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® Outline

1. Some context about high-order methods and the Spectral Difference (SD) method in combustion.
2. Influence of polynomial degree on accuracy of the results using the SD method.

3. Influence of polynomial degree on computational cost using the SD method.

4. Use of local polynomial adaptation to reduce computational cost with the SD method.

5. General conclusion.
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® A little bit of context

Context
e Large Eddy Simulations (LES) become essential to simulate correctly flame/turbulence interactions.
e LES need an accurate spatial discretization with low dissipation and dispersion errors.
o High-order methods (HOM) such as Discontinuous Galerkin® (DG), Flux Reconstruction® (FR) or Spectral Differences®
(SD) methods have these properties.
e HOM can manage both mesh refinement and the order of the local representation of the solution.
e However, very few combustion applications were considered with HOM for now.
e Most of them were done using the DG method *°%7 and not using FR or SD. ..
Objectives

% Evaluate the SD capability in terms of accuracy and performance to simulate combustion.

% Use local p-adaptation on a combustion case with the SD method.

Reed et al, Triangular mesh methods for the neutron equation, Tech. rep., Los Alamos Scientific Lab., N. Mex.(USA) (1973).

HUYNH, Hung T. A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In : 18th AIAA computational fluid dynamics conference. 2007. p. 4079.
D. A. Kopriva, A conservative staggered-grid Chebyshev multidomain method for compressible flows. II. A semi-structured method, J. Comput. Phys. 128 (2) (1996) 475-488.

Lv et al, Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion, J.Comput. Phys. 270 (2014) 105-137.

Lv et al, High-order discontinuous Galerkin method for applications to multicomponent and chemically reacting flows, Acta Mech. Sin. 33 (3) (2017) 486-499.
Billet et al, A Runge Kutta discontinuous Galerkin approach to solve reactive flows on conforming hybrid grids: the parabolic and source operators, Comput. Fluids 95 (2014) 98-115.
Johnson et al, A conservative discontinuous Galerkin discretization for the chemically reacting Navier-Stokes equations, J. Comput. Phys. 423 (2020) 109826.
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* The SD method on a 1D example with p=2 (order 3)

Flux value in
element e — 1
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Step 1: Build a continuous polynomial of degree p = 2 for U Element e — 1 Element e Element e + 1 erent €= ement ¢ ement € +

in element e based on the 3 values of U at solution points (SP). Step 2: Evaluation of U at the 4 flux points (FP) in element e. Step 3: Evaluation of E at the 4 flux points (FP) in element e.
There are 2 flux values at interfaces between elements...

Flux value in
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Element e — 1 Element e Element e + 1 Element e — 1 Element e Element e + 1 Element e — 1 Element e Element e + 1
Step 4: Use a Riemann solver to have an unique flux value at  Step 5: Build a flux polynomial of degree p + 1 = 3 based Step 6: Derivation of flux polynomial at the 3 solution points
element interfaces. on values of E at the 4 flux points (FP). (SP) to get (33)gp-
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® SD method in combustion

e Very few combustion applications were done using the SD method:
1. Gupta et al® and Tofaili et al” show 1D detonations.

2. Marchal et al'® succeeded in simulating 1D and 2D laminar flames.
e Question: Interest of using such method in combustion in terms of accuracy and computational cost?
e To answer

% Compare JAGUAR, SD code validated in ref [10] in combustion, and AVBP'! in terms of accuracy and computational cost.

JAGUAR AVBP
e Species transport: Hirschfelder and Curtiss with a con- e Species transport: Hirschfelder and Curtiss with a con-
stant Schmidt number per species. stant Schmidt number per species.
e Species source terms computed with Arrhenius’s law. e Species source terms computed with Arrhenius’s law.
e JANAF enthalpy tables used for thermodynamic. e JANAF enthalpy tables used for thermodynamic.
e Spatial schemes are of order p+ 1, p = polynomial degree e Spatial schemes: Lax-Wendroff (2nd order in space) (LW)

and Two-step Taylor Galerkin (3rd order in space) (TTGC).

8. Gupta et al, Numerical investigation of sustained planar detonation waves in a periodic domain, in: 2018 Fluid Dynamics Conference, 2018, p. 3240.

9. Tofaili et al, One-dimensional dynamics of gaseous detonations revisited, Combustion and Flame 232 (2021) 111535.

10. Marchal et al, Extension of the Spectral Difference method to combustion, Submitted to Journal of Computational Physics. https://arxiv.org/pdf/2112.09636.pdf
11. Schonfeld et al, Steady and unsteady flow simulations using the hybrid flow solver AVBP, ATAA journal 37 (11) (1999) 1378-1385.
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. Goncept of degrees of freedom and case presentation

DOF = Solution points in the whole domain= N, (p + 1)2

number of quadrilateral elements
Solution points in a quadrilateral element

N, =
(p+1)° =

JAGUAR

e Degrees of freedom (DOF) = points where the numerical solution is advanced in time.
AVBP

DOF = cell nodes in the whole domain

e Fair comparison done at same DOF value. 2 choices available to keep DOF = cst in SD:

% Choice 1 = large N, with small degree p OR Choice 2 = small N, with large degree p.

Question: Which choice is better in terms of accuracy and computational time?

Adiabatic walls

Symmetry boundary conditions

7y
1.05 mm

Inlet

Y
10mn— 1.,

=0

Adiabatic walls
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Symmetry boundary conditions

>
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3 4 5 6
860 632 |

| p 2 3 4 5 6 | p 2
410 | | N. 3437

| N. 2230 1256 804 558
Outlet
e 2D burner case run from p = 2 to‘m

e For each p value, N, was adjusted to keep respectively 20100 and 30900 DOF.

1930 1236

e These DOF values correspond respectively to 6 and 8 points in the flame front.
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Influence of polynomial order on the solution accuracy

—e— JAGUAR DOF = 30000 —#— JAGUAR DOF = 20100 L2-error on the 2D heat release rate field:
T e Lo
— 0.04} LW DOF = 20100 ~ DOF
gt‘q? e e e o o o JTGC DOF = 20100 wr Z . S interp 2/DOF
L LW,DOF =30900 ..., € = Wi = Wriref
3 0.02F — = = — 8. TTGC DQE = 30900 i=1
S \
.3Eu_) ] ] 1 —0
2 3 4 5 6 o Heat release at point 7
Polynomial degree p [-] Heat release at point i of the reference solution

Figure: Evolution of €“7/ W e f with respect to p for two in the considered solution

numbers of DOF. AVBP schemes (LW and TTGC) at these
DOF values are also shown with horizontal lines.

Conclusion on accuracy results

Error \, when DOF  for both JAGUAR and AVBP simulations.
e At a given DOF, error \, when scheme order  also for both codes.

e Reference solution is at p = 6 with 23 points in the flame front.

In JAGUAR case, error at high DOF with low p is recovered at low DOF with high p.

e Large elements with high p values is better for accuracy. What about computational cost?
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eInfluence of polynomial order on computational cost

2 quantities are of interest:

e Iteration cost per DOF « [us/ite/DOF] AND real time taken to simulate 1 ms of physical time 7s].
Results for both AVBP and JAGUAR on 36 Intel cores
JAGUAR JAGUAR
P 2 3 4 5 6 P 2 3 4 5 6
N. 3437 1930 1236 860 632 N. 2230 1256 804 558 410
K 8.5 7.7 7.4 7.3 7.1 K 8.2 7.5 7.4 7.2 7.2
T 361 371 407 471 558 T 182 190 216 247 292
AVBP AVBP
KLW 2.8 ktrac 6.3 KLwW 2.8 ktTac 64
TLW 106 7rrac 239 TLW 57 Trrac 128
Values of kK and 7 in the 30900 DOF case. Values of x and 7 in the 20100 DOF case.
JAGUAR AVBP

e 7 is higher and increases with p due to CFL

R e 7 increases mostly because of k but same CFL value (= 0.7)
restrictions.=—

for LW and TTGC.

‘} _
CFLjim ~ (p+1)""
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~ The use of p-adaptation to reduce computational cost

e Local p-adaptation puts high values of p only in regions of interest.

e Thus, less DOF but accuracy is conserved = gain in computational time.

e However, it does not solve time steps issues.

Illustration of local p-adaptation on the 2D burner case

. Ty
Mesh firstly designed for 30900 DOF [TTT = —t ’
case with p = 4 in all elements: E# —Fer =

nE=I

% In near flame elements: p = pyae = 4 * P = Pmin = 2 elsewhere

e Computation done in 3 steps:
1. Compute sensor values 58 € [0, 1] for each element with a first simulation at p = 2.
2. Set Polynomial order per element: p, = p,in + INT [tanh (age) (Pmaz — pm,,;n)}, a = 100 here.

3. A new computation with the p. distribution is runned.

e Sensor is based on the norm of density gradient here.
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~ The use of p-adaptation to reduce computational cost

.----------IIIIIIIIIIIII. p — 2 2 S p S 4 p —

ll. ll. DOF 10944 13444 30900
o i T Jwrpae; | 441 x107° [ 87 x 1077 | 81 x 107"
A e K 8.3 7.9 7.4

pe -] T 96 199 107

2.0e+00 3 4.0e+00
|  s—

Figure: Polynomial repartition per element
when pyin = 2 and pymar = 4 on the same mesh.

Table: Values of DOF, €7 /0722 k[us/ite/DOF] and 7[s] between
a computation at p =2, 2 < p <4 and p = 4 on the same mesh.

Compared to the full p = 4 case

e With 2 < p <4: 56% less DOF.

e Without sensor evaluation:

Heat Release [W.m ?

0.09+00 [Te+9  20+9 7e+ T (2 S P S 4) =295 < 1 (p = 4) = 407: 51% gain in T.

e With sensor evaluation:
Figure: Steady 2D heat release rate

field when 2 < p < 4 on the same mesh. T(p=2)+7(2<p< 4) =295 <7 (p=4) =407 28% gain in T.

e Load balancing employed to put more processors on zones where p is higher.
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® General conclusion

The SD method:

e Performs better with large elements coupled with high p values.

e Has iteration cost almost constant with p.

e Has a computational time increasing with p because of CFL restrictions.

e Can use local p-adaptation to keep accuracy and gain in computational time without re-meshing.

Next step

e Compare Adaptative Mesh Refinement'? coupled with finite volume method and local p-adaptation in combustion.

12. J.Bell, AMR for low mach number reacting flow, in: Adaptive Mesh Refinement-Theory and Applications, Springer, 2005, pp. 203—-221.
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Thank you for your attention! Questions?
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eInfluence of polynomial order on computational cost

Comments about « almost constant with p
e Competition between 2 processes: extrapolation process at FP and interface treatments at FP.
e At constant DOF: extrapolation process ~ O (p) and interface treatment ~ O (1/p).
e Low p values: interface treatment dominates (more interface FP and also more MPI communications).
e High p values: interface treatment is less costly and compensates the O(p) increases as long as p < 8.

e With the DG method, an increase of p results in an increase of k even if p < 8 because of quadrature rules's.

Comments about T well higher for the SD method
e 7 is linked to the timestep/CFL used and in SD the CFL limit scales as (p+ 1) .
e In this work, for p = {2, 3,4, 5,6}, CFL values were set to 0.36, 0.32, 0.28, 0.24 and 0.20 with a RK3-TVD scheme®.
e On the other hand, AVBP is usually at CFL = 0.7 for both LW and TTGC schemes.

e However, this CFL difference is even higher for DG schemes where the CFL limit scales as'® (2p+ 1) ".

13. Wu et al, On the accuracy and efficiency of discontinuous Galerkin, Spectral Difference and Correction Procedure via Reconstruction methods, J. Comput. Phys. 259 (2014) 70-95.
14. Gottlieb et al, Total Variation diminishing Runge-Kutta schemes, Math. Comput. 67 (221) (1998) 73-85.
15. Cockburn et al, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, SIAM J. Sci. Comput. 16 (3) (2001) 173—261.
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Iseparametric transformation for hexahedral elements

e Any hexahedral mesh element [a,b] x [c,d] X [e, f] is transformed into a cube [0, 1]*:

la, b] X [c,d] x [e, f] ﬁ) 10,1] x [0,1] x [0, 1]
x Yy z J '3 n q

with |J| the determinant of the Jacobian of the transformation.

e Cube [0, 1]? is called the isoparametric domain.

e Equations are also transformed and solved in the
isoparametric domain.

e Such transformation is called isoparametric.

>
xr
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. Position of SP and FP in 1D

e SP and FP positions are not arbitrary.
e Actually, in 1D-SD any segment [a, b] is transformed into segment [0, 1] using:

la, b] — [0, 1]

isoparametric transformation in 1D
x |J| &

with |J| the determinant of the Jacobian of the transformation.

e Then, each element is treated in the same way using SP and FP located at:

1 21— 1
Eqp = | = (1 — cos (—7‘(‘))] Gauss-Chebyshev points (1)
2 2(p+1) 1<i<pt1

€-p = [0, p Gauss-Legendre points, 1]

(2)
A SP
A FPLlegendre
k= ————fe—————————— Ammmmmm————— P 4==A SP and FP for p =2
. . . , , ' in 1D in the
0.0 0.2 0.4 £ 0-6 0.8 1.0 isoparametric domain
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° Position of SP and FP: extension in 2D and 3D

e In 2D and 3D, SP and FP are set direction by direction as in 1D.

e For instance in 2D, quadrilateral [a, b] X [c, d] is transformed into [0, 1] x [0, 1]:

[a, b] X [c,d] ﬁ [0, 1] x [0, 1] isoparametric transformation in 2D
J
x Y £ n
. . . d - d—1
e In dimension d: Nsp = (p+ 1), Nep =dx (p+2)(p+ 1) .
Solution points and Legendre Flux points
for a 2D quadrilateral when p =2
e Ao #rommg
A A A A A A A . .
! ! A SP A FP Legendre xi-direction A FP Legendre eta-direction
081 i A A A !
S + A A A A A + Notes
o e These positions are for quadrilaterals/hexahedral elements.
02 A & s e Positions are different for triangle/tetrahedral elements.
A A A A A A A
L = mmmmm oo B
I
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tocal pdlynomial adaptation: Mortar Element Method

e When using local p-adaptation, interfaces between elements with different degrees occur.

e Interface FP are not located at same positions between the 2 elements:
M
LA - A* ,ﬁq—ﬁA-A-Ai

Q; Qr

T . - : T f<—§F4i® 4 WA N
pr =1 pyv = max (pr,Pr) PR =2

e A fictive interface, called a Mortar, is introduced where interface treatment is done.

e For convective fluxes for instance it is done in 3 steps:

1. QF projected on M to get QM'F and QM = QF since py = pr.
2. Riemann problem solved between Q™' and Q' to get fluxes on Mortar FP noted F.

3. FM projected back on Qr, to get FX and F® = F™ since pas = pr.

= CERFACS &S SAFRAN 17



Polynomial distribution within each element can be:

e Set by hand but it is not really practical.

e Set using a sensor based on physical quantities. For instance with norm of density gradient:

Sensor value 1

t+tavg - 0
. o — -’
Averaging duration — ‘2

Volume of €2,

Normalized sensor value in €2,

e Polynomial distribution is then set using:

Pe = Pmin + INT [tanh (aé/e) (pmaa: — pmzn):|

Pmin, Pmaz are set by the user and « is here to avoid large degree jumps between elements.

= CERFACS &S SAFRAN ——
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Recent combustion simulations with JAGUAR

2D laminar burner

1D laminar flame

== CANTERA
—— JAGUAR (p=4)

JAGUAR (p=6)

—— AVBP (TTGC)
+1.0132x10°

5.8 .
@ [Wom™?] y
5.6 00e+00  le+9 2649 3e+9 3.7e+09 t
—— ! ’
54}
i —— JAGUAR (p=4) AVBP (TTGC)
A, 5.2 x10° —  x10°
F—— — )
|
5.0 F ) | g 7‘1
' — \\ B 2 i
&~ / — \ | ‘k
- / .
48 — : N = ‘- — - Comparaison of y-profiles at
1 1 1 1 1 250 Ex I I I I — - .
0.0 05 10 L5 20 0.0 05 10 L5 20 v [m)] X103 y [m] X103 x=12mm of T, wr, v and v
x [m] x1072 x [m] x1072

between AVBP and JAGUAR
for a 2D laminar burner.

Comparaison of P and T' between CANTERA, AVBP
and JAGUAR for a 1D CH4/Air flame.

u [m/ SL
v [m/s]

x1073

x1073

y [m]

SD results were in good agreement
with already existing methods

SD results were in good agreement
with already existing methods

10. Marchal et al, Extension of the Spectral Difference method to combustion, Submitted to Journal of Computational Physics. https://arxiv.org/pdf/2112.09636.pdf
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* High-order methods: general principle

e At first glance, high-order space discretization could mean an increase of the stencil.
e But large stencils are hard to use with unstructured meshes which are essential for complex geometries.

e Thus, high-order methods will have to use a compact stencil. Then, they will increase the number of degrees of
freedom (DOF) inside each mesh element and most of them follow the same process:

1. Define a high-order representation of the variables (mostly polynomial) inside each mesh element using
values at the DOF and a high-order interpolation procedure.

2. At element boundaries, reconstructed data are not equal: Riemann solvers (for convective fluxes) and Dif-
fusion schemes (for diffusive fluxes) are used to handle these discontinuities ensuring conservation.

Best interest of these methods: manage both mesh refinement noted 2 and the degree of the
local representation of the solution noted p.
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. Conclusion on polynomial order influence

Combining accuracy and computational time analysis, for the same level of error, it is faster to use less DOF with high p
rather than more DOF with low p.

For instance, p = 2 in 30900 DOF case and p = 4 in 20100 case have same error but the first one has a turnaroud time
67% higher than the second one.

Cost per iteration is almost constant with p and not so far than the one of already existing methods.

Main differences in computational cost come from time step restrictions.
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