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A B S T R A C T
7

Explicit time integration based CFD solvers suffer from restriction on8

the maximum allowable time step computed from the well known Courant-9

Friedlich-Lewy (CFL) stability criterion. This restriction poses severe10

challenge in carrying out large eddy simulation (LES) of reactive and11

non-reactive flows, where the grid resolution is fine. The challenge of12

restricted time step is further augmented when dealing with large com-13

putational domains that pose a wide disparity in the system time scales.14

In this study, a numerical methodology is presented based on local time15

stepping in an overset grid framework. The attainable speedup is found16

to be a function of the ratio of time steps used in the sub-domains17

and the ratio of the number of computational degrees of freedom. The18

method is analysed using global spectral analysis (GSA) and shows ex-19

cellent agreement in solution accuracy with the conventional explicit20

time integration based solver. The impact of local time stepping on the21

order of accuracy and global conservation properties are also presented.22

This method is then applied to simulate three flow test cases to demon-23

strate the ability of the method to reproduce the first and second-order24

turbulent statistics at reduced computational time.25

© 2022 Elsevier Inc. All rights reserved.
26

27

1. Introduction28

Today, LES is slowly replacing RANS (Reynolds-Averaged Navier-Stokes) based CFD solvers as an29

industrial design tool [1]. However, explicit time integration based LES solvers still suffer from numerical30

challenges that prevent their use in scenarios where wide spatial and temporal scale separation exists, such31
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as in external aerodynamics, plume simulations in forest fires and in huge industrial devices. The only32

drawback that restricts applicability of LES computations in such scenarios is the high computational cost33

associated with it in comparison to RANS. While this is partly because of the fine grid resolution (and34

hence the high cell count) demanded by LES computations, the major limitation arises from the restriction35

on the maximum allowable time step that can be chosen for time integration of the unsteady LES governing36

equations. The maximum allowable time step is determined by stability requirements of the numerical37

scheme, popularly known as the CFL criterion. Such a time step restriction is mandatory if the scheme has38

to be numerically stable and even more restrictive if it must be dispersion-relation preserving. Many studies39

have been carried out in the past to address these particular aspects. They are briefly described as follows.40

A common approach is to use implicit and implicit-explicit (IMEX) time integration schemes. In implicit41

schemes, the residual in the difference equation is expressed as a function of flow variables at the (n + 1)th
42

time level. From Von-Neumann stability analysis, many authors have concluded that this method gives43

unconditional stability and that large values of the CFL number (Nc) can be used in such computations.44

Here, Nc is defined as Nc = c∆t/h where c, ∆t and h are the characteristic velocity, time step and grid size45

respectively. Such a ’theoretical unconditional stability’ comes at an increased computational cost. This46

is due to the need for the solution of a system of linear algebraic equations for the unknown dependent47

variables at time level n + 1 using direct or iterative solvers. The solution of these linear equations also48

negatively impacts the parallelizability of the solver. Additionally, the unconditional numerical stability is49

seldom achieved in practical computations. In [2], the authors have carried out LES of turbulent channel50

flow and have concluded that the ratio of the time step calculated in each cell and the cell characteristic51

length should not be more than 2−3, thus effectively limiting the maximum allowable time step that can be52

chosen even in implicit schemes. Another drawback of implicit schemes is their poor numerical resolution53

properties compared to explicit schemes. In [3], authors have carried out DNS of transitional flow over a54

flat plate with monochromatic wall excitation using implicit and explicit schemes. Their study concluded55

that even though the implicit scheme used in their analysis enjoyed neutral stability, it could not predict56

the spatio-temporal wave front typically observed in flows en route to turbulence. IMEX methods perform57

even worse since, in addition to the above-mentioned aspects, the interface between the implicit and explicit58

time integration zones could act as source of erroneous wave packets [3].59

On the other hand, in the case of explicit time integration schemes, the solution at the (n + 1)th time60

level depends only on the current and previous time levels. Hence, this class of schemes does not require61

the complicated matrix inversion procedure and is computationally cheap. They also enjoy the benefits of62

efficient parallelizability and excellent accuracy and resolution properties. Many modifications of explicit63

schemes, with the objective of surmounting the CFL stability criteria have been developed in the past and64

can be broadly classified as asynchronous methods, multirate schemes and domain decomposition-based65

local time stepping schemes.66

Recently, an asynchronous method [4] was developed for unsteady equations using the ‘discrete-event67
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simulation’ methodology. In this method, a timestamp is associated with each computational cell in the68

domain based on a predicted “event” described by the governing PDE. This step is followed by an event69

processing step where the cell with the smallest time stamp is time-integrated using the maximum allowable70

time step in that cell. This is in turn followed by an event synchronization step where the cell neighboring71

the smallest timestamp cell is updated and flux interfaces are corrected. Finally, an event scheduling step72

is initiated where the time stamp and the residual of the cell is recalculated. The above procedures are73

repeated for all cells in the domain to calculate the unsteady solution. The authors have proved the stability74

of this method and demonstrated its application to 1D convection-diffusion-reaction equation. In [5, 6, 7, 8],75

other authors have extended this approach by applying the local CFL number Nc as refreshing time stamps76

and demonstrated the method for gas discharge problems. The authors of another study [9] have devised yet77

another asynchronous method using first-order upwind schemes. The issue of conservation is addressed in78

that work by carrying out flux interpolation at cell interfaces with different local time steps. In their work,79

the authors have demonstrated the applicability of this methodology to aeroacoustic problems. Similarly,80

the application of asynchronous method to gas dynamics equations is detailed in [10, 11].81

Adaptive mesh refinement (AMR) methods fall into the category of both asynchronous methods as well82

as multirate schemes. AMR schemes were introduced through the pioneering work of Berger [12]. In their83

work which used block structured meshes, the global mesh comprises a ‘parent’ coarse mesh and several84

‘children’ fine meshes overlapping with the parent mesh. Local time steps are used to time-integrate the85

finer children meshes. In effect, this method introduces both spatial and temporal adaptivity. The parent86

mesh solution values located inside the child mesh are then obtained by volume-weighted averaging of the87

finer children mesh solution located inside the parent mesh. The flux values at the parent-children interface88

are also obtained by interpolating solution values from the child mesh. This method of Berger was then89

extended to include coincident parent-children mesh interface to ensure global conservation in [13] in a90

finite difference framework. A similar approach applied to a finite element framework is explained in [14].91

In [15, 16, 17, 18], the AMR approach was applied to solve incompressible Navier-Stokes equations using92

projection method. In another attempt [19], the same approach was extended to study two-phase flows with93

level set and surface tension methods.94

In multirate time integration schemes, multiple time steps are present in the computational domain and95

each time step is devoted to a group of contiguous cells. The time steps are chosen such that they are96

integral multiples of the smallest time step in the domain. One of the early attempts at multirate schemes97

is the work of Osher and Sanders [20]. In this work, the authors established a locally varying time step for98

forward Euler time integration schemes for various flux functions. However, their schemes were first-order99

accurate in space and time. In [21], the authors extended this work to second-order schemes in space and100

time. However, their scheme is not mass conservative. Similar second-order schemes were also developed in101

[22, 23]. These schemes, like the one designed in [21], are found to be non-conservative in nature. Extension102

of these methods to third-order [24, 25] and fourth-order accuracy [26, 27] also has been carried out recently.103
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Domain decomposition methods using local time stepping work on similar lines as multirate schemes, the104

only difference being that the full computational domain is divided into multiple overlapping sub-domains105

with each sub-domain being time-integrated using a time step specific to that particular sub-domain. Like106

multirate schemes, each time step in the sub-domain is chosen as an integral multiple of the smallest time107

step. This approach has been used in [28] to model cardiac tissues. The application of this method to108

CFD is discussed in [29]. In that work, the authors have developed a domain decomposition-based local109

time stepping method for various explicit numerical schemes. This method is then applied to the LES of110

a 2-dimensional jet flow as a validation exercise. The same method has been applied to the LES of plume111

from a rocket nozzle in [30].112

In summary, multiple approaches have been devised to tackle the challenge of numerical stiffness in LES.113

Although implicit methods guarantee ‘theoretical stability’ for all Nc values, the maximum Nc value that114

can be often used is restricted in LES. The computational cost of matrix inversion and poor numerical115

resolution has also demonstrated drawbacks of implicit methods. On the other hand, explicit methods have116

good resolution properties and parallelizability but suffer from stringent stability conditions. Asynchronous117

time stepping methods, used to improve this stability restriction have been attempted in the past but their118

applicability to LES is still not demonstrated. Multirate schemes and AMR schemes are often limited to119

structured block grids. Domain decomposition methods, on the other hand, are applicable to unstructured120

grids and have the advantages enjoyed by multirate schemes.121

Hence in this study, an extension of the domain decomposition method in [29] is proposed. In [29],122

the authors introduce a domain-decomposition based local time-stepping method named Deccoup. The123

method is demonstrated using a simple one-dimensional linear PDE with a hyperbolic tangent function124

used as a filter function in the overlapped zone (terminologies are explained in Section 4). The error in the125

physical space due to local time-stepping is also reported. However, in the present study, we propose that126

inorder to keep the computational cost low for multi-dimensional LES simulations, the use of a Heaviside-127

like filter function would suffice for achieving low numerical errors. We also present a detailed error analysis128

in the spectral space using Global Spectral Analysis (GSA) of two popular numerical schemes applied to129

the linear convection equation and validate it using three different flow scenarios and using different types130

of grid elements. GSA [31] is a spectral analysis tool used to study the properties of numerical schemes131

while also including the effect of boundary stencils. GSA has been used to study Dispersion Relation132

Preservation (DRP) schemes [32] used for DNS and LES of incompressible [33] and compressible flows [34].133

The application of GSA to the study of numerical schemes used for non-uniform grids [35, 36] and for134

domain-decomposition based methods ([37, 38]) has been demonstrated in the past. While GSA of the135

linear convection-diffusion [39] and convection-diffusion-reaction [40] equation are already available in the136

literature, for the sake of brevity, we restrict our analysis of the proposed method to the linear convection137

equation only. For the extension of the analysis to linear convection-diffusion equation, readers may refer138

to [41].139
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This paper is organized as follows. The method, hereafter referred to as the LESAULTS (acronym for140

LES acceleration using local time stepping) method, is described in detail in Section 2. The theoretical141

speedup limit that can be attained using LESAULTS method is described in Section 3. The detailed design142

aspects of the method are elucidated in Section 4 followed by its error analysis using GSA in Section 5. The143

method is then validated using numerical tests and the details of the results are provided in Section 6. The144

conclusions and perspectives from this work are listed in Section 7.145

2. LESAULTS Method146

D3

D

D2D1

LESAULTS LES SOLVER

CONVENTIONAL LES SOLVER

(a) Conventional and LESAULTS domains in 1D

OZ
23

OZ
12

D1 D2 D3

(b) LESAULTS domains and the overlapped regions

Fig. 1: Schematic of conventional and LESAULTS method applied to a 1D domain. (a) single domain used in conventional
solver and sub-domains used in LESAULTS method. (b) An exaggerated view of overlapped zones

To describe the LESAULTS method, a simplified, one-dimensional computational domain as shown in147

Fig. 1 is considered. At this point no assumption is made on the nature or type of the unsteady governing148

equation(s). Let the one-dimensional domain D (colored in black) shown in Fig. 1(a) be used to calculate149

the solution using the conventional explicit solver. It is assumed that the domain D is discretized using150

Nconv number of nodes shown as square symbols in the figure. The grid spacing in the domain can be151

uniform or spatially varying.152

In LESAULTS method, the domain D is decomposed into three overlapping sub-domains-D1,D2 and153

D3 such that D = D1 ∪ D2 ∪ D3. The overlapped zones between the sub-domains are named as OZ12 and154
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Subdomain,
i

Number of
nodes, Ni

Max. permissible
time step, ∆ti

Number of intermediate
integrations, Rδt,i

D1 N1 ∆t1 LCM(∆ti)/∆t1
D2 N2 ∆t2 LCM(∆ti)/∆t2
D3 N3 ∆t3 LCM(∆ti)/∆t3

Table 1: Table showing the sub-domains, time steps and the number of intermediate time integration steps for the LESAULTS
configuration shown in Fig. 1

OZ13 such that OZ12 = D1 ∩ D2 and OZ23 = D2 ∩ D3. Let the number of nodes in the sub-domains155

D1, D2 and D3 be N1, N2 and N3 respectively. These numbers include the number of nodes present in the156

overlapped zones as well. Similarly, the grid spacing in all the three sub-domains can be either uniform or157

spatially varying. However, to make a fair comparison between the conventional method and LESAULTS158

method, the grid spacing in the conventional and the corresponding sub-domain is taken to be identical. It159

is also ensured that the nodes of the two sub-domain meshes located in the overlapped zones have an exact160

node-to-node conformance in their physical location. Although not mandatory, this assumption is easily161

enforced since only stationary meshes are considered in this study and it removes the interpolation errors162

in the solution procedure. Let the number of nodes in OZ12 and OZ23 be N12 and N13 respectively. Out163

of the total number of nodes in the overlapped zones OZ12, half of them belong to D1 and the other half164

belong to D2. Let the maximum permissible time steps in each of the sub-domains D1, D2 and D3 be ∆t1,165

∆t2 and ∆t3 respectively. These values of time steps are assumed to be known a priori. It is evident that166

the grid size in the overlapped regions OZ12 and OZ23 are such that they respect the stability criteria for167

the larger among the two time steps pertaining to each of the two sub-domains constituting the overlapped168

zones. These details are summarized in Table 1 for further clarity. In the table, LCM refers to the least169

common multiple of the time-steps in all the sub-domains.170

Here Rδt,i denotes the number of time integrations the sub-domain i undergoes before reaching the next171

possible flow time value common to all sub-domains.172

The time integration methodology in LESAULTS method comprises two stages namely, (i) the inter-173

mediate time integration stage and (ii) the solution synchronization stage. A schematic of an example of174

these stages is shown in Fig. 2. In the LESAULTS configuration shown in this schematic, the time steps175

in the sub-domains are given by ∆t1 = 3 × ∆t2 = 2 × ∆t3. By construction, Rδt,i = LCM(∆tj)/∆ti with176

LCM(∆tj) = tn+1 − tn
177

Each sub-domain is integrated in time independently of the others, using the time step pertaining to178

that sub-domain. In the example shown in Fig. 2, D1 is integrated once, D2 thrice and D3 twice. This179

completes the intermediate time integration stage. It is evident that during this stage, the boundary values180

at the interface boundaries of each of the sub-domains are unknown. To tackle this shortcoming, they are181

kept the same as their values at time level tn, as intermediate Dirichlet boundary conditions.182

By the end of the intermediate time integration stage, one obtains a unique solution set for each of183
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t
n+1

t
n

D3D1 D2

∆
t 2

∆
t 1

∆
t 3

∆
t 2

∆
t 2 ∆

t 3

(a) Intermediate time integration stage

D1 D2 D3

(b) Solution synchronization stage

Fig. 2: Various stages in the LESAULTS method (a) Intermediate time integration stage (b) Solution synchronization stage

the sub-domains. Two sets of solutions are available in the overlapped regions-OZ12 and OZ23, each one184

corresponding to the sub-domain to which the mesh node belongs to. This multiplicity of solutions at185

the same time and spatial location is resolved in the synchronization stage in which a unique solution is186

computed from the two available solution sets and is imposed in the overlapped zones. This completes the187

solution synchronization stage.188

After both stages, a unique and continuous solution throughout the entire domain is obtained. This189

completes one stage of the LESAULTS method. The above two steps are repeated to solve for the unsteady190

solution of governing equations.191

3. Theoretical Computational speedup192

The speedup obtained using LESAULTS method is defined as the ratio of the computational time taken193

by the conventional explicit solver to that taken using LESAULTS method for integrating through the same194

flow time, for the same number of computational degrees of freedom (number of cells/nodes in the mesh) and195

using the same number of computing cores. Hence, mathematically the theoretical speedup Sth is expressed196

as,197

Sth = Tc,CONV

Tc,LESAULT S
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In the above expression, Tc,CONV and Tc,LESAULT S are the computational times taken by the conventional198

LES solver and LESAULTS method-based solver respectively.199

For a general LESAULTS configuration with Nsub number of subdomains and assuming ideal load200

balancing, the above expression can be derived as,201

Sth = max(Rδt,i)
(
∑Nsub

i=1 Ni − (
∑Nsub

j=1
∑Nsub

i=1 Nij)/2)∑Nsub

i=1 Rδti
Ni

(1)

where Nij denotes the number of nodes in the overlapped zones between sub-domains i and j.202

The optimum number of cores Ci to be dedicated to sub-domain i for proper load balancing is given by,203

Ci = Rδt,iNi∑Nsub

i=1 Rδti
Ni

Ctot (2)

where Ctot is the total number of cores.204

It can be observed from Equation 1 that the speedup Sth is maximum when max(Rδt,i) is large along205

with low values of Ni for sub-domains with Rδt,i >> 1. It should also be emphasized that the number of206

nodes in the overlapped regions should also be kept as low as possible to achieve the maximum speedup.207

To further explain the above expression, we consider a two sub-domain configuration with the larger208

sub-domain containing larger number (N1) of nodes having an Rδt,1 value of 1 and the smaller sub-domain209

containing N2 number of nodes (N2 << N1). Then, Sth can be expressed as a function of the node number210

ratio, Rn = N1/N2 and Rδt = Rδt,2 as,211

Sth = Rδt
(Rn + 1)

(Rn + Rδt)
(3)

The variation of Sth with Rn and Rδt is plotted in Fig. 3.

Fig. 3: Contours of Sth as a function of Rn and Rδt for a two sub-domain decomposition

212
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It is observed from Fig. 3 that the speedup is maximum for high values of Rn and Rδt, i.e., for a high213

value of Rδt and a small number of nodes in the sub-domain with the smallest time step. Hence, LESAULTS214

method is efficient in LES computations when the limiting time step is dictated only by a very small number215

of cells in the computational domain. It should also be emphasized the method in its present form requires216

an a priori knowledge of the time steps in all the sub-domains.217

4. Design of LESAULTS method218

The intermediate time integration steps do not require any additional correction in the non-overlapped219

zones of the sub-domains and are hence carried out in the same way as done for the conventional time220

integration method. In the overlapped zones, two sets of solutions are obtained after the intermediate time221

integration stages. In general, these two solution sets are not identical due to the difference in the time222

steps (CFL numbers) used in the time integration stages and due to the intermediate Dirichlet boundary223

conditions at the interface boundaries. To enforce a unique solution, the solution synchronization step224

sketched in Fig. 4 is used.225

OZ
12

D1 D2

solution computed using ∆t
2

solution computed using ∆t
1

intended solution 
after synchronization

Fig. 4: Solution after intermediate time integration stages and the solution synchronization stage for a 2 sub-domain LESAULTS
configuration

The synchronized solution should obey the following criteria:226

• The synchronized solution is a function of the solution sets from both subdomains227

• It should smoothly blend with the solutions in the sub-domains (as shown in Fig. 4)228

• The synchronization should involve a minimum number of nodes in the overlapped zone so that the229

speedup is maximized230

• The erroneous solution at the nodes near to the interface boundaries should be discarded in the231

synchronization procedure232

In order to elucidate the last point in the above list, consider the solution of the linear convection233

equation on a one-dimensional domain with a Gaussian profile as the initial solution as shown in Fig. 5.234

In this example, and for the rest of this paper, the following notation is used: it
lu

n
j is used to denote any235



10 Sreejith N. A. et.al. / Journal of Computational Physics (2022)

quantity u at the jth node in the lth sub-domain at time level n. The kth intermediate time integration236

stage after nth time level is referred as n + k/Rδt where Rδt is the number of intermediate stages. The left237

superscript it denotes that the quantity is obtained after intermediate time integration stage. Similarly, for238

indicating that the quantity is obtained after the solution synchronization stage, a left superscript of ss is239

used.240

x

u

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0

0.2

0.4

0.6

0.8

1 D (t
n
)

D (t
n+1

)

x

u

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0

0.2

0.4

0.6

0.8

1

D (t
n
)

D (t
n+1

)

(a) Conventional Solution

x

u

0.8 1 1.2 1.4 1.6
­0.2

0

0.2

0.4

0.6

0.8

1

D1

D2
VIEW B

VIEW A

(b) LESAULTS Solution using sub-domains D1,
D2 and D3

0.88 0.9 0.92

0.4

0.5

0.6

D1

D2

D 

2

it
e

4
=0

2

it
e

1

2

it
e

2

2

it
e

3
=0

∆x
21

interface 
boundary 
of D2

(c) Error near D2 interface boundary (VIEW A)

1 1.02 1.04 1.06
0.92

0.94

0.96

0.98

1

1.02

1.04 D1

D2

D 

1

it
e

N1­1
=0

1

it
e

N1

∆x
12

interface 
boundary 
of D1

(d) Error near D1 interface boundary (VIEW B)

Fig. 5: The evolution of solution after intermediate time integration stage. (a) and (b) shows the solution in conventional and
an equivalent LESAULTS domains. (c) and (d) show the error at near boundary nodes due to Dirichlet boundary conditions.

The numerical solution computed on a conventional domain D, at two successive time instants is shown241

in Fig. 5(a). The corresponding numerical solution obtained after the intermediate time integration stages242

using a 2 sub-domain LESAULTS method applied to the same problem is shown in Fig. 5(b). The left243

sub-domain D1 is colored in red while the other sub-domain D2 is shown in green. Zoomed-in views of244

the computed solution near the interface boundaries of the sub-domains are shown in Figs. 5(c) and (d).245
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In these figures, the solution computed using the conventional method (colored in grey) is also shown for246

comparison. The effect of the intermediate Dirichlet boundary condition is pretty evident from these figures.247

The error due to the boundary conditions, is maximum at the boundary nodes (it
2u1, it

1uN1 in Figures (c)248

and (d) respectively) and gradually decreases as one moves to the interior. Hence, the synchronization stage249

should not consider these near boundary nodes which have erroneous solutions. The extent to which the250

error propagates to the interior of sub-domain D2 during the intermediate time integration stages is shown251

as ∆x21 in Fig. 5(c). The similar distance for sub-domain D1 is shown as ∆x12 in Fig. 5(d). These distances252

depend on the numerical scheme used, the CFL number Nc, the non-dimensional wavenumber kh (where k253

is the Fourier wavenumber of the numerical solution) and the number of intermediate stages the sub-domain254

undergoes as shall be proved in the coming paragraphs.255

Based on the previous discussion, for any two coincident nodes i, j located in the sub-domains D1 and256

D2 respectively, the solution after the synchronization stage is defined as,257

ss
1ui

n+1 = ss
2uj

n+1 = (1 − H(x − xH)) it
1ui

n+1 + H(x − xH) it
2uj

n+1 (4)

-where H is the Heaviside-like function defined at x = xH located in the overlapped zone and is shown in258

Fig. 6. It should be emphasized that the authors in [29], used a hyperbolic tangent function in place of the259

Heaviside-like function used in the present study. The authors of this study are of the opinion that while a260

hyperbolic tangent function is apt for simple flow scenarios where the overlapped zone extends predominantly261

in one space dimension, it may not be well suited for multi-dimensional and complex overlapped zone262

geometries. In the present study, it is demonstrated that the usage of the Heaviside-like function in Eq. 4,263

provides good accuracy at low computational cost especially when dealing with unstructured meshes. The264

distances ∆x21 and ∆x12 which determine the value of xH are such that the error from the interface265

boundaries is minimum (possibly zero).266

­0.2

0

0.2

0.4

0.6

0.8

1

1.2

OZ
12

D1
D2

x = x
H

∆x
12

∆x
21

H(x­x
H
)

Fig. 6: The definition and location of the Heaviside-like function used in Equation 4

It now remains to determine the value of xH or equivalently the values of ∆x21 and ∆x12 in the example267

discussed before. This is performed in the following paragraphs.268
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For this purpose, two popular and widely used numerical schemes, namely Lax-Wendroff([42]) and TTGC269

([43]) schemes are used. While Lax-Wendroff (LW) benefits from its low computational cost, TTGC enjoys270

high accuracy and resolution. For both spatial schemes, the numerical solution after 1 intermediate time271

integration in sub-domain D2 can be expressed as,272

[A] it
2{u}n+1/Rδt,2 = [B] it

2{u}n (5)

or,273

it
2{u}n+1/Rδt,2 = [C] it

2{u}n (6)

with,274

[C] = [A]−1 [B] (7)

and where [A] is the coefficient matrix which is particular for the numerical scheme under consideration.275

For the LW scheme, [A] is the identity matrix. For the TTGC scheme [43], which is spatially implicit,276

the matrix [A] is tridiagonal in nature. [B] is a matrix representing the flux residual computed using the277

scheme. {u} denote the vector of unknown, dependant variables defined at the mesh nodes.278

After Rδt,2 intermediate time integration stages, the solution in sub-domain D2 at time level tn+1 is279

given by,280

it
2{u}n+1 = [C]Rδt,2 it

2{u}n (8)

At any particular node i in the sub-domain D2, the above equation can be written as,281

it
2ui

n+1 =
N2∑
j=1

Cij
Rδt,2 it

2uj
n (9)

Here, Cij
Rδt,2 refers to the (i, j)th element in the matrix [C]Rδt,2 .282

It is to be noted that since Dirichlet boundary conditions are used at node 1 in sub-domain D2, C11 = 1283

and C1j = 0 for j = 2, 3..N2 . Expressing the solution 2uj
n in terms of its Fourier transform one obtains,284

it
2ui

n+1 =
N2∑
j=1

Cij
Rδt,2

∫
2Û(k, tn) ei k xj dk (10)

=
∫ N2∑

j=1
Cij

Rδt,2 P ji 2Û(k, tn) ei k xi dk (11)

where 2Û(k, tn) is the Fourier amplitude of the signal 2{u}n.285

The matrix P represents a projection operator that projects any dependent variable u from spectral286

space (k) to real space (x) such that any element (j, i) of matrix P is given by Pji = ei kh(j−i). It can be287

noticed that Eq. 11 introduces the definition of the amplification factor projected at node i and given as,288
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2Gi
Rδt,2 =

N2∑
j=1

Cij
Rδt,2 P ji (12)

It is emphasized that 2Gi
Rδt,2 is in general not the same as derived for a periodic problem. Indeed, the289

boundary closure scheme introduce deviation near the boundary nodes. This particular aspect has been290

mentioned in [44].291

For the purpose of this paper, the error associated with the LESAULTS method is computed with respect292

to the solution obtained with the conventional method. By this definition, the error at the boundary node293

in sub-domain D2 (marked as it
2e1

n+1 in Fig. 5)(c) is defined as it
2e1

n+1 = it
2u1

n+1 −cum
n+1 where cum refers294

to the solution computed using conventional method in domain D and m represents the node in domain D295

that is coincident with that of node 1 in sub-domain D2. Similarly, for any near boundary node i, the error296

ei can be expressed as,297

it
2ei

n+1 = it
2ui

n+1 − cul
n+1 such that (13)

2xi = cxl (14)

Expressing it
2ui

n+1 and cul
n+1 using their Fourier transforms one obtains,298

it
2ei

n+1 =
∫ [

2Gi
Rδt,2 − cGint

Rδt
]

Û(k, tn) ei k xi dk (15)

In the above equation, the Fourier amplitudes are such that, 2Û = cÛ = Û , since the initial solution299

applied to domains D and D2 are exactly identical. Also, Rδt is the number of time integrations that the300

conventional domain D undergoes from tn to tn+1 and is given by Rδt = LCM(∆ti)/min(∆ti).301

Here, it is assumed that the node l in domain D is sufficiently far from boundaries and hence the302

expression for the amplification factor at node l is same as the one evaluated for a periodic domain denoted as303

cGint
Rδt in Eq. 15. The expressions for Gint for the Lax-Wendroff (LW) and TTGC schemes are provided in304

the Appendix. The value of amplification factor at node i, 2Gi
Rδt,2 is evaluated for any particular numerical305

scheme using Eq. 12. For the analysis, the extreme scenario where Rδt,2 = Rδt is considered.306

A measure of the magnitude of the error it
2ei is denoted as ϵbnd,i = | 2Gi

Rδt,2 − cGint
Rδt | and for a given307

numerical scheme, is a function of the non-dimensional wavenumber kh, CFL number Nc, time step ratio308

Rδt,2 and the node number, i. To find out the value of x = xH or equivalently the values of ∆x21 and ∆x12,309

the value of ϵbnd,i is calculated at various nodes near to the boundaries using expression of Eq. 15. The310

node j at which ϵbnd,j is minimum (preferably zero) at a given value of Rδt,2 and for a given scheme is then311

used to determine xH = xj .312

For the present study, the value of ϵbnd,i is calculated by considering the linear convection equation as313

the governing PDE and for the LW and TTGC schemes. The one-dimensional sub-domain D2 of length 1314

units is discretised using 100 linear elements of size h = 0.01 and N2 = 101. This is sufficient to ensure315
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Fig. 7: Variation of ϵbnd,i as a function of kh at Nc = 0.1 for various nodes near the boundary.

that amplification factor at any interior node approaches the corresponding value calculated for a periodic316

domain. For the LW scheme, the calculation of [C] is straightforward and is essentially a function of the317

numerical flux gradient values calculated at every node. For the original TTGC scheme, [A] is tridiagonal in318
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Fig. 8: Node number at which the maximum error is less than or equal to a specified cutoff error plotted for various Rδt values

nature and the calculation of [C] is computationally intensive. In the numerical implementation of TTGC,319

an approximate 2-step Jacobi method is used to invert the [A] matrix and is used to calculate the [C] matrix.320

The details of this Jacobi method is provided in [43].321

Fig. 7 shows the value of ϵbnd,i plotted at various nodes near the interface boundary for values of322

Rδt,2 = 2, 5, 10. The value of Nc = 0.1 is used and ϵbnd,i is calculated and plotted across all non-dimensional323

wavenumbers. One can observe that the value of ϵbnd,i is maximum at the near boundary nodes (here i=1 is324

the boundary node, i=2 is the near boundary node etc.) and reduces as one moves to nodes in the interior325

of the domain, for both the LW and TTGC schemes. For Rδt = 2 and LW scheme, node 2 produces a326

maximum error of 0.005 while all the nodes in the interior produce zero error. For the TTGC scheme,327

absolute zero error is difficult to be obtained due to the implicit nature of the scheme. The error ϵbnd,i at328

node 6 is plotted in the inset in Fig. 7(b) and is found to be of the order 10−7. Similarly, for other values329

of Rδt, it is observed that the error induced by TTGC scheme is higher than that for LW scheme at the330

same node. This is due to the spatially implicit nature of the TTGC scheme, which propagates the error of331

approximate boundary condition farther into the interior of the domain.332

In general, it is observed that for the LW scheme, the maximum error falls to absolute zero after the333

node number i = Rδt + 1 . This is observed from Fig. 8 where the nearest boundary node at which the334

maximum error is less than a specified cutoff value is plotted. For the LW scheme, the error is identically335

zero for any node i > Rδt + 1. This is because spatially local stencil is used in the LW scheme. For the336

TTGC scheme, an absolute zero error is difficult to obtain due to the spatially implicit nature of the scheme337

as mentioned before. Depending on the cut-off error value chosen, the nearest node at which the maximum338

error is below the specified cut-off value varies. It should also be noted that this particular plot of TTGC339

is for Nc = 0.1. At higher Nc values this value of node number could differ. As a rule of thumb, we propose340

the node number to be chosen as 2 × Rδt + 1. This would ensure that the error is minimum (although not341
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zero) and at the same time keep the length of the overlapped zone small. This particular rule is used in the342

numerical tests which are explained in Section 6 and found to provide accurate results.343

Hence, the values of ∆x21 are determined for both the schemes considered. For the LW scheme, this344

corresponds to ∆x21 = (Rδt,2 +1)h and similarly for ∆x12 = (Rδt,1 +1)h. On the other hand, for the TTGC345

scheme the corresponding values ∆x21 = (2Rδt,2 + 1)h and ∆x12 = (2Rδt,1 + 1)h is observed to produce346

accurate results. Hence, for the overlapped zone OZ12, the optimum number of cells to be used with LW347

scheme is Rδt,1 + Rδt,2 + 1. The corresponding number for TTGC scheme is 2 (Rδt,1 + Rδt,2) + 1.348

5. Error Analysis349

Definition of error : Since the numerical schemes used in this study have been well studied and validated350

in the past, it is meaningful to study the error arising from LESAULTS with respect to the conventional351

solver solution rather than the exact solution. Hence, in this study, the error due to LESAULTS method in352

sub-domain i is defined as,353

iϵ = iu − cu (16)

where iu and cu are the solutions obtained in the sub-domain i using LESAULTS method and the solution354

obtained using conventional solver respectively. This error is analysed in the spectral space using Global355

Spectral Analysis as described in the following sections.356

5.1. GSA of LESAULTS method applied to linear convection equation357

Consider the linear convection equation (LCE) in independent variables x and t and with a constant358

phase speed c defined as,359

∂u

∂t
+ c

∂u

∂x
= 0, (17)

-in the spatial domain 0 ≤ x ≤ L. When using the conventional solver, the governing LCE is solved in360

the domain D shown in Fig. 9. Domain D is discretised using elements of length h. Let the time step chosen361

while solving the LCE in D be c∆t and the corresponding CFL number be cNc = c c∆t/h.362

When using the LESAULTS method, the same governing PDE solved in a two sub-domain configuration363

is shown in the same Figure. Here the domain D used in the conventional method is divided into two364

overlapping sub-domains D1 and D2. Similar to the discussion in the previous section, the overlapped365

zone between D1 and D2 is also shown in the Figure. For the sake of analysis, the same uniform mesh366

size h is used for discretising domain D1 and D2 including the overlapped zone. To demonstrate the error367

analysis of LESAULTS method, let the time step used in D1 be the same as that used in the conventional368

solver, i.e. 1∆t = c∆t. Similarly, let the time step used in D2 be 2∆t = Rδt,1 1∆t = Rδt c∆t. Let the369
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Fig. 9: 1D domains used to solve 1D LCE using conventional and LESAULTS methods

corresponding CFL numbers be denoted by 1Nc and 2Nc respectively where 2Nc = Rδt,1 1Nc = Rδt cNc.370

Hence, for this configuration under study, D1 undergoes Rδt(= Rδt,1) intermediate time integration steps371

while D2 undergoes 1 time integration step before the solution synchronization stage.372

The numerical solution at the node number i in Domain D (shown in Fig. 9) and at time tn is expressed373

using its Fourier transform as,374

cui
n =

∫
cÛ(k, tn) ei k xi dk, (18)

The numerical solution at time level tn+1 (after Rδt time steps) is given by,375

cui
n+1 =

∫
GRδt

int (kh, cNc) cÛ(k, tn) ei k xi dk, (19)

where GRδt
int (kh, cNc) is the net amplification factor after Rδt time steps.376

Similarly, the solution at a coincident node (node p in Fig. 9) in sub-domain D1 at time level tn+1 is377

given by,378

1up
n+1 =

∫
GRδt

int (kh, 1Nc) 1Û(k, tn) ei k xp dk, (20)

Here, it is evident that node p is located upstream of the node at which the Heaviside-like function is379

anchored and hence the error from the boundary condition is not present at this node. The amplification380

factor value used in the above expressions is that of the interior nodes provided in Appendix A.381

Since sub-domain D2 undergoes only 1 intermediate time integration step, the solution at any node q in382

D2 is given by,383

2uq
n+1 =

∫
Gint(kh, 2Nc) 2Û(k, tn) ei k xq dk, (21)

Similarly, at the corresponding node j in Domain D, the solution is expressed as,384

cuj
n+1 =

∫
GRδt

int (kh, cNc) cÛ(k, tn) ei k xj dk, (22)
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By definition, the error at node p in sub-domain D1 is given by,385

ϵp = 1up
n+1 − cui

n+1, (23)

Substituting Eqs. 20 and 19 in 23 one obtains,386

ϵp =
∫ [

GRδt
int (kh, 1Nc) − GRδt

int (kh, cNc)
]

Û(k, tn) ei k xi dk (24)

It is assumed that cÛ(k, tn) = 1Û(k, tn) = 2Û(k, tn) = Û(k, tn) since the initial solution is the same in387

all domains.388

Since 1Nc = cNc, the error ϵp is identically zero. This expression is valid for all nodes in D1 except those389

at which the Heaviside-like function is non-zero.390

Similarly the error at the node q in D2 is given by,391

ϵq =
∫ [

Gint(kh, 2Nc) − GRδt
int (kh, cNc)

]
Û(k, tn) ei k xq dk (25)

It is to be noted that ϵq is not equal to zero since the CFL numbers in sub-domain D2 and domain D392

are different. The magnitude of the first term in the above integral is a measure of the dissipative error and393

is given by,394

ϵG = |Gint(kh, 2Nc) − GRδt
int (kh, cNc)| (26)

The non-dimensional error in phase speed and the group velocity are then given by,395

ϵCN = (2Cnum
n+1 − cCnum

n+1)
c

(27)

ϵV gn = (2V g,num
n+1 − cV g,num

n+1)
c

(28)

where 2Cnum and cCnum are the phase speeds and 2V g,num and cV g,num are the group velocities and396

are functions of the kh and Nc for any numerical scheme. These expressions have been derived and are397

provided in Appendix.398

D2
D1

H(x­x
H
)

ε
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ε
Vgn

x = x
H

ε
CN

Fig. 10: A schematic showing the Heaviside-like function and the various errors incurred in LESAULTS configuration
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Fig. 10 shows a schematic of the spatial variation of error ϵG, ϵV gn along the sub-domains D1 and D2.399

The Heaviside-like function is also shown in the Figure. The above analysis shows that the error in sub-400

domain D1 is zero for all nodes upstream of x = xH . The errors in D2 on the other hand, are provided by401

expressions 26 and 28.402

5.2. Error due to LW and TTGC schemes403

The above expressions for dissipative, phase speed and dispersive errors are now calculated using Eqs. 26404

to 28 for Rδt values of 2,5 and 10 for the LW and TTGC schemes.405

The plots of ϵG in the kh − Nc plane for LW and TTGC schemes are shown in Fig. 11. In the Figure,406

Nc refers to the largest value of CFL used in either of the sub-domains. The region where the dissipative407

error ϵG is less than 1% is colored in grey. It can be observed that for LW scheme with Rδt = 2, LESAULTS408

scheme is able to resolve the solution amplitude within 1% error for all spatial frequencies up to a Nc value409

of 0.1. The corresponding value of Nc for TTGC scheme for the same value of Rδt = 2 is 0.25. Similarly, LW410

scheme performs accurately for all values of Nc used for spatial frequencies kh < 0.5 . The corresponding411

value for TTGC scheme is kh = 0.75. This implies that if one expects high frequency waves (such as in412

shear layers or contact discontinuities) in overlapped zones, then it is advisable to keep the CFL number in413

the larger domain less than 0.1 for LW scheme and less than 0.25 for TTGC scheme. If the overlapped zone414

is devoid of any such high frequency events, then any CFL number can be used. With increasing values of415

Rδt, the region of dissipation error is observed to shrink gradually as can be observed from the Figure.416

The group velocity error obtained with LESAULTS using LW and TTGC scheme is shown in Fig.12.417

Similar to the plots of ϵG, the region with less than 1% error is colored in gray. It is observed that for the418

LW scheme, the phase speed is captured accurately for all wavenumbers for Nc < 0.1 while for the TTGC419

scheme a higher Nc value (Nc = 0.2) could be used for the same error limit of 1%. Similarly, any stable420

value of Nc could be used to resolve the group velocity of the input signal with a spatial frequency with421

kh < 0.2. TTGC scheme on the other hand, can resolve wavenumbers up to a value of kh = 0.3 with any422

value of Nc. Similar to the observation for ϵG, the error region for the group velocity shrinks progressively423

with increasing values of Rδt.424

5.3. Validation of error analysis for LCE425

The LCE with unit phase speed c is solved numerically in a domain extending from x = 0 to x = 3. For426

applying the LESAULTS method, the domain is divided into three sub-domains-D1, D2 and D3 as shown in427

Fig.13(a). All three sub-domains are discretised using a constant meshing size, h = 0.01. The CFL numbers428

in the sub-domains D1, D2 and D3 are 1Nc ,2Nc and 3Nc respectively such that 1Nc = 3Nc = 10 × 2Nc and429

Rδt,1 = Rδt,3 = 1, Rδt,2 = 10. The size of the overlapped zones is determined using the recommended size430

as mentioned in Section 4. The initial solution provided is that of a wavepacket given by431
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(a) Rδt = 2 (b) Rδt = 2

(c) Rδt = 5 (d) Rδt = 5

(e) Rδt = 10 (f) Rδt = 10

Fig. 11: Contours of ϵG for LW and TTGC schemes at various values of Rδt

u(x, 0) = 1
σ

√
2π

e
−0.5(x−0.5)2

σ2 (29)



Sreejith N. A. et.al. / Journal of Computational Physics (2022) 21

(a) Rδt = 2 (b) Rδt = 2

(c) Rδt = 5 (d) Rδt = 5

(e) Rδt = 10 (f) Rδt = 10

Fig. 12: Contours of ϵV gn for LW and TTGC schemes at various values of Rδt

shown in Fig.13(a). The wavepacket is centered at x = 0.5 with the non-dimensional central wavenumber432

kh = 0.5. σ is given a value of 0.05.433

A total of four numerical tests are carried out, the details of which are provided in Table 2. In all the434
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tests, the value of Rδt is fixed as 10. For each numerical scheme, two tests are carried out: one using a high435

value of 1Nc = 3Nc = 0.5 (tests 1 and 3) and the remaining two tests with a lower value of 1Nc = 3Nc = 0.05436

(tests 2 and 4). The values of the dissipation and dispersion errors obtained from GSA explained in the437

previous section are also provided in the Table.438

From Table 2, it is observed that the dissipation error is close to two orders larger for case 1 (with439

1Nc = 3Nc = 0.5) when compared to case 2 with 1Nc = 3Nc = 0.05. Hence, it is expected that for the440

given numerical setup, (kh,Nc and Rδt) case 1 will be prone to more dissipation error than case 2. Similarly441

when comparing GSA predictions for Cases 1 and 3, it is observed that the error for the LW scheme (case442

1) should be higher when compared to TTGC scheme (case 3). It is also observed that the dispersion error443

ϵV gn is reduced by 2 orders of magnitude for the LW scheme when 1Nc = 3Nc is reduced from 0.5 to 0.05.444

For the TTGC scheme, dispersion error is reduced by 4 orders of magnitude.445

Case No Scheme Nc,1 = Nc,3 Nc,2 ϵG ϵV gn

1 LW 0.50 0.050 2.9 × 10−3 3.28 × 10−2

2 LW 0.05 0.005 1.7 × 10−5 3.35 × 10−4

3 TTGC 0.50 0.050 8.1 × 10−4 1.45 × 10−2

4 TTGC 0.05 0.005 2.8 × 10−8 9.37 × 10−7

Table 2: Numerical tests performed using LESAULTS method for the LCE. ϵG and ϵV gn values provided are from GSA

All tests (1-4) are computed till time t = 2 and the results are plotted in Fig.13. The dashed lines446

denote the conventional solver solution while the black lines are the solutions obtained using LESAULTS447

method. The solutions from Cases 1 and 2 using the LW scheme show both the damping and distortion of448

the initial solution even for the conventional method. The dispersive nature of the LW scheme is well-studied449

and reported. When comparing the solutions obtained using LW scheme (Cases 1 and 2), Case 1 shows450

a fair amount of differences between the computed solutions using conventional and LESAULTS method451

when compared to Case 2. This is in line with the predictions from GSA shown in Table 2 where a higher452

dissipation error is predicted for Case 1. On the other hand, in the case of TTGC scheme, the amplitude453

and shape of the initial wavepacket are well preserved highlighting the superior DRP properties of TTGC454

scheme. When comparing the solutions obtained using LESAULTS method (Cases 3 and 4), it is observed455

that the solutions are in good agreement with each other even for the high Nc test case (Case 3). When456

comparing the error between LW and TTGC schemes for the higher Nc tests, it is observed that TTGC457

scheme incurs lesser error with LESAULTS method. This is also in line with GSA predictions, dissipation458

error of TTGC scheme is half that of the LW scheme. For the lower Nc case with TTGC scheme (Case 4),459

the match between the solutions is excellent. This set of tests ascertain the validity of GSA as well as the460

accuracy of LESAULTS method at lower Nc values.461
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Fig. 13: LESAULTS method applied to the solution of LCE. The initial solution is provided as a wavepacket centered at
x = 0.5 and kh = 0.5. Straight lines indicate LESAULTS solution and dashed lines indicate conventional solution

5.4. Order of accuracy462

To prove that the order of accuracy of the numerical scheme is preserved in LESAULTS method, numeri-463

cal tests using LCE as the governing PDE are performed. The spatial domain for the numerical tests is kept464
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the same as that in the previous section. In the present test cases, the grid sizes are varied. Tests are per-465

formed using conventional and LESAULTS method, for both LW and TTGC schemes and with grid spacing466

h = 0.1, 0.01, 0.001 and 0.0001. The CFL number in domains D1 and D3 are kept as 0.1 (Nc,1 = Nc,3 = 0.1)467

and the value of Rδt,2 is set as 10 (Nc,2 = 0.01) in all the test cases. The initial solution is provided in the468

form of a Gaussian curve centered at x = 0.5. All the tests are performed till time t = 2 is reached.469

The conventional and LESAULTS solutions at the initial and final times computed using TTGC scheme470

with a mesh size of 0.01 is shown in Fig. 14. Since the objective is to assess the order of accuracy using471

LESAULTS method, a metric for error Errorinf is defined as follows,472

Errorinf = max(u − uexact)
max(uexact)

(30)

-where u and uexact are the computed and exact solutions of LCE for the given initial solution respectively.473

This error norm is evaluated at the last iteration.474

The computed error norm Errorinf for various grid sizes is shown in Fig. 15(a) for the LW scheme and in475

Fig. 15(b) for the TTGC scheme. It is observed that the error obtained using LESAULTS method is in very476

close proximity to that obtained using the conventional solver. This is in line with the GSA analysis and its477

numerical validation presented in the previous section. The order of accuracy as shown by the slope of the478

curve demonstrates that the second-order spatial accuracy of LW and third-order spatial accuracy of TTGC479
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Fig. 15: Error calculated for various mesh size h using LW and TTGC schemes for Rdt=10

is exactly reproduced using LESAULTS method as well. Hence, through these numerical experiments, it is480

demonstrated that the order of the schemes are well preserved when LESAULTS method is used.481

5.5. Conservation property of LESAULTS method482

Due to its inherent design, LESAULTS method is not strictly conservative in nature. In order to study the483

conservation properties of LESAULTS method, a two sub-domain LESAULTS configuration is used to solve484

LCE and the corresponding conventional solver configuration as shown in Fig. 16. The CFL number used in485

the domains D and D1 (cN c and 1N c) are equal while the CFL number in D2 is large (2N c = Rδt cN c). The486

overlapped zone in the LESAULTS configuration is shown as ωL and the similar region in the conventional487

solver domain is denoted as ωC in the Figure.488

Integrating the LCE (given by Equation 17) in space in the domain ωc and after numerically evaluating489

the flux residual at the cell faces one obtains,490

d

dt

∫
ωc

udω = c [cui − cuj ] (31)

Similarly, when the same integration is performed for the LESAULTS configuration over the overlapped491

region ωL the following expression is obtained,492

d

dt

∫
ωL

udω = c [2u1 − 1uN1 ] (32)

Subtracting Equation 31 from 32 one obtains,493
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Fig. 16: The computational domain used in a conventional and two sub-domain LESAULTS method. ωL denote overlapped
zones in the LESAULTS configurartion and ωC denotes the corresponding nodes in the conventional domain

d

dt

∫
ωL

udω − d

dt

∫
ωc

udω = c (2u1 − cui) − (1uN1 − cuj) (33)

Since the conventional solver is assumed to be conservative in nature, the second integral in Eq. 33 drops494

to zero under steady state conditions. Since cN c = 1N c and the grid sizes in domain D and D1 are equal, it495

is proven in Section 5.1 that 2u1 = cui. Hence the error in conservation is given by (2uN1 − cuj). Applying496

spectral analysis one can observe that this term is exactly the same as the dissipation error ϵG derived in497

Section 5.1 when analysed in the spectral space. Hence the discussions on the dissipation errors provided498

in Section 5.1 holds valid for the error in conservation as well. It has been concluded in the analysis on499

dissipation errors earlier, that the dissipation error is minimal for low values of kh and Nc. Hence, the error500

in conservation is minimum when computations are carried out for low values of Nc and in locations where501

small values of kh are observed.502

6. Numerical Validation503

Till now, LESAULTS method is demonstrated to solve LCE on one-dimensional domains with uniform504

grid spacing. LESAULTS method is now applied to 2-D and 3-D Euler and Navier-Stokes equations using505

the CFD solver AVBP and are discussed in this section. AVBP is a three-dimensional, hybrid finite-506

volume/finite-element solver that works on unstructured grids [45]. The purpose of these tests is to study the507

effect of non-uniform grid topology, cell element types and time step ratio on the performance of LESAULTS508

method. The 2-D isentropic vortex convection problem is the first among the numerical experiments. This509

2-D test case is chosen to study the effect of cell topology as well as the effect of uniform and non-uniform510

meshes on LESAULTS method. Simulations are carried out using both quadrilateral and triangular elements511

for values of Rδt = 2, 5, 10. The effect of varying mesh is also analysed by using spatially uniform and varying512

cells in the domain. The second numerical experiment is the incompressible flow past a 3D cylinder. This test513
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Fig. 17: (a) Computational domain used in 2d vortex test case, (b,c,d) Non-dimensional pressure along the centerline at various
time instants. Solution shown is that of Case 8 of Table. 3

case is chosen to demonstrate the applicability of LESAULTS method for 3-D, transitional flow problems.514

Hexahedral elements are used in this experiment and the value of Rδt used is 5. The third and final515

numerical experiment is performed using the Sandia-D flame. This test case demonstrates the applicability516

of LESAULTS method for reactive-turbulent flows. Tetrahedral elements are used in this experiment with517

the value of Rδt chosen as 4. Through the above mentioned three numerical experiments, the applicability518

of LESAULTS method for a wide class of flow problems with different numerical settings is demonstrated.519

6.1. 2-dimensional isentropic vortex convection520

In this test case, an isentropic vortex is superposed on uniform flow of an inviscid fluid. This test case521

is commonly used to validate numerical methods for capturing the right convection speed and amplitude522

of the vortex. For the present study, a rectangular domain with length approximately 1.4 m and height523

0.6224 m is chosen. An isentropic, Rankine vortex of strength 0.01556 units and radius 0.1 m centered at524

(x = 0.0778m, y = 0.3112m) is superimposed on a uniform flow with velocity of 100 m/s. The top and525

bottom boundary conditions are made translationally periodic. The left face is provided a characteristic526

inlet boundary condition and the right face is given a characteristic outflow boundary condition.527
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Simulations are performed using both conventional and LESAULTS methods. For the conventional528

solver, a single domain of dimension ( 1.4×0.6224) is used. For the LESAULTS method, the computational529

domain is divided in the longitudinal direction into three over lapping sub-domains as shown in Fig. 17(a).530

The length of the overlapped zones is determined based on the recommended values in section 4. The531

sub-domain D1 is time integrated with a smaller time step and the remaining two sub-domains use equal,532

large time steps. This is designed so as to demonstrate the LESAULTS method’s applicability to resolve533

convection from a higher time step region to a lower time step region and vice-versa.534

The objective of this exercise is to study the effect of varying mesh sizes and element types on the535

LESAULTS method. Hence, multiple test cases are simulated to study the effect of these parameters on536

the accuracy of LESAULTS method, and are listed in Table 3. The test cases are divided into two groups.537

The first group consisting of cases (1-4) is performed using uniform grid sizes. This implies that the three538

sub-domains have the same mesh size and are spatially uniform. Hence, sub-domain D1 is computed using a539

lower Nc value while D2 and D3 use the same Nc value. The first two test cases in the group, namely cases540

1 and 2 are performed using LW scheme with quadrilateral and triangular elements respectively. Similarly,541

the remaining two cases in this group are carried out using TTGC scheme with quadrilateral and triangular542

elements.543

The second group comprising the remaining four cases (5-8) are carried out using non-uniform meshes. In544

these cases, larger cells are used in sub-domains D2 and D3, while smaller elements are used in sub-domain545

D1 thereby ensuring spatially uniform Nc values in all sub-domains. Buffer zones are provided in D1 to546

ensure the smooth and gradual transition of grid size to D2 and D3. This increases the overall length of full547

domain depending upon the value of Rδt used. Similar to the previous group, tests are performed each with548

different schemes (LW and TTGC) and using different element types (triangular and quadrilateral elements)549

for different values of Rδt listed in Table 3. To have a fair comparison of the LESAULTS and conventional550

methods, the conventional method is carried out with the same time step used in D1 in LESAULTS method.551

To quantify the error with LESAULTS method, the following definition of error is used.552

ϵcovo = max(pLESAULT S − pCONV

pCONV
) (34)

-where p is the pressure at any point in the domain and ϵcovo is computed as the maximum among all553

points in the domain and at all computed times. Both sets of simulations (conventional and LESAULTS)554

are solved using the same number of computational cores with the core distribution in LESAULTS obtained555

from Eq. 3.556

6.1.1. Effect of variable mesh sizes557

In the test cases with uniform mesh size (Cases 1-4), all the domains are discretised using elements with558

a characteristic edge length of h0 = 1.556 × 10−3 m. The time step used in sub-domains D2 and D3 are559

1.0 × 10−6 while lower values (depending on the value of Rδt) is used in sub-domain D1. Hence, in these560
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Case No Scheme ∆t2 = ∆t3 ∆t1 Element Type Mesh Distribution
1 LW 1.0 × 10−6 ∆t2/(Rδt = 2, 5, 10) Quadrilateral Uniform
2 LW 1.0 × 10−6 ∆t2/(Rδt = 2, 5, 10) Triangle Uniform
3 TTGC 1.0 × 10−6 ∆t2/(Rδt = 2, 5, 10) Quadrilateral Uniform
4 TTGC 1.0 × 10−6 ∆t2/(Rδt = 2, 5, 10) Triangle Uniform
5 LW 1.0 × 10−6 ∆t2/(Rδt = 2, 5, 10) Quadrilateral Varying
6 LW 1.0 × 10−6 ∆t2/(Rδt = 2, 5, 10) Triangle Varying
7 TTGC 1.0 × 10−6 ∆t2/(Rδt = 2, 5, 10) Quadrilateral Varying
8 TTGC 1.0 × 10−6 ∆t2/(Rδt = 2, 5, 10) Triangle Varying

Table 3: Numerical experiments performed using 2-D isentropic vortex convection test case

tests, Nc values in D1 is smaller than D2 (and D3) by a factor equal to Rδt. In test cases 5-8, the mesh size561

in D1 is Rδt times smaller than the ones used in D2 and D3 (h0). Hence, in these tests the CFL numbers562

in all three sub-domains are nearly uniform.563

Fig. 17(b,c,d) shows the convection of the Rankine vortex simulated using the LESAULTS method (in564

dashed lines with markers) and the conventional method (in straight lines). Results from the most extreme565

test (Case 8) with non-uniform triangular mesh and with a time step ratio of 10 are shown. Excellent match566

is found between the conventional and LESAULTS method solutions in the non-dimensional pressure. It is567

also observed that the overlapped zones do not create any spurious oscillations as the vortex convects from568

one sub-domain to the adjacent through the overlapped zone, thanks to the solution synchronization step569

in the calculations.570

The error calculated for both the uniform and varying mesh cases using quadrilateral and triangular571

elements are shown in Fig. 18(a) and (b). Comparing both the figures, it is concluded that both uniform572

and varying meshes incur error of the same order of magnitude even though the error for varying meshes is573

slightly lesser than the uniform ones. As expected, it is also observed that the LW scheme produces more574

error than the TTGC scheme for both uniform and varying meshes due to its poorer order of accuracy575

when compared to the TTGC scheme. This is also evident from the GSA analysis and the discussion on the576

dissipation error ϵG that demonstrates a lower error for TTGC when compared to LW for the same value577

of Nc and kh. Similarly, the error ϵcovo is also found to increase with increasing values of Rδt for the both578

uniform and varying meshes.579

6.1.2. Effect of mesh element type580

Fig. 18 also depicts the error incurred for different mesh elements. Quadrilateral elements are found to581

incur lower error when compared to triangular meshes for both schemes. This observation is valid for both582

uniform and varying meshes. It is also observed that error due to TTGC scheme is considerably lower than583

the ones for LW scheme. This is obvious and underlines the superior numerical property of TTGC scheme.584

Both the element types exhibit similar variation in error with Rδt, with the error increasing with increasing585

Rδt.586
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Fig. 18: Error ϵcovo calculated for (a) Uniform mesh spacing (b) Variable mesh spacing

6.1.3. Actual computational speedup587

The theoretical and actual speedup obtained during the tests (Cases 1-4) are reported in Table 4. The588

theoretical speedup is calculated using Eq. 1. In the reported values, the number of nodes in the overlapped589

zones are not taken into consideration and are hence approximate in nature. The actual speedup Sact is590

obtained by recording the time taken between two successive computations by the solver. The LESAULTS591

efficiency ηLESAULT S defined as ηLESAULT S = Sact/Sth that gives an indication of how well LESAULTS592

method works is also provided in the Table. For the sake of brevity, the speedup values are reported only for593

the extreme case where (Rδt,1 = 10) and for uniform grid distribution. Similar speedup values are obtained594

for the other tests (Cases 5-8).595

Case No Element type Scheme Rδt,1 N1 N2 N3 Sth Sact ηLESAULT S

1 Quad LW 10 50125 40501 40501 2.25 2.21 98%
3 Quad TTGC 10 58947 40501 40501 2.09 1.92 92%
2 Tri LW 10 51634 47409 47180 2.39 2.21 92%
4 Tri TTGC 10 50125 40501 40501 2.31 2.09 90%

Table 4: Theoretical and actual speedup obtained using LESAULTS for tests (1-4)

In all the tests reported in Table 4, actual speedup close to 2 (twice faster) is obtained. This is also596

close to the theoretical limits set by Eq. 1 (ηLESAULT S = 90%), thereby emphasizing the benefit of using597

LESAULTS method over conventional method.598

6.2. Flow past 3D circular cylinder599

In this section, validation of the LESAULTS method for the 3-dimensional, incompressible, transitional600

flow past a circular cylinder at Reynolds number 3900 is described. In terms of the nature of turbulence,601
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(a) Computational domain and boundary conditions (b) Domain decomposition used for LESAULTS method

Fig. 19: Computational domain used to solve the 3D flow past a circular cylinder

this test case falls under the lower subcritical range of flow where the flow is essentially laminar beyond602

separation and turbulence is generated at the shear layers in the wake. This is a typical test case used to603

validate DNS ([46, 47]), LES ([48]) and RANS ([49, 50]) solvers with experimental data on the mean and604

rms values of velocity and pressure available and the details of the measurement technique discussed in605

[51, 52].606

This flow test case is modeled using a circular cylinder of diameter D = 0.1 m and a span length equal607

to π times the diameter (π D) kept laterally facing a uniform incompressible flow of velocity 0.61 m/s.608

The computational domain used to model the test case is shown in Fig. 19(a). The cylinder is placed in a609

cylindrical computational domain of diameter 30D. The upstream semi-cylindrical boundary of the outer610

domain is modeled as an inlet, while outflow boundary condition is enforced on the downstream side of the611

cylinder. Similar to the previous test case, NSCBC based inlet and outlet boundary conditions are used in612

this study. The target pressure at the outflow boundary is specified as atmospheric pressure. The lateral613

faces of the computational domain are modeled as transitionally periodic to avoid end wall effects. The614

cylindrical wall is modeled as no-slip and adiabatic and no specific wall treatment is used. Air is used as615

the fluid for simulation and the viscosity of air is calculated using Sutherland’s law. Since the flow is near616

isothermal, the viscosity is maintained nearly constant. The incoming flow velocity of 0.61 m/s along with617

the chosen length scale (D) ensures that the Reynold’s number for the simulation is 3900.618

Two sets of simulations ( corresponding to the conventional and LESAULTS solver each) are performed.619

The mesh is made of hexahedral cells using an ’O-type’ grid configuration. It is for this reason that620

hexahedral grid cells are used since tetrahedral based LES computations of this case would require a huge621

number of mesh cells considering also the fact that no wall models are used. For properly resolving the622

fine-scale turbulent structures generated near the cylinder wall, extremely fine cells are used in the near623
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wall region. The boundary layer thickness on the cylinder at an angle of 80 degrees to the incoming flow624

is estimated as 0.0476D as mentioned in [53]. The cell size in the wall-normal direction is chosen such that625

this boundary layer thickness is resolved using 80 cells. The cylindrical wall surface is discretized using626

360 elements in the circumferential direction and 40 cells in the span-wise direction respectively. Due to627

the fine nature of mesh cells near the wall, the time step in the domain is restricted to a very small value.628

While using the conventional solver, this small time step value induces stiffness and makes the computation629

exorbitantly high.630

For performing the LESAULTS simulation, the computational domain is divided into two sub-domains631

AVBP01 and AVBP02 as shown in Fig. 19(b). Here AVBP01 is the domain that houses the cylinder wall632

and consists of 60 cells in the radial direction. This is the sub-domain with the fine cells requiring small633

time step. AVBP02 consists of the remaining portion of the computational domain and can accommodate634

a larger timestep.635

LES with the conventional explicit solver is also performed for comparing the results of that obtained636

using LESAULTS method. Here a single computational domain is used, obtained by merging the mesh637

generated for the LESAULTS method. Hence it is emphasized that the grids used in LESAULTS and638

conventional simulations have an exact node-to-node spatial correspondence.639

Domains Number of nodes Time step (s)
Conventional 3704760 2.0 × 10−7

AVBP01 900360 2.0 × 10−7

AVBP02 2922480 1.0 × 10−6

Table 5: Number of nodes and time step used in the 3D cylinder simulations

The simulations are performed using LW scheme for both cases (conventional and LESAULTS) and640

the Sigma SGS model [54] is used for turbulent closure. For the conventional simulation, a time step of641

2.0 × 10−7 sec. is used for the entire sub-domain. For the LESAULTS method, the same time step is used642

in AVBP01 while a time step of 1.0 × 10−6 sec is used in AVBP02. Hence the value of Rδt used for this643

simulation is 5. The number of nodes and the time steps used in the simulations are listed in Table 5. Flow644

simulations are performed for a duration (in flow time) of 10 secs and averaging is performed over 20 vortex645

shedding cycles after the flow has reached a statistically steady state. In order to compare the computed646

values to experimental measurements, a span-wise averaging in addition to time averaging is also performed647

on the flow quantities.648

6.2.1. Actual computational speedup649

Both the LES simulations are performed using 720 computing cores on Haswell processors on a Bull B720650

machine. The actual and theoretical speedup obtained in the test are listed in Table 6. Using LESAULTS651

method an actual speed to 2.4 times is obtained for this configuration. This is very close to the theoretical652

prediction of 2.5 times obtained using Equation 1 giving a LESAULTS efficiency of 92%.653
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Element type Scheme Rδt,1 N1 N2 Sth Sact ηLESAULT S

Hexahedral LW 5 900360 2922480 2.57 2.37 92%

Table 6: Theoretical and actual speedup obtained for the LES of 3D flow past a cylinder
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Fig. 20: Variation of non-dimensional mean lateral velocity along non-dimensional y-coordinate at longitudinal planes calculated
using conventional and LESAULTS method

6.2.2. Comparison of results obtained using conventional and LESAULTS method654

The results obtained using LESAULTS and conventional solvers are presented in Figs. 21 to 24. The655

lateral variation of the transverse velocity at the midplane is shown in Fig. 20. It is non-dimensionalised using656

the freestream velocity value and is plotted against the non-dimensional y-coordinate. Discrepancies are657

observed between the computed and measured values at the near wake planes. However, the computations658

are able to reproduce the general trends. This observation has been made in previous studies as well [46, 52].659

However, excellent match is seen between the conventional and LESAULTS method results underlining the660

accuracy of LESAULTS method in reproducing the conventional solver results.661

The lateral variation of the mean longitudinal components at downstream planes (x/d=1.06,1.54,2.02,4,7662

and 10) are plotted in Fig. 21. The PIV measurements of Laurenco and Shih [52] in the near wake region and663

the hot wire measurements at planes downstream are plotted as symbols. The U-shaped longitudinal mean664

velocity profile at the near wake (x/d = 1.06) plane is shown in Fig. 21(a). At planes downstream, the mean665

velocity profiles change to a typical V-shape and can be observed for both experimental and computational666

results. Excellent match between computed (both LESAULTS and conventional) and experimental values667

are observed in the near wake regions (x/d=1.06,1.54 and 2.02). Further downstream, the element size668
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Fig. 21: Variation of non-dimensional mean longitudinal velocity along non-dimensional y-coordinate at longitudinal planes
calculated using conventional and LESAULTS method

increases and hence minor differences between the computed and measured values are observed. However,669

the results from LESAULTS and conventional methods are in good agreement with each other highlighting670

the accuracy of LESAULTS method.671

Similar to the mean quantities discussed previously, the first order turbulent statistical quantities are also672

plotted in Figs.( 22 to 24). The longitudinal component of the resolved turbulent stress non-dimensionalised673

by freestream velocity as a function of non-dimensional y-coordinate is plotted in Fig. 22. In the near wake674

region (x/d < 1.54), the computed values of the rms of longitudinal velocity are higher than the measured675
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Fig. 22: Variation of non-dimensional Urms along non-dimensional y-coordinate at longitudinal planes calculated using con-
ventional and LESAULTS method

values. At further downstream locations, these values are underpredicted due to relatively coarser meshes676

there. However, it should be noted that the match between the LESAULTS and conventional method677

predictions are good.678

Similar plots of the lateral component of the resolved turbulent stresses as a function of the non-679

dimensional distance is shown in Fig. 23. The stress values are overpredicted at the near wake regions680

(x/d < 1.54) whereas a good match is observed between measurements and computations are downstream681

locations. As observed with the longitudinal stress component, the LESAULTS and conventional results682
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Fig. 23: Variation of non-dimensional Vrms along non-dimensional y-coordinate at longitudinal planes calculated using con-
ventional and LESAULTS method

show a very good match with each other.683

The resolved cross-stress terms are shown in Fig. 24. Here, a good match is observed between both the684

computed and measured values as well between LESAULTS and conventional method.685

6.3. Sandia-D686

The flame D of Sandia is a widely studied partially premixed, turbulent flame with detailed measurements687

of temperature, mixture fraction and species profiles available. This flame is chosen as a test case to688

demonstrate the applicability of LESAULTS method to turbulent reactive flow cases. Since hexahedral689
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Fig. 24: Variation of non-dimensional UVrms along non-dimensional y-coordinate at longitudinal planes calculated using
conventional and LESAULTS method

elements are used in the previous test case, we use tetrahedral cells in this test case.690

The domain for studying the flame is shown in Fig. 25. The experimental setup used in the flame consists691

of a fuel jet emanating out of a cylindrical pipe with an inner diameter of 7.2 mm. The partially premixed692

fuel consists of 25% methane diluted in air at room temperature. The bulk velocity of the fuel jet is 49.9693

m/s. The fuel jet is surrounded by a cylindrical pilot flame produced by the combustion of methane in air694

at an equivalence ratio of 0.77. The temperature of the burnt gas is measured to be 1880 K. Coflow air at a695

temperature of 298 K and a bulk velocity 0.9 m/s serves as the oxidizer for sustaining combustion. Available696
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PilotFuel (main) Air

(a) Computational domain used for Sandia-D flame (b) Mesh generated for LESAULTS method at the mid-
plane

Fig. 25: Computational domain and mesh generated for the Sandia-D flame using LESAULTS method

experimental measurements include mean and rms values of temperature and radial profiles such as major697

species such as CH4, O2, CO2, CO and NO.698

The computational domain used to perform LES of the Sandia-D flame using conventional LES solver699

is shown in Fig. 25(a). A cylinder of length 1.08 m and diameter of 0.288 m is used as the computational700

domain. The fuel and the pilot inlet boundaries are provided one diameter upstream of the jet orifice. The701

long domain length is necessary to capture the flame length and the plume accurately. Tetrahedral grid is702

generated inside the domain. A fine mesh is used to resolve the regions near the jet exit and the rims. From703

previous studies ([55]), it is observed that very fine mesh is required near the rim region and in regions704

upstream to the rims. This is required to ensure that the flame stabilization mechanism is resolved well.705

Hence very fine cells are used in this region as shown in Fig. 25(b). A cross section of the grid generated is706

shown in the Figure.707

Since it is required to resolve the lip region with very fine cells, the limiting time steps are observed in this708

region. The large length of the domain (extending to 1.08m) also makes the computations using conventional709

method costly. Keeping this in mind, for the LESAULTS method, a two sub-domain configuration as shown710

in Fig. 25(b) is used. The sub-domain AVBP01 comprises of the fine cells where time steps are small. The711

rest of the domain is included in sub-domain AVBP02. The overlapped zone between AVBP01 and AVBP02712

is marked as enclosed by the yellow dotted lines in the Figure.713

It is further emphasized that the same grid is used for the LES solution for both the conventional and714

LESAULTS method solution procedures. This is done by generating the mesh using a multi-zone compu-715

tational domain in the grid generation software. While the sub-domains are retained for the LESAULTS716
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method, for the conventional method the multizone grids are merged to form a single grid with an exact717

node-node spatial correspondence with the LESAULTS grid. The maximum allowable time step that can718

be used for the conventional LES solution method is 1.0 × 10−7 sec. For the LESAULTS method the same719

value of time step is used in sub-domain AVBP01. For AVBP02, a time step of 4.0 × 10−7 sec is used720

(Rδt = 4). Such a knowledge of the typical time step used in conventional LES solver was available from721

a previous published study ([55]). This indeed allowed the careful choice of defining the geometry of the722

overlapped zone. It is ensured that the number of cells in the overlapped zone from one interface boundary723

normal to the other is 6 as mentioned in Section 4.724

Since the objective of this exercise is to validate the LESAULTS methodology, a simple 2-step mecha-725

nism for methane combustion consisting of 6 species ([56]) is used in this study. Transport properties of726

this mechanism is based on a unit Le number assumption with the gas mixture viscosity calculated using727

Sutherlands law. The thermodynamic properties of the mixture is calculated using values from the Jannaf728

tables. It should be noted that the objective of this particular test case is not to compare with measurement729

data, but to compare the solutions obtained using LESAULTS and conventional method. As mentioned730

previously, considering the lower computational cost, LW scheme is used in both the LES computations.731

The artificial viscosity model of Colin [57] is used to stabilize the computations by damping inadvertent high732

frequency errors in computations. The SGS model used is that of Sigma. Turbulent Prandtl and Schmidt733

numbers are fixed as 0.6 respectively.734

The boundary conditions are modeled in the following manner. At the fuel inlet, a turbulent velocity735

profile with the specified volume flow rate, temperature and species mass fractions are specified. Artificial736

turbulence injection at the fuel inlet is performed with a turbulent intensity of 2%. To model the pilot737

flame, adiabatic species composition and temperature corresponding to the equivalence ratio of the pilot738

flame is specified. The axial inlet velocity is specified as 11.4 m/s. Similarly, axial velocity and temperature739

of air is enforced at the coflow air inlet boundary. At the outlet, a characteristic based outflow boundary is740

specified with the target outlet pressure fixed to that of the ambient atmosphere.741

LES computations using the conventional and LESAULTS method are carried out on high performance742

computing (HPC) machines comprising Intel E5-2680 processors. 360 computing cores are used for the743

conventional LES solution while 202 and 158 (total of 360) cores respectively are used for sub-domains744

AVBP01 and AVBP02 in the LESAULTS method. The core distribution among AVBP01 and AVBP02 is745

obtained using equation 3 in Section 3. LES computations are performed for a total duration of 8 flow746

through times (FTT) with time averaging performed for the last 5 FTTs to calculate the mean and rms747

values.748

6.3.1. Actual computational speedup749

The actual and theoretical computational speedup obtained for this test case is summarized in Table 7.750

A speedup of approximately two times is obtained for this test case with the LESAULTS efficiency being751
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Fig. 26: Radial profiles of mean and rms temperatures plotted at axial downstream planes

90%.

Element type Scheme Rδt,1 N1 N2 Sth Sact ηLESAULT S

Tetrahedral LW 4 240738 940311 2.28 2.05 90%

Table 7: Theoretical and actual speedup obtained for the LES of Sandia-D flame

752

6.3.2. Comparison of results obtained using conventional and LESAULTS method753

The results obtained using conventional and LESAULTS method are shown in Figs( 26 to 28). The754

radial profiles of the time-averaged temperature at three axial planes downstream of the fuel jet exit are755

shown in Fig. 26. The three downstream planes are shown in the Figure and correspond to x/d=1,15 and756

45. The mean and rms quantities are calculated by a circumferential averaging of the already time-averaged757

quantity.758

The location of the flame that is anchored at the jet rim can be observed from the radial profile of mean759

temperature at x/d=1. The two distinct peaks in the rms-temperature, indicating the radial temperature760

gradient is also pretty evident in Fig. 26 (b). Further downstream, the flame broadening and the flame761

brush can be observed from Figs. 26(c) and (d). At x/d=45, the plume region of the flame creates a near762
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uniform radial profile of mean and rms temperature as can be seen in Figs. 26(e) and (f). At all three763

planes, excellent match is observed between the conventional and LESAULTS results of the mean and rms764

temperature profiles.765

Similar to the temperature plots, profiles of mean mixture fraction and mean species profiles of CH4, CO766

and CO2 are also plotted in Figs. 27 and 28. Similar to the observations made about temperature, excellent767

match is also observed for the mixture fraction and species profiles asserting the LESAULTS method’s768

ability to reproduce turbulent statistical quantities.769
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Fig. 27: Radial profiles of mean mixture fraction and CH4 mass fraction plotted at axial downstream planes in the Sandia D
flame

7. Conclusions770

In this study, a domain decomposition based local time-stepping method is discussed. The method works771

by decomposing the computational domain into two or more sub-domains with different time steps used in772

different sub-domains for time integration. The time steps used in each sub-domain are integral multiples773

of the smallest time step among all sub-domains. Theoretical speedup expressions reveal that the method774

works well when a relatively smaller groups of cells dictate the smallest time step in a domain. Using775

global spectral analysis, the size of the overlapped zone is determined and the solution at the overlapped776
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Fig. 28: Radial profiles of CO and CO2 mass fraction plotted at axial downstream planes in the Sandia D flame []

zone is expressed as a weighted combination of the solution sets obtained from the sub-domains. Spectral777

analysis of the method indicates that the LESAULTS method works as accurately as the conventional778

method at low to moderate wavenumbers and CFL numbers. The same conclusion also holds as far as779

the conservation property is concerned. Through a numerical test, it is demonstrated that the order of780

accuracy of the numerical scheme remains unaffected by LESAULTS method. The method is then validated781

to work consistently for two numerical schemes (LW and TTGC), cell element types and mesh distributions.782

LESAULTS method is then applied to the LES of a non-reactive and reactive flow cases. A speedup of more783

than 100% is obtained for both the cases. LESAULTS method is also demonstrated to accurately reproduce784

the first and second-order turbulent statistics of these flows.785
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Appendix A. Global Spectral Analysis of LW and TTGC Schemes949

Let us consider the numerical solution of the given LCE expressed in Eq. 17 on a periodic domain. Let950

un
i denote the numerical solution of the equation at the ith node and at time level n. The location of the951

ith node is given by xi = i h where h is the grid spacing. The current numerical time tn = n ∆t where ∆t952

is the time step used. The numerical value of u at time n + 1 is given by the general expression for explicit953

time integration schemes as,954

un+1
i = S(un

i−l, un
i−l+1 . . . un

i+m − 1, un−1
i−l , un−1

i−l+1 . . . un−1
i+m, . . . un−p

i−l , un−p
i−l+1 . . . un−p

i+m) (A.1)

where l and m depend on the spatial stencil chosen and p depends on the temporal integration scheme.955

The Fourier transform of the numerical solution at node j and time level n can be expressed as,956

un
j =

∫
Û(k, tn) ei k xj dk, (A.2)

The Fourier transform of un
j+l then becomes using the phase shift property,957

un
j+l =

∫
Û(k, tn) ei k xj ei k lh dk, (A.3)

In analogy to the governing PDE, un+1
j is expressed as958

un+1
j =

∫
GnumÛ(k, tn) ei k xj dk, (A.4)

where Gnum is the numerical amplification factor, which may be written as959

Gnum = Û(k, tn + ∆t)
Û(k, tn)

(A.5)

The numerical dispersion relation is then be expressed as,960

ωnum = cnum k (A.6)

where ωnum and cnum are the numerical phase speed and circular frequency respectively. Unlike the961

physical circular frequency ω, the numerical circular frequency will be a complex function when there are962

central difference terms occurring. The numerical phase angle β is given by,963

tan(β) = −
(

(Gnum)Imag

(Gnum)Real

)
(A.7)

(Gnum)Imag and (Gnum)Real are the imaginary and real parts of the complex quantity Gnum.964

The numerical phase speed cnum is then obtain as,965

cnum = ωnum

k
= β

k ∆t
(A.8)
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leading to the definition of the normalised numerical phase speed,966

cnum

c
= β

kh Nc
(A.9)

where Nc is the Courant-Friedlich-Lewy (CFL) number defined by Nc = c∆t/h.967

The group velocity of the numerical solution Vg,num is then calculated as,968

Vg,num = ∂ωnum

∂k
= 1

∆t

∂β

∂k
(A.10)

leading to the definition of the normalised numerical group velocity,969

Vg,num

c
= ∂β

Nc ∂kh
(A.11)

The before mentioned analysis is general for any numerical scheme. The application of this analysis to970

LW and TTGC schemes are provided in the following sections.971

Appendix A.0.1. Application to LW and TTGC Schemes972

The LW scheme when applied to the 1D LCE on a uniform grid with grid spacing h and time step ∆t973

and CFL number Nc is given as follows:974

un+1
j = un

j − Nc

2 (un
j+1 − un

j−1) + N2
c

2 (un
j+1 − 2un

j + un
j−1), (A.12)

Applying the spectral analysis as discussed previously to this stencil, gives the following relations for the975

amplification factor (GLW ) for the LW scheme.976

GLW = 1 − i Ncsin(kh) + [N2
c (cos(kh) − 1)]. (A.13)

The relations for the numerical phase speed and group velocity then follow using the analysis shown977

before as,978

cnum

c
= 1

(kh)Nc
tan−1

(
Nc sin(kh)

1 + N2
c (cos(kh) − 1)

)
. (A.14)

vg,num

c
=

[
cos(kh) + N2

c (1 − cos(kh))
(1 + N2

c (cos(kh) − 1))2 + N2
c sin2(kh)

]
. (A.15)

The TTGC scheme is derived ([43]) similar to the LW scheme by employing Taylor series expansion979

of u with respect to time and substituting the first and second-order time derivatives using central spatial980

difference relations. The scheme is designed to involve two steps and when applied to LCE is given as,981

ũn = un + αT T GC ∆tun
t + βT T GC∆t2 un

tt (A.16)

un+1 = un + ∆tũt
n + γT T GC∆t2 un

tt
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where (̃) denotes the values of the numerical solution at the intermediate time step. αT T GC ,βT T GC982

and γT T GC are tunable constants. Applying the Galerkin approach assuming P1 element formulation one983

obtains,984

(ũn
i+1 + 4ũn

i + ũn
i−1)

6 =
(un

i+1 + 4un
i + un

i−1)
6 − αT T GC Nc

(un
i+1 − un

i−1)
2 (A.17)

+ βT T GC N2
c (un

i+1 − 2ui + un
i−1) (A.18)

(un
i+1 + 4un

i + un
i−1)

6 =
(un

i+1 + 4un
i + un

i−1)
6 − Nc

(ũn
i+1 − ũn

i−1)
2 (A.19)

+ γT T GC N2
c (un

i+1 − 2ui + un
i−1) (A.20)

Applying the previously mentioned analysis on the above stencil, one obtains the expressions for the985

amplification factor for TTGC scheme GT T GC , the phase speed and group velocity as given below.986

GT T GC = 1 + γT T GCNcÂŜ − αT T GC(ÂL̂)2 − iÂL̂
(

1 + βT T GCNcÂŜ
)

(A.21)
cnum

c
= − θ

(kh)Nc
(A.22)

Vg,num

c
= 1

Nc

∂θ

∂kh
(A.23)

Here, θ is the argument of the complex function GT T GC . The parameters in Equation A.23 are defined987

as,988

Â = 3 Nc

(2 + cos(kh)) , (A.24)

Ŝ = 2 (cos(kh) − 1) (A.25)

L̂ = sin(kh) (A.26)


