement of the execution time for the block-CG
between 75% and 82% in most cases. In fact, the only case where the replicated BC method does
worse in terms of execution time is circuit5M dc where the number of iterations does not change.
Finally, thanks to its greater effect in accelerating the convergence of BC, the DM replication
method is best overall in terms of execution time.

5 Conclusion

We have proposed an iterative construction for overlapping between subdomains using graph tech-
niques. This construction is based on a partitioning of the matrix obtained using the GRIP par-
titioner, which respects the numerical values of entries in the normal equations. Replication tech-
niques are applied to accelerate the convergence of the block Cimmino method by shifting to 1.0
some cosines of principal angles between subspaces spanned by the partitions.

Through this replication, we have demonstrated an effective improvement of convergence, even
for problems coming from challenging discretized PDEs. We also demonstrate an improvement of
up to 82% in the resulting execution time of the ABCD-Solver.

For some matrices, the replication can still slow down the convergence. In particular, the GR
method is very sensitive to interconnections between partitions appearing from the row replications.
The simplest method, DM, is thus the most robust approach for accelerating the convergence of
the block Cimmino method.

Bibliography

References

[1] M. Arioli, I. S. Duff, D. Ruiz, and M. Sadkane, Block lanczos techniques for accelerating
the block cimmino method, SIAM Journal on Scientific Computing, 16 (1995), pp. 1478–1511.

[2] r. Björck and G. H. Golub, Numerical methods for computing angles between linear sub-
spaces, Mathematics of computation, 27 (1973), pp. 579–594.

[3] Ü. V. Çatalyürek and C. Aykanat, Patoh (partitioning tool for hypergraphs), in Encyclo-
pedia of Parallel Computing, Springer, 2011, pp. 1479–1487.

[4] T. A. Davis and Y. Hu, The university of florida sparse matrix collection, ACM Transactions
on Mathematical Software (TOMS), 38 (2011), pp. 1–25.

[5] V. Dolean, P. Jolivet, and F. Nataf, An introduction to domain decomposition methods:
algorithms, theory, and parallel implementation, SIAM, 2015.

21

[6] T. Elfving, Block-iterative methods for consistent and inconsistent linear equations, Nu-
merische Mathematik, 35 (1980), pp. 1–12.

[7] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite elements and fast iterative
solvers: With applications in incompressible fluid dynamics, Oxford University Press., Oxford,
2014.

[8] O. G. Ernst and M. J. Gander, Why it is difficult to solve helmholtz problems with classical
iterative methods, Numerical analysis of multiscale problems, (2012), pp. 325–363.

[9] G. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix,
Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis,
2 (1965), pp. 205–224.

[10] G. H. Golub and C. F. Van Loan, Matrix computations, vol. 4, JHU Press, 2013.

[11] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irreg-
ular graphs, SIAM Journal on scientific Computing, 20 (1998), pp. 359–392.

[12] P. Leleux, Hybrid direct and iterative solvers for sparse indefinite and overdetermined systems
on future exascale architectures, PhD thesis, INP Toulouse, FAU Erlangen-Nürnberg, 2021.

[13] B. F. Smith, Domain decomposition methods for partial differential equations, in Parallel
Numerical Algorithms, Springer, 1997, pp. 225–243.

[14] F. Torun, M. Manguoglu, and C. Aykanat, A novel partitioning method for accelerating
the block cimmino algorithm, SIAM Journal on Scientific Computing, 40 (2018), pp. C827–
C850.

[15] A. Toselli and O. Widlund, Domain decomposition methods-algorithms and theory, vol. 34,
Springer Science & Business Media, 2006.

[16] M. Zenadi, The solution of large sparse linear systems on parallel computers using a hybrid
implementation of the block Cimmino method, PhD thesis, EDMITT, 2013.

22

	Introduction
	Row-replicated block Cimmino
	Geometric interpretation as overlapping domain decomposition
	Algebraic effect of replication

	Graph-based approaches for row replication
	Background
	Row replication
	The replication methods
	Duplication method (DM)
	Gain-based replication (GR)

	Numerical experiments
	Effect of the replication techniques on PDE problems
	Parallel performance of the ABCD-Solver with replication

	Conclusion

