
Large Eddy Simulations of a High-Speed

Low-Pressure Turbine Cascade with Purge

Flow

Master of Aerospace Engineering

End of Study Internship Report
2022/2023

Author:

David W. Perkins

Supervisor:

Florent Duchaine

Submission Date - September 11, 2023





Acknowledgments

I would like to thank Dr. Florent Duchaine for his valuable insight throughout this project, and
for providing me with the resources needed in order to succeed. I would also like to thank him
for his helpful feedback, which made this report all the better.

I would also like to thank the CERFACS teams for their welcome, in particular Jérome
Dombard, Carlos Pérez Arroyo, and Nicolas Odier who went out of their way to make me feel
included at CERFACS. Their introductions to AVBP were not only useful, but essential to this
project.

Thanks also to the Centre de Calcul Recherche et Technolgie (CCRT) for providing me access
to the supercomputer, TOPAZE, which gave me the computational power needed to study this
interesting case.

Thanks to the ISAE-SUPAERO teaching department for giving the me technical background
to thrive during this internship. I appreciated greatly the experience at ISAE-SUPAERO and
the invaluable perspective it has given me on life.

Of course, a big thanks to all of my friends in Toulouse who laughed along with me and gave
me a push in the right direction when I needed one.

Finally, a thank you to my family for letting me go on the adventure of a lifetime and always
supported me, even from thousands of miles away.

i





SUMMARY:

Future turbofan designs are expected to include gearboxes to allow for the decoupling
of the fan and the low-pressure turbine. Doing so will increase efficiency, but change the
design point for low-pressure turbines from a relatively low rotation speed to high-speed. To
study these new high-speed low-pressure turbines, the experimental SPLEEN linear turbine
cascade is studied using Large Eddy simulation (LES). Using LES, these simulations capture
engine-relevant turbulence, transition, and high Mach number physics that are expected in
this operating regime. These simulations are extended to include the technological effect of
a blade-rotor cavity, and a sealing purge flow between these two components. The losses in
the cascade are analyzed and compared to experiment, showing good predictive capabilities
of LES.
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1 Introduction

The focus of the present work is the study of secondary and leakage flow effects in high-speed
low-pressure turbines (LPT), as described by the SPLEEN project1. This EU project focuses on
developing knowledge and tools to design such a next-gen turbine by instrumenting a cascade
at engine-realistic conditions. These high-speed low-pressure turbines are a key technology for
the engineering of Ultra High Bypass Ratio (UHBR) turbofans, whose development is driven
by environmental and economic requirements. A high bypass ratio engine will have increased
fan diameter, which must have a reduced fan rotation speed in order to reduce tip losses. This
reduction in fan rotation speed is typically accomplished via a gearbox between the fan rotor
and the intermediate pressure compressor (IPC) [1]. As the IPC and the LPT are mechanically
linked, this allows the LPT to rotate at a higher rate, which allows for both the fan and the
low-pressure turbine to operate at more optimal speeds, which improves overall cycle efficiency
relative to a traditional turbofan [2].

Consequently, these engine designs require that the LPT operate at transonic exit Mach
numbers (Mout > 0.9) and low-Reynolds numbers [3]. In general, numerical simulation tools are
becoming increasingly complex in order to provide insight into turbomachinery flows. Despite
this, the conditions in high-speed LPTs remain difficult to simulate as there can be developed
shocks, laminar to turbulent boundary layer transition, and rotor-stator interaction between
moving parts. High levels of turbulence as well as unsteadiness necessitate the use of Large Eddy
Simulations (LES) which are significantly more expensive than traditional Reynolds Averaged
Navier-Stokes (RANS) simulations or unsteady RANS (URANS) simulations.

To better understand the flow physics present in these high-speed low-pressure turbines,
this work simulates experimental flows using LES via the AVBP code from CERFACS. LES
has a few advantages over RANS or URANS in this context. The main advantage is that LES
explicitly resolves a large portion of turbulent fluctuations, which reduces the need for turbulence
models (such as the k 2 ÷ model for RANS). Instead, LES uses a subgrid-scale (SGS) model to
represent small scales of turbulence that cannot be resolved by the mesh. By directly solving
a large part of the turbulent spectrum, LES can capture flow physics that otherwise may be
difficult to model, including boundary layer transition, large separation, and acoustics. In the
case of the SPLEEN experimental cascade, data has been collected [4] to quantify the turbulent
statistics actually present in order to reproduce their effects in a simulation. Additionally, the
measurement of these quantities allows for a broader understanding of flow physics and their
dependency to variations in operating conditions.

The experimental SPLEEN cascade is a variable set up that recreates the effects in a real
high-speed low-pressure turbine complete with rotating rods and a cavity. The rotating rods
mimic the behavior of passing wakes from an upstream stage, and the cavity allows for purge
flow to be injected into the cascade from a realistic geometry. The complexity of the experiments
is increased throughout the testing campaign, starting with experiments performed without the
wake generators or the cavity, then adding the wake generators, then finally adding the cavity.
Simulating the entire experimental set up is prohibitively expensive due to the computational
cost, and consequently the main challenge in this project is to create a robust, affordable simu-
lation. This simulation should also capture the the effects of the purge flow cavity and the purge
flow’s effects on the main flow as it relates to the observed blade profiles, without including the
rotating bars.

In the following section, the company and its organization is presented. The bulk of this
report is in Section 4, which covers some of the scientific theory surrounding LES of LPTs, the
key methods, the main work performed, as well as the results and their discussion. Finally, some

1https://www.h2020-spleen.eu/
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overall conclusions on the internship are presented in Section 5.

2 Work Context

This internship was performed at le Centre Européen de Recherche et de Formation Avancée
en Calcul Scientifique (CERFACS), located in southwest Toulouse. CERFACS is a privately
owned research center, focusing on modeling and simulation. This basic and applied research
center was created in 1987 by eleven members: Aérospatiale, CNES, CNRS, INPT, Inria, Insa,
Matra-Marconi Space, Météo-France, Onera, and Midi-Pyrénés. Currently, many CERFACS

projects are multinational and/or interdisciplinary and are often strongly coordinated with one
of its seven shareholders: Airbus Group, Cnes, EDF, Météo France, Onera, Safran and Total.
Other key relations include CNRS, Irit, CEA, and Inria. These collaborations allow CERFACS

to deal with major scientific and technical research problems of societal and industrial interest.
At CERFACS, there are a number of interns as well as young PhD students who are sup-

ported by a team of experienced professionals in a variety of fields, ranging from algorithm
development, to computational fluid dynamics, to climate modeling. Each of these teams are
backed by a number of information technology personnel, human resources staff, and janitorial
staff. The wide variety of teams also employs a wide variety of backgrounds, including (but not
limited to) physicians, applied mathematicians, numerical analysts, and software engineers.

The stated objectives of CERFACS are to:

• Develop scientific and technical researches in order to improve advanced computing meth-
ods, including a better consideration of the related physical processes as well as the devel-
opment of performing algorithms for the new computers’ architectures,

• Allow either solely or shared access to computers with new architecture, being able to gain
performances,

• Transfer this scientific knowledge and technical methods for application to big industrial
sectors,

• Train high qualified people and offer an advanced training for the fields and selected ap-
plication themes.

There are four main teams at CERFACS:

• Climate modeling and Global Change (GLOBC): which conducts funamental and
applied research for climate modeling, developing advanced models to couple the oceans, the
atmosphere, and other components of the climate system. These systems are increasingly
complex, requiring the use of high performance computing (HPC) to accurately reproduce
the dynamics of the observed climate. This team’s main goals are to develop high level
softwares for modeling the complex links in climate science, and to improve models on
climate variability and predictability using HPCs.

• Computational Fluid Dynamics (CFD): which focuses on flow simulation and develops
advanced models applicable to planes, rockets, engines, turbines, and many others. This
team develops key tools for applied aerodynamic fields and is intricately linked to HPC, as
the efficiency and reliability of CFD simulations is of primary interest.

• Parallel Algorithms & sCientific sOftware Operational Perfomances (ALGO-
COOP): which works on numerical algorithms, large scale computing, software engineer-
ing, adaptive mesh generation, parallel load balancing, and others. This team is responsible
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for many of the tools that are incredibly useful for supporting the other research teams.
The ALGO-COOP team is also involved in the increasingly important fields of machine
learning and artificial intelligence.

• IT management and user support: which manages standard computing frames nec-
essary for the operation of CERFACS (such as internet, mail, accounting systems, etc.)
but also the in-house High Performance Computing systems necessary for simulations.
This team also manages the connection between CERFACS to other national (Genci) and
international (Prace and Incite) computing resources for research purposes.

3 Modeling and Numerics in AVBP

As outlined in the introduction, the CFD program used at CERFACS is the LES solver AVBP,
developed by CERFACS. The following section will detail the fundamental equations and nu-
merics used by AVBP in the context of a non-reacting, turbulent flow typically seen in turbo-
machines.

3.1 Fundamental Equations

As a CFD software, AVBP finds numerical solutions to the Navier-Stokes equations. This well-
known set of equations has been studied extensively since the 19th century. Initial solutions
to these equations were constructed with very strong simplifying assumptions, however mod-
ern problems require more relevant hypotheses, which in turn requires increased complexity in
the equations. Thanks to the exponential growth in computational sciences, the Navier-Stokes
equations have become more approachable with fewer assumptions.

The previously mentioned Navier-Stokes equations are:

"Ä

"t
+
"Äui
"xi

= 0 (1)

"

"t
Äui +

"

"xj
(Äuiuj + p¶ij 2 Äij) = ÄFi; i = 1, 2, 3 (2)

"ÄE

"t
+

"

"xj
(ÄEuj + p¶ijuj 2 uiÄij + qj) = ÄFjuj + Q̇ (3)

where Ä is the density of the fluid, u is the velocity vector, E is the total Energy, Äij is the

viscous stress tensor, p is the pressure, q is the heat flux, Q̇ is the heat source term, and F is
the external force applied. Here, ¶ij is the classically defined Kronecker delta function, and the
repeated subscripts use Einstein notation to indicate summation.

These five equations are continuity equations, where the first equation is the conservation
of mass, the second through fourth form the conservation of momentum, and the last is the
conservation of energy. These equations constitute a set of partial differential equations (PDEs)
which are known to be strongly dependent on two additional sets of information, the boundary
conditions and the initial condition. A quick examination of these five equations reveals eight
unknowns, and so the problem is not closed.

3.1.1 LES Closure in AVBP

These closure variables, p, the pressure, Äij , the viscous stress tensor, µ, the dynamic viscosity,
and q, the heat flux must be determined. For the simulations discussed in this report, these are
closed with the following state and behavior laws.
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For the state law, it is assumed that the fluid is a calorically perfect gas, giving

p = ÄrT, (4)

where r is the gas constant of the local mixture seen in the flow at a given instant. For this
flow,

r =
R
W

(5)

where R is the universal gas constant, R = 8.3145 kg.m2.s22.K21.mol21. For this simulation,
the fluid (air) is simplified as a single species with molecular weight Wair = 0.02885 kg.mol21.
Since the air is assumed to be calorically perfect, the constant pressure cp and constant volume
cv specific heat capacities are constant, and their ratio µ = cp/cv is known as the adiabatic
exponent. For air under this assumption, the internal energy, e, the enthalpy, h, and the heat
capacity depend only on the temperature. The total energy of the air can be expressed as

E =
rT

µ 2 1
+

1

2
Ä|u|2, (6)

which closes the pressure, p.
To determine the viscous stress tensor, the Newtonian fluid hypothesis is used in combination

with the Stokes hypothesis to relate the bulk viscosity and the dynamic viscosity. Together, these
two assumptions give that the viscous stress tensor as:

Äij = µ

(

"uj
"xi

+
"ui
"xj

)

2 2

3
µ

(

"ui
"xi

)

, (7)

which also exposes the closure variable, µ, the dynamic viscosity. For the dynamic viscos-
ity, Sutherland’s law is used, which allows for the straightforward computation of the dynamic
viscosity as a function of temperature. For the air used in the simulation, this equation is

µ(T ) = µref

(

T

Tref

)
3

2 Tref + S

T + S
(8)

with reference values µref = 1.807E 2 5 kg.m2.s21 and Tref = 273.15 K. The parameter S
is the Sutherland constant, here S = 110.6 K for the simulated air mixture.

The last missing piece, the heat flux, q, is modeled via a conduction process using Fourier’s
law as:

qi = 2¼ "T
"xi

, (9)

where ¼ is the thermal conductivity. In this simulation, the thermal conductivity is deter-
mined by the Prandtl number of air, which is assumed to be constant in time in space with a
value Pr = 0.71.

¼ =
µcp
Pr

(10)

With these assumptions, all four of the closure variables can be determined and the NS
equations are closed.
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3.1.2 Turbulence

A key observation is that the NS equations are inherently non-linear, and this non-linearity is
understood to be the underlying source for the development of turbulence. Turbulence, while
difficult to define, is best described as a three dimensional time-dependent motion driven by
vortices causing velocity fluctuations to spread across many wavelengths in a chaotic (random)
manner. A turbulent flow is often modeled as a stochastic process, where the velocity vector, u,
can be decomposed into a mean quantity, u, and a fluctuating part, u2(t):

u(t) = u+ u2(t) (11)

Turbulence is typically studied and understood through its simplest case, homogeneous
isotropic turbulence (HIT). The addition of these two properties, homogeneity and isotropy,
allow for a clear mathematical description of the problem. Briefly, homogeneity means that the
properties of the fluctuations (the turbulence) are invariant with translation. Isotropy means
that the fluctuations are invariant with rotation.

Figure 1: HIT turbulent kinetic energy spectrum [5]

A classical diagram (Figure 1) for explaining HIT is the the turbulent kinetic energy spec-
trum. The above figure shows the turbulent kinetic energy as a function of the wavenumber (k)
of the turbulent scale. The turbulent kinetic energy (TKE) can be defined as:

TKE =
3

2
u22rms, (12)

where u2rms is the root-mean-square of the turbulent velocity fluctuations. This energy
cascade is well studied and is typically described by a process where the mean flow produces
energy that is transferred to the inertial scales via large tubular vortices. In Figure 1, the

5



variable k is the wavenumber of the turbulent structure, equal to the inverse of the length of
the structure. Thus, a large k is related to very small structures, and a small k is linked to
large structures in the mean flow. These large structures interact and their stretching generates
smaller scale tubular vortices. These increasingly smaller vortices continue to interact, cascading
energy from the large scales to very small scales. At these very small scales, the energy is finally
dissipated via molecular viscosity [6]. These very small scales are classically defined by the
Kolmogorov length, ¸K ,

¸K =

(

¿3

·

)1/4

, (13)

where · is the average rate of dissipation of turbulent kinetic energy per unit mass, and ¿
is the kinematic viscosity of the fluid. This is the only combination of these two variables that
gives a length, as · has dimensions (length)2/(time)3, and ¿ has dimensions (length)2/(time).

Figure 1 highlights the disparity in energy content between the different scales in the tur-
bulent flow. In general, the larger scales contain a majority of the energy, while the dissipative
scales contain only a small portion. This is a key part of the LES model: LES resolves many
scales of turbulence which accurately describes the energetic scales critical for the behavior of
the flow, and models the small dissipative portion. Moreover, these small dissipative scales are
considered to be more universal [7] and therefore less dependent on the geometry simulated,
which makes modeling them more generally applicable. This is in contrast to URANS, which
does not resolve any turbulent scales, and DNS, which must resolve all turbulent scales down to
the very small dissipative scale.

One important issue with HIT is that it clearly is not representative of flows seen in most
industrial contexts. For instance, the flow near any wall is perturbed near it and so it becomes
neither homogeneous nor isotropic, and consequently, the flow through a complex feature such
as a linear turbine cascade is not either.

There are a few key quantities for describing turbulence. The first of these is the turbulence
intensity,

TI =
u2rms

|u| , (14)

where u2rms is the root-mean-square of the turbulent velocity fluctuations and |u| is the
magnitude of the mean velocity vector. This can be computed as

u2rms =

√

1

3

(

(u2x)
2 + (u2y)

2 + (u2z)
2
)

(15)

or

u2rms =

√

1

3

(

(u2x 2 u2x) + (u2y 2 u2y) + (u2z 2 u2z)
)

, (16)

where u2i is the average of the squared ith velocity component, and u2i is the square of the
average ith velocity component. Here, |u| is the magnitude of the mean velocity vector.

Another key quantity for describing turbulence is the integral length. This length represents
the average size of vortices containing the highest energy. Roach [8] proposes that the integral
length scale (Λ) can be computed via extrapolating the power spectrum of the velocity functions
(E(f)) as the frequency approaches zero by
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Λ =

[

E(f)|u|
4|u22|

]

. (17)

This value can also be estimated via the auto-correlation of the velocity field at two different
positions (x1, x2) at the same time [9] as

Λ = |u|
∫ >

0

u2x(x1, t)u
2
x(x2, t)

√

u22x (x1, t)
√

u22x (x2, t)
dt. (18)

3.1.3 LES Filtering

In the context of LES, the scales that are resolved are dependent on both the mesh and on the
filter size. Selecting the filter size, ∆, is not trivial, but it is ideally chosen such that approximately
80% of the turbulent kinetic energy (TKE) is resolved. This criterion is also known as the Pope
criterion [10].

With this filter size defined, the LES formalism for a given quantity, ×, can be decomposed
into a resolved part ï×ð∆ and a modeled part, ×2 as

× = ï×ð∆ + ×2 (19)

where the filtering process is defined based on Leonard [11] and can be understood as

ï×(x)ð∆ =

∫

×(x2)G(x, x2; ∆)dx2, (20)

where G is the filter function dependent on the filter width, ∆. When the filtering follows a
Favre operation (averaged weighted according to the density), then

× = ×+ ×22 (21)

where the Favre operation is

× =
ïÄ×ð∆
ïÄð∆

. (22)

Applying this filter to the original NS equations gives the filtered LES equations as (where
the subscript ∆ is omitted on the filtering operator for clarity):

"Ä

"t
+
"Äïuið
"xi

= 0, (23)

"

"t
Äïuið+

"

"xj

(

Äïuiðïujð+ p¶ij 2 Äij 2 ÄSGS
ij

)

= ÄFi; i = 1, 2, 3, (24)

"ÄïEð
"t

+
"

"xj

(

ÄïEðïujð+ p¶ijïujð 2 ïuiðïÄijð 2 ïuiðÄSGS
ij + qj + qSGS

j

)

= ÄFjïujð+ Q̇. (25)

The above equations introduce the subgrid scale stress tensor, ÄSGS
ij , and the subgrid scale

heat flux, qSGS
j . These two subgrid quantities are used to model the effects of the vortices below

the mesh resolution. In AVBP, there are several options for these models: Smagorinsky [12],
Filtered Smagorinsky, Dynamic Smagorinsky [13], WALE [14], SIGMA [15], and the k-equation.
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3.2 Meshing

The previously mentioned equations are continuous, however the solution of these equations via
computer require discretization in both time and space. The spatial discretization of the problem
is driven by the mesh. For LES computations, it is well known that the spatial resolution has
a direct impact on the quality of the results [16][17]. This is often due the practical link of the
mesh size to the spatial filtering in the LES method.

AVBP uses unstructured meshes. Unstructured meshes are easier to generate and ma-
nipulate for complex geometries (such as those required for turbomachinery) as compared to
structured meshes. Another advantage is that these unstructured meshes allow for the incorpo-
ration of different types of cells, such as prism layers to better capture gradients in the boundary
layer. Unfortunately, unstructured meshes require more memory to store a more complicated
connectivity matrix, and the algorithmic development for these methods is more complex.

Furthermore, AVBP uses a cell-vertex approach to store the information computed on the
mesh. This is a residual method that stores information at the mesh nodes, and the equations
are solved using the primary control volumes as indicated by the mesh. One advantage of this
method is that a complex geometry will necessarily have more cells than vertices, which means
that storing the information at these vertices will result in a lower memory cost than defining
the cell centers and storing the information there. Additionally, this method is more robust to
distorted meshes [18].

3.3 Numerics

With the spatial discretization of the problem determined via the mesh, this discretized domain
must be related to the continuous equations as mentioned before. The numerical schemes im-
plemented to discretize the equations also known to strongly influence the quality of the results.
This follows from the fact that the numerical schemes influence the diffusion and dispersion
of information in the domain and so selecting a nondiffusive and nondispersive scheme gives
more accurate results. More information on the numerical methods in AVBP can be found in
Schönfeld, 1999 [19].

3.3.1 Boundary Conditions

The selection of boundary conditions for PDEs is a crucial problem that strongly influences
the physics and the solution. One additional difficulty with boundary conditions applied to the
compressible Navier-Stokes equations is that there are waves (acoustic, entropy, and convective)
hidden within these equations propagating at varying speeds into and out of the domain.

Within the fluid domain, the handling of these waves is straightforward, as at a given point
in the domain there is the required information nearby to allow for these waves to propagate
correctly. Near the boundaries, however, waves should be traveling out of the domain of infor-
mation, and correspondingly there should be additional waves entering the domain. These waves
entering the domain are not trivial to determine.

An excellent approach to determine these waves is the use of Navier-Stokes Characteristic
Boundary Conditions (NSCBCs) [20]. First introduced by Poinsot and Lele in 1992, this method
works by rewriting the NS equations in terms of characteristic equations, giving the corresponding
characteristic wave equations. With this formulation, the imposed physical quantities (e.g., at an
inlet), together with the known waves (e.g., waves going out the inlet), can be used to determine
the unknown waves (e.g. waves coming in the inlet) with sufficient accuracy. This formulation
allows for the careful treatment of the boundary conditions, preventing the "trapping" of waves
and reducing nonphysical reflections at the boundaries. Further developments to this method
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allow for the introduction of turbulence at inlets [21], more robust treatment of the boundary
transverse quantities, and the "soft" imposition of total pressure and total temperature.

For the following simulations, the main inlet imposes a uniform total pressure and total
temperature, using the NSCBC method described by Odier et al [22], which uses a locally one-
dimensional inviscid assumption over the boundary to solve for the ingoing/outgoing waves over
the boundary. This inlet also allows for the imposition of incoming turbulence, described in
Section 4.2.2 and fully detailed in Appendix A. For cases where there is a cavity, the inlet of the
cavity is an NSCBC with an imposed normal mass flow rate at a set static temperature. The
outlet of the simulated domain is also an NSCBC with an imposed static pressure, with additional
treatment of transverse wave terms [23]. All of the walls in the simulated domain (except for the
shroud wall, which is treated as an adiabatic slip wall) are considered to be adiabatic, no slip
walls. These walls all use the wall-adapting local eddy-viscosity (WALE) model [14] to model
the subgrid stress tensor.

3.3.2 Convective Schemes

In AVBP, the code provides several options for the convective scheme: the finite volume Lax-
Wendroff (LW) scheme (second order in space and time) [24], as well as some finite element
schemes, TTGC (third order in space and time) and TTG4A (third order in space, fourth order
in time) which are based on two-step Taylor Galerkin methods [25]. Other options in AVBP are
proposed but are not discussed here.

On the same mesh, a higher order scheme should provide a better result. The tradeoff for
this is that the higher order schemes also have increased computational cost. In the case of
AVBP, the higher order TTGC and TTG4A schemes are nearly 2.5 times more expensive than
the LW scheme, but give better results on academic configurations (e.g. convection of a vortex).
The LW scheme tends to give sufficient accuracy for purely aerodynamic problems [26], and will
be used primarily throughout this work.

3.3.3 Diffusive Scheme

The diffusive scheme offered by AVBP is the finite element 2∆ scheme developed by O. Colin [27].

3.3.4 Time Stepping Method

As for the temporal discretization of the problem, AVBP uses explicit schemes with a time step
derived either from the CFL number or the Fourier number, whichever gives the smaller time
step, based on the whole computational domain.

The CFL number is driven by the stability constraint for convection schemes, where the user
must give AVBP an operating CFL number, c, such that c f cc, where cc is the critical CFL
number to ensure L2 stability. In a turbomachinery flow, this is the main constraint on the
timestepping. In AVBP, the CFL number gives cell’s timestep proportional to:

∆tCFL ? |C| (26)

with |C| as the cell surface or volume (directly driven by the size of the mesh). AVBP

then selects the minimum over all cells as the timestep required by the CFL condition. In
turbomachinery flows this can be extremely small, as the cell size required to properly resolve a
boundary layer or intricate geometric features tends to be very small.

The Fourier number is much like the CFL number but for diffusive terms. In AVBP, the
user selects an operating Fourier number, d less than the critical, dc for stability. This imposes
a timestep on the cell proportional to:
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∆td ? |C|2
D

, (27)

where D is a diffusion coefficient. In a nonreactive turbomachinery flow, diffusion coefficients
tend to be quite small, and so the timestep imposed by the Fourier number is on the same order
of magnitude as that imposed by the CFL number.

3.3.5 Artificial Viscosity

Despite their high order accuracy, these convective and diffusive models need additional artificial
viscous damping to stabilize the solution and smooth the distribution process as the information
in a given cell is transferred back to its nodes [28] [19]. Without artificial viscosity, spurious modes
can appear in the solution. One of these modes is described as a checkerboard mode, which are
nonphysical oscillations [29] that appear due to the centered numerical method combined with
the collocation of the variables [30]. In AVBP, some wiggles (spurious waves) often appear due
to the slightly dispersive nature of the convective schemes.

In AVBP, these numerical issues are typically dealt with via artificial viscosity, applied as
second-order and/or fourth-order diffusion. These additional diffusion terms are generally trig-
gered by a sensor in AVBP, including a honey "sensor" (applies the artificial viscosity uniformly
over the whole domain), the Jameson sensor (applies based on pressure gradients), and the Colin
sensor (applies based on total energy and species densities). For LES turbomachinery flows, the
Jameson sensor is typically appropriate, and will be used throughout this work.

3.4 Post Treatment

In the case of experiments, there is a limited amount of data that can be collected easily. One
of the greatest advantages to simulations is that they provide a wealth of data over the whole
domain. This data requires post treatment temporally and spatially in order to reduce the
information and draw conclusions. Typically, this reduction of information is done via averaging,
either in time or in space. This allows for the extraction of key features in crossflow planes, or
the recovery of averaged quantities over key planes, such as the evolution of total pressure from
inlet to outlet. This reduction of information is necessary to reduce complexity and describe the
key physics.

Averaging is typically taken as a simple process. However, in the context of CFD, and more
specifically turbomachinery, there is a method for averaging which is correct in the sense that it
conserves key variables of interest [31]. For variables that are governed by conservative equations
in the underlying solver, it is best to continue to conserve these with the averaging procedure,
such that the averaged field is also conservative. In this way, the mass flow weighted average is
easily defined, where the ï·ð operator denotes either spatial or temporal averaging:

×avg =
ïÄUi×ð
ïÄUið

. (28)

In cases where the CFD results are to be compared with experimental ones, the averaging
processes should be the same. Typically, CFD for turbomachinery can sample the flow at the
same or greater rate as the one seen experimentally. On the other hand, an experiment often
provides results that are averaged over seconds, which is generally infeasible to reproduce in CFD.
Instead, CFD must produce results that are statistically converged. Statistical convergence in
the case of turbulent flows can be described by the convergence of statistical moments, such
as the variance of the pressure fluctuations at a given point reaching a constant value after a
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given sampling time. Reaching statistical convergence is often costly, as this takes additional
flow through times after the flow has reached an average solution.

4 Modeling the SPLEEN Low-Pressure Turbine Cascade

As stated in the introduction, this work focuses on the secondary and leakage flow effects in
high-speed LPTs, a developing area of turbomachinery research. Such a high-speed LPT is not
currently in use, but this design is increasingly studied as the bypass ratio of turbofan engines
continues to increase in order to reduce fuel consumption and noise [32]. As the efficiency of
engines continues to increase, the combustion chamber exit temperature also tends to increase.
This means that the downstream turbines see hot mainstream gas, which can potentially damage
these components. To prevent this damage, cooling films are released through small holes in the
turbine blades and walls, and purge flow is injected through cavities in the hub of axial turbines
to prevent this hot air from entering the interstage gaps [33]. These purge flows are not only
required for the functioning of the engine, but also represent up to 20% of the main compressor
flow used to cool components [34]. The effects of purge flows on the efficiency of gas turbines is
relevant because as engine pressure ratios and bypass ratios increase, the penalties for cooling
airflows increase [35]. Overall, a better understanding of these secondary and leakage flows is
needed to better optimize future high-speed LPTs.

The main difficulties in simulating flows in high-speed LPTs are: inherent unsteadiness,
boundary layer transition, turbulence, and shock waves. The first difficulty greatly reduces the
effectiveness of RANS, and requires URANS or LES as a starting point. Secondly, boundary layer
transition is still not completely understood, and is even more difficult to simulate accurately in
complex flows. High levels of turbulence make LES difficult, as the determination and injection
of engine-relevant turbulence is not trivial. Lastly, shock physics often pose numerical stability
problems and can require very small grid sizes to be captured accurately, or they necessitate
increased artificial viscosity to obtain a solution. With the addition of technological effects (such
as cavity purge flows), the corresponding grid sizes are often quite small, further increasing the
cost of these simulations. These purge flows have a characteristic time that is typically much
longer than the core flow through time, which also increases the cost of simulation.

Current approaches for modeling turbines use URANS or LES [36] [17] [16] [37] in order to
capture unsteady phenomenon in the flow. This unsteadiness is especially crucial in the study
of the effects of purge flow. Denton [38] intuitively explains that the addition of purge flows
contributes to mixing, which is closely linked to entropy creation and losses in a turbomachine.
More recently, these flows have been shown to modify the horseshoe vortex formation, as shown by
Gallier et al [39], and more recent studies [37] [40] have shown more directly that the secondary
flows at the hub are fed by the purge flow, leading to additional friction and more entropy
production.

Turbulence is important in turbomachinery simulations, as it effects the movement of vortices,
boundary layer transition, and the attachment (or detachment) of flow around the blades [41].
Afshar et al. [42] very recently performed an isotropy turbulence analysis for a linear LPT cas-
cade and showed LES predicts correct turbulence transition and captures strongly anisotropic
turbulent characteristics. In contrast, URANS is unable to capture these anisotropy phenomenon
which reduces prediction accuracy, especially in turbomachinery flows where there is often sep-
aration and boundary layer transition. LES predictions are better in these cases because LES
resolves turbulent scales to the grid size. With this increased resolution, additional care must be
taken to inject realistic turbulence at the inlet of the simulated domain. Techniques for injecting
this turbulence are reasonably well estabilished, allowing for the injection of fairly realistic syn-
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thetic turbulence with a lower cost [43]. These turbulence injection techniques have also been
recently expanded for specific inlet types in AVBP, allowing for the generation of a characteristic
inlet boundary condition where the total pressure and total temperature can be imposed [22].

This study aims to simulate such a complex high-speed LPT linear cascade and include the
effects of cavity purge flows to characterize the effects of secondary flows on losses. To do so, an
LES is performed to gain more insight on the experiments performed on SPLEEN linear turbine
cascade, studied at the Von Karman Institute. The following section details the experimental
configuration of the cascade, and section 4.2 introduces the numerical setup.

4.1 A Description of the SPLEEN Turbine Cascade

The SPLEEN turbine cascade is unique as there is experimental PIV data [44] for this high-speed,
low-Reynolds, low-pressure configuration with additional characterization on the turbulence [4].
This cascade can also simulate the impacts of unsteady wakes between blade rows with moving
bars as well as purge flows [45]. A thorough description of the test case can be found in the
public database [46].

Figure 2: VKI wind tunnel schematic[45].

Figure 3: Wind tunnel test section cross
section[45].

The Von Karman Institute (VKI) wind tunnel is shown in Figure 2. In the test section, the
SPLEEN linear cascade consists of 23 blades with a span of 165 mm. Other key dimensions
are: a blade chord, C, of 52.280 mm, an axial chord, Cax, of 47.614 mm, and a pitch, g, of
32.950 mm. The nominal operating point is described by the outlet Mach number, Mout = 0.90
and by the outlet Reynolds number, Reout = 70000. The freestream turbulence intensity was
determined to be j 2.4%, generated by a grid just upstream of the test section. The cascade
simulates unsteady wakes with a spoked-wheel wake generator with 1.00 mm diameter cylindrical
rods (yellow component in Figure 3). These diameters are reported to be similar to the trailing
edge thickness of a thin LPT blade to reproduce the vortex shedding that would come from
a rotor-stator combination in a real turbine. After this (optional) wake generator, there is a
cavity used to inject purge/leakage flow into the test section with purge mass flow ratios ranging
between 0 and 0.9% of the mean main flow.

Experimental data is collected using four types of probes: static pressure taps (Ps taps in
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Figure 3), a pneumatic Cobra five-hole probe (C5HP), a pneumatic virtual four-hole cylindrical
probe (PV4H), and a pneumatic L-shaped five-hole probe (L5HP). The static pressure taps at
Plane 01 are used to characterize the inlet static pressure. The C5HP measures the total pressure
as well as the pitch and yaw angle at Plane 02. The PV4H also measures the total pressure
and pitch and yaw angle, but a fast-response version of this probe also exists to measure the
unsteadiness of these conditions. Lastly, the L5HP is used to measure the outlet total pressure
and pitch and yaw angle. Plane 02 (located half an axial chord upstream of the leading edge) is
used to characterize the inlet flow field of total pressure and incidence on the blades. Plane 06
(located half an axial chord downstream of the trailing edge) is used to characterize the cascade
losses and deviation.

4.2 Numerical Methods

In the present study, the simulation domain has two blades and applies periodic conditions in the
z direction, as shown in Figure 4. This is representative of the central blades of the test section,
and aims to recover the flow and potential in-row interactions between blades. Including two
blades is also relevant as the sizes of turbulence seen in the experiment are fairly large relative
to the blade to blade spacing (approximately one-third the pitch). Three cases are simulated:
the domain with no cavity, the domain with the cavity without purge flow, and the domain with
the cavity and with purge flow equal to 0.9% of the mean main mass flow.

Figure 4 colors different portions of the domain. The inlet to the domain is shown in green
on the left, and the outlet is in red on the far right. The two blades are centered and colored
grey. The periodic wall on the left (looking from the inlet) is colored a light blue, and the
corresponding periodic wall on the right is not shown. A key feature of this domain is the blue
wall, and this region below the hub wall will be referred to as the boundary layer trap. The
purge flow cavity is shown in purple, and in cases without the cavity this section is removed and
the light gray hub wall extends directly to the blades. The axes pictured in Figure 4 are used
throughout this report.
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Figure 4: Geometry with cavity, periodic right wall hidden.

The inlet of the domain is 100 mm (just over 2Cax) from the leading edge of the hub tip
edge, and the exit of the domain is 173 mm (in the x direction) downstream of the trailing edge
of the blades. With the outlet angle of the blades at 53.8°, this corresponds to about 200 mm
(over 4Cax) in the outlet flow direction until the outlet.

The Navier-Stokes equations are solved using CERFACS’ Large Eddy Simulation solver,
AVBP. AVBP uses a cell-vertex approach on an unstructured multielement grid. The diffusive
scheme in AVBP is the finite element 2∆ scheme developed by O. Colin [27], and the convective
schemes in AVBP used in this work are either the Lax-Wendroff [24] scheme or the higher order
TTGC [25] scheme. For this work, additional artificial viscosity is controlled via a Jameson
sensor, which applies based on pressure gradients. The sugrid-scale model used is the wall-
adapting local eddy viscosity (WALE) [14], which is well suited for determining the eddy viscosity
near walls and is commonly used in LES of turbomachinery. At the inlet, total pressure and total
temperature are imposed according to experimental data, and the velocity direction is imposed
such that the angle seen at Plane 02 is as consistent as possible to experimental data. The
method for turbulence injection will be discussed in section 4.2.2, with the mathematics further
discussed in Appendix A. At the outlet, a static pressure is imposed such that the isentropic
Mach profile on the blades are consistent with experimental data. Both the inlet and outlet are
applied using Navier-Stokes Characteristic Boundary Conditions (NSCBC) [20], even for the case
of turbulence injection [22]. The hub and blade walls are considered to be adiabatic and have
no slip conditions, while the shroud wall is adiabatic and a slip wall. The sides the simulated
domain have periodicity conditions imposed.

The cavity geometry is provided by the SPLEEN experimental test database [46]. The
complete cavity geometry provided in the database is pictured in Figure 5 below, and originally
included a buffer plate before the main bend of the cavity. For simplicity, this buffer plate is
removed and the cavity is shortened to focus on the physics near the main flow.
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Figure 5: Cavity geometry with removed portion in red.

To implement the case without purge flow, the bottom of the reduced cavity geometry is
configured in AVBP as an inlet with a target mass flow rate slightly greater than zero at a static
temperature of 260K, slightly lower than the main passage flow. This allows for a nonreflective
boundary condition with simple visualization based on temperature and mimics real engine purge
flows which are cooler than the main passage flow.

For the case with purge flow, the bottom of the reduced cavity geometry is configured in
AVBP as an inlet with an imposed mass flow rate equal to 0.9% of the average main passage
mass flow at the inlet. The current implementation of this type of inlet in AVBP does not allow
for turbulence injection, so the simulated purge flow is purely laminar at the inlet. To compute
the mass flow target for this boundary condition, the average mass flow through the main passage
was taken as 0.129 kg.s21. With this, the cavity mass flow target is easily computed as 0.00116
kg.s21. Dividing the cavity mass flow by the cavity inlet area gives the density times the velocity
at the inlet as 1.6465 kg.m22.s21.

4.2.1 Meshes Used

The goal of the final mesh is to provide a wall resolved LES over portions of the domain with
experimental data or relevant flow physics. As such, the hub wall after the tip and the blades
up to about 60% of the span target a y+ f 2, where y+ is the wall-normal nondimensional
coordinate relative to the wall of interest. With the strong acceleration seen over the suction
side of the blades, however, the achieved is y+ f 5. This most finely refined mesh will be referred
to as Mesh P, for its use of prism layers at the wall. The prisms over the blade are generated
with a first layer height of 0.0125 mm, and six total layers with a geometrical growth rate of
1.15. Prism layers with the same parameters are also used over the majority of the hub. Two
precursor meshes to this exist, of increasing refinements with tetrahedral elements only. Mesh 1
was used to initialize the solution cheaply, and the solution was subsequently refined with mesh
2, and finally mesh P. This reduced simulation cost as the transient flows can be simulated much
faster on coarse meshes.

Table 1 below lists the number of elements for each of these meshes for the geometries without
the cavity (no cavity, NC) and with a shortened cavity (with cavity short, WCS). These meshes
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were produced using the CENTAUR grid generator2. This software allowed for the easy import
of test-specific geometries, region-specific mesh refinements, and the meshing process could also
be submitted as a batch job to the CERFACS supercomputers (useful for the generation of
extremely large meshes).

Table 1: Sizes of meshes used to converge results.

Geometry
Mesh NC WCS

1 8.74 M 12.23 M
2 180.10 M 181.82 M
P 172.68 M 176.64 M

In comparison with Mesh P, Mesh 2 targets a y+ value of around 8 at the wall and has a
greater cell count. This is because the shape of the prism cells allows for fewer cells over the
surface with the same resolution in the wall normal direction, whereas the tetrahedral cells target
a surface resolution on the same order as the resolution in the wall normal direction. No results
will be presented on Mesh 2.

Figures 6a and 6b show Mesh 1 and Mesh P, respectively, for the no cavity case.

(a) Mesh 1, no cavity.

(b) Mesh P, no cavity.

Figure 6: Overall mesh comparison.

2https://www.centaursoft.com/
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Figure 6b shows the refinement region from the inlet to the blades up to 60% of the blade
span, targeting the region where experimental data is available. This refinement region is key, as
it drives the minimum sizes of turbulence that can be injected from the inlet; at the same time,
it contains a huge number of cells and drives the cost of the simulation. For these simulations,
the cell size is set to 0.5 mm in this region. Less obvious from this figure is the refinement in the
endwall region (near the hub wall by the blades), where there is a cell size of 0.2 mm imposed
to capture the vortex formation physics between the blades and the hub.

Figure 7: A crinkle-slice view of one of the blades at z/H = 0.5, Mesh P.

Figure 7 shows a closer look at the prism layers used on the leading edge of the blades. Prism
layers are commonly used to accurately capture the boundary layer development and transition
in LES, since they allow for refinement in the wall normal direction without a corresponding
refinement in the wall tangent directions.

Figure 8: A crinkle-slice focused on one of the blades at z/H = 0.5, Mesh P, zoomed out.

Lastly, Figure 8 shows some regions of increased refinement, at the blade trailing edge and in
the blade passage. The trailing edge refinement was selected a priori based on the experimental
data and was chosen to try to better capture the dynamics of a potential trailing edge separation
as well as unsteady wake phenomena.

The generation of the cavity mesh is done with the same refinement regions and parameters
for all three meshes as in the no cavity case. The addition of the cavity is relatively straightfor-
ward. For the coarse case, the cavity is set such that it has the same resolution as the flow just
outside the cavity, and all other parameters are the same as in Mesh 1 for the no cavity case (see
Figure 9a). Mesh P also further refines the cavity exit, as there are expected to be recirculating
flows, strong velocity gradients, and increased mixing in this region.
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(a) Mesh 1, cavity zoom. (b) Mesh P, cavity zoom.

Figure 9: Cavity mesh comparison.

Figure 9b above shows the refinement in the cavity. For the bottom of the cavity, the cell
size is 0.5 mm, the same as in the main flow. Near the outlet, the cell size decreases to 0.2 mm to
match the endwall refinement to capture the interaction of the cavity on this region. The cavity
also includes the same six prism layers as on the hub to smooth these sections of the mesh.

4.2.2 Turbulence Injection

As mentioned previously, the SPLEEN LPT linear cascade has experimentally recovered turbu-
lence statistics. Pastorino et al. [4] provide a method for calibrating hot-wire anemometry in the
case of low-density transonic flows, where the wire’s sensitivity to density and velocity fluctua-
tions make typical correlation methods invalid. At the reported standard operating conditions
for the SPLEEN experimental set-up, the turbulence intensity at Plane 02 was determined to be
2.4% with an integral length of 12 mm. Typically, the integral length is not available from ex-
perimental data, and was determined via a zero-frequency extrapolation on the velocity spectra,
after filtering. This extrapolated value was then used with a formula provided by Roach [8],

Λ =

[

E(f 2³ 0)|u|
4|u22|

]

(29)

to compute the integral length. Here, E(f ³ 0) is the power spectrum of the velocity
extrapolated for zero frequency.

With an experimentally determined integral length, injecting relevant turbulence is fairly
straightforward. In AVBP, there are a few methods to inject isotropic turbulence (such as
that generated by a grid). The method selected for this project was Bailly’s method with a
Passot-Pouquet spectrum [47], as described by P. Lepage [48] and implemented by A. Boudin in
AVBP [49]. These methods have also been extended to allow for the injection of turbulence on
a periodic domain, and for the injection of turbulence even when the primary flow direction is
not perpendicular to the inlet (as in this report).

Bailly’s method is an extension of Kraichnan’s method [50]. Kraichnan’s method generates
statistically stationary, homogeneous, isotropic turbulence using random Fourier harmonics se-
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lected from a synthetic turbulent energy spectrum. This method is computationally inexpensive
and produces a divergence-free turbulent field, which meets many of the typical ideal conditions
for a turbulent LES inlet [51]. While this method is quite good, the fluctuating field does not
generally satisfy the Navier-Stokes equations and so flows immediately after the inlet are non-
physical. Bailly’s method improves on Kraichnan’s by using a uniform distribution of modes
which can comply with any synthetic turbulent energy spectrum. A more detailed mathematical
explanation on this method and Bailly’s method are included in Appendix A. During the use of
these injection methods in this internship, two bugs were discovered and corrected. These bugs
are detailed in Appendix B.

In brief, the Passot-Pouquet spectrum in Bailly’s method is constructed via:

E(k) = A

(

k

ke

)4

exp

[

22

(

k

ke

)2
]

(30)

with A as the amplitude of the spectrum and ke is the wave number associated to the
most energetic length scale. Lepage [48] shows that by defining the turbulent kinetic energy as
TKE c 1

2u
2
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2
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2
p gives the constant A as:

A =
16U2

p

ke

√

2

Ã
. (31)

The spectrum is defined for all wave numbers k with two factors, Up and ke. Up controls
the amplitude of the energy spectrum, and corresponds to the rms fluctuation of the velocity
(assuming isotropic turbulence). This parameter is user-controlled to reach target turbulence
intensity levels. ke controls the position of the peak of the spectrum and its extent, and is
related to the integral length scale, Li, by:

Li =

:
2Ã

ke
. (32)

Within AVBP, the wave numbers, k, are generated based on the user input number of modes,
N , as

kj = exp

[

ln (kmin) + (ln (kc)2 ln (kmin)) 7
j 2 1

N 2 1

]

, j = 1, ..., N. (33)

Here, kmin is determined based off the maximum turbulent length, Lmax injected as

kmin =
2Ã

Lmax
. (34)

Likewise, the cutoff wave number, kc, is determined based off the user input cutoff length as

kc =
2Ã

Lc
. (35)

Thus, with the user input parameters Li, Urms, N, Lmax, and Lc, the injected turbulent
spectrum is fully defined and is used to generate the N Fourier modes which become the input
velocity perturbation. For this numerical study, these parameters are: Li = 12 mm, Urms = 4.962
m.s21, N = 100, Lmax = 65.29022 mm, and Lc = 1 mm (twice the minimum grid resolution at
the inlet).
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4.2.3 Inlet Angle Determination

One critical factor in matching the experimental results is the incidence seen by the blades. Aside
from the obvious effects that this has on the resulting velocity triangle of the turbine, it also has
important implications for the flows seen around the airfoil. Anton and Wilberg [52] mention
in their turbine rotor blade design thesis that the velocity distribution (and by extension, the
isentropic Mach profile) will be greatly influenced by incidence, causing velocity peaks near the
leading edge. Moreover, they mention that "usually negative incidence is less detrimental for the
aerodynamic performance compared to positive incidence". This is corroborated by a previous
numerical work by Zhang [53] which showed that the isentropic Mach profiles around the blade
at the leading edge are more sensitive to positive off design angles of attack. The angle of attack
also effects the separation of the the flow over the blade. For instance, if the angle of attack is
too low on the blade, a pressure side separation is expected near the leading edge. Similarly,
if the angle of attack is too high on the blade, a suction side separation is expected near the
trailing edge.

For this numerical study, the experimental angle of attack is provided in the SPLEEN
database. Initially, it seemed as though this angle could simply be imposed at the inlet of
the computational domain. However, doing so revealed that the angle imposed at the inlet of
the domain and that obtained at Plane 02 are quite different.

Figure 10: Instantaneous inlet angle distribu-
tion.

Figure 11: Instantaneous Plane 02 angle dis-
tribution using initial inlet angle.

Figures 10 and 11 are instantaneous results from the coarsest mesh, without turbulence
injection. The angle is computed by taking the inverse tangent of the ratio of the w velocity and
the u velocity. At the inlet, the flow angle 36.69° is prescribed uniformly (excluding the bottom
at the no-slip wall), however the angle seen at Plane 02 is closer to 29°. Figure 11 also shows a
strong decrease in the angle near the hub wall.
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Considering again the computational domain, the reason for this becomes clear: there is an
acceleration in the x direction due to the contraction of the domain in this direction. Figure 12
below from the same coarse simulation with the same initial angle emphasizes the magnitude of
acceleration in the x direction, seen at a given instant.

Figure 12: Instantaneous u velocity distribution in centerline of computational domain, y-plane
view.

An unintended side effect may be linked to the effects of including the boundary layer trap
in the domain. The included trap sees large circulating flows, which influences the development
of the boundary layer over the hub, especially when the mesh is extremely refined. The trap also
seems to induce a strong acceleration in the z direction (as seen in Figure 13) as the flow moves
around the boundary layer trap and into the main passage. This induced acceleration may entrain
additional flow nonuniformly throughout the main passage, leading to the angle distribution seen
in Figure 13, where there is a significant reduction in the observed angle starting just after this
velocity in the z direction.

Figure 13: Instantaneous angle progression in xz midplane with contours of w velocity.
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With the included boundary layer trap, prescribing an inlet angle to the computational
domain is difficult as this angle is not recovered at Plane 02 where the experimental measurements
are available. It is also possible that the inlet is too close to this geometrical feature and it is
distorting the inlet. In the experiment, the acceleration due to the cavity is not a significant
problem since the blades are adjustable and can be rotated as a group and aligned with the
observed flow angle at Plane 02.

4.3 Results

In this section, the flows in each case are characterized and compared to each other and to
experimental data when relevant. The flow in the region z/H > 0.5 will not be included in the
analysis, as the experimental database does not include results here and the simulated domain
is less refined in this region. First, the validation of the simulation against experimental data
will be provided. Then, representative instantaneous results are shown, and are then time-
averaged to show overall trends in the flow behavior. These time-averaged results are used to
analyze the losses downstream of the blades. Lastly, a relatively novel method for visualizing
turbulent structures and classifying their types is described and applied. All of the results
presented here (unless otherwise mentioned) are time-averaged over at least 25 milliseconds,
which is approximately seven flow through times. The flow through time, Äf , is conservatively
estimated by

Äf =
Lx

ux,2
, (36)

which is the length of the domain in the x direction, Lx divided by the velocity in the x
direction at Plane 02, ux,2. Here, Lx j 0.475m, and ux,2 j 130 m.s21, averaged on the plane.
These values give a flow through time of approximately 3.7 milliseconds.

For this analysis, the losses in the SPLEEN turbine cascade will be separated into two main
groups: blade losses and endwall losses. In a real turbine, there are also losses incurred from tip
leakage flows or other flows such as cooling flows. While the loss mechanisms for these different
groups are not independent, separating them is useful to understand what parts of the flows are
contributing to the reduction of the turbine’s efficiency.

Blade losses, as the name suggests, comprises the losses due to the blades. One major
contributor to the blade losses is the development of the boundary layer on the blade’s surface.
In a low-pressure high-speed turbine such as the SPLEEN linear cascade, it is expected that the
incoming turbulence will trigger the turbulent transition of the boundary layer on the blades. In
these simulations, however, this transition is not seen. Accurately predicting this transition is
difficult and depends on the turbulent intensity as well as the scales in the incoming turbulence.
Another major contribution to blade losses comes from the trailing edge of the blade, where the
wake of the blade produces strong mixing effects downstream, which contribute to overall losses.

Endwall losses refer to the processes related to the boundary layer at the hub (and shroud)
both before and after the blade passage. Within this, the hub/shroud boundary layer losses are
the losses due to the friction processes generated from the boundary layers seen at the hub or
shroud of the mainstream passage, both before and after the blades. These boundary layers are
larger than those seen at the blades, due to the longer length over which they develop. However,
Fiore [54] suggests that these boundary layer losses only account for about 2/3 of the observed
endwall losses. These boundary layers also interact with the blades, producing secondary flow
structures. These flow structures have been the focus of numerous studies, and a fairly recent
review is available by Langston [55].

22



The first of these secondary flow structures to develop is the horseshoe vortex, which develops
as the hub boundary layer is rolled up by the high pressure region of the leading edge of the
blades. This horseshoe vortex travels down the blade passage, and the vortex generated on the
pressure side is pulled by the pressure gradient towards the suction side of the nearby blade. The
suction leg of the horseshoe vortex and the other shed pressure leg merge in the blade passage,
forming the passage vortex. This strong passage vortex induces several other smaller vortices,
notably the corner vortex (developed at the intersection of the blade and the hub) and the wall
vortex (developed in the blade passage as the pressure side corner vortex is deflected to the
suction side).

Figure 14 provides a schematic overview of these types of flow structures.

Figure 14: Secondary flow identification in the blade to blade passage region [56].

While the development of these secondary flow structures does not inherently generate losses,
the strong vortex cores are then accelerated through the blade passage, which induces a strong
velocity gradient near the core, generating losses. Furthermore, these flow structures also con-
tribute to increased mixing and to additional friction on nearby surfaces.

To visualize the flow in the turbine cascade, many of the following figures will show the
isosurface of Q-criterion with Q = 5E7 s22, taken from the averaged flow field solutions over
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approximately seven flow through times (or 10ms). The time averaged flow field is used to
generated the Q-criterion plots because the goal of the visualization is to isolate the large, time-
independent vortical structures and filter out smaller vortical structures. On an instantaneous
field, the turbulent flow has some vortical structures that would be identified by a given Q-
criterion isosurface, but these are not of interest. Moreover, the large vortical structures do not
vary too much in space, and so the time averaging procedure is effective for highlighting these
coherent structures.

The Q-criterion is an invariant is defined as:

Q =
1

2

(

||Ω||2F 2 ||S||2F
)

. (37)

Here, the velocity gradient tensor, 'U = S + Ω, is decomposed into its symmetric part,
S = 1

2

(

'U + ('U)T
)

, the strain rate tensor, and its antisymmetric part, Ω = 1
2

(

'U 2 ('U)T
)

,
the vorticity tensor. While costly to compute over a large mesh, this tensor is useful as it identifies
a vortex when Q > 0. Conceptually, this indicates that the square of the strain rate is greater
than the square of the vorticity. The magnitude of Q indicates the strength of these vortical
structures. Other methods for visualizing and identifying vortex structures are discussed by
Jeong and Hussain [57].

4.3.1 Validation of LES Results

To match the experimental angle profile, the acceleration in the x direction can be reasonably
predicted with the simple application of the conservation of mass in this direction. With this,
the flow speed at Plane 02, upl02, can be estimated by

upl02 = uin
Ain

Apl02
, (38)

where Ain is the inlet area normal to the x direction, uin is the velocity in the x direction
at the inlet, and Apl02 is the area of Plane 02 normal to the x direction.

Knowing what the angle and Mach number should be at Plane 02, the isentropic relations
can be used to estimate the u and v component at Plane 02 and then solve for the corresponding
uin, knowing that vin j vpl02. This provides a much more accurate starting point to which the
angle can be fine tuned. Note also that here the angle is kept constant across the inlet plane,
and a better agreement with the experimental data could be achieved with a variable angle.

Figures 15 and 16 below show the time averaged and plane averaged angle on Plane 02 as
a function of blade span using the final selected angle, ³in = 46.5° without the cavity, with
turbulence injection. Here, this final value was fine tuned after using the equation provided
above as an initial guess. This inlet angle was selected to produce results such that the angle of
attack at z/H = 0.3 would match the experiment. The values shown in Figure 15 are averaged
over approximately seven flow through times.
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Figure 15: Plane 02 angle distribution, no cav-
ity, LW.

Figure 16: Plane 02 angle distribution, no cav-
ity, TTGC.

At z/H = 0.3, the simulation produces an incidence very similar to that of the experiment’s,
indicating that the inlet angle imposed meets the goal of retrieving the correct angle of attack at
this spanwise position. Below this height, however, the angle of attack observed in the simulation
is much lower. This reduction in angle of attack is attributed to the effects of the boundary layer
trap and the associated nonuniform acceleration. Given that the whole angle distribution is
difficult to predict and is computationally expensive to determine, this angle was deemed to be
sufficiently close to the experimental results. A key difference in these two results is that the
angle of attack profile in the experiment is shown to vary much more gradually than in the
simulation.

Another key parameter to match with the experimental data is the turbulence intensity
(TI) and the associated turbulent integral length scales seen in the domain. To monitor the
development of these parameters, two lines of probes are placed from the inlet to Plane 02 at
z/H = 0.25 and 0.5, centered on the inlet in the y direction. These probes are used to record
the instantaneous velocity fields seen at these points during the simulation. With this data, the
signal at each point is used to determine the local turbulence intensity by:

TI =

√

1
3

(

u22x,rms + u22y,rms + u22z,rms

)

|u| . (39)

The root-mean-square (rms) components (u2x,rms, u
2
y,rms, u

2
z,rms) are determined by

u2j,rms =

√

∑N
i=1 (u

i
j 2 uj)2

N
, (40)

which is the same as square root of the variance over N measurements, where uij is the ith
measurement of a given velocity component, uj . Then, the autocorrelation of the velocity vector
is computed with these rms values in Python. Using the autocorrelation of the velocity, the first
crossing of a set threshold value can be used to determine the turbulent time scale. Multiplying
this turbulent time scale by the mean velocity gives the turbulent length scale [58].

For the simulated case with no cavity, the evolution of the turbulence intensity and the length
scale are plotted below in Figures 17 and 18 as a function of distance from the inlet. The velocity
signal used was gathered over approximately seven flow through times.
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Figure 17: Turbulence intensity evolution, no
cavity, LW.

Figure 18: Turbulent integral length scale evo-
lution, no cavity, LW.

As expected, viscous effects (both real and numerical) contribute to the overall decrease in
turbulence intensity as the distance from the inlet increases. The evolution of the turbulent
integral length scale is less well behaved, and some computed values are much greater than the
expected values. This is due to the short signal that is being autocorrelated, and would improve
with a longer signal. Overall, Figures 17 and 18 show turbulence intensities and turbulent length
scales similar to those seen in the experiment, and indicates that the turbulence injection method
is working as intended.

Another metric considered to match the simulation to the experiment is the isentropic Mach
profile seen on the blades at a given height. This profile is important to match as it is related to
the blade loading, the acceleration on the blade, and the angle of attack. The isentropic Mach
number is computed via

Mis =

√

√

√

√

2

µ 2 1

[

(

P01,fs

p

)

γ−1

γ

2 1

]

, (41)

where µ = 1.4 is the specific heat ratio, P01,fs is the freestream total pressure, and p is the
local blade static pressure.

Figure 19: Isentropic Mach profile at z/H =
0.3, no cavity, LW.

Figure 20: Isentropic Mach profile at z/H =
0.5, no cavity, LW.
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Figures 19 and 20 show good agreement between the simulated blades and the experimental
profile, and the two simulated blades produce almost the exact same curve, as expected for a well-
converged simulation. A few differences are observed between these profiles, however. Firstly,
the experimental profiles experience a greater acceleration over the suction side of the blade,
reaching a greater maximum isentropic Mach number at a position slightly before the simulated
ones. The numerical profiles also suggest a larger separated flow region on the pressure side of
the blade than is seen in the experiment. Lastly, the numerical profiles show a strong acceleration
at the trailing edge pressure side and a stronger deceleration on the trailing edge suction side
than is seen in the experimental profile.

Very similar isentropic Mach profiles on the SPLEEN blades were obtained by Boudin [59],
who also showed that LES overpredicted the pressure side separation region compared to the
experimental data, even with a finer mesh than the one used in this project. His LES results
also showed that the pressure side trailing side sees an isentropic Mach number slightly greater
than observed in the experiment, as seen in Figure 19, and the suction side trailing edge sees a
slightly reduced isentropic Mach number relative to the experimental data.

These same trends are also seen in Figures 21 and 22, which show the results of the same no
cavity simulation using the higher order TTGC convection instead.

Figure 21: Isentropic Mach profile at z/H =
0.3, no cavity, TTGC.

Figure 22: Isentropic Mach profile at z/H =
0.5, no cavity, TTGC.

Here, the TTGC scheme shows a slightly more pronounced separation on the pressure side
of the blade, both for z/H = 0.3 and for z/H = 0.5. In either convection scheme, this too long
separation on the pressure side of the blade for the z/H = 0.3 case is difficult to explain as the
angle of attack at this blade span almost exactly matches the experimental results.

Overall, the angle profiles, the turbulence statistics, and the isentropic Mach profiles suggest
that the simulation is operating at conditions reasonably close to the experiment, and so further
analysis is representative of the actual flow topologies seen in the experiment. Since there are
no notable differences between the LW and the TTGC convection scheme, the LW method will
be used for the remainder of the report as it is less computationally expensive.

4.3.2 Investigation of Instantaneous Flow Fields

Here, the effects of turbulence modeling in the simulation are illustrated, and the effects of the
inclusion of the boundary layer trap are discussed. To begin, Figure 23 below shows a sample
instantaneous velocity magnitude field in the xz plane, where the plane is located at the midpoint
of the inlet in the y direction.

27



(a) xz plane (b) xy plane, z/H = 0.5

Figure 23: Instantaneous velocity magnitude field, no cavity.

Figure 23 highlights an important consequence of including the boundary layer trap. The
inclusion of the boundary layer trap results in the formation of a recirculation region, which is
important because it directly contributes to the stability and attachment of the boundary layer
at the hub tip. This induces a slight "flapping", where the boundary layer oscillates up and down
as the recirculation region occasionally leaks low velocity flow back into the main flow. These
oscillations travel with the main flow along the boundary layer, and interact directly with the
formation of the secondary vortices of interest. These oscillations are also seen for the cases with
the cavity, as seen in Figures 24 and 25. Examining the case with purge flow, Figure 25 visually
indicates that the purge flow is exiting the cavity and entering and interacting with the main
flow, as expected. All of the instantaneous blade velocity fields in Figures 23b, 24b, and 25b
show a large separation region on the pressure side of the blades. The flow over the blades also
appears to be laminar, and a small separation region on the trailing edge of the suction side
forms as well. The laminar flow over the blades leads to an unsteady, shedding wake.

(a) xz plane (b) xy plane, z/H = 0.5

Figure 24: Instantaneous velocity magnitude field, cavity without purge flow.
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(a) xz plane (b) xy plane, z/H = 0.5

Figure 25: Instantaneous velocity magnitude field, cavity with purge flow.

4.3.3 Characterization of Time-Averaged Flow Fields

To characterize the development of vortices seen in the cases, the following figures show the
isosurface of Q-criterion at Q = 5E7 s22, colored by vorticity in the x direction to indicate the
rotational direction of the vortical structure. These results (and subsequent figures) are produced
from time averaged flow fields over approximately seven flow through times.

Figure 26: Q-criterion isosurface, Q = 5E7 s22, no cavity.
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Figure 27: Q-criterion isosurface, Q = 5E7 s22, cavity no purge flow.

Figure 28: Q-criterion isosurface, Q = 5E7 s22, cavity with purge flow.
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Qualitatively, the flow in the simulated turbine cascade reproduces the same secondary flows
of interest, including the horseshoe vortices (label 1), the corner vortex (label 2), and the trailing
shed vortices (label 3), with the numbers indicating the structures as seen in Figure 26. The
expected behaviors are observed, such as the movement of the pressure side horseshoe vortex
into the suction side of the adjacent blade. Figures 26, 27, and 28 all suggest a separation region
on the pressure side of the blade near the leading edge (label 4).

In general, the introduction of the cavity geometry has a strong impact on the flow patterns
in the hub region observed in the simulation. Secondary flow structures begin to develop at the
end of the cavity and are already larger than in the case without the cavity. Comparing Figure 27
with Figure 26, most of the patterns on the blades or the blade wakes are not strongly affected
by the inclusion of the cavity. Instead, the main changes are those closely related to the endwall.
Notably, there is no clear "rollup" of vortex structures at the leading edge of the blade at this
Q-criterion isosurface, and instead it seems as though the passage vortex begins forming at the
side of the cavity closest to the blades.

The cavity itself allows for some slight vortex structure formation inside the cavity as it
exits as well as for some other vortex structures centered around the blade leading edges slightly
deeper in the cavity. This is attributed to the potential effect of the blades. The potential effects
leads to the distortion of the vortical structures forming over the top of the cavity as different
portions of the cavity see flow into or out of the cavity.

Adding the purge flow has a noticeable effect on the topology of the flow in the blade
passage, as seen in Figure 28, as the same Q-criterion isosurface is larger. This isosurface is
also less organized as more smaller vortices escape from the cavity to join the passage vortex.
These additional vortices disrupt the formation of the horseshoe vortex on the pressure side,
strengthening it and inducing movement towards the other blade’s suction side earlier in the
blade passage. Examining the corner vortex formed in Figure 28, this structure develops almost
immediately after the leading edge, and is more pronounced on the pressure side relative to the
no cavity case and the cavity case without purge flow. This figure also suggests a link between the
vortex structures in the separation region with the development of additional vortical structures
that leave the blade to join the passage vortex.

Downstream of the blades, nearly all of the canonical secondary flow structures can be clearly
seen. Figure 29 highlights how these structures have fully developed as they exit the blade passage
in the case without the cavity.
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Figure 29: Q-criterion isosurface, Q = 5E7 s22, colored by vorticity, view upstream, no cavity.

The hub passage vortex can be identified in Figure 29 (label 1) by its large size and its
migration towards the blade suction side. The wall-induced vortex can also be seen (label 2)
as it generates next to the strong passage vortex. Near the blade trailing edge, many of the
secondary flows combine and the structures lose their otherwise clear forms. Here, the trailing
edge wake vortices (label 3) can also be clearly seen in the form of large structures in the blade
spanwise direction. The interaction of these spanwise structures with the flow-oriented structures
leads to complex, three-dimensional vortical shapes indicative of increased mixing.

Secondary flow features can also be inferred from the skin friction plot on one of the un-
wrapped blades (Figure 30), as the strong passage vortex induces flow detachment/attachment
on the surface of the blade. Examining spots of high magnitude wall shear stress indicates re-
gions with high velocity gradients near the wall. This is characteristic of secondary flow features.
For instance, in Figure 30a, the spot on the suction side near approximately s/S = 0.4 (label 1)
corresponds to the merging of the pressure side horseshoe vortex with the suction side horseshoe
vortex, which generates an increase in friction. Furthermore, the pattern seen for s/S > 0.5 and
z/H < 0.15 is indicative of the development of an induced wall vortex and corner vortex, where
the shear stress reduces above and below the main passage vortex. Note that the small distur-
bances in the skin friction coefficient over the leading edge (x/C = 0) in these figures are due
to the algorithm for the blade unwrapping procedure; the skin friction varies continuously and
smoothly in the simulation. These skin friction plots are also useful to highlight regions where
the flow is detached. For instance, in Figure 30a, on the suction side for 20.2 < s/S < 20.05
(label 2), there is a reduction in the wall shear stress due to the separation of the flow on this
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(a) Unwrapped blade skin fric-
tion, no cavity.

(b) Unwrapped blade skin fric-
tion, cavity without purge flow.

(c) Unwrapped blade skin fric-
tion, cavity with purge flow.

Figure 30: Blade skin friction comparison, negative x/S is the pressure side.

surface. Likewise, for 0.6 < s/S < 1.0 at z/H > 0.1, there is a separation on the suction side of
the blades (label 3).

In general, all three figures show a similar starting position for the pressure side separation
and for the suction side separation region. The dark band seen on the pressure side separation in
Figure 30a does appear to become lighter as the cavity is added, and lightens further as the purge
flow is added, showing the flow is reattaching sooner for z/H < 0.2 with the cavity. Figure 30b
also shows a reduced wall shear stress in comparison with Figure 30a, which could be because
the altered starting position for the pressure side horseshoe vortex for the case with the cavity
reduces the friction generated when the two horseshoe vortices merge on the suction side. With
the addition of the purge flow in Figure 30c, the two bands (3) on the suction side for z/H move
noticeably upwards and spread out. Additionally, the purge flow affects the shear stress pattern
on the pressure side right from the leading edge, strongly reducing the separation effects seen in
the other figures.

Of course, the different secondary flows also have some influence on the isentropic Mach
number profiles seen on the blades. Figure 31 below shows the isentropic Mach number profiles
at heights z/H = 0.1, 0.3. Above z/H = 0.3 these plots are virtually indistinguishable.

(a) Isentropic Mach number profiles, z/H = 0.1. (b) Isentropic Mach number profiles, z/H = 0.3.

Figure 31: Comparison of isentropic Mach number profiles.

Figure 31a shows how the purge flow affects the isentropic Mach number distribution; with
this the isentropic Mach number on the pressure side of the blade increases noticeably, and the
separation zone on this same side also reduces. Another interesting feature from this low blade
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span height is that although the flow acceleration at the beginning of the suction side of the
blade does not match well with the experimental results, the trailing edge side of the suction
side accurately predicts the isentropic Mach number. Figure 31b shows effectively no difference
between the cases, further emphasizing that the cavity effects are confined to the very near wall
region.

4.3.4 Cavity Effects on Time-Averaged Flow

In order to study how the flow is perturbed by the cavity on average, Figures 32 and 33 showcase
how the average streaklines generated just before the cavity at a height of 0.5 mm are affected
by the introduction of the cavity and the activation of the purge flow. Left to right in both of
these figures shows the no cavity case, the cavity case without purge flow, and the cavity case
with 0.9% purge mass flow. These streaklines are colored by the magnitude of the velocity at
the given position.

Figure 32: Cavity streakline perturbation.

Figure 33: Cavity streakline perturbation, view down cavity.
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Compared to the no cavity case, the velocity magnitude seen in the same region for the
cavity case without purge flow is not strongly affected, as seen in Figure 32. The boundary
layer sees a strong potential effect from the leading edge of the blades, which directs some of
the boundary layer flow into the cavity for the case with 0% purge mass flow. This redirected
flow generates the cavity flow recirculation as seen in the center of Figure 33. With 0.9% purge
mass flow, however, the velocity seen in flow over the cavity is reduced, which suggests that the
purge mass flow is pushing the incoming flow up above this position. Additionally, the shape
of the recirculation region in the cavity is modified with the purge mass flow. While the same
potential effect directs some of the flow into the cavity, the purge mass flow overcomes this effect.
Correspondingly, the circulation region seen in the cavity is confined to the top to allow for the
purge mass flow to escape from the cavity. The right of Figure 33 clearly shows how purge flow
prevents the ingestion of the main flow into the cavity, as intended.

This boundary layer flow has a strong affect on the development of the horseshoe vortex
formation, as seen in Figure 34 which shows the difference in Q-criterion structures with an
isosurface at Q = 5E7 s22. Left to right: no cavity, cavity 0% purge flow, cavity 0.9% purge
mass flow.

Figure 34: Vortical structures comparison, Q-criterion isosurface atQ = 5E7, colored by vorticity
in x direction.

Figure 34 shows the obvious effect of the cavity on the development of the horseshoe vortex.
The cavity’s position is close enough to the leading edge of the blades such that this vortex
shape is almost detached from the leading edge of the blades. This detachment of the suction
side horsehoe vortex leads to a larger passage vortex, as seen in the center and right of Figure 34.
Additionally, this figure emphasizes how the purge mass flow of 0.9% strongly influences the
formation of vortical structures in the blade passage, as many more vortices at the same Q-
criterion isosurface are identified in the right of Figure 34.

This figure also shows how the structure of the flow within the cavity changes as suggested
by Figure 33, where adding purge mass flow constrains the circulation in the cavity to the region
nearest to the incoming flow, allowing the purge flow to escape. Note also that each set of
two blades in Figure 34 see the same general flow topology, which further indicates that the
simulations are well converged and behaving as expected. Moreover, as the domain is periodic,
this suggests that a full cascade would see these turbulent structures developing at each blade.

Lastly, Figure 35 shows the overall development of turbulent kinetic energy, TKE, looking
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down the blade passage. Each of the images, from left to right are the no cavity case, the cavity
case without purge flow, and the cavity case with 0.9% purge mass flow.

Figure 35: TKE development in blade passage.

Figure 35 shows a threshold for cells with TKE greater than 500 J.kg21 in the domain. Doing
so shows the intuitive effect of adding the cavity: there is increased turbulent kinetic energy in
the blade passage, as expected. This increased TKE indicates greater mixing in the flow as the
value increases. Moving from the center of Figure 35 to the right of the figure highlights how
the addition of purge flow generates a strong increase in TKE overall. Here, not only does the
affected region of the blade passage increase, but the peaks in TKE also increase. Recalling the
shapes of the passage vortex, it can be seen that the passage vortex in each case is contributing
to the a region of increased TKE. This is intuitive: the mixing and bursting effects of the large
passage vortex generate turbulent energy.

4.3.5 Comparison of Plane 06 Downstream of Blades

With the overall flow features described in the cases, the next step is to characterize how these
features affect the losses downstream of the blades at Plane 06, located 0.5Cax downstream of
the trailing edge. One metric for determining how these secondary structures have affected the
losses is the energy loss coefficient. The energy loss coefficient, À, is defined [38] at this plane as:

À = 12
12

(

P6

P06

)

γ−1

γ

12
(

P6

P01,fs

)

γ−1

γ

. (42)

Here, P6 is the static pressure at Plane 06, and P06 is the total pressure at Plane 06. P01,fs

is the freestream total pressure at Plane 01, here taken to be the imposed total pressure at the
inlet, 9000 Pa. µ is the ratio of specific heats for air, taken as µ = 1.4. This coefficient is useful
as it contextualizes the losses, which manifest as a decrease in total pressure at Plane 06.
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Figure 36: Plane 06 pressure loss coefficient plots.

Figure 36 shows the contours of the pressure loss coefficient at Plane 06 without the cavity,
with the cavity, and with the cavity and purge flow, from left to right. This figure also allows for
the clear identification of two main loss regions, one between interaction of the passage vortex
and the wall induced vortex (label 1), and the other near the corner vortex (label 2). As expected,
À increases as the cavity is included, and further increases as the purge flow is added. It is also
observed that the regions of high À move upwards as the cavity effects are included. Considering
the right of Figure 36, the upwards movement of the loss region associated with the passage
vortex can be explained by the fact that the cavity flow introduces some momentum to the
starting horseshoe vortex in the +z direction.

Another useful quantity is the secondary velocity, which is the velocity in the plane of interest
that is not aligned with the ideal flow direction. Here, if the turbomachine was perfect, the flow
at Plane 06 would be uniformly and completely turned at the metal outlet angle, ´m,out. In
reality, the velocity vector at Plane 06 can be projected onto this ideal velocity direction (û),
and the secondary velocity vector can be determined.

û = cos(´m,out), v̂ = 0, ŵ = 2sin(´m,out) (43)

usec = 0, vsec = v, wsec = uŵ + wû (44)

The secondary velocity vector allows for the nonidealized flow velocities to be characterized
on a given plane. A plot of these vector directions scaled by their magnitude overlaid on the
energy loss coefficient for each case is presented in Figure 37.
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Figure 37: Plane 06 vorticity with secondary velocity directions.

Figure 37 shows the previous loss contours overlaid with black vectors in the secondary
velocity directions, and the vorticity in the x direction (plane normal). This highlights how the
intensity of the vortex cores increases with the introduction of the cavity and the purge flow, and
also identifies how the high loss coefficient regions are directly related to regions where strong
vortices of opposite signs are interacting. Additionally, the shapes of these vortex regions deform
from the no cavity case. In the no cavity case, the positive vorticity region in the center (the
passage vortex) is very circular without defects. As the cavity is included, this shape begins to
deform slightly, bending inwards as the induced blade vortex gains strength. When the purge
flow is activated, the central passage vortex is highly deformed, and both the corner vortex and
the blade vortex are pushing against it.

Lastly, Figure 38 shows how the previous loss contours are related to regions of TKE.

Figure 38: Plane 06 TKE with À contours.

Here, it should be noted that the regions with highest À are not directly superimposed with
the regions of highest TKE, though they are spatially related. Instead, these peaks in TKE
coincide with regions where there is a strong gradient of the vorticity in the x direction from
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Figure 37. In this way, Figure 38 highlights the blade passage vortex and the corner vortex as
regions of high turbulent activity.

4.3.6 Comparison to Experimental Data

As mentioned previously, the experimental data available for comparison is only the no cavity
case, as there were not any experiments performed with the cavity or with purge flow and without
the wake generating rotating bars. The experimental data presented here is time-averaged over
3 seconds, considerably longer than those from the simulation.

Firstly, the no cavity loss contours at Plane 06 are compared with the experimental results
in Figure 39.

(a) Energy loss coefficient, ξ, at Plane 06, no cav-
ity.

(b) Energy loss coefficient, ξ, at Plane 06, experi-
mental [45].

Figure 39: Plane 06 energy loss coefficient comparison to experimental results.

Figure 39a was created by manually scaling Plane 06 results such that it shared the same
axes lengths with Figure 39b; as such, only the relative distances and shapes should be compared.
With this in mind, the two are in good agreement with the overall shape of the loss curves. Both
figures identify two loss cores, and show relatively the same positions between them, and appear
to have comparable magnitudes of loss coefficient.

An important characterization of the flow at the outlet of the blades is the actual turning
angle, ´. This angle is computed as

´ = arctan
( v

u

)

, (45)

and the deviation from the ideal turning angle, ∆´ is calculated as the difference ´2´m,out.
Figures 40 and 41 are pitch averaged over Plane 06 and show the overall effects of these secondary
structures from the different cases relative to experimental data obtained without the cavity at
Plane 06. Here, the labels "NC" are for the no cavity case, "WCS PF00" for the cavity case
with no purge flow, and "WCS PF09" for the cavity case with 0.9% purge mass flow.
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Figure 40: Plane 06 pitchwise averaged devia-
tion from ideal turning angle.

Figure 41: Plane 06 pitchwise averaged À.

Figure 40 shows fairly good agreement of ∆´ between the simulated no cavity case and the
experiment, which was not initially expected since the inlet angle distribution varies by more
than 5° at points. Notably, the region below z/H = 0.1 is in very good agreement, and the z/H
position of maximum absolute deviation is well predicted around 0.1, although he magnitude of
this deviation is off by about 1.5°.

Figure 40 also shows that the turning angle at the outlet of the experimental data far from
the endwall appears to differ significantly from the metal angle, while the simulated results all
agree that the outlet angle at Plane 06 far from the endwall should be almost exactly the metal
angle. Comparing the cases, the previous trends are further supported by Figure 40. As the
cavity effects are included, the turning angle at the outlet decreases slightly but is overall not
strongly perturbed, and when the purge flow is activated the turning angle is strongly affected,
both increasing overturning and underturning seen by the flow close to the hub.

The outlet turning angle deviation is well complemented by Figure 41, which shows that the
losses predicted for z/H g 0.1 are extremely accurate for the no cavity case. Whereas Figure 40
shows good agreement between the simulation and the experiment for ∆´ below z/h f 0.1,
Figure 41 shows that all of the sims underpredict the losses in this region.

Both Figure 40 and Figure 41 show a perturbation in the plots at z/H = 0.6, which is
expected since the mesh quality changes fairly quickly at this point.

4.3.7 Categorization of Turbulent Structures

Since LES can capture the turbulence anisotropy in the spatial domain, analysis on this anisotropy
can provide additional information as to the types of turbulent structures seen that would other-
wise be unavailable for a RANS simulation. As suggested by Emory [60], predicting the amount
and type of anisotropy is critical for accurate numerical simulation of complex flows. Emory
defines the anisotropy from the Reynolds stress anisotropy tensor,

aij =
u2iu

2
j

2TKE
2 ¶ij

3
, (46)

where TKE = 1
2

∑3
n=1 u

2
nu

2
n. The Reynolds stress anisotropy tensor, aij , can be diagonalized

to extract three eigenvalues and three eigenvalues of turbulence anisotropy. Extracting these
invariants was originally introduced by Lumley in 1977 [61] in order to study the return to
isotropy of homogeneous turbulence. These three eigenvalues, ¼1, ¼2, and ¼3 are generated
at each point and ordered such that ¼1 g ¼2 g ¼3 and

∑

i ¼i = 0. The extraction of these
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eigenvalues allows for the generation of an invariant map, also called the Lumley triangle, using
the second and third principal components of turbulence anisotropy, defined as

II = aijaji/2 =¼21 + ¼1¼2 + ¼22, (47)

III = aijajnani/3 =2 ¼1¼2(¼1 + ¼2), (48)

where Einstein notation is used and repeated indices are summed. Another slight scaling
based on these same invariants is referred to as the turbulence triangle, using the coordinates
(¸, À) where

À3 = III/2, (49)

¸2 = II/3. (50)

As Emory notes, this mapping stretches the lower left quadrant of the Lumley triangle,
providing more space to the region near the isotropic corner. These two triangles non-linearly
map all possible turbulent states at a given point in space to a point within the triangle maps
shown in Figure 42.

Figure 42: Diagram of the Lumley triangle and turbulence triangle non-linear anisotropy in-
variant maps. The limiting states of componentiality are label along with the plane-strain limit
(dashed line) for reference [60].

There are three limiting states of componentiality for a turbulent field, which are:

1. one-component (x1C) turbulence, where turbulent fluctuations only exist in a single direc-
tion. This has limiting eigenvalues ¼1 = 2

3 , ¼2 = 2 1
3 , and ¼3 = 2 1

3 . Turbulence in a single
direction is also referred to as rod-like turbulence.

2. axisymmetric two-component (x2C) turbulence, where turbulent fluctuations are equal in
two directions. The limiting eigenvalues for this state are ¼1 = 1

6 , ¼2 = 1
6 , and ¼3 = 2 1

3 .
Axisymmetric two-component turbulence is also referred to as pancake-like turbulence.

3. isotropic (three-component, x3C) turbulence, where turbulent fluctuations are equal in all
three directions. The limiting eigenvalues for this state are ¼1 = ¼2 = ¼3 = 0.
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These three limiting states are the triangular vertices shown in Figure 42. To visualize
the anisotropy of turbulence seen in the numerical simulations presented here, the barycentric
map of Banerjee [62] is constructed. This barycentric map functions based on the fact that
any turbulence in a turbulent field is a convex combination of the three limiting states. Using
these three limiting states as corners of an equilateral triangle, they are arbitrarily placed at
x1C = (0, 0), x1C = (1, 0), and x1C = (1/2,

:
3/2) in a Euclidean domain.

The resulting coordinate system (xB , yB) is defined by

xB = C1Cx1C + C2x2C + C3x3C =C1C +
1

2
C3C

yB = C1Cy1C + C2y2C + C3y3C =

:
3

2
C3C

with weights

C1C = ¼1 2 ¼2, C2C = 2(¼2 2 ¼3), and C3C = ¼3 + 1.

Uniqueness for this system is enforced by
∑

i CiC = 1. To generate an interesting figure to
visualize large amounts of anisotropy data, a color scheme is developed. Here, there are three
weights, which could easily correspond to the three colors, red, green, and blue to form an RGB
triplet. Such an invariant map coloring can make it difficult to isolate regions that are close
to one of the three limiting states, as most of the domain is somewhat similarly colored. To
improve on this, Emory suggests alternative componentiality color contours that enhance the
visual perception of the limiting states.

One such map gives a formulation for the RGB channel values as





R
G
B



 = C7
1C





0.5
0.5
20.5



+ C7
2C





0.5
20.5
0.5



+ C7
3C





0.5
0.5
20.5



 (51)

where C7
iC = (CiC + 1.75)2. Here, instead of using the red, green, and blue colors ([1, 0, 0]T ,

[0, 1, 0]T , and [0, 0, 1]T , respectively), this colormap (equation 51) uses yellow, magenta, and cyan
as a base. This mapping highlights each of the three limiting states clearly, giving the colormap
for the barycentric triangle as seen in Figure 43.

Figure 43: Barycentric anisotropic turbulence triangle colormap.
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This colormap highlights rod-like turbulence in yellow, pancake-like turbulence in magenta,
and isotropic turbulence in cyan, while leaving the remaining mixed-states as white. Figure 44
shows this colormap applied to the xy plane at z/H = 0.30. Figure 45 shows this colormap with
contours for the energy loss coefficient À at different downstream yz planes. These figures show
results for the no cavity case. The turbulence of this case is representative of the canonical flows
seen in a turbine, and therefore illustrates the main results and advantages of this anisotropy
analysis.

Figure 44: xy plane at z/H = 0.3 turbulence anisotropy.

Figure 44 shows that the incoming flow to the blades is isotropic, as the flow for x < 0 is
cyan. This further supports that the turbulence injection method is working as expected. As
the flow comes into contact with the blades, a few patterns emerge. In the separated region on
the pressure sides of the blades, a noticeable yellow spot emerges, indicating single component
turbulence. This rod-like turbulence is likely related to turbulence in the blade span direction.
This rod-like turbulence also appears to break down over a short distance into more isotropic
turbulence, as evidenced by the cyan spot just downstream. Over the blade surface, a magenta
layer forms, indicating the development of two-component turbulence, as expected near a wall.
This turbulence also appears to separate on the suction side of the blade, forming a yellow,
one-component, turbulence region. Downstream of the trailing edge of the blades, two streaks of
cyan appear where the trailing edge wake on average contributes to isotropic turbulence. Slightly
further downstream of the trailing edge, a patch of one-component turbulence is seen which is
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representative of the wake structures forming with turbulence in the spanwise direction. This
then breaks down into isotropic turbulence.

One feature that Figure 44 captures is the stretching of vortical structures in the blade
passage. The initially isotropic (cyan) flow enters the blade passage and turns to two-component
turbulence (magenta), which is understandable since the acceleration of the flow in the passage
direction should reduce turbulent fluctuations in this passage direction, leaving the two other
turbulent fluctuations relatively unchanged.

(a) 0.1 Cax downstream. (b) 0.25 Cax downstream. (c) 0.5 Cax downstream.

Figure 45: Turbulent anisotropy downstream evolution with À contours.

Figure 45 shows how the anisotropy of the turbulence in the flow evolves downstream of the
blades, as well as how the contours of À vary downstream. Here, two main effects are observed.
Firstly, the À contours widen downstream, indicating that mixing is occurring downstream of the
wakes. Secondly, the isotropic turbulence region attributed to the passage vortex grows as well.
The flow between the two blades, which was initially two-component (as seen in Figure 45a),
becomes less two-component downstream. This also suggests strong mixing effects downstream
of the blades, as expected.

Looking at Figure 45c shows the anisotropy of the turbulence at Plane 06 (0.5 Cax down-
stream), overlaid with contours of the energy loss coefficient, À. A few features are shared between
the anisotropy shapes and the contours of the energy loss coefficient. For instance, the wakes
are seen in yellow as rod like turbulence, and these wakes are similarly seen in the À contours.
Additionally, the blade to blade passage far from the blades sees the two-component turbulence
as discussed before, which also coincides with regions of reduced À. The passage vortex can be
identified as the large cyan region at the bottom of the figure, and seems to coincide with regions
of increased À.

Examining the turbulence anisotropy in the blade passage after the simulations reinforces
the necessity of LES for these simulations; the variations and different turbulent structures seen
are necessary to the accurate description of the flow physics.

4.4 Discussion

The simulated SPLEEN high-speed low-pressure turbine cascade produced results that follow the
canonical flow shapes and correctly reproduced the known trends of the influence of the cavity
and purge flow effects on the losses in the blade passage as seen experimentally [45].
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In these simulations, the aspect that needs the most improvement is the angle of attack seen
by the blades at Plane 02. The difference in the overall angle trend relative to experimentally seen
results suggests that there are additional physics captured in the simulations that are not seen
experimentally. Firstly, the very low angle of attack seen at the base of the blades (Figure 15)
leads to separation at the bottom portion of the blades. This separation region may be affecting
the flow attachment higher up in the blade span (e.g. z/H = 0.3), where the incoming angle is
correct. This flow separation on the pressure side of the blades was also predicted by Okada [44]
using a 2D steady RANS approach with a k 2 É model with µ 2 Reθ transition at the correct
angle of attack. This suggests that even with the correct angle of attack the laminar to turbulent
boundary layer transition taking place on the suction side of the blade is quite sensitive, and
may require an extremely fine mesh in order to capture the turbulent scales that drive this
transition. One method for improving on the angle of attack seen by the blades is a redesign
of the computational domain such that the boundary layer trap is removed, and a slip wall
is put in place between the inlet and the boundary layer trap tip. This has the downside of
removing the effects of the boundary layer trap, however, which may have important effects on
the development of the boundary layer at the hub.

Nonetheless, even with a large variation in the incoming angle of attack seen by the blades,
the Plane 06 averaged loss coefficient À is well predicted, as seen in Figure 36. This suggests that
the current simulations are reasonably accurately reproducing the vortex formation physics that
are driving the mixing and subsequent loss mechanisms. The most notable difference in the loss
coefficient is very close to the hub wall, which could be due to the way the boundary layer on
the hub wall develops from the beginning at the hub tip and boundary layer trap interface.

From these results, it is clear that the inclusion of the cavity (even without purge mass flow)
directly affects the horseshoe vortex formation at the blade leading edge. This disruption in
the vortex formation leads to an intensification of the blade passage vortex, which then leads to
more losses as this vortex is accelerated through the blade passage and then mixed with other
secondary flows after the blades. With purge mass flow, this intensification is even stronger, as
the purge flow bends due to the potential effect of the blades and combines with the passage
vortex.

Examining the turbulence anisotropy in the blade passage after the simulations reinforces
the necessity of LES for these simulations; the variations and different turbulent structures seen
are necessary to the accurate description of the flow physics. These turbulent structures seem
to be linked to loss mechanisms seen in the flow. More specifically, it appears as though the
breakdown from one- or two-dimensional turbulence towards isotropic turbulence leads to the
generation of losses. However, this breakdown process may be relatively unimportant compared
to the mixing/bursting of large vortical structures, and further investigation is needed to relate
the anisotropy of the flow to the losses.

5 Conclusion

This simulation endeavor balanced computational cost and complexity, employing state of the art
large eddy simulation for a turbine cascade operating at high-speed low-pressure conditions nec-
essary for future improvements to turbomachines. Overall, this project cost more than 870 thou-
sand hours on the Centre de Calcul Recherche et Technolgie (CCRT) supercomputer TOPAZE,
generating over 4Tb of data. Such complex CFD projects are limited almost exclusively to re-
search and academic domains and help to build a deeper understanding of relevant physics in
order to construct better models in the future. Here, the SPLEEN simulations performed provide
valuable insight as to how to better model these turbine cascades in the future.
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As engine designs evolve, being able to simulate the design while including a range of tech-
nological effects will continue to present a significant challenge. This project demonstrated that
AVBP is able to model a high-speed low-pressure turbine with turbulence injection and include
purge flow effects. Overall, this simulation is the culmination of a variety of mathematical tech-
niques, advanced modeling, turbulence injection methods, and numerical post-treatments applied
to a complex problem with an experimental reference. The development of this project uncovered
a few discrepancies in the AVBP source code, which were corrected to produce a more robust,
accurate turbulence injection method. Lastly, a newer method for inspecting the anisotropy
of turbulence in the domain was employed, which recovered relevant results for describing loss
generation.

The current simulations have shown good agreement with experimentally available values,
and have also uncovered some of the central issues with numerically recreating these test setups.
In depth analysis on the flow fields revealed how the cavity influences the development of losses
in the turbine cascade, and has highlighted the importance of these technological features as the
need for accurate design and modeling increases.

6 Perspectives

Throughout this project, the two main challenges were: to inject the correct turbulence, and
to match the experimental operating point. The turbulence injected here matches the correct
turbulence intensity and the integral length scale, after the bug corrections. Accurately modeling
the turbulence was the main driver of the cost of the simulation as increasing the refinement of
the mesh between the inlet and the blades directly drives the minimum resolved turbulence size.
Unfortunately, this section of the domain was also extremely large, and potential effects from
the boundary layer trap or hub boundary layer development may require the inlet to be even
further from the blades, which would greatly increase the cost of the simulation. Instead, an
alternative simulation method might focus on characterizing the rms values of the flow and the
mean flow profile at a pseudo-inlet plane at some point past the hub tip. This could allow for
an accurate characterization of the turbulence and mean profiles and their effects on the blades
while reducing the cost. Matching the experimental operating point proved to be quite difficult,
especially as it relates to the angle of attack that reaches the blades. Changing to this inlet plane
might allow for the angle of attack to be numerically imposed the same as the experiment with
the correct turbulence statistics.

Further work on this project would include the rotating bars to complete the numerical
simulation of the experimental set up. This can be accomplished in AVBP using methods for
coupling multiple simulations and overlapping their meshes so that information can be trans-
mitted between static and rotating (or sliding) components. Adding these components would
greatly increase the complexity of the simulation and would likely require an even finer mesh to
accurately describe the fine wakes generated from the 1 mm moving rods.
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A Turbulent Injection Methods, Detailed

Some of the material covered in Section 4.2.2 will be repeated here, but with additional expla-
nation.

The goal of the turbulence injection is to apply perturbations to the inlet velocity profile to
generate divergence-free, statistically stationary turbulence with user defined statistics. In these
simulations, this is accomplished by constructing a velocity perturbation field, ∆u(x, t), such
that the inlet velocity is u(x, t) = u(x) + u2(x, t), employing Taylor’s assumption. This velocity
perturbation field is largely based on the work from Kraichnan [50], and extended with Bailly’s
method [63].

A.1 Kraichnan’s Method

Kraichnan’s method was initially implemented in AVBP by Guézennec [64]. Kraichnan gen-
erates an initial velocity perturbation field using randomly sampled Fourier harmonics, which
results in a divergence-free, statistically stationary, homogeneous, isotropic turbulent perturba-
tion. Firstly, the relation between the fluctuating velocity field u2(x, t) it its three-dimensional
Fourier transform in the space û(k, t) at the wave vector k is:

u2(x, t) =

∫

D

û(k, t)eikxd3x (A.1)

where D indicates the domain of k. As the Taylor assumption is applied,

û(k, t) = û(k)eıωt, É = k · u. (A.2)

Thus, equation A.1 becomes:

u2(x, t) =

∫

D

û(k)eı(kx2ωt)d3x, (A.3)

using 1 =
:
21. When the fluctuating velocity field is assumed to be incompressible, 'u2 = 0.

This property is be expressed in the spectral domain as:

û(k) · k = 0, (A.4)

which shows that û(k) is perpendicular to the wave vector, k. Equation A.3 must be ap-
proximated with N modes, which gives:

u2(x, t) =
N
∑

n=1

ûn(kn)e
ı(knx2ωnt), (A.5)

ûn · kn = 0 "n.
Here, ûn(kn) is the discrete three-dimensional Fourier transform of the fluctuating velocity

field at the wave vector kn with Én = kn ·u as the pulsation. As u2 is real in the physical space,
it is equal to its complex conjugate, u27, which also holds for its Fourier transform. Thus,

u27(x, t) =

N
∑

n=1

ûn(kn)e
2ı(knx+ωnt), (A.6)

Summing equations A.5 and A.6 allows the equation for the perturbation velocity to be
rewritten in terms of sines and cosines as:
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u2(x, t) =

N
∑

n=1

[v̂n(kn) cos (kn · x+ Ént) + ŵn(kn) sin (kn · x+ Ént)], (A.7)

where v̂n = =(ûn(kn)) and ŵn = 1(ûn(kn)), and

v̂n · kn = 0 and ŵn · kn = 0 "n. (A.8)

As Guézennec [64] states, the last step before the implementation of the Kraichnan method
is to convert the previous system to dimensionless quantities. To perform this nondimension-
alization, the characteristic quantities are the turbulent velocity, |up|, the most energetic wave
length of the turbulent spectrum, ¼e its corresponding time-scale, Äe =

λe

|u| .

With these characteristic quantities, the resulting dimensionless equation is written as

ũ2(x̃, t) =

N
∑

n=1

[

ˆ̃vn(k̃n) cos (k̃n · x̃+ É̃nt) + ˆ̃wn(k̃n) sin (k̃n · x̃+ É̃nt)
]

(A.9)

ˆ̃vn · k̃n = 0 and ˆ̃wn · k̃n = 0 "n. (A.10)

where the ·̃ indicates a dimensionless quantity. To simplify the notation, the ·̃ symbol will
be suppressed and quantities will be implicitly dimensionless.

Kraichnan generates, for all N , two real vectors v̂n and ŵn such that the injected flow is
incompressible (Equation A.10) and the desired turbulent spectrum E(k) is recovered. To do so,
the vectors v̂n and ŵn are chosen as follows:

v̂n = ·n × kn and ŵn = ¸n × kn "n. (A.11)

The vectors ·n and ¸n are independently picked from a three-dimensional Gaussian distri-

bution, with standard deviation ÃN =
√

2
N . This value is chosen such that u2iu

2
i = 1.

To generate the wave vectors kn and the pulsations Én, these are chosen from statistically
isotropic distributions shaped such that the desired turbulent spectrum E(k) would be recovered
in the limitN 2³ >. Kraichnan recovers the Passot-Pouquet spectrum by picking the components
for kn and Én randomly from Gaussian distributions with a standard deviation Ã = 1

2 .

A.2 Bailly’s Method

Bailly’s method takes a very similar approach to Kraichnan’s but extends this method to allow
for other turbulent spectrums to be recovered, and also allows for a variable energetic length
scale to be injected.

Bailly considers the three-dimensional Fourier transform in space of the instantaneous ve-
locity field u2. A straightforward geometrical argument can be made to adjust v̂n = ûa and
ŵn = ûb, based on Figure 46.
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Figure 46: Local frame (k̃1, k̃2, k̃3) in k space corresponding to (eθ, eϕ, er) in spherical coordinates,
and representation of the Fourier component û(k) = ûa 2 1ûb [63].

Bailly notes that since these two vectors are perpendicular to kn, in the local frame aligned
with kn the coordinates of these two vectors can be written as

v̂n = ûa = ûa = û

[

cos³
sin³

]

and ŵn = ûb = ûb = û

[

cos´
sin´

]

. (A.12)

Writing the velocity perturbation field as a Fourier series gives:

u2(x) =
N
∑

n=1

[ûn(kn) cos (kn · x)an + ûn(kn) sin (kn · x)bn]. (A.13)

A single realization of the isotropic turbulent field is then chosen by adding a phase shift of
Èn to each of the modes, giving

u2(x) =

N
∑

n=1

[ûn(kn) cos (kn · x+ Èn)an + ûn(kn) sin (kn · x+ Èn)bn], (A.14)

and the variables Èn, kn, an, and bn are taken to be random variables with given probability
density functions. However, the corresponding amplitude of the nth mode ûn is not chosen at
random, and instead is chosen based on the turbulent kinetic energy spectrum, as will be shown
later.

To enforce isotropy of the injected turbulence, the wave vector kn is picked randomly on a
sphere, S, of radius k. In the Cartesian frame, the unit vectors of the local frame are:

k̃1 =





cos ¹ cosÇ
cos ¹ sinÇ
2 sin ¹



 , k̃2 =





2 sinÇ
cosÇ
0



 , and k̃3 =





sin ¹ cosÇ
sin ¹ sinÇ

cos ¹



 (A.15)

yielding for k = kk̃3:

k = k





sin ¹ cosÇ
sin ¹ sinÇ

cos ¹



 (A.16)
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where 0 f Ç f 2× and 0 f ¹ f Ã, as seen in Figure 46. On the sphere, S, the isotropy
condition requires that

dS

4Ãk2
=
k sin ¹dÇkd¹

4Ãk2
= p(¹)d¹p(Ç)dÇ. (A.17)

Equation A.17 above relates the probability of selecting a point on an infinitesimal part of
the sphere’s surface is equal to the probability density functions of the two random variables, ¹
and Ç. Correspondingly, the probability density functions p(¹) and p(Ç) are taken by Bailly to be
p(¹) = sin(¹)/2 and p(Ç) = 1/(2Ã). The two unit vectors a and b introduced in Equation A.12
have an arbitrary orientation in their plane defined by (k̃1, k̃2), where in Cartesian coordinates

a =





cos³ cos ¹ cosÇ2 sin³ sinÇ
cos³ cos ¹ sinÇ+ sin³ sinÇ

2 cos³ sin ¹



 (A.18)

and the same expression is obtained for b, substituting ´ for ³. Since the orientation of a
and b are arbitrary, the random variables ³ and ´ are distributed uniformly between 0 and 2Ã,
giving p(³) = p(´) = 1/(2Ã).

The final random variable is Èn, which relates to the phase of the mode. This is done by
introducing the two-point correlation function of the velocity field:

Rij = u2i(x)u
2
j(y) (A.19)

where y = x + d, with d as an arbitrary vector separating the two points, x and y. The
correlation function between these two points is obtained by taking the ensemble average of the
following:

∑

n

ûn[cos (kn · x+ Èn)ani + sin (kn · x+ Èn)bni]

×
∑

m

ûm[cos (km · y + Èm)amj + sin (km · y + Èm)bmj ]

As the N modes are statistically independent, and the two vectors an and bn of the same
nth mode are also independent, the expression can be reduced to:

∑

n

û2n[cos (kn · x+ Èn) cos (kn · y + Èn)anianj + sin (kn · x+ Èn) sin (kn · y + Èn)bnibnj ].

Taking the ensemble average of this expression and recovering the correlation function, it
yields:

u2i(x)u
2
j(x+ d) =

1

2

∑

n

û2n

[

cos (kn · d)anianj + cos (2kn · x+ kn · d+ 2Èn)anianj

]

+
1

2

∑

n

û2n

[

cos (kn · d)bnibnj 2 cos (2kn · x+ kn · d+ 2Èn)bnibnj

]

(A.20)

where · is the ensemble average. In order to obtain a homogeneous velocity field such that
Rij = Rij(d) only, the random variable Èn must be uniformly distributed between 0 and 2Ã.
This distribution reduces the expression further, yielding:
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Rij(d) =u2i(x)u
2
j(x+ d)

=
1

2

N
∑

n=1

û2n

[

cos (kn · d)anianj + cos (kn · d)bnibnj
]

,
(A.21)

where · c ï·ðϕ,θ,α,β . Using this equation to evaluate the autocorrelation (i.e. d = 0, i = j)
at a given point, the turbulent kinetic energy (TKE) can be recovered as:

TKE =
u2iu

2
i

2
=

1

2
Rii(0) =

1

2

(

1

2

N
∑

n=1

û2n [1 + 1]

)

=
1

2

N
∑

n=1

û2n (A.22)

since an and bn are unit vectors. Bailly then determines that for a given turbulent kinetic
energy spectrum, E(k), the amplitude of the nth Fourier mode can be calculated by

ûn =
√

2E(kn)∆kn (A.23)

where ∆kn is the step of the discretization in the Fourier space.
The Passot-Pouquet spectrum in Bailly’s method is constructed via:

E(k) = A

(

k

ke

)4

exp

[

22

(

k

ke

)2
]

(A.24)

with A as the amplitude of the spectrum and ke is the wave number associated to the
most energetic length scale. Lepage [48] shows that by defining the turbulent kinetic energy as
k c 1

2u
2
iu

2
i =

3
2U

2
p gives the constant A as:

A =
16U2

p

ke

√

2

Ã
. (A.25)

The spectrum is defined for all wave numbers k with two factors, Up and ke. Up controls
the amplitude of the energy spectrum, and corresponds to the rms fluctuation of the velocity
(assuming isotropic turbulence). This parameter is user-controlled to reach target turbulence
intensity levels. ke controls the position of the peak of the spectrum and its extent, and is
related to the integral length scale, Li, by:

Li =

:
2Ã

ke
. (A.26)

Within AVBP, the wave numbers, k, are generated based on the user input number of modes,
N , as

kj = exp

[

ln (kmin) + (ln (kc)2 ln (kmin)) 7
j 2 1

N 2 1

]

, j = 1, ..., N. (A.27)

This method also determines the discretization size, ∆k, needed to calculate the magnitude
of the nth mode, as shown in Equation A.23. Here, kmin is determined based off the maximum
turbulent length, Lmax injected as

kmin =
2Ã

Lmax
. (A.28)

Likewise, the cutoff wave number, kc, is determined based off the user input cutoff length as
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kc =
2Ã

Lc
. (A.29)

Periodicity for Bailly’s injection method is achieved by rescaling the wavevector in the pe-
riodic direction by an appropriate ratio. Recall from Equation A.16 that the wavevector k is a
randomly-directed vector with length k, and from Equation A.14 it is clear that the wavevector
k adjusts the shapes of the Fourier modes used to perturb the inlet. To force periodicity, these
N modes are rescaled in the appropriate ith direction by

kn,i = kn,i
2Ã

li
(A.30)

where li is the periodic length in the ith direction. With this scaling, it is clear that the
product kn,ixi in the cosine or sine term in Equation A.14 is scaled to be in the range [0, 2Ã],
ensuring that the two sides of the domain are equal. In the actual numerical implementation,
this periodicity can be susceptible to drift, as the periodicity is enforced by construction but
not numerically. To prevent this drift, these simulations also enforced periodicity by equating
the density, the density times the velocity, and the density times the total energy on periodic
nodes every 1000 iterations. These periodic corrections were typically very small; for example,
the maximum correction over all nodes for the density at the inlet for a representative 1000
iterations was 1.93 × 1024 kg/m3. With an inlet density of 0.097 kg/m3, this corresponds to a
correction of less than one percent, which is on the same order as the other corrections.

B Bug Correction for Turbulent Injection Methods

While the implementation of Bailly’s method was correct for the majority of cases, this simulation
presented an unusual situation where the flow was entering the domain at an angle. This angle
in the mesh and in AVBP included a z component in the default frame of reference, which lead
to one significant bug. During this bugfixing, another smaller bug was also uncovered.

To explain how this bug was discovered it is useful to discuss AVBP’s code flowchart for
implementing turbulence. Firstly, AVBP reads the inlet boundary condition type (in this case,
INLET_RELAX_PT_TT_Y_TURB) and determines the current state of the inlet. Since
the keyword "_TURB" is included, the turbulent perturbation is determined via a call to
inlet_turb.f90. This wrapper function handles the majority of the parameters and han-
dles the calls to other subfunctions to generate the turbulent perturbations.

The key subfunction that computes these turbulent perturbations is set_turb_modes.f90,
which follows the procedures to generate the Fourier modes as described by Bailly (or Kraich-
nan for other methods of injection). The minor bug uncovered in this function relates to the
vectors a and b, the unit vectors used to define the plane perpendicular to the wavevector, k.
As Equation A.18 indicates, the first compoenent (in the x direction) should be determined by

ax = cos³ cos ¹ cosÇ2 sin³ sinÇ.

The subfunction set_turb_modes.f90 has a mistake in the sign between these two terms,
for both ax and bx (line 279, 283 in AVBP 7.12). This incorrect sign violates an important
property of these vectors, since the magnitude of either a or b are not guaranteed to be one, as
expected. This also has implications for the generation of turbulent perturbation, as each of the
modes are scaled by these vectors. The improper generation of these vectors likely leads to the
generation of a anisotropic turbulence, even in the case that the user requests such a field. This
error is less severe than the other bug discovered, however.
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The other bug discovered comes after the call to set_turb_modes.f90, where inlet_turb.f90
then calls set_turb_pert_old.f90 to apply these modes to generate the actual velocity per-
turbation. The perturbation is calculated in AVBP as

u2(x) = c1 cosA+ c2 sinA+
"A
"t

(2c1 sinA+ c2 cosA), (B.1)

where the coefficients c1 = ûn(kn)an, c2 = ûn(kn)bn, and the argument of the cosine or
sine term, A = kn · x + Èn + Ént. This is a straightforward application of a first order Taylor
expansion.

The code generates a 2D section of perturbations located at uc,pt upstream of the inlet
section (where uc,p is the convective velocity perpendicular to the inlet). The term +Ént is
computed by 2kn,puc,pt, where kn,p is the perpendicular mode to the inlet plane. This change
in sign was not correctly implemented in the z direction, initially having a contribution to the
time derivative term as

"Az

"t
= kz,nuc,z (B.2)

instead of the correct contribution,

"Az

"t
= 2kz,nuc,z. (B.3)

Of course, this incorrect sign is only significant when there is a convective velocity in the z
direction, as otherwise this term’s sign error would be zeroed out. For instance, if the flow enters
only in the x direction, uc,z = 0 and the sign error will not be apparent. This bug is severe
in the case where uc,z ;= 0, as the resulting velocity perturbations are completely incorrect,
and resulted in turbulence values that were much greater than expected (an order of magnitude
higher at points).
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