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ABSTRACT
Data from all spatial locations of nine turbulent flames in the Cambridge/Sandia
swirl database are combined to study how the choice of scalar variables in conditional
moment closure (CMC) type approaches affect the conditional spatial fluctuations of
reactive scalars. In order to investigate the influence of swirl and stratification, two
additional data-sets have been constructed. Principal component analysis (PCA) is
applied to help identify the number of scalar variables and the most appropriate
choices to describe the composition space. Two PCA scaling methods have been
adopted, namely Pareto and Auto-scaling. Regardless of the data-set investigated
and the scaling method used, the results suggest that a single principal component
correlated with temperature accounted for the largest variance. For the first moment
hypothesis, four progress variable, c, definitions identified by PCA are selected as
conditioning variables to investigate the conditional fluctuations and normalised
RMS of various species and temperature from all three databases at all axial lo-
cations. The results indicate that two control variables based on mixture fraction,
Z, and progress variable significantly reduce the conditional fluctuations of scalars
compared to a single variable. The selection of progress variables had minimal effects
on the RMS of conditional fluctuations for all tested conditions, although a slight
reduction of conditional fluctuations was found for the temperature-based progress
variable, which can potentially help the further extension of CMC-based models in
different flame configurations. The present study also shows that using Z and c (re-
gardless of its definition) as two conditioning scalars enables the detachment of the
thermo-chemical state from space, swirl and stratification effects. This suggests that
adopting a doubly conditioned source term estimation (DCSE) approach might suc-
cessfully predict the considered set of flames, assuming that ensembles are divided
along the axial direction.
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1. Introduction

For simulations that are not fully resolved, closure of the chemical source term is
needed. Various methodologies have been developed (e.g., the flamelet model [1], or
the conditional moment closure approach [2]) to build functional filtered chemistry
models that can close the highly non-linear source term. Although based on different
assumptions, the accuracy of these models relies on (i) an adequate description of the
composition space, which seeks to relate the different scalar variables in the thermo-
chemical scalars’ vector, and (ii) an adequate description of the statistical distribution
of these variables in the form of a joint probability density function (PDF).

Among different models and studies, local mixture, the degree of progression of
the chemical reactions, strain rate, total enthalpy, and residence time are properties
that have been found to be closely related to the chemical rates in a reactive flow
field. For non-premixed flames, the mixture fraction, Z, is usually retained as the
main controlling variable to describe the turbulent mixing effects [3]. For premixed
flames, the progress variable, c, is often selected as the primary scalar to describe
the rate of progression from the unburnt to burnt state [4]. It has been shown that
the fluctuations found in the species mass fractions and temperature are often cor-
related in non-premixed flames with the fluctuations of Z and with the fluctuations
of c in premixed flames. However, a single scalar variable able to accurately describe
the structure of partially-premixed flames and capture regions with high probabili-
ties of local extinction and re-ignition has not yet been found [5, 6]. This has led to
different combinations of scalar variables, where often the mixture fraction and the
progress variable are simultaneously considered [7]. The inclusion of two different mix-
ture fractions as control variables was also proposed to capture the main properties
of moderate and intense low oxygen dilution (MILD) combustion for jet-in-hot-coflow
(JHC) burners [8–11]. While mixture fractions are generally incorporated using Bil-
ger’s definition [12], various definitions of the progress variable have been used for
different approaches.

For laminar flamelet approaches, progress variables are often chosen as the primary
controlling variables to construct a reduced dimension composition space. The tem-
perature and the mass fraction of a major combustion product (e.g., H2O or CO2)
have been widely used to define c for flamelet models. While suitable for many flames,
using a single product mass fraction for larger hydrocarbons may fail to represent the
progress of the chemical reactions. Therefore, more species mass fractions in the form
of linear combinations are often incorporated to track the reaction progress in the flow
and capture different stages of combustion [13, 14]. Sun et al. [15] have investigated
the modelling capabilities of the unsteady flamelet/progress variable (UFPV) model
in predicting the ECN Spray A cases. The progress variable was defined using a com-
bination of major and intermediate species to obtain results across all downstream
locations of the jet. While progress variables incorporating more than a single species
mass fraction are effectively better performing, two challenges are worth mentioning,
of which (i) the diffusivity of the selected scalars needs to be accounted for in the
progress variable transport equation, and (ii) the addition of intermediate species is
often in conflict with the monotonicity of c. Studies have tackled the injection of the
progress variable by computing weight coefficients using various automated optimisa-
tion techniques, e.g., the well-known ∂c

∂κ > 0 criterion, where κ often denotes a time
or a spatial coordinate [16–18]. However, most progress variable definitions found in
the literature are based on user expertise where the chosen definition can significantly
influence the numerical predictions, particularly for fuel-rich/heavy-fuel mixtures [19].
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Recently, Gupta et al. [20] studied different progress variable definitions for tabulated
chemistry through the analysis of premixed methane-air (CH4/Air) laminar flames.
Compared with detailed chemistry, flamelet generated manifold (FGM) results using
different species mass fraction-based progress variable definitions were shown to give
different mass burning rates. Lipatnikov & Sabelnikov [21] also examined the effect of
five different progress variable definitions on the flamelet approach predictions of the
mean density and the mean mole fractions of various species using Direct Numerical
Simulation (DNS) data of a premixed hydrogen-air flame. A complementary study was
carried out using DNS data of lean hydrogen-air turbulent premixed flames operating
under various Karlovitz numbers [22]. Similar findings were obtained, suggesting that
the definition of c in flamelet-based models indeed affects the physical modelling while
simultaneously impacting numerical errors.

For conditional moment closure (CMC) models, filtered chemistry is modelled
through the separation of model elements which give descriptions for the moments of
reactive parameters and model of the distribution function. CMC-based approaches
are centred around the hypothesis that fluctuations in reactive scalars are closely cor-
related with the fluctuations around values of conditioning variables (e.g., mixture
fraction and progress variable) [23, 24]. Originated from CMC, conditional source
term estimation (CSE) avoids solving conditionally-averaged transport equations by
inversion of the integral functions [25]. In a recent work on the methane-air non-
premixed piloted Sandia flames, CSE was found to provide a more accurate solution
while being less time-consuming compared to CMC [26]. CSE models have also been
used to simulate large hydrocarbon and spray flames. While using CSE-based ap-
proaches with a single conditioning variable has been found suitable for non-premixed
and premixed flames [7, 27–30], for partially-premixed or stratified combustion, one
conditioning variable is not sufficient. Subsequently, doubly CSE (DCSE) with mix-
ture fraction and progress variable as conditioning variables have been developed to
simulate partially-premixed flames, lifted flames, and spray flames [31, 32]. The CSE
and DCSE concepts have also been examined in a-priori analysis in DNS for high-
pressure conditions [33]. The results highlighted that DCSE and double conditioning
are likely to be needed for cases closer to real practical combustion applications. Sim-
ilar to the flamelet approaches, when choosing the conditioning variables for CMC
approaches, the mixture fraction definition from Bilger is well accepted by the com-
munity, where the choice of progress variable and particularly its effects on conditional
variable fluctuations needs more studies. Recently, Bushe [34] and Mousemi & Bushe
[35] examined the conditional moment closure hypothesis over the Sandia/TUD, the
Sydney Swirl burner, and Cambridge/Sandia stratified swirl burner databases. Their
studies suggested two-condition (mixture fraction and progress variable) conditional
averages in the Sandia/TUD do not vary in space nor vary with the Reynolds number,
whereas, for Sydney and Cambridge/Sandia swirl burners, a third conditional variable
(total enthalpy) might be needed to further reduce the spatial gradients of conditional
averages attributed to the heat transfer. For these studies, progress variables based
on temperature and mass fraction of CO2 were used. Perhaps more interestingly, the
a-priori studies on single-step high-pressure DNS data from Devaud et al. [33] and
Bushe et al. [36] using CO2 and temperature-based progress variables suggested the
success of DCSE does not depend on a particular choice of the second conditioning
variable which significantly increased the capabilities of CSE models. However, fur-
ther extension of these two studies on the effect of progress variable selections is not
possible due to the single-step chemistry nature of the DNS data.

Consequently, two questions around control variables in the context of CMC-based
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models are worthy of note here - the questions central to this paper:

(1) What is the minimum number of scalar variables needed to adequately charac-
terise conditional space for certain flames?

(2) Which scalar variables represent the best choices for this, and how do they
influence the predictions, in particular for the definition of the progress variable?

Depending on the studied case, Bushe et al. [34] also pointed out that the selection
and number of control variables must be carefully undertaken to adequately address
the effects of turbulence and chemistry. Additionally, the modelling of the joint-PDF
gives a substantial challenge to the turbulent combustion modelling community as its
shape strongly depends on the selected scalar variables. The validity of the statistical
independence assumption used for modelling the presumed joint-PDF was shown to
be erroneous, as correlations between conditional variables are important [36].

The present work is motivated by the study of three different groups: Sutherland &
Parente’s work on principal component analysis-based models [37], Bushe’s study on
spatial gradients of conditional averages [34], and Gupta et al.’s analysis on the impact
of the progress variable definition on flamelet generated manifolds [20]. We investi-
gate the two questions posed above with a particular focus on the effect of progress
variable selection on the conditional fluctuations obtained with one-condition condi-
tional averages and doubly conditional averages of the Cambridge/Sandia swirl burner
data-set. We will first introduce the properties and working conditions of the burner
and the methodology employed for determining the appropriate progress variable def-
initions. The chosen progress variable definitions are then used to study conditional
fluctuations where all one-point, one-time measurements are included. The results are
discussed, and physical insights are provided based on the observations.

2. Methodology

2.1. Experimental setup

Experimental measurements of premixed and stratified CH4/Air flames from the Cam-
bridge/Sandia swirl burner (referred to as SwB) are used in this study. Multiscalar
data of nine turbulent flames are examined under: (i) various ratios of stratification,
and (ii) various swirl intensity conditions, depicted in Table 1.

Table 1. Operating conditions for Cambridge/Sandia swirl burner.

ϕi and ϕo denote equivalence ratio of the flow in the inner and outer

annuli, respectively. In all cases ϕg = 0.75, Ui = 8.31 m/s, Uo = 18.7

m/s and Uco−flow = 0.4 m/s. Conditions highlighted in bold font

denote flames under swirling flows.

Flame Swirl ratio Stratification factor ϕi ϕo

SwB1 0 1 0.75 0.75
SwB2 0.25 1 0.75 0.75
SwB3 0.33 1 0.75 0.75
SwB5 0 2 1 0.5
SwB6 0.25 2 1 0.5
SwB7 0.33 2 1 0.5
SwB9 0 3 1.125 0.375

SwB10 0.25 3 1.125 0.375
SwB11 0.33 3 1.125 0.375

The burner, shown schematically in Figure 1, features a large co-flow of pure filtered
air preventing ambient air from entering the reaction zone, and two concentric outer
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(subscript o) and inner (subscript i) annuli supplying the fuel/air mixture. The an-
nuli’s velocities were chosen to maximise the Reynolds numbers in the flows with Rei =
5,960 and Reo = 11,500. A variable degree of swirl allows the burner to mimic the
flow conditions found in many practical systems. The swirl assists flame stabilisation
allowing more extreme stratified conditions to be investigated than would otherwise
be possible. The stratification factor is defined by the ratio of the equivalence ratio in
the inner and outer annuli. The scalar measurements recorded include temperature
and the mole fractions of CO2, CO, H2, CH4, N2, O2 and H2O at different axial and
radial positions. A minimum of 300 samples were taken at 60 different radial loca-
tions per axial position via Rayleigh and Raman scattering to capture temperature
and major species, respectively. Further information on the measurement techniques,
the experimental setup and the burner’s characteristics can be found in [38, 39]. The
existence of turbulent regions within the flames, operating under premixed and/or
stratified mixture conditions, with or without swirl, makes this burner an ideal test
case for attempting to answer the two questions central to this paper.

Figure 1. Plan view schematic of the exit geometry in the Cambridge/Sandia swirl burner, showing a plan view

and a cross section through the burner axis. The curved-dashed arrows in the plan view indicate the direction of

swirling flows in the outer annulus. ϕi and ϕo in the cross section denote the equivalence ratio of the flow in the

inner and outer annuli, respectively. Adapted from [38].

2.2. Data-processing

Three data-sets have been constructed to investigate the effects of spatial coordinates,
swirl flow ratio, and stratification factor on the conditionally-averaged reactive scalars,
depicted in Table 2. In the first case, the data collected from all nine flames are grouped
together to create a general conditional domain for each of the scalars (SwB|all). Here,
it is assumed that the conditional averages are independent of spatial coordinate, swirl
flow ratio and stratification factor. The second data-set (SwB|Hstratified) combines
the measurements of three flames exhibiting varying swirl flow ratio intensities with a
single high stratification factor to investigate the dependence of conditional averages
on swirl. For the third case, data from 3 flames with different stratification factors and
a fixed high swirl flow ratio are grouped to investigate the dependence of conditional
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averages on stratification (SwB|Hswirl). Grouping the flames in these three distinct
data-sets, each tackling a specific characteristic of the flow, allows the exploration of
the most optimal scalar or combination of scalars needed to sufficiently accurately
represent the thermo-chemical state under different conditions.

Table 2. Characteristics of the three data-sets used for investigating the behaviour of conditional aver-

ages.

Case Flames Swirl ratio Stratification factor Comments

SwB|all SwB1-11 0-0.33 1-3 All nine flames grouped together
SwB|Hstratified SwB9-11 0-0.33 3 Fixed high stratification
SwB|Hswirl SwB3,7,11 0.33 1-3 Fixed high swirl

The data was first ‘cleaned’ to remove mole fractions displaying negative values
associated with experimental uncertainty. All mole fraction measurements were sub-
sequently converted to mass fractions values (note that mass fractions will be used
throughout the present work). An extensive analysis of the scalars profiles showed
that the measurements of YH2 are concatenated between the interval [0, 0.0002] for all
three data-sets. As such, an artificial exclusion for values of H2 mass fraction above
0.00025 is adopted and carried out to remove potential outliers. The mixture fraction
Z was calculated for every instantaneous single-point measurement. The definition of
Z proposed by Bilger is used to calculate the mixture fraction of all nine flames, as

Z =
2
YC−YC,2

MC
+ 1

2
YH−YH,2

MH
− YO−YO,2

MO

2
YC,1−YC,2

MC
+ 1

2
YH,1−YH,2

MH
− YO,1−YO,2

MO

(1)

Mixture fractions of zero and unity are respectively assigned to pure air and the richest
entry of the flow through all of the cases with an equivalence ratio of 1.125. For the
considered sets of flames, the stoichiometric mixture fraction lies at Zstoich=0.9, with
a lower flammability limit located at Z = 0.575 [40]. To investigate the role of control
variables in conditional spaces, four of the most common combustion progress variable
c used by the community are considered in this study, defined as

ck =
ϕk − ϕk,min

ϕk,max − ϕk,min
(2)

where ϕ1 denotes the temperature, while ϕ2, ϕ3 and ϕ4 are the mass fractions of CO2,
CO + CO2 and CO + H2 + H2O+ CO2, respectively (cf. Table 3). The local maximum
is determined using a function that returns the upper peak envelopes of the scalar k
selected to define c. The envelope is computed using spline interpolation over local
maxima separated by 2,500 samples, for which a parametric study was performed to
find the optimal number of samples. The local minimum values have been fixed to zero
and to 290 K for the species-based progress variables and temperature, respectively.

Table 3. Summary of the four progress variables

investigated in this study using Equations 2.

Label Scalar(s) ϕk Mark

c1 Temperature ▲

c2 YCO2
■

c3 YCO2
+ YCO ·

c4 YCO + YH2
+ YH2O + YCO2

♦
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A second condition based on mixture fraction and the four progress variables (i.e.,
Z, ck < 0 and Z, ck > 1) is applied to take potential outliers from the analysis as
these points are considered to be unphysical. After executing all previous steps, each
database consists of 5,518,536 point-based measurements for SwB|all, 1,887,496 for
SwB|Hstratified and 1,901,113 for SwB|Hswirl.

To examine the conditional space of Cambridge/Sandia flames, the methodology
proposed in [34, 40] is followed and applied to all three data-sets. The conditional
averages are obtained via a discrete process involving binning, dividing each progress
variable dimension into 30 bins. This is justified given that more bins increase the
possibility of having intervals with an insufficient number of data points which imposes
unrealistically small fluctuations around the mean value [40]. Moreover, considering
that DCSE will likely be needed for modelling reactive flows relevant to practical
combustion systems [33], if more bins are included then more computational time is
needed during the inversion process with the matrix of the joint-PDF. This implies
that a much larger matrix needs to be inverted compared to previous implementations
of CSE in premixed and non-premixed flames. Consequently, the inversion process
becomes much more challenging. For the first moment hypothesis, the conditional
fluctuations of species mass fractions and temperature around one-condition (c1-c4)
conditional average are calculated at each axial location, such that

f ′
i,k = fi − ⟨f |ξ = ck⟩(x) (3)

where i denotes a single-point measurement, f ′
i,k is the fluctuation of either mass

fraction or temperature around one-condition (ck), fi is the point measurement of
that reactive scalar and ⟨f |ξ⟩(x) is the conditional average of that reactive scalar
evaluated by averaging all of the measurements of the chosen data-set at all radial
locations together at each downstream distance. Two reasons for investigating how
much conditional averages vary in the axial direction are worth mentioning. First, the
conditional fluctuations are larger in the axial positions and are spatially indepen-
dent in the radial direction [34, 41]. That was shown to be particularly true for jet
flames, suggesting that within a CSE framework, group of localised cells, referred to
as an ensemble, should be divided along the axial direction. Second, Mousemi et al.
[40] showed for the same burner that the global conditional averages (equivalent to
defining a single CSE/DCSE ensemble where all of the reactive control volumes in
the domain are included) did not exhibit a particular functional dependence on the
flow dynamics and the burner’s geometry assuming that three conditioning variables
are selected/retained. Suppose that ensembles are split across all axial positions, the
number of conditioning scalars needed to accurately represent the chemical state is
reduced, where a single control variable could perhaps be sufficient to separate the
conditional averages from spatial coordinate, swirl and/or stratification effects. This
approach is of particular interest for CMC-based models as it can be seen as a viable
alternative to bypass the challenges associated with joint-PDFs defined by a minimum
of two scalars.

If the conditional average is a good representation of the local thermo-chemical
state, then it is expected that the mean of the conditional fluctuations will be zero.
However, the RMS of those fluctuations is clearly not, as shown by Bushe [34] using
the Sandia/TUD database and the Sydney swirl burner. Therefore, the square root
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of the average of the square of conditional fluctuations can be computed, as

RMSi,k =
√

⟨f ′2
i,k⟩ (4)

The proposed RMS is normalised by the maximum value of the considered reactive
scalar. This last step is justified in two ways: (i) to compare the different scalars to
one another which the relative magnitude should be comparable, and (ii) the data
has been filtered to eliminate outliers, suggesting that the maximum measured value
is unlikely to be the consequence of a major measurement error.

2.3. Principal component analysis

Over the past decade, low-dimensional manifold representations have been frequently
used to mitigate the costs associated with turbulent reacting flows and detailed ki-
netics [42]. Data-driven analytical tools have seen considerable success in combustion
applications for building low-dimensional manifolds while preserving an adequate rep-
resentation of the thermo-chemical state [43]. Among many others, principal compo-
nent analysis (PCA) may be employed to find new sets of conditioning variables that
have the highest correlations with the reactive scalars to detach the conditional aver-
ages from the real domain. PCA parameterises the thermo-chemical state-space using
a reduced number of optimal scalars identified in the directions of maximal data vari-
ance, principal components (PCs). Projecting the state-space on those PCs gives the
PC-scores, and adopting only a subset of those scores as conditioning variables is ex-
pected to result in a more accurate representation of the chemical state with smaller
discrepancies for the unconditional averages [40]. However, a number of issues are
yet to be addressed regarding the applicability of PCA with CMC-based approaches.
Suppose more reactive scalars are combined to define a PC, the diffusion term for the
selected principal component becomes more complex, and evaluation of the diffusive
fluxes for each component is required [44]. Similar to the diffusion problem, the chem-
ical source terms of all scalars used to define the selected PC must be combined to
appropriately describe the principal component’s source term. Moreover, the PCs are
often difficult to associate with previously presented control variables, where physical
interpretations are not always straightforward depending on the studied case. This
raises an additional complexity, in particular with the closure of the chemical source
terms, where presuming the shape of the PCs’ PDFs is not trivial. Accordingly, rather
than adopting PC-scores as controlling variables, here, PCA is utilised as a data-driven
technique to identify which definition of c is needed/preferred to accurately describe
the flames of interest. As such, PCA can be used as a guideline for building an ap-
propriate look-up table parametrised by an optimum progress variable definition that
encompasses the most relevant features/effects of the flames. Previous studies [45]
suggested that one of the first PCs was often found to be highly correlated with Z for
non-premixed flames. While this has been thoroughly validated for Sandia/TUD jet
flames, to the best of the authors’ knowledge, premixed flames have not been studied
yet with PCA, suggesting that further research is needed.

The mathematical approach to compute the principal components of a given data-
set X (n×Q) reduces to an eigenvalue decomposition problem, where rows n represent
individual measurements of Q variables. Suppose X has been appropriately standard-
ised (i.e., centred and scaled), PCA projects all Q variables onto a rotated basis
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obtained from the eigenvalue decomposition of the covariance matrix S (Q×Q) as

S =
1

n− 1
XTX = ALAT (5)

where A is the (Q × Q) matrix whose columns are the eigenvectors of S, and L is a
(Q×Q) diagonal matrix containing the eigenvalues of S. Following the details of the
PCA reduction provided in [37, 46], PC-scores Ψ are obtained as

Ψ = XA (6)

where Ψ is an (n × Q) matrix. Each column of A describes the weight between the
Q variables of X and the corresponding principal component. The dimensionality
reduction is undertaken by truncating A, such that only the first q PCs that account for
the maximum variance are retained, with q < Q. The original data-set X is retrieved
as

X ≊ Xq = ΨqA
T
q (7)

where Xq is the approximation of X based on the first q eigenvectors of A, and Ψq is the
(n× q) matrix of the principal component scores. Detailed mathematical formulation
of PCA is not elaborated here where more details can be found in the literature [47].

Principal component analysis requires high-fidelity data-sets to generate the PC-
basis and accurately describe the thermo-chemical state-space. The experimental mea-
surements of all three data-sets fed to PCA have been cleaned out following the steps
presented previously. It should be noted that the mixture fraction and the progress
variables have been excluded from the databases before being passed to PCA.

Various studies have tackled the effects of scaling methods on PCA [48, 49]. Scaling
has an important outcome on the method’s accuracy as it can change the PCA struc-
ture by altering the relative importance of various scalars. Auto-scaling, Range scaling,
VAST (variable stability) scaling, Level scaling and Pareto scaling are among the most
common options used in conjunction with PCA for combustion studies. Range scaling
divides each variable by the difference between the minimal and the maximal value,
whereas Level scaling adopts the mean values of the variables as the scaling factor.
VAST scaling focuses on using the product between the standard deviation and the
so-called coefficient of variation, defined as the ratio of the standard deviation and the
mean. Pareto scaling was recognised as having a distinct advantage for major species
and source terms reconstruction while needing fewer components [50]. Level, VAST,
Range and Auto-scaling options were found to provide similar results with often more
components needed to achieve the same reconstruction accuracy obtained with Pareto
[51]. Therefore, in order to study the scaling effect on the accuracy of the method,
the PCA analysis is carried out using two scaling options, assuming that the data-sets
have been previously centred:

(1) Pareto scaling, which adopts the square root of the standard deviation
(2) Auto-scaling (AS), which uses the standard deviation as the scaling factor

Previously, Parente & Sutherland [52] found that Auto-scaling is more adapted when
an exploratory analysis on the chemical manifold should be performed, whereas Pareto
appears more suitable for capturing the principal features of the systems and the be-
haviour of the main species. Parente & Sutherland also [52] showed that the square
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root of the standard deviation enhances the temperature scalar in carrying most of the
data variance, and thus, forcing the first principal component to align with tempera-
ture. For this reason, the temperature was excluded from the three databases passed
on to PCA.

The real utility in PCA comes by founding correlations among the variables defining
the state-space. A new coordinate system is identified in the directions of maximal data
variance, allowing less important dimensions to be eliminated while maintaining the
primary structure of the original data. In that sense, one can suppose applying PCA
to a given reactive flow where no prior knowledge about the physical and chemical
phenomena is known, and help identify the adequate number of control variables
needed to accurately quantify the thermo-chemical state-space within a manifold. In
order to determine the amount of information captured by each principal component
and thus replace the Q elements of X by q < Q principal components, the fraction of
total variance accounted by each PC is calculated as

tqi =

∑qi
k=1 lk∑Q
k=1 lk

(8)

where i and lk denote a single PC and the variance located on the diagonal of the
covariance matrix S, respectively. Since outputs resulting from the two scaling meth-
ods have different numerical ranges, their PC-scores have been scaled to the interval
[−1, 1].

3. Results & discussion

3.1. Principal component analysis

The PC analysis was individually performed on all three databases with all radial and
axial locations grouped together. Figure 2 illustrates the variance accounted by each
PC using Equation 8. To clarify, figures depicting PCA results do not include the
temperature scalar within the analysis. Regardless of the scaling method adopted, a
single principal component seems to account for the largest amount of variance present
in all three data-sets, with ∼0.9 using Pareto and ∼0.8 with AS.
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Figure 2. Comparison of variance explained with Pareto (triangles) and Auto-scaling (pentagons) for each prin-

cipal component of (a) SwB|all, (b) SwB|Hstratified and (c) SwB|Hswirl.

The variance explained by PC1 is in good agreement with the threshold proposed
by Parente et al. [46]. Their study showed that by accounting for ∼0.9 of the total
variance, all main species and temperature can be recovered with satisfactory lev-
els of approximation. Consequently, the physical interpretation of all other principal
components is omitted in this work, as is it believed to be out of the scope of this
study.

In order to determine the underlying structure of PC1, the weights of the original
variables characterising the three databases (i.e., matrix A) are presented in Figure 3
for both scaling methods. Regardless of the scaling method used, it is interesting to
note that PCA is able to automatically distinguish reactants from products, with PC1
being negatively and positively correlated with reactants and combustion products,
respectively. Regardless of the data-set, it appears that the mass fractions of CO2

and O2 have the most important contributions to PC1-Pareto, and to a larger extent
YH2O, with coefficients equal to approximately 0.6, 0.65 and 0.35, respectively. This
trend is also apparent for PC1-AS, with the latter having non-negligible weights on
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intermediate species, as opposed to Pareto, which clearly emphasises main species.
This observation agrees with the study undertaken by Parente et al. [52] which has
shown that the variance accounted for minor species by Auto-scaling is up to ∼20%
higher than that explained by the other scaling methods investigated in their work.
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Figure 3. Comparison of weights obtained with Pareto and Auto-scaling (with strips) for the leading principal

component and scalars of (a) SwB|all, (b) SwB|Hstratified and (c) SwB|Hswirl.

Considering the criterion proposed by Ranade & Echekki [53], only coefficients with
magnitudes ≥ 0.4 are kept to help identify the more prominent contributors to PC1.
As PC1-Pareto, the same three species appear to have dominant weights on PC1-AS,
namely the mass fractions of CO2, O2 and H2O, with ∼0.4. It is worth mentioning
that all three scalars are known to behave linearly with temperature, thus suggesting
that PC1 is perhaps correlated/aligned with temperature. This trend is illustrated
in Figure 4, where results of all three data-sets considered herein promote a PC1
monotonically increasing with temperature. As expected, this behaviour is clearly
accentuated by adopting the Pareto method.
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Figure 4. Comparison of correlations obtained with Pareto (triangles) and Auto-scaling (pentagons) for the

leading principal component with temperature for (a) SwB|all, (b) SwB|Hstratified and (c) SwB|Hswirl. The

markers illustrate 500 point-based measurements randomly selected within the flames’ and PC1-scores’ data-sets.

A supplementary analysis was carried out by including temperature in SwB|all and
using only Auto-scaling, as PC1-Pareto will be constrained to align with temperature.
Figure 5 illustrates the dominant contributions to PC1-AS. The temperature scalar
and the same three species mass fractions have the largest weights on PC1, with
∼0.4, suggesting that PC1, regardless of the scaling method adopted, is correlated
with temperature.
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Figure 5. Comparison of weights obtained with Auto-scaling (with strips) for the leading principal component

and scalars of SwB|all with temperature included. PC1-AS accounts for ∼0.8 of the total variance, R2 = 0.97-AS

with temperature.

After identifying the structure of the first principal component, the first-moment
conditional fluctuations analysis of all three databases is carried out to investigate
which of the proposed progress variables can sufficiently accurately characterise the
composition space. As suggested by PCA, particular attention is brought to the
temperature-based progress variable c1.

3.2. All flames (SwB1-11)

Conditional averages of the Q variables describing the SwB|all thermo-chemical state
can be calculated and consequently determine the conditional fluctuation associated
with each experimental measurement. One-condition conditional averages using one
of the four progress variables are investigated and compared to one another in order to
determine the most optimal definition of ck. Figure 6 illustrates the conditional fluctu-
ations of temperature and five different species mass fractions. To clarify, throughout
the entire document, figures with axial locations account for all data at different radial
locations.

Regardless of the progress variable investigated, at all eight downstream locations,
conditional fluctuations of the mass fraction of CH4, CO and H2 around ck exhibit
an important functional dependence on the physical domain, stratification and/or
swirl, visually highlighted by conditional fluctuation points spread far from zero. This
trend is emphasised near the burner’s tip, where the heat exchange with the bluff
body might be significant, but also where an important recirculation of the flow is
encountered. Due to high swirl, the recirculation zone is extended further downstream,
leading to important conditional fluctuations of intermediate species at axial distances
corresponding to z = 40, 50 mm. It is interesting to note that all investigated ck
promote very similar results for the same three previous species. On the contrary, the
conditional fluctuations of temperature and mass fractions of CO2 and H2O vary in
function of the progress variable retained. The conditional fluctuations of YH2O around
c1 suggest that a temperature-based progress variable can perhaps more effectively
decrease the functional dependence on the physical domain compared to the other ck.
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This can be attributed to the fact that the mass fraction of H2O is closely relevant
to temperature. As expected, a similar behaviour can be seen for the conditional
fluctuations of T around c1, and the conditional fluctuations of YCO2 around c2.

While local averages of all conditional fluctuations are anchored at zero, and thus,
suggesting that all progress variables investigated are doing a good job of character-
ising the considered data-set, it is nearly impossible to find which definition of c is
effectively the best choice to accurately describe the thermo-chemical state-space, and
detach it from spatial coordinates, but also swirl and/or stratification effects.
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Figure 6. Conditional fluctuations of species mass fractions and temperature around the conditional average

⟨f |ξ = ck⟩(x) for SwB|all database using only ck as the single conditioning variable and collecting all points at

different radii together; are also shown the local average of these conditional fluctuations ⟨f ′
i,k⟩ (golden markers).

Figure 7 enables to distinct the performances of each ck by analysing each variable’s
normalised RMS. The normalised RMS of Y′

CO2
around c2 provides the best results due

to the inclusion of the CO2 mass fraction in c2. As expected, the same trend is observed
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for the RMS of T′ around c1. It is interesting to note that further downstream the axial
position, the RMS of Y′

CO2
around c1 are improved or off the same order of magnitude

as the YCO2-based progress variable. Additionally, the RMS of Y′
CH4

obtained using
any ck are unchanged and remain close to 10%. Assuming that RMS of conditional
fluctuations of the order of 10% can be considered as “relatively small” [34], one
can suppose that using a single conditioning variable for this database might still give
acceptable predictions of the considered reactive scalar for conditional moment closure
models.
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Figure 7. Normalised RMS of the conditional fluctuations of temperature and species mass fractions for the

SwB|all database around the conditional average ⟨f |ξ = ck⟩(x) (markers) using ck as the single conditioning variable

and around the conditional average ⟨f |η = Z, ξ = c1, c2⟩(x) using the mixture fraction and, the temperature-based

progress variable (crosses) or the YCO2
-based progress variable (pluses), and collecting all points at different radii

together.

However, using ck as a single conditioning variable gives poor results for intermedi-
ate species, i.e. CO and H2, where normalised RMS exceed 10% of the maximum value
of that particular scalar in the regions near the burner’s tip. This suggests that the
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conditional averages are different (changing in function of space, stratification and/or
swirl) and that a single controlling variable is not sufficient. The normalised RMS anal-
ysis contradicts the PCA results, where a single principal component direction was
found to have the highest correlation with the reactive scalars. This is possibly due
to the inherent nature of the PCA model, where PC-scores provide a rigorous math-
ematical formalism to reduce the dimensionality of the original data while retaining
most of the variance induced by the turbulent fluctuations. Consequently, conditional
fluctuations around two-condition conditional averages using mixture fraction and a
temperature-based progress variable (Z, c1) are considered in this study. Conditional
fluctuations around mixture fraction and a YCO2-based progress variable (Z, c2) are
also included to provide further insight. Each mixture fraction dimension is divided
into 50 bins. It can be deduced that: (i) doubly conditioning is of particular interest
for intermediate species, in particular those believed to be highly correlated with Z
(e.g., YCO), and (ii) regardless of the ck selected, one-condition conditional averages
seem to not deviate that much from two conditions (e.g., temperature, carbon dioxide
and water). Interestingly, normalised RMS of fluctuations around the one-condition
conditional averages of YCO and YH2 are nearly as efficient as Z, c1 and Z, c2 further
downstream the axial direction. The normalised RMS of major species and temper-
ature using the mixture fraction and the temperature-based progress variable are
somewhat more effective compared to Z, c2, excluding, again, the RMS of Y′

CO2
. The

differences remain minor, suggesting that the choice of a particular progress variable
definition does not seem important, as deduced in [33]. However, it is believed that
adopting Z and c1 as the two controlling variables will provide a much more accurate
representation of the Cambridge/Sandia flames’ chemistry compared to mixture frac-
tion and a species-based progress variable. The underlying assumption here is that
diffusion effects play an essential role in describing the chemical states. From this
perspective, it is assumed that c(Yi) would be a poor choice as the diffusion coefficient
is often modelled using the unity Lewis number assumption, whereas the reduced
temperature progress variable includes the thermal diffusivity by solving the diffu-
sion flux term. Recently, Turkeri et al. [54] showed through a parametric study that
preferential diffusion is less relevant than heat losses for the studied burner, as it was
found that the latter are more prevalent to accurately capture the underlying physics,
particularly at the inlet of the burner.

The two-condition conditional averages of the temperature and mass fractions of
several species around mixture fraction and c1 are shown in Figure 8. The obtained re-
sults are in good agreement with [40], where minor discrepancies are attributed to the
different data-processing steps adopted in this study. The contours of conditionally-
averaged scalars around Z and a YCO2-based progress variable are illustrated in Figure
9. Despite gathering data from all axial and radial locations, one region common to
both conditional domains can be identified in which no measurement has been found.
Assuming the mixture fraction lies within the limits of flammability, the empty region
suggests that the unburnt reactants are becoming unstable and start to react, such
that methane is consumed and the progress variable rises. This trend is highlighted in
both figures, where the mass fractions of CH4 peak near the lower flammability limit
(i.e., Z = 0.575) of the methane-air mixture. It appears that adopting c1 as a second
control variable reduces the complete filling of the η, ξ1 space, as opposed to selecting
a YCO2-based progress variable. A second region without measurements is found in
the conditional domain using Z and the temperature progress variable. The presence
of the top-left region suggests that it is improbable to have a complete reaction with
local equivalence ratios well below the lower flammability limit of methane. This be-
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haviour is back-supported by Figure 9 where all conditionally-averaged scalars falling
within this region are associated with values equal to zero. Interestingly, the condi-
tional domain built using the mixture fraction and c2 provides a much more complete
mapping than Z, c1, in particular for regions associated with high mixture fractions
and progress variable values far from unity. The contours for conditionally-averaged
temperature, CO2 mass fraction and H2O mass fraction exhibit, as expected, similar
behaviours, where their maximum values lie in the vicinity of Zst = 0.9 and progress
variable of unity.
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Figure 8. Two-condition conditionally averaged reactive scalars from SwB|all using η and ξ1 as the sampling

space variables of mixture fraction and the temperature-based progress variable c1, respectively, and collecting data

at all spatial locations (radial and axial). The temperature colourbar is expressed in Kelvin.

Intermediate species, namely CO and H2 mass fractions have similar behaviour
in both conditional domains. However, it should be noted that using c2 as a second
control variable promotes a conditional mapping of regions associated with maximum
values to be much more spread across η, ξ2, as opposed to the trends observed with Z
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and the temperature-based progress variable.
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Figure 9. Two-condition conditionally averaged reactive scalars from SwB|all using η and ξ2 as the sampling

space variables of mixture fraction and the YCO2
-based progress variable c2, respectively, and collecting data at all

spatial locations (radial and axial). The temperature colourbar is expressed in Kelvin.

3.3. Fixed high stratification, swirl sweep (SwB9, SwB10, SwB11)

Within this section, the conditional fluctuations of the Q scalars describing
SwB|Hstratified around one-condition conditional averages are studied to investigate
which progress variable definition can reduce the swirl and spatial dependences, as-
suming high fixed stratification mixture conditions. The conditional fluctuations of
temperature and various species mass fractions, depicted in Appendix A (cf. Figure
A1), exhibit similar results compared to SwB|all. All studied ck promote similar be-
haviours for the conditional fluctuations of YCH4 , YCO and YH2 . This suggests that the
progress variable is perhaps not a good choice for describing the variables of interest
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and that mixture fraction would be a better decision, as the mass fractions of CH4 and
CO are strongly correlated with Z. Moreover, the height of conditional fluctuations
(in particular for intermediate species) seems to remain constant throughout all axial
positions, as opposed to the trends observed with SwB|all. The local averages of the
presented conditional fluctuations (cf. golden markers in Figure A1) are fixed at zero,
suggesting that using either of the proposed ck as a conditioning variable should pro-
vide an accurate approximation of the turbulent reaction rate, i.e. a closure utilising
only the first term of a Taylor expansion of the reaction rate.

Figure 10 provides further insights. The normalised RMS of all variables investi-
gated for the considered database around one-condition (i.e., using ck) exhibit similar
results as seen with SwB|all.
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Figure 10. Normalised RMS of the conditional fluctuations of temperature and species mass fractions for the

SwB|Hstratified database around the conditional average ⟨f |ξ = ck⟩(x) (markers) using ck as the single condi-

tioning variable and around the conditional average ⟨f |η = Z, ξ = c1, c2⟩(x) using the mixture fraction and, the

temperature-based progress variable (crosses) or the YCO2
-based progress variable (pluses), and collecting all points

at different radii together.
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As expected, the RMS obtained using a single control variable have much higher
swirl dependence at the inlet of the burner than two-condition conditional averages,
in particular for methane, CO and H2 mass fractions, emphasised by normalised RMS
values above 10%. Further downstream the axial direction (i.e., z = 60, 70 mm), the
normalised RMS are nearly of the same order of magnitude as both combinations of
doubly conditioning, suggesting that adding the mixture fraction as a second con-
trol variable does not significantly affect the fit. For the same species, the definition
attributed to the progress variable seems irrelevant. The differences are more straight-
forward for major species and temperature, where all ck provide very good results.
Based on these results, the temperature-based progress variable seems to be the most
optimal choice (as concluded from the PCA analysis), followed by c4 and c3, and
with the YCO2-based progress variable being the worse among the tested reaction
variables. These findings are consistent with recent results computed by analysing
methane-air [55] and hydrogen-air [21] premixed flames. The normalised RMS around
two-condition conditional averages are unchanged compared to the trends observed
with the first database. The definition attributed to the progress variable as a second
control scalar seems irrelevant for this case. Once again, two-condition conditional
averages are sufficient to describe the considered database and detach it from swirl
and space. This suggests that a DCSE calculation of these flames (including SwB|all)
using both mixture fraction and progress variable as conditioning variables might be
successful.

The contours of conditionally-averaged reactive scalars are illustrated in Appendix
A. The conditional averages of temperature and several species mass fractions around
the mixture fraction and the temperature-based progress variable are shown in Figure
A2. Figure A3 presents the conditional averages of the same scalars using Z and
c2. Similar conclusions drawn for SwB|all can be applied to the considered data-
set. Regions with no available measurements are much more accentuated in both
conditional domains, attributed to the exclusion of data from 6 flames that do not
exhibit the desired characteristics of the current database. Regardless of the second
control variable adopted, the conditional averaged scalars vary moderately throughout
the two databases assessed, suggesting that the underlying physics and chemistry
remain quasi-unchanged in the conditional domains.

3.4. Fixed high swirl, stratification sweep (SwB3, SwB7, SwB11)

The conditional fluctuations around one-condition conditional averages of the vari-
ables describing the SwB|Hswirl database are studied to investigate the most optimal
choice of progress variable definition to cancel stratification and spatial dependences,
assuming high fixed swirl intensity. The conditional fluctuations of the scalars pre-
viously investigated are shown in Appendix B-Figure B1. Similar to SwB|all and
SwB|Hstratified, the conditional fluctuations of YCH4 , YCO and YH2 appear to be still
affected by space and stratification effects, particularly at the inlet of the burner. All
ck promote similar results, suggesting that another choice of scalar is perhaps more
suitable. Just like c2 for Y′

CO2
, the temperature-based progress variable provide the

lowest fluctuation heights for T′ and Y′
H2O

, with c2 and c3 being the worse for the
considered scalars. As in the two previous databases, the local averages throughout all
downstream locations are equal to zero, suggesting that the definition attributed to
the progress variable is perhaps less relevant in a closure context than in an accurate
representation of the chemical state.
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Surprisingly, Figure 11 shows that using a single conditioning variable for inter-
mediate species, regardless of the definition attributed to c, equally well performs as
Z,c(T ) and Z,c(YCO2), excluding the results obtained near the inlet of the burner (i.e.,
z = 10, 20 mm) where values deviate by a factor of ∼2, attributed to the recirculation
zone and possibly the heat exchange with the bluff body. For these axial distances, this
suggests that all investigated ck are enabling to decrease the functional dependence
of conditional averages on spatial coordinates and stratification.
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Figure 11. Normalised RMS of the conditional fluctuations of temperature and species mass fractions for the

SwB|Hswirl database around the conditional average ⟨f |ξ = ck⟩(x) (markers) using ck as the single condition-

ing variable and around the conditional average ⟨f |η = Z, ξ = c1, c2⟩(x) using the mixture fraction and, the

temperature-based progress variable (crosses) or the YCO2
-based progress variable (pluses), and collecting all points

at different radii together.

Moreover, compared to the two other data-sets, the normalised RMS of CH4 con-
ditional fluctuations remain below 10%, suggesting that stratification effects have
perhaps less influence on conditional averages than spatial coordinates and/or swirl.
Differences of magnitude between the four ck are more pronounced for temperature
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and major species (excluding YCH4), where c1 provides the best fit for the mass frac-
tion of H2O, but temperature as well (as expected). As was foreseeable, the inclusion
of carbon dioxide in c2 gives the most optimal results for decreasing the RMS of
Y′

CO2
, with no apparent differences compared to other ck further downstream. The

differences between the two combinations of doubly conditioning remain minor, with
slightly better results in favour of Z, c1, excluding the RMS of CO2 conditional fluc-
tuations. This suggests that the definition attributed to the progress variable might
be less relevant to conditional space fluctuations. This finding perhaps relates to the
fundamental basis of conditional moment closure-based models where one focuses on
the separation of model elements which give descriptions for the moment of reactive
parameters concerning the scalar description in state-space. In that sense, the main
purpose of the controlling variable is to construct a functional approximation of the
conditional space where the number of control variables and their ability to capture
major physical behaviour of the system (e.g., mixing and/or reaction progress) can
be more relevant. This work, together with a previous study from Mousemi et al. [40],
has indeed demonstrated the importance of including appropriate controlling variables
to capture all physical processes and reduce conditional space fluctuations for react-
ing flows where the definition of progress variable can be more flexible. This perhaps
has shown some differences compared to previous studies using one-dimensional (1D)
flamelet models where a different progress variable using a simple linear combination
of mass fraction definition resulted in significant differences in mass burning rate pre-
dictions [20]. One of the reasons identified by Gupta et al. is that when tabulated
chemistry is constructed in 1D manifold approaches, a direct projection using control
variables is involved, whereby the stretch and individual species transport phenomena
in turbulent reactive flows might be neglected, resulting in significant differences in
mass burning rate predictions [20]. Special treatment is therefore needed for the con-
struction of a 1D manifold to reduce the impact of reaction progress variable choices
via the projection of the source term and the diffusion term. Alternatively, extending
the manifold dimension to properly account for mixing and chemical time scales can
help account for variations in chemically conserved quantities such as element mass
fractions [19]. This later study perhaps corresponds better with the results shown here
in this work where, when two conditional variables are considered, the conditional
fluctuations are significantly reduced irrespective of the choices of progress variables.
However, a direct comparison with the above-mentioned studies is not available as the
current study is based on experimental data measurements whereby the mass burning
rate of the species is not available. Therefore the quantitative differences of progress
variable choices in the context of turbulent combustion modelling using conditional
moment closure approaches remain to be investigated.

Additionally, the contours of two-condition conditional averages have also been
added in Appendix B. The conditional averages of temperature and mass fractions
of several species around mixture fraction and the temperature progress variable are
shown in Figure B2. The conditionally-averaged scalars around Z and c2 are illustrated
in Figure B3. No apparent differences can be identified among the conditional domains
computed from each of the three databases (assuming the use of the same two control
variables), suggesting that the conditional averaged scalars behaviour is not affected
by the underlying characteristics and effects of the studied burner.
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4. Conclusion

Within this study, the Cambridge/Sandia swirl measurements are used in conjunc-
tion with principal component analysis (PCA) to attempt to find which set of control
variables has the highest correlation with the reactive scalars. Three databases have
been constructed to investigate the influence of swirl, stratification and spatial coor-
dinates. Two scaling methods for the PCA model have been adopted, namely Pareto
and Auto-scaling (AS). For all three data-sets, and regardless of the scaling method
adopted, it was found that: (i) the first principal component (PC1) accounts for the
largest amount of variance, and (ii) PC1 is well-aligned with temperature.

The conditional spaces of Cambridge/Sandia flames are examined by investigat-
ing the conditional fluctuations of temperature and various species mass fractions
obtained with single-conditional averages around four different progress variable def-
initions. While conditional fluctuations of intermediate species and methane are un-
changed using the progress variables tested, it was found that adopting a temperature-
based progress variable provides minor improvements for major reactive scalars, in
particular for temperature and H2O. For all three databases, the local averages of
conditional fluctuations throughout all downstream locations are anchored at zero,
suggesting that the definition attributed to the progress variable is perhaps less rel-
evant in a closure context. Regardless of the data-set, the normalised RMS of the
reactive scalars indicates that a single control variable based on c is unable to detach
the thermo-chemical state from spatial coordinate, swirl or stratification, in particular
for regions near the burner’s tip characterised by an intense recirculation of the flow
and significant heat exchanges with the bluff-body. The RMS analysis was followed
by comparing the conditional averages obtained with the progress variables against
doubly conditional averages using the mixture fraction and the progress variable c(T ).
Normalised RMS around two-condition conditional averages adopting mixture frac-
tion and a YCO2-based progress variable have also been included. Here, it was shown
that the conditional fluctuations using both sets of two-condition conditional aver-
ages did not improve the dependence on the physical domain compared to a single
progress variable condition further downstream the axial direction. The results are sig-
nificantly improved at the burner inlet, with values not exceeding the 10% threshold
used within this study as a guideline. The differences observed between both combi-
nations of doubly conditioning are minor, suggesting that the choice of a particular
progress variable definition does not seem to have an importance. Consequently, it
is believed that a conditional moment closure calculation using both Z and c as two
conditioning scalars might be successful, assuming that the ensemble has been divided
along the axial direction. The conditional space fluctuations indicate that the success
of CMC-based approaches does not depend on the definition attributed to the progress
variable, which in fine increases the applicability of such models to different fuels and
structures of flame. However, additional posterior research would be required for these
flame configurations to obtain the mass burning rates using chemistry calculations,
enabling a more rigorous/coherent comparison with previous studies given by other
modelling approaches.

Following the PCA analysis results, and given that doubly conditioning seems to de-
crease the reactive scalars’ dependence more effectively, it is suggested that c(T ) could
give a more accurate representation of the Cambridge/Sandia flames’ chemistry (such
as in a manifold) than a species-based progress variable, considering that species dif-
fusivity is often simplified by assuming unity Lewis numbers. For future studies, other
criteria may have to be tackled to evaluate the most suitable progress variable, such as
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the influence of heat losses, monotonicity, species recombination in post-combustion
zones, and radiation effects. It should also be mentioned that the modelling of the
joint probability density function (PDF) of mixture fraction and progress variable
remains an important unresolved issue for CMC-based models, where the statisti-
cal independence assumption is anticipated to be invalid and how the definitions of
progress variable affect joint-PDF also requires additional studies.
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Appendix A. SwB|Hstratified
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Figure A1. Conditional fluctuations of species mass fractions and temperature around the conditional average

⟨f |ξ = ck⟩(x) for SwB|Hstratified database using only the progress variable as the single conditioning variable and

collecting all points at different radii together; are also shown the local average of these conditional fluctuations

⟨f ′
i,k⟩ (golden markers).
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Figure A2. Two-condition conditionally averaged reactive scalars from SwB|Hstratified using η and ξ1 as the

sampling space variables of mixture fraction and the temperature-based progress variable c1, respectively, and

collecting data at all spatial locations (radial and axial). The temperature colourbar is expressed in Kelvin.
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Figure A3. Two-condition conditionally averaged reactive scalars from SwB|Hstratified using η and ξ2 as the

sampling space variables of mixture fraction and the YCO2
-based progress variable c2, respectively, and collecting

data at all spatial locations (radial and axial). The temperature colourbar is expressed in Kelvin.

31



Appendix B. SwB|Hswirl
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Figure B1. Conditional fluctuations of species mass fractions and temperature around the conditional average

⟨f |ξ = ck⟩(x) for SwB|Hswirl database using only the progress variable as the single conditioning variable and

collecting all points at different radii together; are also shown the local average of these conditional fluctuations

⟨f ′
i,k⟩ (golden markers).
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Figure B2. Two-condition conditionally averaged reactive scalars from SwB|Hswirl using η and ξ1 as the sampling

space variables of mixture fraction and the temperature-based progress variable c1, respectively, and collecting data

at all spatial locations (radial and axial). The temperature colourbar is expressed in Kelvin.
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Figure B3. Two-condition conditionally averaged reactive scalars from SwB|Hswirl using η and ξ2 as the sampling

space variables of mixture fraction and the YCO2
-based progress variable c2, respectively, and collecting data at all

spatial locations (radial and axial). The temperature colourbar is expressed in Kelvin.

34


