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Abstract

The Thickened Flame (TF) model is a widely used approach for Large Eddy

Simulation of premixed flames. It is based on a “mapping” transformation

where all diffusivities are multiplied by a thickening factor F while reaction

terms are divided by F . Theory shows and 1D flame simulations confirm

that this mapping preserves the unstretched laminar flame speed s0L while

increasing its thickness δ0L by F , allowing to resolve the flame on a coarse

grid. However this property is not satisfied anymore when the TF model is

applied to stretched flames: the burning velocity sc(k) of a thickened flame

submitted to a stretch k is not conserved compared to the non-thickened so-

lution. A new diffusion-reaction transformation, named Stretched-Thickened

Flame (S-TF) model, is developed here to conserve the burning velocity of

stretched flames, proposing a generalization of the classical diffusion-reaction

transformation which the TF model is based on. Thermal and mass diffu-

sion zones are thickened differently and the laminar unstretched properties
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are preserved by modifying the chemical source terms. The S-TF model is

applied on canonical 1D strained flames and validated for a cylindrical ex-

panding flame configuration to prove its applicability to recover both strain

and curvature effects. Results show that the Stretched-Thickened Flame

model is an effective solution to correct the deficiency of the classical ap-

proach for stretched flames and can be easily implemented in CFD codes

relying on the TF model.

Keywords: Stretched flames, Thickened Flame model, Consumption speed,

Premixed laminar flames, CFD

Novelty and significance statement

• A Thickened Flame model generalization to correct stretched thickened

flame behavior is proposed.

• When strained flames are thickened following the classical Thickened

Flame model theory, its parameters such as the consumption speed are

not retained.

• It is possible to demonstrate mathematically that a non-thickened flame

reacts to the stretch k as the same thickened flame does to the stretch

k/F .

• The proposed approach (Stretched-Thickened flame model) is devel-

oped starting from a generalization of the diffusion-reaction transfor-

mation of the Thickened Flame model.

• The model does not require the local evaluation of stretch on the flame

front since it is based on a correction of the chemistry reactivity. In ad-
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dition it guarantees the correct consumption speed of thickened flames

from high to zero stretch.

• The model is validated both for strained and curved flames and its

implementation in a CFD code is as simple as the classical Thickened

Flame model.
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1. Introduction

Large Eddy Simulation (LES) is an effective and widely used approach

when dealing with unsteady flames, at reasonable cost. Nevertheless, in

reactive simulations, flames length-scales are smaller than the LES grids size,

requiring specific combustion models [1]. The Thickened Flame (TF) model,

inspired by the pioneering work of O’Rourke and Butler[2], addresses this

issue by artificially increasing the flame thickness by a factor F , in order

to solve the species and enthalpy/temperature transport equations on the

computational grid, evaluating the chemical source terms with the finite rate

kinetics approach [1]. Thanks to its simplicity, the TF model has gained

attention from the combustion community, proving the capability to perform

reliable simulations of turbulent premixed flames involving propagation [3–6],

ignition [7, 8], stabilization mechanisms [9, 10], tabulated chemistry [11, 12],

piston engines [13, 14], autoignition [15, 16], spray combustion [17].

For the 1D unstretched stationary flame, the TF formulation is exactly

derived from a self-similar space-dilation transformation. However, its phys-

ical behavior, when departing from this canonical limit, is an open problem.

For instance, several studies [11, 18–20] have shown that the application of

a thickening factor can lead to an amplification of the stretch effect k on

the flame. Indeed, as stated by Veynante and Poinsot [18] as soon as the

model was derived, the thickened flame reacts to a stretch k/F as the fully

resolved flame (i.e., F = 1) does to a stretch k: even though the actual flame

is subjected to a small value of stretch, thickening amplifies the stretch ef-

fects on consumption speed [19] or quenching [21]. Although this statement

can be verified in laminar flames, the stretch effect on thickened flame fronts
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subjected to a turbulent field is not of minor importance. As highlighted

by Comer et al. [21], the efficiency functions [1, 22, 23] used to recover the

flame wrinkling reduced by the thickening process, are built to model subgrid

scales and do not take into account resolved-stretch effects such as the curva-

ture of an expanding ignited kernel or the high velocity gradient experienced

by flames in a jet in a cross flow configuration. This is a major issue: in

LES, the propagation speed of the resolved premixed front should be equal

to Esc (Yi, T ) [24] where E is the efficiency function and sc the laminar flame

consumption speed (or burning velocity), depending on the mass fraction

of the i−species (Yi) and temperature (T ). Unfortunately, this property is

not true if the resolved front is stretched, something which occurs in most

flames. This systematic error of the TF model approach is not acceptable as

it wastes most of the interests of the method: even if chemical schemes have

been built to match the unstretched flame properties within a few percent,

the combination of thickening and stretch will induce errors of the order of

50% [19, 21] on the laminar flame burning velocity sc (Yi, T ). Similarly, even

though the efficiency functions used to describe flame/turbulence interac-

tion were perfect, the resolved, thickened flame, when stretched, would not

propagate at the right speed (Esc (Yi, T )). This explains recent interest in

stretched, thickened flames [4, 19, 21, 25] as well as the goal of this paper.

Recent works have proposed different solutions to retrieve the correct

stretch response of thickened flames. Han et al. [11] coupled the TF model

with a tabulated chemistry based on strained premixed flamelets to simu-

late a turbulent premixed jet flame at high Karlovitz number. Proch and

Kempf [20] extended the premixed flamelet generated manifolds technique
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with a correction based on local strain rates, showing a positive impact on

the flame length. Popp et al. [19] introduced a strained-based function inside

the diffusion term of the governing equations of premixed flames in stagna-

tion point flow to correct the effect of the convection budget, once the TF

model transformation is applied.

All the mentioned approaches, trying to correct the limitations of the

classical TF model, have been developed in the context of tabulated chem-

istry and, while in [11] the strain effects are taken into account by tabulating

H-radicals mass fractions [26], all the others require the computation of the

local instantaneous stretch rate, which is not straightforward: this task re-

quires dedicated mathematical operators to compute the velocity tensor as

well as the flame normal. Furthermore, even if this is correctly accomplished

during the simulation, the thickened flame may require an adaptation time

when submitted to a certain instantaneous stretch field, which may demand

additional correction factors [19]. Alternatively, Comer et al. [21], proposed a

modification of the mixture Lewis number obtained through an optimization

method based on Twin Premixed CounterFlow flames (reactants-to-reactants

configuration) to match the extinction strain rate of the thickened flames.

This procedure avoids real time computation of stretch during LES but the

flames consumption speed, at different strain values, is not guaranteed. A

similar approach was proposed in the TF-adapt model developed by Quil-

latre [4] and recently improved in the work of Poncet et al. [25] to ensure

the Markstein length conservation at low stretch when thickening is applied.

The TF-adapt model, however, fails to correctly reproduce the flame charac-

teristics at high stretch values where asymptotic theory is not valid anymore.
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To our knowledge, no previous works have shown an alternative formula-

tion of the TF model to retrieve the correct response of thickened flames over

a wide range of stretch, independently of the stretch level and avoiding the

local evaluation of the strain rate and/or curvature in the LES. In this work,

a novel approach named Stretched-Thickened Flame model (S-TF) is pro-

posed to address these needs, so that, stretch effects on thickened premixed

flame elements can be correctly captured when resolved on LES grid.

Section 2 provides an overview of the classical Thickened Flame model

to introduce the background required for the definition of strain effects on

thickened flames. Section 3 presents the new S-TF model to correctly predict

the thickened flames behavior when subjected to strain. Section 4 reports

the validation tests for strained and curved flames.

2. Problem formulation and motivations

2.1. Thickened Flame model for unstrained laminar flames

The Thickened Flame model is an attractive solution to propagate a pre-

mixed flame on a coarse grid. Butler and O’Rourke [2, 27] laid the theoretical

foundation of the model, proposing the introduction of a coordinate dilata-

tion (x 7→ x∗) normal to the flame front:

x∗ =

∫ x

Fdx
′
, (1)

where F is the thickening factor.

For a single-step reaction1 where the reactant R is converted into prod-

uct P [24], the following governing equations for fuel mass fraction YF and

1The simple step assumption is used here to simplify the notation.
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Figure 1: Classical TF model applied to unstrained flames with F = 1 and F = 10. a)

Heat release rate in coordinate x. b) Progress variable θ̂, mapped with Eq. (7), in space

coordinate x. c) Progress variable gradient in the temperature domain. d) Fuel source

term in the temperature domain.

temperature T are obtained:

∂

∂t
(ρYF ) +

∂

∂x∗
j

(ρujYF ) =
∂

∂x∗
j

(
ρFDF

∂YF

∂x∗
j

)
− ω̇

F
(2)

∂

∂t
(ρT ) +

∂

∂x∗
j

(ρujT ) =
∂

∂x∗
j

(
ρFDth

∂T

∂x∗
j

)
+

Q

cp

ω̇

F
(3)

where ρ is the density, uj the j−component of velocity, Dth the thermal

diffusivity, DF the fuel mass diffusivity, ω̇ is the reaction rate and Q is the

heat of reaction. As highlighted in [2], the equations are self-similar with
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respect to the coordinate transformation: the resulting thickened flame solu-

tion is equivalent to the original one. Introducing with •̂ the flame variables

obtained with the model transformation, the laminar flame speed of the

thickened flame is conserved (ŝ0L = s0L), since the integral of the heat release

rate is retained (Fig. 1a) and the laminar flame thickness, computed through

the flame temperature profile [24] between the unburnt mixture at T u and

the burnt products at T b,

δ0L =
T b − T u

max|∇T | , (4)

is increased by a factor F : δ̂0L = Fδ0L. This is shown in Fig. 1b, where the

normalized temperature θ:

θ =
T − T u

T b − T u
(5)

is evaluated in space with F = 1 and F = 10. These results match scaling

laws coming from asymptotic premixed flame theory [24]:




s0L ∝ √

Dthω̇ ⇒ ŝ0L = s0L ∝
√
FDthω̇/F ,

δ0L ∝ Dth

s0L
⇒ δ̂0L = Fδ0L ∝ FDth

s0L
.

(6)

Thus, in the canonical TF model, the diffusion coefficients are increased by F

while the source terms are reduced by the same factor F . This transformation

is denominated here “mapping”:

(Dk, Dth, ω̇k) 7→ (DkF,DthF, ω̇k/F ), (7)

where Dk is the diffusion coefficient and ω̇k the source term of the species

k. A convenient method to explain the s0L conservation is to plot the flame

structure in the reduced temperature space θ. The mapping of Eq. (7) ensures
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that gradients are perfectly scaled by the thickening factor such that F∇θ̂ =

∇θ (Fig. 1). This guarantees that the consumption speed [19, 24]:

ŝc ∝
∫

ω̇Fdx =

∫
ω̇F (θ)

F∇θ̂
dθ (8)

corresponds exactly to s0L for laminar unstrained flames, since ω̇F (θ) is un-

changed (Fig. 1d) and F∇θ̂ = ∇θ: the flame is thickened and burns locally

less, conserving the integral of the heat release rate. This property is not

rigorous for strained flames as discussed in the next section.

2.2. Strained laminar flames and numerical configuration

The combined effect between stretch and thickening are analyzed now

using 1D strained flames results. This section details the computations setup.

When a premixed flame experiences a stretch k (strain ks and/or curva-

ture kc), its consumption speed usually departs from the laminar flame speed

s0L. For small values of k, asymptotic analysis [28, 29] gives the following lin-

ear relation:

sc = s0L − Lck (9)

where Lc is the consumption Markstein length [30–37]. Nevertheless, apply-

ing the classical TF model to strained flames leads to a different behavior

compared to Eq. (9).

Popp et al. [19] considered a stagnation point flame where reactants and

products are injected respectively from the two extreme sides of the domain

(Fig. 2). This configuration, also known as CounterFlow Premixed Flame

(CFPF), is used here to understand the problem from a theoretical point of

view and to simulate how strain and thickening affect premixed flames2.

2Hawkes et al. [38] highlighted the physical reliability of this configuration for a flamelet
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Figure 2: The CounterFlow Premixed Flame (CFPF): flame in a stagnation point flow.

Reactants and products are injected respectively from the two extreme sides of the domain.

Stretch effects will be evaluated through the flame consumption speed,

defined by [24]:

sc = − 1(
Y u
F − Y b

F

)
ρu

∫
ω̇Fdx (10)

where Y u
F and Y b

F are the fuel mass fraction respectively in the unburnt and

burnt gases while ρu is the density of the fresh mixture. A global approxi-

mation of strain rate (ks), based on the injection velocity of fresh (Uu) and

burnt gases (U b), is used:

ks =
| Uu | + | U b |

L
(11)

with L the length of the computational domain and the distance between the

two injection points.

approach, showing that the CFPF is a coherent representation of the laminar flame struc-

ture embedded within a turbulent strained flame.
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ϕ0,j σ0,j bj ϕ1,j σ1,j cj ϕ2,j σ2,j ϕ3,j σ3,j

j = 1 1.180 0.039 0.25 1.2 0.02 27.8 1.64 0.14 − −
j = 2 1.146 0.046 0.00015 1.2 0.04 0.025 1.215 0.03 1.32 0.09

Table 1: PEA coefficients of the correction functions in Eqs. (14) and (15).

Strained flames simulations are carried out with CANTERA (https://cantera.org/)

using a two-step chemistry for propane-air (C3H8/Air) combustion [39] :

C3H8 + 3.5O2 → 3CO + 4H2O (12)

CO + 0.5O2 ⇌ CO2 (13)

where the first reaction determines the laminar flame speed while the CO−
CO2 equilibrium controls the adiabatic flame temperature. Inspired by the

work of Franzelli et al. [40, 41], the Pre-Exponential Adjustment (PEA)

technique is used to adjust the forward reaction rates for the two reactions

(kf,1,kf,2) and reproduce the laminar flame speed in rich conditions:

kf,1 = Kr,1f1(ϕ)e
(−Ea,1/RT ) [C3H8]

nC3H8 [O2]
nO2,1 (14)

kf,2 = Kr,2f2(ϕ)e
(−Ea,2/RT ) [CO]nCO [O2]

nO2,2 . (15)

The following correction functions are used:

f1 =
2[

1 + tanh
(

ϕ0,1−ϕ

σ0,1

)]
+ b1

[
1 + tanh

(
ϕ−ϕ1,1

σ1,1

)]
+ c1

[
1 + tanh

(
ϕ−ϕ2,1

σ2,1

)]

(16)

f2 =
1

2

[
1 + tanh

(
ϕ0,2 − ϕ

σ0,2

)]
+

b2
2

[
1 + tanh

(
ϕ− ϕ1,2

σ1,2

)]
+

+
c2
2

[
1 + tanh

(
ϕ− ϕ2,2

σ2,2

)][
1 + tanh

(
ϕ3,2 − ϕ

σ3,2

)]
. (17)
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Kr [cm
3/mol · s] Ea [cal/mol]

C3H8 oxidation 2.534× 1011 3.27× 104

nC3H8 = 0.845,

nO2,1 = 0.631

CO − CO2 equilibrium 2.0× 109 1.2× 104

nCO = 1.0,

nO2,2 = 0.5

Table 2: Summary of Arrhenius kinetic constants: Kr is the pre-exponential factor and

Ea is the activation energy. nk is the reaction exponent relative to the species k.

The two functions (f1 and f2) coefficients are summarized in Table 1 while

the pre-exponential factor Kr and the activation energy Ea are reported in

Table 2.

The fresh mixture conditions are taken at 1 bar and 300 K with an equiv-

alence ratio ϕ = 0.9. The transport used is based on a constant non-unity

Lewis number [3, 4, 40]: with a Lewis number larger than one (Lek = 1.4 with

same Schmidt number among all the species and constant mixture Prandtl

number [40, 41]), the flame characteristics are close to those obtained us-

ing the GRI-Mech3.0 detailed mechanism [42], for these operative conditions

(Fig. 3a, F = 1 curve), providing a reliable prediction also for strained cases.

Flame response will be examined for different values of ks, by increasing the

injection velocity. The domain length L is close to 100δ0L to avoid flame-

boundaries interactions.
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Figure 3: TF model applied to strained flames with F = 1, F = 2, F = 5. The flame

at F = 1 obtained with the 2-step mechanism (here defined 2S) is compared with the

GRI-Mech3.0. a) Normalized consumption speed behavior with respect the applied strain

rate. b) Gradient of the progress variable at ks = 60 s−1 vs temperature θ̂. c) Gradient

of the progress variable at ks = 1450 s−1 vs temperature θ̂.

2.3. Thickened Flame model application to strained flames

Previous works [19] proved that a thickened CFPF under the diffusion-

reaction transformation (Eq. (7)) does not conserve its burning velocity ŝc.

This is verified here in Fig. 3a, where the consumption speed of the strained

flames deviates from the exact value (F = 1) as soon as F > 1. The error

increases both with thickening factor F and strain ks. This is confirmed

by the F -scaled gradient profiles of θ̂ shown in Fig. 3(b-c). For very small

strain values (ks = 60 s−1) and relatively low values of F , (Fig. 3b), the
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Figure 4: TF model applied to strained flames by applying the convection-diffusion-

reaction transformation (ks, Dk, Dth, ω̇k) 7→ (ks/F,DkF,DthF, ω̇k/F ). a) Consumption

speed of the transformed flames normalized with s0L and compared with the solution

at F = 1. b) Gradient of the progress variable at Fks = 1450 s−1 versus the flames

normalized temperature. c) Fuel source terms versus the normalized temperature at

Fks = 1450 s−1.

flame structures exhibit a weak sensitivity to thickening and the consumption

speed remains close to the reference value at F = 1 as for the classical TF

model in the unstrained laminar case. The picture is different when strain

is increased (Fig. 3c): F∇θ̂ is not conserved in the temperature domain

θ̂ and, accordingly, the consumption speed diverges (see Eq. (8)) from the

reference solution at F = 1. The mismatch becomes higher by increasing the

thickening value.

15



This behavior has been explained in [19] and is briefly recalled here for

completeness. By applying the coordinate change of Eq. (1) to the governing

equations of a flame in a stagnation point flow, written on the centerline

(e.g., x-axis) of the physical domain (Fig. 2), yields:

−ρu
ks
F
x∗dYF

dx∗ =
d

dx∗

(
ρFDF

dYF

dx∗

)
− ω̇

F
(18)

−ρu
ks
F
x∗ dT

dx∗ =
d

dx∗

(
ρFDth

dT

dx∗

)
+

Q

cp

ω̇

F
. (19)

Contrary to the unstrained case (Eqs. (2) and (3)), the factor F now appears

also in the convection term of the equations due to the spatial variation of

axial mass flux across the flame front, generating a strained flame.

Equations (18) and (19) suggest a more complex mapping than Eq. (7),

preserving the flame structures and, thus, all flame properties:

(ks, Dk, Dth, ω̇k) 7→ (ks/F,DkF,DthF, ω̇k/F ). (20)

Figure 4a displays the flames burning velocities computed for the three

flames at F = 1, F = 2 and F = 5 by keeping Fks constant for all of them.

The laminar flame speed conservation found for the unstrained flame (Fig. 1)

is obtained, in this case, for the consumption speed of the strained solutions

through the mapping of Eq. (20) as illustrated in Fig. 4b and Fig. 4c. Thus,

as expected, a strained thickened flame reacts to a strain ks/F exactly as a

non-thickened flame does to a strain ks (Fig. 4): in other words, the diffusion-

reaction transformation of Eq. (7) generates flames reacting to a strain equal

to Fks.

Although the transformation of Eq. (20) is an exact solution for the CFPF

problem described in Fig. 2, it is by no means a general solution for simulation

16



of strained flames since the transformation ks 7→ ks/F derives directly from

the potential flow assumption adopted to get Eqs. (18) and (19) and cannot

be implemented in practice in other flow topologies where ks is imposed by the

flow. The mapping of Eq. (20) is therefore not a practical solution to correct

stretch effects in CFD codes. A review of alternative solutions is proposed in

the next section together with the development of the Stretched-Thickened

Flame model.

3. Thickened Flame model extensions for strained laminar flame

A brief overview of previously proposed models is summarized in Table 3.

Popp et al. [19] suggested a correction function based on strain rate, plugged

inside the diffusion term of the temperature conservation equation (Eq. (19))

in order to recover flame gradients and, therefore, flame speed. Although it

provides the exact burning velocity through a local flame structure adjust-

ment, this approach demands the strain rate computation. The k evaluation

is not immediate in a LES simulation of turbulent flames since it requires

specific velocity field treatments, further assumptions and modelling.

A different approach relies on asymptotic theory [28]. In a first-order ap-

proximation, the consumption speed of weakly stretched flames is a function

of the Lewis number of the mixture, the stretch k, and the resolved laminar

flame thickness Fδ0L:

1− ŝc
s0L

∝ Fδ0L
(
Le0 − 1

)
k (21)

Equation (21) confirms that thickening the flame by factor F increases

the slope of the function ŝc/s
0
L = f(k) (Fig. 3a). However, the same relation
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Model Mapping Speed matched
Properties

conserved

TF [2]
(Dk, Dth,ω̇k) 7→

(DkF,DthF, ω̇k/F )

𝑘! 	[𝑠"#]

𝑠$
𝑠%&

❌

extinction 

1

F
sc(ks = 0)

Popp [19]
(Dk, Dth, ω̇k) 7→

(DkF, αDthF, ω̇k/F )

𝑘! 	[𝑠"#]

𝑠$
𝑠%&

extinction 

1

❌

sc ∀ ks but ks

must be known

TF-

adapt [4]

(Dk, Dth, ω̇k) 7→
(DkFsp, DthFth, ω̇k/Fr)

𝑘! 	[𝑠"#]

𝑠$
𝑠%&

❌

extinction 

1
sc(ks = 0),

∂sc
∂ks

at ks 7→ 0 for

a linear behavior

Comer [21]
(Dk, Dth, ω̇k) 7→

(DkF
2−x0 , DthF

2−x0 , ω̇k/F
x0)

𝑘! 	[𝑠"#]

𝑠$
𝑠%&

❌extinction 

1

sc(ks = 0),

ks = kextinc.s ,

sc(k
extinc.
s ) not

guaranteed

S-TF
(Dk, Dth, ω̇k) 7→

(DkFsp, DthFth, ω̇k/Fr)
𝑘! 	[𝑠"#]

𝑠$
𝑠%&

extinction 

1
target 

❌

sc(ks = 0),

sc(ks = ktargets ),

∂sc
∂ks

(0 ≥ ks ≥ ktargets )

Table 3: Methods comparison.

may be seen from another point of view: it reveals that for a given value

of stretch k, the flame acts as if its Lewis number, or rather, (Le0 − 1) is

modified. This observation was the basis of the TF-adapt solution developed

by Quillatre [4] who proposed to artificially modify the species Lewis number

in order to correct the stretch flame response. However, since it is based on

18



0 200 400 600 800 1000 1200 1400
ks [s−1]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
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Figure 5: C3H8/Air flame consumption speed computed with the TF model and the TF-

adapt approach in the CFPF configuration. Operative conditions: P = 1 bar, T = 300 K

and ϕ = 0.9.

asymptotic theory [28, 29] the success of this approach depends on restrictive

hypotheses such as low stretch, single-step chemistry and high Zel’dovich

number. Recently, Poncet et al. [25] improved this theory with a Markstein

length adjustment but still valid for only small stretch values.

Finally, Comer et al. [21] also suggested a Lewis number modification

aiming mainly at matching the extinction strain rate kextinc
s . However, this

correction does not guarantee the consumption speed of the flame at all strain

values. In a flamelet approach, the stretched flame regions would not burn

as expected.
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Figure 5 shows the flame consumption speed obtained with the TF and

with the TF-adapt models in a 1D CFPF. As expected, the classical Thick-

ened Flame model fails even for small thickening factors especially at high

strains since the flame reacts to Fks. TF-adapt improves the flame stretch

response but it guarantees the expected flame behavior only if the thickening

factor is kept low. For high strain, the linear theory does not hold anymore

and an error larger than 10% is observed.

From this review, it is possible to conclude that another approach is

required in order to improve the flame transformation when the TF and the

TF-adapt models show limitations. The Lewis number modification appears

to be a convenient solution to correct the behavior of a stretched thickened

flame, especially because it is based on chemistry response and does not

require strain or curvature evaluation on the flame front.

A Lewis number optimization is proposed now, starting from a general-

ization of the diffusion-reaction transformation (Eq. (7)), in order to retrieve

the correct flame stretch response regardless of the stretch values. The next

section presents the mathematical formulation of this theoretical approach,

leading to the definition of the Stretched-Thickened Flame model.

3.1. Generalization of the diffusion-reaction transformation: introduction of

the Stretched-Thickened Flame (S-TF) model

The first step of the model is to recognize that differently from the classi-

cal Thickened Flame model, thermal diffusion Dth and species mass diffusion

Dk can be scaled using different factors Fth and Fsp such that D̂th = FthDth

20



and D̂k = FspDk. As a consequence, the Lewis number is changed as follow:

L̂e =
D̂th

D̂k

=
FthDth

FspDk

=
Fth

Fsp

Le0. (22)

Since this Lewis number modification alters the unstretched laminar flame

speed, a correction function Fr is applied to the Arrhenius pre-exponential

factors to conserve s0L. This procedure leads to a generalization of the map-

ping introduced by the classical TF transformation of Eq. (7):

(Dk, Dth, ω̇k) 7→ (FspDk, FthDth, Frω̇k) (23)

which, as announced, does not take into account the local value of strain.

The factors Fth, Fsp, Fr are unknown a priori: their values can be de-

termined by targeting three specific flame properties. First, the unstretched

flame quantities must satisfy:

ŝ0L
s0L

= 1 (24)

δ̂0L
δ0L

= F (25)

where ŝ0L and δ̂0L represent the unstretched laminar flame speed and thickness

once the generalized transformation of Eq. (23) is applied. Equation (24)

and (25) guarantee the unstretched laminar flame speed conservation and the

thermal thickness resolution, respectively, as obtained through the classical

Thickened Flame model.

Equations (25) imposes the thermal diffusion factor Fth:

δ̂0L
δ0L

=
D̂th

ŝ0L

s0L
Dth

= Fth = F, (26)
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showing that, in the S-TF model, the thermal diffusion is still increased by

F .

The first constraint (Eq. (24)) is now used to find Fr. Following premixed

flame theory [24, 43], the laminar flame speed depends on the square root of

the reaction pre-exponential factor (Kr) and on thermal diffusion and species

mass diffusivity:

s0L ∝ K1/2
r Dα

thD
β
k , (27)

where α and β are parameters that generalize the laminar flame speed de-

pendency on Dth and Dk, or, in other words, on the Lewis number. They are

obtained from unstretched laminar flame properties and classical theory for

non-unity Lewis number shows that their sum is equal to 1/2: α+ β = 1/2.

The procedure to compute them is detailed in Appendix A. Differently from

other formulations [24], no hypothesis on the complexity of the chemical

scheme has been used in Eq. (27). The laminar flame speed ratio may there-

fore be expressed as follow:

ŝ0L
s0L

=
(KrFr)

1/2 (DthFth)
α (DkFsp)

β

K
1/2
r Dα

thD
β
k

=
√

FrF
α
thF

β
sp. (28)

The condition ŝ0L = s0L is fulfilled with the following Fr formulation:

Fr =

[
1

Fα+β
th

(
Fth

Fsp

)β
]2

=
1

F

(
F

Fsp

)2β

. (29)

In a multi-step reactions chemistry, Fr is applied to all pre-exponential con-

stants. In the classical TF model Fr is equal to 1/F .

Note that the expressions for Fth and Fr (Eqs. (26) and (29)) allow to im-

pose the unstretched flame properties (k = 0) for any value of Fsp, therefore,
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Figure 6: Shooting method applied, by changing the parameter X0, to retrieve the slope

∂sc
∂k for k 7→ 0 such that the constraint in Eq. 30 is accomplished.

the last degree on freedom will be used to identify it. This is accomplished by

imposing, as third constraint, that the thickened flame consumption speed

at a certain target strain value, ktarget
s , must match the one obtained from

the reference solution at F = 1:

ŝc
(
F > 1, ktarget

s

)
= sc

(
F = 1, ktarget

s

)
(30)

In practice, to find the value of Fsp that satisfies Eq. (30), we use an opti-

mization procedure based on the following objective function ε:

min
∂sc
∂k

(ks 7→0)
(ε) = min

∂sc
∂k

(ks 7→0)

(
sc(F = 1)− ŝc(F )

sc(F = 1)

∣∣∣∣
ktargets

)
, (31)

where ε measures the difference between the consumption speeds of the flame

at F = 1 (sc(F = 1)) and at F > 1 (ŝc(F )), evaluated at the target strain
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ktarget
s . An efficient method to minimize ε is to use the slope at ks 7→ 0 as a

shooting parameter to reach sc (F = 1, ktarget
s ) as shown in Fig. 6. Formally,

this slope is influenced by the mixture Lewis number:

∂sc
∂k

∝ δ0L
(
Le0 − 1

)
, ks 7→ 0 (32)

that can be adjusted to match the constraint Eq. (30). Hence, inside the

optimization loop, the initial slope ∂sc
∂k

is changed by modifying the Lewis

number L̂e according to:

(
L̂e− 1

)
δ̂0L =

(
Le0 − 1

)
δ0LX0, (33)

where X0 is an optimization function depending on F while the two terms

(Le0 − 1) δ0L and
(
L̂e− 1

)
δ̂0L directly influence the response for k 7→ 0 of the

reference solution at F = 1 and of the flame transformed by Eq. (23).

Finally, combining Eq. (33) with Eq. (25) gives an expression for the

species mass diffusion term Fsp:

F

(
FthDth

FspDk

− 1

)
=
(
Le0 − 1

)
X0,

Fsp =
FthFLe0

F + (Le0 − 1)X0

.

(34)

Note that Fsp depends on F , the mixture Lewis number Le0 and it is the

same for all species.

Eventually, the generalized diffusion-reaction transformation factors are

obtained: 



Fth = F

Fsp =
F 2Le0

F+(Le0−1)X0

Fr =

[
1

F
1/2
th

(
Fth

Fsp

)β]2
(35)
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Figure 7: Schematic overview of the three different approaches for Le0 − 1 > 0.

which, after mapping, leads to the Lewis number L̂e:

L̂e =
D̂th

D̂k

= 1 +
(Le0 − 1)X0

F
. (36)

Since a positive Lewis number must be ensured, X0 is limited to:

• If Le0 > 1 −→ X0 > − F
Le0−1

• If 1 > Le0 > 0 −→ X0 < − F
Le0−1

Thus, according to the original Lewis number, Le0, there is one value of X0,

here defined as X̃0, that satisfies Eq. (30) for a given value of F , able to

correct the stretch response of thickened flames.

Note that Eq. (35) yields a generalized mapping for all thickened flame

models, covering different approaches depending on the value assumed by

the function X0 (Fig. 7 for Le0 > 1):
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1. X0 = F yields the Thickened Flame model factors:




Fth = F

Fsp = F

Fr = 1/F

(37)

with L̂e = Le0.

2. X0 = 1 corresponds to the TF-adapt model:




Fth = F

Fsp =
F 2Le0

F+(Le0−1)

Fr =

[
1

F
1/2
th

(
Fth

Fsp

)β]2
(38)

with L̂e = 1 +
(Le0−1)

F
as expected from TF-adapt theory.

3. X0 = X̃0(F ), with X̃0(F ) ̸= 1 and X̃0(F ) ̸= F , leads to the Stretched-

Thickened Flame model, where the X̃0 function matches the correct

strained flame speed at ktarget
s , leading to the following mapping factors:




Fth = F

Fsp =
F 2Le0

F+(Le0−1)X̃0

Fr =

[
1

F
1/2
th

(
Fth

Fsp

)β]2
(39)

In this case, the Lewis number corresponds to:

L̂e = 1 +
(Le0 − 1) X̃0

F
(40)

Note that formally the S-TF model does not guarantee the right slope

for ks 7→ 0 (Markstein number) trying, instead, to match the thickened
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flame consumption speed at ktarget
s . However, once the optimization

problem is solved and thickened flame consumption speed matches the

one of the reference flame (F = 1) at the target stretch value ktarget
s ,

ŝc will be reasonably predicted also for all strain values below ktarget
s ,

since the unstrained solution is recovered by construction and the flame

speed response to stretch is usually monotonic between ks = 0 and

ktarget
s (Fig. 6).

It is convenient to choose the target value ktarget
s in the high strain

region to ensure precision over a large range of strain. Note that the

definition of ktarget
s depends on the configuration, even though its exact

value is not crucial: it is just used to match the correct thickened flame

behavior on an extended set of strain values. In most cases, ktarget
s

can be set to s0L/δ
0
L. A more precise approach, followed in this work,

is to identify the high strain zone, where the laminar flame response

is expected to be non-linear, by using a simple flame case, prone to

the extinction strain rate prediction, such as the reactants-to-reactants

configuration. In this way, the extinction strain rate, computed for

the reference flame at F = 1, is able to provide a reasonable region

where ktarget
s can be selected, providing the only input required by the

optimization procedure. However, other and more case-dependent so-

lutions can be used. For instance, in explosions [4] the region of interest

is limited by the kernel size used to initialize the CFD computation and

ktarget
s may be set to its corresponding stretch value. For the flame in

Fig. 5, characterized by a fresh mixture at 1 bar, 300K and equivalence

ratio ϕ = 0.9, ktarget
s is fixed to 1450 s−1 close to the flame extinction
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Figure 8: Optimization loop used to obtain S-TF model key parameters Fth, Fsp, Fr.

Consumption speeds of strained flames are computed using the CounterFlow Premixed

Flame configuration in CANTERA.

strain rate and order of magnitude of the inverse of the unstretched

flame time s0L/δ
0
L = 1000 s−1.

The procedure to compute X̃0 in the Stretched-Thickened Flame model

framework is detailed in the next section.

3.2. Optimization procedure

Figure 8 describes the S-TF model optimization loop followed to com-

pute the function X̃0 for a certain thickening factor F . Once the fresh gas
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conditions have been defined, the code CANTERA3 is used to simulate both

unstrained and strained flames. At first, the 1D unstrained flame behav-

ior is characterized by measuring the parameters α and β of the chemical

scheme (see Appendix A). After that, strained flames are computed using

the CFPF configuration: the consumption speed of the reference strained

flame at F = 1 is computed for the chosen ktarget
s and compared to the value

of ŝc(F > 1) of the thickened flame for the same strain value. Then the

objective function (Eq. (30)) is minimized. It can be done by using different

optimization algorithms such as Newton-Raphson, Broyden’s or the Differ-

ential Evolution (DE) method [44]. Here the DE approach was used since

it proved to be the fastest and most effective in converging on a solution,

following a stochastic approach in the research of the best candidate, with-

out relying on gradient methods. During this process, X0 is updated and the

curve slope (∂sc/∂ks|ks 7→0) is modified until the constraint on the burning ve-

locity, ŝc (F > 1, ktarget
s ) = sc (F = 1, ktarget

s ), is satisfied for X0 = X̃0. This

process is repeated for different thickening factors, building a X̃0 dependency

in F as shown in Sect. 4.

In the next section, the results of the optimization procedure are validated

for a stagnation point flame and applied to a cylindrical flame configuration.
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Figure 9: a) Lewis number evolution with the thickening factor for X0 = F (TF approach),

X0 = 1 (TF-adapt approach) and X0 = X̃0 (S-TF approach). b) Pre-exponential correc-

tion factor for X0 = F (TF approach) and X0 = X̃0 (S-TF approach). c) Unstrained

laminar flame ŝ0L and d) laminar thickness δ̂0L with S-TF.

4. Stretch-TF model validation and application

4.1. Validation: Stagnation plane flame

Table 4 summarizes the results of the optimization procedure detailed in

section 3.2 for a C3H8/Air premixed flame obtained with a fresh mixture at

ϕ = 0.9, P = 1 bar and T = 300 K, using the 2-step chemistry described

3The factors Fth, Fsp and Fr have been implemented in the code CANTERA.
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TF model

F Fth Fsp Fr X0 L̂e

1 1 1 1 1 1.4

2 2 2 0.5 2 1.4

5 5 5 0.2 5 1.4

7 7 7 0.143 7 1.4

10 10 10 0.1 10 1.4

TF-adapt model[4]

F Fth Fsp Fr X0 L̂e

1 1 1 1 1 1.4

2 2 2.33 0.562 1 1.2

5 5 6.48 0.243 1 1.08

7 7 9.27 0.177 1 1.057

10 10 13.46 0.125 1 1.04

S-TF model

F Fth Fsp Fr X0 L̂e

1 1 1 1 1 1.4

2 2 2.353 0.565 0.95 1.19

5 5 6.669 0.249 0.62 1.05

7 7 9.913 0.186 -0.2 0.989

10 10 14.706 0.134 -1.2 0.952

Table 4: Thickening scaling factors F , Fth, Fsp, Fr and the corresponding Lewis number

along with the relative X0 function for the three approaches, TF, TF-adapt, S-TF. Oper-

ative conditions: C3H8/Air at 300 K, 1 bar and ϕ = 0.9.

in Sect. 2.2. The thickening factors (Fth, Fsp, Fr), the X0 function and the

modified Lewis numbers obtained with the TF, TF-adapt and S-TF models

are compared. The S-TF approach reduces the Lewis number when the thick-

ening factor increases and diverges from the TF-adapt when the actual strain

Fks that the flame experiences is higher, as reported in Fig. 9a. Figure 9b

shows that while the Lewis number is decreasing, the pre-exponential factor

is modified. Although Fr differs from the simple 1/F function of the Thick-
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Figure 10: Consumption speed of C3H8/Air flame computed with S-TF and TF ap-

proaches. Operative conditions: P = 1 bar, T = 300 K and ϕ = 0.9.

ened Flame model, S-TF provides the same results in terms of unstretched

laminar flame parameters: ŝ0L is conserved and δ̂0L is scaled by a factor F

(Fig. 9c and Fig. 9d).

Figure 10 shows the consumption speed variation of 1D strained flames

when thickened using the S-TF models with F = 5 and F = 10, compared

with the F = 1 flame. For each flame, the optimization strategy of 3.2 is used

to define X̃0. Figure 10 also reports the prediction of the TF model (dashed

lines) to highlight the S-TF model impact. As expected, at the optimization

point (ks = ktarget
s ), the 50% error obtained with the classical TF model is

fully corrected by the S-TF model. A good match on sc is also achieved
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TF-adapt (X0 = 1) and S-TF (X0 = X̃0). X̃0 obtained for C3H8/Air flame at P = 1 bar,

T = 300 K and ϕ = 0.9.

at other ks values, without the need to repeat the optimization process at

different ktarget
s .

In addition, for all F values, at weakly strained regime, the consumption

speed, ŝc, tends towards the laminar flame speed s0L, proving that the con-

straint of Eq. (24) is also well verified by construction of the model (Eq. (24)

and (25)).

The evolution of X̃0 derived by the optimization process at different thick-

ening factors F is shown in Fig. 11 for the C3H8/Air flame at P = 1 bar,

T = 300 K and ϕ = 0.9. The values obtained lie around a parabolic trend
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with amplitude γ = −0.03. X̃0 becomes also negative and the chemistry

Lewis number is pushed towards values lower than one. The γ parameter

depends only on the mixture conditions (P , T , ϕ) and allows to represent

the F -dependent correction with a simple analytical function X̃0 that can be

easily implemented in a CFD code. As an example, Appendix C provides a

list of γ values for the C3H8/Air flame obtained for P = 1 bar, T = 300 K

and different values of ϕ. The procedure to obtain γ for other conditions is

also described. In particular, once the function X̃0 is known for given mix-

ture conditions, it can be applied without requiring any information about

the strain rate (or the range of strain rates) acting on the flame. This is not

a minor aspect because during a complex CFD simulation, if the S-TF model

is applied, the flame elements, when thickened, will react correctly whether

they are strained or not, without any evaluation of the local strain acting on

the reaction front.

Figure 12 displays normalized temperature θ (Eq. (5)) versus normalized

fuel mass fraction:

Ψ =
YF − Y b

F

Y u
F − Y b

F

(41)

at ks = 1450 s−1 for F = 1, F = 5 and F = 10. When the Thickened Flame

model is applied, species and thermal diffusion are scaled by the same param-

eter F , thus, the relative diffusion of species and heat is kept constant with

the thickening factor. As a consequence, the profiles of Ψ̂ are superimposed if

evaluated in the temperature domain (Fig. 12b). Conversely, with the S-TF

approach (Fig. 12a), species diffusion is amplified more than temperature dif-

fusion since the generalization of the diffusion-reaction transformation yields

Fsp > Fth when Le0 > 1. For this reason, using the S-TF model, Ψ̂ reduces
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Figure 12: Normalized fuel mass fraction Ψ̂ plotted against the normalized temperature θ̂

with the S-TF approach for ks = 1450 s−1 a) and with the TF approach b).

with the thickening factor for each value of θ̂ and tends to Ψ̂+ θ̂ = 1 profiles,

in accordance with the optimized Lewis number L̂e close to unity. The im-

provement in thickened flame response is further confirmed in Fig. 13 where

the profiles of ̂̇ωFr/
(
∇θ̂
)
and ̂̇ω/

(
F∇θ̂

)
are evaluated in temperature space.

The integral of these functions determines the consumption speed (Eq. (8))

and proves that the TF approach underestimates it (Fig. 13b) while the S-TF

model approaches the reference solution (Fig. 13a).

4.2. Application: Cylindrical expanding flame

In this section, the S-TF model is applied to a 2D cylindrical expanding

flame (Fig. 14a). Here, the laminar flame is subjected to pure curvature,

namely kc = 1
rb

drb
dt
, where rb is the radius of the burnt products region.

Although this flame is only curved, the S-TF model is used without any

modification to show that, even though it uses a 1D strained flame as a
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Figure 13: a) Flame structure with S-TF model. b) Flame structure with TF model.

ks = 1450 s−1.

reference configuration for the optimization procedure, it propagates all flame

elements (strained or curved), potentially present in a turbulent flame brush,

at the right speed. In addition, while the flame expands in time, its curvature

changes according to rb and the S-TF model can be tested over a wide range

of kc.

Simulations are carried out using the high-fidelity compressible LES solver

AVBP (http://www.cerfacs.fr/avbp7x/). The fresh mixture conditions are

the same used for the CounterFlow Premixed Flame (C3H8/Air mixture at

P = 1 bar, T = 300 K,ϕ = 0.9) and ignited using the Energy Deposition

model (ED model) [7]. Two different grids are used to target F = 1 and

F = 10 (Fig. 14c). As shown in Fig. 14(b-c), the flames are initialized at

the origin of the domain (Fig. 14a) in a refined region with ∆x = 60µm,

corresponding to unity thickening factor (F = 1), such that all flames are
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Figure 14: a) 2D cylindrical expanding flame. It is initialized in x = 0, y = 0 and it

propagates in a quarter-circle shaped domain. b) Mesh size for the two cases: F = 1 and

F = 10 c) A priori thickening factor field accounting seven points in the flame front. The

laminar flame thickness is equal to 0.42 mm for a fresh mixture at 1 bar, 300 K, ϕ = 0.9.

ignited in the same well resolved zone and later enter a coarser grid region

where thickening is applied depending to the grid size (Fig. 14c). Thus, the

chosen configuration is as close as possible to most LES simulation where

thickening is controlled by the local cells dimension. The thickening factor is

computed relying on the dynamic version of the TF model (DTFLES [45]):

F =
n∆x

δ0L
, (42)

where n = 7 is the number of points used to resolve the flame structure [46]

and ∆x is the mesh size.

The parabolic function shown in Fig. 11 is implemented in the code to

take the thickening variations into account and correct the Lewis number
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Figure 15: Cylindrical flame consumption speed colored with the thickening factor. Com-

parison between cases at F = 1 and F = 10. C3H8/Air flame at P = 1 bar, T = 300 K

and ϕ = 0.9.

consequently. The code computes the local thickening value as in the clas-

sical Thickened Flame model and attributes a value to the pre-computed

F -function X̃0(F ). In this way, Fth, Fsp and Fr are evaluated and applied

to the diffusion coefficients and the source terms. This process is detailed in

Appendix B.

The consumption speed is computed by measuring the flame surface Af

and integrating the rate of the reactant consumption through the entire sur-

face
∫
Σ
ω̇FdΣ [37]:

sc = − 1

Af

(
Y u
F − Y b

F

)
ρu

∫

Σ

ω̇FdΣ. (43)

The flame surface Af is evaluated using the area covered by the burnt
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Comparison with the F = 1 flame.

products, estimated as the integral of the progress variable θ on the compu-

tational domain:

Qb =

∫

Σ

θdΣ. (44)

The radius rb is deduced from the surface of burnt gases Qb using Qb = πr2b

in this 2D configuration.

Figure 15 displays the flame consumption speed as a function of the radius

rb. The fully resolved flame (F = 1) is useful to understand the flame

dynamics: during the early instants after ignition, the consumption rate

increases quickly and fresh gases are burnt faster then the laminar speed s0L.

This is due to the spark energy that influences the flame dynamics in the first

moment of ignition [47], until a small kernel of burnt products is generated
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and starts growing. Since the flame is highly stretched, the consumption

speed decreases to sc ≈ 88%s0L when rb ≈ 4 mm. Then, kc reduces in

time and the flame burning velocity tends to the laminar flame speed at

high rb [47]. When the flame moves on a coarser grid, it is thickened and

starts experiencing F times the actual stretch acting on F = 1 flame. For this

reason, as soon as the TF model mapping (Eq. (7)) is applied, at small radius

(high curvature) the stretch effect is amplified and the consumption speed is

drastically reduced. In this case the error on the predicted ŝc relative to the

reference consumption speed is higher than 30% (Fig. 15) and the sc(F = 1)

is reached at rb = 70 mm.

The S-TF model compensates for this, leading to a flame which prop-

agates almost like the flame at F = 1. When the S-TF model is applied,

the consumption speed reaches the target value at rb < 20 mm and the

exact flame behavior is quickly recovered. As a consequence, the flame posi-

tion over time is better predicted compared to the classical Thickened Flame

model as shown in Fig. 16a where the flame radius is monitored in time. As

long as the flame front propagates on the coarser mesh, flame resolved by

the TF model is slowed down by curvature, while the S-TF approach keeps

it close to the reference case (F = 1). Then, when the kc effects become

negligible, all flame fronts move at the same absolute speed r
′

b ≈ ρu/ρbs0L.

Even if the stretch changes in time, the S-TF model is able to reproduce the

correct evolution of the flame burning velocity since the model parameters,

found in the strained flame configuration, provide the sc correction over a

wide range of ks.

Figure 16b illustrates the temperature profiles traced at t = 25 ms along
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the flame radius. The thermal thickness of the flame resolved with the TF

and the S-TF model is increased by the same quantity since Fth = F , ensuring

the same resolution. However the S-TF model increases the mass diffusion

thickness such that, with a L̂e = 0.95 (Table 4), the corresponding flame

moves closer to the flame at F = 1, describing its evolution more accurately.

The Stretched-Thickened flame model provides also a better prediction of

the flame temperature. The asymptotic theory [28, 29] reveals that also the

temperature reached in the reaction zone depends on the factor (Le0 − 1) [37],

as obtained for the consumption speed sc (Eq. 21). As a consequence, the

proposed Lewis number modification allows to preserve at the same time

not only the burning velocity but also the flame temperature of a stretched

thickened flame, without any additional constraint.

5. Conclusions

In this work a strategy to capture the stretch response of flames, thick-

ened using the Thickened Flame model is proposed. As shown in previous

works [19], the mathematical analysis of a planar flame in a stagnation point

flow highlights the need to revise the diffusion-reaction transformation which

the Thickened Flame model is based on. This is achieved by modifying the

thermal and species diffusivity with different factors as well as adjusting the

pre-exponential constants to match specific flame properties.

At first, the diffusion-reaction transformation is generalized and the scal-

ing factor applied on the thermal and species mass diffusion as well as on

the reaction terms are computed to ensure the laminar flame speed conserva-

tion, the thermal thickness resolution and the same stretch response between
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thickened and non thickened flame. In the last constraint, an optimization

function is included to match the stretched flame speed at one large stretch

value ks of the order of s0L/δ
0
L.

The 1D flame, strained in a stagnation point flow, is used as reference

case to validate the optimization procedure, ensuring a correct flame response

in a large range of strain, from weak to high values. Then the optimized

diffusion-reaction transformation developed for strained flames is used for

the cylindrical flame configuration where only curvature acts. At small kernel

radii the flame consumption speed is enhanced and the flame dynamics in

time is much better with the S-TF approach.

The described model suggests a practical solution to overcome TF model

limits for stretched flames, without requiring local stretch computation or

discrimination between strained, curved or unstretched flame during the sim-

ulation. From an implementation point of view, the S-TF model preserves

the simplicity of the TF approach and offers a viable solution for complex

CFD codes.

Concerning stretched turbulent flames, the prediction of the turbulent

speed sT = Esc can benefit from the S-TF model, which would guaran-

tee the correct burning velocity sc of all stretched segments composing the

flame front. Added up to the subgrid turbulence model E [1, 22, 23], the

Stretched-Thickened Flame model represents a further step towards increas-

ingly reliable turbulent combustion models.
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Supplementary Materials

Appendix A

The premixed flame theory [24, 43, 48] provides the analytical expression

of the laminar flame speed for a n−order reaction:

s0L ∝
√
KrDthLen = K1/2

r D
n+1
2

th D
−n

2
k (45)

where Kr is the reaction pre-exponential factor, Dth is the thermal diffusion

andDk is the species mass diffusion. It is effective under strict hypothesis and

may not be accurate for more complex chemistries with multiple reactions. A

more flexible approach is proposed to obtain the correct laminar flame speed

dependency on thermal diffusion and species mass diffusion for the specific

chemical mechanism chosen. Eq. (45) is recast as:

s0L ∝ K1/2
r Dα

thD
β
k (46)

with α and β, parameters describing the physics of the laminar unstrained

flame, generalizing the dependency on Dth and Dk. Note that they are linked

to each other and Eq. (45) suggests that their sum is equal to 1/2. These

two parameters depend on the flame and can be obtained by perturbing the

laminar premixed flame with a variation of either Dth or Dk. According to

Eq. (46), when the thermal diffusion coefficient of the mixture is modified by

a factor ϵth, the laminar flame speed responds as follow:

s
′
L

s0L
= ϵαth

−→ ln

(
s
′
L

s0L

)
= αln(ϵth)

(47)
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Figure 17: a) Laminar flame speed evolution with thermal diffusion variation (—). b)

Laminar flame speed evolution with species mass diffusion variation (—). The tangent

lines (- - -) represent the flame behavior for small perturbations.

In a logarithmic domain it corresponds to a linear function with slope α.

In the same way, by altering the species mass diffusion Dk with a factor ϵk

yields:

s
′
L

s0L
= ϵβk

−→ ln

(
s
′
L

s0L

)
= βln(ϵk)

(48)

Fig. 17 shows how the laminar flame reacts with changes of thermal diffu-

sion (Fig. 17a) or species mass diffusion (Fig. 17b). In the small perturbations

region, the flame reacts following exactly the power law (Eq. (46)) suggested

by the premixed flame theory: in logarithmic domain, the response is linear

and its slope represents the flame behavior in the parameters Dth and Dk.

For the two-step chemistry used in the paper (Sect. 2) and for a fresh

mixture at 1bar, 300K at ϕ = 0.9, α = 0.879 and β = −0.378. α and β

describes the flame behavior and depends on the chemical mechanism used.

Their sum is equal to 0.5 as expected from premixed flame theory. This
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implies that only the computation of one on them is required.

Note that the methodology proposed is independent of the complexity of

the chemical mechanism and allows to obtain numerically the mixture global

reactivity for certain operative conditions.
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Appendix B

LES 
simulation

Fresh gas 
conditions: 
𝜙,𝑇,𝑃

Laminar flame 
parameters: 𝛿!"

Compute the 
thickening factor: 

𝐹 = #$%
&!
"

o 𝐹'( = 𝐹
o 𝐹)* =

+#!,"

+- !,"./ 0"1(+)

o 𝐹4 =
/

+$/#
+
+&'

5 6
𝐷7 , 𝐷'(, 𝜔̇7 ↦

𝐹)*	𝐷7 , 𝐹'(	𝐷'(, 𝜔̇7	𝐹4

Optimization with 
CANTERA:
𝛾	 𝐹 → 𝑋"0(𝐹)

Figure 18: Schematic flow chart describing the actual application of the S-TF model in a

CFD code.

Figure 18 illustrates the procedure followed to implement the Stretched-

Thickened Flame model in a CFD code.

Once the ktarget
s is defined (usually ktarget

s ≈ s0L/δ
0
L) following the approach

proposed in the paper, the CounterFlow Premixed Flame configuration is

used to find the function X̃0 or the parameter γ describing the F -dependency,

(refer to Fig. 11 in the paper) for given operative conditions, able to opti-

mize the chemistry Lewis number and correct the stretched thickened flame

behavior. During the simulation runtime, the laminar unstrained flame prop-
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erties, e.g., δ0L are used to obtain the thickening factor F , as proposed by the

Dynamic Thickened Flame model formulation [45]. At this point, the pa-

rameters defined for the generalized diffusion-reaction transformation, Fth,

Fsp and Fr are computed and applied respectively to the thermal diffusion

coefficient Dth, the species mass diffusion Dk and the species source terms.
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Appendix C
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Figure 19: X̃0 function behavior with the thickening factor F for Stretch-Thickened Flame

model. X̃0 obtained for C3H8/Air flame at P = 1 bar, T = 300 K and ϕ = 0.7/0.9/1.4.

Figure 19 illustrates the X̃0(F ) function computed for the C3H8/Air mix-

ture at P = 1 bar, T = 300 K for ϕ = 0.7/0.9/1.4. As highlighted in the pa-

per, X̃0(F ) values, obtained from Eq. (30), lie around the following parabolic

fit:

X̃0 = γ (F − 1)2 + 1. (49)

Equation 49 is such that for F = 1, X̃0(F = 1) = 1 and the factors of the

generalize mapping in Eq. (23) become equal to one:




Fth = 1

Fsp = 1

Fr = 1

(50)
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Increasing the values of F , the S-TF function X̃0 diverges from the X0 corre-

sponding to TF-adapt (X0 = 1) since the flame experiences an higher strain

Fks and TF-adapt hypotheses do not hold anymore.

γ is the curve amplitude that minimizes the distance between all the

optimized values X̃0(F ). Its definition is convenient when the model is im-

plemented in a CFD code: during an LES simulation, if F changes locally

due to, for example, mesh size (see Section 4.2 and Eq. (42)), it is useful to

reduce the number of parameters that have to be implemented in the code.

The F -function X̃0 modelled as in Eq. (49), once defined γ, requires only the

thickening factor F to modify the mixture Lewis number accordingly and

correct the stretch response of the computed thickened flame.
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