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Abstract—Flood simulation and forecast capability have been
greatly improved thanks to advances in data assimilation. Such
an approach combines in-situ gauge measurements with nu-
merical hydrodynamic models to correct the hydraulic states
and reduce the uncertainties in the model parameters. However,
these methods depend strongly on the availability and quality
of observations, thus necessitating other data sources to improve
the flood simulation and forecast performances. Using Sentinel-
1 images, a flood extent mapping method was carried out by
applying a Random Forest algorithm trained on past flood events
using manually delineated flood maps. The study area concerns
a 50-km reach of the Garonne Marmandaise catchment. Two
recent flood events are simulated in analysis and forecast modes,
with a +24h lead time. This study demonstrates the merits of
using SAR-derived flood extent maps to validate and improve
the forecast results based on hydrodynamic numerical models
with Telemac2D-EnKF. Quantitative 1D and 2D metrics were
computed to assess water level time-series and flood extents
between the simulations and observations. It was shown that
the free run experiment without DA under-estimates flooding.
On the other hand, the validation of DA results with respect
to independent SAR-derived flood extent allows to diagnose a
model-observation bias that leads to over-flooding. Once this
bias is taken into account, DA provides a sequential correction
of area-based friction coefficients and inflow discharge, yielding
a better flood extent representation. This study paves the way
towards a reliable solution for flood forecasting over poorly
gauged catchments, thanks to available remote sensing datasets.

Index Terms—Hydrology, flooding, Synthetic Aperture Radar,
hydraulic model, data assimilation, ensemble Kalman filter,
Telemac-Mascaret, Garonne, Sentinel-1, Random Forest.

I. INTRODUCTION

A. Flood monitoring

Flooding causes major economic losses and a serious threat
to human life and subsistence. It is one of the most devastating
natural hazards that our society must adapt to worldwide, es-
pecially as the severity and the occurrence of flood events tend
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to intensify with climate changes [1], [2]. At national scale,
flooding accounts for the major part of the extreme hazards
recorded over the last five years in France and concern about
seventeen million people in 2017 [3]. Several international
initiatives have joined efforts in research, observation and
computational science programs dedicated to flood monitoring,
in order to provide governments, decision support systems and
insurance companies with improved simulation and observa-
tion solutions. Such efforts from the community of environ-
mental remote-sensing (RS) monitoring led, for instance, to the
International Charter on Space and Major Disasters1, a unified
system for space data acquisition and delivery to those affected
by disasters, such as flooding, via its member space agencies.
With the rapidly increasing volume of data from space, Earth
observation is now at the core of international programs
such as Copernicus, in particular the Emergency Management
Service (Copernicus EMS with Mapping and Global/European
Flood Awareness System services) that provide actors involved
in the management of natural disasters with relevant satellite
RS data. The Space Climate Observatory (SCO) coordinates
space agencies and international organizations to assess and
monitor the consequences of climate change from observations
and numerical models, especially at local scales. In this regard,
the Flood Detection, Alert and rapid Mapping project (labelled
as FloodDAM) has been supported by the SCO initiatives.
It aims at developing pre-operational tools to enable quick
responses in various flood-prone areas while improving the
resolution, reactivity and predictive capability [4]. In France,
the SCHAPI (Service Central d’Hydrométéorologie et d’Appui
à la Prévision des Inondations) and French Flood Forecast
Services (SPCs) are in charge of monitoring and forecasting
water level and discharge over 22,000 km of rivers. They
produce a twice-daily vigilance color-coded risk map available
online for governmental authorities and the general public2. To
create these risk maps, they rely on hydrodynamic numerical
models and in-situ measurements and also investigate the use
of RS data.

B. Improving hydrodynamic models with data assimilation

Hydrodynamic models use the amount of water entering
the river system to compute water level and velocity in the
river network, and when the storage capacity of the river
is exceeded, in the flood plain. These models are used to
predict river water surface elevation and velocity from which

1www.disasterscharter.org
2www.vigicrues.gouv.fr
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flood risk can be assessed for lead-times that range from
a couple of hours to several days. They solve the shallow
water equations (SWE) derived from the free surface Navier-
Stokes equations [5] [6]. However, these numerical codes are
imperfect as uncertainties inherently existing in the models
and in the inputs (model parameters, boundary conditions,
geometry) translate into uncertainties in the outputs. The
performance of the hydrodynamic model is limited by the
amount and quality of available data (e.g., [7]–[11]). Model
parameters such as friction coefficients are usually calibrated
for significant flood events with respect to observational data.
As a result, the model can only be calibrated and validated
as finely as the available data allows it, stressing out the
need for a time and space densified observing network [12].
Otherwise, hydrodynamic models remain imperfect, especially
with respect to the dynamics of the flood plains, and thus
should be further validated and improved.

Data assimilation (DA) aims at estimating the optimal state
of a model by sequentially combining the model and the obser-
vations while taking into account their respective uncertainties
[13]–[15]. While historically employed in meteorology and
oceanography, DA is now commonly used in hydrology with
hydrodynamic models to improve discharge and water level
forecasting as well as risk of marine submersion and flooding
[16]. Sequential DA here allows to reduce the most signif-
icant sources of uncertainties in the hydrodynamic models
related to friction coefficients and input forcing data, which
constitute the control vector. In this regard, the Ensemble
Kalman Filter (EnKF) [17] is favored for model parameter and
forcing correction as it stochastically estimates the covariances
between the control vector and the observation errors [18]. In
the context of DA, the use of RS data allows to overcome the
limits due to the lack and decline of in-situ river gauge stations
[19]. It especially allows for validation of DA results in flood
plains with independent observations. Jafarzadegan et al. [20]
illustrates how the use of the maximum inundation maps
(delineated after a flood event) allows to validate a dual state-
parameter DA strategy of in-situ gauges where correlation
between observation errors are accounted for. RS-derived data
here are presented as a complement of in-situ data that is
sparse or absent in the case of ungauged catchments.

C. Remote sensing flood extent observation for calibration
and/or validation of hydrodynamic models

The use of RS products in the context of flood risk man-
agement presents a great opportunity to improve the ability
to monitor and forecast flooding as stated by [21]. Indeed, in
the recent years, Synthetic Aperture Radar (SAR) data have
increasingly become one of the most efficient ways to map
and monitor flood extents in near-real time over large areas,
due to their all-weather day-and-night imaging capabilities
[22]. Water bodies and flooded areas typically exhibit low
backscatter intensity on SAR images as most of the incidence
radar pulses are specularly reflected away upon arrival [23].
Thus, the detection of these areas on SAR images is relatively
straightforward, with several exceptions such as built environ-
ments and vegetated areas that yield backscattering similar

to that of permanent water bodies and flooded areas. As a
matter of fact, many research works have leveraged SAR data
for flood extent mapping and flood depth estimation. Chini
et al. [24] proposed a change detection approach applied on
SAR images called hierarchical split-based approach. It aims at
discriminating the two classes, namely wet pixels (for flooded
areas) and dry pixels in SAR images by estimating their
respective backscatter intensity distribution. Cian et al. [25]
proposed a two-step flood depth estimation using different
RS datasets. Firstly, the flood extents were delineated on
SAR images using Normalized Difference Flood Index [26].
Such an index is computed based on statistical analysis of
backscatter values from two SAR multi-temporal image stacks,
one from a reference time period and another involving flood
events. Then, the flood depth was estimated from the flood
extents thanks to a LiDAR-based Digital Elevation Model
(DEM). The merits of RS data were also demonstrated for the
automatic estimation of flood event duration using Sentinel-1,
Sentinel-2 and Landsat-8 data [27].

The increasing availability of highly spatially distributed
RS observations of flood extent and water levels offer new
opportunities for investigation and analysis (e.g., [8], [21]).
The possibility of using SAR imagery data for the validation
and calibration of two-dimensional (2D) hydraulic models
was first highlighted by Jung et al. [28]. Since then, the
increasing amount of RS data and the advances in Machine
Learning algorithms dedicated to water detection, have enabled
a great number of research work dedicated to hydrology
and hydraulics models calibration and validation for real-
time forecasting. The combination of RS data with local
hydrodynamic models has thus been greatly studied in the
literature as it allows to overcome the limitations of both
incomplete and uncertain sources of knowledge on the river
and flood plain dynamics. The last available comprehensive
review by Grimaldi et al. [29] provides an analysis on the
use of coarse-, medium- and high-resolution RS observations
of flood extent and water level to improve the accuracy of
hydraulic models for flood forecasting. It points out that RS
data should be used as a complement data source—but not as
an alternative—to the in-situ data in order to calibrate, validate,
and constraint the hydraulic models. This stems from their low
precision and acquisition frequency [29]. Indeed, compared to
in-situ data, RS data provide useful flood extent and flood
edge information at a large coverage, usually covering the
whole considered catchment, but they are much sparser in
terms of frequency. In addition, uncertainty exists in flood
extent mapping from RS observations, e.g. SAR images, which
originates from both the input images and the classification
algorithm itself. As a matter of fact, classification overall
accuracy of flooded areas varies considerably and only in rare
cases exceeds 90% [30]. An updated review from Dasgupta
et al. [31] provides the state-of-the-art on the assimilation of
Earth Observation data with hydraulic models for the purpose
of improved flood inundation forecasting.

A common use of RS-derived flood extent for hydrody-
namic model calibration and validation requires to retrieve
water surface elevation (WSE) or river width information
with complementary DEM data. Mason et al. [32], Gustarini
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et al. [33] proposed to take advantage of the flood edges
derived from SAR images as observational information. As
such, flood edges were extracted from SAR images and then
integrated with an available DEM to derive the WSE on
the flood plain. Once the coherence of the hydraulic state is
achieved, this 2D information is then compared with and/or
assimilated to the WSE simulated by one-dimensional (1D)
hydrodynamic model with a particle filter data assimilation
algorithm sequentially updating the hydraulic state. This strat-
egy demonstrated great capability in re-analysis and forecast
mode. Yet the definition of the control vector involving only
the hydraulic state was stated as a limitation when larger rivers
are considered and the correction of the upstream boundary
condition should be considered to improve forecasts. A similar
approach was proposed by Scarpino et al. [34] which leverages
multitemporal COSMO-SkyMed SAR images and a DEM to
derive flood depth maps to calibrate channel and flood plain
friction coefficients, in order to achieve flood dynamics moni-
toring in a flat area with complex topography. [35] illustrated
how RS-derived river width can be combined with a limited
number of river depth measurements and empirical functions
to estimate simplified river geometries for 2D hydrodynamic
models dedicated to inundation.

Flood probability maps have also been estimated by a
Bayesian approach, namely a Particle Filter (PF), applied on
SAR images, and subsequently assimilated into a particle
filter-based data assimilation framework [36]. This approach
saves the burden to retrieve water depth from SAR im-
ages (which requires well-known topographical information).
The particles representing each individual hydraulic forecast
are forced with perturbed rainfall inputs and weighted with
respect to the disagreement between the forecast and the
observed flood probability (inferred from SAR images) at
the assimilation times. Several follow-up papers focus on the
improvement of this strategy. For instance, [37] enhances how
a tempering coefficient is used to reduce the degeneracy of
the Particle Filter and how this results in improved forecasts.
[38] formulates the likelihood function within the Particle
Filter based on mutual information which accounts for spatial
uncertainty correlation and also leads to an improved forecast.
The sensitivity to the observing network characteristics was
investigated in the framework of synthetical twin experiments
where probability floop maps generated from a reference run
and backscatter values issued from distributions of flood and
non-flood typical classes [39].

Flood extents derived from SAR images based on the
processing of the open water backscatter probability density
function proposed in [40]–[42], were used in [9] to estimate
friction and bank-full depth with the dynamic identifiability
analysis (DYNIA) algorithm [43] applied to the LISFLOOD
model [44]. It was shown that this method does not require
the expression of SAR-derived water level and allows for a
dual calibration that improves as the number of SAR images
used in the algorithm increases. Cooper et al. [45] proposed a
new observation operator that directly uses backscatter values
from SAR images as observations in order to bypass the flood
edge identification or flood probability estimation processes.
However, this approach has only concerned synthetical SAR

images since it relies on the hypothesis that SAR images
must yield distinct distributions of wet and dry backscatter
values. This may not be the case for real data when the mean
backscatter values of wet and dry pixels are close. It should
be noted that the comparison of non-hydrometric observations,
e.g. flood edge locations, flood probability measures, derived
from SAR images with the hydrodynamic model outputs is
not straightforward and require the development of appropriate
observation operators. Lastly, it should be emphasized that the
combination between SAR images and hydrodynamic models
depends strongly on the precision of flood extent detection
and mapping techniques, as noted in [37] in areas where
backscatter values are not impacted by the appearance of
floodwater (dense vegetation, urban areas), as well as on the
quality of the numerical model (e.g. ability to initiate with
and represent permanent water surfaces). Drawbacks on both
sources of information on the flood extent should thus be taken
into account in the comparison and validation step; this is
investigated in the present work.

D. Objective and outline

This paper highlights the merits of using RS-derived flood
extents to validate and improve a hydrodynamic numerical
model with DA. In-situ water level observations are assim-
ilated in a 2D model over the Garonne River in order to
sequentially correct the friction and inflow discharge. The
Telemac software3 is used to simulate flooding for two major
events that occurred over the Garonne Marmandaise in De-
cember 2019 and January-February 2021. The flood extents
were derived from Sentinel-1 images by Machine Learning
algorithm (Random Forest), and then compared with the flood
extents simulated by Telemac. Statistical metrics are computed
to evaluate the model performance with respect to these
independent data that are not assimilated in the present work.
We illustrate how, during significant flood events, the use of
spatial data overcomes the limits of river-gauge only validation
process.

The remainder of the paper is organized as follows. Sec-
tion II gathers the method, material, and data used in this
study. The hydrodynamic solver and models of the Garonne
catchment over which the study is carried out are presented,
respectively, in subsection II-A and subsection II-B. Subsec-
tion II-C presents the Ensemble Kalman filter algorithm and
its implementation. Employed RS data and the Random Forest
algorithm carried out to retrieve flood extents from Sentinel-
1 SAR imagery data are detailed in subsection II-D. Finally,
the metrics used in the paper are presented in subsection II-E,
they allow to assess the performance of the simulation and
assimilation with respect to both in-situ and RS data as well
as evaluating the quality of the ensembles in analysis and
forecast mode. Experimental results are presented in Sec-
tion III, the merits of using RS data for simulation evaluation
are highlighted. The improvement of flood peak simulation
and forecast thanks to in-situ data assimilation are quantified.
Discussion and limitations for this study are presented in

3www.opentelemac.org

www.opentelemac.org
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Section IV. Conclusions, limitations and perspectives are given
in Section V.

II. METHOD

A. Shallow water equations in Telemac2D

The non-conservative form of the SWE are written in
terms of water level (denoted by H [m]) and horizontal
components of velocity (denoted by u and v [m.s-1]). They
express mass and momentum conservation averaged in the ver-
tical dimension, assuming that (i) vertical pressure gradients
are hydrostatic, (ii) horizontal pressure gradients are due to
displacement of the free surface, and that (iii) horizontal length
scale is significantly greater than the vertical scale. The SWE
read:

∂H

∂t
+

∂

∂x
(Hu) +

∂

∂y
(Hv) = 0 (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g ∂Z

∂x
+ Fx +

1

H
div
(
Hνe
−−→
grad (u)

)
(2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g ∂Z

∂y
+ Fy +

1

H
div
(
Hνe
−−→
grad (v)

)
(3)

where Z [m NGF69] is the water surface elevation (H =
Z − Zb with Zb [m NGF69] being the bottom elevation) and
νe [m2.s-1] is the water diffusion coefficient. t stands for time
and g is the gravitational acceleration constant. div and

−−→
grad

are respectively the divergence and gradient operators.
In addition, Fx and Fy [m.s-2] are the horizontal components

of external forces (friction, wind and atmospheric forces),
defined as follows:

Fx =− g

K2
s

u
√
u2 + v2

H
4
3

− 1

ρw

∂Patm
∂x

+
1

H

ρair
ρw

Cd Uw,x

√
U2
w,x + U2

w,y

(4)

Fy =− g

K2
s

v
√
u2 + v2

H
4
3

− 1

ρw

∂Patm
∂y

+
1

H

ρair
ρw

Cd Uw,y

√
U2
w,x + U2

w,y

(5)

where ρw/ρair [kg.m-3] is the water/air density ratio, Patm
[Pa] is the atmospheric pressure, Uw,x and Uw,y [m.s-1] are
the horizontal wind velocity components, Cd [-] is the wind
drag coefficient that relates the free surface wind to the shear
stress, and lastly, Ks [m

1
3 .s-1] is the river bed and flood plain

friction coefficient, using the Strickler formulation [46].
In order to solve Eq. (1)-(3), initial conditions {H(x, y, t =

0) = H0(x, y); u(x, y, t = 0) = u0(x, y); v(x, y, t =
0) = v0(x, y)} are provided, and boundary conditions (BC)
are described with a time-dependent hydrogram upstream
and a rating curve downstream. The Strickler coefficient is
prescribed uniformly over defined subdomains, and calibrated
according to the observing network. As aforementioned, in

the present study, the SWE are solved with the parallel
numerical solver Telemac2D, henceforth denoted by T2D, with
an explicit first-order time integration scheme, a finite element
scheme and an iterative conjugate gradient method [47].

B. The T2D model for the Garonne Marmandaise

The study area extends over a 50-km reach of the Garonne
River (southwest France) between Tonneins (upstream), down-
stream of the confluence with the river Lot, and La Réole
(downstream) (Figure 1). This part of the valley is identified
as an area at high flood risk. Since the 19th century, it has been
equipped with infrastructures to protect the Garonne flood
plain from flooding events such as the historic flood of 1875.
A system of longitudinal dykes and weirs was progressively
constructed to protect flood plains and organize submersion
and flood retention areas. Observing stations operated by the
Vigicrue network are located at Tonneins, Marmande and La
Réole (indicated as black solid circles on Figure 1) and provide
water level measurements every 15 minutes. The white circle
indicates a chosen location in the flood plain near Marmande;
it will be noted FPM in the following and used for diagnosis
only. A T2D model was developed and calibrated over this
reach [48]. It is built on a triangular unstructured mesh is
used, with an increased mesh resolution around the dykes and
in the river bed.

The boundary conditions are prescribed upstream at Ton-
neins, and downstream at la Réole. The local rating curve at
Tonneins (established from a limited number of water level-
discharge measurements) converts the observed water levels
into a discharge that is applied over the entire upstream
interface (both river bed and flood plain boundary cells). This
modeling strategy was implemented by Electricité de France
(EDF) R&D. While it has the merits to allow for a proper cold
start of the model for any inflow discharge value (i.e. no dry
grid cell at the initial time step on the upstream boundary), it
also leads to the over-flooding of the upstream first meander.
The downstream boundary condition at La Réole is described
with a local rating curve [49].

The friction coefficient Ks is defined over four areas as
shown in Figure 1. The friction coefficient values result from
a calibration procedure over a set of non-overflowing events
and are set respectively equal to: Ks1 = 45, Ks2 = 38
and Ks3 = 40 m1/3.s−1 over the upstream, middle and
downstream part of the river bed and Ks0 = 17 m1/3.s−1 over
the flood plain. It should be noted that the limited number
of in-situ measurements restricts the spatial description and
calibration of the friction in the river bed and the flood plain,
leading to uniform values within these areas and discontinuous
values between these areas. In this study, both epistemic (due
to the lack of correct parameter setting) and aleatory (due to
the lack of true physical values) uncertainties are considered;
as such, errors in water level and discharge are associated with
errors in the friction or errors in the upstream BC. The Ks

coefficients setting is indeed prone to uncertainty related to
the zoning assumption, the calibration procedure and the set
of calibration events. This uncertainty is more significant in
the flood plains where no observing station is available. The
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Fig. 1: Study area of the Garonne River (southwest France, as shown in the upper-right corner inset figure) 50-km reach
between Tonneins (upstream) and La Réole (downstream). The black arrow indicates the flow direction. The black solid circles
represent the in-situ Vigicrue observing stations. The inset figure at lower-left corner magnifies the area around Marmande. The
white solid circle indicates a diagnosis location on the flood plain near Marmande (FPM). The friction coefficient Ks is uniform
over 4 zones: upstream, middle, and downstream river bed and flood plain. Background image: Map data ©OpenStreetMap
contributors and available from https://www.openstreetmap.org.

probability density function (PDF) for the Strickler coefficients
is assumed to follow a normal distribution with mean and
standard deviation set accordingly to the calibration process
and expert knowledge. The limited number of in-situ gauge
measurements also yields errors in the upstream inflow as the
expression of the inflow relies on the use of a rating curve,
usually involves extrapolation for high flows [50]. In order
to account for uncertainties in the upstream time-dependent
discharge Qup(t) while limiting the dimension of the uncertain
input space, the perturbation to BC is applied via a parametric
formulation that allows for a multiplicative, an additive and a
time-shift error, as proposed by [51]:

Q′up(t) = a×Qup(t− c) + b (6)

where (a, b, c) ∈ R3, and their PDF are gaussian, centered
at their default values a = 1, b = 0, c = 0 such that
Q′up(t) = Qup(t). The characteristics of the friction- and
inflow-related uncertainty PDFs are given in Table I. Figure 2
depicts the ensemble of hydrographs used in the first EnKF
cycle during the 2021 event, where the mean values of
parametric coefficients from Eq. (6) are: ā = 1, b̄ = 0, c̄ = 0.

Fig. 2: Hydrographs used in the first EnKF cycle during the
2021 event. The black curve represents the “true” value of the
inflow, whereas the Q′up used for the 24 members are depicted
by light blue curves and the orange dashed curve stands for
their average.

C. Ensemble-based Data assimilation algorithm

Continuous time-series of gauged water levels and/or dis-
charge recorded at discrete locations have traditionally been
used for model calibration and validation as well as with DA

https://www.openstreetmap.org
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TABLE I: PDF of uncertain input variables related to friction
coefficients (Ks[0:3]) and inflow discharge corrective coeffi-
cients (a, b, c).

Variable Calibrated/ Standard 95% confidence
default values x0 deviation σx interval

Ks0 17 0.85 17 ± 1.67
Ks1 45 2.25 45 ± 4.41
Ks2 38 1.9 38 ± 3.72
Ks3 40 2.0 40 ± 3.92
a 1 0.06 1 ± 0.118
b 0 100 0 ± 196
c 0 900 0 ± 1760

algorithm for real-time constraint of hydraulic flood forecast-
ing models (e.g., [52]–[54]). In the present work, gauged water
levels are assimilated with an Ensemble Kalman Filter (EnKF)
algorithm, for T2D Garonne model, in order to sequentially
correct the friction and inflow discharge. The classical EnKF
algorithm is favored as it allows to stochastically estimate the
covariances between the model inputs/parameters and outputs,
without formulating the tangent linear of the hydrodynamics
model, under the assumption that the errors in the control
vector are properly described by a gaussian probability density
function.

1) Description of the control vector: The DA algorithm
consists in a cycled stochastic EnKF, where the control
vector x is composed of the friction coefficients (4 scalars
Ksi , i ∈ [0, 3]) and parameters that modify the time-dependent
upstream boundary condition (3 scalars a, b, c); n denotes the
size of the control vector. These 7 parameters are assumed
to be constant over a DA cycle, yet their evolution in time is
made possible by DA between cycles. The DA cycle c covers a
time window, denoted by Wc = [tstart; tend] of length T over
which Nobs,c in-situ observations are assimilated. The cycling
of the DA algorithms consists in sliding the time window of
a period Tshift so that the cycles c and c+ 1 may overlap.
It could be argued that the DA algorithm is more a smoother
than a filter as it operates over a sliding time window. Yet,
as the control vector is composed of model parameters (and
not of the model state) that are assumed constant over the
assimilation window, the smoothing resumes to a filtering. The
EnKF algorithm relies on the propagation of Ne members with
perturbed values of x, denoted by xi, i.e. the forecast values
denoted by xf,ic (superscript index f stands for “forecast”),
where i ∈ [1, Ne] is the ensemble member counter.

2) Description of the EnKF forecast step: The EnKF fore-
cast step consists in the propagation in time, over Wc of the
control and model state vectors. The EnKF is applied to model
parameters that, by definition, do not evolve in time over cycle
c. The absence of propagative model for the control vector
implies that the forecast for the control vector at cycle c should
remain equal to the analysis at cycle c−1. Yet, in order to avoid
ensemble collapse, artificial dispersion is introduced within the
sampling with the addition of perturbations θ to the mean of
the analysis from the previous cycle xac−1 (superscript index
a stands for “analysis”). The forecast step thus reads:

xf,ic =

{
x0 + θi1 if c = 1

xac−1 + θic if c > 1
(7)

with

xac−1 =
1

Ne

Ne∑
i=1

xa,ic−1 ∈ Rn (8)

and
θic ∼ N (0, σic

2
) (9)

where

σic =


σx if c = 1

λ1

√
1

Ne − 1

∑Ne

i=1(xa,ic−1 − xac−1)2 + λ2σx if c > 1

(10)
For the first cycle, the perturbed friction and upstream

forcing coefficient values are drawn within the PDFs described
in Table I. For the next cycles, the set of coefficients issued
from the mean analysis at the previous cycle is further dis-
persed by additive perturbations θ drawn from the Gaussian
distribution with zero mean and a standard deviation obtained
from the linear combination of the standard deviation of the
analysis at the previous cycle and σx described in Table I.
The two terms are weighted by the hyperparameters λ1 and
λ2. This technique is an advanced alternative to anomalies
inflation for avoiding the well-known ensemble collapse, better
suited for heterogeneous control of parameters. The combined
update of the variance for the re-sampling of the parameters
allows to preserve part of the information from the background
statistical description that may differ amongst the parameters
and over time while also inheriting analyzed variance from
the previous cycle. In the following implementation, λ1 and
λ2 are respectively set to 0.3 and 0.7 after the analysis of the
ensemble spread in the control space along the DA cycles.
The background hydraulic state, associated with each member
of the ensemble of inputs, denoted by sf,ic , results from the
integration of the hydrodynamic modelMc : Rn → Rm from
the control space to the model state (of dimension m) over
Wc:

sf,ic =Mc(s
a,i
c−1,x

f,i
c ) (11)

The initial condition for Mc at tstart is provided by a user-
defined restart file for the first cycle. For the following cycles,
it takes in a full restart sa,ic−1 saved from the analysis run of
the previous cycle sa,ic−1 =Mc−1(sa,ic−2,x

a,i
c−1) at time tstart+

Tshift. Note that in order to avoid inconsistencies between
the state and the analysed set of parameters at tstart, a short
spin-up integration is run on the 3 hours preceding tstart. The
control vector equivalent in the observation space for each
member, denoted by yf,ic , stems from:

yf,ic = Hc(sf,ic ) (12)

where Hc : Rm → Rnobs is the observation operator from the
model state space to the observation space (of dimension nobs)
that selects, extracts and eventually interpolates model outputs
at times and locations of the observation vector yoc over Wc. It
should be noted that, in the following, the observation operator
may also include a bias removal step to take into account a
systematic model error. Eq. (12) thus reads

yf,ic = Hc(sf,ic )− ybias (13)
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where ybias is an a priori knowledge of the model-observation
bias. The estimation of this bias is further described in
subsection III-A for the studied flood event.

3) Description of the EnKF analysis step: The EnKF
analysis step stands in the update of the control and model
state vectors. When applying a stochastic EnKF [15], the
observation vector yo,i is perturbed, and an ensemble of
observations yo,ic (i ∈ [1, Ne]) is generated:

yo,ic = yoc + εc with εc ∼ N (0,Rc) (14)

where Rc = σobs
2Inobs

is the observation error covariance
matrix, here assumed to be diagonal, of standard deviation
σobs (and Inobs

is the nobs × nobs identity matrix), as the
observation errors are assumed to be uncorrelated, Gaussian
and with a standard deviation a standard deviation proportional
to the observations σobs,k = τyoc . The innovation vector over
Wc is the difference between the perturbed observation vector
yo,ic and the model equivalent yf,ic from Eq. (12) and Eq. (14).
It is weighted by the Kalman gain matrix Kc and then added
as a correction to the background control vector xf,ic , so that
the analysis control vector xa,ic is computed in Eq. (15).

xa,ic = xf,ic + Kc (yo,ic − yf,ic ). (15)

The Kalman gain reads:

Kc = Px,y
c [Py,y

c + Rc]
−1 (16)

with Py,y
c the covariance matrix of the error in the background

state equivalent in the observation space yfc and Px,y
c the

covariance matrix between the error in the control vector and
the error in yfc , stochastically estimated within the ensemble:

Px,y
c =

1

Ne
XT
c Yc ∈ Rn×nobs (17)

Py,y
c =

1

Ne
YT
c Yc ∈ Rnobs×nobs (18)

with:

Xc =
[
xf,1c − xfc , · · · ,xf,Ne

c − xfc
]
∈ Rn×Ne (19)

Yc =
[
yf,1c − yf

c, · · · ,yf,Ne
c − yfc

]
∈ Rnobs×Ne (20)

and

xfc =
1

Ne

Ne∑
i=1

xf,ic ∈ Rn (21)

yfc =
1

Ne

Ne∑
i=1

yf,ic ∈ Rnobs . (22)

The analyzed hydrodynamic state, associated with each
analyzed control vector xa,ic is denoted by sa,ic . It results from
the integration of the hydrodynamic model Mc with updated
friction and upstream forcing Qup over Wc, starting from the
same initial condition as each background simulation within
the ensemble:

sa,ic =Mc(s
a,i
c−1,x

a,i
c ). (23)

4) Cycled forecast with DA: The integration of the cycled
ensemble forecast (of Ne = 24 members in the following
experiments) is initialized with the full restarts saved at
the final time of the DA analysis runs (i.e. tend) and uses
the updated friction coefficients and the inflow corrections
issued from the EnKF xa,ic for the following forecast duration
(selected here as +24h). The average state of this ensemble will
be further used to assess the performance of DA in forecast
mode.

D. Flood extent mapping using SAR imagery data

Sentinel-1 is the first satellite series of the Copernicus pro-
gram [55]. This SAR system works at C-band, with a central
frequency of 5.405 GHz. The Interferometric Wide (IW) mode
used in this study offers a ground resolution of approximately
20 × 22 m; this product is then resampled, reprojected and
distributed at 10 × 10 m for Ground Range Detected (GRD)
products. In order to improve the revisit time, Sentinel-1
works as a constellation of two identical satellites Sentinel-
1A launched on 2014-04-03 and Sentinel-1B on 2016-04-
26, allowing a six-day revisit time. The Sentinel-1 GRD IW
products are leveraged to produce binary water maps using
Machine Learning algorithms developed by CNES and CLS
in the frame of the FloodML project [4], [56]. FloodML aims
at developing advanced Artificial Intelligence algorithms to
improve the accuracy and decrease the computational time for
flooded area retrieval from RS data.

Random Forest (RF) is an ensemble learning method that
is built on a multitude of decision tree classifiers on the sub-
samples of a training dataset. A decision is then made by
counting all the tree votes and choosing the majority or the
average of the responses, in order to improve the predictive
accuracy and limit data over-fitting. In the present work, a RF
algorithm [57], [58] was trained over a dataset that gathers
223 Sentinel-1 images from 12 non-coastal Copernicus EMS
Rapid mapping (EMSR) flood cases. The EMSR open dataset
provides satellite EO data dedicated to the surveillance and the
management of natural disasters, emergencies and humanitar-
ian crises worldwide. In the present study, the training dataset
consists in flood maps labeled with high-occurrence (greater
than 90%) water pixels selected from the Global Surface Water
Occurrence reference [59].

The use of both Sentinel-1’s VV and VH polarizations was
explored, in conjunction with the use of the local slope derived
from MERIT Digital Elevation Model [60]. The VV and VH
Sentinel-1 images are first calibrated and orthorectified, then
inferred by the RF algorithm to produce the water binary
map. In this work, the RF is performed using cuML, an
open-source GPU-accelerated machine learning library, which
allows to generate a flood extent map within 3 minutes for
an orthorectified and tiled Sentinel-1 image (size of 11 × 11
km). The number of classifiers is fixed to 100 with no tree
depth limit. The trained RF algorithm has been validated on
five test sites all over the world, and yield an average F2-
score of 86.86%, which is more accurate compared to several
other tested Machine Learning methods such as Support
Vector Machine and k-Nearest Neighbors. A Deep Learning
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method, namely U-Net [61], was also developed for this water
detection task using Sentinel-1 and Sentinel-2 images, but it
only achieves a similar level of accuracy compared to the RF
algorithm, thus only RF is used in this paper owing to its
computational efficiency. In order to remove noises and fill
the holes in the resulting detected flood surfaces, a majority
filter (with the radius set equal to 3 pixels) has been applied
on the resulting flood binary mask.

As aforementioned, this paper focuses on two major events
that occurred over the Garonne Marmandaise in December
2019 and January-February 2021, where several Sentinel-
1 images were acquired during the events. Three Sentinel-
1 orbits (Ascending 30, Ascending 132 and Descending 8)
provide observation and associated images over this catchment
as detailed in Table II.

TABLE II: General information on the studied flood events.

Event First date Last date Nb of Sentinel-1 images
2021 2021-01-16 2021-02-15 9
2019 2019-12-13 2019-12-29 8

Figure 3a (respectively Figure 3b) depicts the in-situ water
level time-series observed for the 2021 (respectively 2019)
event at Vigicrue observing stations: Tonneins (blue curve),
Marmande (orange curve) and La Réole (green curve), with the
Sentinel-1 overpass times indicated as vertical black dashed
lines. The 2021 event is composed of a single peak and
observed by 9 Sentinel-1 images. The flood peak of the 2021
event is covered by the ascending orbit 30 on 2021-02-02
18:55 and by the ascending orbit 132 the next day on 2021-
02-03 18:48. The 2019 event is composed of two peaks and
observed by 8 Sentinel-1 images, where the first peak was
observed by the image acquired on 2019-12-16 18:56. The
Sentinel-1 images acquired close to the flood peaks on 2021-
02-03 and 2019-12-16 are shown in Figure 4a and Figure 4d.
It should be noted that for the Sentinel-1 images from the
ascending orbit 132, a small part of the downstream area
(including La Réole) is a no-data area as it is out of range
from the acquisition and indicated by the hashed ellipse in
Figure 4b. The flood extent maps derived from FloodML
on 2021-02-03 and 2019-12-16 are shown, respectively, in
Figure 4b and Figure 4e. These flood extents are presented
by binary masks, in which the white pixels (value 1) and
black pixels (value 0) respectively indicate the flooded and
non-flooded areas.

As mentioned in subsection I-C, the flood detection using
SAR images can be compromised by the presence of vegetated
and urban regions. Over the Garonne Marmandaise catchment,
this reduces the precision of the Random Forest inference
results in regions where the vegetation is dense; here deciduous
forest regions are indicated in red (Figure 4) with respect to
the 2019 land cover map on French territory produced by
the IOTA2 processing chain [62]. As a matter of fact, these
vegetated regions occlude the possible underflowing water
when flood occurs—as only the tree trunks are submerged —
and present typical backscatter of deciduous forests on SAR
images. A method dealing the detection of flood in different
vegetation areas on SAR images can be found in [63]. Hence,

it is necessary to exclude these regions when comparing the
simulated and observed flood extents. These regions take up
8.6% of the whole Garonne Marmandaise catchment total area.

(a)

(b)

Fig. 3: Water level H time-series for (a) 2021 January-
February flood event, (b) 2019 December flood event, at
Tonneins (blue curve), Marmande (orange curve) and La
Réole (green curve). Sentinel-1 overpass times are indicated
as vertical dashed lines.

E. Flood modelling assessment metrics
In order to evaluate the flood modelling results, two as-

sessment methods are carried out. They involve using in-situ
data and Sentinel-1 derived flood extent maps for, respectively,
assessing the simulated water level time-series and assessing
the simulated flood extents. It should be recalled that only
in-situ water levels are assimilated in the present work, a
significant improvement with respect to these data is thus
expected from DA analysis. Yet, Sentinel-1 derived flood
extent maps are not assimilated, an improvement in metrics
with respect to these independent data thus constitutes a more
difficult goal to achieve for the DA strategy.

1) 1D metrics for water level time-series assessment: The
quality of the simulated water level Hm is assessed with
respect to in-situ observations Ho in terms of mean and
maximum computing the root-mean-square error (RMSE),
the maximum absolute error (MaAE) and the Nash–Sutcliffe
model efficiency coefficient (NSE) over the event time-series:
• RMSE is computed between the simulated and the ob-

served water level time-series:

RMSE =

√√√√ 1

nobs

nobs∑
i=1

(Hm
i −Ho

i )2 (24)
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(a)

(b)
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Overprediction
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2021/02/03	19:00

(c)

(d)

(e)
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Correctly	predicted	-	Non	flooded
Correctly	predicted	-	Flooded
Underprediction
Overprediction
In-situ	station

2019/12/16	19:00

(f)

Fig. 4: (a) Sentinel-1 SAR image for 2021-02-03 18:48 (respectively, (d) for 2019-12-16 18:56), (b) FloodML and T2D flood
extent maps of a free run for 2021-02-03 (respectively, (e) for 2019-12-16). Red regions represent the deciduous forest areas
to be excluded from the comparison between flood extents. (c) Contingency map representing the flood prediction by free run
for 2021-02-03 (respectively, (f) for 2019-12-16). The correctly predicted flooded areas are represented in dark blue, correctly
predicted non-flooded areas in light blue, under predicted areas in yellow, over predicted areas in red.

• MaAE measures the maximum absolute difference be-
tween the water level time-series:

MaAE = max
i∈[1,nobs]

|Hm
i −Ho

i | (25)

• NSE reflects on the ratio of the error variance of the

simulated time-series divided by the variance of the
observed time-series:

NSE = 1−
∑nobs

i=1 (Hm
i −Ho

i )2∑nobs

i=1 (Ho
i − H̄o)2

(26)

where H̄o denotes the time-averaged observed water level
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over the event. For a perfect model, the estimation error
variance computed with respect to observation is equal to
0 (i.e.

∑nobs

i=1 (Hm
i − Ho

i )2 = 0), thus the resulting NSE
is equal to 1. Resulting NSE values nearer to 1 suggest a
model with more predictive capacity. A model that produces
an estimation error variance equal to the variance of the
observed time-series results in a NSE equal to 0. Furthermore,
when the estimation error variance computed with respect to
observation is larger than the variance of the observations, the
NSE becomes negative. In other words, an efficiency less than
zero (NSE < 0) occurs when the observed mean is a better
predictor than the model.

2) 2D metrics for flood extent assessment: The simulated
flood extent maps are generated from the T2D simulated water
level 2D field, by applying a threshold of 0.05 m below which
the pixel is considered as dry and above which it is considered
as wet. The T2D water level output field is projected onto the
regular grid of the Sentinel-1 image and FloodML inference
map (ground sampling distance: 10 × 10 m) so that the two
flood extent maps are comparable. The metrics to compare the
simulated and the observed flood extent are: Critical Success
Index (CSI), F1-score, and Cohen’s kappa index (κ). CSI
and F1-score consider the FloodML flood extent maps as
the reference observed flood maps (ground truth) based on
which the T2D simulated flood extent maps are evaluated,
whereas the objective of κ index is to measure the agreement
between the two flood extent estimators. The formulation of
these indices relies on the count of pixels following one of
four outcomes, color-coded in Figure 4c and Figure 4f: True
Positives (TP , blue pixels) is the number of pixels correctly
predicted as flooded, False Positives (FP , red pixels) or over-
prediction is the number of non-flooded pixels incorrectly
predicted as flooded, True Negatives (TN , light blue pixels) is
the number of pixels correctly identified as non-flooded, and
False Negatives (FN , yellow pixels) or under-prediction is
the number of missed flooded pixels. Based on these counts,
the CSI, F1-score, and κ indices are computed as follows:

CSI =
TP

TP + FP + FN
(27)

Fβ = (1 + β2)× precision× recall

β2 × precision + recall
(28)

where precision = TP/(TP + FP ) and recall = TP/(TP + FN).
The F1-score (with β = 1) is selected as the balanced mean
between the precision and recall.

κ =
po − pe
1− pe

(29)

where po is the observed proportionate agreement and pe is
the probability of a random agreement, defined as follows:

po =
TP + TN

TP + FP + FN + TN

pe =
TP + FN

TP + FP + FN + TN
× TP + FP

TP + FP + FN + TN
.

These metrics range from 0% when there is no common
area (i.e. no agreement) between the simulation (T2D) and

observation (FloodML), and reach their highest value of 100%
when the prediction provide a perfect fit to the observed flood
extents. It should be noted that the magnitude and the size
of the flood (and consequently the number of pixels used for
the computation) were shown by [64] to have a significant
influence on these indices; thus limiting their use for different
event and different catchment comparison. Here, these indices
are mostly used to compare different numerical experiments
on a single catchment and on the same event.

III. EXPERIMENTAL RESULTS

Four experiments were carried out with the T2D Garonne
Marmandaise model, for each flood event. They either consist
in a Free Run (FR) meaning that no data are assimilated, or
in a Data Assimilation (DA) run. They also differ depending
on whether a model-observation bias is taken into account
in the observation operator, on the ensemble size and on the
observation error variance. The experiments are described in
Table III.

Exp. Bias Data Nb of
name correction Assimilation members Ne τ (%)
FR1 No No 1 -
FR2 Yes No 1 -
DA1 No Yes 24 15
DA2 Yes Yes 24 15

TABLE III: Summary of the experiments realized for the 2021
and 2019 flood events.

Figure 5 displays the water levels at the 3 Vigicrue observ-
ing stations, Tonneins, Marmande, and La Réole, including the
in-situ observed water levels (black dashed curve) and the sim-
ulated ones from the four different experiments (solid curves).
FR1, FR2, DA1, and DA2 results are depicted respectively
by red, blue, green, and cyan curves. The errors between the
observed and respective simulated water levels are also shown
in the lower plot panels with the same color code. Based
on these water level time-series, the 1D assessment metrics
(presented in subsection II-E) are computed and summarized
in Table IVa and Table IVb, respectively for 2021 and 2019
flood events. In the following subsections, the merits of using
RS data for model assessment are presented; with a focus on
FR experiments in subsection III-A, on DA experiments in
reanalysis mode in subsection III-B, and on DA experiments
in forecast mode in subsection III-C.

A. Merits of RS data for free run model assessment - Exper-
iments FR1 and FR2

1) Water level at Vigicrue observing stations - Experiments
FR1 and FR2: The comparison of water level resulting from
the T2D Free Run simulation FR1 with in-situ observations
reveals that a systematic bias ybias should be taken into ac-
count, as FR1 (red solid curve) significantly underestimates the
observation (black dashed curve) over the entire flood events
as shown in Figure 5a at Tonneins, Figure 5b at Marmande
and Figure 5c at La Réole. For each sub-figure, the top panel
represents the water level and the bottom panel represents the
difference between the observation and the simulation. The
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(a) Tonneins

(b) Marmande

(c) La Réole

(d) Tonneins

(e) Marmande

(f) La Réole

Fig. 5: Water level H (upper plots) for Free run simulation (FR1 in red, FR2 in blue, DA1 in green and FR2 in cyan) and
their respective error with respect to the observed values (lower plots) at Vigicrue in-situ observing stations (a) Tonneins, (b)
Marmande, and (c) La Réole for January-February 2021 event on the left column (respectively, (d)-(f) for December 2019
event on the right column).

bias was thus estimated during the first 24 hours on 2021-01-
15, when the flow is quasi-stationary and non-overflowing. It
is estimated at each observing station: ybias,Tonneins = 72
cm, ybias,Marmande = 40 cm, and ybias,LaReole = −23 cm.
Water level results from the FR simulation FR2 that takes
into account this bias in the comparison to the observation
(Eq. (13)), are plotted with a blue solid curve in Figure 5. This
simulation provides significantly improved results with respect
to in-situ observations. The model-observation bias estimated
from 2021 was used to carry out Free Run simulations
over 2019 flood event and similar conclusions are drawn as

illustrated in Figure 5d at Tonneins, Figure 5e at Marmande
and Figure 5f at La Réole. It is worth-noting that while the
2021-diagnosed bias is coherent with the model-observation
misfit in 2019 at Tonneins and Marmande, there is a lesser
agreement at La Réole.

2) Rating curves for free runs - Experiments FR1 and FR2:
The rating curve resulting from FR1 for the 2021 (respectively
2019) flooding event shown with a red curve in Figure 6a
(respectively Figure 6b) at Tonneins is not in agreement
with the observation-based rating curve (orange curve) that
was used to convert the observed water levels at Tonneins
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into discharge inflow to the model (previously mentioned in
subsection II-B). For both events, the bias correction applied
to FR2 (blue curves) associates a given inflow to a larger
water level , and consequently improves the coherence with
the observed rating curve. The bias correction thus allows
to improve the hydraulic variables at Tonneins where the
upstream boundary condition is prescribed.

3) RMSE, maximum absolute error and NSE at Vigicrue
observing stations - Experiments FR1 and FR2: The dynamic
of the river bed is assessed with respect to in-situ data at
Tonneins, Marmande and La Réole. The RMSE, MaAE and
NSE measurements for 2021 event are given in Table IVa.
When the bias is not taken into account in the comparison
between free run results (FR1) and the in-situ observations, the
RMSE over the 2021 event are 75.6 cm, 62.5 cm and 40.9 cm
at Tonneins, Marmande and La Réole, respectively. When the
bias is removed, in FR2, the RMSE is reduced to 10.2 cm and
33.8 cm at Tonneins and Marmande. Yet, the estimation of the
bias during the beginning of the first day of the event does not
allow for an improvement over the entire event at La Réole as
the nature of the error between the free run and the observation
is not stationary at this location. Thus, the FR2 results are not
improved with respect to FR1 at La Réole and the RMSE
reaches 50.5 cm. Significant reduction of the MaAE and
improvement of the NSE measurements can also be remarked
at Tonneins and La Réole. While the model-observation bias
correction in FR2 allows some improvements in terms of 1D
assessment metrics at the three Vigicrue observing stations,
the free run (FR2) still significantly underestimates the water
levels compared to the observations, especially around the
flood peak at Marmande and La Réole as shown in Figure 5.
The RMSE remains above 10 cm at the 3 stations, the MaAE
found at the flood peak is close to 1.5 m at Marmande. Similar
conclusions are drawn for 2019 event, with a significant
decrease of the RMSE at observing stations resulting from the
bias correction and a residual MaAE of 65.4 cm at Marmande
in FR2 (Table IVb). It is shown that the bias correction does
not suffice to properly simulate the flood event variability and
the flood peak. Thus DA assimilation should be applied in
order to allow for a time varying correction of friction and
inflow leading to improved simulation and forecast in the river
bed and the flood plain.

4) Flood extents assessment - Experiments FR1 and FR2:
The dynamic of the flood plain is assessed with respect to flood
extents retrieved from Sentinel-1 data and FloodML algorithm.
Nine flood extent maps were observed and generated during
the 2021 event as indicated in Figure 3a. Four model output
dates close to the flood peak are analyzed in the following
(2021-01-28, 2021-02-02, 2021-02-03, and 2021-02-07). The
CSI, F1-score and κ scores (presented in subsection II-E) are
gathered in Table Va for FR1. FR2 yields similar results as
no bias is estimated in the flood plain, thus FR1 and FR2 are
presented as Free Run. As expected from previous analysis
at in-situ observing stations, the free run simulation tends to
underestimate the flood extent at all observed time steps. For
instance, at the Sentinel overpass time closest to the flood
peak (2021-02-03 18:48), the T2D flood extent (HFR1 > 0.05
m) shown in green Figure 4b, significantly underestimates the

FloodML flood extent (shown in the background binary map,
where white pixels represent observed flood areas) especially
in the flood plain upstream of Marmande. The under-predicted
areas are color-coded in yellow in Figure 4c, a large under-
predicted area is located in the right bank flood plain upstream
of Marmande and smaller areas under-predicted areas are
located in the left bank flood plain near and downstream of
Marmande. It should be noted that the correctly predicted
flooded pixels are located in the flood plains, within distance
from the river bank. Additionally, the over-predicted pixels
are mostly located in dense vegetation areas (shown in red
in Figure 4b) where the FloodML maps is unreliable. Thus,
these areas were removed from score computation and the
resulting 2D metric scores are CSI = 55.86%, F1 = 71.68%
and κ = 67.82% on 2021-02-03 18:48. It should be noted that
there could be small over-predicted areas found in locations
where the land cover is not classified as deciduous forest but
where the FloodML detection is still questionable (e.g. due to
the presence of other vegetation class or urban areas). These
potential areas are not excluded from the score computation
in the present work.

For the 2019 event, four Sentinel-1 acquisitions close to the
first peak are analyzed (2019-12-15, 2019-12-16, 2019-12-17,
and 2019-12-21). Simulated flood extent and their associated
contingency map resulted from FR1 compared to FloodML
binary map are shown in Figure 4e and Figure 4f. The large
under-predicted area (color-coded in yellow) in the right bank
flood plain upstream of Marmande that was observed for 2021
remains, whereas large over-predicted areas appear in the flood
plain upstream of La Réole. These over-predicted areas are not
related to vegetation-impaired FloodML detection areas. Their
causes are likely due to the possible inconsistency between the
2021-diagnosed bias and the dynamics of the 2019 flood event
dynamic with large water level variations. The resulting CSI,
F1 and κ scores for 2019 event are given in Table Vb. For
instance, at the closest Sentinel-1 overpass time to the first
flood peak (2019-12-16 18:56), the resulting 2D metrics are
CSI = 42.95%, F1 = 60.09% and κ = 55.99%. These scores
are lower than that computed for 2021 event, probably due to
the presence of the large over-prediction area downstream of
the catchment.

Complete 2D metric scores, with respect to the Sentinel-
1 derived independent data for the entire flood events at
every Sentinel-1 overpass times are depicted in Figure 7, by
red curves for the Free Run experiment (same results for
FR1 and FR2). During the beginning of the events, the flow
remains within the river bed and only occupies a small portion
of the simulation domain, potentially not well observed by
Sentinel-1 due to river banks and vegetation cover effects.
Additionally, the numerical artificial flooding of the upstream
first meander due to the prescription of the upstream BC
(previously mentioned in subsection II-B) penalizes the 2D
scores in non-flooding conditions. Past the flood peak, these
effects add up to the fact that T2D struggles to properly empty
the flood plain when velocities are small as neither evaporation
nor river-ground surface fluxes are taken into account in the
T2D model, leaving still relatively significant volumes of water
in low topography areas while they are drained or evaporated
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(a) 2021 flood event (b) 2019 flood event

Fig. 6: Rating curves at Tonneins from analytical fit to observation (orange curve), and from the T2D simulations for FR1 (red
curve) and for FR2 (blue curve) experiments. (a) 2021 flood event, (b) 2019 flood event.

TABLE IV: 1D scores with respect to in-situ data measured at Vigicrue observing stations.

(a) 1D scores - 2021 flood event

Root-mean-square error [m] Max absolute error [m] Nash–Sutcliffe model efficiency
Tonneins Marmande La Réole Tonneins Marmande La Réole Tonneins Marmande La Réole

FR1 0.756 0.625 0.409 1.062 1.870 1.721 0.866 0.923 0.971
FR2 0.102 0.338 0.505 0.404 1.472 1.956 0.998 0.978 0.956
DA1 0.090 0.059 0.148 0.456 0.352 0.690 0.869 0.948 0.868
DA2 0.084 0.104 0.138 0.330 0.590 0.676 0.892 0.917 0.889

(b) 1D scores - 2019 flood event

Root-mean-square error [m] Max absolute error [m] Nash–Sutcliffe model efficiency
Tonneins Marmande La Réole Tonneins Marmande La Réole Tonneins Marmande La Réole

FR1 0.764 0.579 0.286 1.224 1.051 0.923 0.827 0.908 0.980
FR2 0.150 0.233 0.349 0.507 0.654 1.158 0.993 0.985 0.969
DA1 0.089 0.058 0.279 0.401 0.392 0.710 0.802 0.911 0.446
DA2 0.074 0.060 0.224 0.273 0.275 0.695 0.833 0.918 0.632

in the observation. Such a problem is more severe with the
2019 event with two flood peaks, which leads to very low 2D
metrics (e.g. CSI under 20%) after the first peak. The CSI
score at the flood peak is close to 60% for 2021 event and 40
% for the 2019 event (first peak).

5) Intermediate conclusion from Experiments FR1 and
FR2: The analysis of Free Run simulations allows to quantify
a model-observation bias that leads to an under-estimation of
water level in the river bed as well as of the flood extent
in the flood plain. Comparison with independent RS data
confirm the model behavior over the whole simulation domain.
These results stand for both 2021 and 2019 flood events. A
rough estimate of the bias was achieved over the beginning of
2021 event with FR1 and is further taken into account in the
simulation FR2. This bias is coherent with the dynamics of the
2019 event (except at La Réole). Yet a time varying correction
is needed to further improve the flood peak simulation as FR2
still underestimates the flood peak. Indeed, the friction value
and inflow should be corrected with the assimilation of in-situ
data, in order to improve the simulation of the flood in the
river bed and in the flood plain.

B. Merits of RS data for data assimilation assessment -
Experiments DA1, DA2

Implementing EnKF, in-situ water level observations are
assimilated in two experiments over 2021 flood event; DA1
where the diagnosed model-observation bias is not consid-
ered and DA2 where the bias is taken into account in the
observation operator described in Eq. (13). In the following,
illustrations are provided for the mean of the DA ensemble
members.

1) Water level at Vigicrue observing stations - Experiments
FR1 and DA1: In the context of in-situ only observation,
the straightforward strategy is DA1 (carried out over 2021
and 2019 flood events). The DA1 experiment consists in
assimilating observed water levels at Tonneins, Marmande and
la Réole. The model-observation bias ybias is not accounted
for in the observation operator. This discrepancy is only
corrected through the DA analysis on the friction and inflow
within the control vector. As such, the observation operator
for DA1 is described in Equation 12. DA1 simulated water
level is plotted in green in the top panels of Figure 5a at
Tonneins, Figure 5b at Marmande and Figure 5c at La Réole,
and the errors between DA1 water level and the observation are
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TABLE V: 2D scores with respect to FloodML Sentinel-1 flood extent maps.

(a) 2D scores - 2021 flood event

Critical Success Index (%)
2021-01-28 2021-02-02 2021-02-03 2021-02-07

19:00 19:00 19:00 07:00
Free Run 25.09 44.39 55.86 22.10

DA1 23.58 41.91 61.97 20.00
DA2 24.95 43.98 63.84 20.87

F1-score (%)
2021-01-28 2021-02-02 2021-02-03 2021-02-07

19:00 19:00 19:00 07:00
Free Run 40.12 61.49 71.68 36.21

DA1 38.16 59.07 76.52 33.34
DA2 39.94 61.09 77.93 34.53

Cohen’s kappa index (%)
2021-01-28 2021-02-02 2021-02-03 2021-02-07

19:00 19:00 19:00 07:00
Free Run 39.11 57.81 67.82 33.73

DA1 37.09 54.54 72.82 30.68
DA2 38.92 57.25 74.58 31.94

(b) 2D scores - 2019 flood event

Critical Success Index (%)
2019-12-15 2019-12-16 2019-12-17 2019-12-21

07:00 19:00 19:00 07:00
Free Run 30.44 42.95 30.15 16.48

DA1 20.45 44.75 28.66 12.87
DA2 27.77 47.74 31.55 14.23

F1-score (%)
2019-12-15 2019-12-16 2019-12-17 2019-12-21

07:00 19:00 19:00 07:00
Free Run 46.67 60.09 46.33 28.30

DA1 33.96 61.83 44.56 22.80
DA2 43.47 64.63 47.97 24.91

Cohen’s kappa index (%)
2019-12-15 2019-12-16 2019-12-17 2019-12-21

07:00 19:00 19:00 07:00
Free Run 44.03 55.99 43.52 26.70

DA1 30.34 57.32 41.32 21.01
DA2 40.59 60.74 45.07 23.19

(a) 2021 flood event (b) 2019 flood event

Fig. 7: Comparison of flood extent maps in terms of 2D scores (CSI, F1-score and κ) for (a) 2021 flood event, (b) 2019 flood
event. FR1 is plotted in red, DA1 in green and DA2 in cyan.

plotted in green in the respective bottom panels. For both 2019
and 2021 events, the EnKF succeeds in retrieving friction and
inflow parameters such that the water level at the observing
stations is really close to the observations. The improvement
with respect to FR1 is more significant for the 2021 event than
for the 2019 event as the dynamics of the two-peak 2019 event
(as well as the rapid rise of water level at the start) is more
difficult to simulate with T2D.

2) RMSE, maximum absolute error and NSE at Vigicrue
observing stations - Experiments FR1 and DA1: For the
2021 event, the RMSE computed over the flood duration
(2021-01-15 to 2021-02-15) between DA1 water level and the
observation are 9.0 cm, 5.9 cm and 14.8 cm at respectively
Tonneins, Marmande and La Réole (cf. Table IVa). These
RMSE are reduced of 88.1%, 90.6% and 63.8% with respect
to those of FR1 at respectively Tonneins, Marmande and
La Réole. The maximum absolute error and the NSE are
also significantly reduced with respect to those of FR1, thus
demonstrating the merits of data assimilation with respect to

the reference run FR1. The maximum absolute error around
the 2021 flood peak at Tonneins, and Marmande decreases
from 1.06 m and 1.87 m for FR1 to less than 50 cm. For the
2019 event, the 1D metrics computed over the flood duration
(2019-12-13 to 2021-12-29) are provided in Table IVb, the
RMSE is reduced of 88.4%, 90.0% and 2.5% with respect
to those of FR1 at respectively Tonneins, Marmande and
La Réole. It should be noted that these results are similar
to those for 2021 flood event, except at La Réole where the
dynamics of the downstream flood plain remains incoherent
with that of the upstream flood plain as illustrated by the
over-prediction upstream of La Réole in Figure 4f.

3) Control vector analysis - Experiments DA1 and DA2:
The analyzed values from DA1 and DA2 for friction and
inflow parameters are shown in green in the first top 7 panels
(for 7 scalars) in Figure 8a and Figure 8b for the 2021 and
2019 flood events, respectively. Control parameters in DA1 are
depicted by green curves and those in DA2 by cyan curves
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(same color-codes as previous Figure 5 and Figure 7). The
initial background values for the flood plain friction coefficient
Ks0 , river bed friction coefficients Ks1 ,Ks2 ,Ks3 and inflow
parametric corrective coefficients a, b, c are indicated by the
horizontal black dashed lines. The 3 bottom panels on each
sub-figure display the upstream inflow at Tonneins (as an
indication of the flood dynamics), the differences between FR1
(or FR2) water level and the observation at Tonneins (blue
curve), Marmande (orange curve) and La Réole (green curve).

For both 2021 and 2019 events, the EnKF algorithms com-
putes analyzed friction and inflow values in order to correct
the model-observation misfit, taking into account uncertainty
in both sources (model and observation). Since the model-
observation bias is not taken into account in the observation
operator in DA1, as shown by the significant FR1 errors (ninth
panel), this requires a large correction in the control vector for
most of the control vector elements since the very beginning
of the event. This correction intensifies to account for larger
errors as the flood begins (2021-01-23 and 2019-12-14) and
around the flood peak (2021-02-03, 2019-12-16 and 2019-
12-23). In other words, more efforts are required on all 7
parameters of the control vector for DA1 compared to DA2
to reduce the distance to the observations. This is indicated
by the larger distance from the green and cyan curves to
the background values on each parameter plots. On the other
hand, when the water level errors are small for DA2, e.g.
between 2021-01-15 and 2021-01-21 (as shown in the tenth
panel between FR2 water level and observation), thanks to the
applied model-observation bias, the control vector parameters
remains close to the background values. Globally, the EnKF
tends to increase the volume of water within the simulation
domain by decreasing the Strickler friction coefficients and
increasing the inflow hyper parameters (with respect to the
background values), especially near the flood peak time. This
allows to increase the water level at the observing stations
and reach a better agreement with the observed rating curve at
Tonneins. It should be noted that the resolution of the inverse
problem with the EnKF may suffer from an equifinality issue
and that the analyzed values of the control may compensate in
order to lead to expected water level values; this will be further
discussed in subsection III-C dedicated to the DA results in
forecast mode.

4) Flood extents assessment - Experiments FR1 and DA1:
The comparison of DA1 results with independent RS flood
extent highlights that while DA improves the water level
results at the Vigicrue observing stations, it is at the expense
of the flood plain dynamics. This is illustrated in Figure 9
which compares the simulated WSE at a selected location
FPM (Flood plain near Marmande), i.e. the white solid circle
shown in Figure 1. It is worth-noting that there is no in-situ
observation at this location. While this location is not flooded
in the free run simulation (red curve) before 2021-01-30 as
shown by the WSE remaining constant, it is conversely flooded
in DA1 experiment (green curve) from 2021-01-25.

The use of RS flood extent provides complete and inde-
pendent data to validate the dynamic of the flood plains for
DA1 for 2021 and 2019 flood events as shown in Figure 10
(left column for 2021-02-03, right column for 2019-12-16).

The T2D flood extents simulated with FR1 (respectively with
DA1) are plotted in green (respectively in red), and the flood
extent derived from Sentinel-1 image is represented by the
background binary map in white pixels means flooded areas
(similarly to Figure 4). It is revealed in Figure 10a and
Figure 10b for 2021 and in Figure 10d and Figure 10e for
2019 that DA1 leads to the over-flooding of the domain over
the entire catchment on both left and right river banks and
flood plains.

In terms of quantitative assessments, the resulting CSI, F1-
score and κ indices are given in Table Va and Table Vb, they
are improved at the flood peak with respect to FR experiments
(FR1 and FR2 have the same CSI scores by definition).
For instance, at the closest Sentinel-1 overpass time to the
flood peak (2021-02-03 18:48), CSI, = 61.97% (compared
to CSIFR1 = 55.86%), F1 = 76.52% (compared to F1,FR1 =
71.68%), and κ = 72.82% (compared to κFR1 = 67.82%). Full
2D metric scores at all Sentinel-1 observation times plotted in
Figure 7 show an improvement with respect to FR1 for 2021.
The results are slightly degraded for 2019. There are two main
potential reasons for this: first the dynamics after the first flood
peak is hard to simulate with T2D, then the limited size of the
DA control vector does not allow for a finely tuned correction
that is needed for this two-peaks event, especially as it should
overcome a large model-observation misfit ybias.

5) Merits of data assimilation when bias is removed -
Experiments FR2 and DA2: When the model-observation bias
is taken into account in the observation operator (Eq. (13))
in experiment DA2, the results of DA are greatly improved,
first with respect to FR2, but also with respect to DA1. At
the beginning of the 2021 event, the error between the model
FR2 and the observation is small at all three observing stations
(Figure 5a, Figure 5b, Figure 5c), thus the DA2 correction to
the control vector (cyan curve) is significantly smaller then that
of DA1 (green curve) as shown in Figure 8a and Figure 8b
for 2021 and 2019 event respectively. It should be noted that
this is a positive feature of DA2 as the EnKF algorithm is
dedicated to weakly nonlinear problem only, thus more likely
to provide an optimal solution when the size of the increment
is limited [15]. For both events, a stronger correction occurs
around the flood peak, as the nature of the errors evolves when
the flood occurs. Same results holds for 2019 event, yet, the
error between model FR2 and the observation is larger than
that for FR1 (as the bias is diagnosed based on 2021 event),
thus the DA2 correction made to the control vector is larger
than that of 2021.

In terms of 1D assessment metrics, DA2 water level is close
to the observation over the entire event with RMSE, maximum
absolute error and NSE (Table IVb and Table IVa close to
that of DA1, and significantly smaller than that of FR1 and
FR2. While DA2 simulated water level is not as good as that
of DA1 at the flood peak, DA2 yields a significantly better
dynamics in the flood plain than DA1 as shown in Figure 10c
and Figure 10f. The over-predicted areas from DA1 are no
longer present and the flood extents at 2021-02-03 and 2019-
12-16 are in good agreement with the Sentinel-1 derived flood
extents. Resulting 2D metrics are improved compared to DA1
and the Free Run, as such CSI = 63.84%, F1 = 77.93%, and κ
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(a) 2021 flood event (b) 2019 flood event

Fig. 8: Evolution of the control parameters for the 7 top panels (Ks0 , Ks1 , Ks2 , Ks3 , a, b, c over the flood events for DA1 (green
curves) and DA2 (cyan curves) experiments, with respect to their background values (black dashed lines). The 3 bottom panels
display, the upstream inflow Qup at Tonneins, the water level difference between FR1 (respectively FR2) and the observation
at Tonneins (blue curve), Marmande (orange curve) and La Réole (green curve). (a) 2021 flood event and (b) 2019 flood event.

Fig. 9: Water surface elevation at validation point Flood Plain
near Marmande (FPM)

= 74.58% (cf. Table V). This improvement stands for the flood
peak simulation time for 2019 event. Figure 7 shows that DA2
(cyan curve) has better 2D scores than DA1 (green curve) for
all Sentinel-1 acquisition times in 2021 and 2019. It should
also be noted in Figure 9 that at diagnosed location FPM, the
WSE from DA2 (cyan curve) no longer artificially increases
between 2021-01-25 and 2021-01-30 (thus not flooding this
location) as seen in DA1 (green curve).

In conclusion, the use of SAR-derived flood extent allows
to conclude that DA2 provides the best strategy to correct the
model friction and the inflow so as to improve the water level

at the Vigicrue in-situ observing stations as well as in the flood
plains (both water level and flood extent). DA2 is thus further
studied in forecast mode in the following subsection III-C for
lead time up to +24h.

C. Forecast results DA2

The forecast issued from DA2 are assessed here, focusing
on the ensemble forecast mean. DA2 results at the flood peak
in forecast mode are shown in Figure 11a and Figure 11b
for the target date 2021-02-03 19:00 and 2019-12-16 19:00
respectively for lead time increasing from +1h to +7h, +13h
and +19h (x-axis). The difference between DA2 water level
and the observation is plotted along the y-axis for Tonneins
(blue curve), Marmande (orange curve) and La Réole (green
curve). This diagnostics implies the post-processing of four
12-hour DA cycles that provide an updated forecast every 6h
for the target date. It appears that, as expected, the quality
of the forecast mostly decreases as the lead time increases.
The degradation of the forecast is most evident at Marmande,
with a positive error (under-estimation) for 2021 peak and at
Tonneins with a negative error (over-estimation) for 2019 peak.
The quality of the other forecast remain stable, this leads to
the satisfying conclusion that the nature of the error between
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2019/12/16	19:00

(f)

Fig. 10: Comparison between FloodML and T2D flood extent maps. Left column: 2021-02-03, and right column: 2019-12-16.
(a) Flood extent of the free run (green), DA1 (red outline), DA2 (blue outline) simulations overlapping on the Sentinel-1 flood
binary map for 2021-02-03 (respectively, (d) for 2019-12-16). Contingency map representing the flood prediction by (b) DA1
and (c) DA2 experiments for 2021-02-03 (respectively, (e) and (f) for 2019-12-16). The correctly predicted flooded areas are
represented in dark blue, correctly predicted non-flooded areas in light blue, under predicted areas in yellow, over predicted
areas in red.

model and observation is stationary over the assimilation and
the forecast period for the considered target dates; thus the
forecast strategy is reliable.

The forecast capability of the DA strategy is assessed over

a couple of days around flood peak in 2021 (left column) and
2019 (right column) event for given lead time in Figure 12 at
Tonneins, Marmande and La Réole. Colored solid curves in the
top panels indicated the forecast water level with increasing
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(a) Target date: 2021-02-03 19:00

(b) Target date: 2019-12-16 19:00

Fig. 11: Forecast error at the target dates 2021-02-03 19:00
and 2019-12-16 19:00 with various lead-times.

lead time (+0h in blue, +6h in orange, +12h in green, +18h
in red, +24h in purple) and the observed water level is plotted
with a black dashed curve. The same color code is kept to
represent the error between the forecast and the observation
for the bottom panels. It is shown that the simulated flood peak
is delayed and flatten and that the error (with respect to the
observation) amplifies as the lead time increases, leading to up
to 1 m error at Marmande in 2021 (coherent with conclusion
for Figure 11a). It should be noted that the sensitivity to
the forecast lead time is less significant at La Réole. These
results are synthetically presented by the RMSE between
DA2 forecast and the observation, computed over a couple
of days around the flood peak, depicted in Figure 13 for each
observing station (Tonneins with a blue curve, Marmande with
an orange curve and la Réole with a green curve) for increasing
lead times. It clearly appears that around the flood peak, the
quality of the forecast decreases as the forecast lead time
increases, yet remaining below 50 cm. This advocates for a fine
resolution of the DA cycling, and frequent forecast updates.

IV. DISCUSSIONS

DA allows to improve water level simulation and forecast
in the river bed where observing stations are located as well
as in the flood plain when the model-observation bias is taken
into account in the observation operator. This validation was
made possible by the use of RS flood extent derived from
Sentinel-1 images. Indeed, the involvement of RS flood extent
advocates for the use of spatially distributed data, overcoming
the limits of existing calibration and DA process. Yet, the DA
results remain imperfect and some under- and over-prediction
areas are observed. Alternative settings for the DA algorithms
are presented in [65] with the focus on observation error
estimation σobs. Two hypotheses to further improve the results

are discussed here: the definition of the control vector for DA
and the a priori estimate of the model-observation bias.

On the one hand, the definition of the control space should
be coherent with the nature of the model-observation error
over time and space. In the present study, it is most likely that
the present control vector should be extented. Indeed, in FR1
in Figure 4f, for 2019 floodpeak, there is an over-prediction
area before La Réole while the flood is properly represented
after Marmande. As Marmande and La Réole are located in
the same friction zone (Ks3 ), DA fails to account for these
opposite errors by tuning the control vector. Same conclusion
holds for the upstream inflow correction, all the more as there
is an under-prediction area upstream of Marmande for both
events. The size of the control vector should be increased to a
larger number of friction areas in the river bed and in the flood
plain in order to allow for a refined correction. The extension
of the control vector to an lateral inflow to the model could
also be investigated in order to input more water in the system,
for instance near the flood peak, when tributaries may bring
in significant amount of water.

On the other hand, the estimation of the model-observation
bias is a key step in the DA strategy as it allows for smaller
correction and more optimal analysis. Yet, this estimation
was made roughly here on the beginning of 2021 event
during a stationary non-dry period. Other estimation strategies
could be investigated, for instance, considering permanent flow
simulations would allow to diagnose a bias with a dependency
on the discharge in the river. The bias could also be estimated
over a large number of observed and simulated flood events.
Finally, as the model error can vary over time, it could be
included in the control vector and and corrected by the DA
algorithm.

V. CONCLUSIONS, LIMITATIONS AND PERSPECTIVES

In this paper, flood extents extracted from Sentinel-1 images
using Machine Learning algorithms (Random Forest) were
used to assess the performance of an ensemble-based data
assimilation algorithm that assimilates in-situ water level and
corrects friction coefficients and inflow discharge. The study
is carried out over the Garonne Marmandaise catchment with
Telemac2D SWE numerical solver, focusing on two signif-
icant and recent flood events in 2019 and 2021. The data
assimilation is implemented as an ensemble Kalman Filter
with a 12h-sliding assimilation window, and a 6h-overlap.
An ensemble of forecast is issued from each analyzed state
maintaining the updated friction and inflow correction over
24h. Four experiments are carried out, two in free run mode
(FR1 and FR2) and two in DA mode (DA1 and DA2). A
model-observation bias was diagnosed over the beginning of
2021 event in FR1; it is removed in the observation operator
in FR2 and DA2. T2D simulation results are compared to in-
situ and RS-derived observations as well as to deterministic
free run simulation, with 1D and 2D metrics.

It was shown that when the model-observation bias is not
taken into account in the observation operator, the assimilation
DA1 fails to recover the dynamics of the river bed and the
flood plain. The water level at the in-situ observing station
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(a) Tonneins

(b) Marmande

(c) La Réole

(d) Tonneins

(e) Marmande

(f) La Réole

Fig. 12: Forecast DA2 water levels at increasing lead times (+6h, +12h, +18h, +24h) and their errors with respect to the
observed water levels at Vigicrue observing stations (a) Tonneins, (b) Marmande, and (c) La Réole for 2021 flood event
(respectively, (d)-(f) for 2019 flood event).

is greatly improved while the flood plain is over-flooded and
the DA increments are large. When the bias is accounted for
in the DA algorithm (i.e. DA2), the water level is properly
corrected in both the river bed and the flood plain, without
artificial flooding. The largest correction are found around the
flood peak period. These diagnoses were only made possible
by the use of a densified observing network with RS-derived
flood extents; this constitutes an innovative piece of work. The

merits of working with independent 2D flood extent data were
demonstrated in re-analysis mode; the model was improved
with DA thus leading to improved forecasts. It was shown that
the quality of the forecast tends to decrease as the lead time
increases, while remaining below 50 cm for +24h lead time.
This demonstrates the forecast capability of the DA strategy
and advocates for the use of updated forecasts from the cycled
DA, eventually lowering the cycling overlap near the flood
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(a) 2021 flood event

(b) 2019 flood event

Fig. 13: RMSE between DA2 forecast water level and obser-
vation, computed over the flood peak period, (a) 2021-02-01
to 2021-02-06 and (b) 2019-12-14 to 2019-12-19, at Tonneins
(blue curve), Marmande (orange curve) and Lé Réole (green
curve), along increasing lead time.

peak.
Some limitations were noted in the SAR-derived flood

extent maps, mostly due to the dense vegetation coverage
which causes mis-detection of flooded areas. These areas were
identified with IOTA2 land cover maps and excluded from
2D assessment metric computation. Another drawback is due
to the classification accuracy of Random Forest algorithm
which is a reasonable solution for rapid flood mapping but
could be outperformed (in terms of overall accuracy) by more
recent Deep Learning classification methods. Furthermore,
some limitations were also noted in the simulation of the flood
recession with T2D as evaporation and ground infiltration
physical processes are not accounted for in the Garonne model.
Therefore, the flood extent validation was mostly carried
out during the flood rise and the flood peak, leaving aside
post-peak flood extent observation. Further works stand in
the constitution of an exclusion mask in the simulated and
observed water extents comparison step, in order to deal
with the presence of permanent waters, main river channel,
urban and vegetation areas. The major shortcoming for the
DA algorithm stands in the limitation of the control vector
size that does not allow for a space-varying correction finer
than that of the friction coefficient uniform definition in 4
zones (and only 1 zone for the whole flood plain). An a
priori finer zoning of the friction could follow the soil physical
composition and vegetation classification. Finally, the control
vector could also include lateral inflow to the river/flood plain
network to account for tributaries that may become significant

for high flow dynamics. It should be noted that the choice of
the DA algorithm—eventually along with the ensemble size—
may need to be revisited as the control vector is augmented
and the assumption on the errors statistics reconsidered.

A major perspective for this study stands in the assimilation
of Sentinel-1 derived flood-related information (e.g. flood
extent, flood depth) in complement with the assimilation of
in-situ observations. [66]–[68] asserted that the densification
of the observing network lowers the equifinality issue and
lead to improved forecasts. The merits of assimilating in-
situ data in the flood plains were demonstrated in [69], [70].
[22] further stated that the local nature of field data can
lead to an over-fitting of the hydraulic model to a specific
location or event, thus limiting the overall predictive skills
of the model. The assimilation of flood extent information
will allow for the sequential correction of a larger control
vector and bring spatial variability in the friction and input of
water; thus improving water level in reanalysis and forecast.
The frequent-in-time and sparse-in-space in-situ observations
can be greatly complemented by 2D flood extent maps at
Sentinel-1 overpass times to inform on the dynamics of the
flow over the entire catchment. A great number of DA studies
using RS-derived water levels for state and input correction
are found in the literature and reported in [29] and [31].
Beyond these approaches; several assimilation strategies will
be investigated in future works to benefit the most out of the
RS-derived flood extent observations. Possible leads are the
assimilation of the number of wet pixels within predefined
subdomains, the assimilation of the position of the wet/dry
interface, and the assimilation of the probability of flooding
of a pixel. These approaches will imply the development
of corresponding observation operators and the definition of
the appropriate control vector. Finally, the general perspective
for this work stands in the development of a rapid mapping
tool for flood alert dedicated to decision support systems at
global scale. This is a real challenge in terms of computational
resources limitations, data acquisition and processing.
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