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Abstract

Multilevel estimators aim at reducing the variance of Monte Carlo statis-
tical estimators, by combining samples generated with simulators of different
costs and accuracies. In particular, the recent work of Schaden and Ullmann
(2020) on the multilevel best linear unbiased estimator (MLBLUE) intro-
duces a framework unifying several multilevel and multifidelity techniques.
The MLBLUE is reintroduced here using a variance minimization approach
rather than the regression approach of Schaden and Ullmann. We then
discuss possible extensions of the scalar MLBLUE to a multidimensional
setting, i.e. from the expectation of scalar random variables to the expec-
tation of random vectors. Several estimators of increasing complexity are
proposed: a) multilevel estimators with scalar weights, b) with element-wise
weights, c) with spectral weights and d) with general matrix weights. The
computational cost of each method is discussed. We finally extend the ML-
BLUE to the estimation of second-order moments in the multidimensional
case, i.e. to the estimation of covariance matrices. The multilevel estima-
tors proposed are d) a multilevel estimator with scalar weights and e) with
element-wise weights. In large-dimension applications such as data assimila-
tion for geosciences, the latter estimator is computationnally unaffordable.
As a remedy, we also propose f) a multilevel covariance matrix estimator with
optimal multilevel localization, inspired by the optimal localization theory
of Ménétrier and Auligné (2015). Some practical details on weighted MLMC
estimators of covariance matrices are given in appendix.
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1 Introduction
Multilevel techniques aim at reducing the variance of Monte Carlo statistical esti-
mators, typically for the estimation of the expectation of a scalar random variable.
These techniques combine in an astute way samples obtained through numerical
simulators of varying accuracy and cost. An example of popular multilevel tech-
nique is the Multilevel Monte Carlo (MLMC) method, popularized by Giles (2008,
2015).

Recently, an interesting unifying framework was proposed by Schaden and Ull-
mann (2020, 2021), herafter SU20 and SU21. Among others, the framework of
Schaden and Ullmann includes multilevel Monte Carlo techniques (MLMC, Giles,
2008, 2015 for a review), multifidelity techniques (Peherstorfer et al., 2018) and
approximate control variates (Gorodetsky et al., 2020). In this unified framework,
some (new) estimators naturally appear as optimal, the so-called Multilevel Best
Linear Unbiased Estimators, MLBLUEs. This framework has been complemented
by Croci et al. (2023), who propose an efficient algorithm to solve the model se-
lection and sample allocation problem (MOSAP) for the MLBLUE.

The present note proposes a new way to derive the MLBLUE, by building a
weighted multilevel estimator and optimizing its weights to minimize the estima-
tor’s variance under a no-bias constraint. It also gives some insight on how the
MLBLUE approach can be extended to the estimation of first and second-order
statistical moments of random vectors, in possibly large dimensions.
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This extension to second-order moments and to random vectors is motivated by
possible applications in ensemble-variational data assimilation, where Monte Carlo
methods are used at a key stage, to estimate the covariance matrix of forecast
errors (Lorenc, 2003; Buehner, 2005 and Bannister, 2017 for a review). As a
result, the present note is not as general as the original articles by SU20 and
SU21, nor as mathematically grounded. The authors are biased towards MLMC-
like applications, and towards the estimation of discrete covariance operators in
large dimension for geoscience applications.

The note is organized as follows. Section 2 presents the main results of SU20
and SU21. Section 3 presents another way to derive these results, based on direct
minimization of the variance of a weighted multilevel estimator. The next sec-
tions proposes extensions of the MLBLUE, some of which are unpublished in the
literature to the best of our knowledge. We propose an extension to the multi-
dimensional case (estimation of the expectation of a random vector) in section 4.
We propose an extension to the estimation of covariance and covariance matrices
in sections 5 and 6, including an extension to optimal localization for multilevel
covariance matrices in the line of Ménétrier et al. (2015a,b), hereafter M15a and
M15b.
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2 The MLBLUE: reminder and notations
Let Z` = f`(X) : Ω → R, 1 ≤ ` ≤ L be a set of random variables approximating
fL(X), where fL is a costly numerical simulator. The ` indexing the f` models are
hereafter called fidelity levels. These fidelity levels may be associated to different
spatial meshes, from the coarsest to the finest (` = 1 to ` = L for an MLMC-like
structure). This is not required though, and what follows can be applied even if
the fidelities come from other sources, and even if there is no clear ranking of the
models according to their accuracy.

Example The hierarchy of simulators can be forecasting models f` : Rn → R
running on meshes with finer and finer horizontal resolutions, and predicting tem-
perature at one given location. X : Ω→ Rn can be a random vector representing
uncertain initial conditions of a numerical weather forecast. We are interested in
the mean temperature that is forecast by the finest model, E

[
fL(X)

]
.

Multilevel techniques rely on coupled simulations, i.e. simulations that run at
different levels using the same stochastic input X. The sets of coupled levels can
be sorted in K coupling groups (S(k))Kk=1. More formally, let (S(k))Kk=1 be a family
of subsets of {1, . . . , L}. We impose

S(k) 6= S(k′) for k 6= k′ (1)

∪Kk=1S
(k) = {1, . . . , L}. (2)

We denote by p(k) the cardinality of S(k).
For 1 ≤ k ≤ K, R(k) : RL → Rp(k) is the selection operator for group S(k)

verifying ∀x ∈ RL, R(k)x = (x`)`∈S(k) . The associated extension operator is
P (k) :=

(
R(k)

)ᵀ
: Rp(k) → RL.

MLMC-like example We can use this formalism to describe the coupling struc-
ture of an MLMC estimator with three levels, as is done in example 2.1 of SU20.
The coupling groups in this case are S(1) = {1}, S(2) = {1, 2} and S(3) = {2, 3}.
The associated extension operators are

P (1) =
(
1 0 0

)
(3)

P (2) =

(
1 0 0
0 1 0

)
(4)

P (3) =

(
0 1 0
0 0 1

)
(5)
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The repartition of simulators among coupling groups S(k) can be visualized using
the tableaux used by Schaden and Ullmann, and reproduced for this example in
figure 1c.
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Figure 1: MLMC coupling structure. Tableaux inspired by SU20.

We denote by µ := (E [Z`])
L
`=1 the vector of expectations at each fidelity level.

We are interested in estimating αᵀµ for a given vector α ∈ RL \ {0}. In practice,
α = eL := (0, · · · , 0, 1)ᵀ, but this is not mandatory.

Let m(1), . . . ,m(K) be the number of available simulations for each group k
(see figure 1b). SU20 provide the best estimator for αᵀµ among the unbiased
estimators that linearly combine the simulations f`(X(k,i)) for 1 ≤ k ≤ K, ` ∈ S(k)

and 1 ≤ i ≤ m(k), where the X(k,i) are i.i.d. random variables following the same
law as X. These linear estimators are of the form

µ̂ML :=
K∑
k=1

∑
`∈S(k)

β
(k)
` Ê(k)[Z`] (6)

where Ê(k)[Z`] is the standard Monte Carlo estimator for E[Z`], using m(k) random
inputs associated to group k,

Ê(k)[Z`] :=
1

m(k)

m(k)∑
i=1

f`(X
(k,i)). (7)

The inner sum in (6) can be written as a scalar product by introducing two
more notations. Firstly, we denote by β(k) :=

(
β
(k)
`

)
`∈S(k) ∈ Rp(k) the vector of

weights associated to group k. In the case of a three-level MLMC, we would
have the (sub-optimal) weights β(1) = (1) and β(2) = β(3) = (−1, 1)ᵀ (figure 1c).
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Secondly, we denote by Z(k) := (Z`)`∈S(k) the random vector gathering all random
variables in group k. Then equation (6) becomes

µ̂ML =
K∑
k=1

(
β(k)

)ᵀ
Ê(k)

[
Z(k)

]
(8)

The (optimal) vector β(k) can be expressed as (from equation 2.7 in SU21)

β(k) = m(k)
(
C(k)

)−1
R(k)

(
K∑
k′=1

m(k′)P (k′)
(
C(k′)

)−1
R(k′)

)−1
α, (9)

where C(k) := Cov(Z(k), Z(k)) and Cov(A,B) := E[(A− E[A]) (B − E[B])ᵀ] de-
notes the covariance matrix of random vectors A and B. These C(k) matrices are
unknown in practice and must be estimated, which results in sub-optimal weights.
Note that the estimation of the C(k) should be done independently of the estima-
tion of αᵀµ, otherwise a bias is introduced. The importance of this bias is likely
to depend on the particular application and setting considered.

Model selection and sample allocation problem This approach provides
the MLBLUE for a given coupling structure and a given number of samples on
each coupling group. SU20 propose some ways to optimize the model selection and
sample allocation by minimizing the variance of the associated MLBLUE. Their
approach has been later extended and made more robust by Croci et al. (2023),
who transform it into a semidefinite programming problem.
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3 Retrieving the MLBLUE via variance minimiza-
tion

We believe the derivation based on constrained minimization of the variance to
be more direct, and perhaps more intuitive than the regression approach proposed
by SU20. Though both derivations are closely related, we believe the variance
minimization approach may appear as more natural to some readers, especially
from the community of multifidelity estimation methods based on control variates
(see for instance Gorodetsky et al., 2020). We derive this approach here.

Given the fidelity levels 1, . . . , L and the coupling structure (S(k),m(k))Kk=1, we
look for an unbiased estimator of αᵀµ that linearly combines the samples and
that has the lowest possible variance (the BLUE). We assume that the multilevel
estimator is of the form of equations (6) and (8), and we look for the β(k)

` coefficients
that minimize the variance under a no-bias constraint.

Unbiasedness constraint The optimal β weights are subject to the unbiased-
ness constraint

E[µ̂(β)] = αᵀµ ⇐⇒ E

[
K∑
k=1

(
β(k)

)ᵀ
Ê(k)

[
Z(k)

]]
= αᵀµ (10)

⇐⇒
K∑
k=1

(
β(k)

)ᵀ
R(k)µ = αᵀµ (11)

⇐⇒
K∑
k=1

P (k)β(k) = α, (12)

assuming that we have no prior information on µ, so that the unbiasedness should
be met for all values of µ ∈ RL.

E[µ̂(β)] = αᵀµ ⇐⇒
(
P (1) · · · P (K)

)
β = α (13)

⇐⇒ g(β) = 0 (14)
with g(β) :=

(
P (1) · · · P (K)

)
β − α (15)

and where we denote by β :=
(
β(k)

)K
k=1
∈ Rp the vector made of all the β(k), with

p :=
∑K

k=1 p
(k).

Expression of the variance The variance of the linear estimator µ̂ is the sum
of the variances for each coupling group, since simulations are independent from
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one coupling group to another. We denote by V(X) the variance of any square-
integrable random variable X.

V(µ̂(β)) =
K∑
k=1

V
((
β(k)

)ᵀ
Ê(k)

[
Z(k)

])
(16)

=
K∑
k=1

(
β(k)

)ᵀ
Cov

(
Ê(k)

[
Z(k)

]
, Ê(k)

[
Z(k)

])
β(k) (17)

=
K∑
k=1

1

m(k)

(
β(k)

)ᵀ
Cov

(
Z(k), Z(k)

)
β(k) (18)

=
K∑
k=1

1

m(k)

(
β(k)

)ᵀ
C(k)β(k) (19)

= βᵀΣβ (20)

with Σ := DiagKk=1

(
1

m(k)
C(k)

)
. (21)

We used the independence of the f`
(
X(k,i)

)
for different i to go from (17) to (18),

and used the Diag operator to denote a block-diagonal matrix. Equation (19) is
equivalent to equation (2.8) in SU21.

Convexity of the variance Σ is a block-diagonal matrix with covariance ma-
trices on the diagonal. As a result, it is positive semi-definite and V(µ̂(β)) is a
convex (quadratic) function of β. Note that as will be discussed hereafter, the co-
variance matrices C(k) are actually positive definite, and the variance is a strictly
convex function of β.

Constrained minimization problem The best unbiased estimator is then
given by the minimizer of the variance under the unbiasedness constraint.

β? = arg min
β s.t. g(β)=0

1

2
V
(
µ̂(β)

)
. (22)

Unconstrained minimization problem The assumptions on the coupling groups
S(k) ensure that the L constraints are linearly independent. A vector λ ∈ RL of
Lagrange multipliers can be used to solve the minimization problem. From the
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convexity of the quadratic problem, the solutions of (22) are the solutions of

β?, λ? = arg min
β,λ

L(β, λ), (23)

with L(β, λ) =
1

2
V(µ̂(β))− λᵀg(β). (24)

In particular, the gradient of the Lagrangian,

∇βL = βᵀ DiagKk=1

(
1

m(k)
C(k)

)
− λᵀ

(
P (1) · · · P (K)

)
, (25)

∇λL = βᵀ
(
P (1) · · · P (K)

)ᵀ − αᵀ, (26)

should vanish. The associated linear system is
1

m(1)C
(1) −R(1)

. . . ...
1

m(k)C
(K) −R(K)

P (1) · · · P (K) 0L


β

?

λ?

 =


0
...
0

α

 (27)

To simplify the notations, we drop the stars and write the system as

Σβ − P ᵀλ = 0, (28)
Pβ = α. (29)

This system can be solved by substitution:

From (28): β = Σ−1P ᵀλ (30)
Inserting (30) in (29): PΣ−1P ᵀλ = α (31)

⇐⇒ λ =
(
PΣ−1P ᵀ

)−1
α (32)

Inserting (32) in (30): β = Σ−1P ᵀ
(
PΣ−1P ᵀ

)−1
α. (33)

Invertibility of the matrices We assumed the invertibility of Σ and PΣ−1P ᵀ.
The invertibility of Σ follows from the invertibility of each covariance matrix C(k).
Suppose Σ is singular. Then, there exists a k such that C(k) is singular. Then there
exists a vector γ ∈ Rp(k) \{0} such that γᵀC(k)γ = V(γᵀZ(k)) = 0, i.e.

∑
`∈S(k) γ`Z`

is actually deterministic. One random variable Z` can thus be expressed as an
affine function of the others. It brings no new information to the problem, and
can be removed from the estimator. The invertibility of PΣ−1P ᵀ follows from
the invertibility of Σ−1 and from P being a full-rank linear map from Rp to the
lower-dimensional space RL.
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MLBLUE weights The optimal choice of β is thus given by equation (33):

β =

β(1)

...
β(K)

 =

m1

(
C(1)

)−1
. . .

m(k)
(
C(K)

)−1

R

(1)

...
RK

φ−1α, (34)

where

φ := PΣ−1P ᵀ =
K∑
k=1

m(k)P (k)
(
C(k)

)−1
R(k). (35)

For a given group k, we retrieve equation (2.7) of SU21, namely

β(k) = m(k)
(
C(k)

)−1
R(k)

(
K∑
k′=1

m(k′)P (k′)
(
C(k′)

)−1
R(k′)

)−1
α. (36)

Is it the MLBLUE? The estimators of the form (8) only describe a specific
subset of all possible linear estimators. The more general class of linear estimators
would be

µML =
K∑
k=1

∑
`∈S(k)

m(k)∑
i=1

β
(k,i)
` f`

(
X(k,i)

)
. (37)

Estimators of the form (37) can be related to Eq. (8) by replacing β
(k,i)
` with

β
(k)
` /m(k). In other words, Eq. (8) assumes that at the optimum, the β(k,i)

` weights
should not depend on the sample index i. This independence is a very intuitive
result, that can be derived from the interchangeability of the samples i and the
strict convexity of the variance of (37) as a function of the weights.

Sample allocation Inserting (36) into (19) and simplifying gives the expression
of the minimum variance reachable with a given sample allocation m (equivalent
to equation 2.12 in SU20):

V(µML(m)) = αᵀφ(m)−1α. (38)

The optimal choice for the sample allocation m = (m(1), . . . ,m(K)) is given by
minimizing this variance under a computational cost constraint, which can be
done numerically.
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Model selection and sample allocation problem Alternatively, the model
selection and sample allocation problem (MOSAP) can be solved through a semidef-
inite programming problem, as shown by Croci et al. (2023), in the typical case
where α = eL:

min
m≥0, t

t s.t.



(
φ(m) eL

eᵀL t

)
is positive semi-definite,

mᵀc ≤ b,

mᵀh ≥ 1.

(39)

The second constraint imposes a computational budget b, where c = (c(1), . . . , c(K))ᵀ

describes the computational cost of generating a coupled sample in each coupling
group. The third constraint, where h denotes the vector of {0; 1}K such that
h(k) = 1 if and only if L ∈ S(k), enforces that the high-fidelity model be sampled
at least once.

Note that this extends easily to the case of any α by replacing eL with α and
by adding inequality constraints to ensure that all model with non-zero coefficients
in α are sampled at least once. Also note that this approach to the MOSAP can
handle sample sizes of zero, which means the problem can be directly optimized
on the set of all possible coupling groups. This would not be directly possible with
the sample allocation strategy proposed previously.

A similar version for a target accuracy with no constraint on the computational
budget is also proposed in Croci et al. (2023).
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4 Estimation of the expectation of a random vec-
tor

This section extends the MLBLUE methodology to the estimation of the expecta-
tion of a random vector. Section (4.1) introduces new notations to deal with vector
quantities. We then propose various multilevel estimators of increasing complexity
(sections 4.2 – 4.4), before introducing the general multidimensional MLBLUE in
section 4.5.

4.1 Notations for the multidimensional case

We consider the case where Z` : Ω → Rn are random vectors. All vectors or
matrices related to multidimensional quantities are written in bold.

We are interested in the expectation µ := E
[
Z
]
, where Z := (Z1 . . .ZL)ᵀ is

the random matrix with values in RL×n, obtained by stacking the random vectors
from all fidelity levels so that the first dimension of Z indexes the fidelity levels.

We want to estimate a linear combination of the expectations on different levels,
µα :=

∑L
`=1 α` E

[
Z`

]
= µᵀα, where α is a non-zero vector of RL. In practice, we

are often interested in the estimation for one given fidelity level, typically the
highest, in which case α = eL.

The selection and extension operators from the scalar case naturally extend to
the vector case:

Z(k) := R(k)Z ∈ Rp(k)×n, ∀ 1 ≤ k ≤ K. (40)

Vector equivalent of the variance Under a no-bias constraint, the variance
of a random variable is its (scalar) mean squared error (MSE). In the multidimen-
sional case, minimizing the MSE of an estimator µ̂ using the 2-norm is equivalent
to minimizing the sum of scalar MSEs for all vector elements.

E
[
‖µ̂− µ‖22

]
=

n∑
i=1

E
[
(µ̂i − µi)2

]
(41)

=
n∑
i=1

V(µ̂i) (42)

= Tr Cov (µ̂, µ̂) (43)

where Tr is the trace operator, and where we used the unbiasedness of the estimator
µ̂. It can be seen from here that the natural generalization of the variance for a
random vector is the trace of the covariance matrix, i.e. the sum of the variances
of each vector element.
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Each of the following sections introduces a class of estimators µ̂(β) where β is
a set of weights. Similarly to the scalar case, the optimal value β? of these weights
is found by minimization of the trace of the covariance matrix of the estimator,
under a no-bias constraint:

β? = arg min
β s.t. E[µ̂(β)]=0

Tr Cov
(
µ̂(β), µ̂(β)

)
. (44)

Hereafter, the term variance is sometimes used to refer to the trace of the covari-
ance matrix.

4.2 Scalar weights

The simplest possibility is to use scalar weights β(k)
` , common to all random vector

elements. In this case, µα is estimated through the linear combination of Monte
Carlo estimators

µ̂sw
α =

K∑
k=1

∑
`∈S(k)

β
(k)
` Ê(k)

[
Z`

]
(45)

=
K∑
k=1

Ê(k)
[
Z(k)

]ᵀ
β(k). (46)

The BLUE has no reason to lie in this class of estimators, which is just a subset of
the linear estimators we will introduce in sections 4.3 to 4.5. Finding the optimal
scalar weights β(k)

` is still of interest though, as these scalar-weigthed estimators
are both simple and numerically affordable.
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Unbiasedness constraint

E
[
µ̂sw
α

]
= µα (47)

⇐⇒ E

[
K∑
k=1

Ê(k)
[
Z(k)

]ᵀ
β(k)

]
= E[Zᵀ]α (48)

⇐⇒
K∑
k=1

E
[
Z(k)

]ᵀ
β(k) = E[Zᵀ]α (49)

⇐⇒
K∑
k=1

E
[
R(k)Z

]ᵀ
β(k) = E[Z]ᵀα (50)

⇐⇒ E
[
Z
]ᵀ K∑

k=1

P (k)β(k) = E[Z]ᵀα (51)

⇐⇒
K∑
k=1

P (k)β(k) = α (52)

⇐⇒ g(β) = 0 (53)

where g was defined in Eq. (15). This is exactly the unbiasedness constraint (14)
from the scalar expectation case.

Variance of the estimator Herafter, the covariance operator is occasionally
extended to random matrices using the definition

Cov
(
A,B

)
:= E

[(
A− E[A]

)(
B− E[B]

)ᵀ] (54)

where A and B are any random matrices with same number of columns. This
definition coincides with the usual one in the case of column vectors.
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Tr Cov (µ̂sw
α , µ̂

sw
α ) =

K∑
k=1

1

m(k)
Tr Cov

(
Z(k)ᵀβ(k), Z(k)ᵀβ(k)

)
(55)

=
K∑
k=1

1

m(k)
Tr Cov

(
β(k)ᵀZ(k), β(k)ᵀZ(k)

)
(56)

=
K∑
k=1

1

m(k)
Tr
{
β(k)ᵀ Cov

(
Z(k),Z(k)

)
β(k)

}
(57)

=
K∑
k=1

1

m(k)
β(k)ᵀ Cov

(
Z(k),Z(k)

)
β(k) (58)

=
K∑
k=1

1

m(k)
β(k)ᵀC(k)β(k) (59)

with C(k) := Cov
(
Z(k),Z(k)

)
. Note that the variance of the estimator has the same

expression as in the scalar expectation case (cf. Eq. 19), just replacing C(k) with
C(k).

Interpretation as averaged covariance matrices The relation C(k) = R(k)CP (k)

that defines the C(k) as submatrices of the inter-level covariance matrix is still valid:

C(k) = R(k)CP (k) (60)

with C := Cov
(
Z,Z

)
(61)

The matrix C is just the average of the inter-level covariance matrices that would
be estimated for each element of the random vectors.

C =
n∑
i=1

C(k,i) (62)

where C(k,i) := Cov((Z:,i), (Z:,i)) (63)

and where Z:,i is the i-th column of Z.

Optimal weights and MOSAP From previous paragraphs, it is clear that
all results of the scalar expectation case now apply, just replacing the inter-level
covariances with averaged inter-level covariances.
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For instance, Eq.(36) from the scalar case becomes

β(k) = m(k)
(
C(k)

)−1
R(k)φ−1α, (64)

with φ =
K∑
k=1

m(k)P (k)
(
C(k)

)−1
R(k) (65)

and the MOSAP can be solved by updating φ(m) in Eq. (39).

Application in large dimensions This approach is tractable for large dimen-
sion systems. The most expensive steps have a computational cost that is linear
in n:

• For each of the n grid points (or vector elements more generally), estimate
an L×L covariance matrix. Then, take the average of these n matrices. This
averaging step should help reducing the sampling noise in the estimation of
the covariance matrices.

• As in the scalar expectation case, inverting a few matrices of size at most
L× L.

4.3 Field weights

Amore refined approximation consists in allowing for different β weights depending
on the element consider. This has been introduced by Croci et al. (2023) as a
“multi-output” MLBLUE. We don’t propose anything new in this section compared
to their work.

When the random vector to be estimated can be considered as a discretized
random field, the weights β of the multi-output MLBLUE are varying in space.
Here, we call this estimator the β-field multilevel estimator:

µ̂fw
α =

K∑
k=1

∑
`∈S(k)

Diag
(
β

(k)
`

)
Ê(k)

[
Z`

]
(66)

where the β
(k)
` are now vectors of Rn and Diag

(
β

(k)
`

)
is the diagonal matrix with

diagonal β(k)
` .

This class of multilevel estimators includes the previous one (scalar weights).
This implies that the optimal β-field estimator is at least as good as the estimator
with scalar weights. Nonetheless, it is still a specific class of estimators, that has
no reason to include the BLUE.

16



The minimization problem in this case consists in minimizing a sum of inde-
pendent problems similar to (22). As a consequence, for a given i ∈ {1, . . . , n},
the optimal weights β(k)

`,i are the MLBLUE weights for the scalar random variables
(Z`,i)

L
`=1.

Mean value of space-dependent weights Note that the mean values of the
β
(k)
` vectors differ from the optimal scalar weights (64), due to the non-linearity

introduced by the inverse in (64).

Variance of the estimator The variance of the β-field ML estimator is given
by

V
(
µ̂fw
α (m)

)
=

n∑
i=1

αᵀφi(m)−1α (67)

where φi(m) :=
K∑
k=1

m(k)P (k)
(
C(k,i)

)−1
R(k). (68)

MOSAP Croci et al. (2023) proposes a solution that minimizes the maximum
variance (their equation 21). They also propose variants to minimize, for instance,
the total variance:

min
m≥0, t∈Rn

‖t‖1 s.t.


(
φi(m) α
αᵀ ti

)
is positive semi-definite ,∀i = 1, . . . , n

mᵀc ≤ b
mᵀh ≥ 1

(69)

Application in large dimensions Finding the optimal field weights does not
require much more computations than the scalar weight approach. Both require the
estimation of the C(k,i) matrices. The β-field approach requires to store L(L+1)/2
vectors of size n to store the local covariance matrices. More importantly, it also
requires pn inversions of K matrices of size less than maxk p

(k) and of one matrix
of size L.

4.4 Field weights with change of basis

Rationale Another still larger (but still suboptimal) class of ML estimator can
be defined by applying the estimator in a possibly different space. This approach is
motivated by the intuition that a better variance reduction could be obtained with
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the field-weight estimator if the data could be linearly transformed into a space
where the elements are distributed according to the strength of their interlevel
coupling.

For instance, if the low-fidelity models originate from coarse grid simulations,
a scale decomposition could provide such a transform, with loose coupling on fine
scales and strong coupling on large scales. In this case, there would be a set of
β
(k)
` weights for each wave number instead of each vector element.
This class of estimator is especially interesting for two reasons:

1. It is the largest class of estimators that are still computationally tractable in
high dimension, i.e. with a computational cost in O(n log(n)) with respect
to the vector size n.

2. It can be interpreted as an optimal post-smoothing, similar to what is done
in multigrid methods.

The derivations here may be a bit cumbersome though, so the impatient reader is
invited to go directly to section 4.5 on the general multivariate MLBLUE.

Definition Let W ∈ Rn×n be an orthonormal matrix, so that WᵀW = WWᵀ =
In. We introduce the class of W -field multilevel estimators:

µ̂W
α :=

K∑
k=1

∑
`∈S(k)

W Diag
(
β

(k)
`

)
WᵀÊ(k)

[
Z`

]
(70)

= W
K∑
k=1

∑
`∈S(k)

Diag
(
β

(k)
`

)
Ê(k) [WᵀZ`] . (71)

Relation to the β-field estimators Intuitively, the optimal W -field estima-
tor should be obtained by applying the optimal β-field estimator to the transformed
samples WᵀZ`, and transforming the result back to the physical space. This intu-
itive result is now properly derived.

To simplify the notations, let us denote by µ̂fw(Z,β) a β-field estimator based
on samples from Z and on (possibly non-optimal) field weights β. µ̂fw(Z,β) is a
possibly biased and possibly sub-optimal estimator for µα. Similarly, we denote
by µ̂W(Z,β,W) the W -field estimator based on samples Z and using field weights
β.

Then equation (71) can be rewritten as

µ̂W(Z,β,W) := Wµ̂fw(ZW,β) (72)
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Unbiasedness We first show that unbiasedW -field estimators are necessarily as-
sociated to unbiased β-field estimator. Let (P1) be the proposition “µ̂W(Z,β,W)
is an unbiased estimator of E[Z]ᵀα”.

(P1) ⇐⇒ E
[
µ̂W(Z,β,W)

]
= E[Z]ᵀα (73)

⇐⇒ E
[
Wµ̂fw(ZW,β)

]
= E[Z]ᵀα (74)

⇐⇒ WE
[
µ̂fw(ZW,β)

]
= E[Z]ᵀα (75)

⇐⇒ E
[
µ̂fw(ZW,β)

]
= Wᵀ E[Z]ᵀα using WᵀW = WWᵀ = In (76)

⇐⇒ E
[
µ̂fw(ZW,β)

]
= E[ZW]ᵀα (77)

⇐⇒ (P2) (78)

with (P2): “µ̂fw(ZW,β) is an unbiased estimator of E
[
ZW

]ᵀ
α”.

Minimal variance We then show that the mean square errors of two associated
estimators are equal.

MSE
(
µ̂W(Z,β,W),E[Z]ᵀα

)
= E

[∥∥µ̂W(Z,β,W)− E[Z]ᵀα
∥∥2] (79)

= E
[∥∥Wµ̂fw(ZW,β)− E[Z]ᵀα

∥∥2] (80)

= E
[∥∥WᵀWµ̂fw(ZW,β)−Wᵀ E[Z]ᵀα

∥∥2] (81)

= E
[∥∥µ̂fw(ZW,β)− E[ZW]ᵀα

∥∥2] (82)

= MSE
(
µ̂fw(ZW,β),E[ZW]ᵀα

)
(83)

where we used WWᵀ = In to obtain (81) and WᵀW = In to obtain (82).
Since the unbiased estimators have equal mean square errors, the best unbiased

W -field estimator is associated to the best unbiased β-field estimator through (72).
All results valid for the β-field estimator (optimal values, sample allocation) can
thus be applied here, by replacing random vectors Z` by WᵀZ`.

Numerical cost of applying the estimator To limit the number of trans-
forms, the W -field ML estimator can be applied as

µ̂W
α = W

K∑
k=1

∑
`∈S(k)

Diag
(
β

(k)
`

)
WᵀÊ(k)

[
Z`

]
(84)

which counts p forward transforms and one inverse transform (in the MLMC case,
2L transforms. See page 7 for the definition of p).
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Numerical cost of estimating the optimal weights The estimation of the
optimal weights requires the computation of element-wise covariance matrices
C(k,i). The simplest approach consists in estimating the C(k,i) from a set of N ×L
transformed and coupled realizations, with N a large sampling size. The trans-
formation of this training ensemble into the W -space requires N × L forward
transforms.

Choice of W This estimator depends on the choice of W. With W = In, we
retrieve the β-field estimator. With a Fourier basis, we get the optimal spectral
filters.

Note that if W is allowed to vary, theW -field estimators encompass all estima-
tors with real valued symmetric matrices that are simultaneously diagonalizable.
This is less general than the BLUE introduced in section 4.5, where the matrix
weights are generally not symmetric.

4.5 Matrix weights – the multidimensional MLBLUE

The general MLBLUE for a random vector estimation has matrix weights, as
mentioned in Croci et al. (2023). We follow the same approach as SU20 for the
derivation of the MLBLUE in this context. A variance minimization approach is
also feasible and would yield the same results (see appendix A).

Notations Some notations need to be updated for this section:

• The random vectors Z1, . . . ,ZL on each levels can now have different sizes n`
possibly all different from n. For instance, if the low-fidelity samples originate
from simulations on coarse grids, there is no requirement to interpolate them
back to the grid of the fine level L. To shorten notations, we define:

N :=
L∑
`=1

n` (85)

n(k) :=
∑
`∈S(k)

n` (86)

• Z is now the concatenation of the L random vectors Z` ∈ Rn` .

Z :=
(
Zᵀ

1 · · ·Z
ᵀ
L

)ᵀ
∈ RN (87)

µ := E
[
Z
]

(88)
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• The selection and extension operators are extended accordingly, to select
only the part Z(k) of Z which is relevant to some coupling group k.

Z(k) :=
(
· · ·Zᵀ

` · · ·
)ᵀ
`∈S(k)

∈ Rn(k)

(89)

R(k) of size n(k) ×N such that R(k)Z = Z(k) (90)

P(k) := R(k)ᵀ (91)
(92)

• The α coefficients are extended to a matrix α representing a linear map from
RN to Rn. In the most common case, we are interested in the high-fidelity
level and n = nL. In this case, α is the selection operator for this level.

α :=
(
0n×n1 . . .0n×nL−1

In

)
(93)

(94)

The quantity of interest here is µα := αµ ∈ Rn.

Normal equations All samples are concatenated in a big column vector of
“observations” Z :=

((
Z(k),i

)m(k)

i=1

)K
k=1

, where Z(k),i ∈ Rn(k) is the i-th (random)
sample on coupling group k. The size of Z is

∑K
k=1m

(k)n(k).
The “observation operator” relating µ and Z is the column block vector H :=((

R(k)
)m(k)

i=1

)K
k=1

. Then

Z = Hµ + ε (95)
with ε := Z−Hµ (96)

We have the following properties about the noise ε.

E[ε] = 0 (97)
Cov(ε, ε) = Cov

(
Z, Z

)
(98)

= DiagKk=1

(
Diagm

(k)

i=1

(
C(k)

))
(99)

with C(k) := Cov
(
Z(k),Z(k)

)
(100)

Invertibility of the covariance matrices Thereafter, we assume that the
matrices C(k) are non-singular.

This may not be the case in some cases, and some care should be taken in
defining the low-fidelity samples. For instance, the assumption is not valid if some
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low fidelity samples on level ` are coarse grid simulations linearly interpolated to
a finer grid. In this situation, the extrapolated elements in Z` can be expressed as
a linear combination of the other elements it was extrapolated from, so that C(k)

has a non zero kernel and is singular.
To meet the non-singularity assumption in this case, the low fidelity simulations

on the coarse grid should be used as is, without any interpolation. It is the role
of the MLBLUE to compute the optimal linear transform that best maps samples
from this low-fidelity level to the finest grid. The matrix weights here act not only
as optimal multilevel weights, but also as interpolators and smoothers.

Associated generalized least-squares problem

min
µ∈RN

‖Z−Hµ‖2Cov(ε,ε)−1 (101)

which could be decomposed as a sum over the coupling group k, as a consequence
of the block-diagonal structure of Cov(ε, ε)−1.

BLUE for the expectation of a random vector The solution is given by

µ̂mat,? =
(
Hᵀ Cov(ε, ε)−1H

)−1
Hᵀ Cov(ε, ε)−1Z (102)

= φ−1y (103)

with φ :=
K∑
k=1

m(k)P(k)
(
C(k)

)−1
R(k) (104)

and y :=
K∑
k=1

m(k)P(k)
(
C(k)

)−1
Ê(k)

[
Z(k)

]
(105)

Partial estimation The BLUE for µα is actually αµ̂mat,?.

Matrix weights The previous equations can be expanded to evidence the mul-
tilevel structure of the estimator.

αµ̂mat,? =
K∑
k=1

β(k)Ê(k)
[
Z(k)

]
(106)

=
K∑
k=1

∑
`∈S(k)

β
(k)
` Ê(k) [Z`] (107)

β(k) = m(k)αφ−1P(k)
(
C(k)

)−1 ∈ Rn×n(k)

(108)

=
(
· · · β(k)

` · · ·
)
`∈S(k)

(109)
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Variance and sample allocation The approach of Croci et al. (2023) to solve
the MOSAP via semdidefinite programming is not directly applicable to this case.
Some work on extending it would be of interest.

For a given selection of groups of levels, the variance of the ML matrix-weighted
estimator with optimal matrix weights is given by

Tr Cov
(
µ̂mat,?, µ̂mat,?) = Tr

(
αφ−1(m)αᵀ

)
(110)

which can be used to find the optimal sample allocation m for this specific choice
of levels and coupling structure.

With suboptimal matrix weights β(k), the variance is given by

Tr Cov
(
µ̂mat, µ̂mat) =

K∑
k=1

m(k) Tr
(
β(k)C(k)

(
β(k)

)ᵀ)
(111)

Remark In the case of a weighted MLMC, the no-bias condition implies that
last matrix weight βL,K is In.

Computational cost This approach is untractable as is for large-dimension
systems. Indeed, estimating the matrix weights requires:

• Estimating the covariance matrix C := Cov(Z,Z) of size N by N , which
is a O

(
n2
)
task. The covariance matrices C(k) can then be extracted as

C(k) = R(k)CP(k). Some of these C(k) are invertible only if C is estimated
with at least maxk n

(k) + 1 samples, which may be very expensive. A pos-
sible workaround to the singularity of C could be using some regularization
technique such as covariance localization or ridging.

• Inverting the φ matrix, of size N , and each C(k) matrix of size n(k), or solving
linear systems of associated sizes if the weights are directly applied to some
MC estimate.

Making it tractable in large dimensions There are various ways forward
to simplify this multilevel estimator to make it tractable in large dimension. If
the simulations are attached to a physical space with some notion of distance, the
interpretation of the matrix weights as interpolators and smoothers suggest that
the β

(k)
` matrices could be imposed as sparse. This means that the estimation

of an element on the fine grid should only involve low-fidelity elements that are
within some maximum distance. The matrix weights could be further simplified
by imposing some invariance by translation, or have some periodicity based on the
underlying grids.
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Alternatively, the simplification could be done the other way round. The inter-
level and inter-element covariance matrices C(k) could be computed only on pair
of points within a given distance. Beyond this distance, the covariances would be
assumed to be zero. This could be an interesting avenue for future research.

Relation with other multilevel estimators The multilevel estimators in-
troduced in sections 4.2 to 4.4 can be considered as special cases of the general
matrix-weight estimator.

• The estimator with scalar weights is restricting itself to β
(k)
` matrices of the

form β
(k)
` In.

• The β-field estimator is restricting itself to β(k)
` matrices of the form Diag

(
β

(k)
`

)
(where β

(k)
` is now a vector).

• The W -field estimator is restricting itself β(k)
` matrices that are all diagonal-

izable in the basis W.

• The tractable approaches mentioned in previous paragraph would restrict to
sparse matrix weights, or kernel-based matrices.
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5 Estimation of a scalar covariance
Let X = (X`)

L
`=1 and Y = (Y`)

L
`=1 be random vectors gathering the scalar ran-

dom variables X1, . . . , XL and Y1, . . . , YL. We group the covariances of X` and
Y` for each ` in the vector c := (Cov(X`, Y`))

L
`=1. We are interested in a linear

combination of the elements of c, of the kind αᵀc, with α ∈ Rn \ {0}. In practice,
α = (0 . . . 0 1) ∈ RL.

Given some some coupling structure
(
S(k),m(k)

)K
k=1

, we are looking for the best
unbiased estimator of αᵀc of the form

ĈML
α =

K∑
k=1

∑
`∈S(k)

β
(k)
` Ĉ(k)(X`, Y`) (112)

where Ĉ(k)(X`, Y`) is the sample covariance estimator of X` and Y` based on m(k)

coupled samples.

Ĉ(k)(X`, Y`) :=
m(k)

m(k) − 1
Ê(k)

((
X` − Ê(k)(X`)

)(
Y` − Ê(k)(Y`)

))
(113)

This is an unbiased estimator for Cov(X`, Y`).

A linear estimator? The multilevel MC estimators of the form (112) depend
quadratically on the samples, and as such are not truly linear estimators. A mul-
tilevel best linear unbiased estimator for the covariance does not exist in general.
However, estimators (112) are still linear in the MC estimators they combine, which
is why we use the name MLBLUE for covariance estimators as well. The regression
approach could be used here to derive the MLBLUE, but the MC estimators on
each coupling groups should be used instead of the samples.

Relation to the expectation case This problem is very similar to the problem
faced in section 3 for the estimation of the expectation. The two important points
needed to extend the results are the unbiasedness of the MC estimators involved,
and an expression of their covariances.

• Diag
(
Ĉ(k)

(
X(k), Y (k)

))
is an unbiased estimator for R(k)c, similar to the

expectation case where Ê(k)
[
Z(k)

]
is an unbiased estimator of R(k)µ.

• However, the covariance of MC estimators for the covariances does not sim-
plify as well as the MC estimators for the mean.
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Let C(k), of size p(k) by p(k), denote the covariance of the MC estimator on
group k with m(k) samples. It differs from the covariance C(k) of the random
vectors Z(k). For the estimation of the mean, we have

C(k) = Cov
(
Ê(k)

[
Z(k)

]
, Ê(k)

[
Z(k)

])
(114)

= 1/m(k)C(k) (115)

For the estimation of the covariance, we have

C(k) := Cov
(

Diag
(
Ĉ(k)

(
X(k), Y (k)

))
,Diag

(
Ĉ(k)

(
X(k), Y (k)

)))
(116)

which is expanded later in this section.

MLBLUE results expressed as a function of the C(k) The solution to the
constrained minimization problem is given by

β(k) =
(
C(k)

)−1
R(k)φ−1α (117)

with φ :=
K∑
k=1

P (k)
(
C(k)

)−1
R(k). (118)

The variance of the MLBLUE is αᵀφ−1α. Note that this paragraph is valid
for the estimation of the expectation, for the estimation of the covariance, but
also for the estimation of any scalar statistic which admits unbiased Monte Carlo
estimators. @Paul,Selime: Should this be underlined by transforming the section
into Estimation of a scalar statistics?

Estimating the C(k) Covariances C(k) can be expressed as a function of the first
centered-moments of R(k)X and R(k)Y , isolating the dependence on the sample
size m(k). Let’s drop the k for the sake of clarity, and focus on the covariance
matrix C associated to X and Y . It can be shown (equation 9 of M15a) that for
`, `′ ∈ {1, . . . , L}, element `, `′ of C is

C`,`′ =
M4 [X`, X

′
`, Y`, Y

′
` ]

m(k)
− Cov (X`, Y`) Cov (X`′ , Y`′)

m(k)

+
Cov (X`, Y`′) Cov (Y`, X`′) + Cov (X`, X`′) Cov (Y`, Y`′)

m(k)(m(k) − 1)
(119)

with M4 [X1, X2, X3, X4] := E [Π4
i=1 (Xi − E [Xi])].

In the case of variance estimation, when X = Y , equation (119) simplifies to

C`,`′ =
M4 [X`, X

′
`]

m(k)
− V (X`)V (X`′)

m(k)
+

2 Cov (X`, X`′)
2

m(k)(m(k) − 1)
(120)
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with M4 [X1, X2] := M4 [X1, X1, X2, X2] (the definition of M4 depends on the num-
ber of parameters it is given).

MOSAP The semidefinite programming approach to the MOSAP does not ex-
tends naturally here, as the matrix φ(m) no longer depends linearly on the sample
sizes m. Note this will be the case for all multilevel estimators of the covariance
introduced in this note, including multilevel estimators of covariance matrices.

This could be circumvented by minimizing an upper bound of the variance
that linearly depends on the inverses of the samples sizes, as done ny Mycek and
De Lozzo (2019).

Another solution that does not introduce approximations is given by falling
back to the constrained minimization of the non linear variance αᵀφ(m)−1α, or by
solving the non-linear semidefinite problem of Croci et al. (2023).

Computational cost

• In practice, all the involved matrices are of size at most L (i.e. 2 or 3).

• Ensemble estimates of fourth-order moments are more noisy than ensemble
covariances. As a consequence, the ensemble sizes used to estimate C should
be larger here than in section 3 to reach a similar robustness.

• C is a symmetric matrix, so only L(L + 1)/2 elements really need to be
estimated. This number can be even more reduced by noting that covariances
between levels that are not coupled (`, `′ so that ∀k, ` ∈ S(k) ⇒ `′ /∈ S(k))
need not be computed.
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6 Estimation of a covariance matrix

6.1 The problem

How do the results of previous section extend to the multidimensional case? The
general MLBLUE for the estimation of a covariance matrix involves fourth-order
tensors linearly combining the entries of several covariance matrix estimators into
one matrix. We don’t derive it here, as it is computationnally prohibitively expen-
sive in high-dimension applications. Instead, we focus on multilevel estimators of
the covariance matrix that are both simpler and computationally affordable.

The X` are now random vectors of Ω→ Rn. Note that they are imposed to have
the same dimension, which would not be the case with the general MLBLUE. They
are concatenated in the random vector X := (Xᵀ

1, . . . ,X
ᵀ
L)ᵀ. We are interested in

the covariance matrix Cov(X,X) of size nL.

Partial estimation More specifically, we are often interested in estimating
only some blocks of Cov(X,X), for instance the last block Cov(XL,XL). To
extend the formalism to this kind of situation, we focus on estimating Cα :=∑L

`=1 α` Cov(X`,X`) for some non-zero vector α ∈ RL.

Generalized variance for a matrix estimator We choose the Frobenius norm
to measure mean square errors for matrix estimators, as in M15a. The choice of
the Frobenius norm is associated to the following bias-variance decomposition:

MSE
(
B̂,B

)
=

n∑
i=1

n∑
j=1

V(B̂ij) +
∥∥∥E [B̂−B

]∥∥∥2
F

(121)

Hereafter, we overload the variance operator and define

V(B̂) :=
n∑
i=1

n∑
j=1

V(B̂ij) (122)

for any matrix-valued random variable B̂.

6.2 Scalar weights

We first consider the case of scalar weights, one for each MC estimator, common
to all matrix elements in the estimator.
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Class of estimators

ĈML =
K∑
k=1

∑
`∈S(k)

β
(k)
` Ĉ(k) (X`,X`) (123)

where β(k)
` is a scalar.

Optimal scalar weights The optimal weights can be retrieved very similarly
to what is done for multidimensional expectation in section 4.2.

The same relation (53) guarantees the unbiasedness of the estimator. It can
be used as a constraint to minimize the variance of the estimator, given by a
relationship similar to equation (59).

V
(
ĈML

)
=

K∑
k=1

(
β(k)

)ᵀ( n∑
i=1

n∑
j=1

C(k,ij)

)
β(k) (124)

where C(k,ij) is the covariance matrix of size p(k)× p(k) for Monte Carlo covariance
estimators Ĉ(k)(X`,i, X`,j), ` ∈ S(k).

The optimal weights are then given by equation (117), replacing C(k) with∑n
i=1

∑n
j=1 C(k,ij), or equivalently with 1/n2

∑n
i=1

∑n
j=1C(k,ij).

Estimating the average C(k,ij) The expression of the average inter-level covari-
ance matrix of MC estimators directly follows from the expression in the scalar
case (section 5).

n∑
i=1

n∑
j=1

C(k,ij)
`,`′ =

n∑
i=1

n∑
j=1

(
M4 [X`,i, X`′,i, X`,j, X`′,j]

m(k)

− Cov (X`,i, X`,j) Cov (X`′,i, X`′,j)

m(k)

+
Cov (X`,i, X`′,j) Cov (X`,j, X`′,i) + Cov (X`,i, X`′,i) Cov (X`,j, X`′,j)

m(k)(m(k) − 1)

)
(125)

MOSAP As explained in section 5, the semidefinite programming approach to
the MOSAP does not extend naturally here.

Computational cost Estimating
∑n

i=1

∑n
j=1 C(k,ij) directly is not tractable in

high dimension, as the number of operations is quadratic in the grid size n. Fortu-
nately, it is possible to reduce the cost of this estimation from O (nen

2) to O (n2
en),

where ne is the size of the ensemble used to estimate centered statistics in the pre-
processing step (see appendix B).
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Sample allocation for MLMC The expression of the variance of a general
estimator given here can be used to estimate the optimal sample allocation for the
MLMC estimator of a covariance matrix. This is detailed in appendix C.

6.3 Matrix field weights

Class of estimators

ĈML =
K∑
k=1

∑
`∈S(k)

β
(k)
` ◦ Ĉ

(k) (X`,X`) (126)

where β
(k)
` is an n× n matrix and ◦ denotes the Schur (element-wise) product.

Unbiasedness, Variance, Optimal weights From the definition of the gener-
alized variance derived from the Frobenius norm, the problem can be decomposed
as independent estimations of n2 scalar covariances. See section 5 for more details.

Numerical cost Unaffordable as such, since it requires the estimation of n2

scalar coefficients.

Relation to covariance localization The use of a Schur product applied to
a covariance matrix in equation (126) reminds of covariance localization in data
assimilation (e.g. Lorenc, 2003). This regularization technique consists in element-
wise multiplication of an ensemble covariance matrix with a parametrized distance-
dependent correlation matrix L:

L ◦ Ĉ(k) (X`,X`) (127)

Localization differs from what has been considered so far, has it yields a biased
estimator of the covariance matrix wherever L is not 1. Optimizing the variance
without the bias constraint makes no sense, but optimizing the MSE does, since
it includes a bias and a variance contribution. This is one of the ideas presented
in M15b, which we extend to the multilevel case in next section.

6.4 Optimal localization

We propose here an extension of the optimal localization theory of M15a and M15b
to multilevel covariance estimators. We first derive the results in the line of the
previous sections. An aptempt to propose a derivation based on the approach of
M15a and M15b (see also Ménétrier, 2020) is proposed in appendix D. Though
both approaches yield the same practical results, the associated assumptions and
interpretations are slightly different.
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Contrarily to previous sections, we no longer minimize the variance under a
no-bias constraint. The localization makes the covariance estimator biased, so we
rather minimize the mean squared error of the localized multilevel estimator.

6.4.1 General case

To simplify the notations, we note B` := Cov(X`,X`) and B̃
(k)
` := Ĉ(k) (X`,X`).

From the unbiasedness of the Monte Carlo covariance estimator, we have E
[
B̃

(k)
`

]
=

B`.

Class of estimators

B̂ML =
K∑
k=1

∑
`∈S(k)

L
(k)
` ◦ B̃

(k)
` (128)

where L
(k)
` is an n× n matrix, without any imposed structure at this stage.

Minimizing the MSE We want to minimize the mean square error of the lo-
calized covariance estimator:

MSE
(
B̂ML,BL

)
=

n∑
i=1

n∑
j=1

E

 K∑
k=1

∑
`∈S(k)

L
(k)
`,ij ◦ B̃

(k)
`,ij −BL,ij

2 (129)

The function to minimize is the sum of n2 independent cost functions. We now
focus on one independent sub-problem i, j. To ease the notations, we drop the ij
indexes and denote L(k)

` := L
(k)
`,ij, B̃

(k)
` := B̃

(k)
`,ij and B` := B`,ij. The problem reads

as

min
L
(k)
` , 1≤k≤K, `∈S(k)

E

 K∑
k=1

∑
`∈S(k)

L
(k)
` B̃

(k)
` −BL

2 (130)

To further simplify the notations, we define stacked vectors containing the infor-
mation from all levels in all coupling groups:

L :=
((
L
(k)
`

)
`∈S(k)

)K
k=1
∈ Rp (131)

B̃ :=
((
B̃

(k)
`

)
`∈S(k)

)K
k=1
∈ Rp (132)

B :=
(
(B`)`∈S(k)

)K
k=1
∈ Rp (133)
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with p =
∑K

k=1 p
(k).

Equation (130) becomes

min
L

E
[(
LᵀB̃ −BL

)2]
= min

L
E
[(
LᵀB̃

)(
B̃

ᵀ
L
)
− 2BL

(
B̃

ᵀ
L
)

+B2
L

]
= min

L
Lᵀ E

[
B̃B̃

ᵀ
]
L− 2BL E

[
B̃

ᵀ
]
L+B2

L

= min
L

Lᵀ E
[
B̃B̃

ᵀ
]
L− 2BLB

ᵀL (134)

Setting the gradient with respect to L to zero yields the optimality criterion

E
[
B̃B̃

ᵀ
]
L = BLB (135)

Invertibility of E
[
B̃B̃

ᵀ
]

The uniqueness of the optimal localization is not guar-

anteed, in particular if the matrix E
[
B̃B̃

ᵀ
]
on the left-hand side is not invertible.

This should not be a problem though, as cases of non-invertibility are related to
flat gradient in the MSE, which means to variations of L which don’t impact the
MSE. In practice, the non-uniqueness of these cases i, j can be decided from the
neighbouring pairs of points. For instance, parametric correlation matrices can be
fit to these raw optimal localizations, to ensure the positive semidefiniteness of the
localization matrices.

Sample or asymptotic quantities The left hand-side matrix could be ex-
pressed as a function of the sample size and asymptotic quantities. We could
then use a large independent ensemble to estimate these asymptotic quantities.
In practice, we don’t have such large ensembles. A possible workaround is to ex-
press everything in terms of expectations of sample quantities, and to exploit the
structure of the localization matrix.

6.4.2 Imposing some structure to the localization matrix

In practice, the localization matrix has some predefined structure, both for ease of
estimation and ease of use. The state space Rn is attached to some physical space,
three-dimensional for instance. Assuming for instance horizontal homogeneity and
isotropy, we can define an equivalence relation between pairs (i, j), associating
pairs that should have the same localization. The space of pairs Rn × Rn is thus
partitioned into equivalence classes.

L
(k)
`,ij = L

(k)
`,C where C = [(i, j)] is the equivalence class of (i, j) (136)
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In this context, equation (129) reads as

MSE
(
B̂ML,BL

)
=

n∑
i=1

n∑
j=1

E

 K∑
k=1

∑
`∈S(k)

L
(k)
`,[(i,j)] ◦ B̃

(k)
`,ij −BL,ij

2 (137)

where the localization L(k)
`,ij has been replaced by L(k)

`,[(i,j)]. This minimization prob-
lem is associated to independent problems for each class C = [(i, j)].

min
L
(k)
`, C , 1≤k≤K, `∈S(k)

∑
(i,j)∈C

E

 K∑
k=1

∑
`∈S(k)

L
(k)
`, CB̃

(k)
`,ij −BL,ij

2 (138)

As previously done, we define stacked vectors of Rp: L, B̃ij and Bij for (i, j) ∈ C.
Expanding the MSE gives

min
L

∑
(i,j)∈C

E
[(
LᵀB̃ij −BL,ij

)2]

= min
L

Lᵀ

 ∑
(i,j)∈C

E
[
B̃ijB̃ij

ᵀ
]L− 2

 ∑
(i,j)∈C

BL,ijBij
ᵀ

L (139)

which is associated to the optimality criterion 1

|C|
∑

(i,j)∈C

E
[
B̃ijB̃ij

ᵀ
]L =

 1

|C|
∑

(i,j)∈C

BL,ijBij
ᵀ

 (140)

Relating asymptotic quantities to expectations of sampled moments
Using results from Ménétrier (2020, equation 4.2), we can relate asymptotic quan-
tities to expectations of sample quantities:

BL,ijB`,ij = P1(m)E
[
Ĉm (X`,i, X`,j) Ĉm (XL,i, XL,j)

]
+ P2(m)

(
E
[
Ĉm (X`,i, XL,i) Ĉm (X`,j, XL,j)

]
+ E

[
Ĉm (X`,i, XL,j) Ĉm (X`,j, XL,i)

])
+ P3(m)E

[
M̂4

m (X`,i, X`,j, XL,i, XL,j)
]

(141)

where m ≥ 4 is a sampling size, Ĉm is the unbiased Monte Carlo estimator of co-
variance form samples, M̂4

m is the Monte Carlo estimator for fourth-order centered
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moments, and P1(m), P2(m) and P3(m) are rational fractions.

Ĉm(X, Y ) =
1

m− 1

m∑
i=1

X̃(i)Ỹ (i) (142)

M̂4
m(X, Y, Z, T ) =

1

m

m∑
i=1

X̃(i)Ỹ (i)Z̃(i)T̃ (i) (143)

with X̃(i) = X(i) − Êm(X) etc. (144)

P1(m) =
(m− 1)(m2 − 3m+ 1)

m(m− 2)(m− 3)
(145)

P2(m) =
m− 1

m(m− 2)(m− 3)
(146)

P3(m) = − m

(m− 2)(m− 3)
(147)

In practice, this relation requires estimating covariances between fine level L
and any level `. This can be done using a coupling group involving all fidelity
levels. Ideally, the estimation should be performed independently of the covariance
estimation.

Ergodicity assumption Using expression (141) to express the right-hand side
of (140), we still have to express expectations of sample quantities. Estimating
this expectations by single-sample Monte Carlo estimators is a possible solution.
The high resulting sampling noise is actually cancelled out by the averaging over
the whole equivalence class C. Pretending that the noise is averaged out implicitly
supposes that space averages are equivalent to sampling a common process (ergodic
assumption). The approach of Benjamin Ménétrier presented in appendix D gives
more insight on what this process may be.

Numerical cost In practice, the operator
∑

(i,j)∈C E [·] could also be replaced
by an average over a random subset of C as is done in M15a.

Drawbacks In a single-level setting, Ménétrier and Auligné (2015) showed how
the localization and hybridization weights could be jointly optimized. The ap-
proach was very appealing, but later trials showed it was less robust than a two-
step optimization, where localization would be first optimized before optimizing
the hybridization weights (Ménétrier, personal communication). A similar behav-
ior may occur here, where having too many degrees of freedom in the optimization
problem may result in non robust solutions.
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A Retrieving the MLBLUE for the multidimen-
sional expectation through constrained minimiza-
tion of the variance

We retrieve here the results of section 4.5 with the variance minimization approach
used in 3. The notations of section 4.5 are used here. In particular, all random
quantities are column vectors.

We define the class of matrix-weighted ML estimators for αµ = µα of the form

µ̂mat =
K∑
k=1

∑
`∈S(k)

β
(k)
` Ê(k)

[
Z`

]
(148)

where the β
(k)
` are matrices of Rn×n` . The inner sum can be made implicit by

joining these matrices into β(k) :=
(
· · · β(k)

` · · ·
)
`∈S(k) .

µ̂mat =
K∑
k=1

β(k)Ê(k)
[
Z(k)

]
(149)

Variance of the estimator The variance of the matrix-weighted estimator is
given by

Tr Cov
(
µ̂mat, µ̂mat) =

K∑
k=1

1

m(k)
β(k)C(k)

(
β(k)

)ᵀ
(150)

= β DiagKk=1

(
1

m(k)
C(k)

)
βᵀ (151)

with C(k) := Cov
(
Z(k),Z(k)

)
(152)

and β :=
(
· · · β(k) · · ·

)
1≤k≤K ∈ Rn×

∑
k n

(k)

(153)

Unbiasedness constraint The no-bias condition is given by

K∑
k=1

β(k)R(k) −α = 0 (154)

⇔ βPᵀ −α = 0 (155)

with P :=
(
P(1) . . .P(K)

)
∈ RN×

∑
k n

(k)

(156)
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Unconstrained minimization problem We introduce Lagrange multipliers
Λ.

β,Λ = argmin
β∈Rp×

∑
k n(k)

,Λ∈Rn×N

1

2
Tr

(
β DiagKk=1

(
1

m(k)
C(k)

)
βᵀ

)

−
n∑
i=1

N∑
j=1

Λij (βPᵀ −α)ij (157)

Associated linear system Setting the gradient with respect to β and Λ to
zero yields the following linear system.

βΣ−ΛP = 0 (158)
βPᵀ = α (159)

with Σ := DiagKk=1

(
1

m(k) C
(k)
)
.

Optimal matrix weights The unique solution is given by

β = αφ−1P DiagKk=1

(
m(k)

(
C(k)

)−1)
(160)

with φ := P DiagKk=1

(
m(k)

(
C(k)

)−1)
Pᵀ (161)

=
K∑
k=1

m(k)P(k)
(
C(k)

)−1
R(k) (162)

From which we can retrieve expressions (108) and (109) for β(k) and β
(k)
` .
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B Estimating the average covariance matrix of co-
variance estimators

The elements of the average covariance matrix
∑n

i=1

∑n
j=1C(k,ij) of covariance

estimators, given by equation (125), are needed in two (not unrelated) situations:

1. To numerically optimize the weights and generalized sample allocation of the
MLBLUE of a covariance matrix with scalar weights (see 6.2);

2. To numerically optimize the generalized sample allocation of an MLMC es-
timator of a covariance matrix (see appendix C).

The goal of this appendix is to provide computationally tractable ways to estimate
the L× L matrix of these elements.

Each element of the matrix of interest can be decomposed into four terms. For
1 ≤ k ≤ K and `, `′ ∈ S(k):

n∑
i=1

n∑
j=1

C(k,ij)
`,`′ =

n∑
i=1

n∑
j=1

M4 [X`,i, X`′,i, X`,j, X`′,j]

m(k)

−
n∑
i=1

n∑
j=1

Cov (X`,i, X`,j) Cov (X`′,i, X`′,j)

m(k)

+
n∑
i=1

n∑
j=1

Cov (X`,i, X`′,j) Cov (X`,j, X`′,i)

m(k)(m(k) − 1)

+
n∑
i=1

n∑
j=1

Cov (X`,i, X`′,i) Cov (X`,j, X`′,j)

m(k)(m(k) − 1)
(163)

As is, the double sums over the state dimension n prevent any explicit computation.
Fortunately, naive Monte Carlo estimates of the centred moments can be reordered
to make sure the cost of estimation stays linear in n.

Each one of the four terms can be estimated from (biased) Monte Carlo estimates
based on coupled independent samples indexed by s, 1 ≤ s ≤ ne. We denote as
X̃s
`′,i := Xs

`,i − 1
ne

∑ne

s=1X
s
`,i the centred perturbations associated to a sample Xs

`,i.
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First term: fourth-order moment
n∑
i=1

n∑
j=1

M4 [X`,i, X`′,i, X`,j, X`′,j] ≈
n∑
i=1

n∑
j=1

1

ne

ne∑
s=1

X̃s
`,iX̃

s
`′,iX̃

s
`,jX̃

s
`′,j (164)

=
1

ne

ne∑
s=1

(
n∑
i=1

X̃s
`,iX̃

s
`′,i

)2

(165)

Second term: product of intra-level covariances

n∑
i=1

n∑
j=1

Cov (X`,i, X`,j) Cov (X`′,i, X`′,j) ≈

n∑
i=1

n∑
j=1

(
1

ne − 1

ne∑
s=1

X̃s
`,iX̃

s
`,j

)(
1

ne − 1

ne∑
s′=1

X̃s′

`′,iX̃
s′

`′,j

)

=
1

(ne − 1)2

ne∑
s=1

ne∑
s′=1

(
n∑
i=1

X̃s
`,iX̃

s′

`′,i

)2

(166)

Third term: product of inter-level inter-point covariances

n∑
i=1

n∑
j=1

Cov (X`,i, X`′,j) Cov (X`,j, X`′,i) ≈

n∑
i=1

n∑
j=1

(
1

ne − 1

ne∑
s=1

X̃s
`,iX̃

s
`′,j

)(
1

ne − 1

ne∑
s′=1

X̃s′

`,jX̃
s′

`′,i

)

=
1

(ne − 1)2

ne∑
s=1

ne∑
s′=1

(
n∑
i=1

X̃s
`,iX̃

s′

`′,i

)(
n∑
i=1

X̃s
`′,iX̃

s′

`,i

)

=
1

(ne − 1)2

ne∑
s=1

(
n∑
i=1

X̃s
`,iX̃

s
`′,i

)2

+
2

(ne − 1)2

ne∑
s=1

ne∑
s′>s

(
n∑
i=1

X̃s
`,iX̃

s′

`′,i

)(
n∑
i=1

X̃s
`′,iX̃

s′

`,i

)
(167)

38



Fourth term: product of inter-level covariances

n∑
i=1

n∑
j=1

Cov (X`,i, X`′,i) Cov (X`,j, X`′,j) ≈

n∑
i=1

n∑
j=1

(
1

ne − 1

ne∑
s=1

X̃s
`,iX̃

s
`′,i

)(
1

ne − 1

ne∑
s′=1

X̃s′

`,jX̃
s′

`′,j

)

=

(
1

ne − 1

ne∑
s=1

n∑
i=1

X̃s
`,iX̃

s
`′,i

)2

(168)

Computing in practice In practice, these quantities can be expressed as func-
tions of the n2

eL
2 space averages γ(`, s, `′, s′) =

∑n
i=1 X̃

s
`,iX̃

s′

`′,i. Grouping the four
terms together, we retrieve

n∑
i=1

n∑
j=1

C(k,ij)
`,`′ =

1

m(k)

(∑ne

s=1 γ(`, s, `′, s)2

ne
−
∑ne

s=1

∑ne

s′=1 γ(`, s, `′, s′)2

(ne − 1)2

)

+
1

m(k)(m(k) − 1)

(∑ne

s=1

∑ne

s′=1 γ(`, s, `′, s′)γ(`′, s, `, s′)

(ne − 1)2
+

(
∑ne

s=1 γ(`, s, `′, s))
2

(ne − 1)2

)
(169)

Note the symmetry γ(`, s, `′, s′) = γ(`′, s′, `, s), which reduces to ne(ne+1)L2/2
the number of space averages to compute.

A possible algorithm would be:

1. Generate ne simulations coupled across all L levels:
(

(Xs
` )
L
`=1

)ne

s=1
.

2. Loop over all ensemble members and all fidelity levels to estimate the L en-
semble means µ` ∈ Rn. These will be used to estimate fourth-order moments
in next step.

3. Double loop over ensemble members and double loop over fidelity levels to
estimate the point-wise γ. Make use of the symmetry property. Space-
average.

4. Compute the elements of the averaged covariance matrix (169).

Remark This is valid in the limit of very large ne. For finite sizes, these estimates
are biased, as mentioned earlier. Unbiased estimators for these quantities do exist,
but are more complex (see for instance Gerlovina and Hubbard, 2019).
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C Optimal sample allocation for an MLMC covari-
ance matrix estimator

The MLMC estimator for a covariance matrix is a specific (sub-optimal) case
of (123), with weights β(1) =

(
1
)
and β(k) =

(
1 −1

)ᵀ for 2 ≤ k ≤ K. The
generalized variance of this multilevel estimator is given by (124), which can be
estimated in practice following appendix B. Minimizing the variance as a function
of the sample sizes solves the problem of optimal sample allocation. Note that the
dependence on the sample sizes

(
m(k)

)K
k=1

is hidden in the C(k,ij). Note also that
the minimization should be done numerically, since the variance involves complex
terms such as the inverse of m(k)

(
m(k) − 1

)
. This is quite direct in python, for

instance using scipy.optimize.minimize with constraints.

Link with Mycek and De Lozzo (2019) A simpler but possibly suboptimal
sample allocation can be found using the approach proposed by Mycek and De
Lozzo (2019). They do not minimize the exact variance of the estimator, but an
upper bound of this variance (their equation 2.31). Their bound is still written
a a sum over the coupling groups, but each term is proportional to 1/m(k). As a
consequence, an analytical solution exists for the optimal sample allocation, which
makes its determination much faster and simpler1.

We extend the bound to the multivariate case, simply by summing over all
i, j elements of the covariance matrix to be estimated. With our notations, the
contributions to the variance include the sample size (different from the notations
of Mycek and De Lozzo, 2019).

Vk =
(
β(k)

)ᵀ( n∑
i=1

n∑
j=1

C(k,ij)

)
β(k) (170)

Vk ≤
n∑
i=1

n∑
j=1

1

2

1

m(k) − 1

[√
M4 [∆`,i]M4 [Σ`,j] +

√
M4 [∆`,j]M4 [Σ`,i]

]
(171)

=
1

m(k) − 1

(
n∑
i=1

√
M4 [∆`,i]

)(
n∑
i=1

√
M4 [Σ`,i]

)
(172)

where ∆`,i = X`,i −X`−1,i and Σ`,i = X`,i + X`−1,i (assuming undefined variables
are zero).

A possible algorithm would be:
1In the situations we tested, the bounds proposed by Mycek and De Lozzo (2019) were quite

loose (about a factor 2 above the actual variances). This had no impact in the sample allocation
though, as their relative evolution among levels was very similar to the true variances, which
made them a useful proxy for the actual variance contributions.
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1. Generate ne simulations coupled across all L levels.

2. Loop over ensemble members and fidelity levels to estimate the L ensemble
means µ` ∈ Rn. These will be used to estimate fourth-order moments in
next step.

3. Loop over ensemble members and over fidelity levels to estimate the point-
wise fourth-order moments M4 [∆`,i] and M4 [Σ`,i].

4. Space-average and multiply to get the variance contribution terms.
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D Optimal localization using random asymptotic
quantities

This sections details how the results of section 6.4 can be derived (more rigorously?)
with the formalism of M15a and M15b.

The main difference consists in considering asymptotic quantities as random,
consistently with linear filtering theory. We assume the existence of two indepen-
dent random processes R1 and R2. The first process generates asymptotic quan-
tities denoted as S (for instance first, second and fourth order moments). The
second one generates members consistent with these quantities (typically using an
Ensemble of Data Assimilations).

The mean squared error is to be minimized over both process, though we only
have access to one realization of R1. The expectation in the MSE is thus the
expectation over both processes. We could either index the expectation operators
by the processing they refer to, or use the formalism of conditional expectations:

MSE
(
B̂ML,BL

)
= E

∥∥∥∥∥∥
K∑
k=1

∑
`∈S(k)

L
(k)
` ◦ B̃

(k)
` −BL

∥∥∥∥∥∥
2

F

 (173)

= E1

E2

∥∥∥∥∥∥
K∑
k=1

∑
`∈S(k)

L
(k)
` ◦ B̃

(k)
` −BL

∥∥∥∥∥∥
2

F

 (174)

= E

E
∥∥∥∥∥∥

K∑
k=1

∑
`∈S(k)

L
(k)
` ◦ B̃

(k)
` −BL

∥∥∥∥∥∥
2

F

∣∣∣∣∣∣S
 (175)

The rest of the derivation follows section 6.4.1. There is just one additional
argument needed to simplify the cross terms E

[
BLB̃

ᵀ
]
when expanding the MSE:

Expectations of products of sampled and asymptotic quantities We have
assumed the independence of the sampling error and the process R2 generating
asymptotic statistics.

E
[(
B̃` −B`

)
BL

]
= E

[
B̃` −B`

]
E [BL] (176)

= 0 (177)

i .e. E
[
B̃`BL

]
= E [B`BL] (178)

So E
[
BLB̃

ᵀ
]

= E [BLB].
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Interpretation of the ergodicity hypothesis The ergodicity assumption in-
tervenes within the same context of equivalence classes. A sum over a random
subset of an equivalence class is meant to approximate the expectations over both
random processes R1 and R2.
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