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Résumé

Ce travail porte sur l’utilisation des réseaux de neurones génératifs et plus particulièrement les GANs
(generative adversarial networks) pour la paramétrisation dans le cadre des méthodes d’ensemble pour
l’assimilation de données. L’assimilation de données permet d’estimer les paramètres initiaux ou l’état
d’un modèle physique à l’aide d’observations en prenant en compte les incertitudes associées à ces
dernières. Le filtre de Kalman donne une solution analytique lorsque le modèle physique est linéaire
et les différentes sources d’erreurs suivent une distribution Gaussienne. Les méthodes d’ensemble per-
mettent d’appliquer cette méthode à des systèmes physiques non-linéaires représentés par des modèles
numériques. L’estimation de paramètres ne suivant pas une distribution Gaussienne reste un chal-
lenge dans beaucoup de domaines. Des méthodes de paramétrisation sont alors mises en place afin
de transformer ces paramètres en de nouveaux, plus adaptés aux hypothèses des méthodes ensem-
blistes. Une autre limitation est la cohérence des paramètres estimés et l’utilisation d’information a
priori comme les contraintes physiques que les paramètres doivent respecter. En effet, les paramètres
estimés peuvent ne pas avoir de sens physique comme une température négative par exemple. Les
méthodes de paramétrisation sont également utilisées afin de limiter ce phénomène. Enfin un dernier
avantage de ces méthodes est qu’elles permettent de limiter le nombre de paramètres en réduisant leur
dimension après transformation.

Dans cette étude une nouvelle méthode de paramétrisation utilisant les GANs, appliquée à la carac-
térisation de réservoirs souterrains est présentée. Lors de l’estimation à l’aide de méthodes d’ensemble
de la disposition des différents types de roches au sein d’un réservoir, il est courant d’obtenir des
formes d’hétérogénéités géologiques irréalistes. Ces hétérogénéités sont caractérisées par des formes et
des motifs particuliers issus de phénomènes physiques connus. De plus, le type de roche n’est pas un
paramètre continu respectant l’hypothèse de distribution Gaussienne et est de grande dimension pour
des applications industrielles. L’utilisation d’une méthode de paramétrisation est alors requise, mais
la conservation du réalisme géologique par ces dernières reste soit trop peu réaliste, soit trop coû-
teuse numériquement. Le GAN étant une technique issue des méthodes d’apprentissage automatique
et ayant récemment gagné en notoriété pour sa capacité à pouvoir apprendre et générer des images
complexes. Il constitue un choix prometteur pour son application dans le domaine de la caractérisation
des réservoirs souterrains. Cette étude présente les résultats obtenus sur un cas de réservoir simplifié
comportant des hétérogénéités en forme de chenaux, particulièrement difficile à paramétriser par les
méthodes actuelles.

Une seconde application est abordée lors de cette étude portant sur la prédiction des champs at-
mosphériques à l’aide des méthodes d’assimilation de données. Lors de l’estimation de l’état de l’at-
mosphère, pour la prédiction météorologique par exemple, il est important de corriger l’état atmo-
sphérique avec de nouvelles observations de manière que les nouveaux champs respectent les équilibres
physiques qui régissent la circulation atmosphérique. Quand cela n’est pas le cas, des instabilités
numériques peuvent apparaître lors de la simulation de l’état futur de l’atmosphère, détériorant l’in-
formation apportée par les observations. L’utilisation d’un GAN capable d’apprendre les contraintes
physiques qui caractérise un champ atmosphérique à l’état d’équilibre peut s’avérer utile. C’est dans
ce contexte que la seconde application de cette étude s’inscrit.

Ce travail vise à présenter les performances de la paramétrisation du GAN et son applicabilité
multidisciplinaire aux lecteurs qui ne sont pas familiers avec le domaine de l’apprentissage profond.
Les générations issues du GANs sont encodées dans un espace latent de faible dimension qui peut être



échantillonné à partir d’une distribution gaussienne adaptée à l’assimilation de données d’ensemble. La
propriété non supervisée de ce type de paramétrisation le rend applicable à plusieurs domaines divers
tels que l’apprentissage du modèle des hétérogénéités géologiques ou l’apprentissage des contraintes
physiques qui rendent un état atmosphérique équilibré.

Cette étude montre comment entraîner des GANs pour deux applications différentes : les données
de réservoir souterrain et les données de climat. L’utilisation de la paramétrisation dans un ensemble
basé sur l’assimilation de données tel que le lisseur d’ensemble avec multiples assimilations de données
(ES-MDA) est démontrée pour le réservoir souterrain. Enfin, le conditionnement a posteriori de la
fonction du GAN est examiné en utilisant l’optimisation sans dérivation.

Abstract

This thesis examines the use of generative adversarial networks (GANs) as a parameterization tool
for inverse problems solved with ensemble-based data assimilation methods. Ensemble methods of-
ten rely on the assumption of Gaussian distributed parameters in cases where this assumption is not
valid, the parameter estimation can be invalid. Parameterization methods allow the transformation
of these non-Gaussian parameters into a better suited distribution, and optimally reduce their di-
mension. Another limitation of ensemble methods is the injection of prior information of the physical
relation as a constraint between parameters such as spatial coherence or physical balances. Optimal
parameterization should encompass these different properties to facilitate the estimation. The novel
approach presented in this work relies on GANs to achieve these objectives. Two application domains
are tackled through the present work.

In a first application, subsurface reservoir characterization, the objective is to determine geological
properties of a numerical reservoir model from the observation of the reservoir dynamical response
by the way of data assimilation. Rock facies, that describe the type of rock present in each cell of
the numerical model, have to be determined due to their strong influence on the dynamical response.
The rock facies spatial distribution is ruled by geological phenomena such as sedimentation and forms
well known patterns, like channels, called heterogeneities. The non-continuous property and their
spatial coherence make their characterization by ensemble-based data assimilation algorithms difficult,
and requires parameterization. Parameterization is a challenge for numerous heterogeneities, notably
channels, due to the numerical cost or the statistical representation of their spatial distribution.

A Second application domain is the atmospheric balance in the context of numerical weather predic-
tion. When new observations are available, correction of the atmospheric state is done using ensemble-
based data assimilation methods. This correction step can introduce imbalance in the physical state
and cause numerical instability during the integration in time of the atmosphere, deteriorating the
information brought by the previous observations. The importance of generating or correcting balan-
ced climate, also called initialized atmospheric state, during data assimilation is then a key step in
numerical weather prediction.

This work aims at presenting the performance of GAN parameterization and its multi-disciplinary
applicability to researchers who are not familiar with the domain of deep learning. GAN is an un-
supervised deep learning method belonging to the deep generative network family, able to learn a
dataset distribution and generate new samples from the learned distribution in an unsupervised way.
These synthetic samples are encoded in a low-dimensional latent space that can be sampled from a
Gaussian distribution that is suited to perform ensemble data assimilation. Their recent ability to
generate complex images led us to consider them as a good candidate for parameterization method.
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The unsupervised property of this type of parameterization makes it applicable to several diverse
domains such as learning the pattern of geological heterogeneities or learning the physical constraints
that make an atmospheric state balanced.

This study shows how to train GANs for two different applications : subsurface reservoir and climate
data. The use of the parameterization in an ensemble based data assimilation such as ensemble smoo-
ther with multiple data assimilation (ES-MDA) is demonstrated for subsurface reservoirs. Finally, a
posteriori conditioning of the GAN function is examined using derivative free optimization.
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Introduction

French introduction

En assimilation de données, le problème dit inverse est l’étude de la manière d’estimer les paramètres
du modèle à partir de l’observation. En physique, les modèles ne sont jamais une représentation
parfaite de la réalité. En général, seuls les paramètres les plus importants sont pris en compte. Les
équations du modèle, les conditions aux limites et les conditions initiales peuvent être simplifiées afin
de rendre le modèle efficace numériquement. Sachant cela, le modèle n’est pas tout à fait juste et
l’incertitude sur la justesse de la sortie du modèle pourrait être corrigée avec des données prises dans
la réalité, les observations.

L’assimilation des données d’observation peut se faire en recherchant les paramètres d’un modèle
qui produisent un champ ou une sortie qui correspond aux observations. De nombreuses méthodes
d’assimilation existent aujourd’hui, mais elles reposent sur de lourdes hypothèses et peuvent varier
selon les applications (e.g., dimension de l’espace des paramètres, système chaotique, relation linéaire
entre l’observation et les paramètres, difficultés à obtenir suffisamment d’observations, etc.) L’une des
principales méthodes d’assimilation de données est le filtre de Kalman [58], dont l’une des premières
applications a été le système de navigation de la mission Apollo. En raison de sa capacité à estimer
les incertitudes et à les propager par intégration temporelle, la méthode du filtre de Kalman a ensuite
été appliquée à de nombreux problèmes inverses.

Cependant, la méthode du filtre de Kalman est optimale pour les problèmes inverses sous des
hypothèses fortes telles que la distribution gaussienne des erreurs et la linéarité de la fonction à
inverser. Ces hypothèses ne sont pas toujours valables dans les nombreux problèmes où l’assimilation
de données est utilisée. De plus, en probabilité bayésienne, principe sur lequel repose l’assimilation de
données, il y a un avantage certain à exploiter le maximum d’informations a priori pour améliorer la
certitude de l’estimation. Les contraintes physiques connues, comme la positivité de la température
ou la cohérence entre les paramètres à estimer par exemple, doivent être intégrées dans le cadre de
l’assimilation de données pour éviter une estimation qui ne respectent pas les lois de la physique.
Ces informations préalables sont généralement intégrées à l’aide de méthodes de paramétrisation,
également appelées reparamétrisations. Elles consistent à définir une transformation mathématique
des paramètres à estimer en un nouveau jeu de paramètres. Le nouveau jeu de paramètres, s’il est
choisi intelligemment, peut implicitement induire la contrainte comme information préalable. Par
conséquent, le concept de paramétrisation peut être utile dans les problèmes où l’assimilation de
données donne des estimations irréalistes ou non physiques. Mais il n’est pas facile de trouver une
transformation de paramètres appropriée qui réponde à toutes les exigences énumérées précédemment.

Pour donner au lecteur une meilleure compréhension de ce que peut être une méthode de paramétri-
sation, nous donnons un exemple qui sera utile pour la suite de cette introduction. L’exemple de
l’enseignement à un enfant de ce qu’est un carré : la première possibilité naïve est de lui présenter
de multiples dessins de différents carrés et d’espérer qu’il généralisera assez bien pour le dessiner. La
deuxième possibilité est de décomposer le carré en concepts mathématiques comme les angles con-
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stants, les lignes parallèles et perpendiculaires, ce qui constitue en quelque sorte une paramétrisation
de tous les carrés possibles. Les paramétrisations ne sont pas uniques, le cercle unitaire peut être
caractérisé par une fonction mathématique x2 + y2 = 1, une fonction paramétrique (cos(t), sin(t)) ou
l’ensemble des formes traçable par un compas... Les formes de base peuvent être relativement faciles
à paramétrer, mais les concepts plus complexes peuvent être beaucoup plus difficiles.

Récemment, les méthodes d’apprentissage automatique aussi connues sous le nom d’apprentissage
profond ont regagné beaucoup d’intérêt pour de multiples raisons, comme le développement de matériel
spécifique connu sous le nom de GPU, le développement d’un algorithme de rétro-propagation efficace,
etc. Ces méthodes sont capables d’apprendre automatiquement à partir de données, pour réaliser dif-
férentes tâches par le biais de l’optimisation ou de la minimisation d’une fonction d’erreur. Un exemple
typique est la vision par ordinateur, où l’un des principaux défis, il y a quelques années, était de pouvoir
classer des images dans différentes catégories. Avant l’apprentissage automatique, l’une des méthodes
consistait à décomposer les images en différents concepts issus du traitement du signal, tels que les
composantes de couleur, la détection des bords, etc. Cela s’appelait l’extraction de caractéristiques et
constitue également une forme de paramétrisation. Désormais, les algorithmes d’apprentissage pro-
fond sont capables de déterminer automatiquement et plus efficacement les caractéristiques à extraire
pour une tâche donnée. Une autre percée importante dans l’apprentissage profond a été l’avancée des
méthodes génératives profondes, qui consistent à pouvoir générer de nouvelles images à partir de la
même distribution que le jeu de données, comme les visages de personnes. Leur capacité à apprendre
des images complexes intéresse la communauté de l’assimilation de données pour créer des méthodes
de paramétrisation basées sur ces réseaux génératifs profonds.

C’est le sujet de la présente étude : les generative adversarial networks, une forme de réseau génératif
profond, sont utilisés pour paramétrer deux applications du domaine : la caractérisation des réservoirs
de subsurface et les champs atmosphériques équilibrés.

La paramétrisation de générateurs capables d’approximer la distribution d’états réalistes s’est
développée dans le domaine depuis l’essor des algorithmes d’apprentissage statistique. Dans ce con-
texte, nous étudions le generative adversarial network (GAN) dont le but est d’échantillonner im-
plicitement la distribution d’un ensemble de données donné.

Le chapitre 1 décrit le contexte des deux domaines d’application. Tout d’abord, il décrit le domaine
de la caractérisation des réservoirs souterrains. Il met l’accent sur les méthodes de paramétrisation
dans l’assimilation de données basée sur les ensembles pour la distribution spatiale des faciès rocheux.
Ensuite, il décrit le domaine de la prévision numérique du climat et souligne la problématique du
déséquilibre des champs atmosphériques dû à l’analyse et à la localisation.

Le chapitre 2 présente la théorie de l’assimilation de données depuis le filtre de Kalman jusqu’au
lisseur d’ensemble avec assimilation de données multiples pour lequel la paramétrisation GAN est
utilisée. Dans ce chapitre, un modèle simplifié unidimensionnel est étudié pour montrer le comporte-
ment de l’algorithme d’assimilation de données pour différentes propriétés analytiques de la fonction
à inverser.

Le chapitre 3 introduit les principaux concepts de l’apprentissage profond et le développement
théorique qui a conduit au modèle GAN et à sa version de Wasserstein. Il mentionne ensuite la
bibliographie de l’utilisation des GANs appliqués aux problèmes inverses.

Le chapitre 4 explique comment former le GAN dans le contexte du réservoir souterrain et le
développement de métriques pour évaluer la qualité des générations.
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Le chapitre 5 applique la paramétrisation du GAN dans l’ES-MDA pour la caractérisation des
réservoirs souterrains pour différents cas d’application. Il souligne le problème de déficience de rang
et l’utilisation de l’inversion du sous-espace pour atténuer ce problème.

Le chapitre 6 décrit l’entraînement du GAN pour produire des données climatiques réalistes et
comprend l’article publié par l’auteur. Il est décrit comme une nouvelle méthode d’initialisation
capable de générer un état atmosphérique d’équilibre et de nombreuses autres applications telles que
l’augmentation d’ensemble ou le générateur de temps pour l’évaluation des risques.

Le chapitre 7 souligne les méthodes de conditionnement a posteriori de la génération du GAN
en utilisant d’autres méthodes d’optimisation sans dérivation telles que la stratégie évolutionnaire
d’adaptation de la matrice de covariance (CMA-ES) et le réseau d’inférence.

English introduction

In data assimilation, the so-called inverse problem is the study of how to estimate model parameters
from observation. In physics, models are never a perfect representation of reality. Usually, only the
most important parameters are taken into account. The model equations, the boundary, and initial
conditions can be simplified in order to make the model computationally efficient. Knowing this, the
model is not exactly right, and the uncertainty about the righteousness of the model output could be
corrected with data taken from the reality, the observations.

Assimilating observation data into a model can be done by searching for the parameters that pro-
duce a field/output matching an optimal Bayesian inference between the model and the observations.
Many assimilation methods exist today, but they rely on heavy assumptions and can vary for different
applications (e.g., Dimension of parameters space, chaotic system, linear relationship between obser-
vation and parameters, difficulty to get enough observations, etc.). One of the main data assimilation
methods is the Kalman filter [58], one of the first applications of which was for the navigation system
of the Apollo mission. Because of its capacity to estimate uncertainties and propagate them through
time integration, the Kalman filter method was then applied for numerous inverse problems.

However, the Kalman filter method is optimal for inverse problems under quite strong assumptions
such as the Gaussian distribution of errors and the linearity of the function being inverted. These
assumptions are not always valid in the numerous problems where data assimilation is used. Moreover,
in Bayesian probability, principle on which data assimilation relies there is a definite advantage to
leverage the maximum of a priori information to improve the certainty of the estimation. Known
physical constraints, such as positiveness of temperature or the coherence between the parameters
being estimated for example, must be integrated in the data assimilation framework to avoid non-
physical estimation. This prior information is usually integrated using parameterization methods, also
called reparameterization, that consist in defining a mathematical transformation of the parameters
being estimated in a new set of parameters. The new set of parameters, if chosen cleverly, can implicitly
induce the different constraint as prior information. Therefore, the concept of parameterization can be
useful in problems where data assimilation gives unrealistic or non-physical estimations. But finding
a suitable parameter transformation that fits all requirements listed before is not an easy task.

To give the reader more understanding of what a parameterization method can be an example that
will be useful for the following of this introduction is given. The example of teaching a child what
is a square : the first naive possibility is to present multiple drawings of different squares and hope
that he will generalize well enough to draw it. The second possibility is to decompose the square into
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mathematical concepts like constant angles, parallel and perpendicular lines which in a way constitutes
a parameterization of all the possible squares. Parameterizations are not unique, the unit circle can
be characterized by a mathematical function x2 + y2 = 1, a parametric function (cos(t), sin(t)) or the
drawable form by a compass... Basic shapes can be relatively easy to parameterize but more complex
concepts might be much more difficult.

Recently, automatic learning methods known as machine learning or deep learning regained much
interest for multiple reasons, such as specific hardware development known as GPUs, development of
an efficient backpropagation algorithm, and so on. These methods are able to learn automatically
from data, to realize different tasks by way of optimization or minimization of an error function.
A typical example is computer vision, where one of the main challenges some years ago was to be
able to classify images in different categories. Before automatic learning one of the methods was to
decompose images into different concepts coming from signal processing such as color components,
edges detection, etc. This was called feature extraction and is also a form of parameterization. Now
deep learning algorithms are able to determine automatically and more efficiently which features to
extract for a given task. Another important breakthrough in deep learning was the advance in deep
generative methods, that consist in being able to generate new images from the same distribution
as the dataset, such as people faces. Their ability to learn complex images are of interest in data
assimilation community to create parameterization methods based on these deep generative networks.

This is the topic of the present study : generative adversarial networks a form of deep generative
network are used to parameterize two domain applications : subsurface reservoir characterization and
balanced atmospheric fields.

Chapter 1 describes the context of the two application domains. First, it describes the domain
of subsurface characterization and emphasizes on the parameterization methods in ensemble based
data assimilation for the spatial distribution of rock facies. Then it describes the numerical weather
prediction domain and underlines the problematic of the unbalanced atmospheric field due to analysis
and localization.

Chapter 2 presents the data assimilation theory from the Kalman filter to the ensemble smoother
with multiple data assimilation for which the GAN parameterization is used. In this chapter a one-
dimensional toy model is studied to show the behavior of the data assimilation algorithm for different
analytical properties of the forward function.

Chapter 3 introduces the main concepts of deep learning and the theoretical development that lead
the GAN model and its Wasserstein version. Then it mentions the bibliography of the use of GANs
applied to inverse problems.

Chapter 4 explains how to train the GAN in the context of subsurface reservoir and the development
of metrics to assess the quality of the generations.

Chapter 5 applies the GAN parameterization in the ES-MDA for subsurface reservoir characteriza-
tion for different application cases. It underlines the rank deficiency problem and the use of subspace
inversion to alleviate this problem.

Chapter 6 describes the GAN training for producing realistic climate data and includes the author
published article. It is described as a new initialization method able to generate balance atmospheric
state and numerous other application such as ensemble augmentation or weather generator for risk
assessment.

Chapter 7 underlines methods for a posteriori conditioning of the GAN generation using other
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derivative-free optimization methods such as covariance matrix adaptation evolutionary strategy
(CMA-ES) and inference network.
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Chapter 1
Physical context

1.1 History matching of hydrocarbon reservoirs

1.1.1 What is a reservoir ?

Hydrocarbon reservoirs are a limited energetic resource such as oil and/or gas that can be extracted
or produced to be transformed into multiple useful products. These products are widely used in modern
society such as fuel or plastic material. They are made of porous and permeable rocks deposited by a
sedimentation process. Hydrocarbons created deeper in the ground from the transformation of organic
beings into petroleum, are moving up to the surface due to pressure and temperature conditions
in the subsurface. Then, they are trapped into reservoirs made of porous media and delimited by
impermeable material, illustrated in Fig. 1.1.

Figure 1.1 – Scheme of a sliced reservoir. Source : https://commons.wikimedia.org/wiki/

Category:Petroleum_traps
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1 Physical context

The principle of oil recovery from reservoirs is to drill extractor and injector wells to porous reservoir
rock. Injector wells inject a fluid, usually dilute solutions, to advect hydrocarbons in the direction of
the extractor well, see Fig. 1.2.

Reservoirs are complex structures that can be found between 300 and 10000 meters under the
surface with different shapes and sizes stretched over tens or hundreds of kilometers. They are made
of multiple sedimentary basins with different shapes made by sedimentary deposits such as ancient
river channels for example. These connections can also be split by geological phenomena such as
faults, represented in the top right panel of Fig. 1.1. These geological phenomena and sedimentary
structures are called geological heterogeneities and have an important influence on the fluid flow inside
the reservoir and consequently on the amount of oil recovered by the injected fluid. That is why it is
important to know the reservoir topology to plan an oil extraction strategy.

The workflow of oil companies is to locate hydrocarbon reservoirs, determine the reservoir topology,
extract a maximum of oil and gas at a minimum cost, transform the crude oil, and send it to clients and
retailers. This study focuses on the reservoir characterization which aims to determine the reservoir
topology in order to assess available resources and to establish a producing strategy. To determine the
topology and predict where to drill new wells to optimize the oil extraction, observations are gathered
during the early phases of the reservoir exploitation. The goal is to replicate these observations using
a reservoir numerical model that represents the reservoir topology and the rock and fluid properties.
This model is used as input of a fluid flow numerical simulator that reproduces the response of the
reservoir to the fluid injection e.g., the amount of oil extracted. Once the reservoir numerical model
replicates the behavior of the studied reservoir, the reservoir is considered characterized and predictions
can be made using the numerical model.

Figure 1.2 – Principle of oil recovery from subsurface reservoirs.
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1.1 History matching of hydrocarbon reservoirs

1.1.2 Reservoir numerical model

Figure 1.3 – Numerical reservoir model of the Norne field. Z-direction was exaggerated 5 times. [92]

Reservoirs’ topology and properties are represented as numerical models, illustrated Fig. 1.3 and
their behavior are assessed by running fluid flow simulations inside these numerical models. Numerical
models are gridded arrays with a given resolution, each cell of the model contains local petro-physical
properties, also called static properties of the reservoir such as porosity (fraction of the volume of
voids over the total volume), permeability (ability of a media to allow fluids to pass through it), rock
facies (type of rock with particular characteristics such as range of porosity, permeability. . . ), physical
properties of the different fluids e.g., density, viscosity, . . . . When these static properties are defined
the numerical model is given as input in a reservoir fluid flow simulator that will replicate the behavior
of the reservoir when fluids are injected inside. The fluid flow simulator outputs several data such
as the evolution of fluid saturation (fractional measure of the void, i.e., "empty" spaces in a material
occupied by a fluid) in each cell through time, but also data at the different wells connected to the
reservoir for example the pressure at the bottom of wells or the flow rate of the different injected and
extracted fluids.

In the last 40 years the complexity of reservoir numerical models have increased significantly. Nowa-
days, models can have thousands or millions grid cells that characterize the rock properties at each
cell location. Knowing that a reservoir can cover hundreds of square kilometers, a numerical model
will always contain errors from different origins. These errors can come from unresolved scales, the
positions of heterogeneities because of the model resolution, one cell will represent tens of meters of
the reservoir where rock properties will be averaged over the cell volume. This study aims to give
a way to reduce the error on the estimation of rock properties and their spatial distributions using
observation of the behavior of the exploited reservoir, it is called data assimilation.

1.1.3 Observations and measurements

One of the main difficulties in reservoir characterization is the rarity and the diversity of observations
that are used to assess the petro-physical properties of the reservoir. The different types can be split in
2 categories : static data that do not evolve during the exploitation of the field in contrast to dynamic
data. In static data, different types of observation can also be measured. Seismic data are obtained
by sending seismic waves in the studied area and their echos, that originate from a change of rock
property, are analyzed to get an image of the different geological layers in the subsurface. Seismic
data can cover a wide area but have a limited resolution, tens of meters for the most precise.

9



1 Physical context

Figure 1.4 – Example of seismic data. Source : https://en.wikipedia.org/wiki/Growth_fault

Another type of static data is given by well logs, when exploratory wells are drilled rock samples
are extracted and studied in the laboratory. The analysis can determine the different rock types, their
petro-physical properties listed in Sec. 1.1.2. This type of data gives high resolution information but
in a very local area (at well bore). Finally, the last type of static data available is the geological
expertise from geoscientists that can assess the type of rock and detect some heterogeneities from
geographic position of the field for example. These static data are propagated through the field using
geostatistics methods detailed in Sec. 1.1.5. Geostatistical methods can measure covariance of two
points as a function of their distance which is useful when some observations at different locations are
available. However, these methods cannot detect geological heterogeneities such as channels or faults.

Finally, dynamic data are obtained thanks to measurement tools in the wells. Wells are able to
measure the physical properties as flow rate, pressure . . . which are highly driven by the petro-physical
properties of the reservoir. For example, by injecting water in a reservoir only hydrocarbons will be
extracted from the reservoir until a given time when the extracted fluid will be a mix of hydrocarbon
and injected water. This is called the water-cut and is information related to the connectivity of the
geological heterogeneities and the size of the reservoir. Dynamic data are also the output of a reservoir
simulator. By comparing the dynamic data obtained from the real field exploitation and those from
simulations using a numerical reservoir model as input, error between observations and predictions
can be measured. The measurement of the error allows us to assess the reliability of the numerical
model and correct it if necessary. This is the principle of history matching.

1.1.4 History matching

In the history matching problem applied to reservoir characterization, the objective is to estimate
reservoir model parameters given observations from a real reservoir being produced, this is the reser-
voir characterization inverse problem. The parameters and observations being respectively the static
and the dynamic properties of the reservoir. After creating a first guess of the parameters, the reservoir
simulation gives predictions that are compared with observations. Then, different methods exist to
correct the parameters in order to reduce the error between predictions and observations i.e., to solve
the inverse problem. Inverse problems are usually solved using data assimilation methods which are
used in different domains e.g., trajectory estimation, weather prediction... The algorithmic methods
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1.1 History matching of hydrocarbon reservoirs

used depend on the particularity of the forward problem such as the stability of the assimilated phe-
nomenon (chaotic behavior of climate for example), the linearity between parameters and observations,
the cost of the execution of the forward problem... In reservoir characterization, the particularities
are the following :

1. Non-linear relation between observation data and reservoir model parameters : The relation
between the spatial distribution of rock properties and production data such as the oil flow
extracted at a well is non-linear.

2. Sparse observations : It is complicated to gather observations on the complete reservoir field.
Instead, it is common to have observations at already drilled wells (rock properties but also
dynamic data like oil flow rate, pressure...). It is also common to use seismic data that are
highly dimensional and necessitate a particular processing.

3. Ill-posed history matching problem : Usually there are more model parameters to determine
than independent observation data. Reservoir models can have millions of cells, and for each
cell, all the static properties have to be determined. The inverse problem does not have a unique
solution and regularization methods are necessary.

4. Non-Gaussian distribution of the parameters : Certain data assimilation methods are theoreti-
cally proved and efficient when parameters follow Gaussian distributions. Due to properties of
geological heterogeneities this assumption is not generally verified and can result in physically
unrealistic estimation. Parameterization methods are necessary, see Sec. 1.1.5.

As said previously, the complexity of numerical reservoir models is constantly increasing because of
an increase in computational power and the representation quality that such high dimensional models
offer. During a history match, it is always useful to reduce the number of parameters to estimate, it is
common to retain the most important ones and discard others for example. Indeed, the rock properties
at a given location is dependent on the properties of the surrounding rocks due to the particular shapes
of geological objects. This implies that the dimension of the realistic parameters to estimate live in a
smaller dimensional space. That is why reservoir engineers use parameterization of reservoir models to
reduce the dimension of the inverse problem. It is an important part in the reservoir characterization
process that has a great influence on the quality of the results of history matching processes. The
Sec. 1.1.5 aims to give an overview of the different methods of parameterization used.

1.1.5 Parameterization methods in reservoir characterization

Geoscientists have local sparse static data, a highly dimensional parameter space and a data assim-
ilation method able to estimate parameters by computing the error between numerical prediction and
observations. However, these data assimilation methods rely on different assumptions such as specific
parameters distribution and do not take into account the realism of the estimation. It means for
example that an estimated reservoir topology produces predictions that match observations, but this
topology is not realistic i.e., no natural sedimentation process can produce such topology. One of the
solutions is to define a parameterization scheme. Parameterization transforms the parameter space
into another one. It is also the occasion to induce some properties into the new parameter space to
reduce the complexity of the inverse problem. For example, reducing the dimension of the parameter
space, induce probability distributions adapted to data assimilation method assumptions, induce prior
knowledge by producing only realistic parameters using the new parameter space.

The principle of determining the value of a variable at a location with respect to other known values
at other locations belongs to geostatistics. It is a task closely related to interpolation methods but more
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general. The idea behind geostatistics is to consider unknown values at specific reservoir locations
as correlated random functions. Random functions can represent uncertainties for the associated
variable. In this way unknown variables can be constrained to close known values by defining a
cumulative density function (CDF). For example, assuming that an elevation field in a landscape has
to be assessed and measurements at different locations are available. Unknown elevation values at
locations close to a measurement will be correlated by spatially close measurements. On the contrary,
locations where no close measurements are available will have a high uncertainty, consequently its
variance will be more important. In this example, the landscape has to be smooth enough for the
method to be efficient. On the contrary, if the landscape is heterogeneous because of the presence of
canyons for example, more complex methods would be required.

The usage of geostatistics is the most common for parameterization of reservoir models. Due to
the progress in the last decades of geostatistics, different parameterization methods have emerged. It
usually depends on the method used for adjusting the model parameters and the utilization of the
fitted reservoir a posteriori i.e., when the history matching step is terminated. The parameterization
is usually a random function depending on spatial coordinates or defined on a grid array representing
the rock properties of the reservoir. Another important aspect of parameterization is that estimating
the parameters independently can lead to a match of observed data of all complexity without be-
ing physically realistic. For example parameters might not respect the physical constraints such as
connectivity or physically unrealistic values.

The formalism used in Oliver and Chen [85] will be used where it defines the parameterization by
using a basis vector called q of size Nb to parameterize the set of parameters δm of size Nm. The
parameterization can be written as

δm = Aq (1.1)

where A of size Nm × Nb is the matrix whose columns are the basis vectors and q = [q1, . . . , qNb
]

is a column vector that contains the coefficient for each basis vectors. We have Nm >> Nb for an
efficient parameterization for the task described above. In the next paragraphs, the progress of the
parameterization methods will be tackled from the simpler 1D problem to complex geology.

1.1.5.1 Zonation methods

The most basic method is zonation that consists in defining zones of multiple 1D cells a priori in the
reservoir where the basis functions are constant. The function of rock properties is then a piecewise
constant function along the reservoir domain. It is a method that has been investigated by Jacquard
et al. [56] and Shah et al. [99]. It is known to be efficient to reduce quickly the data misfit between
observation data and prediction of the reservoir model estimated. But it fails to give a reduced
enough data misfit due to the non-optimal position of the different zones defined a priori. Moreover,
the resulting reservoir properties are highly discontinuous which is undesirable. These techniques are
used for simplified reservoir models with single phase on one-dimensional problems.

1.1.5.2 Point control

Zonation is a constant function over a domain zone but an interpolation function can also be used.
Using an interpolation technique from some well-chosen points is called the point control method, also
widely known as kriging. Kriging method [39] defines the Best Linear Unbiased Estimator (BLUE)
of parameters values from a linear combination of the measured points (also called control points)
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1.1 History matching of hydrocarbon reservoirs

coupled with a covariance model, illustrated Fig. 1.5. For example, let suppose a spatial estimation
problem, (z(x1), . . . , z(xn)) with xi ∈ R

2 where z(xi) is a measurement of the studied variable such
as porosity value at coordinate xi. Let z(x0) be the unknown value at location x0. The estimator of
the unknown value can be written :

z∗(x0) =
n
∑

i=1

λiz(xi) +

(

1−
n
∑

i=1

λi

)

µz (1.2)

where λi are the data weights, µz is the mean over the domain of the z variable. In order to have
an unbiased estimator it is important that Σn

i=1λi = 0 that is how the weight in front of µz is
defined. This can be understood by imagining a case where data measurements are not giving enough
information for the estimation, in this case it is coherent to impose the value of the mean due to
the lack of information. Kriging is the optimal way to choose the λi in the sense of the minimum
variance estimate. Now it is possible to reframe the problem as residual estimation i.e., different from
the mean. Simple kriging will be tackled with stationarity assumption which means that the mean is
known and does not depend on the location in the domain. It follows that :

z∗(x0)− µz =
n
∑

i=1

λi(z(xi)− µz)

y∗(x0) =
n
∑

i=1

λiy(xi) given y = z − µ

(1.3)

where y is the difference with the mean. Then, the last step is to find all the λi, as said before kriging
method gives the optimal solution i.e., minimize the estimation variance. The estimation variance can
be written as :

E

[

(y∗(x)− y(x))2
]

= E

[

(y∗(x))2
]

− 2E [y∗(x)y(x)] + E

[

y(x)2
]

=
n
∑

i=1

n
∑

j=1

λiλjE [y(xi)y(xj)]− 2
n
∑

i=1

λiE [y(x)y(xi)] + C(x0, x0)

=
n
∑

i=1

n
∑

j=1

λiλjC(xi, xj)− 2
n
∑

i=1

λiC(xi, x) + C(x0, x0)

(1.4)

where C(xi, xj) is the covariance between all data measurement, C(xi, x) is the covariance between
data measurement and unknown value and C(x0, x0) is the variance of the unknown value. The first
term controls the influence of the redundancy of the data measurements, the second one controls the
influence of the distance of data measurements from the unknown value and the third term shows the
influence of the variance of the unknown value.

By deriving partially with respect to λi and setting the derivative equal to 0 (to find the minimum
of estimation variance), the following linear system can be written :

n
∑

j=1

λjC(xi, xj) = 2C(x, xi) (1.5)

By defining an arbitrary covariance model or derived from the data, the linear system can be solved
under the assumption of the covariance matrix being positive semi-definite which gives the BLUE,
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1 Physical context

with the following variance for simple kriging (SK) given by injecting Eq. 1.5 in Eq. 1.4 :

σ2
SK = C(x0, x0)−

n
∑

i=1

λiC(x, xi) (1.6)

Covariance model shows that unknown points close to control points will be highly correlated with
the value at those control points. However, the covariance decreases rapidly with respect to the
distance from these control points. Kriging remains a widely used method, but it is not sufficient
to model geological facies. It is a deterministic method, by definition it cannot generate different
realizations in order to create an ensemble of possible scenarios and represent uncertainties.
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Figure 1.5 – Exponential covariance model of 2 points at position 2.5 and 7.5.

In order to have stochastic simulations, it is necessary to reconsider the problem as a random
function problem and more precisely as Gaussian process. This means that the random function
over the studied domain has a multivariate Gaussian distribution. Thus, observations are considered
as samples from a random function, and the objective is now to determine the 2 first statistical
moments of the random functions at unknown locations. The simple kriging estimator y⋆ coincides
with the conditional expectation E [y(x0)|y(x1), . . . , y(xn)] due to linear combination of Gaussian
distributions. Because of the variance of the mean square error, σSK does not depend on the estimate
y⋆, both distributions are uncorrelated, thus independent. The variance of the conditional distribution
given y⋆ is E

[

(y(x0)− y⋆(x0))2|y⋆(x0)
]

= E

[

(y(x0)− y⋆(x0))2
]

= σ2
SK . Finally, the expression of

the random function at location x0 is the distribution : N (y⋆(x0)|σSK(x0)). An inference example
of 100 samples using gaussian processes with the covariance model shown in Fig. 1.5 is illustrated in
Fig. 1.6.

The position of the pilot points are defined by the user and their positions are not related to data
sensitivity. Control points position can be determined by the data sensitivity to the field values
but the computational work to determine these control points are significant (see Rodrigues [96]).
Unfortunately kriging method and Gaussian processes are regression methods, which imply that the
stochastic simulations will be smooth realizations which cannot be appropriate to represent geologic
heterogeneities as explained in the landscape analogy at the beginning of Sec. 1.1.5.
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1.1 History matching of hydrocarbon reservoirs

0 2 4 6 8 10
Position : X

1

0

1

2

3

Fi
el

d 
va

lu
e

Stochastics random fields generated from 
 exponential covariance model

Figure 1.6 – 100 stochastic random fields generated from the covariance model of Fig. 1.5

1.1.5.3 Truncated Gaussian simulation

In data assimilation, it is common to use methods based on a square data misfit and a regularization
term that lead to the form of the least squares difference. One of the main assumptions in these
methods is that model variables have to be approximately Gaussian or can be transformed to be
approximately Gaussian. In order to represent the multiple point statistics that can be found in
stochastic earth models, a method was introduced by Matheron et al. [79] to the domain of reservoir
simulation, called Truncated Gaussian Simulations (TGS). TGS is still a widely used method to
represent stochastic earth models, the next section will describe TGS in order to give an understanding
and its pros and cons.

The TGS is a very well-known and still broadly used method to represent spatial distribution of
the facies or lithofacies Galli et al. [36]. Reservoir characterization is usually a hierarchical process
where it is important to separate the different types of rocks before setting the permeability inside
them. Facies determination helps at the characterization of static properties especially far from data
measurements.

The principle of the method for a 2D example is to draw two Gaussian random functions Y1 and
Y2 in the reservoir domain with defined covariance functions illustrated in top panels in Fig. 1.7. The
covariance function has to represent the different trends on the different directions of the domain.
Then, a truncation map, panel (c) of Fig. 1.7 has to be determined from available data or expert
knowledge. For each pixel, the truncation map is the indicator function Eq. 1.7 applied to the random
functions values and gives the facies index at the pixel location, illustrated in panel (d) in Fig. 1.7.
The truncation map is chosen from facies proportion and represents the transition between facies in
the domain e.g., the black facies in the example can never be in contact with the light color facies.

Let F be a random set that represents the facies we want to model in our domain study. An
indicator function is associated : 1F (x) where x is the position on the grid that represents the discrete
subdivision of the reservoir. Assuming we want to study n facies, we first define a stationary Gaussian
random function Y then we define as lithofacies such that :

Fi = {x ∈ R
2; si−1 ≤ Yj(x) ≤ si withj ∈ {1, 2}} (1.7)
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1 Physical context

It follows :
di = E(1Fi

) = P (si−1 ≤ Y (x) ≤ si) = D(si)−D(si−1) (1.8)

with di the proportion of facies Fi and D the cumulative normal distribution. si are the threshold of
the truncation map and are defined by :

si = D−1





i
∑

j=1

dj



⇔ di = D(si)−D(si−1) (1.9)

with s0 = −∞ and sn = +∞. The Eq. 1.9 tells us that the thresholds are in bijection with the
proportion of facies so a user knowing the facies proportion can have the corresponding thresholds
easily.

Such parameterization can be useful in a history matching problem where it is possible to estimate
the boundaries of the truncation map [91] instead of the cell values of the reservoir model. However, it
remains difficult for particular heterogeneities such as channels characterized by particular continuous
patterns. Particular patterns are generally too complex to be determined by two-points statistical
methods such as TGS. Higher order geostatistics methods known as multiple point statistics are used
to parameterize geological heterogeneities.
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Figure 1.7 – Example of a Pluri-Gaussian Simulation (PGS). Panels (a) and (b) are Gaussian random
fields, panel (c) is the truncation map and panel (d) is the result of the TGS
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1.1 History matching of hydrocarbon reservoirs

1.1.5.4 Multiple Point Statistics (MPS)

Methods such as kriging and TGS are categorized as two-points statistics methods and are limited
by not considering structural properties such as connected patterns over long ranges such as meander-
ing channels, clusters of similar properties etc. These limitations conducted geoscientists to use more
complex statistical tools called Multiple Point Statistics (MPS). Using MPS methods requires a certain
amount of data that are usually not available in the domain of geosciences, especially in subsurface
characterization with only well logs. To solve this problem geoscientists developed object-based meth-
ods that use a training image (TI), that is a synthetic image created by experts and containing all the
known geostatistical properties that need to be reproduced in the realizations. The MPS algorithm
can be divided into 3 categories : pixel-based, object-based and hybrid methods.

Due to the important number of MPS algorithms, this section will give an overview of the literature
with references for details. For pixel-based methods, one of the most known algorithm is the Extended
Normal Equation Simulation (ENESIM) [44], the idea is based on an extended indicator kriging
where at each visited unpredicted point, a pattern is defined from data in the neighborhood of the
unpredicted point. Then, it scans the TI in order to find occurrences of such pattern and build a
conditional distribution from occurrences. Finally, a sample from the built distribution is placed at
the unpredicted point and become a data point, then the algorithm loop to another unknown point.
Some limitations of the method have to be underlined. Because it has to scan the TI at each iteration
the method is very CPU and memory demanding. It was later modified by using a search tree as
a preprocessing to access the scan of the TI without computing it again and called SNESIM [102].
Simulated annealing used by Deutsch [23], Manwart et al. [78], Yeong and Torquato [111] for porous
media reconstruction is also widely used, it consists in initializing the domain with random values
and hard data. Then add a small perturbation to the initialized domained and compute an objective
function. If the objective function was lowered, then the new state is accepted with probability equal
to 1, if not the probability acceptance is computed from the difference between objective function
value of the original state and perturbed state. One of the main weakness of pixel-based methods
is the lack of continuity for geological heterogeneities, Tahmasebi [103] underlined this phenomenon.
All these methods require a lot amount of CPU time and are not suited for real test cases containing
channel heterogeneities.

The alternative solution is an object-based or pattern-based method. The idea behind such methods
is to directly add a patch (group of pixels) from the TI in the realizations. Simulation of pattern
(SIMPAT) introduced by Arpat and Caers [4] where a database is built of all the patterns in the TI of
a given size. Then, the algorithm visits different locations in the realization through a random path
and chooses the most similar pattern of the local environment in the realization computed thanks to
a distance between patterns. If no data is present it chooses randomly. This method is very CPU
demanding, the result is also very close to the TI and the algorithm tends to underestimate the spatial
uncertainties. This principle can be useful for comparing different ensembles of images generated by
different algorithms. Other methods were developed such as filter-based simulations (FILTERSIM) or
cross-correlation simulations (CCSIM) see Tahmasebi [104].

These MPS methods are difficult to compare with our method due to the lack of open source
implementations which is the consequence of their potential importance in commercial context. Addi-
tionally, their dependence on a particular TI makes it difficult for the comparison with dataset-based
methods. Specific parameterization methods using deep learning will be tackled in Sec. 3.6.2. The
present work elaborates a new dataset-based method relying on generative neural networks. Its main
asset is to parameterize with few parameters and interesting properties the distribution of images,
here reservoir topologies, represented by a dataset in an unsupervised manner.
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1 Physical context

1.2 Data assimilation for weather forecast

The weather forecast has an important place in the development of data assimilation in the last
decades. The necessity for weather forecasts drove scientists to put lots of effort into weather prediction
in order to anticipate future extreme weather events such as storms, drought etc. The example of the
Presidents’ Day snowstorm that hit the United-States of America in February 1979 is a true example of
an extreme event wrongly predicted with serious consequences. Even today, the best models struggle
to accurately predict these extreme events. Forecast quality was lowered by the sensitivity to small
errors in the initial atmosphere state in the northwestern Pacific four days before [52]. This section
aims to describe the background of the weather forecast and its remaining challenges.

The Earth climate system is very complex with a lot of interactions between 5 subsystems such
as the atmosphere (air), hydrosphere (water), lithosphere (planet surface), biosphere (vegetation and
being organisms) and cryosphere (sea ice at the poles). Atmosphere is the most variable component
of the earth’s climate system in both space and time. Bjerknes [9] referred to the weather forecast as
the ultimate problem in meteorology and described an approach to solve it. Its approach is based on
two conditions :

1. The present state of the atmosphere must be characterized as accurately as possible.

2. The intrinsic laws, according to which the subsequent states develop out of the preceding ones,
must be known.

It describes weather forecast as an initial-value problem with a determinist approach because assertion
is made about the complete determination of a future state of the atmosphere from a previous one.
Bjerknes [9] subdivided into 3 main tasks to tackle the initial-value problem :

(i) The observation component.

(ii) The diagnostic or analysis component.

(iii) The prognostic component.

The 2 first tasks are related to the characterization of the current state of the atmosphere, condition
1. The third is related to condition 2. The first component mentions the necessity of an observation
network of the atmosphere. At each observation location, measurement of variables such as tempera-
ture, wind component etc. have to be measured. The distribution of the observation points needs to
cover well enough the different space and time scales of characteristic phenomena of the atmospheric
circulation. Figure 1.8 shows the wide variety of the space and time scales of the atmospheric cir-
culation, and underlines that such an observation network is theoretical and even now is far from a
satisfying sampling of these scales. Daley [22] tells how, along the history, the weather prediction
started with sparse local measurements and subjective analysis to a worldwide data collection using
complex methods for data selection in order to realize objective estimation of the weather. Even if the
number of observations gathered is constantly increasing using satellites, civil aviation, meteorological
probes and even animals equipped with probe [97] some places remain under sampled like deep ocean
or high atmospheric layers.

The second task is about processing these observations. Analysis is a data assimilation term that
refers to the state estimated from the measurements usually on a gridded domain representing the
atmosphere in a numerical model. All the dependent variables (mass, temperature, wind humidity...)
have to be defined at each grid point. If measurements are not available at certain locations, spatial
interpolation or other methods have to be used in order to have a completely defined atmospheric
state.

18



1.2 Data assimilation for weather forecast

Figure 1.8 – Representation of the different space and time scales of the atmospheric circulation.
Source : Owens and Hewson [86]

Finally, prognostic components are obtained by integrating the atmospheric state in time using
an atmospheric global circulation model (AGCM) which will be described in the Sec. 1.2.1. One
should note that this is a simplification of the weather forecast complete system, this study focuses on
atmosphere circulation but lots of climate components have to be coupled with atmosphere circulation
such as ocean, sea ice, atmospheric chemistry etc. For sake of simplicity our study will consider all these
components as parameterized. The reader should note that in the context of climate, parameterization
has another sense than in reservoir characterization. Parameterization of a climate phenomenon means
that its influence is represented by a mathematical approximated model instead of using physical
equations.

1.2.1 Atmospheric global circulation models

The Earth dynamical system is described as a "pure" fluid i.e., dry air that interacts and is modified
by a minor constituent : water in its three phases. It is also subject to several forces from external
systems such as its interaction with oceans and heat fluxes from the solar annual cycle. The dynamic of
the atmosphere is represented by a numerical model. Atmospheric global circulation models (AGCM)
uses a discretized domain over the entire planet with constant angular spacing over the latitudes and
longitudes, illustrated Fig. 1.9 in order to simulate the dynamic of the atmosphere. For the height res-
olution, the grid is made of tens of layers. Such models aim at solving the primitive equations i.e., the
Navier-Stokes equations on a rotating sphere with thermodynamics and appropriate approximations.
These equations characterize different balances present in the atmosphere :

– Continuity equation representing the conservation of mass.

– Conservation of momentum representing the Navier-Stokes equation on a sphere under the as-
sumptions of low vertical motion compared to horizontal motion and that the size of the fluid
layer is small compared to the size of the sphere.

– Thermal energy equation representing the different temperature sources and sinks

– Hydrostatic approximation.
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1 Physical context

Figure 1.9 – Scheme of a numerical model of the atmosphere.

AGCMs can use finite difference methods or spectral methods to solve the primitive equations over
the discretized domain. Some finite difference methods use the grid with constant (for simple numerical
models but resolution can change for more complex models) angular spacing that converges to the
poles. This type of grid causes computational instabilities due to the shrinking of the grid towards the
poles, filtering over the latitude close to the pole can be a solution to leverage this limitation. Spectral
method generally uses Gaussian grids that have the advantage to conserve a constant spacing between
points over each latitude and an absence of point at the pole. These different resolutions have an
important impact on the quality of the forecast by numerical models. The error of the model can be
reduced but is unavoidable with the current computational power, the computation of all the necessary
variables such as temperature, pressure, velocity components, etc., over such a large domain are
computationally demanding. Thus, the resolution of numerical models are limited by computational
resources and are not fine enough to take into account phenomena that occur on a small scale that
is below the spatial resolution e.g., moist convection or cloud coverage. These phenomena must be
handled via mathematical parameterization where their impact on the atmosphere is represented from
mathematical models instead of solving the physical equations.

A large variety of numerical atmospheric models are currently in production ; Météo-France for
example uses two different models. One AGCM is named ARPEGE and represents the atmosphere of
the entire planet. One regional circulation model (RCM) is named AROME and covers metropolitan
France with a refined grid and exchanges inputs and outputs at its boundaries with the AGCM
model. Moreover, all these models can cooperate by sharing their prediction in order to increase the
quality of the numerical weather predictions (NWP) that consist of using AGCM coupled with a data
assimilation algorithm to forecast the state of the atmosphere.
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1.2 Data assimilation for weather forecast

1.2.2 Numerical weather prediction

Numerical weather prediction (NWP) is the scientific area where the objective is to predict the
weather given the observations of its current state, by taking into account :

– Errors coming from measurements of observations.

– Errors coming from initial state estimation.

– Errors coming from the time integration by the AGCM.

Similarly to the reservoir application of data assimilation, the first step for NWP is to initialize the
state space. One should note that the main difference with the reservoir application is that, in NWP,
the estimation is on the state of the atmosphere which is also the output of the AGCM. It means
that the parameter space is a set of variables that vary through time while history matching deals
with constant geological parameters. These two kinds of problems are respectively referenced as state
and parameter estimation. NWP requires a sequential data assimilation consisting in realizing the 3
tasks mentioned in Sec.1.2 at regular intervals (see Fig. 1.10) which differs from reservoir parameter
estimation. This is due to the chaotic property of the climate system. Chaotic nature of the atmosphere
can be described as : close initial conditions can produce very different outputs after a certain time,
that is the reason in NWP it is important to gather information and inject it in the model regularly.
A direct fundamental consequence given by [74–77] is the limit of about 2 weeks of predictability of
the atmosphere given a perfect model and perfect observations. Analysis can cause difficulties due

Observations  (+/- 3 

hours)

Background or 

First guess

Global analysis (statistical 

interpolation) and balancing

Initial conditions

Global forecast model

6-h forecastOperational forecasts

Figure 1.10 – Scheme of data assimilation cycle for 6h analysis. Reproduced from Kalnay [59].

to sparse observations and the complexity of generating a realistic atmospheric state, in the sense of
a balanced state from sparse data. Indeed, a non-balanced state can generate non-physical gravity
waves. Gravity waves is a natural phenomenon of the atmosphere that occurs when a fluid is displaced
from its equilibrium state. This usually allows the atmosphere to maintain or retrieve the geostrophic
balance by generating high frequency low amplitude gravity waves that have only a local influence
on the atmosphere and low life expectancy. However, an unbalanced analysis of the atmosphere will
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also generate gravity waves during time integration but with high amplitudes which will decrease the
quality of the prediction by adding a noisy component (see Phillips [89] for further details). Different
methods were used in order to remove the noise component of the analysis, a description of the different
families of methods used are listed below :

Filtered equations The first method introduced by Charney et al. [19] in order to remove the spuri-
ous oscillations was the modification of the set of equations into the set of quasi-geostrophic equations.
It is named the filtering method, and involves approximations that are not always verified. Conse-
quently, the filter can also eliminate meteorological information brought by atmosphere observations
[22]. This method was widely used in production but due to its limitations to integrate useful infor-
mation, research focused on another type of solution. Instead of adapting the model to remove these
oscillations, the source of the phenomenon was tackled, the unbalanced fields. The new objective was
to generate balanced field after correction by the observations this process is called initialization.

Static initialization Another idea proposed by Hinkelmann [51] was to work on the initial state
itself. Because oscillations are generated by unbalanced grid points, Hinkelmann [51] proposed to use
a balanced wind field deduced from the pressure field as initial state. The price of this approximation
was to not take into account wind observations and the remaining noise level in the predictions was
still not acceptable. Static initialization refers to all methods that determine an initial physical field
without using predictive equations of the model.

Dynamic initialization The dynamic initialization, introduced by Miyakoda and Moyer [81], consists
of an initialization of a velocity field and running an AGCM forward and backward in time in order to
reach the equilibrium of the velocity field. The method does not require a modification of the obser-
vation of the wind fields and output a noise-free wind field and consequently avoid the gravity/inertia
waves dampened during the initialization process. But, it is extremely computationally demanding to
run the model back and forth and other physically significant motions are damped as well.

1.3 Discussion

Both applications share a common limitation, the lack of a method able to understand the physical
constraints in their respective domains. In reservoir characterization, the particular patterns of geo-
logical heterogeneities have to be characterized by a set of parameters, optimally living in a space with
a limited dimension to perform parameter estimation. In numerical weather prediction, correction of
an atmospheric state can produce imbalance. The ability to characterize balance states by a set of
parameters could also be useful. Therefore, the development of a generator able to create geological
patterns or balance atmospheric states from a set of parameters would be a significant improvement
for the limitations encountered in the data assimilation techniques used in both domains.

Determining the physical equations that rule both physical phenomenon, sedimentation process
or balancing atmosphere, would be too difficult or too computationally demanding. However, the
family of data driven generator methods could be a way to learn the physical constraints without
the obligation to determine and solve the physical equations. Another advantage of these techniques
is their transferability between different application domains. This work investigates the usefulness
of the generative methods able to statistically learn the implicit rules that produce very complex
phenomena such as balanced climate states or complex subsurface properties’ distribution. It should
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1.3 Discussion

be emphasized that this work tackles two application domains to demonstrate its applicability in
numerous other domains. The present manuscript was designed to be didactic and underlines the
different specificities to take into account when transferred to a new application.
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Chapter 2
Gradient-free methods for Inverse
Problem.

In the inverse problem the objective is to find the causes of a phenomenon from observations. To
solve such a problem, one has to first model a direct problem, notedM, numerically (or experimentally
if possible). The model has to simulate the behavior of the phenomenon, which means producing the
same effect y outputs for a given set of causes x, it can be written as :

M(x) = y (2.1)

The objective is to determine the right set of causes, parameters, state, condition that produces the
same values measured on the real phenomenon. The inverse problem is a general formulation that
can be used in different contexts such as tomography (applied in medicine, astronomy, geosciences),
hydrology, geology and more. As an example one can think of a trajectory estimation algorithm that
has to determine the thrust and the direction for a vehicle in order to reach a known position. The
model will contain the set of governing equations characterizing how the vehicle moves into space
(position, external forces, friction...).

The choice of the method depends on the properties of the studied phenomenon. Usually the most
important property is the linearity of the mapping functionM. The phenomenon can also be chaotic,
and can have a high number of parameters, such as the climate for example. It can also be hard to
gather a satisfying amount of observations, the inverse problem can be ill-posed meaning that different
sets of parameters can produce the same prediction that fit observations such as in subsurface flow
or reservoir characterization. The availability of the inverse of the model in the sense of an inverse
model or adjoint that can characterize theoretically the behavior of the inverse phenomenon, is also an
important aspect. It can help to choose the appropriate and most efficient method to solve the inverse
problem. One of the mainly used methods for inverse problems containing a dynamical aspect is known
as data assimilation. It can be separated into two categories : adjoint methods (with an adjoint model
that can compute the derivative ofM) such optimization methods using gradient descent for example
or gradient-free methods (without adjoint model) usually these methods rely on covariance estimation
instead of the unavailable gradient ; hybrid methods of these two techniques are also getting more
attention, particularly in weather prediction domain.

2.1 Data assimilation

Data assimilation is used in the context of an inverse problem, to estimate the state of a complex
system or its initial conditions for example using predictions given by a numerical model and observa-
tions. It also estimates the associated uncertainties due to multiple sources. For complex systems such
as atmospheric circulation for example, the model contains errors due to the numerical discretization
of the problem for example. Observations are also usually sparse and contain errors. The objective of
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data assimilation is to find the best estimate taking into account errors and observations. It is indeed,
difficult to model accurately such systems and models for different limitations :

1. The physical constraints that rule the model behavior and the state manifold.

2. Ill-posed history matching problem : Usually there are a lot more model parameters to determine
than independent observation data. That is why it is common to regularize the problem using
prior knowledge.

3. Non-linear relation between data and model parameters.

4. High dimensional parameter space.

5. Sparse observations.

Usually, data assimilation methods can be separated into two steps. First, when an observation
is available, the correction of the system state using the information brought by the observation is
called the analysis. The second step is the forecast of the corrected state through time until another
observation is available. The analysis step can be the source of unrealistic corrections (such as an
unbalanced mass-wind field in atmospheric circulation model as mentioned in Sec. 1.2.2) and can lead
to deterioration of the forecasted property.

2.1.1 Problem definition

The current section will introduce the notations in Carrassi et al. [17] and theory as basis for the
rest of the manuscript. For sake of generality the data assimilation method will be described for both
application domains. The atmospheric state will be noted x ∈ R

Nx . In the oil reservoir domain, the
inverse problem is defined as an augmented state estimation, which means that the method estimates
the static parameters {mi}i∈{0,...,Nstat} and the state of the dynamical system {pj}j∈{0,...,Ndyn}. We

define one parameter state that combines static and dynamic parameters x ∈ R
Nx , where Nx =

Nstat + Ndyn is the dimension of the parameter space.

x =

(

m
p

)

(2.2)

a dynamical model can be defined such as :

xk =Mk−1:k(xk−1) + qk (2.3)

where xk = x(tk) and tk is the time index, and qk is the model error. M here represents the dynamical
model that integrates the parameters where index k − 1 : k indicates from time tk−1 to tk. It is a
representation of the natural, usually nonlinear process that is simulated. In the reservoir domain, it
is a simulator that solves the fluid flow equations inside a porous media and in NWP it is an AGCM.
Because simulators are not perfect due to the approximations made or unresolved scales for example,
a noise vector q is added. An observational operator is also defined :

ypred;k = Hk(xk) + eo
k (2.4)

yobs;k = Hk(xt
k) + eo

k (2.5)

where H is the observation operator also often non-linear, H : RNx → R
Ny and yk = y(tk) ∈ R

Ny

is the observable variable produced by the model or natural process, of dimension Ny, which is the
consequence of given set of parameters xk. The observations are not always in the same space as the
parameters (e.g., radiance measure from satellite to determine temperature in weather forecast). It
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2.2 Kalman filter

can also be a source of error thus another noise vector eo
k is added to represent the uncertainties of

the measurements. The vector xt is the unknown true state model where the observations come from.

Our objective is to estimate the model state given observations and taking into account uncertainties
on model parameters and measurements. Usually observations are sparse in space and time, the data
assimilation method aims to interpolate these observations thanks to a dynamical model and the
observation operator. The initial model state, before assimilation of the observations, can be named
the background (xb) in the case of initial condition estimation, it is also called the forecast (xf ) for
sequential state estimation. In the following the forecast notation will be used for generality. This
following derivation of the filtering problem is more adapted for the application to NWP because of the
sequential aspect of the state estimation. For the parameter estimation application associated with
reservoir characterization see the particular case of ensemble smoother Sec. 2.3.3. The new estimate
given observations is named the analysis (xa). Once the model state is updated, it is integrated in time
by the dynamical model M until the next observation. The forecasted analysis is then taken as the
new forecast for the next assimilation. This problem formulation is known as a filtering problem. The
goal is to estimate the model state given the observations. The data assimilation procedure consists
in maximizing the likelihood of the state xk given observations yobs;1:k = y1:k = (y1, . . . , yk). From
Bayes’ theorem we get:

p(xk|y1:k) =
p(y1:k|xk)p(xk)

p(y1:k)
(2.6)

p(xk|y1:k) ∝ p(y1:k|xk)p(xk) (2.7)

which leads to :
p(x|y1:k) ∝ e−J (x) where (2.8)

J(xk) =
1
2

(xk − xf
k)T Pf −1

(xk − xf
k) +

1
2

[y1:k −H(xk)]T R−1[y1:k −H(xk)] (2.9)

where Pf is the model state error covariance matrix and R the measurement error covariance matrix.

2.2 Kalman filter

The principle of the Kalman filter introduced by Kalman [58] relies on two steps that can be seen as
a feedback control procedure : the filter estimates the process state at a certain time called prediction
step, and then get feedback from noisy measurements for correction called the analysis step. Under
certain assumptions, the Kalman filter is the best possible estimator. This section will first derive the
Kalman filter under these assumptions and then tackle its extension to more complex cases.

2.2.1 Linear case

The Kalman filter addresses the general problem of state estimation for cases where the dynamical
system is linear and errors associated with the model and measurement are independent and follow
Gaussian distributions. Let’s describe the set of equations of the Kalman filter for a multi-dimensional
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2 Gradient-free methods for Inverse Problem.

Gaussian linear case. The linearity assumption implies :

ypred;k = Hkxk + eo
k (2.10)

and the Gaussian assumption ef
k ∼ N (0, Pf

k) and eo
k ∼ N (0, Rk). The model state error covariance

matrix is then defined by :

Pf = E
[

(xt
k − xf

k)(xt − xf
k)T

]

= E
[

eo
k(eo

k)T
]

(2.11)

the superscript f refers to the forecast and E describes the expected value. The assimilation error is
defined by xt

k−xa
k = ea

k. If the assimilation error follows a centered Gaussian distribution, it follows:

Pa
k = E

[

ea
k(ea

k)T
]

(2.12)

the measurement error covariance matrix is defined by :

Rk = E
[

eo
keo

k
T
]

(2.13)

and finally the model error covariance :

Qk = E
[

qkqk
T
]

(2.14)

These assumptions can be summarized by the following equations :

ef
k = 0, ef ef T = Pf ,

ea
k = 0, eaeaT = Pa,

eo
k = 0, eo

keo
k

T = Rk,

ef
keo

k
T = 0, qkqk

T = Qk,

(2.15)

2.2.1.1 Analysis step

Under the given assumption, the a posteriori estimate i.e., the analysis is a linear combination
between the a priori i.e., the forecast and a weighted difference between the observation and the
prediction of the model such as :

xa = xf + K(yobs −Hxf ) (2.16)

The objective is to determine the weight of this combination K, called the Kalman gain. For the
analysis step the time index k is dropped for readability.

J(x) =
1
2
||x− xa||2(Pa)−1 + C (2.17)

where C is a constant. This leads to :

∇xJ(xa) = (Pa)−1 (2.18)
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2.2 Kalman filter

By injecting Eq. 2.16 into Eq. 2.12 for Pa which yields :

Pa = E

[

[

(I−KH)
(

xt − xf
)

−Keo
] [

(I−KH)
(

xt − xf
)

−Keo
]T
]

(2.19)

here xt−xf is the error of the prior estimate. Because it is not correlated with the measurement noise
eo, it follows :

Pa = (I−KH) E

[

(

xt − xf
) (

xt − xf
)T
]

(I−KH) + KE
[

eoeoT
]

KT (2.20)

Using Eq. 2.11 and Eq. 2.13 :

Pa = (I−KH) Pf (I−KH)T + KRKT (2.21)

where Pf is the prior estimate of Pa Eq. 2.21 is the error covariance update equation. The sum of the
diagonal elements of a matrix is the trace of a matrix. In the case of the error covariance matrix the
trace is the sum of the mean squared errors. Therefore, the mean squared error may be minimized by
minimizing the trace of Pa. The trace of Pa is first differentiated with respect to K and the result
set to zero in order to find the conditions of this minimum.

Pa = Pf −KHPf −Pf HT KT + K
(

HPf HT + R
)

KT (2.22)

Tr [Pa] = Tr
[

Pf
]

− 2 Tr
[

KHPf
]

+ Tr
[

K
(

HPf HT + R
)

KT
]

(2.23)

where, Tr [P] is the trace of the matrix P Differentiating with respect to K gives;

d Tr [P]
dK

= −2
(

HPf
)T

+ 2K
(

HPf HT + R
)

(2.24)

setting to zero and re-arranging gives :

(

HPf
)T

= K
(

HPf HT + R
)

(2.25)

Now solving for K gives :

K = Pf HT
(

HPf HT + R
)−1

(2.26)

which yields to the usual form of the state analysis equation that can be written in multiple ways :

xa = xf + Pf HT
(

HPf HT + R
)−1 (

yobs −Hxf
)

(2.27)

and injecting Eq. 2.26 into Eq. 2.22 :

Pa = (I−KH)Pf (2.28)

Under the hypotheses of linearity for the observation operator and the dynamical model, the analysis
step of the Kalman filter is the optimal solution and coincides with the Best Linear Unbiased Estimator
(BLUE). The mean and covariance estimation characterizes the probability density thanks to Gaussian
linear assumption. Gaussianity assures that the forecast is totally determined by its two first moments
and linearity assures that Gaussian distributions integrated in time remain Gaussian. Now that
observations have been assimilated, it is necessary to integrate in time the model state until new
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2 Gradient-free methods for Inverse Problem.

observations are available.

2.2.1.2 Forecast step

After the forecast (prior) was corrected by the observations, the next step is to forecast the system
state from time tk to tk+1 using the dynamical model Mk:k+1 under linearity assumption will be
written Mk+1. The linearity assumption assures that the estimator is unbiased. The forecast error is
:

ef
k+1 = xf

k+1 − xk+1

= Mk+1(xa
k − xk)− (xk+1 −Mk+1xk)

= Mk+1ea
k − qk

(2.29)

from which it is possible to calculate the forecast error covariance matrix :

Pf
k+1 = E

[

ef
k(ef

k)T
]

= Mk+1Pa
kMT

k+1 + Q
(2.30)

2.2.2 Kalman filter equations synthesis

As a synthesis, the equations of the Kalman filter for the mean and the covariance are :

Analysis step

xa
k = xf

k + Kk

(

yobs;k −Hxf
k

)

(2.31)

Kk = Pf
kHT

(

HPf
kHT + Rk

)−1
(2.32)

Pa
k+1 = (I−KkH)Pf

k (2.33)

Forecast step
xf

k+1 =Mk:k+1(xa
k) + qk+1 (2.34)

Pf
k+1 = Mk+1Pa

kMT
k+1 + Q (2.35)

2.2.3 Non-linear case

In the case of non-linearity for the evolution modelM and/or the observation operator H which is
usually the case in numerous applications, a new development of equations is necessary. The extended
Kalman filter is a method for the non-linear case where :

ypred;k = Hk (xk) + eo
k

xk+1 =Mk (xk) + qk

(2.36)
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2.3 Ensemble methods

In the non-linear case it is necessary to define the tangent linear models of the observation operator
and the evolution model. Tangent linear model (TLM) is a first order approximation of a model using
Taylor extension. The TLM of the observation operator and evolution model will be noted respectively
H̃ and M̃. The linearization is done discarding all the terms with statistical moments greater than
the second order considered to have a negligible influence :

Analysis step:

Kk =
(

H̃kPf
k

)T
[

H̃k

(

H̃kPf
k

)T
+ Rk

]−1

xa
k = xf

k + Kk

(

yobs;k −Hk

(

xf
k

))

Pa
k =

(

I−KkH̃k

)

Pf
k

(2.37)

Forecast step:

xf
k+1 =Mk,k+1 (xa

k)

Pf
k+1 = M̃k,k+1Pa

kM̃
T
k,k+1 + Qk

(2.38)

With linearization, the system of equations is now closed but by solving it the results will remain
an approximation. It was shown that the assumption on negligible influence of higher order statistical
moments is not always verified and can lead to an unbounded error growth [29]. Another limitation
concerning the Kalman filter and its extended version is the computational cost concerning the storage
of error covariance matrix (n2 unknowns for an n-dimensional model state) and its 2n cost for the
time integration by the dynamical model. In conclusion, such implementation is useful for a relatively
low-dimensional problem.

2.3 Ensemble methods

In Evensen [30], it was shown that instead of using the approximate error covariance equation
Eq. 2.37 that is invalid when the dynamical model is highly non-linear. A Monte Carlo method can
be used to solve an equation for the time evolution of the probability density of the model state. For
a non-linear model where we assume that it is not perfect and contains model errors the following
stochastic differential equation can be written :

dxt =M(xt)dt + σ(xt)dqt (2.39)

It states that an increment in time yields to an increment in x with an influence from the stochastic
forcing term σ(xt)dqt representing the model error. The dqt term represent a vector of Brownian
motion process with covariance Cqqdt. M is a non-linear operator that does not depend on dqt so the
Itô interpretation of the stochastic differential equation is used (instead of Stratonovich interpretation,
see Evensen [30] for further details). Under the assumption that additive Gaussian model errors are
forming a Markov process, the Fokker-Planck equation (also known as Kolmogorov’s equation) can be
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derived :

∂f

∂t
+
∑

i

∂(mif)
∂xi

=
1
2

∑

i,j

∂2f(σCqqσ
T )i,j

∂xi∂xj
(2.40)

This equation characterizes the time evolution of the probability density f(x) of the model state.
It does not enforce important approximations and can be considered as the fundamental equation for
the time evolution of model error statistics. mi is the component number i of the model operator M
and σCqqσ

T is the covariance matrix for the model error. In the case of a linear Gauss-Markov model
where initial distributions are taken from a normal distribution i.e., the model is entirely described
by its mean and covariance, the equation 2.40 can be solved for the 2 first statistical moments. It is
equivalent to solving the Kalman Filter problem. For a non-linear model the mean and covariance of
Kolmogorov’s equation are not sufficient to represent the time evolution of f(x) but can represent the
mean path and the dispersion about that path. Thus, it is possible to solve approximate equations
for the 2 first statistical moments such as in the Extended Kalman filter.

2.3.1 Markov Chain Monte Carlo

In the Ensemble Kalman Filter (EnKF) method [30] a Markov Chain Monte Carlo (MCMC) method
is used to solve Eq. 2.40. An ensemble of model states are used to represent the probability density
function. Integrating in time these model states according to the model dynamic following Eq. 2.39
yields an ensemble prediction that is equivalent to solving Eq. 2.40. The main advantage of the method
is to avoid the use of closing approximations such as in the extended Kalman filter because the non-
linear terms are represented by the dynamical model. Since with MCMC the error covariance matrix
will now be empirically estimated from the different ensemble members, the estimation error will

decrease proportionally to
1√

Nens
for Nens model states of dimension Nx. These ensemble members

can be represented as a particle cloud in an m-dimensional space. See the 2D example in Fig. 2.1.
These particles can be represented by a probability density function when Nens goes to infinity such
as :

f(x) =
dNens

Nens
(2.41)

Where dNens is the number of particles in a small unit of volume and Nens the total number of
particles. In this way an estimation of the statistical moments of the probability density characterized
by the ensemble is accessible at any time.

2.3.2 Ensemble Kalman Filter

Using the MCMC to solve Kolmogorov’s equation Eq. 2.40, an analysis scheme can be derived. An
ensemble observation vector is defined as a random variable :

yobs;j = yobs + eo
j (2.42)
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Figure 2.1 – Evolution in parameter space of the model states for 2D case describe in 2.5

here j is the index of ensemble members and eo is a noise vector with 0 mean. The definition of the
ensemble error covariance matrix of measurements follows :

Re = eoeoT (2.43)

R converges to the error covariance matrix of the Kalman filter when Nens goes to infinity. With a
large enough ensemble, the sampling error introduced in the ensemble error matrix of measurement
can be less than the initial uncertainty in the exact R. Finally, the forecast step of the error covariance
matrix is done using the dynamical model. The analysis step of the ensemble Kalman filter is :

xa
j = xf

j + Pf
e HT

(

HPf
e HT + Re

)−1 (

yobs;j − ypred;j

)

(2.44)

ypred;j = H(xf
j ) is the prediction by the dynamical model applied to the forecasted model state xf

j .
Equation 2.44 is an approximation of the update of each model state that constitutes the ensemble.
It should be underlined that in the case of a number of measurements greater than the number of
ensemble members, the matrix HPf

e HT +Re can be singular and it will be necessary to use a subspace
inversion method described in Sec. 2.3.5. Note that Eq. 2.44 can be rewritten for the mean of the
ensemble

xa
j = xf

j + Pf
e HT

(

HPf
e HT + Re

)−1
(

yobs −H(xf
j )
)

(2.45)

The mean of the analysis xa
j represents the best estimate of the ensemble, but usually the form of the

Eq. 2.44 is preferred because the analyzed ensemble mean is still accessible at low computational cost.
The covariance of the ensemble indicates the uncertainty of the parameter estimation. The analysis
scheme is equivalent to the Kalman filter, except the approximation of error covariance matrix from
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the ensemble. It should be noted that there is no approximation of the linearity of the model because
the non-linear terms are considered when the model states are integrated in time by the non-linear
dynamical model. This characterizes the benefit of the ensemble Kalman method. However, it is still
solved for the 2 first moments of the model state probability density function (pdf), which means
that if distributions are too far from a Gaussian distribution this approximation is not verified. Miller
et al. [80] explains that non-linear dynamics can transform Gaussian parameter distribution into
non-Gaussian distributions that will consequently not be entirely defined by their 2 first statistical
moments. As a consequence, the results could be impacted.

2.3.3 Ensemble Smoother

The Ensemble Smoother [107] is different in the way that the method uses all the observations, in
the sense of past and present observations, to fit its target. This method corresponds to parameter
estimation such as the history matching performed in reservoir characterization. A new dynamical
model can be defined :

xk =M1:k(x1) + qk (2.46)

and a new observational operator :

ypred;1:k = H1:k(x1) + eo
k (2.47)

yobs = H1:k(xt
1) + eo

k (2.48)

It means that instead of taking into account the observation at time tk, all the observations from
the beginning until time tl where l ≥ k in order to estimate the parameters at time tk of the model.
Finally, we reframe the estimation problem such as :

p(xk|y1:l) =
p(y1:l|xk)p(xk)

p(y1:l)
(2.49)

p(xk|y1:l) ∝ p(y1:l|xk)p(xk) (2.50)

Using the ensemble smoother problem formulation yields to :

xa
k = xb

k + BeHT
(

HBeHT + Re

)−1 (

yobs;1:l − ypred;1:l

)

(2.51)

the ensemble index was dropped for readability. B is the parameter error covariance matrix when a
static problem is considered. Here we do not consider the forecast of the state error covariance matrix.
Thus, in the present work the notation background of the initial state is preferred. The parameter
error covariance is then noted B and the parameters before analysis are noted xb

k.

Discussion

Here the Ensemble Smoother (EnKS) removes the sequential aspect of the Kalman filter to update
the model state taking into account all the observations available simultaneously. It allows initial
parameter estimation also called history matching by ensemble methods that will be the application
of the present work in the context of reservoir characterization. This change of formalism is analog to
the differences between 3D and 4D variational methods widely used in numerical weather prediction.
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3D-VAR method tries to determine the best estimate for observations of a given time whereas 4D-VAR
tries to find the best estimate given observation on a given time window and propagates back this
information to the initial state of the time window [73]. This smoother can result in an unacceptable
data mismatch. Because of non-linear phenomenon, the parameters update can be underestimated
or overestimated. This phenomenon was reproduced and explained in a simple case in Sec. 2.5.2. To
remove this drawback it is possible to do multiple data assimilation [26] using the ensemble smoother
with an inflated error covariance matrix of measurements and a disturbed observation vector. The
objective in this method is to be equivalent to a single data assimilation with an ensemble Kalman
smoother for the linear Gaussian case by proceeding multiple small updates instead of a unique one.

It should be noted that the Ensemble Smoother is different from the Ensemble Kalman Smoother
Evensen and Van Leeuwen [32]. It is a version of a sequential Ensemble Smoother where instead
of updating the parameter states from all the observations it recursively considers more and more
observations and realizes several updates during this recursion. This method will not be discussed in
this study because it is not applicable in the context of reservoir history matching.

2.3.4 Ensemble smoother with Multiple Data assimilation

Emerick and Reynolds [27] shows that Ensemble Smoother with Multiple Data Assimilation (ES-
MDA) equations can be written as :

xa
k;i = xb

k;i + Be;iH
T
(

HBe;iH
T + αiRe

)−1 (

ỹobs;1:l − ypred;1:l

)

(2.52)

ỹobs;1:l is the perturbed observation vector such as ỹobs;1:l = yobs;1:l +
√

αiR
1/2

η where η ∼ N (0, I).
The index i stands for the multiple data assimilation (MDA) iteration index. Equation. 2.52 is the
equation for one iteration of the MDA procedure. In order to do the complete method it is necessary
to replace the background model parameter xb by the analysis xa, add a resampled noise vector to
observations and update α and apply again the Eq. 2.52. A condition is imposed on αi in order
to respect the equivalence with the single data assimilation with an ensemble smoother for a linear
Gaussian case.

∑Na

i=0

1
αi

= 1 (2.53)

In Emerick and Reynolds [26] it was shown that choosing a decreasing α over the MDA iterations
improves only slightly the results. In our study, α is chosen constant for the different ESMDA iterations
for simplicity.

2.3.5 Subspace inversion

The subspace inversion method [31] was created in the case where the dimension of the observa-
tion vector is greater than the dimension of the ensemble. Kepert [61] shows that in the case where
Nens ≤ Nobs, the analysis will be rank deficient resulting in an ensemble collapsing to a single ensem-
ble member. In reservoir characterization, such a case happens in most of the cases, when seismic
data are assimilated for example. Subspace inversion is usually coupled with a rescaling step of the
measurements [26]. The goal of this method is to avoid ensemble collapse phenomenon and reduce the
cost of the matrix inversion Eq. 2.52 when it is necessary using a singular value decomposition (SVD).
The step of the method is described below. The matrix that holds the predictions of the ensemble
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perturbation is defined Eq. 2.54 :
∆D =

(

Dk −D
)

(2.54)

Where D is the mean over the ensemble of predictions. This matrix can be rescaled by dividing the
deviation of the predictions by the uncertainty of each observation point.

∆Z =
(

Zk − Z
)

(2.55)

Where Z is the mean over the ensemble of parameters. We define the matrix to invert in the Kalman
gain expression as :

C = (Nens − 1)
(

HBe;iH
T + αiRe

)

(2.56)

By injecting Eq. 2.54, 2.55 in Eq. 2.56 :

C = ∆D(∆D)T + (Nens − 1)R (2.57)

Truncated singular value decomposition of the prediction deviation can be written as :

∆D ≈ USV (2.58)

Where S is a diagonal matrix of eigenvalues of D in decreasing order. The SVD procedure can be
truncated in order to keep only the most important eigenvalues, if no truncation is done equality
instead of approximation should be written in Eq. 2.58. If the truncation is done to keep Nr the
largest singular values : U is an Nobs ×Nr matrix, S is an Nr ×Nr matrix and V is an Nr ×Nens.

C ≈
[

USST UT + (Nens − 1) R
]

≈ US
[

INr + (Nens − 1)S−1UT RUS−1
]

SUT
(2.59)

Where INr is the identity matrix of size Nr ×Nr resulting from the approximation VVT = INr . We
define :

X = (Nens − 1)S−1UT RUS−1 (2.60)

And because X is positive semi-definite, it can be decomposed as X = ZΓZT Finally injecting Eq. 2.60
in Eq. 2.59 :

C ≈ (USZ) [INr + Γ] (USZ)T (2.61)

Which can be easily inverted :

C−1 ≈
(

US−1Z
)

[INr + Γ]−1
(

US−1Z
)T

(2.62)

Because INr
and Γ are diagonal matrices, their inversion is straightforward. Moreover, the truncated

singular value decomposition of ∆D controls the reduction of uncertainty in the parameter space by
EnKS. It will be demonstrated that this property can be useful to avoid ensemble collapse.
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2.4 Limitations in data assimilation

Data assimilation methods are so widely used across diverse scientific domains that it is important
to separate the general limitations from applied limitations. First example of a recurrent limitation is
the usage of prior information. Prior information also called a priori helps to constrain the problem
in order to make it well-posed as a regularization method. The example for history matching is the
parameterization method. Performing EnKS for estimating every cell of the numerical reservoir model
will give non-physical spatial distribution. A priori information such as known structure and pattern
of geological patterns has to be injected in the data assimilation workflow.

A good estimate of uncertainty associated with the first guess (i.e., first ensemble) is also necessary
to solve data assimilation problems. Because it is difficult to generate physically realistic states in
some domains such as NWP, where an AGCM has to be run for a given time to reach a balanced
atmospheric state, data assimilation methods are penalized by the lack of useful information.

In this research we have focused on the usage of data-driven methods and more specifically deep gen-
erative methods that are able to learn statistical features at a relatively low computational cost. This
work will focus on two applications of this method, Numerical Weather Prediction (NWP) and Reser-
voir Characterization (RC) that share similar data assimilation limitations. The research questions
addressed in this study are :

– Can generative neural networks be used as prior knowledge in data assimilation methods ?

– Can they be used as a mapping to respect the Gaussian assumption ?

The reader should keep in mind the fact that these application cases are just examples and this method
could be used for every application where prior information are available as data of multiple forms.

2.5 Toy model

To give an overview of the ES-MDA algorithm, it is interesting to see how it behaves in simple cases.
In this section, some results on toy models will be investigated to see advantages and limitations of
this method. These will stay relevant when applied on complex cases such as history matching in
hydrocarbon reservoirs.

In the example, multiple experiments using one-dimensional mathematical functions with different
analytical properties representing the dynamical function will be used. These functions take as input
a parameter and output the dynamical response of the model i.e., a prediction value. The reader
can think of the following analogy where : parameters of the dynamical function represent the spatial
distribution of the rock properties. The dynamical function is the reservoir simulator that computes
the model predictions given the parameters that are the dynamical response of the reservoir e.g., the
pressure or the fluid flow of oil at the different wells. Ensemble Kalman smoother will first be applied to
a linear problem, then on a non-linear monotonic problem and finally on a non-linear, non-monotonic
problem. The performance of classical ensemble smoother and ESMDA will be compared.
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2.5.1 Linear dynamical function

The first experiment is an Ensemble Kalman smoother applied on a one-dimensional linear function
H (Eq. 2.63). This case could be the application of the pressure estimation from the height of a

water column linked by the following linear equation : z =
1
ρg

P − 1
ρg

P0. Where P is the pressure

applied at the height z, P0 is the atmospheric pressure, ρ the fluid density and g the gravitational
acceleration. An observation of the water height is available and the objective is to find the pressure
value corresponding to the water height. The dynamical function represents our simulator that is
considered perfect.

H : Parameter Space 7→ Observation Space

x 7→ y = H (x) = 2x + 4
(2.63)
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Figure 2.2 – Linear model dynamical function. The green cross represents the measured value y = 8
corresponding to the parameters that has to be retrieved x = 2.

Figure 2.2 shows the dynamical function chosen for the toy model, the green cross shows the ob-
servation value on the vertical axis y = 8 and the parameter value on the horizontal axis x = 2 that
needs to be retrieved by the assimilation algorithm. Gaussian noise was added to the observation to
represent the measurement error, the noise was drawn in the normal distribution N (0, 0.05). The blue
line represents the set of images of H with respect to the parameter space. The dynamical function is
linear and monotonic which is an optimal use case for the Ensemble Kalman Smoother (EnKS). The
smoothing term here is used because of the absence of time dynamic in the model, it is considered that
all the observations are assimilated at once (here only one observation is available for one parameter
value.)

An EnKS analysis was done which is equivalent to a single iteration of the ESMDA algorithm,
case where α = 1 in Eq. 2.64 i.e., ỹobs is the perturbed observation vector defined by ỹobs;1:l =

yobs;1:l + R1/2
η that simulates the error of the measurements.

xa
k = xf

k + BeHT
(

HBeHT + Re

)−1 (

ỹobs − ypred

)

(2.64)
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Figure 2.3 – Result of the EnKS with 100 ensemble members. In the top panel, the red crosses repre-
sent the ensemble members at initialization drawn from a normal distribution N (1, 0.5).
The blue crosses are the ensemble members at analysis. Distribution of ensemble mem-
bers at forecast and analysis can be shown on the middle panel. In the bottom panel,
the error associated with analysis ensemble members on the cost function is represented.

Figure 2.3 shows the EnKS results in the linear case with 100 ensemble members measurement
error variance of 0.05. The background ensemble is drawn from the normal distribution N (1, 0.5) and
ensemble members are represented by red crosses for the background and blue crosses for the analysis.
For each ensemble member the parameter can be read on the horizontal axis and its prediction value
on the vertical axis. It shows a good estimation of the true parameter value x = 2 which can also
be observed on the position of the analysis ensemble distribution on the cost function. It can also
be noted that the shape of the cost function is quadratic for a linear case. The analysis ensemble
distribution is close to a Gaussian distribution due to the linear aspect of the dynamical function.
The quality of the results are mainly because of good estimation of the covariance on such a simple
case in the sense of respecting the assumption of the Kalman filter theory.

One should observe in the second panel of Fig. 2.3 on the blue histogram, which shows the distri-
bution of the analysis that the mean analysis is not exactly centered on the target value, due to the
noise added to the observation. Decreasing the observation error improves the parameter estimation
see Fig. 2.4 where the standard deviation associated to the observation is now 0.01 instead of 0.05.
Reduction of observation error is possible because of the artificial case but in real condition the error
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2 Gradient-free methods for Inverse Problem.

associated with the observation is not a parameter a user can modify.
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Figure 2.4 – Result of the EnKS with 100 ensemble members. In the top panel, the red crosses repre-
sent the ensemble members at initialization drawn from a normal distribution N (1, 0.5).
The blue crosses are the ensemble members at analysis. Distribution of ensemble mem-
bers at background and analysis can be shown on the middle panel. In the bottom panel,
the error associated with analysis ensemble members on the cost function is represented.

In real condition the user can increase the number of ensemble members in order to improve the
parameter estimation. This is shown Fig. 2.5 where the experiment is done with 1000 ensemble
members and a standard deviation of the observation error equal to 0.05. Comparison is illustrated
in Fig. 2.6 which shows distribution analysis for runs with low observation standard deviation error
or high number of ensemble members.

The reader should notice the similarity with a gradient descent in this particular linear case. Co-
variance estimation is equivalent to estimating the gradient of the dynamical function on the area
sampled by the ensemble. In the next examples, it will be visible that this global gradient estimation
leads to over or under estimation in the non-linear case.
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Figure 2.5 – Result of the EnKS with 1000 ensemble members. In the top panel, the red crosses repre-
sent the ensemble members at initialization drawn from a normal distribution N (1, 0.5).
The blue crosses are the ensemble members at analysis. Distribution of ensemble mem-
bers at background and analysis can be shown on the middle panel. In the bottom panel,
the error associated with analysis ensemble members on the cost function is represented.
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Figure 2.6 – Comparison of final ensembles for assimilation with different observation error std and
different number of ensemble members. Red histogram is the analysis distribution for
an observation error equal to 0.05 and 100 ensemble members, blue histogram is for an
observation error std equal to 0.01 and 100 ensemble members and green histogram is for
an observation error std of 0.05 with 1000 ensemble members.
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2 Gradient-free methods for Inverse Problem.

2.5.2 Non-linear, monotonic dynamical function

It was demonstrated in Sec. 2.2 that the Kalman method from which the ensemble version is
an approximation is the best (in the sense of uncertainty minimization) unbiased way to estimate
parameters in a linear case and under Gaussian assumption. When ensemble methods are used on
real application cases, it is usually not that easy. It is possible to define a one-dimensional non-
linear function to visualize how the EnKS method behaves. The non-linear dynamical function is now
represented by the cubic function :

H : Parameter Space 7→ Observation Space

x 7→ y = H (x) = x3
(2.65)
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Figure 2.7 – Non-linear model dynamical function. The green cross represents the measured value
y = 8 corresponding to the parameter value that has to be retrieved x = 6.

Figure 2.8 shows a clear overshoot of the parameters update. This effect can be explained by the
erroneous covariance estimation, equivalent to a gradient estimation of the dynamical function, due to
the non-linearity of the function. This overestimation is the result of the initial ensemble placed on a
very local part of the parameter space where the slope of the function is weak. Because the algorithm
relies on a linearity assumption, an important update of the parameter is necessary to reach the
ordinate equal to 53 = 125. This is equivalent to taking the linear tangent of the dynamical function
at the abscissa where the initial ensemble is located. Figure 2.9 shows that the initial ensemble has an
influence on the result. Because the initial ensemble is placed where the function has a more important
gradient, an underestimation of the update is observed.

This result emphasizes the importance of a correct initial ensemble to estimate covariance not on
a local area of the dynamical function but on average on a large set of parameter values such as
illustrated in Fig. 2.10. The ESMDA method was developed in order to alleviate the problem of over
and under estimation due to non-linear dynamical function. Instead of estimating the covariance only
once which is strongly dependent on the background ensemble, the ESMDA method does smaller
iterative updates with covariance estimation after each update. An example on the same case as in
Fig. 2.7 illustrates ESMDA results on a non-linear case. Figure 2.11 shows the result of ESMDA for
5 iterations, one should observe the improved quality of the prediction at the last iteration compared
to the EnKS. Underestimation is still visible at the first iteration but the analysis of the first iteration
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will become the new background from which covariance is re estimated for the next iteration etc.
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Figure 2.8 – Result of the EnKS with 100 ensemble members. In the top panel, the red crosses repre-
sent the ensemble members at initialization drawn from a normal distribution N (1.5, 0.5).
The blue crosses are the ensemble members at analysis. Distribution of ensemble mem-
bers at background and analysis can be shown on the middle panel. In the bottom panel,
the error associated with analysis ensemble members on the cost function is represented.
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Figure 2.9 – Result of the EnKS with 100 ensemble members. In the top panel, the red crosses repre-
sent the ensemble members at initialization drawn from a normal distribution N (12, 0.5).
The blue crosses are the ensemble members at analysis. Distribution of ensemble mem-
bers at background and analysis can be shown on the middle panel. In the bottom panel,
the error associated with analysis ensemble members on the cost function is represented.
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Figure 2.10 – Result of the EnKS with 100 ensemble members. In the top panel, the red crosses repre-
sent the ensemble members at initialization drawn from a normal distribution N (12, 5).
The blue crosses are the ensemble members at analysis. Distribution of ensemble mem-
bers at background and analysis can be shown on the middle panel. In the bottom panel,
the error associated with analysis ensemble members on the cost function is represented.
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Figure 2.11 – Result of ESMDA with 5 iteration with 100 ensemble members. On the left-hand side
the first ESMDA iteration is represented, in the top panel, the red crosses represent the
ensemble members at initialization drawn from a normal distribution N (12, 0.5) and
blue crosses the analysis. Distribution of ensemble members at background and analysis
are shown on middle panels. On the right-hand side, the last ESMDA iteration is
represented. In the bottom panel, the error associated with analysis ensemble members
on the cost function is represented.

2.5.3 Non-linear, non-monotonic dynamical function

For the last example it is important to show how an ensemble method behaves when the dynamical
function is non-monotonic. Non-monotonic function implies that multiple parameters are solutions for
the same observation value. The following equation was chosen as non-linear non-monotonic dynamical
function :

H : Parameter Space 7→ Observation Space

x 7→ y = H (x) = 2.5x + 4 + 9 sin (1.7x)
(2.66)

One of the principal changes due to non-monotonic property is the equifinality of the problem i.e.,
different sets of parameters can give the true observation value, the problem is called under-constrained
or ill-posed. The function introduced in Eq. 2.66 aims to illustrate how EnKS behaves when it is
applied to an ill-posed problem. The function is a linear function with a sinusoidal component, an
observation is chosen such that multiple parameter values can output a prediction corresponding to
this observation.

First an example is shown Fig. 2.13 where the EnKS is used with an ensemble initialization sampling
multiple periods of the dynamical function. The ensemble analysis was updated towards the solution
of x = 2. This can be explained by the covariance estimation that detects the linear component of
the dynamical function thanks to a large sampling of the parameter space. If the initial ensemble
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Figure 2.12 – Non-linear model dynamical function. The green cross represents the measured value
y = 8 corresponding to the parameter value that has to be retrieved x = 2.

was located on a single period of H the estimated slope would be different such as illustrated in the
non-linear monotonic case, Fig. 2.9. The recovery of the linear component of the observation is also
allowed due to the high number of ensemble members compared to the dimension of the problem.
Usually in data assimilation parameter space is highly dimensional and it is more difficult to realize
such sampling of the parameter space. This explains why an important ensemble size results in a
better estimation. The sampling of the parameter space smooths out the undesirable correlation that
the algorithm could detect on a positive slope due to the sinusoidal signal instead of the linear trend.

46



2.5 Toy model

0 5 10 15 20 25
model parameters

0

20

40

60

80

m
od

el
 o

ut
pu

ts

EnKS result

Model dynamic
background
analysis
Y_true

0 5 10 15 20 25
model parameters

0

2

4

6

fre
qu

en
cy

Ensembles distribution

Initial x distribution
Final x distribution

0 5 10 15 20 25
model parameters

0

20000

40000

60000

80000

100000

er
ro

r

Error for background and analysis ensembles

cost function
analysis error

EnKS 1D case

Figure 2.13 – Result of EnKS with 100 ensemble members. In the top panel, the red crosses represent
the ensemble members at initialization drawn from a normal distribution N (12, 0.5).
The blue crosses are the ensemble members at analysis. Distribution of ensemble mem-
bers at background and analysis can be shown on the middle panel. In the bottom panel,
the error associated with analysis ensemble members on the cost function is represented.
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Figure 2.14 – Result of 5 iterations of ESMDA with 100 ensemble members. In the top panel, the red
crosses represent the ensemble members at initialization drawn from a normal distribu-
tion N (12, 0.5). The blue crosses are the ensemble members at analysis. Distribution
of ensemble members at background and analysis can be shown on the middle panel.
In the bottom panel, the error associated with analysis ensemble members on the cost
function is represented.
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To avoid the necessity of large ensembles to correctly sample the dynamical function on real highly
dimensional cases and keep the computational cost reasonable the ESMDA method was constructed.
Figure. 2.14 shows the same case using ESMDA with a realistic initial condition that does not sample
the dynamical function in order to detect linear components. Five ESMDA iterations were done, and
the final analysis converged on a close solution of x = 2. Middle right panel shows that the final
ensemble distribution is located around x = 3.3 which is one of the solutions. But not the one that
corresponds to the observation.

From these results it can be concluded that even if the assumptions of linearity and Gaussianity
are not respected, the EnKS method shows satisfying results because the dynamical function remains
close to a linear function. But this requires a number of ensemble members too important when it is
applied to highly dimensional problems. ESMDA is one of the solutions that is able to alleviate the
non-linearity limitation by realizing multiple updates and covariance estimations. The different toy
model experiments also showed that this kind of solution is not adapted to find multiple satisfying
solutions in case of equifinal problems. Only added constraints as regularization can help to retrieve
the true parameter. These different conclusions have to be kept in mind by the reader for a good
understanding of ESMDA results applied to reservoir characterization in Chap. 5.
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Chapter 3
Deep learning background

This chapter aims to give the main principles of deep learning for readers not familiar with these
methods. It will introduce the main concepts of neural networks (NN) and their training process,
convolutional networks and generative networks. The objective is to give a general understanding of
the deep learning methods to data assimilation researchers by underlining the important similarities
between both domains. Finally, it will focus on the domain of generative adversarial networks that
has gained an important interest in the last years and is usually not known from those who are not
directly involved in the deep learning research field.

3.1 Neural networks

A neural network can be defined as a non-linear application parameterized by weights w that
associates to an entry x an output y = f(x, w). One can consider x, y and w as real scalar for
simplicity, but the expression holds for multi-dimensional cases. The objective of a neural network is
to be trained using statistical learning on samples from a dataset to find w such as f approximates a
target continuous function e.g., regression or classification function. The function to minimize, referred
to as loss function, to achieve the approximation of the target function is non-convex, which requires
an optimizer to find local (or global) minimum. A first analogy can be done with a data assimilation
method which is very similar. Usually, data assimilation methods hold w constant and try to estimate
the parameter state x. Both methods solve an inverse problem (also known as bayersian inference),
that is why strong analogy can be found between them Geer [37].

Figure. 3.1 shows the usual representation of a neural network called neural layer perceptron (NLP)
or fully connected neural network (FCNN). It is one of the most basic and simple neural networks on
which some theoretical results were demonstrated. Neurons, illustrated Fig. 3.2, are simple mathe-
matical functions, called activation functions and written σ(Σn

j=1wjxj + b) for n neuron inputs, with
parameters called weights wj and bias b, neuron are represented by circles in Fig. 3.1. An example of

an activation function is the sigmoid : σ(z) =
1

1 + exp(−z)
.

3.1.1 Universal approximation theorem

Cybenko [21] demonstrated through the universal approximation theorem (UAT) that "a finite
linear combination of compositions of a fixed, univariate function and a set of affine functionals can
uniformly approximate any continuous function of n real variables with support in the unit hypercube;”
i.e., composition of activation function in a single hidden layer NLP can approximate any continuous
function to a given precision. Cybenko [21] demonstrated the UAT for sigmoid functions but it was
later extended to other functions in Hornik [54], Leshno et al. [71], Pinkus [90]. It must be underlined
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Figure 3.1 – Neural network scheme. Circles are referred to as neurons, blue lines are referred to as
connection and black dots represent other neurons not drawn for readability. One column
of neurons is called a layer. Each neuron of one layer is connected to all neurons of the
next layer.
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Figure 3.2 – Neuron function scheme.

that although UAT affirms the possibility to realize such approximation, in reality the hidden layer
might be unfeasible. UAT does not tell how to construct such NN, how many neurons are necessary
in the hidden layer for example or how to determine the value of the NN parameters. However,
NN should be seen as a clever tool to model such a universal approximator of function, helped by
powerful optimization methods to determine the parameters value. Although most of the theoretical
knowledge concerns NLP, empirically lots of rules of thumb exist. For example, stacking hidden layers
in an FCNN to form a multi-layer perceptron (MLP) helps to improve the approximation of a target
function by inducing more non-linearity to the NN function.

This is one of the main results why NNs are today a mainly used method to solve complex problems.
Many problems can be reduced to a function approximation such as classification, translating a text,
defining a title from the content of a movie etc. The second main advance that was required to take
advantage of the full capacity of NNs, is a way to estimate NNs’ parameters from learning samples by
gradient descent.
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3.1.2 Parameter estimation

Training a NN by statistical learning can be seen as finding the best statistical estimate of the set
of parameters such that the probability distribution of the model (here the neural network) pmodel

fits the unavailable true probability distribution where the learning samples come from pdata. Con-
sidering a set of learning samples from a dataset X =

{

x(1), . . . , x(m)
}

and their associated label

Y =
{

y(1), . . . , y(m)
}

for example their class or category for a classification task. The objective for
supervised learning is to estimate the conditional maximum likelihood :

wML = argmax
w

m
∏

i=1

p(yi|xi; w) (3.1)

Where wML is the set of parameters corresponding to the maximum likelihood. By using the log-
likelihood to pass from a product of probability that is numerically inconvenient to a sum of probability
:

wML = argmax
w

m
∑

i=1

log (p(yi|xi; w)) (3.2)

and dividing by the number of learning samples m to get an expression using the expectation with
respect to the empirical data distribution without changing the argmax function :

wML = argmax
w

Ex∼pdata
log (p(yi|xi; w)) (3.3)

this expression can be linked to the Kullback-Leibler divergence (KL divergence) that measures the
dissimilarity between two probability distributions :

DKL (pdata||pmodel) = Ex∼pdata
[log pdata(y|x)− log pmodel(y|x; w)] (3.4)

where the term depending on pdata is a function of the data generation process which is not a parameter
the user can modify. Thus, minimizing the KL divergence is equivalent to maximizing Eq. 3.3 i.e.,
minimizing the cross-entropy between data and model distributions.

In software implementation, the training process consists in minimizing a loss function usually
derived from the log-likelihood. As an example, minimizing a mean square error is equivalent to
minimizing the KL divergence between an empirical distribution and a Gaussian model. The reader
can refer to Goodfellow et al. [42] for further details.

Finally, the last important piece of the neural network framework is the optimization procedure, that
aims at minimizing the loss function with respect to the NN’s parameters. Gradient descent algorithm
uses the local gradient of the loss function with respect to the parameters to determine the update
of the parameters. The computation of the local gradient is done using backpropagation algorithm
or backprop [98]. Backpropagation algorithm is a way to propagate the information backward in
the neural network by computing the derivative of functions formed by composing other functions
whose derivatives are known. It means that backpropagation computes the gradient (which is the
derivative of a tensor operation) of the loss function. It uses computational graph theory that is
above the topic of this study but for more detail the reader can refer to Goodfellow et al. [42], LeCun
et al. [70], Rumelhart et al. [98]. Moreover, readers familiar with data assimilation should notice the
analogy with adjoint method which is sensibly the same method that allows to propagate information
backward and get the local gradient of the forward model.
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The gradient of the loss function with respect to parameters being available a stochastic gradient
descent (SGD) algorithm also called an optimizer is used to update the parameters. SGD differs from
the original gradient descent method by using only a set of samples from the dataset instead of the
entire dataset to compute the parameters’ update. In deep learning this subset of samples is called a
batch. Its size is defined by the user and corresponds to the number of data samples processed before
the update of the parameters. Different versions of optimizers exist to alleviate some limitations such
as the early stopping in local minima using inertia or managing highly-dimensional parameter space.
The main gradient descent algorithms are for example classical SGD [62, 95], RMSProp [105] and
Adam [64] algorithms.

This section gives the basis of how to train a basic neural network in theory. Lots of topics are not
tackled such as regularization, over-fitting, data normalization, generalization... These are important
topics for those who want to build and train neural networks but not necessary for a global under-
standing of how they work. Deep learning literature for real application and fundamental theory is
available among them [8, 20, 42] are a very strong basis.

3.2 Convolutional network

Neural layer perceptron is adapted for vector shaped data, but when images are processed by FCNN,
most of the spatial information is discarded by flattening the image to match the input shape of the
NN. This is the main reason why Le Cun et al. [69] developed convolutional neural networks (CNNs).
Convolution principle, illustrated Fig. 3.3, allows extracting spatial features by processing groups of
pixels spatially closed by passing a kernel (2D window) on the processed image. Convolutional layers in
a neural network have multiple kernels with trainable parameters e.g., w, x, y and z in Fig. 3.3. After
training, each kernel can detect different patterns e.g., a circle, an edge, textures. . . . The training of a
CNN is the same as described in Sec. 3.1 only the way it processes the pixels of an image is different.

Convolution are translation invariant which means that if a convolutional layer has a kernel that
can detect an edge in an image, due to the convolution property it can detect edges over the entire
image as opposed to NLPs. This property allows us to reduce the number of parameters of the NN
to perform the same task.

Another important property of CNN is to be able to learn spatial hierarchies of patterns by stacking
multiple convolutional layers. The first layer will for example detect local patterns such as edges and
circles. The next layer will use these extracted features as inputs to deduct larger patterns such as the
face of a human because it can be decomposed as multiple symmetrical circles like eyes and nostrils for
example. This results in a particularly adapted framework to process general images such as multiple
channels images (RGB) where the same convolutional kernels are applied to all channels of an image.
The convolution is one of the main advances during the past decade in deep learning. This success
was catalyzed by the development of Graphical Processor Units GPUs that are adapted to perform
matrix computation faster than a classical CPU. It is not limited to three channel images but can
also be applied to large 3D data such as demonstrated in Besombes et al. [7] where it is applied on
atmospheric fields corresponding to an image of 64 by 128 pixels on 82 channels. 3D convolutions
could be used but remains very memory demanding which is the limiting resource in GPUs.

One of the limitations in CNN is the computation of long range pixels that is difficult due to the
local property induced by the use of convolutional kernels. An example is the number of legs when
using CNN for computer vision on animal images. A classifier of cats and dogs images might not
be surprised by a six-legged cat because of the distance between the legs being too important and
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3.3 Generative networks

cannot be processed by the same convolutional kernel. Solutions are being proposed concerning this
limitation on the receptive fields of CNN such as the concept of attention layers coming from neural
language processing [108].

Figure 3.3 – Example of a convolution with a 2 kernel.

3.3 Generative networks

Generative networks aim to learn the data distribution in order to generate new samples from the
same distribution. Although, the progress in supervised learning such as classification or regression
tasks were partly due to the growing dataset in size and quality. Supervised learning requires labeled
datasets that are expensive to build, unsupervised learning however is another category of deep learn-
ing models that does not need labeled data. They can be applied in a lot of domains that produce
important quantities of data without the need to use human supervision to annotate data samples.
Generative networks belong to the unsupervised category and are very popular because of their po-
tential application to domains without high quality labeled datasets. Among generative networks,
generative adversarial networks (GAN) are one of the generative models that gained lots of attention
during the last years. In order to understand the recent success of GANs, it is important to compare it
with other generative models. Goodfellow [40] gives a comparison illustrated Fig. 3.4 between genera-
tive models that maximize likelihood directly or that can be derived to do so. A clear distinction can
be made between generative models, those who compute an explicit density function and others that
use an implicit density function. Models that use an explicit density function that is computationally
tractable have to be carefully designed to represent complex density functions while maintaining low
computational costs such as Fully Visible Belief Networks [33, 34]. The main drawback with such
methods are the computational cost that is proportional to the data dimension. GANs were designed
to be able to generate samples in parallel to avoid this problem, GANs are also flexible regarding their
design and architecture which is also an advantage compared to explicit models.

Another way to build explicit generative models is to use intractable density functions coupled with
approximations to minimize the log likelihood. Approximations can be divided in two categories :
Variational and Markov Chain approximations. Variational methods define a loss function that is
computationally tractable and bounded by the log-likelihood. The most used NN in the family of
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Figure 3.4 – Taxonomy of generative networks, reproduced from Goodfellow [40].

variational learning is Variational AutoEncoders (VAEs) [63]. As of this writing it was not proven
yet that VAEs are asymptotically consistent meaning that there is no proof that with a weak approx-
imation on prior or posterior distribution VAEs can learn something different from pdata. Contrary
to the GAN where it was proven that under certain assumptions the GAN is a universal approxima-
tor. Markov chain approximation consist in generating data x′ using a transition operator such as
x′ ∼ q(x′|x) repeatedly. It is difficult to check the convergence of the chain and this method becomes
computationally too costly when the dimension of the data increases. GAN were also designed to
avoid the use of Markov chain approximation.

Finally, implicit generative models can be again separated in two domains between models that can
generate a sample in a single step, of which GANs belong, and others that need more computations.
Before GANs there were no generative models able to generate samples in a parallelized manner, but
they have been joined recently by models based on kernelized moment matching methods [72]. Another
advantage is because the generator is trained using the gradient from the loss function computed on
the discriminator output, the generator cannot simply copy samples from the dataset.

3.4 The GAN framework

Generative Adversarial Networks (GANs) were introduced in Goodfellow et al. [41], it is a generative
model made of two neural networks trained peculiarly. The first model is called the generator that from
a drawn noisy vector generates a sample from the data distribution, pdata. The second is called the
discriminator, its objective is to measure the similarity between the dataset distribution represented by
the samples in the dataset (pdata) and the distribution generated by the model (pmodel). Both networks,
in their classical version applied to images, have convolutional neural network (CNN) architectures
Fig. 4.2, 4.3 using convolution layer in the discriminator and transposed convolution layer in the
generator.

Figure 3.5 represents the GAN framework. The training phase is a game between the generator and
the discriminator. The task of the generator is to create samples coming from the same distribution as
the dataset. The discriminator has to determine whether the samples it processes are real (from the
dataset) or fake (created by the generator also called synthetic). Discriminator outputs the probability
of a sample to come from the dataset and uses labels as feedback, as in a supervised training. The label
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3.4 The GAN framework

being real or fake, it does not require a labeled dataset. The generator is given the same feedback
i.e.the classification of fake samples by the discriminator, but its task is to fool the discriminator,
meaning that its samples have to be predicted as true by the discriminator. The knowledge of the
prediction made by the discriminator is used as feedback for minimizing Ez∼pmodel

[1− log D(G(z))].

Training set Sample

Sample
Generator

!(# ; %)

Latent vector

#

Discriminator

'(( ;))

Sample space

(
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Real/Fake ? 
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Figure 3.5 – GAN framework scheme.

Both networks are considered as functions that are differentiable with respect to their inputs, and
their weights θ and w respectively for the generator and the discriminator. The cost function is defined
with respect to the weights of each network J = J(θ, w). Alternatively a mini batch of samples from
either the generator or the dataset is given to the discriminator, then an update by stochastic gradient
descent (SGD) of the weights of one network is done by freezing the weights of the other network.
The following step, another mini batch of samples is considered and the other network’s weights are
updated while the other one has its weights frozen. The fact that both networks’ cost function depends
on the weights of the other network changes the optimization problem into a game problem. The goal
is no longer to find a (local) minima but to find a Nash equilibrium [40]. It yields the following loss
function :

min
G

max
D

J(D; G) = Ex∼pdata
[log D(x)] + Ez∼pmodel

[1− log D(G(z))] (3.5)

Equation 3.5 is the cross-entropy loss that is used when training a binary classifier using a sigmoid
output, where labels for real samples are 1 and 0 for fake ones. The principal difference is that batches
of samples come from different places, the dataset and the generator. We can write the cost function
to minimize for the discriminator only :

JD(D; G) = −1
2
Ex∼pdata

[log D(x)]− 1
2
Ez∼pmodel

[1− log D(G(z))] (3.6)

and then for the generator :

JG(D; G) = −JD(D; G) =
1
2
Ex∼pdata

[log D(x)] +
1
2
Ez∼pmodel

[1− log D(G(z))] (3.7)
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It was proven in Goodfellow et al. [41] that minimizing Eq. 3.5 is similar to minimizing the Jensen-
Shannon divergence between pdata and pmodel. The convergence to a global minimum pdata = pmodel

of the training algorithm was also proven.

The training needs to be carefully designed in order to avoid problems such as mode collapse also
called the Helvetica scenario where the generator exploits a local minima of D by generating the same
images ignoring noise input. The mode collapse was addressed by the Wasserstein GAN [3] which is
detailed in Section 3.5.

3.5 Wasserstein Generative Adversarial Network to characterize a

physical system

This section introduces the notations and theoretical development for the parameterization of a
physical system by the Wasserstein GAN (WGAN). This section is taken from Besombes et al. [7]
included in the present manuscript Chap. 6 that is applied for climate field generation. It was slightly
modified in order to make it more general and applicable to reservoir application.

3.5.1 Parametrizing a physical system

The physical system is considered as being the solution of an evolution equation

∂tχ =M(χ), (3.8)

where χ denotes the state of the system at a given time andM characterizes the dynamics including the
forcing terms. While χ should stand for continuous multivariate fields, we consider its discretization
in a finite grid so that χ ∈ X with X = R

n, where n denotes the dimension. The physical system
is the set of states of the system along its time evolution. It is characterized by a distribution or a
probability measure, denoted psys.

Obtaining a complete description of psys is intractable usually due to the complexity of the system,
and because pdata, is limited by numerical resources and is only a proxy for this distribution. Thus,
pdata lives in the n-dimensional space X, but it is non-zero only on an m-manifold M (where m≪ n)
that can be fractal. The objective is to learn a mapping

g : Z 7→ X, (3.9)

from Z = R
m, the so-called latent space, to X.

Moreover, g must transform a Gaussian N (0, Im) to pdata ⊂ M. Our objective is to approximate
the physical distribution that is included in the high dimensional space X by a simpler distribution
that is included in a relatively low dimensional space Z that we will describe in further details in
the next section. The main advantage of such a formulation is to have a function g that maps a low
dimensional continuous space Z to M. This property could be useful in the domain of geoscience
notably in climate sciences or subsurface characterization where a high dimensional space is ruled by
important physical constraints and parameters.

Here the generator is a good candidate to learn the physical constraints that make a system state
realistic without the need to run a complete simulation of the physical equations.
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3.5 Wasserstein Generative Adversarial Network to characterize a physical system

3.5.2 Background on Wasserstein generative adversarial networks

To characterize the system, we first introduce a simple Gaussian distribution pz = N (0, Im) of zero
mean and covariance the identity matrix Im, defined on the space Z = R

m, called the latent space.
The objective of an adversarial network is to find a non-linear transformation of this space Z to X as
written in Eq. 3.9 so that the Gaussian distribution maps to the system distribution i.e.g#(pz) = psys

where g# denotes the pushforward of a measure by the map g, defined here as follows: for any
measurable set E of X, g#(pz)(E) = pz(g−1(E)) where g−1(E) denotes the measurable set of Z that
is the pre-image of E by g. The latent space, Z, can be seen as an encoded state space where each point
drawn from pz corresponds to a realistic system state and where the generator is the decoder. Looking
for such a transformation is non-trivial, and is directly linked to the parameterization problematic in
data assimilation. This work describes a way to find such a transformation in an automated manner
and easily transferable from one domain to another.

The search is limited to a family of transformations {gθ}, characterized by a set of parameters θ.
Thus, for each θ, the non-linear transform of the Gaussian pz by gθ is a distribution pθ. The goal is
then to find the best set of parameters, θ∗ such that θ∗ = argminθ di(pθ, psys) where di is a measure of
the discrepancy between the two distributions, so that pθ∗ approximates psys. This method is known
as the generative learning, where gθ is implemented as a neural network of trainable parameters θ.
Note that, being a neural network, the resulting gθ is then a differentiable function.

Even with this simplified framework, the search for an optimal θ is not easy. One of the difficulties
is that the differentiability of gθ requires the comparison of continuous distribution pθ with psys, which
is not necessarily a density on a continuous set. To alleviate this issue, Arjovsky et al. [3] introduced
an optimization process based on the Wasserstein distance defined for the two distributions psys and
pθ by

W (pθ, psys) = inf
γ∈Π(pθ,psys)

E(x,y) [‖x− y‖] , (3.10)

where Π(pθ, psys) denotes the set of all joint distributions γ(x, y) whose marginals are respectively
∫

y
γ(·, dy) = pθ and

∫

x
γ(dx, ·) = psys. The Wasserstein distance, also called Earth mover distance

(EMD), comes from optimal transport theory and can be seen as the minimum work required (in the
sense of mass × transport) to transform the distribution pθ into the distribution psys. Thus, the set
Π(pθ, psys) can be seen as all the possible mappings, also called couplings, to transport the mass from
pθ to psys. The Wasserstein distance is a weak distance : it is based on the expectation, which can be
estimated whatever the kind of distributions. Hence, the optimization problem states as

θ∗ = argminθW (pθ, psys), (3.11)

which leads to the Wasserstein GAN (WGAN) approach.

One of the major advantages of the Wasserstein distance is that it is real-valued for non-overlapping
distributions. Indeed, the Kullback-Leibler (KL) divergence is infinite for disjoint distributions and
using it as a loss function leads to vanishing gradient Arjovsky et al. [3]. The Wasserstein Distance
does not exhibit vanishing gradients when distributions do not overlap, as did the KL divergence in
the original GAN formulation.

Unfortunately, the formulation in Eq. 3.10 is intractable. A reformulation is necessary using the
dual form discovered by Kantorovich [60]. Reframing the problem as a linear programming problem

57



3 Deep learning background

yields
W (pθ, psys) = sup

f∈1−Lipshitzian

[

Ex∼psys [f(x)]− Ex∼pθ
[f(x)]

]

, (3.12)

where 1 − Lipshitzian denotes the set of Lipshitzian functions f : Rn → R of coefficient 1 i.e.for any
(x1, x2) ∈ R

n, |f(x1)−f(x2)| ≤ ||x1−x2||, ||·|| being the Euclidian norm of Rn. For any 1−Lipshitzian
function f the computation of Eq. 3.12 is simple: the first expectation can be approximated by :

Ex∼psys [f(x)] ≈ Ex∼pdata
[f(x)] , (3.13)

where the right-hand side is computed as the empirical mean over the database pdata that approximates
psys in the weak sense Eq. (3.13). The second expectation can be computed from the equality

Ex∼pθ
[f(x)] = Ez∼N (0;Im) [f(gθ(z))] , (3.14)

where the expectation of the right-hand side can be approximated by the empirical mean computed
from an ensemble of samples of z which are easy to sample due to the Gaussianity.

However, there is no simple way to characterize the set of 1−Lipshitzian functions which limits the
search of an optimal function in Eq. 3.12. Instead of looking at all 1− Lipshitzian functions, a family
of functions, {fw} parameterized by a set of parameters w, is introduced. In practice, it is engendered
by a neural network with trainable parameters w, called the critic.

Finally, if the weights of the network are constrained to a compact space W, which can be done
by the weight clipping method described in Arjovsky et al. [3], then {fw}w∈W will be K-Lipschitzian
with K depending only on W and not on individual weights of the network. This yields :

max
w∈W

[

Ex∼pdata
[fw(x)]− Ez∼N (0;Im) [fw(gθ(z))]

]

≤

sup
f∈1−Lipshitzian

[

Ex∼pdata
[f(x)]− Ez∼N (0;Im) [f(gθ(z))]

] (3.15)

which tells us that the critic tends to the Wasserstein distance when trained optimally i.e., if we find
the max in Eq. 3.15 and if f is in (or close) to {fw}w∈W . The weight clipping method was replaced
by the gradient penalty method in Gulrajani et al. [45] because it diminished the training quality
as mentioned in Arjovsky et al. [3]. Because it results from a neural network, any function fw is
differentiable, so that the 1 − Lipshitzian condition remains to ensure a gradient norm bounded by
1 i.e.for any x ∈ X, ||∇fw(x)|| ≤ 1. To do so, Gulrajani et al. [45] have proposed to compute the
optimal parameter w̃(θ) as the solution of the optimization problem

w̃(θ) = argsupwL(θ, w) (3.16)

where L is the cost function

L(θ, w) = Ex∼pdata
[fw(x)]− Ez∼N (0;Im) [fw(gθ(z))] + λEx̂∼p̂

[

(||∇fw(x̂)|| − 1)2
]

(3.17)

with λ the magnitude of the gradient penalty and where x̂ is uniformly sampled from the straight line
between a sample from pdata to a sample from pθ (line 8) of Algorithm 1. The optimal solution w̃(θ)
is obtained from a sequential method where each step writes

wk+1 = wk + βk∇wL(θ, wk), (3.18)

where βk is the magnitude of the step. In an adversarial way, Eq. 3.17 could be solved sequentially
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e.g., by the steepest descent algorithm with an update given by :

θq+1 = θq − αq∇θW (pθq
, psys), (3.19)

where αq is the magnitude of the step. We chose to use the two-sided penalty for gradient penalty
method, as it was shown to work well in Gulrajani et al. [45]. At convergence, the Wasserstein distance
is approximated by :

W (pθ, psys) ≈ Ex∼pdata

[

fw̃(θ)(x)
]

− Ez∼N (0;Im)

[

fw̃(θ)(gθ(z))
]

. (3.20)

Hence, the solution of the optimization problem Eq. 3.11 is obtained from a sequential process
composed of two steps, summarized in the Algorithm 1. In the first step, the weights of the generator
are frozen with a given set of parameters θq and the critic neural network is trained in order to find the
optimal parameter w̃(θq) solution Eq. 3.16 (lines 3 – 11 in Algorithm 1). In the second step, the critic
is frozen and, the generator is set as trainable in order to compute θq+1 from Eq. 3.19 (lines 12 – 17 in
Algorithm 1). Note that in the Algorithm 1, the steepest descent is replaced by an Adam optimizer
[63], a particular implementation of stochastic gradient descent which has shown to be efficient in deep
learning.

Algorithm 1 WGAN training algorithm.

Require: Learning rate lr, batch size b, ncritic number of iteration of the critic per generator iteration.
Require: w0 and θ0 respectively the initial critic and generator parameters.

1: # Optimization cycle
2: while θ has not converged do
3: # 1. Computation of the Wasserstein distance by maximization over 1−Lipshitzian functions
4: for t = 0, . . . , ncritic do
5: # 1.1 Computation of the gradient for the 1−Lip. function.
6: Sample{x(i)}bi=1 ∼ Pdata a batch from the real data.
7: Sample{z(i)}bi=1 ∼ Pθ a batch from the generated data.
8: Sample{x̂(i)}bi=1 where x̂ = ξx + (1− ξ)gθ(z) where ξ ∼ U [0, 1]

9: gradw ← ∇w

[

1
b

Σb
i=1fw(x(i))− 1

b
Σb

i=1fw(gθ(z(i))) +
λ

b
Σb

i=1

(

||∇fw(x̂(i))|| − 1
)2
]

10: # 1.2 Update the parameter w to maximize Eq. 3.12
11: w ← w + lr ∗Adam(w, gradw)
12: end for
13: # 2. Update the generator
14: # 2.1 Compute the gradient of the Wasserstein distance
15: Sample{z(i)}bi=1 ∼ Pθ a batch from the generated data.

16: gradθ ← ∇θ

[

1
b

Σb
i=1fw(gθ(z(i)))

]

17: # 2.2 Update the parameter θ to minimize the Wasserstein distance
18: θ ← θ − lr ∗Adam(θ, gradθ)
19: end while

The reader should note that in the rest of this manuscript the GAN version will always be the
Wasserstein GAN version described in this section but will be designate by GAN instead of WGAN
for simplicity. However, between classical and Wasserstein version the name of the classifier network
is referenced respectively as the discriminator and the critic this notation will be maintained.
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3.6 Related work

The GAN method is an efficient way to learn the physical constraints that are present in the data.
It can help to learn p(x) in the Bayes theorem Eq. 2.6 which is equivalent to reduce the size of the
research space for an inverse problem by generating only physically realistic states. Moreover, GANs
are able to generate images with sharp gradients which is a recurrent problem in data assimilation
methods. It is usually hard to correct the position of a sharp object while keeping the image realist.
Being able to produce realistic states at a cheap computational cost is already an interesting asset.

3.6.1 Linear inverse problem

Since the introduction of GAN method in Goodfellow et al. [41], it was used to solve numerous
application of inverse problem. Compressed sensing or linear inverse problem applied to images was
realized using GAN prior such as in Bora et al. [11] where it uses a trained GAN that maps a latent
space to the space of the unknown vector x∗ ∈ R

n in the equation :

y = Ax∗ + η (3.21)

where y ∈ R
m is from linear measurement of x∗, A ∈ R

n×n is the measurement matrix and η ∈ R
m

is a noise. It was proved that using a GAN prior improves the results especially when there are few
measurements. It was solved by using gradient descent on the GAN’s input because it is differentiable
by construction. Rick Chang et al. [94] developed a way to generalize the application of GANs to
a group of linear problem close to compressed sensing such as inpainting and super resolution. The
idea was to avoid training task specific GANs by using a projection operator. Neural networks able
to perform multiple tasks are one of the grand challenges of deep learning, see Jaegle et al. [57].

3.6.2 Physically constrained inverse problem

Recently GAN has drawn attention of researchers that are tackling physically constrained inverse
problem due to their universal approximator property mentioned in Sec. 3.1.1. The fact that data
measurements in such problems are common, neural network in general can be an interesting tool
for various physical applications because of the amount of available data to exploit. For example in
earth science by Dueben and Bauer [25], or in reservoir characterization by Ertekin and Sun [28]. By
zooming in the different machine learning methods applied in physics, GANs remain far from their
optimal use, compared to the capability proven in other application domains such as in computer
vision for example. Using a trained GAN in an inverse problem framework could be useful on several
aspects.

An important source of model uncertainty in inverse problem comes from the approximation in
mathematical parameterization i.e., in the climate sense, scheme of subgrid processes, especially in
the weather prediction application. First deterministic physical models were used to parameterize such
processes and reduce model errors. One of the main progress was the stochastic methods to repre-
sent subgrid processes. Although new stochastic parameterization methods have improved prediction
capability of NWPs, some of these methods still suffer from inaccurate distribution matching that
cause biases and deteriorate the predictions [6]. Different stochastic parameterizations exists using
for example, statistics of a model uncertainty and theoretical knowledge of the atmospheric processes
[100]. Data driven approach can extract features in observations or model states and learn complex
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non-linear subgrid processes in a computationally efficient manner, therefore machine learning are
good candidates to represent subgrid processes.

Machine learning method for such application was first proposed by Krasnopolsky et al. [66]. Since
it was investigated for different applications, Bolton and Zanna [10] used a CNN to replicate the
spatio-temporal variability of the subgrid eddy momentum forcing. Gentine et al. [38] used a CNN to
represent unresolved moist convection in coarse-scale climate models, Rasp et al. [93] used a CNN to
represent all atmospheric subgrid processes in a climate model by learning from a multiscale model in
which convection was treated explicitly. Yuval et al. [112] compares random forests neural networks
methods for calculating subgrid terms through coarse graining.

Recently GANs were investigated to be used as stochastic parameterization of subgrid processes,
in Gagne et al. [35] a GAN is used for the parameterization of subgrid processes in the Lorenz ’96
dynamical system. Their main advantage is their ability to be trained in an unsupervised manner and
to match a large variety of distributions.

GANs can also be used for Bayesian inversion. In Patel and Oberai [87], a GAN prior is applied
in uncertainty quantification on a temperature field in heat conduction problem. Parameterization is
used as a prior for distributions difficult to represent mathematically. The Bayesian inference is then
done in the low dimensional latent space, and allows an efficient way for posterior sampling. Bayesian
inversion in Adler and Öktem [2] is using a GAN prior and compare it with the state-of-the-art
technique like Gibbs sampler applied to image reconstruction of 3D computed tomography.

Laloy et al. [68] used a Spatial GAN to parameterize the spatial distribution of subsurface rock
facies. It was trained on a unique training image and can generate unconditional realizations after
training. A posterior conditioning on static properties was demonstrated using MCMC inversion.
Laloy et al. [67] realized a study of the dimensionality reduction using variational auto-encoder on a
dataset of tens of thousands of images generated by multipoint statistics method. A comparison with
PCA method and discrete cosine transform was done.

GAN prior was recently used in diverse physical inverse problem with the help of adjoint method,
because gradient of GAN output with respect to input variables is available. In Mosser et al. [84], the
author performs a stochastic seismic waveform inversion with a GAN prior. It uses an adjoint model to
link the data mismatch to the GAN latent input parameters. It was also applied to history matching
in reservoir characterization domain in Mosser et al. [83] but an important computational cost due to a
high number of gradient descent iteration necessary to inverse the complete forward model. Moreover,
the development of adjoint model is still in development and is costly as a consequence ensemble
methods are still widely used and having a parameterization technique is valuable.

Finally, ensemble methods were coupled with neural network parameterization to alleviate one of the
main limitation of these methods applied to subsurface history matching due to the non-Gaussianity
distribution of parameters. Canchumuni et al. [13] used an auto-encoder coupled with PCA and ES-
MDA for history matching. In following articles deep belief network [14] and variational auto-encoder
[15] were used as parameterization of geological facies for history matching. Canchumuni et al. [16]
realized a benchmark comparing different deep learning methods such as GAN, WGAN, convolutional
VAE, PCA and proposed strategies in order to implement localization in those frameworks. Similarly,
Bao et al. [5] coupled ES-MDA and GAN for history matching flow and transport data in hydrology.
In the last 3 years multiple research papers were dedicated to the coupling of history matching and
deep learning parameterization techniques with promising results, however some challenges remain
open. First, application of such coupling remain in the subsurface characterization domain whereas
data assimilation is widely used among diverse applications that could benefit of advantages offered
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by such parameterization method e.g., fire front assimilation, numerical weather forecast etc. Few
of the previously mentioned studies tried their method on 3D cases, which is an important matter
because of the increase of computational cost for 3D GANs due to the limited memory of GPUs for
the moment.

The research objective of the current study is to first give a good understanding to the reader
of data assimilation and deep learning domains. Underline the different limitation encountered in
current operational data assimilation and emphasize the advantages of recent data driven strategies
that could alleviate the previously mentioned limitations in data assimilation. The use of GAN as
parameterization for ensemble methods is investigated in Chap. 5, its application for producing climate
data is investigated in Besombes et al. [7] included in Chap. 6. Optimization methods for inverting
the GAN function and recover conditioned generations in the latent space is tackled in Chap. 7.
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Chapter 4
Generating realistic reservoir
topologies

Basic concepts about neural networks and GANs can be found in Sec. 3, its application for gener-
ating realistic reservoir topologies will be tackled in this chapter. As mentioned in Sec. 1.1.5 several
methods exist for the generation of realistic reservoir topologies but heterogeneities and especially
channel heterogeneities remain hard to characterize. Object-based methods necessitate the creation of
training images by experts combining the different information about the structure of the particular
reservoir exploited. The realizations are usually very similar to the training image and then lack of
variability. Whereas, pixel-based methods are computationally demanding and are not able to preserve
the continuity of geological heterogeneities such as channels.

GANs are potential candidates due to their ability to generate realistic samples from a dataset.
Moreover, it was specifically designed to be able to generate samples in parallel at a low computational
cost. Our objective is to train a Wasserstein GAN on a dataset made of channel heterogeneities. The
GAN has to be able to generate new samples with high diversity in the sense of preserving the
different properties that characterize channelized heterogeneities without reproducing images from
the dataset. This chapter describes the dataset used, the choice of the different hyper-parameters for
the architectures and the training of the GAN, finally it tackles the definition of metrics to assess the
quality of the generations.

4.1 Dataset

The dataset was created at Total with an industrial tool called Flexboolx, it is made of 10000
samples of 2D channelized reservoir (100 by 100 pixels) with two rock types, illustrated in Fig. 4.1.
Channels are oriented in the West-East direction and made of a rock with a high permeability and
porosity compared to the background facies (black). Channels’ geometry is created with sinusoidal
function controlled by the amplitude, width, thickness, wavelength hyper-parameters all drawn from
a triangular distribution. The facies density i.e., proportion of the white pixels compared to black
pixels in Fig. 4.1 is variable following a triangular distribution visible in Fig. 4.4 computed from the
dataset samples. As a preprocessing the dataset samples are normalized such as background material
is indexed by −1 and heterogeneity material is indexed by 1.

The fluid flow inside the reservoir is largely driven by heterogeneities due to its physical properties
but fluids can also flow through the black facies, at a slower speed. The creation of the dataset was
done by creating 3D channelized blocks and slicing them horizontally (in the x − y plane where z
represents the height). A particular attention was given to the fact that a maximum of one slice was
done for each 3D block. The reason for this constraint is that the different samples could be correlated
if the constraint was not imposed. The consequence of the GAN training is the generation of similar
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channels at the same position because they are more frequent in the dataset. The variability in the
dataset is an important property that could influence history match results by outputting a realization
with high certainty only because this realization was overfitted during training.
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Figure 4.1 – Samples from 2D channelized reservoir dataset. 2 rock types are present in the reservoir.
Background material (black pixels indexed by 1) has a low permeability and porosity.
Heterogeneity material (white pixels indexed as 2) is highly porous and permeable.
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4.2 Architectures

Our first attempt to design a GAN in order to generate reservoir representations, was to design the
generator and critic as convolutional neural networks CNN. It consists of numerous layers in order
to increase or decrease the size of the image in respectively the generator or the critic. Most of the
guidelines were taken from Gulrajani et al. [45].

The guidelines established in Arjovsky et al. [3] and Gulrajani et al. [45] for the networks architecture
and training hyper-parameters were followed. GANs are known to be time-consuming to train, usually
needing a high number of iterations due to the alternating aspect of the training algorithm between the
critic and the generator. Our initial architecture used a simple convolutional network for both, with a
high number of parameters. Figures 4.2 and 4.3 show the classical convolutional network that was used
at the beginning of the study. The critic is made of a succession of convolutional layers. The leaky-
Relu activation function is used in order to induce non-linearity in the network function. Leaky-Relu
activation function is similar to Relu function except that it allows a small, positive gradient when the
unit is not active, see Eq. 4.1. The generator is made of a succession of transposed convolutions with
leaky Relu activation except for the last layer where a tangent hyperbolic function is used in order to
output a binary image where pixel values are comprised between 1 or −1 to match the binary dataset
images. The value −1 corresponds to the background material and 1 to the facies that constitute
the channels. However, it proved difficult to train fitting multimodal distributions such as pixel value
distribution for the images representing the rock types of a reservoir.

f(x) =

{

x if x > 0,

0.01x otherwise.
(4.1)
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Figure 4.4 – Histogram of facies density for the 10000 samples dataset.

That is why for this study a ResNet-inspired architecture [50] was chosen. The goal of the Residual
network is to reduce the number of parameters of the network and avoid gradient vanishing which is
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Architecture Number of layers Number of trainable parameters

Generator Discriminator Generator Discriminator

GAN-CNN 10 12 4.4M 5.9M
GAN-ResNet 20 38 1.6M 3.3M

Table 4.1 – Summary of the 2 GAN architectures. Only dense and convolutional layers are counted.
(M is for millions)

a recurrent problem for deep networks that results in an even slower training.

A network is composed of a stack of layers. When a specific succession of layers is used several times
we can refer to it as a block. The link between two layers is called a connection, a shortcut connection
refers to a link between two layers that are not successive in the architecture. A residual block as in
Fig. 4.6 for the critic or Fig. 4.5 is composed of a stacked convolution and a parallel identity shortcut
connection. The idea is that it is easier to learn the residual mapping than all of it, so residual blocks
can be stacked without observing a vanishing gradient.

Vanishing gradient is a well known limitation of deep neural networks, where information going
backward during backpropagation is fading away due to chain rule properties multiplying low values
of partial derivatives of the loss function with respect to the weights. As a result, layers at the top
of the architecture do not receive significant updates and it can stop the learning of top layers. Skip
connections in residual layers play the role of highways of information by linking top layers with
shortcuts during backpropagation.

Moreover, during the building of an architecture a residual block can be added to an N layers network
without reducing its accuracy. Because skip connections can easily learn the functional F (x) = 0 when
the number of layers is already sufficient. Whereas on a sequential network without skip connections
an added layer has to learn the identity function F (x) = x if the number of layers was already optimal,
which is a harder task. Residual blocks allow building deeper networks without loss in accuracy. The
comparison of both architectures is visible in Table. 4.1, for the rest of the manuscript the stacked
convolution architecture will be referenced as GAN-CNN and the residual one as GAN-ResNet.
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Figure 4.5 – Convolutional block for the generator.

4.2.1 Critic network

Critic : R
Nx×Ny×1 7→ R (4.2)

The critic network function Eq. 4.2, input has the shape of a sample from the dataset X ∈ R
Nx×Ny×1.

Its output must be a real number because it is an approximation of the Wasserstein distance between
the distribution of a batch of images from the dataset and the one from the generator that is being
processed. The architecture ends with a dense layer of one neuron with linear activation. The archi-
tecture for GAN-CNN is taken from a convolutional classifier with appropriate modification to output
binary images, illustrated Figures. 4.2.

The core of the structure for the GAN-ResNet is taken from the residual network and can be
seen in Fig. 4.7a. The GAN-ResNet is a classical residual network, starting with a convolution with
7 × 7 kernels and a succession of convolutional and identity blocks Fig. 4.6a, 4.6b. At each strided
convolutional block, s = 2 in Fig. 4.6b, the image size is divided by a factor 2. It is equivalent to a
learnable pooling layer that can increase the quality of the result [101].

Finally, an average pooling is done, and the output is fed to a fully connected layer of 100 neurons,
then to the output neuron. Batch normalization is not present in the critic’s architecture following
Gulrajani et al. [45]. The batch normalization changes the critic’s problem by considering all the
batch in the training objective whereas we are already penalizing the norm of the critic’s gradient
with respect to each sample in the batch.
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4.2.2 Generator network

The input of the generator network, illustrated in Fig. 4.7b, is an m-dimensional vector containing
noise drawn from the normal distribution N (0, Im), for the numerical experiment m = 32, which
was chosen after training GANs with different latent space dimensions : 8, 32 and 128. Deciding
criteria was a compromise between the quality of the generations on metrics described in Sec. 4.4 and
the necessity of a limited size of the dimension of parameter space for history matching purposes.
Following the guidelines in Zhang et al. [113] and Brock et al. [12] the spectral normalization [82] was
implemented in the convolutional layers of the generator. It was proven that it can improve image
quality and training speed without increasing computational cost in Zhang et al. [113].

Figures. 4.8a and 4.8b shows the comparison of the 2 points correlation metric for 10000 realizations
for different latent space dimensions. The mean of 2 points correlation is matched by the GAN32 and
GAN128, even if the standard deviation is overestimated by the GAN32 it was chosen to keep a
relatively low dimensional latent space for history matching purpose. The output of the generator has
the shape of a sample of the dataset X ∈ R

Nx×Ny×1. The input is passed through a fully connected
layer of output shape (6 × 6 × 128) and fed to residual blocks. The rest of its architecture is also a
residual network with a succession of modified convolutional blocks (relative to the one in the critic
network). Modifications of the convolutional block are the following :

1. An up sampling layer is added to increase the image size in some convolutional blocks.

2. Nearest padding layers are added in residual blocks.

3. Spectral normalization is used in convolutional layers.

One could argue that the ReLU activation function is not differentiable in 0, but this is managed
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Figure 4.7 – GAN Residual network architecture.

by taking the left derivative in the software implementation. The study does not claim that the net-
work architectures used are optimal, the computational burden (described in Sec. 4.3) was too high
to run a parameter sensitivity study. Guidelines from Gulrajani et al. [45] were followed and the
hyper-parameters were adapted to the current problem. It showcases an example of hyper-parameters
producing interesting results, and inspired readers are encouraged to modify and improve this archi-
tecture.
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Figure 4.8 – 2 points correlation mean (left) and standard deviation (right) comparison for GANs with
different dimensions of latent space. GAN8, GAN32, GAN128 refers to GANs with 8, 32
and 128-dimensional latent space.

4.3 GAN training

Network

Hyper parameters Generator Critic

Iterations 60 000 350 000
Batch Size 128 128
Optimizer Adam Adam
Initial learning rate (lr) 1e−3 1e−3

λ in Eq. eq:WGANLoss 10

Table 4.2 – Hyper-parameters for training step.

The GAN was trained on an Nvidia Tesla V100 of 16GB of memory for 20 hours. Hyper-parameters
are summarized in the Tab. 4.2. For Wasserstein GAN it is common to perform multiple training
batches for the critic for each batch processed by the generator. The reader should note that GAN
training usually requires many iterations. There is no precise stopping criteria and no direct way to
assess the quality of the image without defining specific domain metrics, see Table 4.2. This explains
the necessity of defining and testing GAN realizations at different steps of the training to assess the
convergence of the GAN training.
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4.4 Quality check

To assess the quality of the synthetic generation, it is necessary to define and choose metrics.
In reservoir characterization, usual metrics are based on 2 points statistics. After training a GAN,
different metrics were verified in order to compare the generations with dataset samples.

After the creation of the GAN-CNN architecture it was important to verify if the diversity of the
dataset was retrieved in the generated samples. Figure 4.9a shows the facies density distribution
over 10000 samples from the dataset (blue) and 10000 samples generated by the GAN-CNN (red).
Facies density is an important parameter that controls the pressure in the reservoir. It appears that
distributions are close, but some improvements could be done on the variance of the facies density
for generated samples. Figure 4.9b shows the same quantity for GAN-ResNet architecture. It shows
a better fit of the facies density distribution on the tails of the distribution and of the most frequent
facies densities for the GAN-ResNet architecture.
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Figure 4.9 – Comparison of facies density distribution for 10000 samples from dataset and from gen-
eration of GAN-CNN (left) and GAN-ResNet (right).

2 points correlation were also computed to compare the results between the two architectures of
GANs. The mean and the standard deviation of this quantity computed on 10000 samples and
superposed with the 10000 samples from the dataset samples (blue curve) is visible Fig. 4.10a and
4.10b. The reader can observe a slightly better fit of the standard deviation of the 2 point correlation
for the GAN-ResNtet architecture.

It is also interesting to verify correlations between the input and the output of the GAN. Figure 4.11a
and 4.11b respectively show the correlation between the facies density of a sample and one component
of the latent vector of the corresponding sample, and the correlation between the facies density and the
2-norm of the latent vector. It appears that a strong correlation is present between the 2-norm of the
latent vector and the facies density. This implies that a certain structure in the latent space is present
without any enforcement during the training. It raises the following question : Is this structure useful
for data assimilation algorithms ? These plots can be compared with those of the same quantities
applied to samples from the GAN-ResNet Fig. 4.11a and 4.11b. It can be observed that the latent
space structure is not present anymore. However, a light correlation can be seen between a latent
vector component and the facies density of the corresponding image.
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Figure 4.10 – Comparison of two points correlation metric and there standard deviation for 1000
samples from the dataset (blue) and 1000 samples generated by the GAN-CNN (red
curve in left panel) and GAN-ResNet (red curve in right panel).

Given the different comparisons the GAN-ResNet architecture was chosen to be used as parame-
terization in the ES-MDA data assimilation techniques. It seems that the GAN-ResNet architecture
better represents the dataset variability.

The author would like to emphasize the necessity of adding other metrics for assessing the quality
of the generation. This is why the involvement of domain experts are necessary for the design of such
parameterization techniques. The creation of score-based challenges competition is one of the most
efficient ways to bring deep learning researchers into applied fields such as reservoir characterization
and stimulate the improvement of data driven techniques by well-defined competitions.
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Figure 4.11 – Correlation of latent variables and properties of the corresponding generation for GAN-
CNN.
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Figure 4.12 – Correlation of latent variables and properties of the corresponding generation for GAN-
ResNet.
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Chapter 5
History matching using GANs

In this chapter a twin experiment was designed to create observations from a true case to perform
history matching, described in Sec. 2.3.3. The objective is to recover this true model from the GAN
parameterization by assimilating the observation associated with the true case. The true case was
taken from the dataset used to train the generative network. One could note that taking the true
case from the dataset on which the GAN was trained is too easy, but it must be emphasized that
generators never see the dataset images directly. Two test cases are tested, one with horizontal wells
another one with a 5 wells disposition.

5.1 Reservoir simulation

This section deals with reservoir simulation with the objective to describe the different simplifications
and models used in the history matching cases to simulate the different fluid phase in a porous
media. The chosen reservoir simulator is Open Porous Media (OPM) which is a suite of software,
an initiative that encourages open innovation and reproducible research on modelling and simulation
of porous media processes. It was designed in collaboration by SINTEF, NORCE (formerly IRIS),
Equinor,Ceetron Solutions, Poware Software Solutions, and Dr. Blatt HPC-Simulation-Software &
Services. The suite is made of different modules, the OPM Flow reservoir simulator [92] is one of
them.

5.1.1 Governing equations

5.1.1.1 Black-oil model

The simulator relies on a black-oil model which is the most widely used flow model in hydrocarbon
reservoir simulation. It is based on the assumption that 3 pseudo-phases are represented : water
w, oil o and gas g. The oil and gas phase represent all the hydrocarbon components at a given
thermodynamic state. The main assumptions of a black-oil model are the following :

– The water phase neither dissolves in the oil phase, nor evaporates in the gas phase.

– The oil phase does not dissolve in the water phase, but evaporates in the gas phase.

– The gas phase does not dissolve in the water phase, but can dissolve in the oil phase.
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The continuous set of equation is :
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(5.1)

Where φ is the porosity of the porous medium, Sw is the water saturation, So, Sg are saturations of
oil and gas phases in the reservoir. uo,ug and uw are Darcy velocities of the oil, gas and water phases.
Bo, Bg and Bw are respectively the oil, gas and water formation volume factor, which corresponds
to the ratio of some volume of a liquid at reservoir conditions to the volume of the same liquid at
standard conditions. Finally, RS is the ratio of a solution of gas in the oil phase, and RV is a ratio of
a vaporized oil in the gas phase. The phase fluxes are given by Darcy’s law :

uα = −λK (∇pα − ραg) (5.2)

where K is the permeability of the porous media, α is the phase subscript (w, o or g), λα is the
mobility of phase α, given by λα = kr,α/µα. µα and ρα are respectively the viscosity and the density
of the phase α, and kr,α is the relative permeability of the phase α defined by kr,α = kα/K with kα

the permeability of phase α.

Sw + So + Sg = 1,

pc,ow = po − pw

pc,og = po − pg

(5.3)

where pc,αβ is the capillary pressure between phase α and β.

5.1.1.2 Initial and boundary conditions

The initial conditions are defined by the initial values of pressures p, saturations Sα and mixing
ratios RS and RV if present defined by the user or computed from an equilibrating procedure not
detailed here (see [92]). Boundary conditions are set as no-flow Neumann i.e.the reservoir has no fluid
communication with surrounding rocks. The fluid communication is with the wells model described
in the next paragraph. Finally, the equations are discretized in space with an upwind finite-volume
scheme using a two-point flux approximation and in time using an implicit (backward) Euler scheme.

5.1.1.3 Well models

Another boundary condition remains to be described, the well models. The production data that
have to be matched, are measured at the wells, these are critical to the history match process. OPM
provides two different well models : the "Standard" well model, and the multi-segment well model.
The standard model describes the flow conditions in each well with a single set of primary variable
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5.2 Results of ESMDA using GAN parameterization

[53]. For a 3-phase black oil system the equation for well p is :

Qt = Σα∈{o,g,w}gαQα, Fw =
gwQw

Qt
, Fg =

ggQg

Qt
(5.4)

Where Qt is the weighted total flow rate and Qα the flow rate of component α, Fw and Fg the weighted
fraction of water and gas in the well. The inflow rate for well W at reservoir conditions are calculated
as :

qr
α,j = TW,jMα,j [pj − (pbhp,W + hW,j)] (5.5)

where qr
α,j is the flow rate of phase α through cell connection j, Tw,j is the connection transmissibility

factor, Mα,j is the mobility of phase α at cell connection j, pbhp,w is the bottom -hole pressure of the
well W and hW,j is the pressure difference within the well bore between connection j and the well’s
bottom-hole datum depth. The flow rate is positive for flow from the reservoir to the well bore and
negative in the other way. The system is closed with this last equations :

Rα,w =
Aα,W −A0

α,W

∆t
+ Qα − Σj∈C(W )qα,j (5.6)

here C(W ) is the set of connections of the well W , Aα,W is the amount of component α in the well
bore, introduced for better stability of the well solution. Finally, two equations are needed to represent
how the wells are controlled. A well can be controlled by an imposed bottom-hole pressure target :

Rc,W = pbhp,W − ptarget
bhp,W (5.7)

Or it can be controlled by an imposed flow rate :

Rc,W = Qα −Qtarget
α (5.8)

The other well model available in OPM, the multi-segment well model, can be used when the cross
flow phenomenon is observed. The cross flow phenomenon occurs when fluids enter the well bore by
some connections of the well bore and get reinjected into the reservoir into another connection of the
same well. Because of the absence of multi segment wells in this study, it will not be detailed. The
reader can refer to [92] for more information.

5.2 Results of ESMDA using GAN parameterization

5.2.1 Problem description

In the reservoir application, the objective is to find models of the reservoir’s physical properties that
output predictions that fit observations gathered during the reservoir exploitation. For now, the ES-
MDA (Ensemble Smoother with Multiple Data Assimilation [27], described in Sec. 2.2 is used because
it manages to assimilate high dimensional data in a reasonable amount of simulations. Because the
problem is under constrained, many potential reservoir models fit our observations. The consequence
is that a probability distribution is sought as an answer to the ill-posed inverse problem. To rephrase,
the solution must have enough variability to quantify the probability of finding oil by drilling a well
at a specific location or estimate the oil quantity a given reservoir will produce.

The GAN parameterization allows generating sharp geological heterogeneities such as channels
compared to common techniques, and it uses continuous parameters drawn from a multi-dimensional
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5 History matching using GANs

normal distribution to encode the set of realistic reservoir models. On the other hand, it adds another
function, the generator neural network that is a source of non-linearity in the dynamical function
Eq. 5.9. Some recent work showed results using the ES-MDA algorithm with a GAN parameterization
of the reservoir models [16], [5].

R
32 7→ R

No

z 7→ OPM(GAN(z))
(5.9)

The question is : is the ensemble formulation adapted to the problem of history matching with
parameterization by the GAN of the geological heterogeneities ?

The problem described here can be seen as a multi-modal problem to solve, because of the non-
monotonic relation between the GAN parameters and the observation data. In this case, the ensemble
method is not suited to get different solutions with enough variability and this is what is demonstrated
in the toy experiment 2.5. However, the experiment is a simplification of reality and does not use all
the possible observations available in a real case. The addition of other observations such as seismic
observation increases the regularization imposed on the inverse problem and allows the problem to be
well conditioned. The objective here is to find a solution and its associated uncertainty represented
by the variance of the latent vector at the final iteration of ES-MDA.

5.2.2 Reservoir model description

In this experiment, history matching was used to determine the spatial distribution of different
variables (porosity, permeability) that have an influence on the predicted variables, well bottom hole
pressure (WBHP) computed at reference depth, well oil production rate (WOPR) at surface conditions
and the well water cut (WWCT) that is defined by the ratio of the water rate at surface conditions
and the fluid (oil and water) rate at surface conditions. These quantities are available for every well.
The history matching is known to be difficult because of the high-dimensionality of the parameter
space, the non-linear relation between parameters and observation spaces, and the non-Gaussian
distribution of the parameters. The non-linearity and the high dimension can be managed by using
particular methods such as iterative Kalman smoother. Specifically, Ensemble smoother for Multiple
Data Assimilation (ES-MDA) is a popular method [1].

To deal with the non-Gaussian distribution of the facies parameter, independently of the present
work Canchumuni et al. [16] proposed to use a generative adversarial network (GAN) as a parameter-
ization. The idea is to perform the history matching of the static variable in the latent space where
variability for the data assimilation algorithm can be obtained by drawing from known distributions.

5.2.2.1 Inverse problem formulation.

As a simplification, the permeability and the porosity are supposed to be constant for each rock type,
also called facies. In this way, the GAN has to learn only the rock type spatial distribution. A twin
experiment was designed by taking a geological model in the training set, running the porous media
fluid flow simulator and retrieving the well logs of this run yobs. Uncertainties are associated with
the observation to represent the measurement error. Uncertainty values were chosen for representing
typical errors found in reality : 3 bars for WBHP, 10% of the WOPR measure and 10% of the WWCT.
An uncertainty of 0.01 was added for the WWCT when water is absent from the extracted fluid. The
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5.2 Results of ESMDA using GAN parameterization

exact data assimilation procedure Fig. 5.1, is as follows :

– We draw N vectors (zi)i=1...N ∈ N 32(0, 1) in the input space of the GAN.

– Once z is passed through the generator function G, the output is a 2D reservoir modelisation X
which is a 2D matrix of size 100x100 pixels. G(z) = X

– The reservoir modelisation X is then pass in a porous media fluid flow simulator, OPM . It
outputs the well logs ypred. ypred = OPM(x) = OPM o G(z) which is the dynamical function.

– Then error between the observations and the predictions of the ensemble is computed : r =
yobs − ypred.

– Finally, ESMDA algorithm is used to correct the rock type spatial distribution parameters z.

Figure 5.1 – Scheme of the data assimilation loop.

5.2.3 Horizontal wells test case

The first test case consists of two horizontal wells, named AI1 for the injector and P1 for the
producer, respectively at the West and East sides of the reservoir. A horizontal well injects or extracts
oil on all sides of the reservoir as visible in Fig. 5.2. This simplified test case allows us to see the
behavior of the model without unnecessary complexity. One should note that the facies proportion
is the most determinant parameter because of the horizontality of the well, the connectivity has a
reduced influence on the predicted data. The reservoir fluid flow simulation parameters are :

Figure 5.2 – Scheme of reservoir

– A black-oil model with 2-phase fluid (oil/water) with no gas.
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5 History matching using GANs

Data assimilation parameters

Hyper parameters value

ESMDA iterations 5
Ensemble members 100
Stdd of noise added to observation 0.01

Table 5.1 – Hyper-parameters for horizontal wells experiment.

– The Corey model was used for relative permeability with no capillary pressure.

– Wells are controlled with historical control rates issued from forecast simulation of the same
case.

The imposed fluid flow constraint is the same one as the one used to create the true case in the twin
experiment. It means that the only parameters being estimated is the spatial distribution of facies,
controlled by the latent space of the GAN. A fluid flow simulation using OPM was conducted in order
to generate the well data such as WOPR, WWCT at well P1 and WBHP at well P1 and AI1. For the
data assimilation process the ES-MDA algorithm [27] was used. Table 5.1 shows the set of parameters
used for the experiment.
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Figure 5.3 – Constraint on dynamical data for the horizontal well test case. Red curve represent the
value of each variable assimilated. The bars represent the uncertainty on the measures.
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5.2.4 Results for horizontal wells test case
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Predictions and results for 5 iterations of ESMDA.

Figure 5.4 – Results of a history match on horizontal wells test case. ESMDA algorithm was used with
5 iterations and 100 ensemble members. Red curves are the observations, gray curves are
the predictions of the initial ensemble and the blue curves are the prediction at the 5th
iteration.

The results for ESMDA with 5 iterations and 100 ensemble members are shown in Fig. 5.4. A
reduction of ensemble variance on the predictions is observed as the ESMDA iterations advance. The
method converges to an ensemble that better fits the target distribution than the initial ensemble.
Figure 5.5 shows the reduction of data mismatch, defined in Eq. 5.10, after each ESMDA iteration. It
is also important to analyze the ensemble as numerical reservoir models.

Figure 5.6 represents the ensemble mean and standard deviation (std) at final iteration. One can
see that channels are visible in the mean subplot, showing that a majority of ensemble members have
the same channels. This means a low variability, visible in the pixel standard deviation plot, in the
ensemble members whereas, for horizontal wells test cases many solutions are possible because mainly
driven by the facies density in the reservoir model. The reservoir model corresponding to the final
ensemble can be seen in the Fig. 5.8.

Finally, Fig. 5.7 shows the distribution of the parameters at initial and final ES-MDA iteration.
These distributions seem to be close to Gaussian distributions. Moreover, the range of the parameter
values are included in the range of a multivariate normal distribution. One should note that during
the training the latent vectors are drawn from the multivariate normal distribution which implies that
realistic generations are only guaranteed for latent vectors drawn within the range of this distribution.

The conclusion of this first test case is that heterogeneities in the final ensemble are perfectly
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represented thanks to the GAN parameterization. Images are binary, and shows small differences on
the channel’s positions. Five ensemble iterations were sufficient for convergence under uncertainty
bars of observations, other runs with different numbers of ESMDA iterations were done in Sec. 5.2.4.1
to study the influence of this hyper-parameter.

DM =
Nobs
∑

i=1

|obsi − predi|
σobs,i

(5.10)
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Figure 5.5 – Data mismatch distribution over the 100 ensemble members for each of the 5 ESMDA
iterations.
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Figure 5.6 – Mean and std of the ensemble in the image space for a run with 5 iterations and 100
ensemble members.
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Figure 5.7 – Comparison of the distribution of each component of the latent vector of initial ensemble
(blue) and final ensemble (orange) for a run with 5 iterations and 100 ensemble members.
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Figure 5.8 – Samples of the final ensemble for a run with 5 iteration and 100 ensemble members.
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5.2.4.1 Number of ESMDA iterations

The number of ESMDA iterations is an important parameter that has to be defined a priori by
the user. It is possible to see its influence by comparing a run with 5 and 30 ESMDA iterations,
respectively illustrated Fig. 5.4 and Fig. 5.9. Figure 5.10 shows the data mismatch distribution of the
final ensembles for runs with 5, 10, 20 and 30 ESMDA iterations. It shows that the more ESMDA
iteration the more the uncertainty is reduced and predictions fit observations. However, it can also be
seen in Fig. 5.11b and 5.13 where results for 5 ESMDA iterations are reminded for visual comparison,
an ensemble collapse. In the sense that the variability of the ensemble is almost nonexistent due to a
low variance in the ensemble of latent vectors. An ensemble collapse is not a satisfying solution knowing
that the history match will be used to forecast the quantity of oil available in the future exploitation
of this reservoir. The more variability obtained in the final ensemble the more the distribution of
possible solutions is sampled. Largely different solutions are not possible to retrieve for an ensemble
data assimilation algorithm because of the ill-posed problem. Our case does not aim at finding the
multi-modal solution because additional constraints used in these cases such as seismic images are
not used. Instead, our study aims at getting the maximum variance possible that remains in the
uncertainty bars of observations. Mode collapse will be tackled in Sec. 5.2.4.2.
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Predictions and results for 30 iterations of ESMDA.

Figure 5.9 – Results of a history match on horizontal wells test case. ESMDA algorithm was used with
30 iteration and 100 ensemble members. Red curves are the observations, gray curves are
the predictions of the initial ensemble and the blue curves are the prediction at the 5th
iteration.
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Figure 5.10 – Results of a history match on horizontal wells test case. ESMDA algorithm was used
with 30 iteration and 100 ensemble members. Red curves are the observations, gray
curves are the predictions of the initial ensemble and the blue curves are the prediction
at the 5th iteration.
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(a) Mean and std of the ensemble in the image space for
a run with 5 iterations and 100 ensemble members.
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Figure 5.11 – Comparison of mean and std of analysis for a run with 100 ensemble members and 5
(left) and 30 (right) ESMDA iterations.

Figure 5.12 – Samples of the final ensemble for a run with 30 iteration and 100 ensemble members.
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Figure 5.13 – Comparison of the distribution of each component of the latent vector of initial ensemble
(blue) and final ensemble for a run with 5 ESMDA iterations (orange), and for a run
with 30 iterations (red). Both run were done using 100 ensemble members.

5.2.4.2 Ways of avoiding ensemble collapse

The ensemble collapse is the consequence of the analysis rank deficiency described in Sec. 2.3.5.
This rank deficiency happens in the case where Nens ≤ Nobs [61]. To remove the ensemble collapse
phenomenon it is necessary to increase the number of ensemble members or to use the subspace
inversion described in Sec. 2.3.5.

Ensemble size The influence of the ensemble size is shown in this paragraph. Ensemble of 500 and
1000 members were used in this study, the results with 1000 ensemble members will be described for
comparison. The cost of the total simulations is increased by a factor 10 compared to the cases in
5.2.4.1 for the same number of ESMDA iterations. 10 ESMDA iterations are necessary to have most of
the predictions under uncertainty bars of observations. Figure 5.14 shows a data mismatch quality that
have a better variability in the sense of fulfilling the observation uncertainties with spatially different
realizations. The ensemble size can be a way to increase the variability of the ensemble as shown
in Fig. 5.15, 5.16 and 5.17. Figure 5.15 underlines the fact that realizations do not have particular
redundant channels over the entire final ensemble and can be interpreted as a better analysis that
samples more efficiently the possible realizations that fit observation. It should be reminded that a
high number of numerical reservoir model fit observation due to horizontal well, it will be demonstrated
in Sec. 5.2.5 that for more complex test cases, mean of the ensemble in the image space must have
more visible properties. However, it is not always possible to increase the ensemble size on a real case
reservoir because of the important computing time due to the size of the reservoir numerical model,
such as in the 5SPOTS case in Sec. 5.2.5.
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Predictions and results for 10 iterations of ESMDA.

Figure 5.14 – Results of a history match on horizontal wells test case. ESMDA algorithm was used
with 10 iteration and 1000 ensemble members. Red curves are the observations, gray
curves are the predictions of the initial ensemble and the blue curves are the prediction
at the 5th iteration.
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Figure 5.15 – Mean and std of the ensemble in the image space for a run with 30 iterations and 100
ensemble members.
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Figure 5.16 – Samples of the final ensemble for a run with 30 iteration and 100 ensemble members.
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5.2.5 Five wells case (5SPOTS)

A second case was created with 5 different wells described in Fig. 5.18. At the center of the
reservoir a well injector (AI1) is present, and 4 well producers (P1, P2, P3, P4) are placed around the
producer. The objective of this case, referred to as the 5SPOTS case, is to give more importance to
the connectivity of the heterogeneities, compared to the horizontal well case where the facies density
was the main characteristic to match. Other properties such as porosity and permeability for each
facies and reservoir model are unchanged. An important property to expect in the history matching is
the facies at the wells’ location at the end of the data assimilation routine that are necessary to allow
close predictions from observations. Facies at well locations are known and determine the response
of the reservoir when under constraint such as injection or extraction of a fluid at the well. Most of
the time, permeable facies are present at well bore because fluids will be mostly advected by the most
permeable and porous media.

First a run with 15 ESMDA iterations and 100 ensemble members will be performed. Observations
are visible for each well Fig. 5.19, 5.20, 5.21 and 5.22. Uncertainties of observations are defined in the
same way as in the horizontal case.

Figure 5.18 – Scheme of 5SPOTS case. At the center of the reservoir a well injector (AI1) is present,
and 4 well producers (P1, P2, P3, P4) are placed around the producer.
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Figure 5.19 – Observations of WBHP for 5SPOTS case at injector well.
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Figure 5.20 – Observations of WBHP for 5SPOTS case at producer wells.
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Figure 5.21 – Observations of WOPR for 5SPOTS case at producer wells.
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Figure 5.22 – Observations of WWCT for 5SPOTS case at producer wells.

5.2.5.1 Results for 5SPOTS case

A first run was performed with 15 ESMDA iterations for 100 ensemble members. The history
matching results, illustrated Fig. 5.23, 5.24, 5.25 and 5.26 show a convergence to a satisfying solution
regarding the uncertainty bars on observation. However, the Fig. 5.27 shows a similar ensemble
collapse as in the previous case. The same experiment will be reproduced using the subspace inversion
in order to alleviate the ensemble collapse and have an increased diversity in the final ensemble.
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Predictions for 15 ES-MDA iterations.

Figure 5.23 – Results of history match for WBHP at 4 producer wells for 5SPOTS case. ESMDA
algorithm was used with 15 iterations and 100 ensemble members. Red curves are the
observations, gray curves are the predictions of the initial ensemble and the blue curves
are the prediction at the 15th iteration.
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Figure 5.24 – Results of history match for WOPR at 4 producer wells for 5SPOTS case. ESMDA
algorithm was used with 15 iterations and 100 ensemble members. Red curves are the
observations, gray curves are the predictions of the initial ensemble and the blue curves
are the prediction at the 15th iteration.
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Figure 5.25 – Results of history match for WWCT at 4 producer wells for 5SPOTS case. ESMDA
algorithm was used with 15 iterations and 100 ensemble members. Red curves are the
observations, gray curves are the predictions of the initial ensemble and the blue curves
are the prediction at the 15th iteration.
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Figure 5.26 – Results of history match for WBHP at injector well for 5SPOTS case. ESMDA algorithm
was used with 15 iterations and 100 ensemble members. Red curves are the observations,
gray curves are the predictions of the initial ensemble and the blue curves are the
prediction at the 15th iteration.
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Figure 5.27 – Mean and std of the ensemble in the image space for a run with 15 iterations and 100
ensemble members.

5.2.5.2 5SPOTS results using subspace inversion

It was demonstrated that the increase of ensemble members could limit the ensemble collapse to
an almost unique realization with very low variability in Sec. 5.2.4.2. But it comes with an impor-
tant computational cost. Another way to avoid ensemble collapse phenomena is to use the subspace
inversion method described in Sec. 2.3.5. The user has to choose the threshold value to truncate the
eigen components of the singular value decomposition done on the Kalman gain. This method will be
demonstrated on the 5SPOTS case because a higher number of observations are available due to the
high number of wells in this case and subspace inversion method acts as a way to select observations
that are the most correlated to parameters and removes others. The singular value decomposition
(SVD) cut value has to be set by the user, and to the knowledge of the author there is no way to
determine the cut value apriori. The cut value was set to 0.925.

Results are shown Fig. 5.28, 5.29 for WWCT and WOPR where predictions are not fitting obser-
vation as well as the case without the subspace inversion due to the absence of ensemble collapsed.
Moreover, Fig. 5.30 shows an interesting result where variability is visible in the analysis except at
well locations. This shows that the ensemble converged to solutions conditioned at the wells without
any additional information. That kind of application usually requires static constraint to get such
conditioning. Increasing SVD cut value can improve the history match while conserving the static
conditioning. The subspace inversion method has also the advantage to reduce the computational
cost of the assimilation algorithm by reducing the size of Kalman gain matrix when observations are
highly dimensional.
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Figure 5.28 – Results of history match for WOPR at 4 producer wells for 5SPOTS case. ESMDA
algorithm was used with 15 iterations and 100 ensemble members and a SVD cut at
0.925. Red curves are the observations, gray curves are the predictions of the initial
ensemble and the blue curves are the prediction at the 15th iteration.
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Figure 5.29 – Results of history match for WWCT at 4 producer wells for 5SPOTS case. ESMDA
algorithm was used with 15 iterations and 100 ensemble members and a SVD cut at
0.925. Red curves are the observations, gray curves are the predictions of the initial
ensemble and the blue curves are the prediction at the 15th iteration.
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Figure 5.30 – Mean and std of the ensemble in the image space for a run with 15 iterations and 100
ensemble members and a SVD cut at 0.925.

5.2.6 Discussion

The results of this study support the evidence that GAN parameterization of numerical reservoir
models by a continuous latent space that conserves the Gaussian assumption of Kalman theory is pos-
sible. It was shown that the use of ensemble data assimilation algorithm for history matching coupled
with GAN parameterization conserves the spatial distribution of geological heterogeneities and allows
conservation of variability in the predictions. Computational cost of our method is mostly during the
training of GAN, cost of the inference during data assimilation algorithm is not significant compared
to reservoir fluid flow simulations. GAN parameterization also allows an important dimension reduc-
tion of the parameter space. One of the limitations in our method is the necessity for the creation
of a dataset, similarly to object-based methods and the creation of training images. However, the
dataset properties seem less restrictive than the creation of training images that are case dependent
for a given heterogeneity type such as channels. The dataset needs to represent the diversity of the
different trends found in geological media. Another limitation is the availability of GPUs with enough
memory to increase the dimension of numerical reservoir models parameterized by a GAN.

The author would like to emphasize that the architecture of the GAN and its hyper-parameters
in general could be improved. Numerous variations and improvements have been done on GANs,
GANs can be conditioned at inference or could be disentangled giving each latent direction a visual
signification for example which could be interesting improvements in the method presented here.
Readers are encouraged to try improved versions and perform sensitivity analysis to see how these
results could be improved.
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Chapter 6
Producing realistic climate data with
generative adversarial network

6.1 Using balanced climate generator for data assimilation

The WGAN could be useful in this context due to its ability to learn the balance constraint of
an atmospheric state. This study aims at showing how generative neural networks can be used to
improve the spatial analysis of the observations gathered every day. This work focuses on precise
problems encountered during the data assimilation cycle, but will not be applied in a complete data
assimilation routine because of the complexity and the redundancy with the work applied to reservoir
data assimilation.

In Sec. 1.2.2, the different methods employed for initialization in the sense of starting with a balanced
atmospheric state before forecast step were mentioned. Houtekamer and Zhang [55] explains that the
main source of imbalance could come from the localization step. Localization is a way to remove
the sampling noise, due to the finite size of ensemble used in DA, and that creates spurious long
range forecast error correlations. As a consequence, the localization limits the influence of observation
information when it is geographically far from the corrected point. However, the localization implies
imbalanced corrections, e.g., it can increase the gradient in geopotential corrections which implies an
over-estimation of the nearly geostrophic wind velocity. We think that increasing the ensemble size by
producing realistic multivariate fields near a given situation would help to limit the use of localization.

Our idea was to use a Wasserstein GAN to learn from a global circulation model daily output to
learn the manifold of balanced atmospheric state. This study has the objective to prove the concept
of GAN application to climate data. Different development choices were made for simplicity of the
implementation. The main challenges to apply it to climate models were the following :

– A decision was made to work on the projected atmospheric fields (using equirectangular projec-
tion) to keep samples as images for simplicity of the GAN implementation.

– Using a projection implies the use of boundary conditions such as periodic boundary conditions
in the West-East direction. Which will be implemented and described in Besombes et al. [7]
included in Sec. 6.2. The projection of a sphere on a plane also has a geometrical effect such as
an increase in the size of meteorological objects located close to the poles, illustrated Fig. 6.1.
In Fig. 6.1 a field of Gaussian noise was projected on spherical harmonics and projected back
on the Cartesian grid. It illustrates the distortion of the meteorological objects when they are
located close to the poles. The truncation effect is due to the non-bijectivity of the projection
on the Cartesian grid of the spherical harmonics. This effect is the reason the field containing
the latitude of each pixel was introduced in the data, because it has an important influence on
the generation and it could facilitate the training.

– Dataset samples size : climate state is characterized by an important number of variables on a
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6 Producing realistic climate data with generative adversarial network

numerical grid with an important number of cells. Moreover, this grid is replicated on different
layers on the altitude direction. To alleviate the computational cost, especially the GPU memory
cost during the GAN training the z direction was considered as image channels (such as RGB
channels in colored images). This choice avoids the use of 3D convolutions that are very costly.

These solutions were chosen for their simplicity to prove the feasibility of the study and present
the concept of GANs for the geoscience community. But the use of GAN in other domains led to
important advances and derivations of deep learning and more precisely GAN models. For example
Perraudin et al. [88] developed DeepSphere which is a package that implements CNNs for spherical
data represented as a graph of connected nodes. This would be a way of reducing the error due to
projection on Cartesian grids. The increasing memory capacity of GPUs could also allow the use of
3D convolutional layers for better vertical coherence. Other ways of improvement are discussed in the
conclusion of Besombes et al. [7].

Gaussian noise on cartesian grid Gaussian noise truncated by spherical harmonics

Effect of equirectangular projection on cartesian grid

Figure 6.1 – Distortion and truncation effect for the equirectangular projection of spectral grid. A
Gaussian field on a Cartesian grid (left) is projected onto the spherical harmonics and
projected back on the Cartesian grid (right).

6.2 Producing realistic climate data with generative adversarial network
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Abstract. This paper investigates the potential of a Wasser-

stein generative adversarial network to produce realistic

weather situations when trained from the climate of a gen-

eral circulation model (GCM). To do so, a convolutional neu-

ral network architecture is proposed for the generator and

trained on a synthetic climate database, computed using a

simple three dimensional climate model: PLASIM.

The generator transforms a “latent space”, defined by a

64-dimensional Gaussian distribution, into spatially defined

anomalies on the same output grid as PLASIM. The analysis

of the statistics in the leading empirical orthogonal functions

shows that the generator is able to reproduce many aspects of

the multivariate distribution of the synthetic climate. More-

over, generated states reproduce the leading geostrophic bal-

ance present in the atmosphere.

The ability to represent the climate state in a compact,

dense and potentially nonlinear latent space opens new per-

spectives in the analysis and handling of the climate. This

contribution discusses the exploration of the extremes close

to a given state and how to connect two realistic weather sit-

uations with this approach.

1 Introduction

The ability to generate realistic weather situations has numer-

ous potential applications. Weather generators can be used to

characterize the spatio-temporal complexity of phenomena

in order, for example, to assess the socio-economical impact

of the weather (Wilks and Wilby, 1999; Peleg et al., 2018).

However, in numerical weather prediction the dimension of a

simulation can be very large: an order of 109 is often encoun-

tered (Houtekamer and Zhang, 2016). The small size of en-

sembles used in data assimilation, due to computational lim-

itations, leads to a misrepresentation of the balance present

in the atmosphere such as an increment in the geopotential

height, resulting in an unbalanced incremented wind because

of localization (Lorenc, 2003). Issues of small finite samples

of weather forecast ensembles could be addressed by con-

sidering larger synthetic ensembles of generated situations.

With current methods it is difficult to generate a realistic cli-

mate state at a low computational cost. This is usually done

by using analogs or by running a global climate model for a

given time (Beusch et al., 2020) but remains costly. Gener-

ators can also be used for super resolution so as to increase

the resolution of a forecast leading to better results than in-

terpolations (Li and Heap, 2014; Zhang et al., 2012).

The last decade has seen new kinds of generative meth-

ods from the machine-learning field using artificial neural

networks (ANNs). Among these, generative adversarial net-

works (GANs) (Goodfellow et al., 2020), and more precisely

Wasserstein GANs (WGANs) (Arjovsky et al., 2017), are

effective data-driven approaches to parameterizing complex

distributions. GANs have proven their power in unsupervised

learning by generating high-quality images from complex

distributions. Gulrajani et al. (2017) trained a WGAN on the

ImageNet database (Russakovsky et al., 2015), which con-

tains over 14 million images with 1000 classes, and suc-
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cessfully learned to produce new realistic images. Several

techniques developed for computer vision with GANs seem

promising for domains in the geosciences. Notable examples

of usage to date include Yeh et al. (2017) to do inpainting,

where the objective is to recover a full image from an incom-

plete one, Ledig et al. (2017) to do super resolution, or Isola

et al. (2017) to do image-to-image translation, where an im-

age is generated from another one, e.g., translate an image

that contains a horse into one with a zebra.

Data-driven approaches and numerical weather prediction

are two domains that share important similarities. Watson-

Parris (2021) explains that both domains use the same meth-

ods to answer different questions. This study and Boukabara

et al. (2019) also show that numerical weather prediction

contains lots of interesting challenges that could be tackled

by machine-learning methods. It clarifies the growing litera-

ture about data-driven techniques applied to weather predic-

tion. Scher (2018) used variational autoencoders to generate

the dynamics of a simple general circulation model condi-

tioned on a weather state. Weyn et al. (2019) trained a convo-

lutional neural network (CNN) on gridded reanalysis data in

order to generate 500 hPa geopotential height fields at fore-

cast lead times up to 3 d. Lagerquist et al. (2019) developed a

CNN to identify cold and warm fronts and a post-processing

method to convert probability grids into objects. Weyn et al.

(2020) built a CNN able to forecast some basic atmospheric

variables using a cubed-sphere remapping in order to allevi-

ate the task of the CNN and impose simple boundary condi-

tions.

While there is a growing interest in using deep-learning

methods in weather impact or weather prediction (Reichstein

et al., 2019; Dramsch, 2020), few applications have been de-

scribed using GANs applied to physical fields in recent years

(Wu et al., 2020). Notable examples include application to

subgrid processes (Leinonen et al., 2019), to simplified mod-

els such as the Lorenz ’96 model (Gagne et al., 2020) or to

data processing like satellite images (Requena-Mesa et al.,

2018). In particular, little is known about the feasibility of

designing and training a generator that would be able to pro-

duce multivariate states of a global atmosphere. A first diffi-

culty is to propose an architecture for the generator, with the

specific challenge of handling the spherical geometry. Most

of the neural network architectures in computer vision handle

regular two-dimensional images instead of images represent-

ing projected spherical images. Boundary conditions of these

projections are not simple, as the spherical geometry also in-

fluences the spread of the meteorological object as a function

of its latitude. These effects have to be considered in the neu-

ral network architecture. Another difficulty is to validate the

climate resulting from the generator compared with the true

climate.

In this study, in order to evaluate the potential of GANs

applied to the global atmosphere, a synthetic climate is

computed using the PLASIM global circulation simulator

(Fraedrich et al., 2005a), a simplified but realistic imple-

mentation of the primitive equations on the sphere. An ar-

chitecture is proposed for the generator and trained using an

approach based on the Wasserstein distance. A multivariate

state is obtained by the transformation of a sample from a

Gaussian random distribution in 64 dimensions by the gener-

ator. Thanks to this sampling strategy, it is possible to com-

pute a climate as represented by the generator. Different met-

rics are considered to compare the climate of the generator

with the true climate and to assess the realism of the gener-

ated states. Because the distribution is known, the generator

provides a new way to explore the climate, e.g., simulating

the intensification of a weather situation or interpolating two

weather situations in a physically plausible manner.

The article is organized as follows. The formalism of

WGAN is first introduced in Sect. 2 with the details of the

proposed architecture. Then, Sect. 3 evaluates the ability of

the generator to reproduce the climate of PLASIM with as-

sessment of the climate states that are produced by the gen-

erator. The conclusions and perspectives are given in Sect. 4.

2 Wasserstein generative adversarial network to

characterize the climate

2.1 Parameterizing the climate of the Earth system

The Earth system is considered to be the solution of an evo-

lution equation

∂tχ = M(χ), (1)

where χ denotes the state of the system at a given time and

M characterizes the dynamics including the forcing terms,

e.g., the solar annual cycle. While χ should stand for con-

tinuous multivariate fields, we consider its discretization in a

finite grid so that χ ∈ X with X = R
n, where n denotes the

dimension. Equation (1) describes a chaotic system. The cli-

mate is the set of states of the system along its time evolution.

It is characterized by a distribution or a probability measure,

denoted pclim.

Obtaining a complete description of pclim is intractable

due to the complexity of natural weather dynamics and be-

cause a climate database, pdata, is limited by numerical re-

sources and is only a proxy for this distribution.

For instance, in the present study, the true weather dynam-

ics M are replaced by the PLASIM model that has been

time-integrated over 100 years of 6 h forecasts. Accounting

for the spinup, the first 10 years of simulation are ignored.

Thus, the climate pclim is approximated from the resulting

climate database of 90 years, pdata. The synthetic dataset is

presented in detail in Sect. 3.1.

Thus, pdata lives in the n-dimensional space X, but it is

non-zero only on an m-manifold M (where m ≪ n) that can

be fractal. The objective is to learn a mapping

g : Z 7−→ X (2)
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from Z = R
m, the so-called latent space, to X. Moreover, g

must transform a Gaussian N (0,Im) to pdata ⊂ M.

The main advantage of such a formulation is to have a

function g that maps a low-dimensional continuous space Z

to M. This property could be useful in the domain of the

geosciences, notably in the climate sciences, where a high-

dimensional space is ruled by important physical constraints

and parameters.

Here the generator is a good candidate for learning the

physical constraints that make a climate state realistic with-

out the need to run a complete simulation. The construction

of the generator is now detailed.

2.2 Background on Wasserstein generative adversarial

networks

To characterize the climate, we first introduce a simple Gaus-

sian distribution pz = N (0,Im) of zero mean and covari-

ance the identity matrix Im, defined on the space Z = R
m,

called the latent space. The objective of an adversarial net-

work is to find a nonlinear transformation of this space Z

to X as written in Eq. (2) so that the Gaussian distribution

maps to the climate distribution, i.e., g#(pz) = pclim, where

g# denotes the push forward of a measure by the map g,

defined here as follows: for any measurable set E of X,

g#(pz)(E) = pz(g
−1(E)), where g−1(E) denotes the mea-

surable set of Z that is the pre-image of E by g. The latent

space, Z, can be seen as an encoded climate space where

each point drawn from pz corresponds to a realistic climate

state and where the generator is the decoder. Looking for

such a transformation is non-trivial.

The search is limited to a family of transformations {gθ }
characterized by a set of parameters θ . Thus, for each θ , the

nonlinear transform of the Gaussian pz by gθ is a distribu-

tion pθ . The goal is then to find the best set of parameters

θ∗ such that θ∗ = argminθ di(pθ ,pclim), where di is a mea-

sure of the discrepancy between the two distributions, so that

pθ∗ approximates pclim. This method is known as genera-

tive learning, where gθ is implemented as a neural network

of trainable parameters θ . Note that, being a neural network,

the resulting gθ is then a differentiable function.

Even with this simplified framework, the search for an op-

timal θ is not easy. One of the difficulties is that the differen-

tiability of gθ requires the comparison of continuous distri-

bution pθ with pclim, which is not necessarily a density on a

continuous set. To alleviate this issue, Arjovsky et al. (2017)

introduced an optimization process based on the Wasserstein

distance defined for the two distributions pclim and pθ by

W(pθ ,pclim) = inf
γ∈5(pθ ,pclim)

E(x,y)

[
‖x − y‖

]
, (3)

where 5(pθ ,pclim) denotes the set of all joint distributions

γ (x,y) whose marginals are, respectively,
∫
y
γ (·,dy) = pθ

and
∫
x
γ (dx, ·) = pclim. The Wasserstein distance, also called

the Earth mover distance (EMD), comes from optimal trans-

port theory and can be seen as the minimum work required

(in the sense of mass×transport) to transform the distribution

pθ into the distribution pclim. Thus, the set 5(pθ ,pclim) can

be seen as all the possible mappings, also called couplings, to

transport the mass from pθ to pclim. The Wasserstein distance

is a weak distance: it is based on the expectation, which can

be estimated whatever the kind of distribution. Hence, the

optimization problem is stated as

θ∗ = argminθW(pθ ,pclim), (4)

which leads to the WGAN approach.

One of the major advantages of the Wasserstein distance

is that it is real-valued for non-overlapping distributions. In-

deed, the Kullback–Leibler (KL) divergence is infinite for

disjoint distributions, and using it as a loss function leads to

a vanishing gradient (Arjovsky et al., 2017). The Wasserstein

distance does not exhibit vanishing gradients when distribu-

tions do not overlap, as did the KL divergence in the original

GAN formulation.

Unfortunately, the formulation in Eq. (3) is intractable. A

reformulation is necessary using the dual form discovered by

Kantorovich (Kantorovich and Rubinshtein, 1958). Refram-

ing the problem as a linear programming problem yields

W(pθ ,pclim) = sup
f ∈1−Lipshitzian

[
Ex∼pclim

[
f (x)

]
−Ex∼pθ

[
f (x)

]]
, (5)

where 1 − Lipshitzian denotes the set of Lipshitzian func-

tions f : Rn → R of coefficient 1, i.e., for any (x1,x2) ∈ R
n,

|f (x1)−f (x2)| ≤ ||x1 −x2||, || · || being the Euclidian norm

of Rn. For any 1−Lipshitzian function f the computation of

Eq. (5) is simple: the first expectation can be approximated

by

Ex∼pclim

[
f (x)

]
≈ Ex∼pdata

[
f (x)

]
, (6)

where the right-hand side is computed as the empirical mean

over the climate database pdata that approximates pclim in the

weak sense Eq. (6). The second expectation can be computed

from the equality

Ex∼pθ

[
f (x)

]
= Ez∼N (0;Im)

[
f (gθ (z))

]
, (7)

where the expectation of the right-hand side can be approxi-

mated by the empirical mean computed from an ensemble of

samples of z which are easy to sample due to the Gaussianity.

However, there is no simple way to characterize the set

of 1 − Lipshitzian functions, which limits the search for

an optimal function in Eq. (5). Instead of looking at all

1 − Lipshitzian functions, a family of functions {fw} param-

eterized by a set of parameters w is introduced. In practice, it

is engendered by a neural network with trainable parameters

w, called the critic.

Finally, if the weights of the network are constrained to a

compact space W , which can be done by the weight-clipping
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method described in Arjovsky et al. (2017), then {fw}w∈W
will be K-Lipschitzian with K depending only on W and

not on individual weights of the network. This yields

max
w∈W

[
Ex∼pdata

[
fw(x)

]
−Ez∼N (0;Im)

[
fw(gθ (z))

]]

≤ sup
f ∈1−Lipshitzian

[
Ex∼pdata

[
f (x)

]

−Ez∼N (0;Im)

[
f (gθ (z))

]]
, (8)

which tells us that the critic tends to the Wasserstein distance

when trained optimally, i.e., if we find the max in Eq. (8)

and if f is in (or close to) {fw}w∈W . The weight-clipping

method was replaced by the gradient penalty method in Gul-

rajani et al. (2017) because it diminished the training quality

as mentioned in Arjovsky et al. (2017). Because it results

from a neural network, any function fw is differentiable, so

that the 1−Lipshitzian condition remains to ensure a gradient

norm bounded by 1, i.e., for any x ∈ X, ||∇fw(x)|| ≤ 1. To

do so, Gulrajani et al. (2017) have proposed computing the

optimal parameter w̃(θ) as the solution of the optimization

problem

w̃(θ) = argsupwL(θ,w), (9)

where L is the cost function

L(θ,w) = Ex∼pdata

[
fw(x)

]
−Ez∼N (0;Im)

[
fw(gθ (z))

]

+ λEx̂∼p̂

[(
||∇fw(x̂)|| − 1

)2
]
, (10)

with λ the magnitude of the gradient penalty and where x̂ is

uniformly sampled from the straight line between a sample

from pdata to a sample from pθ (line 8) of Algorithm 1. The

optimal solution w̃(θ) is obtained from a sequential method

where each step is written as

wk+1 = wk + βk∇wL(θ,wk), (11)

where βk is the magnitude of the step. In an adversarial way,

Eq. (10) could be solved sequentially, e.g., by the steepest

descent algorithm with an update given by

θq+1 = θq − αq∇θW(pθq ,pclim), (12)

where αq is the magnitude of the step. We chose to use the

two-sided penalty for the gradient penalty method, as it was

shown to work well in Gulrajani et al. (2017). At conver-

gence, the Wasserstein distance is approximated by

W(pθ ,pclim) ≈ Ex∼pdata

[
fw̃(θ)(x)

]

−Ez∼N (0;Im)

[
fw̃(θ)(gθ (z))

]
. (13)

Hence, the solution of the optimization problem Eq. (4) is

obtained from a sequential process composed of two steps,

summarized in Algorithm 1. In the first step, the weights of

the generator are frozen with a given set of parameters θq and

the critic neural network is trained in order to find the optimal

parameter w̃(θq) solution Eq. (9) (lines 3–11 in Algorithm 1).

In the second step, the critic is frozen and the generator is set

as trainable in order to compute θq+1 from Eq. (12) (lines

12–17 in Algorithm 1). Note that in Algorithm 1, the steep-

est descent is replaced by an Adam optimizer (Kingma and

Ba, 2014), a particular implementation of stochastic gradient

descent which has been shown to be efficient in deep learn-

ing.

The following sections will aim to create a climate data

generator from the WGAN method. The next section will

describe the architecture of the network adapted to the com-

plexity of the dataset used.

2.3 Neural network implementation

WGANs are known to be time-consuming to train, usually

needing a high number of iterations due to the alternating as-

pect of the training algorithm between the critic and the gen-

erator. Our initial architecture used a simple convolutional

network for both, with a high number of parameters, but it

proved difficult to train a fitting multimodal distribution such

as green distributions in the left panels in Fig. 15. That is why

for this study a ResNet-inspired architecture (He et al., 2016)

was chosen. The goal of the residual network is to reduce the

number of parameters of the network and avoid gradient van-

ishing, which is a recurrent problem for deep networks that

results in an even slower training.

A network is composed of a stack of layers; when a spe-

cific succession of layers is used several times, we can refer

to it as a block. The link between two layers is named a con-

nection; a shortcut connection refers to a link between two

layers that are not successive in the architecture. A residual

block (Figs. 2 and 3) is composed with stacked convolution

and a parallel identity shortcut connection. The idea is that it

is easier to learn the residual mapping than all of it, so resid-

ual blocks can be stacked without observing a vanishing gra-

dient. Moreover, a residual block can be added to an N -layer

network without reducing its accuracy because it is easier to

learn F(x) = 0 by setting all the weights to 0 than it is to

learn the identity function. Residual blocks allow building of

deeper networks without loss of accuracy.

One should note that the PLASIM simulator is a spec-

tral model run on a Gaussian grid that consequently enforces

the periodic boundary condition. In order to impose the pe-

riodic boundary condition in the generated samples, it was

necessary to create a wrap padding layer, which takes multi-

ple columns at the eastern side and concatenates them to the

western side and vice versa. In the critic, the wrap padding is

only after the input, since the critic will discriminate the im-

ages from the generator that are not continuous in the west–

east direction. In the generator, the wrap padding layer is in

every residual block; it is necessary because the reduced size

of the convolution kernel compared to the image size makes

it more difficult for the network to extract features from both

sides of the image simultaneously. The north–south bound-
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ary is padded by repeating the nearest line, called the nearest

padding layer. In Figs. 1–5 padding layer arguments have

to be understood as (longitude direction, latitude direction),

where the integer means the number of columns or rows to

be taken from each side and placed next to the other one; e.g.,

Wrappadding (0,3) means the output image is six columns

larger than the input. If the argument is not mentioned, then

the arguments for wrap and nearest padding are (0,1) and

(1,0), respectively.

2.3.1 Critic network

The critic network input has the shape of a sample from the

dataset X ∈ R
nlat×nlon×nfield.

Its output must be a real number because it is an approx-

imation of the Wasserstein distance between the distribution

of the batch of images from the dataset and the one from

the generator that is being processed. The architecture ends

with a dense layer of one neuron with linear activation. The

core of the structure is taken from the residual network and

can be seen in Fig. 1. After the custom padding layers men-

tioned previously, the critic architecture is a classical residual

network, starting with a convolution with 7 × 7 kernels, fol-

lowed by a maximum pooling layer to reduce the image size

and a succession of convolutional and identity blocks (Figs. 2

and 3). At each strided convolutional block, s = 2 in Fig. 3,

the image size is divided by a factor 2. It is equivalent to

a learnable pooling layer that can increase the result (Sprin-

genberg et al., 2014). Finally, an average pooling is done, and

the output is fed to a fully connected layer of 100 neurons and

then to the output neuron. Batch normalization is not present

in the critic architecture following Gulrajani et al. (2017); the

batch normalization changes the discriminator’s problem by

considering all of the batch in the training objective, whereas

we are already penalizing the norm of the critic’s gradient

with respect to each sample in the batch.

2.3.2 Generator architecture

The input of the generator network (see Fig. 4) is an m-

dimensional vector containing noise drawn from the nor-

mal distribution Nm(0,Im) for the numerical experiment

m = 64. The output of the generator has the shape of a sam-

ple of the dataset X ∈ R
nlat×nlon×nfield. The input is passed

through a fully connected layer of output shape (8,16,128)

and fed to residual blocks. The rest of its architecture is also

a residual network with a succession of modified convolu-

tional blocks (relative to the one in the critic network). Mod-

ifications of the convolutional block are the following.

1. An upsampling layer is added to increase the image size

for some convolutional blocks.

2. Wrap and nearest padding layers are added in, respec-

tively, the west–east and north–south directions.

3. A batch normalization layer is present after convolu-

tional layers.

One could argue that the ReLU activation function is not

differentiable in 0, but this is managed by taking the left

derivative in the software implementation. The study does

not claim that the network architectures used are optimal: the
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Figure 1. Critic architecture.

computational burden was too high to run a parameter sensi-

tivity study. Guidelines from Gulrajani et al. (2017) were fol-

lowed, and the hyperparameters were adapted to the current

problem. It showcases an example of hyperparameters pro-

ducing interesting results, and inspired readers are encour-

aged to modify and improve this architecture.

2.3.3 Training parameters

For the training phase, the neural network’s hyperparameters

are summarized in Table 1. The training was performed on

an Nvidia Tesla V100-SXM2 with 32 GB of memory over

2 d. The choice of the optimizer, initial learning rate, weight

of gradient penalty (λ in Eq. 10) and ratio between critic and

Figure 2. Residual identity block for the critic.

Table 1. Hyperparameters for training step.

Network

Hyperparameters Generator Critic

Iterations 30 000 150 000

Batch size 128 128

Optimizer Adam Adam

Initial learning rate (lr) 1e−3 1e−3

Learning rate decay every 3000 iterations 0.9 0.9

Number of trainable weights 1.5e6 4e6

λ in Eq. (10) 10
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Figure 3. Residual convolutional block for the critic. If s is different

from 1, it is referenced as a strided convolutional block in Fig. 1.

generator iteration was directly taken from Gulrajani et al.

(2017). The iterations mentioned in Table 1 are the number

of batches seen by each neural network.

The training loss in Fig. 6 was smoothed using exponential

smoothing:

st = αyt + (1 − α)st−1, (14)

where yt is the value of the original curve at index t , st is

the smoothed value at index t and α is the smoothing fac-

tor (equal to 0.9 here). An initial spinup of the optimization

process tends to exhibit an increase in the loss of the first

steps of the training phase before decreasing. This can be ex-

plained by the lack of useful information in the gradient due

to the initial random weights in the network. A decrease in

the Wasserstein distance can be seen in Fig. 6, which indi-

cates a convergence during the training phase, although it is

possible to use the loss of the critic as a convergence criterion

because the Wasserstein loss is used and has a mathematical

meaning such as the distance between synthetic and real data

Figure 4. Generator architecture.

distributions and should converge to 0. However, WGAN-

GP is not yet proven to be locally convergent under proper

conditions (Nagarajan and Kolter, 2017); the consequence is

that it can cycle around equilibrium points and never reach

a local equilibrium. Condition on loss derivative is also dif-

ficult because of the instability of the GAN training proce-

dure. Consequently, a quality check using metrics adapted to

the domain on which the GAN is applied is still necessary.

Moreover, at the end of the training, a first experiment was

conducted to see whether the generations are present in the

dataset. The histogram of the Euclidian distance divided by

the number of pixels in one sample between one generation

and all of the dataset can be seen in Fig. 7. Here, one can

see that the minimum is around 0.8, which shows that the

generated image is not inside the dataset. This experiment

shows that the generator is able to generate samples without

reproducing the dataset. It should be noted that in the WGAN
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Figure 5. Residual convolutional block for the generator. The up-

sampling layer can be removed if not necessary and is mentioned

when used in Fig. 4.

framework, the generator never directly sees a sample from

the dataset.

There are no stopping criteria for the training, and it was

stopped after 35 000 iterations in the interest of computa-

tional cost. It should be highlighted that the performance of

generative networks and especially GANs is difficult to eval-

uate. In the deep-learning literature, the quality of the images

generated is assessed using a reference image dataset such as

ImageNet (Russakovsky et al., 2015) and computing the in-

ception score (IS) or the Fréchet inception distance (FID).

Figure 6. Smoothed version of the Wasserstein distance computed

during the training. The vertical axis is in log scale.

Figure 7. Two-norm distance between a generated sample and all

the dataset samples.

Table 2. Variables used in the dataset.

Variables

Name Short name Prognostic Diagnostic

Temperature (K) ta ×
Eastward wind (ms−1) ua ×
Northward wind (Pa s−1) va ×
Relative humidity (frac.) hus ×
Vertical velocity (Pa s−1) wap ×
Vorticity (s−1) ζ ×
Divergence (s−1) d ×
Geopotential height (gpm) zg ×
ln(surface pressure) P ×
Latitude (degree) lat ×
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Both use the inception network trained on ImageNet: the IS

measures the quality and diversity of the images by classi-

fying them and measuring the entropy of the classification,

while the FID computes a distance between the features ex-

tracted by the inception network and is more robust to GAN-

mode collapse.

Because our study does not apply to the ImageNet dataset,

it is necessary to compute our own metrics. Section 3 pro-

poses an approach for this kind of method in the domain

of geosciences and more precisely the study of atmospheric

fields. Our main objective is to assess the fitting quality of

the dataset climate distribution.

3 Evaluation and exploration of the generator

The metrics by which the results will be analyzed are visual

aspects, capacity to generate atmospheric balances and statis-

tics of the generations compared to climate distribution. For

the latter, the chosen metric is the Wasserstein distance. Be-

cause it is the same metric the generator has to minimize

during the training step, it seems a good candidate to as-

sess the training quality. One could argue that the network is

overly trained on this metric; that is why we use other metrics

such as mean and standard deviation differences and singular

value decomposition to complete our analysis. Finally, be-

cause no trivial stop criteria are available, it is interesting to

see where the magnitude of the Wasserstein distance is large

so as to diagnose some limitations of the trained generator

that would provide some ideas of improvements.

3.1 Description of the synthetic dataset

To create synthetic data, a climate model known as PLASIM

(Fraedrich et al., 2005a) was used, which is a general circula-

tion model (GCM) of medium complexity based on a simpli-

fied general circulation model PUMA (Portable University

Model of the Atmosphere) (Fraedrich et al., 2005b). This

model based on primitive equations is a simplified analog

for operational numerical weather prediction (NWP) models.

This choice facilitates the generation of synthetic data thanks

to its low resolution and reasonable computational cost. Dif-

ferent components can be added to the model in order to im-

prove the circulation simulation such as the effect of ocean

with sea ice, orography with the biosphere or annual cycle.

A 100-year daily simulation was run at a T42 resolution

(an approximate resolution of 2.8◦). We used orography and

annual cycle parameterization; ocean and biosphere mod-

elization were turned off in order to keep the dataset sim-

ple enough for our exploratory study. We removed the first

10 years in order to keep only the stationary part of the sim-

ulation. These resulting 90 years of simulation constitute the

sampling of the climate distribution that we aim to reproduce.

As preprocessing, each of the channels was normalized.

Each database sample is an 82-channel (nfield) two-

dimensional matrix of size 64 (nlat) by 128 (nlon) pixels. The

channels represent seven physical three-dimensional vari-

ables: the temperature (ta), the eastward (ua) and northward

(va) wind, relative humidity (hus), vertical velocity (wap),

the relative vorticity (ζ ), divergence (d) and geopotential

height (zg) at 10 pressure levels from 1000 to 100 hPa, plus

the surface pressure (ps). Another channel was added to rep-

resent the latitude: it is an image going from −1 at the top of

the image (North Pole) to 1 at the bottom (South Pole) in ev-

ery column. It was found that hard coding the latitude in the

data improved the learning of physical constraints, allowing

the network to be sensitive to the fact that the data are repre-

sented by the equirectangular projection of the atmospheric

physical fields, and, for example, the size of meteorologi-

cal objects increases closer to the poles. Finally, the choice

of having diagnostic variables in the dataset was to help the

post-processing, and assessment of their necessity requires

further research.

3.2 Comparison between climate dataset and

generated climate

Our study aims to have a generator able to reproduce the cli-

mate distribution present in the dataset made from the low-

resolution GCM PLASIM. This section proposes a way to

assess the quality of the distribution learned by the WGAN.

The first required property for a weather generator is a

low computational cost compared to the GCM that produced

the data. Here the simulation with the GCM PLASIM took

50 min for a 100-year simulation in parallel on 16 processors,

whereas the generator took 3 min to generate 36 500 samples

equivalent to a 100-year simulation on an NVIDIA Tesla V-

100.

Each generated sample is compared with dataset samples.

Figures 8 and 9 show a sample where only the pressure lev-

els 1000, 500 and 100 hPa are represented for readability. It

should be noted that the generated fields seem to be spatially

noisy compared to the dataset. The periodic boundary is re-

spected knowing that in the dataset the borders are located at

the longitude 0◦ where no discontinuities can be observed. In

the figures, the image is translated in order to have Europe at

the center of the image and to see whether some discontinu-

ities remain.

In order to quantitatively assess the generator quality,

Figs. 10 and 11 show the mean and standard deviation pixel-

wise differences over 10 800 samples (equivalent to 30 years

of data) between normalized dataset and generations. It ap-

pears that fields where small-scale patterns are present are

the most difficult to fit for the generator.

In order to go further in the analysis of the generated cli-

mate states, a singular value decomposition (SVD) was per-

formed over 30 years of the dataset (renormalized over the

30 years). Then the same number of generated data was con-

sidered and projected onto the five first principal components
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Figure 8. Sample on three different pressure levels (1000, 500 and 100 hPa) taken from the dataset. The samples were horizontally transposed

in order to have Europe at the center of the images. Coastlines were added a posteriori for readability. Units available in Table 2.

of the SVD that represent 75 % of explained variance of the

dataset. In Fig. 12 the dot product is represented between

SVD components derived from the dataset (ui)i∈{0,...,4} and

another one derived from the generated data (vi)i∈{0,...,4}.
Figure 12 represents the cross-covariance matrix defined by

sij = ui · vj . Values close to 1 or −1 show that the eigen-

vectors for both datasets (original and generated) are simi-

lar. This is another way of assessing whether the covariance

structure of the original data is being preserved, and Fig. 12

shows that the five eigenvectors are similar. One should note

that the SVD algorithm used from Pedregosa et al. (2011)

suffers from sign indeterminacy, meaning that the signs of

SVD components depend on the random state and the algo-

rithm. For this reason, we consider the dot product close to

both 1 and −1. One should note that an inversion remains

between the components with indexes 3 and 4, which could
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Figure 9. Sample on three different pressure levels (1000, 500 and 100 hPa) generated by the network. The samples were horizontally

transposed in order to have Europe at the center of the images to verify the quality of the periodic boundary. Coastlines were added a

posteriori for readability.

be explained by a difference of eigenvalue order (sorted in

decreasing order) in each dataset that determines the order of

eigenvectors. The fourth principal direction (index 3 in the

figure) of the generated data represents more variation of the

generated dataset than the same direction explains variation

in the original dataset. Figure 13 shows clearly the inversion

of the last principal components between the dataset and gen-

erations. This suggests a way of improving our method in

future work.

Figure 15 shows the temperature (at the pressure level

1000 hPa) distribution at different pixel locations corre-

sponding to the red dots in Fig. 14. Different latitudes (42,

−2 and −70◦) were chosen to represent diverse distribu-

tions. A value of Wasserstein distance is associated with each

plot, representing the distance between the two normalized

https://doi.org/10.5194/npg-28-347-2021 Nonlin. Processes Geophys., 28, 347–370, 2021



358 C. Besombes et al.: Producing realistic climate data with GANs

Figure 10. Mean error over 30 years of the normalized dataset and the same number of normalized generated samples on three different

pressure levels (1000, 500 and 100 hPa). The samples were horizontally transposed in order to have Europe at the center of the images.

Coastlines were added a posteriori for readability.

distributions. It is notable that the Wasserstein distance in

the context of GAN training was introduced by Arjovsky

et al. (2017) in order to avoid the mode collapse phenomenon

where the generated samples produced by the GAN are rep-

resenting only one mode of the distribution. In Fig. 15, even

if the figure shows that some bimodal distributions remain

approximated by a unimodal distribution, the span of these

distributions covers the multiple modes of the targeted distri-

bution. This explains why the higher Wasserstein distance in

the figure is in the top-left panel, since despite the bimodal-

generated distribution the high temperature values do not

seem to be represented by the generated samples.

It follows that a good way to see the general statistics

learned by the generator is to plot the Wasserstein distance

for every pixel and for every variable. This result can be vi-

sualized spatially in Fig. 16, where we observe that certain

variables are better fitted by the generator than others. The

figure also shows that areas with more variability such as land

areas and more precisely mountainous areas are the most dif-

ficult to fit. As a way to better interpret this metric, Fig. 17

represents the distributions corresponding to the minimum

and maximum values of the metric. The distribution of the

Wasserstein distance can also be visualized grouped by pres-

sure level and type of variable in Fig. 18. The wap variable
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Figure 11. Standard deviation error over 30 years of the normalized dataset and the same number of normalized generated samples on

three different pressure levels (1000, 500 and 100 hPa). The samples were horizontally transposed in order to have Europe at the center of

the images. Coastlines were added a posteriori for readability.

that represents the vertical velocity seems to be the one with

the higher Wasserstein distance value.

3.3 Analysis of the atmospheric balances

The previous subsection has shown the ability of the gen-

erator to engender weather situations and climate similar to

those of the simulated weather. However, geophysical fluids

are featured by multivariate fields that present known bal-

ance relations. Among these balances, the simplest ones are

the geostrophic and thermal wind balances (see, e.g., Vallis,

2006). The next two sections assess the ability of the genera-

tor to reproduce the geostrophic and thermal wind balances.

3.3.1 Geostrophic balance

The geostrophic balance occurs at a low Rossby number

when the rotation dominates the nonlinear advection term.

Two forces are in competition: the Coriolis force, f k × u,

where k denotes the unit vector normal to the horizontal

(f is the Coriolis parameter and u is the wind) and the pres-

sure term −∇p8, where 8 is the geopotential and where ∇p

denotes the horizontal gradient in the pressure coordinate.
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Figure 12. Scalar product of SVD components derived from a

dataset and generated data.

Asymptotically, the Coriolis force is then balanced by the

pressure term which leads to the geostrophic wind:

ug = 1

f
k × ∇p8. (15)

The geostrophic flow is parallel to the line of constant

geopotential, and it is counterclockwise (clockwise) around

a region of low (high) geopotential. The magnitude of the

geostrophic wind scales with the strength of the horizontal

gradient of geopotential Vallis (2006, Sect. 2.8.2, p. 92).

This asymptotic balance Eq. (15) is verified to within 10 %

of error at mid latitude, that is, u = ug +uag, where the mag-

nitude of the ageostrophic wind, uag, is less than 0.1 of the

magnitude of the real wind u.

Figure 19a illustrates a particular boreal winter situation

from the PLASIM dataset, focusing on the mid latitude and

presenting a low area of geopotential in the southwest of Ice-

land. It appears that the wind is well approximated by the

geostrophic wind, which is quantitatively verified in Fig. 20a

that shows the norm of the ageostrophic wind normalized by

the norm of the wind (that is, the relative error when ap-

proximating the wind by the geostrophic wind): the order

of magnitude of the error is around 20 %. Properties of the

geostrophic flow are visible, with a counterclockwise flow

around the low geopotential. The wind is maximum where

the horizontal gradient of geopotential is maximum, while

its change in direction follows the trough.

A similar behavior can be observed in Fig. 19b, which il-

lustrates a weather situation selected from the render by the

generator of some samples in the latent space, so as to rep-

resent a boreal winter situation. This time, a low geopoten-

tial is found in the north of Europe. While the geopoten-

tial field is noisy (it is less smooth than in Fig. 19a), the

wind is again found to be nearly geostrophic, verifying the

geostrophic flow properties to within an error of 35 % (see

Fig. 20b). The geopotential and wind fields were projected

onto the solved dynamic truncation in order to remove the

subgrid component due to the noise in the output of the gen-

erator. Despite the truncation, the geostrophic approximation

seems to not be respected everywhere and could be a quanti-

tative metric to monitor in order to improve our method.

We find that weather situations generated from samples in

the latent space reproduce the geostrophic balance at an order

of approximation that is similar to the one of the real dataset.

This means that the generator is able to produce the realistic

multivariate link between the wind and the geopotential. This

property is essential in operational weather forecasting, e.g.,

in producing balanced fields in the ensemble Kalman filter.

3.3.2 Thermal wind balance

The thermal wind balance arises by combining the

geostrophic wind Eq. (15) and the hydrostatic approxi-

mations, ∂8
∂p

= − 1
ρ

, where ρ is the density (Vallis, 2006,

Sect. 2.8.4, p. 95): taking the derivative of Eq. (15) with re-

spect to the pressure p makes the hydrostatic approximation

appear, so that the vertical derivative of the geostrophic wind

can be written as

∂8

∂p
= − R

pf
k × ∇pT , (16)

where the ideal gas equation, p = ρRT , has been used.

Equation (16) is the thermal wind balance that relates the

vertical shear of the horizontal wind to the horizontal gradi-

ent of temperature. In particular, when the temperature falls

in the poleward direction, the thermal wind balance predicts

an eastward wind that increases with height.

Figure 21a and b show the vertical cross section of the

zonal average of temperature and of the zonal wind for a

particular weather situation in the dataset, corresponding to

a boreal winter situation of the same weather situation rep-

resented in Fig. 21: the temperature is higher in the South-

ern Hemisphere than in the Northern Hemisphere, with a

strong horizontal gradient of temperature in latitude ranges

[−80◦,−40◦] and [40◦,80◦]. At the vertical of the horizontal

gradient of temperature, the wind is eastward and increases

with the height: this illustrates the thermal wind balance

which produces a strong curled jet at the vertical of the strong

horizontal gradient of temperature as shown in Fig. 22a that

illustrates, for the same weather situation, the temperature

at the bottom (800 hPa) with the horizontal wind at the top

(200 hPa) of the troposphere.

The same illustrations are shown in Fig. 21c and d when

considering a generated situation, selected to correspond to a

boreal winter situation: the characteristics related to the ther-

mal wind balance as observed before are found again. This
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Figure 13. Spatial components corresponding to principal components of SVDs applied to the dataset and the generated samples.

results in the generator being able to render a weather sit-

uation that reproduces the thermal wind balance. Moreover,

Fig. 23 shows the thermal wind balance averaged on 30 years

for the dataset (Fig. 23a) and generations (Fig. 23b); both are

very similar.

This section has shown the ability of the generator to

reproduce some important balances present in the atmo-

sphere. In particular, the generator is able to produce mid-

latitude cyclones whose velocity field is in accordance with

the geostrophic balance. The authors emphasize that it is nec-

essary to conduct more analysis of the weather situations out-

putted by the generator, which is beyond the scope of this

study. For example, it would be interesting to assess whether

other inter-variable balances are present, such as the ω equa-

tion or vertical structures. Note that adding advanced diag-

nostic fields in the output of the generator could be investi-

gated to improve the realism.
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Figure 14. Location from where the temperature distributions are plotted in Fig. 15. The Wasserstein distance value associated for each plot

was computed on normalized data.

Figure 15. Temperature distribution at different locations for 5000 samples from dataset (green) and generated (blue).

3.4 Exploration of the latent space structure and its

connection to the climate

An exploratory study was done on the property of the la-

tent space and its consequence in the climate space in regard

to climate domain problematics. If the generator is perfectly

trained, then each sample generated with it should represent

a typical weather situation. It is hard to figure out what the at-

tractor of the climate is. However, the geometry of the Gaus-

sian in high dimension being known, it is easy to characterize

the climate in the latent space.
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Figure 16. Wasserstein distance between 5000 datasets and generated samples on each pixel and each channel.

Figure 17. Distributions with the higher (a) and lower (b) Wasser-

stein distances computed on normalized data. The coordinates of

corresponding pixels are, respectively, in latitude and longitude.

3.4.1 Geometry of the normal distribution

For a normal law in the high dimension space Z = R
m, i.e.,

with m larger than 10, the distributions of the samples are

all located in a spherical shell of radius
√

m and of thickness

on order 1√
2

(see, e.g., Pannekoucke et al., 2016). Because

the covariance matrix Im is a diagonal of constant variance,

no direction of Rm is privileged, leading to an isotropic dis-

tribution of the direction of the sampled vectors: their unit

directions uniformly cover the unit sphere. Another property

Figure 18. Wasserstein distance between 5000 datasets and gener-

ated samples on each pixel grouped by pressure height (a) or vari-

ables (b).
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Figure 19. Geostrophic and ageostrophic wind derived from geopo-

tential at 500 hPa. Situation taken from dataset (a) and gener-

ated (b).

Figure 20. Relative error in the norm between geostrophic wind

and normal wind shown in Fig. 19 for the situation taken from

dataset (a) and generated (b).

is that the angle formed by two sampled vectors is approx-

imately of magnitude π
2

: two random samples are orthogo-

nal. These are simple consequences of the central limit the-

orem which predict, for instance, that the distance of a sam-

ple to the center of the sphere is asymptotically the Gaussian

N (
√

m, 1
2
).

Considering these properties, one can introduce a

two dimensional pseudo-representation which preserves the

isotropy of the distribution as well as the distribution to the

origin: a random sample vector x = (x1,x2, · · ·,xm) in R
m is

represented by the projection P2(x) = ||x|| 1√
x2

1+x2
2

(x1,x2),

where || · || stands for the Euclidian norm in R
m.

Figure 24 illustrates this low-dimensional representation

of an ensemble of 10 000 samples of the normal law in di-

mension m = 64. For instance, points A and B represent two

independent samples: their distance to the origin is closed to√
m = 8, and their angle is closed to π

2
. While m = 64 can

be considered a very small dimension, it appears that the dis-

tribution of the point’s distance to the origin is well fit by the

Gaussian N (
√

64, 1
2
) (see inset figure in Fig. 24). Hence, it

results that for this dimension, the interpretation of a Gaus-

sian distribution as a spherical shell applies, with interesting

consequences for extremes or typical states. A typical sample

of this normal law is a point near the sphere of radius
√

64,

while an extreme sample has a norm lying in the tails of the

distribution N (
√

64, 1
2
).

This suggests evaluating whether the extremes of the latent

space correspond to those of the meteorological space.

3.4.2 Connection between extremes in the latent and

physical spaces

Knowing what are the extremes in the latent space might be

helpful to determine what are the extremes of the climate,

at least to determine what are extreme situations closed to a

given state.

For any sample in the latent space, say point A, we can

construct the point on the sphere
√

m along the same direc-

tion of A, A, which can be considered the most likely typical

state near A. Along the same direction of A, we can also

construct the extreme situations A± whose distances to the

origin,
√

m ± 3√
2

, lay, respectively, in the left and right tails

of the Gaussian distribution N (
√

m, 1
2
).

Figure 25 represents the weather situation generated from

a randomly drawn latent vector from a 64-dimensional Gaus-

sian N (0,1) sample A (Fig. 25a). Panel (a) represents a la-

tent vector with a Euclidian norm equal to 7.69, close to the

mean of the radial distribution of the hypersphere mentioned

in Sect. 3.4.1. In the climate space this sample shows a me-

teorological object above northern Europe in the shape of a

geopotential minimum which can be interpreted as a storm.

This sample is the same as the one represented in Figs. 19b,

21b, and 22b.

The most likely typical state A (Fig. 25b) is the radial pro-

jection of the latent vector A onto the mean of the radial dis-

tribution; thus, its Euclidian norm is equal to 8. Because sam-

ple A has a norm close to sample B, the weather situations

are very similar at the geopotential height at z1000. This is an

expected effect because by construction of the generator the

input space is continuous, so two points in the latent space

must be similar. Extreme situation A± along the direction

of A is represented in Fig. 25c and d. Both panels shows

clear differences in the geopotential height. First the panel

(Fig. 25c) shows a decrease in the storm located above north-

ern Europe; the same effect is visible in the south of South

America. However, the weather situation is very similar to

Fig. 25a. By contrast, Fig. 25d represents a deeper geopoten-
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Figure 21. Temperature (K) and zonal wind (m s−1) latitude zonals from a boreal winter situation: the thermal wind balance. Left panels

correspond to a situation taken from the dataset. (a) Zonal temperature and (c) zonal wind. Right panels correspond to a situation taken from

the generator. (b) Zonal temperature and (d) zonal wind.

Figure 22. Thermal wind balance from the boreal winter situation

shown in Fig. 21: (a) sample from the dataset; (b) sample generated

by the generator. The temperature (K) is from pressure level 800 hPa

and the wind (m s−1) from 200 hPa.

tial height minimum at the pre-existing storm of sample A.

Thus, Fig. 25 seems to show a certain structure of the latent

space generator where the radial direction could represent the

strength of the meteorological objects such as storms above

Europe, for example. It could be explained by the fact that the

generator aims to map a distribution (64-dimensional Gaus-

sian in the latent space) to another (weather distribution in

the PLASIM physical space). Rare events exist in the latent

space on the tails of the Gaussian distribution’s potentially

extreme weather situations. One of the ways to do a such

mapping is to use the radial direction to represent high- or

low-probability states of the climate. An important conclu-

sion is that, for a given situation, the most likely state and the

extremes are interesting physical states. This could open new

possibilities to study an extreme situation close to a given

one, which is an important topic, e.g., for insurance or to

improve the study of high weather impact in ensemble fore-

casting.

The link of the animation of such interpolation is available

on GitHub1 of the project.

3.4.3 Interpolation in the latent space

Even if there are no dynamics in the latent space, which

makes it impossible to construct a prediction from this space,

we can consider how to interpolate two latent states. A naive

answer is to compute the linear interpolation between two

samples of the latent space A and B,

Mt = G((1 − t)A + tB), (17)

which results in the red chordal illustrated in Fig. 24. The

chordal interpretation highlights a major drawback of the lin-

ear interpolation: middle points of the chordal are extremes;

these intermediate points should not correspond to typical (or

even physically realizable) weather situations.

1https://github.com/Cam-B04/Producing-realistic-climate-data-

with-GANs (last access: 15 January 2021)
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Figure 23. Temperature (K) and zonal wind (m s−1) latitude zonals averaged on the 30-year subsample. Left panels correspond to a situation

taken from the dataset: (a) zonal temperature and (c) zonal wind. Right panels correspond to a situation taken from the generator: (b) zonal

temperature and (d) zonal wind.

Figure 24. Pseudo-spherical metaphorical representation of 10 000

samples of the normal distribution in R
m with m = 64 and the dis-

tribution of the distance of samples to the center of the spherical

shell. For a sample A, A± denotes two extreme situations along the

direction of A. Any second sample B, typical of the distribution,

appears orthogonal to A. The inset figure represents the radial dis-

tribution compared with the asymptotic central limit theorem (CLT)

Gaussian distribution N (
√

m, 1
2
) (thin red curve).

Figure 25. Generations obtained by radial interpolation in the latent

space. Panel (a) is the image corresponding to a randomly drawn la-

tent vector A (two-norm: 7.69), (b) is its projection onto the mean

of the same direction A (two-norm: 8.0), and (c) and (d) are the

projection onto, respectively, inferior A− (two-norm: 5.87) and su-

perior A+ (two-norm: 10.12) 1 % quantile (see Fig. 24).

So as to preserve the likelihood of the interpolated weather

situations, it is better to introduce a spherical interpolation.

This kind of interpolation has also been used in image pro-

cessing, where, e.g., White (2016) uses the formula

Mt = G

(
sin((1 − t)θ)

sinθ
A + sin(tθ)

sinθ
B

)
, (18)

where θ is the angle Â,B and for t ∈ [0,1] such as M0 =
G(A) and M1 = G(B).

This interpolation will connect point A to point B within

the spherical shell of typical states, as illustrated by the or-

ange curve line in Fig. 24. Figure 26 shows snapshots of

the climate generated from a spherical interpolation in the

latent space between sample A and another random sample
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Figure 26. Spherical interpolation snapshots. Respectively, pan-

els (a–f) correspond to values of t in Eq. (18) of 0, 0.2, 0.4, 0.6,

0.8, and 1.

Figure 27. Linear interpolation in the latent space interpolation

snapshots. Respectively, panels (a–f) correspond to values of t in

Eq. (17) of 0, 0.2, 0.4, 0.6, 0.8, and 1.

B. For the sake of comparison, Figs. 27 and 28 are, respec-

tively, snapshots of a linear interpolation in the latent space

described in Eq. (17) and in the image space using the fol-

lowing equation:

Mt = (1 − t)G(A) + tG(B). (19)

The objective of this experience is to be able to pro-

duce realistic intermediate states. This can be visible in

Fig. 26, where the storm above Europe emerges by first a

smaller minimum in geopotential height that increases in

size, whereas in both linear interpolations, in the latent and

image spaces, the storm appears first as a long and thin

geopotential minimum and then broadens in the latitude di-

rection. Such a property can be helpful in the context of fluid

dynamics for initial and boundary conditions of a local area

model to avoid error correlated with user-defined parameters

such as in lateral boundary conditions (Davies, 2014). An in-

teresting generator property would be able to choose some

characteristics of the generated climate such as meteorologi-

cal objects at certain locations. In the next section, an exper-

Figure 28. Linear interpolation in the image space. Respectively,

panels (a–f) correspond to values of t in Eq. (19) of 0, 0.2, 0.4, 0.6,

0.8, and 1.

iment is conducted to see whether it is possible to change the

location of such meteorological objects.

3.4.4 Coherent structure perturbation from the latent

space

In this section, the goal is to study the difference between

two climate states coming from close latent points. In this

experiment, sample G(A) will be the reference climate state,

and we added noise to A such as A = A + ǫi with ǫi taken

from N (0,0.1).

Figure 29 shows the different climate states corresponding

to G(A) and G(A+ǫi) in the first column and the difference

with the reference in the climate states G(A)−G(A+ ǫi) in

the second column. The second column shows dipoles that

represent the movement of meteorological structures, for ex-

ample, in the South American area of panel d. We remarked

that the perturbation of one latent vector is translated in the

climate state by a dipole creation when the difference is done

between the reference and perturbed versions. This shows the

possibility of moving the meteorological object by remaining

on the manifold of the realistic climate state. This is an inter-

esting asset for the climate domain, where it is complicated

to interpolate between two states where a storm is at two dif-

ferent locations as mentioned in Hergenrother et al. (2002).

The WGAN could be a way to propose realistic intermediate

states.

4 Conclusions

Our study shows that it is possible to map the climate distri-

bution output of a GCM to a much simpler low-dimensional

distribution using a highly nonlinear neural-network-based

generator. It also proposes ways to assess the quality of the

generator by evaluating statistical quantities as well as with

respect to physical balance properties.

https://doi.org/10.5194/npg-28-347-2021 Nonlin. Processes Geophys., 28, 347–370, 2021



368 C. Besombes et al.: Producing realistic climate data with GANs

Figure 29. Geopotential height: the first column reference corre-

sponds to G(A), and panels (a–d) correspond to G(A+ ǫi) and the

second column G(A) − G(A + ǫi).

In this article, a weather generator based on the WGAN

method able to produce realistic states of the atmosphere

was created. Metrics such as SVD principal component com-

parison, Wasserstein distance on pixel value distribution and

mean and standard deviation comparison were used in order

to be compared to other future proposed methods.

A comparison of the atmospheric balance was realized be-

tween samples and averaged over 30 years of data, showing

promising results. Coherence between variables as well as

spatial coherence were also shown to be promising.

Interesting properties of such a generator were discussed

with regard to possible applications in insurance, weather

simulation and data assimilation. The generator is able to

generate intermediate realistic climate states with coherent

structures, interpolate between two defined states with other

plausible states, and create realistic perturbations around a

climate state, all at a low computational cost compared to a

GCM.

A study was also done on the interpretability of the latent

space and the connections between the extreme events in the

data space and the latent space. It highlighted the radial di-

rection as the direction of the intensity of climate events.

Our results highlight the ability of the method to handle

the mapping of a high-dimensional distribution onto a mul-

tivariate Gaussian. We believe this is an important step that

opens many opportunities for climate data exploration. Some

extensions of this work as well as potential application are

highlighted in the following.

First, the WGAN could be conditioned by the season or

by the day in the year. Such conditioning would give ac-

cess to other quantitative methods to assess the quality of the

weather generator. It would be also an important step towards

application in the risk assessment area, for example.

Optimization can be done to find specific states in the la-

tent space by defining an objective function such as Euclidian

distance in the climate space. The network gradient with re-

spect to its inputs being accessible, direct minimization can

be used to find climate states that fit observations in data as-

similation problems. More advanced strategies, such as train-

ing a separate inference network (Chan and Elsheikh, 2019),

are also possible to apply Bayes’ rule without using a particle

filter. It is also possible to condition the generations to a spe-

cific date in the annual cycle with slight modifications in the

network architecture. One could think to condition the output

of the generator by a forcing field in input such as forcing

fields like SST fields for data assimilation application, which

should be possible but with more important modifications of

the network architecture and a possible impact on the speed

of the training procedure.

A more sophisticated dataset could be used, such as a true

climate reanalysis, to see the effect of the dataset complexity

on the method’s performance. The optimization of the net-

work’s architecture and a sensitivity study on the hyperpa-

rameters such as the dimension of the latent space, for ex-

ample, would be useful. Moreover, it would be interesting

to see whether it is possible to take advantage of the GAN

trained in PLASIM to facilitate the training of a GAN on the

reanalysis.

The structure of the latent space and its interpretability is

also a critical way to exploit the specificities of the method.

The opportunity to find similar climate states with extreme

events is also something not possible with other weather gen-

erators and could have lots of application for risk assessment

applications.

The definition of additional metrics to assess the quality of

the generator should be the main focus following this study

to identify improvement of the method and facilitate the par-

ticipation from diverse researcher communities.

Finally, we could consider restarting the GCM from a gen-

erated state to assess how well balanced the generated fields

are, which could have important implications in data assimi-

lation methods.

The study is a first step towards deep-learning weather

generation; while many challenges remain to be solved, it

shows several potential applications of GANs to improve the

effectiveness of current approaches.
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6.3 Conclusion

6.3 Conclusion

This chapter demonstrates the use of GANs for generating realistic climate data. Several metrics
and tests were used to assess the quality of the generated states. It is a first step toward a way to
increase ensemble size in NWP. Such a generator seems promising for other applications such as in risk
assessment by being able to reproduce the climate distribution for agricultural simulation that needs
a generator able to generate rapidly realistic atmospheric fields. The future study should focus on de-
veloping more metrics to compare other GANs architectures and the use of different hyperparameters.
Defining a framework to assess the quality of deep learning models is an efficient way to stimulate
competition and resulting scientific advances. Analysis of the use of the generated atmospheric state
in AGCM simulation as the initial state to assess the balancing quality of the generations could be
insightful. The a priori conditioning of the generation is also an interesting aspect of GANs but
requires important modification in the architecture.

However, a posteriori conditioning and latent space exploration is already showing promising prop-
erties. The ability to interpolate between different climate states and consequently modify the position
of meteorological objects might find application in different data assimilation frameworks. As a com-
plementary study, the next chapter will describe two different ways to perform a posteriori conditioning
with a GANs such as the one developed in the present work. It will be applied for numerical reservoirs
for sake of visualization but it is transferable to any application domain using a similar GAN.
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Chapter 7
Posterior sampling in WGAN latent
space

One of the main advantages of the WGAN parameterization is to be able to generate constrained
images, by using an optimization method to identify the latent space areas that suit the imposed
constraint. A posteriori sampling is not the only method to generate constrained images with GANs :
conditional GAN is a very active research field. The conditional GAN is trained directly to generate
a dataset distribution with a constraint in its input. However, it usually requires a labeled dataset,
which is not always available, especially since unsupervised learning is one of the main assets of the
GAN framework. For this reason, constrained generation in our case is tackled with a posteriori
sampling. It is easier to use across different application domains and has a low computational cost.
It could have a direct application in data assimilation to search efficiently for realistic generations.
In this chapter, the example will be in the reservoir domain, for sake of simplicity of visualization,
and will demonstrate the possibilities of posterior sampling using GAN parameterization for data
assimilation application. A test case is set up to show the efficiency of optimization in the latent space
with different methods, such as derivative-free optimizers and the inference network.

The current chapter aims at underlining an interesting property brought by the GAN framework.
This property is described as one of the future directions of this thesis work. Consequently, this
chapter will give two preliminary studies to convince the reader of the ability of the GAN methods
to generate conditioned samples which could be an important way to reduce the control space when
performing data assimilation. Conditioning could also be useful when GAN is simply used for its
encoding task.

7.1 Derivative-free methods

The GAN function is differentiable by construction and continuous on a bounded domain. Inversion
by optimization of the GAN function is then possible to generate samples that are conditioned by an
imposed constraint. Knowing the different limitations of numerical weather data assimilation methods
like uncertainty quantification due to a low number of ensemble members, some applications are made
available by a posteriori sampling of GANs such as ensemble augmentation. The first optimization
that could be thought of is gradient descent (GD) due to the availability of its gradient. However,
GD is an efficient method for convex or quasi-convex functions. Tests were done using this method
and were not conclusive. The reason for the non conclusiveness is the lack of an exploration step
in the algorithm of the gradient descent. Gradient computation is not suitable for highly non-linear
functions because of the very local information brought by gradient computation.

Volz et al. [109] showed that derivative-free optimization methods such as Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES) could be applied for a posteriori conditioning of GANs trained to
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7 Posterior sampling in WGAN latent space

generate levels of the Mario video game. By analogy this method applied to condition the generation
of subsurface reservoir models.

7.1.1 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

The CMA-ES algorithm is part of the evolutionary algorithms used for derivative-free numerical
optimization. It is inspired from biological evolution, in the sense that each candidate solution is
deduced from its parental individuals. It relies on the concept of recombination and mutation : at
each iteration (also called generation), the candidates that best minimize the objective (or fitness)
function are chosen as parents and modified to create the next generation. This next generation is
sampled from a multivariate normal distribution.

Algorithm 2 [48] describes the different steps for (µ/µw, λ)-CMA-ES. A weighted combination of
the µ best candidates among the λ new candidates of the current generation are used to update
the statistical moments of the distribution that rules the candidate generation. First, λ candidates,
noted xi ∈ R

n with i = 1, . . . , λ are sampled from the distribution N (m, σ2C), where m is the best
estimation of the solution so far. The variance corresponds to a perturbation (or mutation) following
the covariance C, that is initialized as the identity matrix for the first iteration? σ is the step-size of
the perturbation. These candidates are then evaluated on the objective function L, and sorted in the
increasing order of their objective function value (line 7 of Algo. 2). Then (line 9), a new mean value
mřk is computed from the µ best candidates :

mk =
µ
∑

i=1

wixi (7.1)

where k is the index of the current generation. The weights wi are constrained such that
µ
∑

i=1

wi = 1

and w1 ≥ . . . ≥ wµ and :

µw =
1

∑µ
i=1 w2

i

≈ λ/4 (7.2)

the choice of constant weights or decreasing weights only changes the speed of convergence. The
conjugate evolution path pσ is then updated according to :

pσ;k+1 = (1− cσ)pσ;k +
√

1− (1− cσ)2
√

µwC
−1/2
k

mk+1 −mk

σk
(7.3)

where c−1
σ ≈ n/3 and represents the learning rate for the cumulation for the step size control. The

step size is then updated following :

σk+1 = σk exp
(

cσ

dσ

( ||pσ||
E||N (0, I)|| − 1

))

(7.4)

where dσ is the damping factor for the step size update. E||N (0, I)|| is the 2-norm of the candidates
and is approximately equal to

√
n. Finally, the evolution path of the covariance and the covariance

are updated :

pc;k+1 = (1− cc)pc + 1[0,α
√

n](||pσ||)
√

1− (1− c2
σ)
√

µw
mk+1 −mk

σk
(7.5)
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7.1 Derivative-free methods

Ck+1 = (1− c1 − cµ + cs)Ck + c1pcp
T
c + cµ

µ
∑

i=1

wi
xi −mk

σk

(

xi −mk

σk

)T

(7.6)

where c−1
c ≈ n/4 is the backward time horizon for the evolution path pc, c1 ≈ 2/n2 is the learning rate

for cumulation for the rank-one update of the covariance matrix, cs = 1 − 1[0,α](||pσ||)2c1cc(2 − cc),
cµ ≈ µw/n2 is the learning rate for the rank-µ update of the covariance matrix and α = 1.5. The
value of the parameter is set to be effective in most of the cases. To go deeper in the meaning of the
parameters value such as learning rates for example the reader can see [47–49].

Algorithm 2 CMA-ES algorithm.

Require: λ number of samples per iteration.
1: Initialize:

m, σ, C = I, pσ, pc

2: while number of function execution ≤ budget do
3: for i in {1, . . . , λ} do
4: xi ∼ N (m, σ2C)
5: Li = L(xi)
6: end for
7: x{i,...,λ} = xs(1),...,s(λ) with s(i) = argsort(L1,...,λ)
8: m′ = m
9: m = update_m(x1, . . . , xλ)

10: pσ = update_ps(pσ, σ−1C−1/2(m−m′))
11: pc = update_pc(pc, σ−1(m−m′), ||pσ||)
12: C = update_C(C, pc, (x1 −m′)/σ, . . . , xλ −m′/σ)
13: σ = update_σ(σ, ||pσ||)
14: end while

7.1.2 Test cases

The first test case aims at showing the ability to retrieve a latent vector in the latent space corre-
sponding to a particular physical state, here a particular reservoir topology. In order to be able to
monitor the distance of the solution compared to the target, the target is taken directly from a vector
in the latent space. In this way it is assured that the reservoir topology exists in the latent space, the
second step would be to retrieve a reservoir topology taken from the dataset instead of one generated
by the GANs. This would necessitate the assurance of the existence in the latent space of the target
reservoir topology in the latent space which is another active research field not tackled in the current
work.

Let us starts by generating one sample from the GAN from a random vector in the latent space,
called the target ztrue. Then, another latent vector as the initial point of the optimization z0, visible
in Fig. 7.1a. The objective is to retrieve ztrue starting from z0 with an optimization algorithm. The
loss function to minimize by the CMA-ES algorithm implementation from the package nevergrad is
defined as the mean square loss over the image :

L =
Nx,Ny
∑

i,j=0

[G(ztrue)i,j −G(zpred)i,j ]2 (7.7)

where Nx and Ny are the size of the image, and l is the optimization iteration index.
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(b) Image corresponding to G(z0).

Figure 7.1 – Target (left) and initial (right) reservoir models for CMA-ES optimization.

The experiment is done with a budget of 30000 executions of the GAN function by the optimization
algorithm. Figure 7.2 shows the result of the optimization method. Figures 7.3a and 7.3b show that
the loss of the prediction is low and converges asymptotically to 0, the distance of the predicted latent
vector from ztrue as well. It can be concluded that the real latent vector is retrieved.
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Figure 7.2 – Comparison between ztrue (a), zpred (b) and quadratic error (c).

This test case is among the most difficult ones concerning a posteriori sampling because the condi-
tioning is imposed on the complete image. Usually a posteriori sampling, applied to data assimilation,
consists in looking for images that have a defined property. As an example one could search for re-
alizations that only have the same top right corner of the image which is a simpler task due to the
multiple solutions in the latent space. Or in a real data assimilation case, one could use observations
gathered by already drilled wells to know which facies is at specific positions in the image. Then,
perform data assimilation on the subset of all the generations that match observation which is easier
due to the reduced control space. The last example is not realizable with derivative free methods such
as CMA-ES because it does not output the distribution of the latent space you should use in order
to stay in this subset. However, another method of a posteriori sampling should be explored for this
kind of application that is called Inference Network.
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Figure 7.3 – Loss curve and distance of zpred from ztrue for CMA-ES optimization in GAN latent
space.

7.2 Inference neural network

The idea behind Inference neural network (INN) [18] is to extend the generator by adding a small
neural network at the input of the already trained generator such that G ◦ I = Gcond. Suppose some
measurements dobs are available, the objective is to find z∗ that maximizes its posterior probability
knowing observations :

z∗ = argmax p(z|dobs) (7.8)

using Bayes’ rule and applying negative logarithm to shape the problem as a minimization problem :

p(z|dobs) ∝ p(dobs|z)p(z)

− log p(z|dobs) = − log p(dobs|z)− log p(z) + const
(7.9)

The prior p(z) is the normal distribution which the generator was trained on : p(z) ∝ exp(−1
2
||z||2).

For the likelihood, the assumption of i.i.d Gaussian measurement noise yields to

p(dobs|z) ∝ exp(− 1
2σ2
||d(z) − dobs||2) with σ the variance of the measurement noise. Finally, an

optimization can be used to minimize the following loss function :

L(z) := − log p(z|dobs)

= ||d(z)− dobs||2 + λ||z||2

= ||G(z)obs − dobs||2 + λ||z||2
(7.10)

where λ is equal to σ2, the constant term was removed. Using directly an optimizer to minimize
Eq. 7.10 can be computationally costly if a high number of conditioned samples need to be generated.
The objective is to get a parameterization of conditioned samples to sample an important number
of conditioned samples at low computational cost. Such a parameterization has a great value when
performing data assimilation using a parameterization to induce additional constraints. The idea is
to use another neural network at the input of the generator to perform a posteriori conditioning with
the INN Fig. 7.4, where a small neural network was added in order to sample the Bayesian posterior
p(z|dobs) by minimizing L(z) using a local optimizer.
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Figure 7.4 – Inference neural network framework.

The INN function can be written such as :

Iφ : Rnw 7→ R
nz

w ∼ pw 7→ z ∼ qφ

(7.11)

where φ represents the trainable weights of the INN, nw and nz are the size of the input space and
the output space, the latter corresponds to the latent space. pw is the distribution used to sample
conditioned realization in the input space of the INN, and qφ is the distribution induced by the
INN which depends on its weights. The objective here is that qφ = p(z|dobs). The Kullback-Leibler
divergence yields :

DKL(qφ || p(z|dobs)) = Ez∼qφ
log

qφ(z)
p(z|dobs)

= Ez∼qφ
− log p(z|dobs) + Ez∼qφ

qφ(z)

= Ez∼qφ
− log L(z) + Ez∼qφ

qφ(z) + const

(7.12)

the first term of equation Eq. 7.12 corresponds to the Eq. 7.10 induced by the distribution qφ that can
be written :

E∼qφ
L(z) h

1
M

M
∑

i=1

L(Iφ(wi)) (7.13)

by sampling M realizations (w1, . . . , wM ) from pw. The second term is more difficult to compute due
to the intractable distribution qφ. It is called the negative entropy of qφ noted H(qφ), Chan and
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Elsheikh [18] use the Kozachenko-Leonenko estimator [43, 65] :

Ĥ((z1, . . . , zM )) =
nz

M

M
∑

i=1

log ρ(zi) + const (7.14)

where ρ(zi) is the distance between zi and its kth nearest neighbor. Goria et al. [43] says that a good
rule of thumb is k =

√
M . The entropy measures how spread the samples induced by qφ are, without

this term nothing restrains the inference network to constantly output the same z for all w ∼ pw. This
term controls the diversity of solutions that respect the constraint, and helps to approximate the full
posterior of p(z|dobs).

The architecture of the INN is made of 5 dense layers of 256 neurons each with batch normalization
and leaky Relu activation function. The size of the input nw is the same as the size of the latent space
i.e., nw = nz = 32. During training the input space of INN is sampled using the normal distribution.

7.2.1 5 SPOTS test case

One of the direct applications of this framework is to parameterize the set of plausible spatial
distribution of subsurface properties with a manifold matching also the static constraint given by
observations. To demonstrate the efficiency of the method, a test case was defined on the 5SPOTS case
already studied in the chapter 5. The objective is to find a parameterization of plausible realizations
matching the constraint of facies at well locations. Figure 7.5 shows the constraint of having a good
facies imposed at the five wells locations.
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Figure 7.5 – Inference neural network framework.

Early results of the training are visible in Fig. 7.6, where a reduction of the different loss can be
seen. However, Fig. 7.7 and 7.8 show a conditioning that seems to be respected but low variance and
quality of the image is impacted. These results can be explained by the loss of the 2-norm of z in
Fig. 7.6 it decreases to 1, which does not correspond to the normal distribution the generator was
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trained with. The 2-norm of vectors from a multivariate normal distribution of dimension n = 32
must be around E||N (0, I32)|| =

√
32 ≈ 5.65. qφ is too far from the normal distribution and outputs

latent vectors that are outside the area corresponding to realistic realizations of the latent space.

This can be corrected by modifying the weights of the different losses. It was decided to increase
the weight in front of the entropy loss term from 1. to 5.. Another training was done with this change,
the results are presented in Fig. 7.11 and 7.10. The quality of the image is increased and the diversity
outside the constrained areas is important, Fig. 7.9 shows that the 2-norm of latent vectors draw from
qφ is around 5, which is corresponds to a 32-dimensional normal distribution.

The cost of the training of the INN is between 5 and 10 minutes on an Nvidia V100 16GB GPU
due to the ability of the GAN to do fast inference in parallel. After training the result is a new latent
space that can generate statically conditioned realizations. Finally, the parameterization can be used
in a data assimilation framework by using the generator extended by the inference neural network to
explore the manifold of realistic realizations statically constrained.

0 2000 4000 6000 8000 10000 12000 14000
Iterations

0

1

2

3

4

5

Lo
ss

 v
al

ue

Loss curve of optimization
Loss
2-norm of z
entropy loss
conditioning loss

Figure 7.6 – Curve loss for INN with 5 spots constraint.
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Figure 7.8 – Mean and standard deviation of 10000 conditioned samples
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Figure 7.9 – Curve loss for INN with 5 spots constraint.
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Figure 7.10 – Mean and standard deviation of 10000 conditioned samples
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Figure 7.11 – Mean and standard deviation of 10000 conditioned samples

7.3 Discussion

These two methods constitute different ways to use the GAN a posteriori depending on the tackled
problem properties. CMA-ES can be used to find realistic generations that look like a defined target.
One of the applications in the context of climate could be after analysis to find the closest initialized
i.e., balanced atmospheric state of the analysis. The inference network is a way to introduce more
constraints in the latent space at a low computational cost. The loss function can be modified to
retrieve only generations with a particular facies density for example. It offers a way to reduce even
more the dimension of the control space by choosing a lower dimension for INN input space for example.
Lots of possibilities are accessible thanks to these two methods and these could be used in any other
context than climate and hydrocarbon reservoir. These examples do not constitute a complete study
but in the author opinion it is important to identify the promising properties of the GAN method.
Especially for future researchers not familiar with this kind of generative networks who would like to
continue to explore the possibility offered by this new data driven method in a different application
domain.
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Conclusion and Perspectives

Discussion

The present work gives an introduction to the two applied domains for readers not familiar with
these particular applications, to identify limitations of the current methods and if our parameterization
technique is applicable to each application domain. It underlines the necessity of balanced atmospheric
state to avoid non-physical gravity waves in the atmospheric circulation simulation. Similarly, it also
explains the limitations encountered in reservoir characterization where it is difficult to model the
shape of certain geological heterogeneities.

We describe the chosen framework to solve the inverse problem of reservoir characterization. The
theory of data assimilation and ensemble methods are explained to underline the similarities between
the two application domains. Ensemble methods are suited for using GAN parameterization due to
the assumption of Gaussian distribution of errors.

Next, the document introduces classical deep learning concepts and theoretical results to show
the possibilities and limitations of neural networks notably GANs. It aims to give the reader an
understanding of the principles of neural networks to show how they are now a tool on the shelf
that can be used as any other mathematical method. This manuscript does not go too in-depth into
the details of training general neural networks however, as the literature and set of online tools for
this are numerous. The large variety of models available and their variation are mentioned, and the
Wasserstein derivation of the GAN is described. In the section on limitations the rapid development
and the under-exploitation of this progress will be discussed.

Our study shows a careful selection of hyper-parameters for the GAN training. The choice of certain
hyper-parameters such as the networks’ architecture and the different adaptations to the reservoir
application domain are described. The definition of metrics for the assessment of the quality of the
generations is presented. These metrics allowed the validation of the ResNet architecture compared
to a classical CNN. A sufficient representation of the dataset was achieved regarding these metrics.

We show the effectiveness of the GAN parameterization coupled with the ES-MDA data assimila-
tion algorithm for reservoir characterization for a horizontal test case and a 5 spots test case. The
method achieved a satisfying match of the observation with a controllable variability allowed by the
subspace inversion method. The different solutions of the ES-MDA algorithm represented realistic
facies distributions (plausible geological shape of the channelized heterogeneities) thanks to the GAN
parameterization.

We also demonstrate the applicability of the method for generating global balanced atmospheric
states. The architectures and other hyper-parameters are presented. It proposes a data structure to
avoid high memory consumption when GANs are applied to sizable data. It presents a way to enforce
periodic boundary conditions to generations and metrics for quality assessment of the generation.
Finally, it also presents a latent space exploration for future work with interesting properties linked
to numerical weather prediction applications.
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Finally, we present two different ways to enforce more constraint to the generation a posteriori that
grant conditioning at a low computational cost. CMA-ES for optimization of the latent space, that is
adapted thanks to its exploration property that allows projection of physical state in the latent space,
which can be useful for balancing climate states. Inference neural network to recreate a conditioned
latent space to improve optimization speed and quality.

The first objective of the current thesis was to demonstrate how generative adversarial networks
could be used as a parameterization technique for ensemble-based data assimilation methods. What
is more, this deep learning based parameterization method is applied to two different domains demon-
strating the wide potential of the technique in an interdisciplinary context. Data assimilation is used
in numerous scientific domains, which suggests that the GAN method could have many more applica-
tions, as long as there are datasets representing the constraints and the variability of the problem. We
believe that our work can be useful to any application domain where physical constraints are difficult
to represent mathematically, that are not Gaussian distributed, highly dimensional or lack realism
when estimated, could be interested in GAN parameterization. This work is directly transferable to
image-like data, but could be extended to many other data types such as audio or data on approach-
able meshes by leveraging the profusion of neural network architecture under active development (e.g.,
graph neural network [110]).

This approach is in line with the work aimed at unifying separate scientific fields using very similar
principles. Data assimilation is built on several decades of scientific development and is one of the
domains that collects the most data. The recent development of data driven methods based on deep
and machine learning could be a useful insight for the development of non-linear stochastic physical
parameterization in climate study for example. These large amounts of data have to be processed
efficiently and data driven are the perfect tools for it. In the other way, taking advantage of uncertain,
sparse data is one of the current challenges in deep learning research whereas data assimilation experts
have been using it for almost a century. Our study is a first step towards the unification of these
domains. The importance of the clear definition of simple and accessible benchmark cases is one of
the most efficient ways to create new innovative methods, examples are given in perspectives. Our
research aims at giving an example of such test cases where promising results are demonstrated and
on which future work should be built up.
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Perspectives

Limitations

There are at least 2 potential limitations concerning the present study. First, the GAN remains a
data driven method and relies by definition on the quality of the dataset used. The GAN parameter-
ization method is only applicable to problems with access to large datasets, real or synthetic. One of
the main properties needed in the dataset is variability which must sufficiently map that of real cases.
The GAN can hardly extrapolate, meaning that for a given variable the dataset must represent in the
best manner the range of possible values the variable can take.

A Second limitation is the absence of comparison with current parameterization methods of chan-
nelized reservoirs due to the lack of easily accessible parameterization methods. Current complex
parameterization methods are under expensive licenses that are hard to reimplement.

Future work

Despite these limitations, this research can be seen as a first step towards integrating two lines
of research, deep generative networks and data assimilation. The perspectives offered by this work
are numerous. First, experts from applied domains should identify the different important metrics
required to compare and improve the method. Following the same idea, the definition of precise
context, parameters, case study to stimulate comparison and challenges would be a great playground
for researchers of both communities. This showed very good results in the machine and deep learning
community where precise metrics led the competition to important research advances. The MeteoNet
initiative [46] from Meteo France, CASP competition tackling the folding protein problem where deep
learning team improved significantly the results [106] and the 10 years roadmap [24] are three perfect
examples of what should be done in every domain that wants to make the most out from these emerging
data-driven methods.

GAN derivation and architectures

Future work should focus on the different advances made in neural network layers such as attention
layers that introduce long distance covariance estimation on data samples by neural networks and
improve the quality of the generations. Disentangled GAN could give more physical sense to the
different latent vector components. The conditioned version of GANs could also be a great way to
condition generation a priori. This implies important changes in the GAN architecture but could
allow the conditioning using sea surface temperature for climate application for example. In reservoir
application the implementation of multiple image channels including not only rock facies but also
variable porosity and permeability fields conditioned by some latent vector components would be
useful.

Increased complexity test cases

The use of GAN parameterization on more complex cases such as multiple heterogeneity types in
one reservoir numerical model should be a secondary focus of the future work. Train GANs on more
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complex climate data such as data from regional circulation model AROME which is currently studied
at Meteo France, is of the challenge that needs to be solved to make the method applicable on real
cases. Implementation of 3D cases using 3D convolutional layers to compare the coherence of the
generations on the z-direction with the method used in Chap. 6 would be an interesting advance to
plan the resource cost of the methods.
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Conclusion et Perspectives (french)

Discussion

Ce travail introduit deux domaines d’application pour les lecteurs qui ne sont pas familiers avec
ces derniers afin d’identifier les limites des méthodes actuelles et l’application de notre approche de
paramétrisation à chacun d’eux. Il souligne la nécessité d’un état atmosphérique équilibré pour éviter
les ondes de gravité non physiques au sein de la simulation de la circulation atmosphérique. De même,
elle explique les limites rencontrées dans la caractérisation des réservoirs où il est difficile de modéliser
la forme de certaines hétérogénéités géologiques.

Nous décrivons le cadre choisi pour résoudre le problème inverse de la caractérisation des réservoirs.
La théorie de l’assimilation de données et les méthodes d’ensemble sont expliquées pour souligner
les similitudes entre ces deux domaines d’application. Les méthodes ensemblistes sont adaptées à
l’utilisation de la paramétrisation GAN en raison de l’hypothèse d’une distribution Gaussienne des
erreurs.

Le document introduit également les concepts classiques d’apprentissage profond et les résultats
théoriques pour montrer les possibilités et les limites des réseaux de neurones, notamment des GANs.
Il vise à donner au lecteur une compréhension des principes des réseaux de neurones pour montrer
comment ils sont maintenant un outil qui peut être utilisé comme toute autre méthode mathématique.
Ce manuscrit n’entre cependant pas dans les détails de l’entraînement des réseaux de neurones, car
la littérature et les outils en ligne sont nombreux. La grande variété de modèles disponibles et leurs
variations sont mentionnées, et la dérivation de Wasserstein du GAN est décrite. Dans la section sur
les limitations, le développement rapide et la sous-exploitation de ces progrès seront discutés.

Notre étude montre une sélection minutieuse des hyper-paramètres pour l’entraînement du GAN.
Le choix de certains hyper-paramètres tels que l’architecture des réseaux et les différentes adaptations
au domaine d’application des réservoirs sont décrits. Nous présentons la définition de métriques pour
l’évaluation de la qualité des générations. Ces métriques ont permis de valider l’architecture du ResNet
par rapport à un CNN classique. Une représentation suffisante du jeu de données a été obtenue en ce
qui concerne ces métriques.

Nous montrons l’efficacité de la paramétrisation du GAN couplée à l’algorithme d’assimilation de
données ES-MDA pour la caractérisation de réservoirs pour un cas test horizontal et un cas test
à 5 puits. La méthode a permis d’obtenir une correspondance satisfaisante des observations avec
une variabilité contrôlable grâce à la méthode de "subspace inversion". Les différentes solutions de
l’algorithme ES-MDA ont représenté des distributions de faciès géologiques réalistes (forme géologique
plausible des hétérogénéités canalisées) permise par la paramétrisation du GAN.

Nous démontrons également l’applicabilité de la méthode pour générer des états atmosphériques
globaux équilibrés. Nous présentons les architectures et autres hyper-paramètres. Nous proposons
une structure de données pour éviter une forte consommation de mémoire lorsque les GANs sont
appliqués à des données de taille importante. Nous présentons également un moyen d’imposer des
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conditions limites périodiques aux générations et des métriques pour l’évaluation de la qualité de la
génération. Enfin, nous présentons une exploration de l’espace latent pour des travaux futurs avec des
propriétés intéressantes liées à l’application de la prévision météorologique numérique.

Enfin, nous présentons deux façons différentes d’imposer plus de contraintes à la génération a
posteriori qui permettent le conditionnement à un faible coût de calcul. Premièrement, l’algorithme
CMA-ES pour l’optimisation de l’espace latent, qui est adapté grâce à sa propriété d’exploration et
permet la projection d’un état physique dans l’espace latent. Cela peut être utile pour équilibrer
les états climatiques. Ensuite l’"Inference network" pour recréer un espace latent conditionné afin
d’améliorer la vitesse et la qualité de l’optimisation.

Le premier objectif de la présente thèse était de démontrer comment les réseaux adversariaux
génératifs pouvaient être utilisés comme technique de paramétrisation pour les méthodes d’assimilation
de données basées sur des ensembles. De plus, cette méthode basée sur l’apprentissage profond est
appliquée à deux domaines différents démontrant le large potentiel de la technique dans un contexte
interdisciplinaire. L’assimilation de données est utilisée dans de nombreux domaines scientifiques, ce
qui suggère que la méthode GAN pourrait avoir de nombreuses autres applications, tant qu’il existe
des ensembles de données représentant les contraintes et la variabilité du problème. Nous pensons que
notre travail peut être utile à tout domaine d’application où les contraintes physiques sont difficiles à
représenter mathématiquement. De même lorsque les paramètres ne sont pas distribués de manière
Gaussienne, hautement dimensionnels ou manquant de réalisme. La paramétrisation des GANs est di-
rectement transférable à des données de type image, mais pourrait être étendue à de nombreux autres
types de données comme l’audio ou les données sur des mailles en exploitant la profusion d’architecture
de réseaux de neurones en développement continu (e.g., graph neural network [110]).

Cette approche s’inscrit dans la lignée des travaux visant à unifier des domaines scientifiques distincts
utilisant des principes similaires. L’assimilation de données repose sur plusieurs décennies de recherche
scientifique et constitue l’un des domaines qui collectent le plus de données. Le développement récent
de méthodes basées sur l’apprentissage profond et automatique pourrait être utile pour la création de
paramétrisation physique stochastique et non linéaire utilisée par exemple dans l’étude du climat. Ces
grandes quantités de données doivent être traitées efficacement. Les méthodes basées sur les données
sont les outils parfaitement adaptés pour cela. D’autre part, tirer parti de données incertaines et
éparses est l’un des défis actuels de la recherche sur l’apprentissage profond, alors que les experts
en assimilation de données l’utilisent depuis près d’un siècle. Notre étude est un premier pas vers
l’unification de ces domaines. L’importance de la définition claire de cas de référence simples et
accessibles est l’un des moyens les plus efficaces pour créer de nouvelles méthodes innovantes, des
exemples sont donnés dans les perspectives. Notre recherche vise à donner un exemple de tels cas de
référence où des résultats prometteurs sont démontrés et sur lesquels les travaux futurs devraient être
construits.

Perspectives

Limitations

Il existe au moins 2 limitations potentielles concernant la présente étude. Premièrement, le GAN
reste une méthode basée sur les données et dépend par définition de la qualité du jeu de données
utilisé. La méthode de paramétrisation du GAN n’est applicable qu’aux problèmes ayant accès à de
grands ensembles de données, réels ou synthétiques. L’une des principales propriétés requises dans le
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jeu de données est la variabilité, qui doit correspondre suffisamment à celle des cas réels. Le GAN peut
difficilement extrapoler, ce qui signifie que pour une variable donnée, le jeu de données doit représenter
au mieux la gamme des valeurs possibles de la variable.

Une deuxième limite est l’absence de comparaison avec les méthodes actuelles de paramétrisation
des réservoirs canalisés en raison du manque de méthodes facilement accessibles. Les méthodes de
paramétrisation complexes sont sous licence coûteuses et difficiles à réimplémenter.

Travaux futurs

Malgré ces limites, cette recherche peut être considérée comme un premier pas vers l’intégration
de deux lignes de recherche, les réseaux génératifs profonds et l’assimilation de données. Les per-
spectives offertes par ce travail sont nombreuses. Tout d’abord, les experts des domaines appliqués
devraient identifier les différentes métriques importantes requises pour comparer et améliorer la méth-
ode. Suivant la même idée, la définition d’un contexte précis, de paramètres, d’une étude de cas pour
stimuler la comparaison et les défis serait un grand terrain de jeu pour les chercheurs des deux com-
munautés. Cela a donné de très bons résultats dans la communauté de l’apprentissage automatique
et de l’apprentissage profond, où des métriques précises ont conduit la compétition à d’importantes
avancées de la recherche. L’initiative MeteoNet [46] de Météo France, le concours CASP s’attaquant
au problème du pliage des protéines où l’équipe de chercheur en apprentissage profond a considérable-
ment amélioré les résultats [106] et la feuille de route pour les 10 prochaines années [24] sont trois
exemples pertinents de ce qui devrait être fait dans chaque domaine qui souhaite tirer le meilleur parti
de ces méthodes émergentes basées sur les données.

Dérivation et architectures des GAN

Les travaux futurs devraient se concentrer sur les différentes avancées réalisées dans les couches des
réseaux neuronaux, telles que les couches d’attention qui introduisent l’estimation de la covariance à
longue distance sur les échantillons de données par les réseaux neuronaux et améliorent la qualité des
générations. Un disentangled GAN pourrait donner un sens plus physique aux différentes composantes
du vecteur latent. La version conditionnée des GANs pourrait également être un excellent moyen de
conditionner la génération a priori. Cela implique des changements importants dans l’architecture du
GAN mais pourrait permettre le conditionnement en utilisant la température de surface de la mer
pour une application climatique par exemple. Dans les applications de réservoir, la mise en œuvre
de plusieurs canaux d’images comprenant non seulement les faciès rocheux mais aussi des champs
de porosité et de perméabilité variables conditionnées par certaines composantes vectorielles latentes
serait utile.

Cas d’essai de complexité accrue

L’utilisation de la paramétrisation des GANs sur des cas plus complexes tels que des types d’hétérogénéités
multiples dans un modèle numérique de réservoir devrait être un objectif secondaire des travaux fu-
turs. L’entraînement des GANs sur des données climatiques plus complexes telles que les données du
modèle de circulation régionale AROME qui est actuellement étudié à Météo France, est un des défis
à relever pour rendre la méthode applicable sur des cas réels. L’implémentation de cas 3D utilisant
des couches convolutionnelles 3D pour comparer la cohérence des générations sur la direction z avec
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la méthode utilisée dans le Chap. 6 serait une avancée intéressante pour planifier le coût en ressources
des méthodes.
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