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Abstract—Flood simulation and forecast capability have been
greatly improved thanks to advances in data assimilation (DA)
strategies incorporating various types of observations; many are
derived from spatial Earth Observation. This paper focuses on
the assimilation of 2D flood observations derived from Synthetic
Aperture Radar (SAR) images acquired during a flood event with
a dual state-parameter Ensemble Kalman Filter (EnKF). Binary
wet/dry maps are here expressed in terms of wet surface ratios
(WSR) over a number of subdomains of the floodplain. This ratio
is further assimilated jointly with in-situ water-level observations
to improve the flow dynamics within the floodplain. However,
the non-Gaussianity of the observation errors associated with
SAR-derived measurements break a major hypothesis for the
application of the EnKF, thus jeopardizing the optimality of the
filter analysis. The novelty of this paper lies in the treatment of
the non-Gaussianity of the SAR-derived WSR observations with
a Gaussian anamorphosis process (GA). This DA strategy was
validated and applied over the Garonne Marmandaise catchment
(South-west of France) represented with the TELEMAC-2D
hydrodynamic model, first in a twin experiment and then for
a major flood event that occurred in January-February 2021. It
was shown that assimilating SAR-derived WSR observations, in
complement to the in-situ water-level observations significantly
improves the representation of the flood dynamics. Also, the GA
transformation brings further improvement to the DA analysis,
while not being a critical component in the DA strategy. This
study heralds a reliable solution for flood forecasting over poorly
gauged catchments thanks to available remote-sensing datasets.

Index Terms—Flooding, hydrodynamics, Data Assimilation
(DA), Gaussianity, anamorphosis, Ensemble Kalman Filter
(EnKF), Remote Sensing (RS), Synthetic Aperture Radar (SAR),
Sentinel-1.

This work was supported in part by the Centre National d’Études Spatiales
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Avancée en Calcul Scientifique (CERFACS) within the framework of the
Space for Climate Observatory (SCO). (Corresponding author: Thanh Huy
Nguyen.)

T.H. Nguyen and S. Ricci are with the Centre Européen de Recherche et
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I. INTRODUCTION

In 2021, the Emergency Event Database EM-DAT recorded
432 disastrous events related to natural hazards worldwide,
among which flooding dominates with 223 occurrences [1].
Globally, flooding alone is responsible for approximately 40%
of all natural disasters [2], and as many as 1.47 billion
people—nearly 20% of the world population—are directly
exposed to flood risks [3]. As such, flood monitoring and pre-
diction is crucial in terms of cost-to-benefit ratio. The forecast
mode is essential for civil and industry protection services,
while the hindcast mode allows for damage assessments [4, 5]
and flood defense design studies [2, 6]. Early warning and
emergency management systems rely on the combination of
dense and reliable observing network with numerical models
possessing robust forecasting capabilities.

A. Remote-sensing flood observations

While hydrologic and hydraulic numerical models play an
indispensable role in forecast capability, their efficiency is
limited by the uncertainties inherently existing in their input
data. Such uncertain data includes rainfall, discharge inflow,
and geometry of the river and the floodplain, namely bathy-
metric and topographic errors from utilized Digital Elevation
Models (DEM), as well as hydraulic parameter errors due
to the calibration of friction coefficients. In this context,
DA has emerged as an efficient tool in hydrology to reduce
these uncertainties, by combining numerical model outputs
with various observations from in-situ gauge measurements
and/or from satellite Earth Observations. Indeed, the increasing
volume of data from space missions has provided more actors
involved in flood management with heterogeneous and relevant
satellite data, namely altimetry (e.g. TOPEX/POSEIDON,
Jason-1/2/3, SARAL/AltiKa, Sentinel-3, Sentinel-6/Jason-CS,
SWOT), optical (e.g. SPOT, LANDSAT-7/8/9, MODIS/VIIRS,
Pléiades, Sentinel-2) and Synthetic Aperture Radar (SAR)
(e.g. Sentinel-1, TerraSAR-X/TanDEM-X, COSMO-SkyMed,
ALOS-2 PALSAR-2, RADARSAT-1/2, ENVISAT ASAR,
RISAT-1).

A classical DA approach stands in the assimilation of
water surface elevation (WSE) data, either from in-situ gauge
measurements, from altimetry satellites, or retrieved from
remote-sensing (RS) images using flood edge location infor-
mation combined with complementary DEM data. Satellite
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SAR data is particularly advantageous as it allows an all-
weather day-and-night global-coverage imagery of continental
water, depicted by low backscatter (BS) values resulted from
the specular reflection of the incident radar pulses [7]. The
assimilation of RS-derived WSE is typically convenient as it
deals with a diagnostic variable of the model, yet it can suffer
from the lack of precision of high-resolution topographic data
as noted in various studies [8, 9, 10, 11]. Nevertheless, many
research works have proposed the assimilation of RS-derived
WSE as summarized in [12, Table 1]. Most commonly used
strategies are similar to that of Giustarini et al. [9]: flood edges
are identified on SAR images and integrated with an available
DEM to derive the WSE on the floodplain, which are then
compared with and/or assimilated to the WSE simulated by 1D
or 2D hydrodynamic model to sequentially update the model
state and parameters.

The need to retrieve WSE from flood extents can be avoided
with direct assimilation of SAR-derived flood probability
maps or flood extent maps. The assimilation of surface water
extents has been presented in large-scale hydrology and in
catchment-scale hydrodynamic by various approaches. In [12],
daily surface water extents from the so-called Global Flood
Detection System are assimilated with an Ensemble Kalman
Filter (EnKF) that relies on the random perturbations of the
precipitation—input to the distributed hydrological rainfall-
runoff LISFLOOD model [13]—with a focus on Africa and
South America catchments. At daily time steps, the innova-
tions of streamflow volumes (i.e. the differences between sim-
ulated and observed ones) are computed. They are then used by
an EnKF algorithm with a state-augmented strategy to correct
and update the simulated groundwater levels in the catchment,
instead of the simulated streamflow levels, in order to improve
streamflow forecasts. It was shown that the assimilation of
RS-derived surface water extents greatly improves flood peak
forecasting in terms of timing and volume for slow-motion
ungauged catchments. Lai et al. [14] proposed a 4D-Var (four-
dimensional variational) DA scheme implemented on top of
a 2D Shallow Water model; differentiated with an automatic
differentiation tool called TAPENADE [15]; to assimilate
flood extent observations derived from MODIS (Moderate-
resolution Imaging Spectroradiometer) in order to correct
roughness parameters over the floodplain. The assimilation of
flood extent data was shown to be suitable for improving flood
modeling in the floodplain or similar areas with slowly-varying
bed slopes.

While both [12] and [14] strategies rely on the expression
of flood extents as a function of the model state, other research
works propose a more direct use of SAR observations. Cooper
et al. [16] proposed an observation operator that directly takes
into account synthetical SAR BS values as observations, in an
Observing System Simulation Experiment (OSSE) framework,
in order to circumvent the needed flood extent mapping and
flood pixel-wise probability estimation processes. It relies on
the assumption that SAR images must yield distinct distri-
butions of wet and dry BS values, which may not hold for
real SAR data that may require further treatments, such as
hierarchical split-based approach [17]. Hostache et al. [18]
presents the assimilation of ENVISAT ASAR-derived flood

probability maps using a Particle Filter (PF) approach with
a sequential importance sampling into a coupled hydrologic-
hydraulic model. As detailed in [19], such a probabilistic flood
map represents the probability of an observed BS value to
correspond to a flood pixel, assuming that its prior probability
to be flooded or non-flooded are two Gaussian probability
density functions (PDF).

B. Dealing with non-Gaussianity in DA

The non-Gaussianity characteritics of SAR-derived observa-
tion errors need to be properly accounted for in the framework
of DA. Indeed, the optimality of the KF and variational
analysis relies on the Gaussian assumption for the background
and observation errors, as well as on the linearity of the
observation operator that relates the control and the obser-
vation spaces [20]. When these assumptions no longer hold,
the KF or variational analysis can still be used but they are
suboptimal. As such, when the Gaussianity assumptions are
strongly violated, a pre-processing step is necessary.

For instance, Neal et al. [21] proposed an adaptive sampling
method that only assimilates the measurements that did not
fail the normality test. A classical approach in Numerical
Weather Prediction (NWP), yet still questionable for extreme
events, consists in rejecting outlier observations with a Qual-
ity Control (QC) procedure applied on the innovation (also
called misfit), assuming that the non-Gaussianity is entirely
attributable to observation errors, as these observations are
statistically unlikely and their assimilation may lead to a
spurious analysis [22, 23]. The simplest approach is thus
to assume that the remaining data is correct and follows
a Gaussian distribution, then to apply classical variational
DA algorithms. In the context of an operational NWP, the
“Gaussian plus flat” distribution is often used as a refinement
with a gray zone between correct data and grossly erroneous
data [24, 25]. In addition, Tavolato and Isaksen [25] found
that a Huber norm (i.e. Gaussian distribution in the center
of the distribution and exponential distribution at the tails)
was the most suitable distribution to describe the statistics
of the innovations, assuming that the majority of the outliers
cannot be considered as gross errors and that they may provide
some relevant information. The observation cost function with
QC based on the Huber norm relaxes the rejection threshold
for large misfits. This allows to keep observations with large
innovations in the analysis, which is particularly beneficial for
the representation of extreme events.

The non-Gaussianity of the control and/or observation errors
can be handled using a DA algorithm that does not require
Gaussianity assumptions. For instance, the PF works with the
entire probability function, instead of focusing on the first
and second moments of the statistics like KF and variational
algorithm do. A considerable number of studies advocate for
such a solution, working with a PF or with a Bayesian ap-
proach to assimilate SAR-derived observations. Indeed, the PF
framework used in [8, 9, 18, 26, 27] offers the key advantage of
relaxing the assumption that observation errors are Gaussian,
and allows to propagating a non-Gaussian distribution through
non-linear hydrologic and hydrodynamic models [28]. This
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makes it better suited for a DA of probabilistic flood maps
than the more widely used EnKF [11, 12, 29] or variational
approaches [14]. In addition, in the context of an OSSE,
Dasgupta et al. [30] analyzed the impacts of the characteristics
of the RS observing network with a PF that assimilates
SAR-based probabilistic flood maps into the LISFLOOD-FP
hydrodynamic model for a synthetical set-up of a flood event
in the Clarence catchment (Australia). They asserted that the
location and timing of the SAR images is more important
than the revisit interval for flood forecast accuracy. As a
follow-up study of [18], Di Mauro et al. [27] introduced
an enhanced PF algorithm with a tempering coefficient that
depends on the size of the desired effective ensemble size after
the assimilation. This aims to inflate the posterior probability
and avoid degeneracy of a PF that assimilates SAR-derived
probabilistic flood maps.

C. Gaussian anamorphosis

A different strategy stands in transforming the distribution
of the SAR-derived observations into a Gaussian distribution,
compatible with KF-based DA algorithms. This alleviates the
need for advanced processes on the PF implementation to
avoid ensemble collapse. Such a strategy is reported in the
literature as Gaussian Anamorphosis (GA), also known as
normal-score transform. GA is a pre-processing step that maps
the control and/or observation variables onto a transformed
space where the Gaussianity assumption is better fulfilled. GA
was proposed by Bertino et al. [31] and it has been investigated
in different works [32], [33], [34], [35]. In most studies, it
was applied to state analysis, as opposed to model parameter
analysis (which is performed in this present work). It involves
transforming the state variables and observations into new
variables with Gaussian features, over which the DA analysis
is computed. The inverse of the GA transform must then be
used to remap the analysis result back onto the original space.

Bertino et al. [31] presented the application of the EnKF
to transformed Gaussian—or anamorphosed—state variables,
with the integration of the anamorphosis in the update step of
the analysis for an ocean model. In order to deal with the large
dimension of the model state, it is assumed that the distribution
of the state variables at different locations are identical, thus
a homogeneous anamorphosis function is chosen all over the
spatial domain. This has been assessed, in OSSE mode, for
a simplified 1D ecological model. Two versions of the EnKF
are compared, assuming either a Gaussian or a log-normal
distribution for the errors on the synthetical measurements
and the ecological model variables. The ordinary (or plain)
version of the EnKF leads to the negative values for the
nutriment, phytoplankton and herbivore concentrations (i.e. the
parameters considered in [31]), which should be truncated,
thus resulting in repetitive biases and corrections for these
variables that lead to undesired artificial spring blooms. The
novel GA version of the EnKF with the log-normal transform
reduces the spurious “false starts” of spring blooms and leads
to more realistic ecological cycles. In continuity of this work,
Simon and Bertino [34] presents the application of such a
non-Gaussian extension of the EnKF to perform model state

estimations for a 3D coupled ocean physical-ecosystem model
that present non-Gaussian and positive variables. They demon-
strated, within an OSSE, that the assimilation of anamorphosed
synthetical chlorophyll-a surface concentration data presents
a slight advantage in effectiveness compared to the plain
EnKF with a simple post-processing of negative values. This
advocates for the use of GA when dealing with similar RS
observations. Simon and Bertino [35] considers dual state-
parameter estimation ([36]) in OSSE, with an EnKF for a
simplified 1D ocean ecosystem model (continuing from [31])
that presents non-Gaussian and positive variables. It was
shown that GA overcomes the limits of the classical EnKF
when dealing with positive variables.

Béal et al. [37] also showed that GA leads to an im-
proved estimation of the 3D state of a coupled physical-
biogeochemical ocean model with respect to a classical EnKF
approach. Schöniger et al. [38] promoted the use of GA in
the field of hydrogeology for the correction of the subsurface
hydrologic state. Indeed, the state vector of a groundwater flow
numerical model is typically non-Gaussian in the presence of
strong spatial heterogeneity of the hydraulic conductivity field.
Drawdown, pressure head, and concentration state are rendered
Gaussian with a non-parametric function and the discretized
field of log-conductivity, which are parameters to the model,
is estimated sequentially with DA. The parameter-only EnKF
scheme obliterates the need for a back transformation step
on updated transformed state variables; it also guarantees that
the simulated state is coherent with the updated parameters in
the sense of the model’s governing equations. The merits of
GA for parameter estimation with EnKF were demonstrated
in OSSE assimilating synthetical drawdown measurements.
Also in hydraulic tomography, the authors of [39, 40, 41]
describe a normal-score transformed (also named GA) EnKF
to generate log-conductivity realizations which are conditional
to log-conductivity and/or transient piezometric head data.

Amezcua and van Leeuwen [42] studied the merits of a
joint transformation for the state and observation variables
that yields joint Gaussianity in the transformed space for the
analysis step of the EnKF. Indeed, when mapping the model
state space onto a transformed space with Gaussian properties,
the observation operator may become non-linear, thus raising a
new issue for the filter. The joint GA transformed is compared
to a transformation in the state variable and/or observation
space, for the univariate case. This work was carried out over
a simple case in which the Bayesian posterior can be obtained
analytically. It was demonstrated that, in spite of the various
GA strategies, the optimality of the analysis is not reached but
the joint transformation outperforms the other strategies as its
solution is closer to that of the Bayesian solution.

D. Scope of the article

The overall objective of the article is to reduce comprehen-
sively the uncertainties in the model parameters, forcing and
hydraulic state, and consequently improve the overall flood re-
analysis and forecast capability, especially in the floodplain,
by assimilating relevant SAR-derived flood observations. This
article presents as the subsequent study of [43, 44, 45] that
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proposes a DA approach to accommodate 2D SAR-derived
observations alongside with in-situ water level (WL) time-
series within an EnKF framework for the TELEMAC-2D1

(T2D) hydrodynamic model [46] of the Garonne Marmandaise
catchment (South-west France). Sentinel-1 SAR-derived flood
extent maps are expressed in terms of wet surface ratios
(WSR) computed as the ratio between the number of wet
pixels detected on SAR-derived flood extent maps over the
total number of pixels in a subdomain of the floodplain.

The novelty of this article stands in the treatment of the
non-Gaussianity of such SAR-derived WSR observations. A
dual state-parameter DA strategy [36] is implemented to
reduce the uncertainties in the parameters associated with
friction coefficients and upstream forcing. The control vector
is augmented with a WL state correction that is uniform over
a limited number of subdomains in the floodplain. Here the
EnKF algorithm is favored and implemented as it allows to
stochastically estimate the covariance matrices between the
model inputs/parameters and its outputs, without formulating
the tangent linear of the hydrodynamic model with respect
to its parameters, under the assumption that the errors in
the control vector are properly described by a Gaussian
distribution. As this property is violated when considering
SAR-derived WSR observations, the GA strategy described
in [35] is implemented here. As opposed to previously cited
studies, our observation variables may be strictly null (i.e. dry
area) or strictly equal to 1 (i.e. totally flooded area). As a
consequence, particular efforts were made on the treatment of
these extreme values to ensure that the anamorphosis function
remains bijective.

The remainder of the article is organized as follows. Sec-
tion II presents the data that are used in this study. The DA
strategy is detailed in Section III with a focus on anamorpho-
sis. Section IV presents the experimental settings for the OSSE
and real DA experiments. Section V discusses the merits of
the DA and GA strategies for OSSE and real experiments with
assessments in the control and observation spaces. Conclusion
and perspectives are finally given in Section VI.

II. DATA

A. The Garonne Marmandaise catchment and Observations

The study is carried out over a reach of the Garonne River
near Marmande for the major flood event that occurred in
January-February 2021. The hydrodynamic numerical model
T2D is used to simulate and predict the WL (denoted by
H [m]) and velocity (denoted by u and v [m.s−1] for the
two horizontal components) from which flood risk can be
assessed. The study case as well as the hydrodynamic model
T2D that was set up to represent the dynamics of the flow are
fully described in [43, 47]. The major sources of uncertainties
are associated with friction coefficients in the riverbed and
in the floodplain, the upstream forcing, as well as with the
hydraulic state in subdomains of the floodplain. The friction
coefficients include six coefficients in the riverbed (Ks1 to
Ks6 ) and one in the floodplain Ks0 , the upstream forcing is

1www.opentelemac.org

corrected by a multiplicative factor µ, whereas the hydraulic
state in subdomains of the floodplain is corrected with a
(spatially) uniform WL additive increment δH1 to δH5 over
five subdomains, as illustrated in Figure 1. The a priori values
for these aforementioned random variables—their PDF are
assumed to be Gaussian—are presented in [43]. The 2021
flood event is of a 20-year return period. Figure 2 depicts
available in-situ WL observations, measured every 15 minutes
at Tonneins (blue), Marmande (orange) and La Réole (green).
The study is carried over a period of 25 days between 2021-
01-16 and 2021-02-10 that capture the flood and the recess
phases.

Sentinel-1 (S1) [48], carrying a C-band SAR system, with
a central frequency of 5.405 GHz. In this work, the Interfer-
ometric Wide (IW) mode is used with 250-km-wide swath
and a ground resolution of approximately 20×22 m, further
resampled, reprojected and distributed at 10×10 m for the
Ground Range Detected (GRD) products. S1 operates as a
constellation of two polar-orbiting identical satellites, launched
respectively on 2014-04-03 and 2016-04-26, allowing a six-
day repeat cycle, until 2021-12-23. The S1 products are used to
produce binary water maps with the FloodML software based
on a Random Forest Machine Learning algorithm [49, 50].
More details can be found in [47, 51, 52].

The 2021 flood event was observed by twelve S1 images,
represented by vertical dashed lines in Figure 2. The flood
peak was reached on 2021-02-04 and it exceeded the highest
threshold level for flood risk at Marmande set out by the
French national flood forecasting center (SCHAPI) in collab-
oration with the departmental prefect. The validation of the
results is also performed using independent observations from
relevant high water marks (HWM) dataset. It is a collaborative
dataset of collected flood marks2 maintained by the local
flood forecast services (SPCs) or by the flood risk prevention
and management service (GEMAPI) in the floodplain. In the
aftermath of the 2021 flood event, 178 HWM observations
were collected (accessed in December 2021). It is worth-
noting that, due to high cloud cover during this flood event, no
Sentinel-2 optical image acquired during the 2021 flood event
provides proper observations.

B. Imperfection in SAR backscatter information

SAR images, like all active coherent imaging systems,
suffer from an inherent error called speckle. It is caused by
constructive and destructive interference of coherent waves
reflected by the many elementary scatterers contained within
an imaged resolution cell. It should be noted that, a radiometric
and a geometrical correction [53, 54] are classically applied
as pre-processing on raw SAR data, so that most of the
remaining errors in SAR images lies in speckle errors. In
the detected SAR images (intensity or amplitude), the speckle
is usually described as a non-Gaussian multiplicative noise.
It can be considered as a random variable whose power and
magnitude, respectively, follow a negative exponential and a
Rayleigh distribution [55]. The inevitable presence of speckles
in SAR images makes the image interpretations and analyses

2https://www.reperesdecrues.developpement-durable.gouv.fr/
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Fig. 1: T2D Garonne Marmandaise domain. The VigiCrue observing stations are indicated as black circles. The different river
friction zones are indicated as colored segments of the Garonne River. The floodplain is divided into five subdomains that
are hatched in different colors. The inset figure shows the urban area of Marmande nearby its namesake gauge station. (Note.
From [43] by Nguyen et al. (2022), Water Resources Research, 58, e2022WR033155. CC BY-NC.)
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Fig. 2: Water level H time-series at Tonneins (blue), Mar-
mande (orange) and La Réole (green) for 2021 flood event.
Vertical dashed lines indicate S1 overpass times.

particularly difficult. However, their undesirable effects can
be reduced with various filtering methods [56, 57, 58]. In
addition, multilooking approach also reduces speckle but at
the expense of the image spatial resolution. While avoiding
such a loss of resolution, adaptive filters also allow for a
significant reduction of speckle while better preserving res-
olution but they alter the statistical properties of the image.
Temporal multilooking comes as an interesting solution when
image time-series are available. Yet, none of these methods

is capable of a complete removal of all speckle in the image
[59, 60]. Therefore, the non-Gaussianity of SAR-derived BS
observations, more specifically due to speckle, raises major
difficulties for image post-processing. As presented in [61],
a logarithmic transform can be applied to convert the signal
with multiplicative noise into one with additive noise, easier
to be treated by analyzing and standard image processing
techniques. Once this transform is achieved, the statistical
properties of the log-transformed multilook speckle noise are
described for further use in SAR image post-processing.

C. Error in SAR-derived flood observations

As aforementioned, wet pixels on SAR images exhibit low
BS since most of the incident radar pulses are specularly
reflected away upon arrival at the water surfaces as opposed to
dry pixels that exhibit high BS values. While this properties
favors the use of S1 images to detect inundated areas, the
variability of water roughness and speckle effect may come
as a limitation, especially in urban environment or vegetated
areas [62, 63].

A number of techniques exist for separating pixels into wet
and dry areas based on BS values. Most methods include
thresholding [64] with varying levels of user interpretation
(as compared in [65]), region growing and clustering [66],
and change detection [67]. These techniques can be used to
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provide observational information for DA frameworks but they
have also been used for flood mapping and monitoring (e.g.
[8, 65]) as well as for validation and calibration of inundation
models [68, 69, 70]. However, uncertainty in flood extent
mapping from SAR images, originates from both the input
images and the performed classification algorithm. As a result,
resulting classification overall accuracy of flooded areas varies
considerably and only in rare cases, exceeds 90% [71].

III. METHODS

A. Workflow for the DA algorithm
The general framework for DA experimental settings is

depicted in Figure 3. Each box represents a step of the DA
algorithm, with a multi-layering aspect indicating ensemble
steps. The different ensemble inputs, outputs, and variables
are represented in white boxes, the observation operators in
gray boxes, the T2D model simulations in blue boxes, and
the steps conducted in the transformed Gaussian space are
represented in red boxes. The real observations are shown in
the green block, and the specific steps to generate synthetical
observations for the OSSE are gathered in the yellow block
on the right-hand side. The blue circles indicate different input
choices for the first cycle and for the subsequent ones.

The control vector x for the EnKF DA algorithm, has a
size up to n = 13 depending on the DA experimental settings
reported in Table I (in Section IV-B). At most, it gathers seven
friction coefficients Ksk with k ∈ [0, 6], one multiplicative
parameter µ to modify the time-varying upstream BC Q(t),
and five state corrective variables δHk with k ∈ [1, 5]
over the floodplain subdomains. The friction coefficients and
multiplicative coefficient for the discharge are constant over a
DA cycle and vary from one DA cycle to another.

Each DA cycle c covers a time window, denoted by Wc

over T = [tstart, tend] of duration 18 hours over which nobs,c
observations are assimilated, as illustrated in Figure 4. Over
each DA cycle Wc, a first simulation with the direct model is
carried out—i.e. the background trajectory plotted in blue—
and each observation is compared with its model equivalent
at the respective observation time over T . The observations
assimilated over Wc are represented as green circles, whereas
the observations that are not assimilated over Wc are depicted
as green pluses. The resulting misfit vector is used for the
cycle analysis that provides a correction to the control vector.
Then, the corrected control vector is used to carry out an
analysis trajectory plotted in red, thus providing a coherent
updated analyzed hydraulic state. The analysis trajectories are
issued over a 9-hour window starting at tstart − 3 hr in
order to allow the hydraulic state to become coherent with
the updated parameters and forcing by tstart, and ending at
tstart +6 hr. This provides the final analyzed hydraulic state
over [tstart, tstart + 6 hr] for Wc. The cycling of the DA
algorithm then consists in sliding the time window of a period
tshift = 6 hours so that the cycles Wc and Wc+1 overlap
for 12 hours. It should be noted that for the very first DA
cycle W1 of an event, a 24-hour period of direct simulation
(or restart) is achieved before comparing the model outputs
to the observations in order to limit the impact of the initial
condition.

B. Description of the EnKF forecast step

The description of the EnKF forecast is detailed in [43, 47].
In the following, i ∈ [1, Ne] indicates the member index within
an ensemble of size Ne. xf,i

c (respectively, xa,i
c ) stands for

the forecast (respectively, analysis) control vector for member
i over DA cycle c. The EnKF forecast step consists in the
propagation in time, over Wc, of the Ne control and model
state vectors. These steps are represented in the middle branch
of Figure 3. The background hydraulic state for each member
sf,ic results from the integration of the hydrodynamic model
Mc: Rn → Rm from the control space to the model state (of
dimension m) over cycle c:

sf,ic =Mc

(
sa,ic−1,x

f,i
c

)
, (1)

where sa,ic−1 is a restart file saved from the previous anal-
ysis at cycle c − 1. As aforementioned, in order to avoid
inconsistencies between the state and the analyzed set of
parameters at tstart, a short spin-up integration is run on the
three hours preceding tstart. The equivalent of the control
vector in the observation space yf,i

c is computed with the
observation operator Hc: Rm → Rnobs :

yf,i
c = Hc

(
sf,ic

)
. (2)

The observation vector is noted yo,i
c , it gathers in-situ WL

and S1-derived WSR observations for cycle c. The in-situ
WL subpart of yo,i

c is noted yo,i
c,H, and the WSR subpart of

yo,i
c is noted yo,i

c,WSR. The equivalent of yo,i
c results from

Eq. 2 that extracts simulated WL at locations and time of
in-situ measurements yo,i

c,H and compute a wet/dry pixel mask
from the computed WL simulated 2D field at S1 overpass
times in order to compute WSR over each subdomains of the
floodplain.

C. Anamorphosis in the observation space

The step of the DA that relates to the Gaussian anamor-
phosis are shown in red in Figure 3. The model equivalent
of WSR observations is a subset of yf,i

c and is noted yf,i
c,WSR

in the following. Similarly to the observations yo
c,WSR, the

model equivalent yf,i
c,WSR follows a non-Gaussian distribution

and is bounded within [0, 1]. In order to prevent the loss of
optimality of the EnKF, the GA is applied in the observation
space (also called physical space in the following) on the
model equivalents yf,i

c,WSR and on the observations yo,i
c,WSR.

Figure 5 depicts the violin plots of WSR values by ag-
gregating the model equivalents of all SAR-derived WSR
observations over the five subdomains of the floodplain from
all 75 members of the ensemble, for each S1 overpass time
in panel (a) and by aggregating all WSR model equivalents
over all the times of S1 for each floodplain subdomain in
panel (b), over the entire 2021 flood event. In this Figure, the
WSR model equivalents originate from the members of the
ensemble of experiment IDA that sequentially assimilates in-
situ WL observations at Tonneins, Marmande and La Réole
[47]. It appears that, for most dates before the rising limb
(2021-02-02) and after the flood peak (2021-02-03), null and
small values of WSR prevail as indicated by the flat bottom
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Fig. 3: Diagram for DA strategy in OSSE and real DA experiments.

of the violin plots, whereas higher values of WSR (close to
1) are reached near the flood peak as indicated by the larger
flat top of the violin plots. It is worth-noting that for all dates
and all floodplain subdomains, the distribution of WSR model
equivalents is clearly non-Gaussian.

For a particular cycle c, the anamorphosis function φc is a
non-linear bijective function, that maps WSR physical space
to a Gaussian space:

ỹo,i
c,WSR = φc

(
yo,i
c,WSR

)
, ỹf,i

c,WSR = φc

(
yf,i
c,WSR

)
. (3)

This comes down to redefining the observation operator Hc

as H̃c that now maps the hydraulic state variable sf,ic onto the
transformed space:

ỹf,i
c = H̃c

(
sf,ic

)
= φc

(
Hc

(
sf,ic

))
(4)

where H̃c: Rm → Rnobs selects, extracts and eventually
interpolates model outputs at times and locations of the in-
situ WL observations yo

c,H, whereas it selects, extracts and
applies the anamorphosis function φc at times and locations
of WSR observations yo,i

c,WSR, over Wc. This corresponds to
prescribing an identity function for the anamorphosis of the in-
situ WL observations and φc for that of the WSR observations.

The anamorphosis function φc is devised from the empirical
marginal distribution of the variable in the observation space.
For that purpose, all observations in time and space over Wc

are taken into account simultaneously. The algorithm to build
the anamorphosis function is fully described in [34, Appendix
A]. It involves three steps:

1) Construction of the empirical anamorphosis function
based on the marginal distribution of the non-Gaussian
variable;

2) Interpolation of the empirical piecewise function to
allow a bijective function;

3) Definition of the tails of the function necessary to
process extremity values.

The first step of the process is widely used in the geostatistical
studies and thoroughly detailed in [72]. It maps the sampled
values in the physical space onto the Gaussian space. The
second and third steps are intended to ensure a bijective
function, as presented in [34]. Three different approaches to
select relevant samples in the physical space are presented
in [35] in the context joint dual state-parameter estimation:
(i) a static approach working with existing realizations of the
variables to transform; (ii) a dynamic approach: the sample
is populated by the members of the forecast ensemble at the
time of the analysis; (iii) an hybrid approach: combining both
approaches which was shown to be more suitable for the prob-
lem of combined state-parameter estimation with non-linear
models. In order to build an anamorphosis that is coherent
with the flood behavior, the dynamic approach is favored.
Nevertheless, it should be noted that the computational cost
of the anamorphosis function construction and application is
considerably low, given that the size of the ensemble and the
observation vectors are small.

The anamorphosis is illustrated in Figure 6 computed by
aggregating all WSR model equivalents. The histogram of
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Fig. 4: Schematic for the DA cycling, illustrated for Wc

and Wc+1, with background trajectory (blue) and analysis
trajectory (red). The trajectory are represented by solid lines
during its cycle when compared with the observations (green
circles) and by dashed lines for the spin-up periods before
the cycles. The observations errors is represented with a green
vertical bar.

yf,i
c,WSR is shown in Figure 6a, the devised anamorphosis

function φc is plotted in Figure 6b and the histogram of
transformed WSR model equivalents ỹf,i

c,WSR is depicted in
Figure 6c. For both Figure 6a and Figure 6c, the cumulative
distributions that were used for the function construction are
shown in red. In contrast to the eco-biological variables treated
in [34, 35], WSR values are likely to reach the bounds of
their domain definition, as WSR is strictly equal to 0 for
dry areas and to 1 for flooded areas. As a consequence, the
tails of the anamorphosis function requires a special treatment
in this work to build a bijective function, to ensure a non-
null dispersion among the ensemble members and artificially
distinguish those all equal to 0 and 1 values—illustrated by
the flat bottoms and tops in the violin plots in Figure 5.
Indeed, a uniform random noise of small magnitude bounded
between 10−15 and 5 × 10−4 is added to these zeros. These
bound values are considered as small with respect to the WSR
measurements that lie in [0, 1], while still significant regarding
the numerical precision of our numerical schemes. Similar
strategy is also applied for the values close to 1. In the case
where the anamorphosis function does not reach the 0 and
1 bounds, the function is extrapolated to cover the whole
possible domain of WSR value (green segment of the bijective
function shown in Figure 6b).

A composite illustration of the GA carried out on one subdo-
main (e.g. δH2) at the flood peak (cycle WC) is shown in Fig-
ure 7. This split-violin plot represents the PDFs of the model
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Fig. 5: Violin plots computed considering the model equiv-
alents yf,i

c,WSR of SAR-derived WSR observations during the
2021 flood event, (a) generated over all five subdomains of the
floodplain, at each S1 overpass time, and (b) generated over
2021 flood event, for each of the five subdomains.

equivalents for the WSR observations before GA yf,i
C,WSR

(represented by the blue area) and after the GA ỹf,i
C,WSR

(represented by the green area), using all WSR values from 75
members for the subdomain. It appears, on this example, that
the non-Gaussian PDF has been well morphed into a Gaussian
PDF. The transformation is carried out centered around the
mean of the background WSR values, represented by the
green circle, that overlaps with the mean of the transformed
distribution (blue circle). The observed WSR value yo

C,WSR

in the physical space (respectively, transformed space) is
represented with a white (respectively, red) dot. The prescribed
standard deviation for the observation error is indicated by the
white (respectively, red) box plot in the physical (respectively,
transformed) space. The observation error standard deviation is
preserved in the transformed space in this work. An alternative
approach using the standard deviation computed based on the
transformed variables (performed by [34]) was also tested, but
it did not bring any improvement to the DA results. Such a
representation extended to all dates and all subdomains of the
floodplain is shown in Section V-A.

D. Description of the EnKF analysis step in the anamor-
phosed space

The EnKF analysis step usually stands in the update of the
control xa,i

c and the associated model state vector sa,ic , here
achieved in the anamorphosed space and represented by a red
rectangle in Figure 3. This differs from the classical EnKF
analysis [43, 47], as the computation of the innovations and
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Fig. 6: (a) Histogram of model equivalent yf,i
c,WSR aggregating all subdomains and all dates; (b) Bijective function to transform

from the physical space (y-axis) to the Gaussian space (x-axis); (c) Histogram of the transformed model equivalent ỹf,i
c,WSR.
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Fig. 7: Split-violin plot representing the GA process.

the covariance matrices are achieved in the transformed space
using the transformed observation operator H̃c:

xa,i
c = xf,i

c +Kc

(
ỹo,i
c − ỹf,i

c

)
. (5)

The Kalman gain is further computed from covariance
matrices stochastically estimated within the ensemble, consid-
ering anamorphosed observation vectors ỹf,i in place of yf,i

c .

Kc = Px,ỹ
c

[
Pỹ,ỹ

c +Rc

]−1
. (6)

comment equations here to be consistent with the amount of
observation given in the forescast step paragraph, and stays
different from WRR section

Then, similar to Equation (1), the hydrodynamic state sa,ic

associated with each analyzed control vector xa,i
c results from

the integration of the hydrodynamic model Mc with the
updated parameters in xa,i

c :

sa,ic =Mc

(
sa,ic−1,x

a,i
c

)
, (7)

where xa,i
c gathers (Ksk)

a,i
c , µa,i

c and the state correction in
the floodplain δHa,i

k over Wc, starting from the same initial
condition as each background simulation within the ensemble.
In should be noted that, in order to preserve a smooth WL
field, the mean of the analysis for δHa

k computed within the
ensemble is considered, instead of individual member values.

IV. EXPERIMENTAL SETTING

A. Generation of synthetical observations for OSSE

The OSSE experimental setting here is similar to that
described in [43, 44]. It is represented on the right branch in
Figure 3, framed in a yellow block. The reference simulation
(further denoted as True) is a deterministic simulation with a
selected set of time-varying parameters for friction and inflow.
The true value for Ksk with k ∈ [0, 6], µ and δHk with
k ∈ [1, 5] are set from the results of a previous DA experiment
on the real 2021 flood event where in-situ WL observations
were assimilated, and then a WL correction is added in the
floodplain to account for T2D inability to empty the floodplain.
Synthetical in-situ and SAR-derived flood extent observations
are generated using the observation operator described in
Section III applied to the reference simulation outputs. These
observations are further assimilated to retrieve the model
parameters from the reference simulation, starting from a priori
values.

B. Configuration for DA experiments and metric assessment

Table I presents the experimental settings for the free run
and for the DA simulations that are devised with different
control vector and observing network. It should be noted that
FR is not represented in Figure 3 as this simulation does not
involve DA and is used only to assess the merits of DA.
For both OSSE and real experiments, FR is devised using
the observed upstream time-series as forcing, as well as the
friction coefficients that result from calibration. There is no
state correction in the floodplain in FR. The proposed EnKF
approach carried out by DA experiments is represented in
Figure 3, where the middle branch represents the forecast step
and the left branch is the analysis. The real DA experiments
use the same forcing and friction coefficient settings as FR
at the first DA cycle, and then involve a sequential correction
over the next cycles. They assimilate real in-situ WL and WSR
observations, represented as green boxes in Figure 3.
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TABLE I: Settings for OSSE and real experiments.

Name of the Observing Ensemble Control
experiment network size Ne vector

FR No assim 1 -
IDAosse/IDA In-situ WL 75 Ks[0:6] , µ

IHDAosse/IHDA In-situ WL and WSR 75 Ks[0:6] , µ, δH[1:5]

IGDAosse/IGDA In-situ WL and WSR 75 Ks[0:6] , µ, δH[1:5]

The observing network is composed of in-situ WL obser-
vations at the three Vigicrue stations Tonneins, Marmande
and La Réole, every 15 minutes, eventually completed with
WSR values computed over the five floodplain zones at S1
overpass times. IDA experiment only assimilates in-situ WL
observations and the control vector is limited to friction
coefficients Ksk with k ∈ [0, 6] and the inflow multiplicative
coefficient µ. The control vector for IHDA is extended to
include δHk with k ∈ [1, 5]. It assimilates the same in-situ
WL observations like IDA, as well as WSR observations.
Lastly, experiment IGDA is at the core of the present work.
It is similar to IHDA but the anamorphosis is applied on
the vectors expressed onto the observation space in order to
alleviate for the violation of the Gaussian assumption for WSR
observations. The analysis for IGDA is thus carried out in the
transformed Gaussian space.

The observation error (Section III-C) is set proportional to
the value of the in-situ WL observations yo

c,H, while it is
prescribed as a scalar fixed value for the WSR observations
yo
c,WSR. As such, the standard deviation of the in-situ WL

error is fixed to τ = 15% so that σobs,c,H = τyo
c,H. On the

other hand, the standard deviation of the SAR-derived WSR
observations is fixed to 0.1 (and up to 0.2 depending on how
early the observation time within each Wc). These values stem
from the assessment of the FloodML algorithm that provides
wet/dry classification results (validated on five test sites all
over the world) with an overall accuracy of 86.86% [47]. All
DA experiments where carried out using Ne = 75 members.
In the following, the subscript osse is used in the experiment
name to distinguish the OSSE mode from the real mode.

The metric employed for 1D assessment is formulated as
the root-mean-square error (RMSE) of the WL times-series
computed with respect to in-situ WL observations (synthetical
or real), over time, at the three observing stations. The metric
for 2D assessment is the Critical Success Index (CSI), also
known as Intersection-over-Union (IoU) for RS-based object
segmentation tasks, which formulates the fit between a simu-
lated 2D flood extent and an observed flood extent (synthetical
or real) derived from S1 observations and FloodML algorithm
[50]. CSI varies from 0% when no common area (i.e. no
agreement) is found between the simulated and the observed
flood extents, and reach their maximal value of 100% when
the prediction perfectly fits the observed flood extents. More
details on the formulation of these metrics can be found in
[47].

V. RESULTS

The impact of the GA on the distribution of the WSR model
equivalent is shown in subsection V-A. The results of the DA
experiments are shown in the control space (subsection V-B)

and the observation space (subsection V-C) for both OSSE
and real experiments, using RMSE computed at the observing
stations and CSI computed over the whole domain.

A. Result of GA

Similarly to Figure 7, the split-violin plots in Figure 8 show
the PDFs for the model equivalent for the WSR observations
for 2021 flood event computed considering all WSR obser-
vations over each of the five subdomains of the floodplain
(subdomain 1 to 5 illustrated in panel (a) to (e)) for each

S1 overpass time (along the x-axis), with all 75 members
of the ensemble. Here again, it is worth-noting that for all
subdomains and all dates, the PDFs in the transformed space
are well rendered Gaussian, with the mean of the PDF reaching
small values before and after the flood peak and large values
(close to 1) near the peak (2021-02-03).

B. Results in the control space

1) Results for OSSE experiment: Figure 9a displays the
analyzed parameters from the OSSE experiments.

In the river bed, the assimilation of in-situ WL observations
with a classical EnKF in IDA suffices to successfully retrieve
the true friction coefficients, however with a lesser success for
Ks5 and Ks6 . The addition of WSR data in IHDA and IGDA
does not bring much of an improvement, except for a slight
improvement for Ks3 near Marmande during the flood recess.
For Ks0 in the floodplain, the dispersion of the results is more
visible at the flood peak and afterwards, when the sensitivity
of the flow to the floodplain friction is most important. Yet,
as the velocity of the flow is relatively small, this sensitivity
remains weak. The dispersion of the analysis for Ks5 and Ks6

is most likely due to equifinality issues, as the downstream part
of the flow is also influenced by previous river segments with
Ks3 and Ks4 . As previously noted in [43], the in-situ WL
observation at Marmande is perfectly efficient at constraining
the friction coefficient Ks4 downstream of the gauging station
and the analysis for the multiplicative factor µ is near to perfect
for all three DA experiments. When WSR observations are
assimilated at S1 overpass times and the correction for the
WL is included in the control vector (for IHDA and IGDA
experiments), the analysis for δHk (k ∈ [1, 5]) is close to the
prescribed values for the reference run. The GA in experiment
IGDA tends to yield larger increments (negative values) during
the flood recess.

2) Results for real experiment: The analyzed parameters
from the different DA experiments in real 2021 flood event
are shown in Figure 9b. For all DA experiments, the analyzed
values for the friction coefficients in the river bed and the
floodplain remain within physical ranges, even though with
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Fig. 8: Split-violin plots computed considering all observations from the real event over each of the five floodplain subdomains
for every S1 overpass time.

more dispersion at the flood peak and during the flood recess
where the innovations in real event are larger. The analysis
for IDA visibly differs from the results of the other DA
experiments that assimilated WSR observations with smaller
corrections added to the default values, yet all DA analyses
follow similar trends for all the components of the control
vector. The analyses on µ are similar for IDA, IHDA, and
IGDA for the whole event. This suggests that the in-situ WLs
observed at Tonneins are enough to constraint the multiplica-
tive correction to the inflow and that the use of additional
data in the floodplain is not necessary. The GA leads to
a slightly different analysis compared to IHDA, with larger
WL correction (more negative) than IHDA. In contrast to the
OSSE, this assessment of the results in the control space does
not allow to quantitatively evaluate the DA experiments, since
the true values of the controlled parameters are not known.

C. Results in the observation space

1) Water levels at observing stations (for OSSE and for
real experiment): The comparison of WL resulting from the
different FR and DA experiments over the entire simulation
duration are shown in Figure 10a for the OSSE, and in
Figure 10b for the real flood event at the three observing

stations, namely Tonneins (left panel), Marmande (middle
panel) and La Réole (right panel). For each subfigure, the
top panel represents the WLs—reference WL in black-dashed
lines overlapped by simulated WLs in color solid lines—while
the bottom panel represents the misfits between the observed
and simulated WL by each experiment (FR in orange, IDA in
blue, IHDA in green, and IGDA in red). The RMSE computed
over the entire event, for the WL from FR simulation, as
well as from IDA, IHDA and IGDA analyses, with respect
to the reference WL (or real in-situ WL observations) at the
three observing stations is indicated in respective subfigures. It
can be noted that all DA experiments succeed in significantly
reducing the WL errors compared to those of FR. For all
three observing stations, the reduction in RMSE with respect
to FR reaches 80-90% with slightly different values between
IDA, IHDA, and IGDA. This validates the performance of
the DA strategy. Most importantly, it demonstrates that the
assimilation of in-situ WL in the river bed suffices to constraint
the simulated hydraulic state close to the WL measurements
at these gauge stations. The merits of assimilating WSR
observation is noticeable, on the other hand, when assessing
the dynamics of the floodplain. Similar conclusions are drawn
from WL timeseries and RMSE assessment for the 2021 real
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Fig. 9: Analyzed values of the control vector, (a) in OSSE, and (b) in real event 2021. Left: friction coefficients in the floodplain
Ks0 , and in the river bed Ksk (with k ∈ [1, 6]); Right: multiplicative correction to the inflow µ, state correction δHk (with
k ∈ [1, 5]), and upstream forcing Q(t), resulting from DA for IDA (blue), IHDA (green), and IGDA (red). Horizontal dashed
lines indicate the a priori values from calibration. Vertical dashed lines indicate S1 overpass times.

event presented in Figure 10b where RMSEs are computed
with respect to gauge stations measurements. As expected, for
real event, the DA experiments yield a lesser improvement
compared to the OSSE, yet it remains very significant. For
instance, the WL RMSE at Marmande is reduced from 39.1
cm (FR) to 7.4 cm (IGDA).

2) WSR in the floodplain:

a) Results for OSSE experiment: Figure 11a displays the
misfit between the synthetical WSR values computed from
the reference simulation (black line) and the WSR computed
for FR and DA experiments over the five subdomains of the
floodplain (same color code as in Figure 9a). Between the
beginning of the event and the flood rising limb (around 2021-
02-01), the assimilation of WSR has virtually no impact as
the water has not yet overflowed the floodplain. The WSR
values in the reference and the experiments are thus null or
close to zero. Globally speaking, FR tends to underestimate
the flooding for the OSSE experiment. The assimilation of in-
situ WL data (IDA) allows for a significant improvement of
WSR near the flood peak but the flood recess suffers from T2D
incapacity to effectively empty the floodplains. The impact of
assimilating WSR observations is only visible when the flood
starts around 2021-02-01 (when reference WSR values are
above zero). Analyzed WSR values are further improved when
WSR observations are assimilated at S1 overpass times in the

two other DA experiments. Indeed, when WSR observations
are assimilated and the correction for the WL is included in
the control vector (experiments IHDA and IGDA), the analysis
succeeds in retrieving WSR values that are close to the truth
at the flood peak and in emptying the flood plain after the
peak has passed. The results for IHDA and IGDA are quite
similar—although IGDA performs slightly better, especially
at the flood peak and during the recess period—arguing that
when the Gaussian hypothesis is violated, the EnKF analysis
may be suboptimal but remains satisfactory in terms of WSR.

b) Results for real experiment: Figure 11b displays the
misfit between the S1-derived WSR at S1 overpass times
(black line) and the WSR computed for FR and DA exper-
iments over the five subdomains of the floodplain. For the
2021 event, FR tends to underestimate the extension of the
flooding whereas all the DA experiments tend to overflood,
especially during the flood recess period. It should be noted
that the performance of IDA, which does not benefit from
WSR observations (i.e. not assimilated), is not improved
compared to that of FR. Indeed, in contrast to FR, IDA
mostly lead to overflooding throughout the event. On the other
hand, IHDA and IGDA experiments provide improvements,
shown by the misfits of WSR for these DA experiments being
smaller than those of FR, especially during the flood recess
over all subdomains of the floodplain. IGDA brings further
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Fig. 9 (cont.): Analyzed values of the control vector (continued).

noticeable improvement to IHDA when WSR data are the most
informative, at flood peak and during the flood recess.

A considerable overprediction in the subdomain 4 and 5 at
the first S1 overpass time during the rising limb (2021-02-01
07:00) should be noted for all experiments, in Figure 11b.
At this particular moment (7th vertical line in Figure 2)
when the WLs in the riverbed are relatively high, the SAR
BS tends to intensify due to the increased soil moisture in
the floodplain due to rainfalls and the soil being dampened
but not yet flooded. The BS will however decrease later on
when the floodplain is flooded. Such a behavior leads to the
resulting SAR-derived flood extent map at this date yielding
fewer detected wet pixels than expected. This situation will be
investigated in future works.

3) 2D validation with contingency maps and CSI scores:

a) Results for OSSE experiment: Figure 12a shows the
reference flood extent maps (first column) and then the re-
sulting contingency maps and CSI score for FR and DA
experiments computed with respect to the reference simulation
at the time of the flood peak (2021-02-03 19:00) and during
water recess (2021-02-07 07:00). The two red-hatched regions
are excluded from the assessments due artificial flooding of the
first meander in the Garonne T2D model and unreliable topog-
raphy near La Réole. In the contingency maps, the correctly
predicted pixels as non-flooded and flooded are represented
in light blue and in dark blue, respectively. The wet pixels
incorrectly predicted as non-flooded (or underprediction) are
shown in yellow, whereas the dry pixels incorrectly predicted

as flooded (or overprediction) are indicated in red.

The flooding is significantly underestimated by FR at the
flood peak, as reflected by the large number of yellow un-
derprediction pixels in the floodplain. The assimilation of
in-situ WL data in IDA (CSI = 86.70%) improves the
dynamics of the flow compared to FR (CSI = 71.41%). Yet,
the assimilation of WSR observations in IHDA and IGDA
yields much higher CSI and better flood extent representation,
thanks to the extended control vector involving the associated
hydraulic state correction. Indeed, the underprediction and
overprediction areas in FR are significantly reduced when
WSR are assimilated for both illustrated times of the flood.
IHDA and IGDA results are quite close at the flood peak
(respectively, 97.26% and 96.72%). During the flood recess, as
both IHDA and IGDA allow for an effective emptying of the
floodplain, the flood extents are significantly reduced and are
in better agreement with the synthetical flood extents, whereas
IDA struggles to reduce the overprediction areas exhibited in
FR (shown by their CSI = 62.47% for FR and CSI = 63.64%
for IDA). IHDA and IGDA’s resulting CSIs are improved
with respect to that of FR: from CSI = 62.47% for FR to
CSI = 83.76% for IHDA and CSI = 91.89% for IGDA.
This results confirm that, when observations are assimilated in
the floodplain, the GA strategy brings an improvement with
respect to the classical EnKF, especially when the WSR data
are most informative with respect to the imperfect dynamics
of the numerical model, namely during the flood recess.
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Fig. 10: Water level H (upper plots) for all experiments (FR in orange, IDA in blue, IHDA in green and IGDA in red), and
their respective error (lower plots) with respect to the (a) reference WL in OSSE, or (b) observed WL in real event. From
left to right: results at three VigiCrue observing stations Tonneins (left), Marmande (middle), La Réole (right). Resulting WL
RMSE computed over time is indicated with corresponding color, for each station

.

b) Results for real experiment: Figure 12b displays the
observed flood extent maps derived from S1 images (first
column) and the contingency maps for the 2021 flood event at
the flood peak (2021-02-03 19:00) and during recess (2021-
02-07 07:00) for every experiment. Similarly to what was
observed for OSSE, the assimilation of WSR data brings a
significant improvement for the representation of the flood
extent with respect to FR and also to IDA. It should first
be noted that, as expected, for the real experiment, the CSI
scores for all experiments remain smaller than those of the
OSSE experiments. Indeed, the numerical model struggles to
simulate a flow that is in agreement with the observations
in both the river bed and the floodplain. At the flood peak,
the assimilation of WSR data in IHDA and IGDA brings a
significant improvement over all subdomains with respect to
FR, shown by fewer underpredicted pixels. Same conclusions
are drawn during the flood recess. Indeed, IGDA outperforms
IHDA even though some overpredicted areas still remain.
These results confirm the merits of assimilating WSR obser-

vations, along with the GA step in the DA analysis, even in
real event configuration that is more challenging the OSSE
configuration.

4) Post-event measure validation with High Water Marks
observations (only for real experiment): A validation of the
DA strategies with respect to independent data was finally
carried out using the collective public datasets of HWM for the
2021 flood event. This allows to evaluate the highest simulated
WLs spatially distributed at various points on the river banks
and within the floodplain at the flood peak. Figure 13 gathers
the scatter plot of observed highest WL (in x-axis) and its
simulated values (in y-axis) from the different experiments.
The diagonal 1:1 line represents the perfect simulation sce-
nario. Compared to FR results (shown by orange crosses
that underestimated highest WL values at many locations,
encircled in violet), DA allows to significantly reduce the
misfits between the observed and simulated highest WL.
However, similar results are found between IDA, IHDA, and
IGDA. Indeed, since this validation only concerns the highest
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Fig. 11: Misfits of the truth/observed WSR minus the simulated WSR values computed for FR (orange), IDA (blue), IHDA
(green), and IGDA (red) over the five subdomains of the floodplain.
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Fig. 12: Contingency maps for FR, IDA, IHDA and IGDA with respect to (a) synthetical flood extent maps in OSSE, and (b)
S1-derived flood extents in real event.

WL throughout the event, the merits of IGDA demonstrated
mostly over the flood recess (Figure 12b) remain imperceptible
with respect to other DA experiments.

VI. CONCLUSION AND PERSPECTIVES

This article presents a follow-up of our previous study
[43] where a Gaussian anamorphosis is proposed to deal with
the non-gaussiannity of RS observations’ errors. It highlights
the merits of a dual state-parameter EnKF, involving the
assimilation of SAR-derived flood extents jointly with gauge
water-level data. The proposed method has been validated with

OSSE experiments and then assessed in hindcast mode with
a real flood event for significant flooding over the Garonne
Marmandaise catchment. It was shown that the assimilation
of in-situ WL data improves the simulation in the river bed
but the complementary assimilation of WSR is key to improve
the dynamics in the floodplain, especially at the flood peak and
during the flood recess when the T2D model alone struggles
to dry out the floodplain. The present work emphasizes on
the non-Gaussian properties of observations errors associated
with the WSR measurements computed over the subdomains
of the floodplain. A Gaussian anamorphosis (GA) strategy,
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Fig. 13: Comparison of HWMs between experiments.

previously proposed in the literature to deal with ecological
and hydrogeological variables, was adapted here. The GA
maps the observation vector and is model equivalent onto a
transformed space where the Gaussianity assumption becomes
valid. The anamorphosis function is computed based on the
ensemble of simulations that yield the model equivalents of the
WSR observations. In our case study, the bijectivity of the GA
function is not guaranteed as there are many occurrences of

either strictly null or unity values of WSR, respectively when
the subdomain is entirely dry or flooded. Therefore, the GA
function was made bijective by separating the similar values
close to the [0, 1] bounds with a negligible random noise, and
then by extrapolating the tails of the function between the
leftmost or rightmost values to the unreachable bounds when
needed. The major findings from our numerical experiments
are summarized as follows:

• GA succeeds in transforming the non-Gaussian distribu-
tion of observation errors into a Gaussian distribution,
for each Sentinel-1 overpass time and for each relevant
subdomain of the floodplain.

• GA, applied in IGDA experiment, leads to slightly better
results than the classical EnKF in IHDA, when assimilat-
ing both in-situ WL and WSR observations with a dual
state-parameter estimation.

These conclusions advocate for using a GA step when pos-
sible, but it also demonstrates that while the classical EnKF
is sub-optimal in the presence of non-Gaussianity, its analysis
still remains valid and reliable.

As a perspective for this work, one may revisit the as-
sumption of a uniform correction of WL within the floodplain
subdomains, as well as the definition of these subdomains, in
order to allow for a finer correction of the hydraulic state.
Thus far, the DA strategy was implemented with a cycled DA
algorithm, only issuing forecast for the following DA cycle.
The impact of the DA correction should further be investigated
in full forecast mode, considering various lead times that
exceed the propagation time of the hydraulic network. For
that purpose, the characteristics of the time-varying errors in
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the control vector should be investigated, and the strategy
for prescribing the DA correction beyond the end of the
assimilation cycle shall be proposed. By default, a persistent
correction could be applied, yet it is expected that such a
simple approach could struggle to follow the dynamics of the
floods, especially when rapidly changing. In order to tackle
longer forecast lead times, chaining the hydrodynamics model
with a large-scale hydrologic model could be considered. This
approach is currently being investigated. In this perspective,
the hypothesis on the stationarity of the errors in the elements
of the control vector becomes all the more important, yet
it may not stand between the assimilation and the forecast
periods. Finally, a major perspective for this research work
stands in the assimilation of various RS-derived data from
SAR (Sentinel-1, TerraSAR-X), optical (Sentinel-2) and al-
timetry (Sentinel-6, and the recently launched SWOT) images
in order to enrich the observation network and better cover
different phases of flood events.
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[15] L. Hascoët and V. Pascual, “TAPENADE 2.1 user’s guide,”
INRIA, Technical Report RT-0300, 2004. [Online]. Available:
https://hal.inria.fr/inria-00069880

[16] E. S. Cooper, S. L. Dance, J. Garcı́a-Pintado, N. K. Nichols, and
P. J. Smith, “Observation operators for assimilation of satellite
observations in fluvial inundation forecasting,” Hydrology and
Earth System Sciences, vol. 23, no. 6, pp. 2541–2559, 2019.

[17] M. Chini, R. Hostache, L. Giustarini, and P. Matgen, “A hierar-
chical split-based approach for parametric thresholding of SAR
images: Flood inundation as a test case,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 55, no. 12, pp. 6975–
6988, 2017.

[18] R. Hostache, M. Chini, L. Giustarini, J. Neal, D. Kavetski,
M. Wood, G. Corato, R.-M. Pelich, and P. Matgen, “Near-
real-time assimilation of SAR-derived flood maps for improving
flood forecasts,” Water Resources Research, vol. 54, no. 8, pp.
5516–5535, 2018.

[19] L. Giustarini, R. Hostache, D. Kavetski, M. Chini, G. Corato,
S. Schlaffer, and P. Matgen, “Probabilistic flood mapping using
synthetic aperture radar data,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 54, no. 12, pp. 6958–6969, 2016.

[20] M. Asch, M. Bocquet, and M. Nodet, Data assimilation:
methods, algorithms, and applications. SIAM, 2016.

[21] J. Neal, C. Jeffrey, P. Atkinson, and C. Hutton, “Evaluating
the utility of the ensemble transform kalman filter for adaptive
sampling when updating a hydrodynamic model,” Journal of
Hydrology, vol. 375, no. 3-4, pp. 589–600, 2009.

[22] L. Isaksen, M. Bonavita, R. Buizza, M. Fisher,
J. Haseler, M. Leutbecher, and L. Raynaud, “Ensemble
of data assimilations at ecmwf,” ECMWF TD
technical Memorandum, Technical Report 636, 2010.
[Online]. Available: https://www.ecmwf.int/sites/default/files/
elibrary/2010/10125-ensemble-data-assimilations-ecmwf.pdf

[23] M. Bonavita, L. Isaksen, and E. Hólm, “On the use of eda
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