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Abstract The numerical simulation of fluid flows has become an essen-
tial part of the virtual prototyping in the aerospace industry. It is made
possible through Computational Fluid Dynamics (CFD) tools. These tools
rely on algebraic relations between the values stored at mesh points called
numerical schemes, which must fulfill specific criteria to lead to reliable sim-
ulations. Namely, numerical schemes must be accurate without sacrificing
stability (among other conditions). Traditionally, accuracy and stability con-
ditions have been derived for problems governed by linear equations on reg-
ular meshes. However, fluid motion equations are non-linear, and meshes
used in industrial CFD can be irregular (especially when dealing with com-
plex geometries). This thesis proposes a novel framework to analyze the
accuracy and stability of numerical schemes for non-linear systems of equa-
tions and irregular meshes. This framework also establishes conditions for
optimizing numerical schemes locally in time and space. It is named Local
Transfer function Analysis (LTA). Under the light of LTA, each mesh ele-
ment acts as an impedance block that resists to the solution propagation
over time and space. The optimization of numerical schemes becomes an
impedance-matching problem. It is solved by minimizing the value of an ob-
jective function. The LTA objective function measures the distance between
the dynamics predicted by the numerical scheme and some reference dynam-
ics. Using reference data in this optimization process turns LTA into a tool
that generates accurate and stable data-driven numerical schemes. More re-
cently, Machine Learning (ML) has emerged as a field dedicated to extracting
knowledge from data. This thesis then proposes employing ML architectures
to find optimal values for the parameters of a numerical scheme in the sense
of the LTA objective function. The method is applied first on 1D problems
modeled by the Convection/Burgers’ equations and finally extended to 2D
applications governed by the Convection/Euler equations.

Keywords Computational Fluid Dynamics, Local Transfer function Anal-
ysis, Data-driven numerical schemes, Machine Learning
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Introduction

In the aerospace industry, engineering systems design must consider the ef-
fects of fluid motion around airfoils or inside nozzles, among other compo-
nents. Nevertheless, real-world prototyping of these systems can be exces-
sively expensive. Their numerical simulation through Computational Fluid
Dynamics (CFD) has become essential to explore design spaces and speed
up development (Hirsch, 2007). First frameworks such as Boeing’s PAN
AIR (Magnus and Epton, 1981) employed simple potential flow models,
where the velocity field is assumed to be irrotational. Over the years, the
increasing availability of computational power has allowed manufacturers to
employ more detailed mathematical models to improve predictions. The
most accurate model that describes the motion of viscous fluid substances
is the set of Navier-Stokes (NS) equations. In the motion of viscous fluids,
velocity and pressure fluctuations of chaotic nature may arise whenever iner-
tial forces are strong enough compared to viscous forces. These fluctuations
constitute a phenomenon called turbulence. Kolmogorov (1941) showed that
turbulent flows are characterized by an energy transfer from their largest
to their smallest eddies. Spatial discretization of the NS equations down
to the length scale of the flow corresponding to the smallest eddies remains
prohibitively expensive in industrial configurations (Sagaut, 2006). State-of-
the-art simulation frameworks still consider modified forms of the underlying
Partial Differential Equations (PDEs). In combustion and aero-acoustics, for
instance, a filtered version of the NS equations is solved instead, such as in
Large-Eddy Simulations (LES) (Poinsot and Veynante, 2011; Wagner et al.,
2007). In LES, the effects of eddies of size under a given threshold are mod-
eled using subgrid closure rules. The first LES is credited to Deardorff (1970)
for the case of a simple plane Poiseuille flow. More recently, Pérez Arroyo
et al. (2021) performed the first high-fidelity LES of a full aircraft engine,
thanks to the evolution of computational resources.
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The increase in available computational power has also contributed to
the emergence of large-scale applications in an apparently uncorrelated field:
Machine Learning (ML). It aims at extracting knowledge from data to im-
prove task automation (Jordan and Mitchell, 2015). An ML architecture is a
parametrized function to be adjusted in order to execute a given task better.
The process of using data to tune the parameters of an ML model is called
training. The widespread availability of Graphics Processing Units (GPUs)
enabled the training of ML models at a much faster pace than with previous
devices (Chellapilla et al., 2006; Steinkraus et al., 2005). As a consequence,
during the past two decades, ML applications in a myriad of technology areas
have been developed. Some examples are the automation of speech recog-
nition (Nassif et al., 2019), image segmentation (Minaee et al., 2021), and
autonomous driving (Kiran et al., 2022). Recently, the ML-based chatbot
GPT-4 exhibited human-level performance on various professional and aca-
demic benchmarks (OpenAI, 2023). The ability of an ML model to solve
problems across different contexts or disciplines is called Artificial General
Intelligence (AGI) (Goertzel, 2014). The capacities of GPT-4 in handling
tasks that span mathematics, vision, coding, law, psychology, medicine, and
more have sparked a debate on whether it could be considered an early (yet
incomplete) version of an AGI system (Bubeck et al., 2023). It opens promis-
ing perspectives for using ML models in all aspects of human life.

Most of the ML applications mentioned above employ (artificial) neural
networks: a class of ML architectures inspired by information processing
in biological systems (Bishop, 2007). They are universal approximators of
continuous functions over compact domains (Hornik et al., 1989). This fact
triggered the scientific community’s interest in possible ML applications in
fields such as CFD, from turbulence modeling (Duraisamy et al., 2019) to the
development of ML-based numerical solvers (Karniadakis et al., 2021). The
former is concerned with using neural networks as surrogate models of the
unresolved scales of fluid motion. The latter aims to employ neural networks
to resolve the governing equations. Its goal is to improve the accuracy of the
numerical predictions at cost levels similar to those of a traditional solver.
This thesis will only address the development of ML-based numerical solvers.
In this context, Raissi et al. (2019) proposed to approximate the fluid flow
function of space and time by directly minimizing the solution residual on a
sample of observation points, a popular approach known as Physics-Informed
Neural Networks (PINNs). This is a powerful method for problems where
multiple constraints compete or when parts of the problem are not well known
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(e.g., boundary conditions in hydrology, initial conditions in weather predic-
tions. . . ). However, for well-defined problems, it is less accurate compared
to direct resolution (Fuks and Tchelepi, 2020). In the scope of fluid mechan-
ics, P. Sharma et al. (2023) noted that the error levels in the prediction of
turbulent flows using PINNs are often orders of magnitude higher than those
of laminar flows. This is due to problems associated with non-linearity, high-
dimensionality, and multi-scale physics. S. Wang et al. (2022) showed that
PINNs suffer from spectral bias, a well-known pathology that prevents deep
fully-connected neural networks from learning high-frequency functions (Ra-
haman et al., 2019). Markidis (2021) assessed the potential of PINNs as linear
solvers in the case of Poisson’s equation (found in incompressible flow solvers,
among many other applications in scientific computing). Markidis (2021) also
found that PINNs learn the low-frequency components of the solution field
more easily than the high-frequency ones, showing that accuracy is a limit-
ing factor for using PINN linear solvers alone, and eventually recommended
applying hybrid strategies where PINNs are integrated into traditional linear
solvers. By doing this, one could develop ML-based solvers that are compet-
itive with state-of-the-art ones, both performance- and accuracy-wise.

Combining traditional numerical methods with ML to propose a new
class of ML-based numerical schemes for CFD is the main focus of this the-
sis. This project does not aim to rely on an ML model alone to unveil
some system dynamics but to use the traditional methods as inductive bi-
ases. More precisely, ML models will be used to tune the parameters of
numerical schemes. Tuning discretization parameters has been essential to
practical numerical algorithms to solve PDEs. They aim to ensure that the
numerical solution satisfies certain desired but critical characteristics of the
physical problem. These characteristics relate mainly to stability, dispersion,
and dissipation numerical errors. Rajpoot et al. (2010) and T. K. Sengupta,
Rajpoot, and Bhumkar (2011) proposed optimized compact finite-difference
schemes that accurately capture the dispersion, dissipation, and group ve-
locity characteristics of the physical problem through a comprehensive ap-
proach considering both temporal and spatial discretizations along with the
governing equation. Lele (1992) performed parameter optimization of com-
pact finite-difference schemes to provide improved representation of a range
of spatial scales. However, they considered exact time advancement, which
leads to an incorrect evaluation of the dispersive error characteristics. Tam
and Webb (1993) introduced finite-difference schemes whose parameters are
optimized to reduce truncation error for first order spatial derivative. Again,
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space and time discretizations were treated independently, which results in
an incorrect numerical dispersion relation. Besides, they used a four time
level method which introduces two spurious numerical modes apart from
the physical mode (as explained in T. K. Sengupta and Dipankar (2004)).
In the realm of ML-based schemes, Bar-Sinai et al. (2019) and Kochkov et
al. (2021) employed ML models to predict coefficients of a finite-difference
method, leading to accurate numerical solutions on relatively coarse grids.
However, they did not establish conditions for the stability of the resulting
scheme. Using neural networks, Stevens and Colonius (2020) improved a
fifth-order shock-capturing Weighted Essentially Non-Oscillatory (WENO)
scheme (Jiang and Shu, 1996). Their ML model predicted optimal pertur-
bations to WENO coefficients. Nevertheless, the only constraint applied
to the perturbed coefficients was an affine transformation which guarantees
that they sum up to one. Hence, the resulting numerical method was only
first-order accurate. Kossaczká et al. (2021) proposed instead to perturb the
smoothness indicators of the WENO method. Their resulting scheme pre-
sented less diffusion and less overshoot in shocks than the original WENO
scheme while maintaining high order of accuracy in the smooth regions of
the flow. Bezgin, Schmidt, et al. (2021) applied neural networks to adaptively
reconstruct nonlinear fluxes in the context of nonclassical shock waves, i.e.,
shock waves which violate the Lax entropy condition (LeFloch, 2002).

This thesis concerns developing ML-based numerical schemes on irregu-
lar and unstructured grids typical of industrial CFD. First, a novel spectral
analysis that can be applied to non-linear systems of equations and irregular
meshes is proposed. It is worth noting that the proposed analysis does not
consider aliasing errors, which results from evaluation of product terms in
a finite resolution grid (T. Sengupta, 2013). Such a spectral analysis estab-
lishes conditions for optimizing numerical schemes locally in time and space.
An ML model is then used to predict optimal values of a parameter of a
traditional numerical method used in LES. Finally, applications to problems
governed by the Convection/Burgers’ equations on 1D irregular meshes and
the Convection/Euler equations on 2D irregular triangular meshes demon-
strate how the ML-based numerical scheme can outperform a traditional one
accuracy-wise.

This manuscript is structured as follows:

Chapter 1 - This chapter introduces the reader to the Machine Learning field. It will
be seen that commonly used neural network models like the Multilayer
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Perceptron (MLP), the Convolutional Neural Network (CNN), and the
Graph Neural Network (GNN) arose from problems outside the scope
of scientific discovery but have found many applications therein due to
their specific features.

Chapter 2 - This chapter briefly reviews the development of numerical schemes for
hyperbolic conservation laws, typical to CFD. Subsequently, the data-
driven numerical scheme of Bar-Sinai et al. (2019) and Kochkov et al.
(2021) is presented. Their method employed a CNN model to explore
the space of possible finite-difference spatial discretization coefficients
obtained via Taylor series expansions. It is applied to the system of
compressible Euler equations in 2D cartesian grids. The method does
not guarantee stability despite improving accuracy levels on a particular
set of problems.

Chapter 3 - A theoretical framework that establishes accuracy and stability condi-
tions for coupled ML-PDE systems is developed in this chapter. A novel
spectral analysis based on local spatio-temporal features named the
Local Transfer-function Analysis (LTA) is proposed. One-dimensional
problems governed by the Convection and Burgers’ equations are stud-
ied under LTA. The considered numerical scheme belongs to the family
of Taylor-Galerkin schemes used in LES.

Chapter 4 - The Two-step Taylor-Galerkin C (TTGC) numerical scheme of Colin
and Rudgyard (2000) is modified to incorporate a cell-valued param-
eter provided by a GNN model, which is constrained to respect sta-
bility conditions predicted by LTA. The resulting numerical method
is termed ML-TTGC and can address some limitations of the original
TTGC scheme by successfully damping spurious oscillations on irreg-
ular meshes and preserving amplitudes of high wavenumber waves in
the linear convection problem.

Chapter 5 - Finally, an extension of the method to higher dimensions is sought in
Chapter 5. In particular, an implementation of the TTGC scheme for
2D Convection and Euler problems on unstructured meshes is coupled
to a GNN model identical to the one used in the 1D experiments of
Chapter 4. The resulting framework confirms ML-TTGC’s capacity to
damp wiggles on irregular meshes. Moreover, in the case of a double
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shear layer problem governed by the Euler equations, ML-TTGC proves
to be more stable than the original scheme.

Fig. 1 summarizes the manuscript’s structure and highlights the relationships
between the chapters.

Figure 1: Manuscript’s structure. Arrows denote relationships between chap-
ters. More precisely, an arrow from chapter A to chapter B shows that con-
cepts defined in chapter A will be employed in chapter B.
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Chapter 1

Introducing machine learning

This chapter surveys the field of Machine Learning (ML). Sec. 1.1 presents
standard neural network architectures like multilayer perceptrons and con-
volutional neural networks. They have been applied by researchers in many
scientific applications, despite originating in the image recognition realm.
This section also presents graph neural networks. Unstructured data (typical
to industrial CFD applications) are naturally expressed in graphs, such that
graph neural networks are employed in the data-driven numerical schemes
developed in Chapters 4 and 5. These neural network models are trained
using gradient-based methods. Sec. 1.2 introduces the reader to algorithmic
differentiation, an efficient way to compute gradients of the objective func-
tion for training with respect to the ML model parameters. This chapter
ends in Sec. 1.3 by presenting some algorithmic differentiation frameworks.

1.1 Machine learning: from checkers to sci-
entific computing

IBM engineer Arthur Samuel is credited for popularizing the term machine
learning in his attempts to program computers to learn from data during
the 1950s. He believed that learning devices would suppress the need for
detailed programming effort in problem-solving, as machine-learned rules
replace hard-coded algorithmic steps. The realm of games seemed to him a
convenient way to develop the first learning techniques due to their relative
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Figure 1.1: Arthur Samuel and IBM 700 (1956). From Gladchuk (2020).

boundedness in comparison to life problems in general. In 1952, Samuel
then created a checkers-playing program that would not build all possible
paths until the game’s conclusion, but rather evaluates a scoring function
estimating winning chances at any given game state (Samuel, 2000). Such
a scoring function also depended on a history of game actions, from which
the machine is expected to continuously improve while playing. Samuel’s
methods relate to modern techniques of the so-called reinforcement learning
field (Richard S. Sutton, 2018). Remarkably, his program was able to play
better than himself after some 10 hours of device-playing time. Fig. 1.1 shows
him with an IBM 700 and a checkers board.

Later on, the American psychologist Frank Rosenblatt (1958) invented the
perceptron, a learning unit inspired from human brain neurons that would
trigger the modern deep learning field. Rosenblatt’s perceptron was designed
to become a machine for pattern recognition (capable of distinguishing ge-
ometrical shapes, letters of the alphabet, among others), under the ideas
stated in the following words :

“ [. . . ] our objective has been to discover a physical system, or
abstract model, which will be capable of "perceiving" its envi-
ronment, and learning to recognize those objects or events which
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it has perceived in the past. However, since it is our purpose
to understand the actual mechanisms employed by the brain,
rather than simply to construct a new type of computing de-
vice, the perceptron models are constrained in their organization
and dynamic properties by what is known of the biological ner-
vous system. Rather than attempting to "invent" or "construct"
a machine which will calculate such things as similarities or ge-
ometrical properties of stimuli, the approach has been to begin
with a hypothetical network of idealized neurons, or nerve cells,
resembling the brain in its general organization, and then analyze
the system mathematically to determine whether or not it pos-
sesses "psychological" properties of interest. ” (From Rosenblatt
(1962), p. 574)

Its original model consisted of three layers S, A, R connected in series to
compose a perception mechanism (Van Der Malsburg, 1986), as illustrated
in Fig. 1.2. The layer S corresponds to a sensorial surface (e.g., eye’s retina)
that reacts to environment stimuli thanks to its set of sensory units. Their
response then fed layer A as a set of association cells responsible for detecting
properties that are particular to the object to be recognized. Finally, layer
R of recognition units receives the outputs from A and should fire only for a
specific type of pattern projected on S (e.g., the letter C shown in Fig. 1.3(a)).

In mathematical terms, the output signal y from a given R-unit can be
expressed as (Bishop, 2007)

y := h

(∑
i

wi ϕ(xi)
)
≡ h

(
w⊤ϕ(x)

)
, (1.1)

where x is the input signal to the A-layer. This signal is a vector of numerical
values that represent the object to be recognized. Hereafter, any tensor of
numerical values which identify a measurable property is referred to as a
feature. The input features x are transformed by some non-linear function
ϕ (e.g., a sigmoid). Finally, the variable w stands for the (adaptive) weights
of the A-layer 1 and h is a step function such that

h(z) :=
+1 if z ≥ 0,
−1 if z < 0.

1Hardware-wise, the weights were modelled by variable resistors (also known as poten-
tiometers) to be tuned during the learning process.
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Figure 1.2: Schematic representation of the original (photo-)perceptron. Lay-
ers S, A and R refer to the sets of sensory, association and recognition unit-
s/cells, respectively. In the example above, w1, w2, w3, w4 are the weights of
the A-layer and h is the threshold function accounting for neuron “firing”.
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(a) (b)
Figure 1.3: (a) Camera device capturing an image of a letter C drawn on
a wall (1962). From Rosenblatt (1962). (b) Frank Rosenblatt manipulating
wired connections of the Mark I Perceptron machine (1960). From dnvdk
(2022).

Figure 1.4: The sets of blue and red dots are linearly separable, as indicated
by the dashed straight lines. Infinitely many separation lines exist and the
perceptron learning algorithm cannot distinguish between them.
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The threshold function h accounts for neuron “firing” for a specific pattern
on screen.

The perceptron learning algorithm can be described as follows: for a given
pattern x on screen, the output signal y is computed and, if the pattern is
classified incorrectly (for instance, the neuron “fired” while it should not),
a change of the weights values w take place. More precisely, the following
updating rule is called for each misclassified pattern x in a dataset:

w ←− w + η ϕ(x) t, (1.2)

where t is an identifier for the class of the pattern and η is some step size.
The perceptron was designed for binary classification, so that t ∈ {−1,+1}.
If the dataset the model learns from is linearly separable 2, the perceptron
convergence theorem as stated in Rosenblatt (1962) guarantees that the learn-
ing algorithm above will find an exact solution in a finite number of steps.
However, in practice, it can be difficult to distiguish a nonseparable prob-
lem from one that is simply slow to converge. Besides, many solutions to
a separable problem can exist (as shown in Fig. 1.4), and a perceptron’s
converged state will depend on the weights initialization. Besides these limi-
tations, Rosenblatt’s perceptron as a neurophysiological model was criticized
by White (1963), which stated that it lacked detailing of the temporal char-
acteristics of a neurone firing and that most of the reported experiments dealt
with figures that illuminate a large fraction of the retina whereas the device
performance in other cases remained uninvestigated. The most impactful
review of this work came only later on in 1969, though: Minsky and Papert
(1969) in their famous book Perceptrons show that the original perceptron
was able to learn only linearly separable problems. Despite acknowledging
that increasing the number of A-layers could help solving non-linear ones, the
reflections developed inside this book led to a substancial decline in research
funding for neural networks.

The period between 1969 and the early 1980s is usually recognized as an
Artificial Intelligence (AI) winter, where the field was surrounded by pes-
simism and criticism. Renewed interest would come after the works of Hop-
field (1982) on associative memory systems. Hopfield networks are models
that can reconstruct data after being fed with partial versions of the same
data. For example, if the dataset some Hopfield model has learned from is

2In binary classification, two sets of points are linearly separable if and only if there
exists a line in the Euclidean plane separating them. This is better illustrated in Fig. 1.4.
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made of photograph samples, the given model exposed to a piece of one of
these photographs is capable of reconstructing the original. It was theoreti-
cally proven that a Hopfield network can reliably reconstruct up to 0.138×N
samples, where N is the number of learning units in the model (Stuart Rus-
sell, 2010). Finally, the works of Rumelhart, Hinton, et al. (1986) come as
a major milestone in AI research. They proposed a new architecture called
the multilayer perceptron, which is depicted in the next section.

1.1.1 Multilayer perceptrons
As opposed to Rosenblatt’s original system, currently named single-layer
perceptron 3, multilayer perceptrons (MLPs) have at least three A-R sets of
layers. In addition to this, the threshold function 4 of each perceptron com-
posing an MLP is arbitrary. Finally, MLPs can either perform (multiclass)
classification or regression, while Rosenblatt’s perceptron was restricted to
binary classification tasks. By solving the XOR problem (to predict outputs
of exclusive or logic gates) and by detecting input symmetry (to determine if
two strings are symmetric about their center), among other problems (Rumel-
hart, McClelland, et al., 1988), MLPs have re-ignited interest in neural net-
works for machine learning. Fig. 1.5 illustrates an MLP in the modern sense.
For the sake of rigorousness, the reader will find below a formal definition of
the MLP architecture :

Definition 1 (Multilayer perceptron (MLP)). An N -layer multilayer per-
ceptron is the composition

d1 ◦ d2 ◦ . . . ◦ dN (1.3)

of functions

dk : RN in
k −−→ RNout

k

x 7−−→ σk (wk x + bk), (1.4)

(k ∈ J1, NK, N > 2)
(N in

k ∈ N, Nout
k ∈ N)

3The S-, A- and R-layers from Fig. 1.2 are grouped to compose a single-layer percep-
tron.

4In the modern terminology, it is named activation function.
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where σk is a non-linear activation function, wk ∈ RNout
k × N in

k is a matrix
of trainable weights and bk ∈ RNout

k is a vector of trainable biases. Each dk

is named a dense layer of the MLP. In order to exist, the composition (1.3)
must obey the constraint

N in
k = Nout

k−1 (k > 1).

The layer d1 is called the input layer, dN is named the output layer, and the
layers dk with k ∈ J2, N − 1K are referred to as the hidden layers of the MLP.
In the particular case where N in

k = Nout
k = N feat ∀k ∈ J2, N − 1K, one says

that N feat is the number of hidden features of the MLP.

Figure 1.5: Schematic representation of a 3-layer MLP with its sets
{widx_layer, idx_output, idx_input} of weights and {bidx_layer, idx_output} of biases.
Connections between nodes of the computational graph store weights that
take part in the matrix-vector multiplication explicited in the bottom part
of the image. Since all nodes from one layer are linked to all nodes of the
subsequent one, they are usually referred to as densely-connected or simply
dense layers.



CHAPTER 1. INTRODUCING MACHINE LEARNING 33

Image recognition, the primary task addressed by Rosenblatt’s percep-
trons can instead be tackled by MLPs. For instance, Lecun et al. (1998)
showed that a simple 2-layer MLP can reach an accuracy level of 95.3% on a
10-label classification problem to recognize handwritten digits. The famous
MNIST (Modified National Institute of Standards and Technology) dataset
which contains 70, 000 samples of 28 × 28 pixel images of digits written by
American Census Bureau employees and high-school students was used to
train the MLPs. Fig. 1.6 shows examples of images from this dataset.

Figure 1.6: Examples from the MNIST dataset. From Lecun et al. (1998).

Lecun et al. (1998) proposed another architecture to solve the MNIST
recognition problem with far fewer trainable parameters for a given level of
accuracy. This ML model has replaced hand-engineered feature extraction
methods to identify objects in images and will be depicted in the next section.

1.1.2 Convolutional neural networks
It is possible to constrain MLPs to solve the MNIST recognition problem
more efficiently. These constrained networks were termed convolutional neu-
ral networks (CNNs). The idea is to group spatially correlated pixels from
the images and process them through shared weights. Fig. 1.7 illustrates the
concept with an example. CNNs employ fewer trainable parameters than
MLPs to reach similar accuracy levels in an image recognition task. On the
one hand, each of the output pixels of a dense layer is a function of all of its
input pixels. On the other hand, each of the output pixels of a convolutional
layer is a function of a small amount of its input pixels. More precisely, the
value of a pixel in the output of a convolutional layer is influenced only by
a local neighborhood of pixels from the input. This inherent bias embedded
in such CNN architectures towards the local neighborhood of pixels is called
the locality inductive bias. Furthermore, the trainable kernel and biases of a
convolutional layer are independent of a pixel’s position in an image. CNNs
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transform portions of an image independent of their location in the picture
itself 5, a property called spatial translation invariance.

A formal definition of a CNN follows:

Definition 2 (Convolutional neural network (CNN)). An N -layer convolu-
tional neural network is the composition

c1 ◦ c2 ◦ . . . ◦ cN (1.5)

of functions

ck : RDin
k −−→ RDout

k

x 7−−→ ck(x)[m,n, q]

:= σk

bk[q] +
∆x

k∑
i=−∆x

k

∆y
k∑

j=−∆y
k

∑
p

wk[i, j, p, q] x[m+ i, n+ j, p]

 ,
(1.6)

(m ∈ J1, NxK, n ∈ J1, NyK, p ∈ J1, N in
k K, q ∈ J1, Nout

k K)
(k ∈ J1, NK, N > 2)
(Din

k ≡ Nx × Ny × N in
k )

(Dout
k ≡ (Nx −∆x

k + 1) × (Ny −∆y
k + 1) × Nout

k )
(N in

k ∈ N, Nout
k ∈ N, Nx ∈ N, Ny ∈ N, ∆x

k ∈ N, ∆y
k ∈ N)

where σk is a non-linear activation function, Nx and Ny are the number of
pixels composing the image along the x and y directions, respectively, wk ∈
R(2∆x

k+1) × (2∆y
k

+1) × N in
k × Nout

k is a trainable convolutional kernel/filter and
bk ∈ RNout

k is a vector of trainable biases. Each ck is named a convolutional
layer of the CNN. In order to exist, the composition (1.5) must obey the
constraint

N in
k = Nout

k−1 (k > 1).

The layer c1 is called the input layer, cN is named the output layer, and the
layers ck with k ∈ J2, N − 1K are referred to as the hidden layers of the CNN.
In the particular case where N in

k = Nout
k = N feat ∀k ∈ J2, N − 1K, one says

that N feat is the number of hidden features of the CNN.
5For example, a CNN employed as a binary classifier to distinguish images of cats from

images of dogs will be able to identify a cat’s ear independent of its position in the frame.
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Figure 1.7: Schematic comparison between a dense layer (top) and a convo-
lutional layer (bottom). A 3×3 image with pixel values {x1, . . . , x9} is given
as input and converted to an 8-pixel representation with values {y1, . . . , y8}.
While the dense layer requires all-to-all connections between input and out-
put neurons, the convolutional layer shares a relatively small set of weights
(also known as convolutional kernel/filter) among spatially correlated pixels
of the input image (highlighted in red). This allows CNNs to perform im-
age recognition tasks with far fewer trainable parameters than corresponding
MLPs.
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In a scientific context, many applications for CNNs can be found. In the
realm of premixed turbulent combustion modelling, for instance, Lapeyre et
al. (2019) trained CNNs to estimate sub-grid flame surface density. Their
CNN model was able to efficiently extract flame topology and predict sub-
grid scale wrinkling, outperforming classical algebraic models. In the field
of composite materials, Ejaz et al. (2022) trained CNNs to map images of
copper-carbon nanotube networks to corresponding electrical and thermal
conductivities. They highlight the runtime savings obtained from running a
CNN surrogate model for conductivity as opposed to a convectional numerical
simulation. Regarding data-driven discretizations, the main focus of this
thesis, Bar-Sinai et al. (2019) and Kochkov et al. (2021) employed CNNs
to approximate spatial derivatives in coarse grids based on downsampled
dynamics from high-resolution numerical simulations. In Chapter 2, the
reader will find an application of this method. It is restricted to structured
grids, though, where instantaneous physical fields can feed a CNN as simple
images. In order to overcome this restriction, a neural network architecture
that handles grids as graphs can be used. The next section is dedicated to
describing this architecture, particularly suitable for industrial CFD where
unstructured grids are often used.

1.1.3 Graph neural networks
Battaglia et al. (2018) presented the CNN properties of spatial translational
invariance and locality inductive bias within a more general framework. In
such a framework, learning concerns the representation of entities and their
relations. In the specific case of CNNs, the pixels of an image are the en-
tities whose relations are synthesized by the locality inductive bias and the
spatial translation invariance properties. In the more general case where the
relations between entities are arbitrary, they proposed employing graphs for
their representation. The set of nodes composing a graph stand for the enti-
ties, while its set of edges represent their relations. The resulting ML model
destined to learn from the entities/relations representation in a graph was
named graph neural network (GNN). In a GNN, the relations between entities
are encoded as messages carried by the edges. These messages are exchanged
between nodes and transformed across the layers of a GNN, which are termed
message-passing layers. Tbl. 1.1 summarizes the entities and their relations
for the neural network models defined so far. Finally, Fig. 1.8 depicts the
operations performed in a message-passing layer of a GNN.
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Component Entities Relations Relational inductive bias Invariance

Dense layer Units (neurons) All-to-all Weak -
Convolutional layer Pixels Local Locality Spatial translation
Message-passing layer Nodes Edges Arbitrary Node/edge permutations

Table 1.1: Overview of presented neural network models under the relational
inductive bias framework of Battaglia et al. (2018). Inspired from Battaglia
et al. (2018).

Figure 1.8: Schematic representation of operations performed in a message-
passing layer. First, update of the edge features (i.e., the messages) takes
place by the action of ϕedge on the current features of each edge, along with the
features of the sender and receiver nodes composing it. Last, ϕnode updates
node features by acting on the current features of each node along with the
updated features of the incoming edges (i.e., the updated incoming messages).
The building blocks ϕedge and ϕnode are MLPs or CNNs, typically.
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A formal definition of a GNN follows:

Definition 3 (Graph neural network (GNN)). An N -layer graph neural
network is the composition

g1 ◦ g2 ◦ . . . ◦ gN (1.7)

of functions

gk :
(
RDin, node

k ,RDin, edge
k

)
−−→

(
RDout, node

k ,RDout, edge
k

)
(xnode,xedge) 7−−→ gk(xnode,xedge)

:= (ϕedge
k ◦ ϕnode

k )(xnode,xedge), (1.8)

(k ∈ J1, NK, N > 2)
(Din, node

k ≡ Nnode × N in, node
k )

(Din, edge
k ≡ N edge × N in, edge

k )
(Dout, node

k ≡ Nnode × Nout, node
k )

(Dout, edge
k ≡ N edge × Nout, edge

k )
(N in, node

k ∈ N, Nout, node
k ∈ N, N in, edge

k ∈ N, Nout, edge
k ∈ N)

(Nnode ∈ N, N edge ∈ N)

where Nnode and N edge are the number of nodes and edges in the graph,
respectively, ϕedge

k is a building block responsible for updating edge features
and ϕnode

k is a building block responsible for updating node features. More
precisely, ϕedge

k and ϕnode
k are independent MLPs (as per Def. 1) or CNNs (as

per Def. 2). The reader is referred to Battaglia et al. (2018) for details on
the actions of ϕedge

k and ϕnode
k . Each gk is named a message-passing layer of

the GNN. In order to exist, the composition (1.7) must obey the constraints

N in, node
k = Nout, node

k−1 (k > 1)
N in, edge

k = Nout, edge
k−1 (k > 1).

The layer g1 is called the input layer, gN is named the output layer, and the
layers gk with k ∈ J2, N −1K are referred to as the hidden layers of the GNN.
In the particular case where N in, node

k = Nout, node
k = N in, edge

k = Nout, edge
k =

N feat ∀k ∈ J2, N − 1K, one says that N feat is the number of hidden features
of the GNN.
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GNNs have found successful application to problems dealing with un-
structured data. Social networks for instance are naturally represented by
graphs: Fan et al. (2019) built social recommender systems based on GNNs.
In a scientific context, Deepmind’s AlphaFold (Jumper et al., 2021) em-
ployed GNNs to accurately predict protein 3D structure resulting from an
amino acid sequence. Belbute-Peres et al. (2020) accelerate predictions of
fluid flows around airfoils by combining GNNs with a differentiable CFD
solver (namely, SU2 by Economon et al. (2016)). Unstructured meshes can
be naturally assimilated into graphs. This motivates the use of GNNs for de-
veloping data-driven numerical schemes on 1D irregular and 2D unstructured
grids in Chapters 4 and 5.

The ML models defined so far can learn to perform a given task by adjust-
ing the values of their weights and biases, a process called training. Learning
methods can be organized in three main paradigms (Jordan and Mitchell,
2015): supervised, unsupervised and reinforcement learning. In supervised
learning, the ML model learns by comparing its predictions to available ref-
erence data. In unsupervised learning, no reference data exist, and the model
learns only by analyzing its inputs under assumptions about its structural
properties (e.g., algebraic, combinatorial or probabilistic). Finally, in rein-
forcement learning, reference data is absent as well but the inputs contain
indications as to whether an action of the ML model is correct or not. The
development of data-driven numerical schemes in Chapters 2, 4, and 5 makes
use of supervised learning because either the analytical solution dynamics is
available for the cases studied or reference data can be obtained from a high-
fidelity numerical solver. The next section explains the training procedure
in the supervised learning paradigm.

1.1.4 The supervised learning paradigm
In supervised learning, the model parameters are optimized by minimizing a
cost, which is a measure of the distance between the network prediction to
some reference value. Such a cost is a function of the neural network train-
able parameters and is called the loss function in the ML community. The
training procedure modifies the values of the trainable parameters in order
to minimize the mean loss function value across a dataset. The optimization
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problem could be formulated as

W⋆ := argminW

[
1
Ns

Ns∑
i=1
L(W , ui, ri)

]
, (1.9)

whereW is the set of trainable parameters of the neural network. The symbol
ui represents an element of the dataset U which the model learns from, also
known as training set. The loss function L compares the model’s predictions
from the given input ui with a reference value ri. The symbol ri represents
the corresponding sample from the dataset R of reference values. Finally,
the variable Ns stands for the number of samples of the datasets U and R.
Usually, gradient-based optimization techniques are employed to find W⋆.
More precisely, reverse mode of algorithmic differentiation (see Sec. 1.2.2) 6

evaluates the gradient of the loss function with respect to the neural network
parameters in a scheme known as the backpropagation algorithm. The name
comes from the fact that the gradient computation starts from the output
and propagates back to the inputs of the neural network model. Once this
gradient is computed, an update rule is applied to the trainable parameters
following the opposite direction of the gradient (similar to Eq. (1.2)). In its
simplest form,

W ←−W − η · ∂

∂W

[
1
Ns

Ns∑
i=1
L(W , ui, ri)

]
, (1.10)

where η is the gradient descent step size, also known as the learning rate
of the training procedure. The process is repeated iteratively until specific
stopping criteria are met. Given that training sets can reach sizes of the
order of thousands (as MNIST) to millions (as ImageNet by Russakovsky
et al. (2015) for generic categorical object recognition) of samples, applying
the updating rule (1.10) is unfeasible in practice. An approximation of the
gradient descent procedure takes place by computing gradients only for a
randomly selected batch of samples at a time. Let Ub ⊂ U be a batch of
training samples of size Nb and Rb ⊂ R the corresponding batch reference
set. The trainable parameters are updated as

W ←−W − η · ∂

∂W

 1
Nb

Nb∑
j=1
L(W , uj, rj)

 . (1.11)

6It was introduced by Linnainmaa (1970) and first applied to neural networks training
in 1974 by Werbos (1974) (nevertheless, this work was not cited by Rumelhart, Hinton,
et al. (1986)).
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When the batch size Nb = 1, meaning that the trainable parameters W
are updated one sample at a time, the learning process is said to occur by
online training, and mainly relates to systems where data is generated as a
function of time (e.g., stock price prediction as shown in Hoi et al. (2021)).
In this case, the method that uses the updating rule (1.11) to solve the
optimization problem (1.9) is called stochastic gradient descent (Goodfellow
et al., 2016). When the batch size Nb > 1, the method is called mini-batch
gradient descent. In mini-batch gradient descent, reducing training time is
made possible by distributing the computation of the gradients of the loss
function among multiple processors, each of which handling one sample from
the batch. Parallelization across the batch dimension is a common feature
among modern AD tools in ML frameworks (e.g., TensorFlow and PyTorch,
see Sec. 1.3).

Random batches Ub are sampled without replacement from the training
set U until the set is exhausted, which is called an epoch. Typically, a training
procedure involves running multiple epochs, and the training is terminated
when a specific stopping criterion is met. A widely used stopping criterium
compares the mean loss function value of the training set U with that of a
different dataset, which is called the validation set (noted V herein). During
training, the model is expected to improve performance metrics for both sets
U and V . However, after some point, it will keep improving them only for
the training set U . Generalization is an ML model’s capacity to perform
well on data it has never seen before (Chollet, 2018). The neural network
is losing its generalization capacity from the point where its performance
for the validation set V starts degrading. The training procedure must stop
before that happens. Fig. 1.9 illustrates how the performance metrics of sets
U and V may evolve along epochs. Finally, Alg. 1 summarizes the training
procedure described throughout this section.

Accurate gradient computation is essential to obtain a reliable neural net-
work model from the training procedure. An efficient technique to accurately
evaluate gradients for computer programs is algorithmic differentiation, de-
scribed in the next section.
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Figure 1.9: Performance metrics for training and validation sets at the end of
each epoch during the training procedure. In (a), the neural network model
can still potentially improve its predictions for both sets, in which case it is
said to be underfitted. In (b), after a given point, it worsens validation set
predictions for a number of epochs, in which case it is said to be overfitting
on the training set. The optimal set of trainable parameters for the neural
network can be found then just before the model starts overfitting, and is
indicated by a star in the figure.
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Algorithm 1 The training procedure in supervised learning
Data: training set U , validation set V , number of batches Nbatches, batch
size Nb

ML model: trainable parameters W
Training: loss function L, optimizer OPT, performance metrics P , stop-
ping criteria S

1: ▷ Training loop
2: for epoch ∈ 1, . . . , Nepochs do
3: ▷ Train network for a single epoch
4:
5: for batch ∈ 1, . . . , Nbatches do
6: ▷ Train network for a single batch
7:
8: L← 0
9: for sample ∈ batch do

10: L← L+ 1
Nb
L(W , usample, rsample)

11: end for ▷ Estimate loss of the entire batch
12:
13: W ← OPT(W , ∂L/∂W) ▷ Update trainable parameters
14:
15: end for
16:
17: ▷ Evaluate the network on the entire validation set every epoch
18: Lval ← 0
19: for v ∈ V do
20: Lval ← Lval + P (W , v)
21: end for
22:
23: ▷ Evaluate the network on the entire training set every epoch
24: Ltrain ← 0
25: for u ∈ U do
26: Ltrain ← Ltrain + P (W , u)
27: end for
28:
29: ▷ Check stopping criteria
30: if S(Lval, Ltrain) == True then
31: save(W) ▷ Save current ML model state
32: Break ▷ Interrupt training loop execution
33: end if
34:
35: end for
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1.2 An introduction to Algorithmic Differen-
tiation (AD)

Algorithmic Differentiation (AD) comprises a collection of methods for con-
verting a program that computes numerical values of a function into a pro-
gram that computes numerical values of the function’s derivatives. These
derivatives can include first-order derivatives, such as the function’s gradi-
ent or the Jacobian of a set of constraints, higher-order derivatives like the
Hessian matrix multiplied by a directional vector, or even nested deriva-
tives (Bartholomew-Biggs et al., 2000). In AD, the derivatives are computed
with approximately the same accuracy and efficiency as the original function
evaluations. This is what distinguishes AD from two other ways of computing
derivatives numerically. They are (Baydin et al., 2018)

• Numerical Differentiation (ND): it consists in evaluating the program
at some sample points and using finite difference formulas to obtain ap-
proximations of its derivatives. For example, the method dfdx defined
as

1 function dfdx(x0 :: Float64)
2 h = 1e−6
3 return ( f(x0 + h) − f(x0 − h) ) / 2h
4 end

uses ND to approximate the derivative of the method f representing
a scalar map f : R 7→ R at some real value x0. More precisely, dfdx
makes use of a second order finite difference approximation:

f ′(x0) = f(x0 + h)− f(x0 − h)
2h +O(h2). (1.12)

The approximation (1.12) results from the truncation of the Taylor se-
ries expansions of f(x0 + h) and f(x0 − h) around the value x0, and
the error associated with it is called the truncation error. Asymptot-
ically, as h → 0, the truncation error diminishes. On the other hand,
f(x0 + h) − f(x0 - h) becomes closer to machine precision, which
introduces the so-called round-off error. It grows as h→ 0. The pres-
ence of both round-off and truncation errors is one of the main issues
behind ND, since their asymptotic behaviors are opposite to each other.
Fig. 1.10 illustrates it.



CHAPTER 1. INTRODUCING MACHINE LEARNING 45

Round-off error

dominant

Truncation error

dominant

Figure 1.10: Absolute error of the ND-evaluated derivative of the function
f(x) := exp(3x) at x = 0.2 using the approximation (1.12).

• Symbolic Differentiation (SD): it makes use of hard-coded differentia-
tion rules for a finite set of operations and functions (e.g., +, −, ×,
÷, log, sin, . . . ). This way, SD does not suffer from the numerical
errors present in ND. To illustrate it, one can consider the real-valued
function f(x) := exp(3x). In ND, truncation and round-off errors are
present for employing truncated Taylor series expansions (see approxi-
mation (1.12) and Fig. 1.10). In SD, on the other hand, one can simply
code the differentiation rule for exponentials and avoid these sources of
error. In SD, the derivative of f is directly evaluated from its analytical
expression f ′(x) = 3 exp(3x). Nevertheless, SD presents some limita-
tions. The program to be differentiated must not contain control flow
mechanisms (e.g., loops, conditionals). Moreover, careless application
may lead to increasingly long symbolic expressions and performance
issues, a phenomenon known as expression swell. To illustrate it, one
can consider the function

g(x1, . . . , xn) :=
n∏

i=1
xi, (1.13)
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with n > 1 (∀i ∈ J1, nK, xi ∈ R) (Speelpenning, 1980). The gradient
of g is expressed as:

∂g

∂xi

=


x2 x3 . . . xn

x1 x3 . . . xn
...

x1 x2 . . . xn−1

 . (1.14)

In a (naive) implementation of SD, one builds the symbolic expression
for Eq. (1.14) without considering common subexpressions. In this
case, its memory allocation grows exponentially with n.

In order to avoid the numerical errors present in ND and the expression
swell issue in (naive) SD, AD in its basic form proposes to break the com-
puter program down into elementary pieces to which SD will be applied and
store intermediate numerical results whenever necessary. By interpreting the
program as a composition of differentiable pieces, the chain rule of calculus
can be applied to derive gradients for the entire chain of operations. Laue
(2019) states that there is an equivalence of AD and SD when the imple-
mentation of SD stores intermediate results as well as pointers to identify
common subexpressions.

In practical implementations of AD, track records of operations called
evaluation traces (also known as Wengert (1964) lists) are built. The chain
of operations constituting the computer program to be differentiated is re-
ferred to as the forward primal evaluation trace (or forward pass). Fig. 1.11
shows the forward primal evaluation trace for a sample program. To compute
gradients, two distinct evaluation traces can be built: (i) the forward tan-
gent (Sec. 1.2.1) and (ii) the adjoint (Sec. 1.2.2). Here, the variable naming
convention of Griewank and Walther (2008) is used: vi−N with i ∈ J1, NK are
the N input variables, vj with j ≥ 1 are the so-called intermediate variables
and yk with k ∈ J1,MK are the M output variables of the evaluation trace.
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Figure 1.11: Computational graph and forward primal evaluation trace for a
program evaluating f(x1, x2) := sin(x1 + x2), where x1, x2 ∈ R.

1.2.1 Forward mode of AD
Forward mode AD is best suited for the differentiation of programs where
the number of output variables is greater than the number of input vari-
ables, being mostly used for sensitivity analysis of physical systems. For
example, T. W. Hughes et al. (2019) applied the forward mode of AD on
Maxwell’s equations to compute the sensitivity of a spatial near-field in-
tensity distribution (defined for each cell of a 2D domain) to the dielectric
constant of the medium (a scalar value, typically). This mode evaluates the
derivatives

v̇j, i := ∂ vj

∂ vi−N

(j ≥ 1, i ∈ J1, NK) (1.15)

ẏk, i := ∂ yk

∂ vi−N

(k ∈ J1,MK) (1.16)

of a given forward primal evaluation trace. In other words, the forward mode
of AD computes the derivatives of all the intermediate and output variables
with respect to each of the input variables. The resulting evaluation trace
is called forward tangent. For the sake of simplicity, whenever the number
of input variables N = 1, the second index of the derivatives v̇j, i and ẏk, i is
dropped. Hence, they are represented simply as v̇j and ẏk, respectively.
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As an example, one can consider the sliding ladder problem: it consists
on placing a ladder as a rigid and uniform rod in a 2D plane that lays
over two perpendicular frictionless walls, as illustrated in the top part of
Fig. 1.12. Kapranidis and Koo (2008) showed that as the ladder falls under
the action of gravity, there will be a separation point at which it loses contact
with the vertical wall (wall normal diminishes). The separation angle and
the speed at which the rod hits the floor are respectively given by

θsep(α) = arccos
(2

3 cosα
)

(1.17)

sf(α) =
√
gℓ
(

6 cosα− 4
9 cos3 α

)
, (1.18)

where g, ℓ and α stand for local gravity, ladder length and initial ladder angle
with the wall, respectively. For fixed values of g and ℓ, one may be interested
in knowing the sensitivity of {θsep, sf} to the parameter α. Equivalently,
it means evaluating how much a perturbation in the value of α affects the
values of {θsep, sf}. This boils down to computing the gradients ∂θsep/∂α and
∂sf/∂α. They are computed at the end of the forward tangent evaluation
trace shown at the bottom of Fig. 1.12.

Finally, the number of forward tangent passes equals the number N of
input variables, i.e., it is independent of the number M of output vari-
ables (Baydin et al., 2018).
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Figure 1.12: (Top) Schematic representation of the sliding ladder problem.
(Middle and bottom) Computational graph, forward primal, and forward
tangent evaluation traces for a program evaluating the angle y1 (θsep in
Eq. (1.17)) at which the falling ladder loses contact with the vertical wall
and the speed y2 (sf in Eq. (1.18)) at which it hits the floor.
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1.2.2 Reverse mode of AD
The Finnish mathematician and computer scientist Seppo Linnainmaa in-
troduced the reverse mode of AD for efficiently computing derivatives of
composite functions in his master’s thesis in 1970 in Finnish (Linnainmaa,
1970). The English speaking world was largely unaware of the method until
the publication of the English translation (Linnainmaa, 1976) 7. In this pa-
per, he applied reverse mode of AD to evaluate error propagation in floating
point arithmetic. The reverse mode of AD is best suited for differentiat-
ing programs where the number of input variables is much higher than the
number of output ones. This is the case for neural networks, where one
is interested in minimizing a scalar-valued loss function by changes in the
values of the trainable weights and biases. The number of trainable parame-
ters reached the outstanding figure of 530 billion for Megatron-Turing NLG
530B, a large-scale generative language model (Smith et al., 2022). The first
application of reverse mode of AD to neural networks training is credited
to Werbos (1974). This mode evaluates the derivatives

vk, j := ∂ yk

∂ vj

(k ∈ J1,MK, j ≥ 1−N) (1.19)

of a given forward primal evaluation trace. In other words, the reverse mode
of AD computes the derivatives of each of the output variables with respect
to all the intermediate and input variables. The resulting evaluation trace
is called adjoint and each vk,j is named a reverse derivative of this trace.
For the sake of simplicity, whenever the number of output variables M = 1,
the first index of the reverse derivatives vk, j is dropped. Hence, they are
represented simply as vk.

As an example, a dense layer (as stated inside Def. 1) is considered. It
outputs a scalar value (a loss function value, typically) and is composed of
the set {w1, w2, w3} ∈ R3 of (trainable) weights and b1 ∈ R as (trainable)
bias. Given {x1, x2, x3} ∈ R3 as input, the output of such a dense layer can
be expressed as

L(w1, w2, w3, b1) = σ(w1 x1 + w2 x2 + w3 x3 + b1), (1.20)

where ∀x ∈ R, σ(x) := max(0, x). The activation function σ is called Rec-
tified Linear Unit (ReLU). It was introduced by Fukushima (1969) in the

7The reverse mode of AD was rediscovered independently by Speelpenning (1980).
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context of visual feature extraction using neural networks. The function σ is
not differentiable everywhere. By definition, its derivative σ′ is expressed as

σ′(x) :=
1 if x > 0

0 if x < 0,
(1.21)

and has no defined value at x = 0. However, when using a computer program
to execute the adjoint evaluation trace, one needs to define a numerical value
for the derivative σ′ at x = 0. The ML libraries TensorFlow, PyTorch, and
JAX (see Sec. 1.3.1-1.3.2) enforce σ′(0) = 0. Bertoin et al. (2021) reported
that the choice of value for σ′ at x = 0 influences the training results, and
that the choice σ′(0) = 0 provides the best accuracy levels for neural networks
trained via stochastic gradient descent (see Sec. 1.1.4). Fig. 1.13 shows the
computation of all reverse derivatives related to the computational graph of
the dense layer whose output is expressed in Eq. (1.20).

Finally, the number of adjoint passes equals the number M of output
variables, i.e., it is independent of the number N of input variables (Baydin
et al., 2018). This justifies its use in the machine learning field, where the
loss function typically returns a scalar value and the number of trainable
weights and biases is large.

The reverse mode of AD is more computationally efficient than the for-
ward mode in the development of ML-based numerical schemes, which is the
main focus of this thesis. In Sec. 1.3, the reader will find an overview of AD
tools with reverse-mode support.
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Figure 1.13: (Top) Schematic representation of a dense layer. (Middle and
bottom) Computational graph, forward primal and adjoint evaluation traces
for a program evaluating the (scalar) output of the dense layer.
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1.3 An overview of AD frameworks
This section will familiarize the reader with existing differentiation tools that
could be applied to obtain the adjoint of codes composing ML systems and
PDE solvers. Among them, TensorFlow and PyTorch focus more on the
former, whereas the others better handle generic control flow typical to the
latter.

1.3.1 TensorFlow & PyTorch (Python/C++)
TensorFlow is an open source platform for machine learning originally de-
veloped by the Google Brain team to conduct research in AI within the
organization, and then publicly released under the Apache 2 license (Metz,
2022). PyTorch is an open source machine learning framework developed by
Meta AI. It was released in 2016 under Modified BSD license (Release alpha-
1 release · pytorch/pytorch 2022). They are grouped for employing model
subclassing and object-oriented paradigm in ML pipelines. Besides, users
need to become familiar with their Domain Specific Languages (DSLs), un-
der which classic layers in the ML community (e.g., dense and convolutional
ones) are pre-defined, but custom layers are created at the cost of a rather
verbose code dependent on the availability of elemental building blocks by
the DSL.

1.3.2 JAX (Python)
JAX is a just-in-time compiler of Python/NumPy-similar code released by
the Google Brain team (Frostig et al., 2018). Like TensorFlow and PyTorch,
JAX introduces a DSL that is intended to be similar to plain Python/NumPy
in order to ease more complex control flow differentiation, typical to coupled
ML-PDE systems. However, it only handles pure functions, i.e., input argu-
ments cannot be mutated in the scope of the method. This may turn the
coding experience cumbersome.

1.3.3 Tapenade (Fortran/C)
Tapenade is a source-to-source AD engine released by Hascoët and Pascual
(2013). Adjoint source code is accessible and can be modified for performance
enhancement through parallelization. However, no pre-defined adjoints of
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typical building blocks of neural networks like dense and convolutional layers
are available. This might repel ML users, especially from industry. The devel-
opment of the tool toward ML applications would ease the integration of ex-
isting legacy industrial CFD codes (mainly written in Fortran/C languages)
to neural networks and eventually open a new path to high-performance ma-
chine learning for scientific applications. The reader can find in Appendix A
an example of Tapenade-generated adjoint of a program.

1.3.4 Zygote (Julia)
Zygote is a source-to-source differentiation tool in Julia (Bezanson et al.,
2017) released by Innes (2018a). It is the AD system of the language’s
main machine learning framework : Flux (Innes et al., 2018; Innes, 2018b).
It handles generic control flow in Julia (apart from array mutation, as ex-
plained in Appendix B) and coupling PDE solvers coded in Julia to neural
networks is as easy as writing any other Julia code. It is used to differentiate
dU_ttgc_reassignment in Sec. B.3.

1.3.5 Enzyme (LLVM Intermediate Representation)
Enzyme is an AD tool for differentiating code in LLVM Intermediate Repre-
sentation (IR) released by Moses and Churavy (2020). LLVM is a compiler
and a toolkit for building compilers that transforms source code from a myr-
iad of languages (e.g., Fortran, C++, Swift, Rust, Julia) into an IR that is
efficiently converted to machine code (The LLVM Compiler Infrastructure
Project 2022). It was designed for hardware portability, as it offers machine-
independent primitive types (Yegulalp, 2020). Enzyme is used to differentiate
dU_ttgc_mutation in Sec. B.3.

This chapter detailed the concepts required to understand the ML compo-
nents of the data-driven numerical schemes developed in Chapters 2, 4, and 5.
The next chapter is dedicated to reviewing concepts of numerical methods
for PDEs. They precede the spectral analysis proposed in Chapter 3, which
helps to define stability constraints for these data-driven numerical schemes.



Chapter 2

Introducing data-driven
numerical schemes

The numerical simulation of fluid flows makes use of numerical schemes,
which are algebraic relations between the space, time, and flow quantities
represented in a computer. This chapter presents classical results related
to the numerical approximation of hyperbolic systems of conservation laws
essential to Computational Fluid Dynamics (CFD). Among them, a theorem
by the Russian mathematician Sergei K. Godunov (1959) states that highly
accurate linear numerical schemes cannot obey a property called monotonic-
ity. This property ensures that the numerical scheme cannot generate new
extrema other than those eventually present in the initial condition (Hirsch,
2007). Lack of monotonicity harm the reliability of the numerical simulation
since it leads to unphysical values of quantities that must remain positive
such as density, turbulent kinetic energy, or combustion mixture fraction.
Spurious oscillations may also lead to unphysical values of certain quanti-
ties (T. K. Sengupta, Bhumkar, et al., 2012). These oscillations are specifi-
cally named Gibbs’ phenomena when originating from shock waves or sharply
discontinuous solutions (T. K. Sengupta, Ganerwal, et al., 2004). Godunov’s
theorem and the emergence of spurious oscillations (among them, Gibbs’
phenomenon) in numerical simulations have significantly impacted the de-
velopment of numerical schemes used in CFD. It should be highlighted that
while state variables display discontinuity near shocks, the corresponding
flux terms are continuous functions. Spectral accuracy of schemes is capable
of curing Gibbs’ phenomenon, as it is done by Essentially Non-Oscillatory
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(ENO) and Weighted Essentially Non-Oscillatory (WENO) schemes (Zhang
and Shu, 2016) applied to the state variables by one-sided differentiation.
ENO and WENO schemes perform particular reconstructions of numerical
fluxes which are nonlinear. The neural network models introduced in the
previous chapter are nonlinear functions that can be employed to design
numerical schemes. Sec. 2.3 presents a state-of-the-art method that approx-
imates the derivatives of the numerical fluxes using a constrained Convolu-
tional Neural Network (CNN) (see Def. 2). The constrained CNN is trained
to accurately reproduce the convection of isentropic vortices and to evolve a
double shear layer initial condition following the Euler equations (an inviscid
version of the Navier-Stokes equations) on 2D cartesian grids.

2.1 Generalities about the numerical approx-
imation of hyperbolic conservation laws

As they relate to transport phenomena, conservation laws of hyperbolic na-
ture play an important role in Computational Fluid Dynamics (CFD) (Hirsch,
2007). In their differential form (no source terms):

∂U

∂t
+ div F (U) = 0, (2.1)

where U is the state variable, F is a convective flux, and t is the temporal
coordinate. The first part of this chapter concerns only one-dimensional
equations such that

( U , F ) ≡ (u(x, t), c u(x, t) ) (2.2)
( U , F ) ≡ (u(x, t), u(x, t)2/2 ), (2.3)

where c ∈ R and u : (x, t) ∈ R× [0,∞) 7→ u(x, t) ∈ R. The equivalences (2.2)
and (2.3) respectively lead to the following Partial Differential Equations
(PDEs):

ut + c ux = 0 (2.4)
ut + uux = 0, (2.5)

where the subscripts (·)t = ∂
∂t

and (·)x = ∂
∂x

denote the partial derivatives
with respect to the time and space, respectively. Eq. (2.4) is referred to as the
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(linear) Convection equation. It models the transport of a quantity u by the
constant convection velocity c. The Convection equation is also regarded as
a wave propagation equation, where the wave amplitude u has a phase prop-
agating speed equal to c. Eq. (2.5) is called the (inviscid) Burgers’ equation,
named after Burgers (1948). It appears in studies of gas dynamics (Shefter
and Rosales, 1999) and of traffic flow (Lighthill and Whitham, 1955). Its
viscous counterpart 1

ut + uux − ν uxx = 0 (ν > 0), (2.6)

can be viewed as a model for decaying free turbulence (Cole, 1951).
The problem that consists in finding u := u(x, t) solutions to Eq. (2.4)

or to Eq. (2.5) for a given initial condition u0 := u0(x) is called an Initial
Value Problem (IVP). Even when initial conditions are smooth, nonlinear
hyperbolic conservation laws can develop jump discontinuities that propa-
gate as shock waves (Dafermos, 2016). An important IVP studied in the
theory of hyperbolic PDEs is the Riemann problem, which contains a dis-
continuity (Toro, 2009). It is formally defined as follows:

Definition 4 (1D Riemann problem). Let uL ∈ R, uR ∈ R, and x0 ∈ R such
that uL < uR. The IVP with initial condition

u0(x) =
uL if x ≤ x0 ,

uR if x > x0
(2.7)

is called a 1D Riemann problem. The variables uL and uR are referred to as
the left and right states of the 1D Riemann problem, respectively.

One can also state a version of the problem for periodic domains as fol-
lows:

Definition 5 (1D periodic Riemann problem). Let umin ∈ R, umax ∈ R,
x0 ∈ R, x1 ∈ R, and ℓ ∈ R such that 0 ≤ umin < umax and 0 < x0 < x1 < ℓ.
The IVP with initial condition

u0(x) =
umax if x ∈ [x0, x1] ,
umin if x ∈ [0, x0) ∪ (x1, ℓ]

(2.8)

is called a 1D periodic Riemann problem.
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Figure 2.1: Representations of the (a) 1D Riemann problem (Def. 4) and (b)
1D periodic Riemann problem (Def. 5).

Figure 2.2: Representations of the analytical solutions for the 1D periodic
Riemann problem (see Def. 5) following (a) the Convection equation (2.4)
and (b) the Burgers’ equation (2.5). In (b), c := (umax + umin) / 2.
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Fig. 2.1 illustrates Defs. 4-5. Fig. 2.2 depicts analytical solutions for 1D
periodic Riemann problems following the Convection equation (2.4) and the
Burgers’ equation (2.5). They are obtained using the method of character-
istics described in Chapter I (Sec. 4.1) of Godlewski and Raviart (2021).
On the one hand, the solution to any IVP following the Convection equa-
tion (2.4) simply corresponds to the propagation of the initial condition u0

at the convection speed c, i.e.,

u(x, t) ≡ u0(x− ct) (t > 0).

On the other hand, the solution to the 1D periodic Riemann problem follow-
ing the Burgers’ equation (2.5) is given by

u(x, t) ≡


(x− x0)/t, x ∈ (x0 + umint, x0 + umaxt]
umax, x ∈ [x0 + umaxt, x1 + ct]
umin, elsewhere

(t ∈ (0, tm)), (2.9)

where c := (umax +umin)/2 and tm := 2(x1−x0)/(umax−umin). The 1D peri-
odic Riemann problem following the Burgers’ equation (2.5) admits solutions
other than Eq. (2.9). Nevertheless, this is the only physically admissible one
for respecting an entropy condition defined by Lax (1971). Eq. (2.9) is called
an entropy solution. One can prove the uniqueness of the entropy solution
to any IVP following the Burgers’ equation (2.5) (see Thm. 5.4 in Chapter I
of Godlewski and Raviart (2021)). However, it remains an open problem in
the case of nonlinear systems of hyperbolic conservation laws.

The 1D Riemann problem is suitable for testing numerical methods that
approximate Eqs. (2.4)-(2.5), thanks to the availability of analytical solu-
tions. Its numerical simulation requires representing the state variable u us-
ing a finite number of values. The spatial and temporal simulation domains
must also be represented using a finite number of points in space and time,
respectively. Such a process is called discretization. A numerical scheme is
a function that employs spatial and temporal discretizations to evolve the
discrete values of the state variable. A formal definition follows:

Definition 6 (Numerical scheme). Let I be the set of points representing
a spatial discretization and {tn}n∈J1,NK be the set of N points representing

1The subscript (·)xx = ∂2

∂x2 denote the second-order partial derivative with respect to
space.
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a temporal discretization. A numerical scheme for the PDE (or system of
PDEs) E is a function

SE :
(
Rm,Rm|Ki|

)
−−→ Rm

(Un
i , {Un

k}k∈Ki
) 7−−→ Un+1

i , (2.10)

where m ∈ N is the number of equations, Ki ⊂ I is a subset of points of the
spatial discretization and |Ki| is the number of points in Ki. The variable
Un

i represents the discrete value of the state variable U at time level tn and
spatial point i ∈ I. Furthermore, SE is called a linear scheme if and only if
∃ ck ∈ R such that

Un+1
i := SE (Un

i , {Un
k}k∈Ki

) =
∑

k∈Ki

ck Un
k .

Provided that the numerical solution approximates the solution of the
considered PDE (or system of PDEs), it is important to quantify how the
approximation error levels evolve with the number of points used in the
spatial and temporal discretizations. In general, numerical schemes that
require fewer discretization points to achieve a given approximation error
value are preferred. In the literature, it is common to compare numerical
schemes by their truncation error behaviors using the concept of order of
accuracy (Strikwerda, 2004). It can be defined for equally spaced cartesian
grids as follows:

Definition 7 (Order of accuracy on equally spaced cartesian grids). Let U
be a smooth solution to Eq. (2.1). A numerical scheme SE is said to be p-th
order accurate in space and q-th order accurate in time if and only if∥∥∥{Un+1

i,exact}i∈I − {SE(Un
i , {Un

k}k∈Ki
)}i∈I

∥∥∥
2

= O
(
∆xp+1 + ∆tq+1

)
, (2.11)

(as ∆t→ 0, ∆x→ 0)

where ∆x and ∆t denote the spatial and temporal discretization parameters,
respectively. More precisely, ∆x is the cartesian grid spacing and ∆t =
tn+1 − tn ∀n is a fixed time step size. Unless otherwise stated, p and q are
the largest positive integers for which Eq. (2.11) holds. Finally, the left-hand
side of Eq. (2.11) is called the truncation error of the numerical scheme.

Numerical schemes for hyperbolic conservation laws are also compared in
terms of physical admissibility of the numerical solutions they provide. In gas
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dynamics, for instance, it is essential that numerical values for density remain
positive. In reactive flows, mass fraction values must stay in the interval [0, 1].
An important property which helps ensuring that these values remain in a
physically admissible interval is that of monotonicity. This property states
that no new extrema will be generated by the numerical scheme, aside from
those present in the initial condition. Nevertheless, Godunov (1959) showed
that one cannot formulate a monotone linear scheme for the 1D Convection
equation (2.4) with spatial order of accuracy higher than one:

Theorem 1 (Godunov’s order barrier). Let S linear
Convection be a linear scheme for

the 1D Convection equation (2.4) which is p-th order accurate in space. If
p ≥ 2, then S linear

Convection cannot be monotone.

Godunov’s order barrier Thm. 1 has played an important role in the
development of numerical schemes for the 1D Convection equation (2.4) and
for the equations of fluid motion in CFD, by extension. The next section
depicts numerical schemes of historical relevance.

2.2 Numerical analysis of schemes
A numerical scheme is said to be consistent if it tends to the considered PDE
(or system of PDEs) as the discretization time and space steps tend to zero.
Furthermore, it is said to be stable if the numerical solution remains bounded
over time. This section is dedicated to show accuracy properties of consistent
numerical schemes of historical importance. In what follows, only 1D equally
spaced grids (with mesh spacing ∆x > 0) and uniform time discretizations
(with time step ∆t > 0) are considered.

2.2.1 First Order Upwind (FOU) and Lax-Wendroff
(LW)

The First Order Upwind (FOU) scheme proposed by Courant, Isaacson, et
al. (1952) uses Taylor expansions of the perturbed states un+1

i and un
i−1 in

time and space, respectively. Firstly, one can notice that

un+1
i = un

i + ∆t un
t |x=xi

+O(∆t2) (2.12)
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leads to the following expression of the first order derivative in time un
t |x=xi

:

un
t |x=xi

= un+1
i − un

i

∆t +O(∆t). (2.13)

Similarly,

un
i−1 = un

i −∆xun
x|x=xi

+O(∆x2) (2.14)

leads to the following expression of the first order derivative in space un
x|x=xi

:

un
x|x=xi

= un
i − un

i−1
∆x +O(∆x). (2.15)

Finally, one obtains the first order accurate in time and space FOU scheme
for the 1D Convection equation (2.4) as

SFOU
1D Convection :

(
R,R2

)
−−→ R(

un
i , {un

k}k∈{i−1,i}
)
7−−→ un+1

i := un
i −Nc(un

i − un
i−1), (2.16)

where Nc := c∆t/∆x.
The FOU scheme can also be used to discretize the 1D inviscid Burgers’

equation (2.5). It similarly applies Eq. (2.13) to express the time derivative
un

t , and uses a Taylor expansion of the associated flux F ≡ f(u) := u2/2 ∀u ∈
R to express its spatial derivative. The FOU scheme for the 1D Burgers’
equation (2.5) reads

SFOU
1D Burgers’ :

(
R,R2

)
−−→ R(

un
i , {un

k}k∈{i−1,i}
)
7−−→ un+1

i := un
i −

∆t
2∆x

[
(un

i )2 −
(
un

i−1

)2
]
.

(2.17)

Lax and Wendroff (1960) employed second-order Taylor expansions to
produce a scheme of better accuracy levels when compared to first-order
methods like the FOU scheme. In the Lax-Wendroff (LW) scheme, the first-
order time derivative un

t |x=xi
is expressed as

un
t |x=xi

= un+1
i − un

i

∆t − ∆t
2 un

tt|x=xi
+O(∆t2). (2.18)
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The time derivative un
tt in Eq. (2.18) is replaced by an equivalent spatial

derivative using the 1D Convection equation (2.4), i.e.,

un
tt ≡ −c (un

x)t ≡ −c (un
t )x ≡ c2un

xx

implies that

un
t |x=xi

= un+1
i − un

i

∆t − c2∆t
2 un

xx|x=xi
+O(∆t2). (2.19)

Eq. (2.19) leads to the following semi-discrete form of the 1D Convection
equation (2.4):

un+1
i − un

i

∆t − c2∆t
2 un

xx|x=xi
+ c un

x|x=xi
+O(∆t2) = 0. (2.20)

The first and second order spatial derivatives un
x and un

xx in Eq. (2.20) are
discretized using the following second-order Taylor expansions:

un
x|x=xi

= un
i+1 − un

i−1
2∆x +O(∆x2),

un
xx|x=xi

= un
i+1 − 2un

i + un
i−1

∆x2 +O(∆x2).

Finally, the LW scheme for the 1D Convection equation (2.4) is expressed as

SLW
1D Convection :

(
R,R3

)
−−→ R(

un
i , {un

k}k∈{i−1,i,i+1}
)
7−−→ un+1

i := un
i −

Nc

2 (un
i+1 − un

i−1)

+ N2
c

2 (un
i+1 − 2un

i + un
i−1).

(2.21)

In order to derive the LW scheme for the 1D Burgers’ equation (2.5), the
time derivative un

tt in Eq. (2.18) is replaced by a spatial derivative of the
associated flux F ≡ f(u) := u2/2 ∀u ∈ R, i.e., 2

un
tt ≡ −(fn

x )t ≡ −(fn
t )x ≡ −

(
∂fn

∂u
un

t

)
x

≡
(
∂fn

∂u
fn

x

)
x

2For the sake of simplicity, the symbol fn will be hereafter employed to denote f(un).
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implies that

un
t |x=xi

= un+1
i − un

i

∆t − ∆t
2

(
∂fn

∂u
fn

x

)
x

∣∣∣∣∣
x=xi

+O(∆t2). (2.22)

Eq. (2.22) leads to the semi-discrete form of the 1D Burgers’ equation (2.5)
below:

un+1
i − un

i

∆t − ∆t
2

(
∂fn

∂u
fn

x

)
x

∣∣∣∣∣
x=xi

+ fn
x |x=xi

+O(∆t2) = 0. (2.23)

The spatial derivative fn
x in Eq. (2.23) is discretized using the following

second-order Taylor expansion:

fn
x |x=xi

= fn
i+1 − fn

i−1
2∆x +O(∆x2). (2.24)

The spatial derivative
(
∂fn

∂u
fn

x

)
x

in Eq. (2.23) can be discretized as fol-

lows (Godlewski and Raviart, 2021):(
∂fn

∂u
fn

x

)
x

∣∣∣∣∣
x=xi

= 1
∆x2

(∂fn

∂u

)
i+1/2

(fn
i+1 − fn

i )−
(
∂fn

∂u

)
i−1/2

(fn
i − fn

i−1)
 ,

(2.25)

where
(
∂fn

∂u

)
i±1/2

:= 1
2

[(
∂fn

∂u

)
i

+
(
∂fn

∂u

)
i±1

]
is the average value of the

flux Jacobian in the neighborhood {i, i± 1}.
Finally, by applying Eqs. (2.24)-(2.25) into Eq. (2.23), one can express

the LW scheme for the 1D Burgers’ equation (2.5) as follows:

SLW
1D Burgers’ :

(
R,R3

)
−−→ R(

un
i , {un

k}k∈{i−1,i,i+1}
)
7−−→ un+1

i := un
i −

∆t
4∆x

[(
un

i+1

)2
−
(
un

i−1

)2
]

+ ∆t2
8∆x2

{
(un

i+1 + un
i )
[(
un

i+1

)2
− (un

i )2
]
− (un

i + un
i−1)

[
(un

i )2 −
(
un

i−1

)2
]}
.

(2.26)

The LW scheme enjoys less dissipation than the FOU scheme. However,
Gibbs’ phenomenon is observed when evolving initial conditions with steep
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gradients, as shown in Fig. 2.4. It appears as a consequence of Godunov’s
order barrier Thm. 1. In order to overcome the limitations predicted by
the theorem, numerical schemes for the Convection equation (2.4) must be
nonlinear. Sec. 2.2.2-2.2.3 introduce nonlinear schemes of historical relevance.

2.2.2 Monotonic Upstream-centered Schemes for Con-
servation Laws (MUSCL)

Van Leer (1979) introduced the class of Monotonic Upstream-centered Schemes
for Conservation Laws (MUSCL), which can achieve spatial second order of
accuracy while preventing the emergence of Gibbs’ phenomenon in the pres-
ence of shocks or sharp discontinuities. Given the semi-discrete form of the
hyperbolic conservation law (2.1) below:

un
t |x=xi

+ L(un
i ) = 0,

where

L(un
i ) := 1

∆x
[
fi+1/2(un

i )− fi−1/2(un
i )
]
≡ 1

∆x
[
fn

i+1/2 − fn
i−1/2

]
,

MUSCL seek suitable nonlinear approximations for the numerical fluxes
fn

i±1/2, defined at the boundaries of a cell surrounding the mesh point i (see
Fig. 2.3). The computation of these numerical fluxes depend on values of
the state variable extrapolated to the right and left sides of the cell’s bound-
aries, and are denoted as uR, n

i±1/2 and uL, n
i±1/2, respectively. The extrapolations

uR, n
i±1/2 and uL, n

i±1/2 are nonlinear functions of the state variable values in the
neighborhood {i− 1, i, i+ 1, i+ 2}. More precisely,

uR, n
i+1/2 := un

i+1 − ϕ(rn
i+1)

(
un

i+2 − un
i+1

2

)
,

uL, n
i+1/2 := un

i + ϕ(rn
i )
(
un

i+1 − un
i

2

)
,

where rn
i := (un

i − un
i−1)/(un

i+1 − un
i ) is an indicator of the local smoothness

of the numerical solution and ϕ is a function of this smoothness indicator
that limits the slope of the piecewise linear approximation of the state vari-
able inside the cell. The function ϕ is commonly referred to as flux limiter.
Flux limiters help to prevent the emergence of Gibbs’ phenomenon in the
numerical solution.
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Figure 2.3: Representation of MUSCL numerical fluxes fn
i±1/2 using the ex-

trapolations uR, n
i±1/2 and uL, n

i±1/2 of the state variable at the boundaries of the
cell [xi−1/2, xi+1/2], where xi±1/2 := (xi + xi±1)/2.

Fig. 2.4 shows numerical experiments performed with the second-order
accurate in space MUSCL of Kurganov and Tadmor (2000), for which

fi±1/2(un
i ) := 1

2
{[
f
(
uR, n

i±1/2

)
+ f

(
uL, n

i±1/2

)]
− ai±1/2

[
uR, n

i±1/2 − u
L, n
i±1/2

]}
,

(2.27)

where ai±1/2 is the maximum absolute value of the eigenvalues of the flux
Jacobian ∂fn/∂u. The generalized minmod flux limiter of Van Leer (1979)
defined as

ϕθ(rn
i ) := max [0, min (θ, θrn

i , 0.5(1 + rn
i ))] (θ ∈ [1, 2]) (2.28)

is used with θ = 2 (value of the parameter for which the dynamics is least
dissipative). To evolve the numerical solution over time, the three-stage,
third-order Strong-Stability-Preserving (SSP) explicit Runge-Kutta time dis-
cretization method of Gottlieb et al. (2001) is used here. It is given by

u
(1)
i = un

i + ∆t L(un
i ),

u
(2)
i = 3

4u
n
i + 1

4u
(1)
i + 1

4∆t L
(
u

(1)
i

)
, (2.29)

un+1
i = 1

3u
n
i + 2

3u
(2)
i + 2

3∆t L
(
u

(2)
i

)
.
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2.2.3 Weighted Essentially Non-Oscillatory (WENO)
The class of Weighted Essentially Non-Oscillatory (WENO) schemes was
designed to achieve arbitrarily high order of accuracy in smooth regions while
also resolving singularities such as discontinuities and sharp gradients in an
accurate and non-oscillatory fashion (Zhang and Shu, 2016). The fifth-order
accurate in space WENO (WENO5) scheme of Jiang and Shu (1996) has
been used in most applications and is considered here.

Similarly to MUSCL, WENO schemes look for suitable forms of the nu-
merical flux fn

i±1/2 at cells’ boundaries. They reconstruct the numerical flux
at a given boundary as a weighted sum of the flux values at neighboring mesh
points. The set of weights is obtained as a function of indicators of the local
smoothness of the solution, which can adapt the reconstructed flux to ac-
curately capture steep gradients and shocks. The WENO5 method assumes
the final form below:

un
t |x=xi

+ L(un
i ) = 0,

where

L(un
i ) := 1

∆x
[
fi+1/2(un

i )− fi−1/2(un
i )
]
≡ 1

∆x
[
fn

i+1/2 − fn
i−1/2

]
,

with the flux decomposition

fn
i+1/2 ≡ f̂+, n

i+1/2 + f̂−, n
i+1/2,

and the reconstruction

f̂+, n
i+1/2 := w+

0

(2
6f

+
i−2 −

7
6f

+
i−1 + 11

6 f
+
i

)
+ w+

1

(
−1

6f
+
i−1 + 5

6f
+
i + 2

6f
+
i+1

)
+ w+

2

(2
6f

+
i + 5

6f
+
i+1 −

1
6f

+
i+2

)
, (2.30)

f̂−, n
i+1/2 := w−

2

(
−1

6f
−
i−1 + 5

6f
−
i + 2

6f
−
i+1

)
+ w−

1

(2
6f

−
i + 5

6f
−
i+1 −

1
6f

−
i+2

)
+ w−

0

(11
6 f

−
i+1 −

7
6f

−
i+2 + 2

6f
−
i+3

)
, (2.31)
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where the expressions of the weights
{
w

+/−
k

}
k∈J0,2K

and of the fluxes
{
f

+/−
i+k

}
k∈J−2,3K

can be found in R. Wang and Spiteri (2007). Fig. 2.4 illustrates the output
of numerical simulations performed with the WENO5 spatial discretization
method coupled with the third-order SSP explicit Runge-Kutta time-stepping
method (2.29).

In order to verify the spatial order of accuracy (see Def. 7) of the im-
plementations of the numerical schemes depicted in this section, one can
generate a so-called grid convergence error plot. It consists in measuring
the mean error of the numerical solution over one box turn of a smooth ini-
tial condition projected over equally spaced meshes of different resolutions.
Fig. 2.5 illustrates grid convergence error plots for the FOU, LW, MUSCL
of Kurganov and Tadmor (2000), and WENO5 schemes. It is worth not-
ing that the WENO5 scheme exhibits third-order accurate behavior for a
time step size ∆t = O(∆x). Such a behavior arises because the time step-
ping method (2.29) is only third-order accurate, and the total error ϵ of the
numerical solution then reads

ϵ = O
(
∆t3 + ∆x5

) ∆t=O(∆x)= O
(
∆x3 + ∆x5

)
= O

(
∆x3

)
.

The grid convergence error plot for the WENO5 scheme coupled with the time
stepping method (2.29) must be produced using a time step ∆t = O

(
∆x5/3

)
to reveal the spatial order of accuracy of the implementation of the WENO5
method.

MUSCL and WENO schemes employ suitable nonlinear functions of the
values of the state variable to provide accurate numerical solutions without
spurious oscillations. However, they present applicability limitations. On
the one hand, MUSCL uses nonlinear flux limiters formulated upon heuris-
tic arguments, preventing a given limiter from performing well for all prob-
lems (Waterson and Deconinck, 2007). On the other hand, WENO schemes
of spatial order of accuracy higher than two may use 3 to 10 times more
CPU time than a second-order scheme (Shu, 2009). The recent field of Ma-
chine Learning (ML) introduced in the previous chapter relies on nonlinear
functions that can be used to address these limitations. Nguyen-Fotiadis et
al. (2022) employed neural networks as flux limiters in the discretization of
the viscous Burgers’ equation and showed that they outperform 11 classical
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flux limiters over a range of mesh resolutions. Bezgin, Schmidt, et al. (2022)
used neural networks to enhance a third-order WENO scheme. The resulting
data-driven numerical method showed better accuracy levels than the more
computationally demanding fifth-order WENO5 scheme at critical points. In
this context, the next section investigates the ability of the state-of-the-art
data-driven spatial discretization method proposed by Bar-Sinai et al. (2019)
and Kochkov et al. (2021) to provide accurate and stable dynamics.

2.3 Data-driven spatial discretizations on 2D
cartesian grids

The FOU and LW schemes described in Sec. 2.2.1 employ Taylor series expan-
sions to approximate the spatial derivative in the Convection and Burgers’
equations (2.4)-(2.5). The derivative at a given point in space is expressed
as a weighted sum of the values of the state variable in a neighborhood of
such a point. The set of weights that can approximate the spatial derivative
at a given order of accuracy is not unique (Fornberg, 1988). Bar-Sinai et al.
(2019) and Kochkov et al. (2021) trained neural networks to provide suitable
values of the weights for a myriad of problems. More precisely, they aimed
to recover features from high-resolution simulations on relatively coarse grids
with an appropriate choice of values for the weights. High-resolution simula-
tions of turbulent flows that capture the entire range of eddies’ wavelengths
are prohibitively expensive. In industrial applications, one performs coarse-
grained Large-Eddy Simulations (LES), which account for the effects of un-
resolved small-scale features using a subgrid-scale model. However, subgrid-
scale models are often formulated using ad hoc assumptions (Sagaut, 2006).
The ultimate purpose of the works of Bar-Sinai et al. (2019) and Kochkov et
al. (2021) is to replace subgrid-scale models with neural networks that provide
suitable discretization of the Navier-Stokes equations. Bar-Sinai et al. (2019)
demonstrated the approach on 1D problems governed by the viscous Burg-
ers’ equation (2.6), the Korteweg-de Vries equation, which is a mathematical
model of waves on shallow water surfaces (Korteweg and De Vries, 1895), and
the Kuramoto-Sivashinsky equation, which models diffusive-thermal instabil-
ities in laminar flame fronts (Kuramoto, 1978; Sivashinsky, 1977). Kochkov
et al. (2021) employed the technique of data-driven spatial discretizations to
simulate 2D problems governed by the incompressible Navier-Stokes equa-
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(a)

(b)

Figure 2.4: (a) One box turn of a 1D periodic Riemann problem (see Def. 5)
following the Convection equation (2.4) for all schemes depicted in Sec. 2.2.
(b) Numerical solution of a 1D periodic Riemann problem following the Burg-
ers’ equation (2.5) at time t = 150∆t (where ∆t is the simulation time step)
for all schemes depicted in Sec. 2.2.
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(b)

(a)

Figure 2.5: (a) Grid convergence error plots for all schemes depicted in
Sec. 2.2. (b) Smooth initial condition u0 : x ∈ [0, 1] 7→ cos(x) used for
grid convergence studies.
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tions. This section studies periodic problems governed by the 2D Euler
equations (an inviscid version of the compressible Navier-Stokes equations)
on cartesian grids. They can be expressed using Eq. (2.1) with the following
choice of state variable U and convective flux F :

U :=


ρ
ρu
ρv
E

 , F (U) :=


ρu ρv

ρu2 + p ρuv
ρvu ρv2 + p

u(E + p) v(E + p)

 , (2.32)

where ρ, p, and E are the fluid’s density, pressure, and energy fields, re-
spectively; and u and v are the components of the flow velocity field along
the x and y directions, respectively. A presentation of the considered neu-
ral network model that approximates the spatial derivatives of the flux F
follows.

2.3.1 Neural network model
Fig. 2.6 illustrates the neural network architecture. It consists of a Convolu-
tional Neural Network (CNN) model (see Def. 2) followed by a non-trainable
layer called the Polynomial Accuracy Layer (PAL). The density (ρ), the com-
ponents of the momentum along the x and y directions (ρu and ρv, respec-
tively), and the energy (E) fields of a given initial condition are used as
input features of the CNN. Subsequently, the CNN output features are split
among eight channels. Each channel corresponds to a spatial derivative to
be approximated (one per scalar flux, see Eq. (2.32)). The PAL projects the
features of each channel on the space of weights that approximate spatial
derivatives at a given enforced order of accuracy. Finally, the third-order
SSP Runge-Kutta time-stepping method (2.29) is used to evolve the initial
condition over time.

In order to explain how the PAL works, a 1D field f := f(x) is considered,
for the sake of simplicity. The PAL computes a set of weights that is used
to approximate the ℓ-th derivative f (ℓ)(x0) of the field f for a given number
N of points in the neighborhood of x0. The Taylor series of f around the
neighbor xn := x0 + hn (hn > 0) can be expressed as follows:

f(x0 + hn) = f(x0) + . . .+ f (N−1)(x0)hN−1
n /(N − 1)! +O(hN

n ). (2.33)
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Figure 2.6: Schematic representation of the CNN-PAL neural network archi-
tecture for the data-driven spatial discretization of the Euler equations on 2D
cartesian grids. The variables F ⋆,x and F ⋆,y correspond to the components
of the flux of the field ⋆ along the x and y directions, respectively.
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By approximating f (ℓ)(x0) as a sum of the neighboring values of f , weighted
by a set of coefficients α := (αi)i∈J1,NK to be determined, one obtains:

f (ℓ)(x0) ≈
N∑

n=1
αn f(x0 + hn)

Eq. (2.33)
≈

∑
n

αn f(x0) + . . .+
∑

n

αn f
(ℓ)(x0) hℓ

n/ℓ!

+ . . .+
∑

n

αn f
(N−1)(x0)hN−1

n /(N − 1)!

+O(α1 h
N
1 ). (2.34)

By comparing left- and right-hand sides of Eq. (2.34), the following set
of constraints arise: ∑

n

αn h
ℓ
n/ℓ! = 1, (2.35)∑

n

αn h
0
n/0! = 0,

. . .∑
n

αn h
N−1
n /(N − 1)! = 0.

Alternatively, α is solution to the linear system

Af α = bf, (2.36)

with

Af :=


h0

1 . . . h0
N

... . . . ...
hN−1

1 . . . hN−1
N


N×N

, bf := ℓ!


δ0,ℓ
...

δN−1,ℓ


N×1

,

where δn−1,ℓ is the Kronecker’s delta, ∀n ∈ J1, NK. The matrix Af is full rank
and hence the coefficients that solve the linear system (2.36) are unique. The
resulting approximation of f (ℓ) is O(hN−ℓ

1 ), since Eq. (2.35) ensures that

O(α1 h
N
1 ) ∼ O(hN−ℓ

1 ).

However, unique solutions prevent using the input of the PAL (i..e., the
CNN output) to approximate spatial derivatives. To circumvent this, one
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must enforce lower accuracy in the approximation of the ℓ-th derivative f (ℓ),
which leads to considering fewer terms in the Taylor expansion (2.33). Equiv-
alently, for a desired order of accuracy O(hm

1 ), with m < N − ℓ, one has to
solve the linear system

A α = b, (2.37)
with

A :=


h0

1 . . . h0
N

... . . . ...
hm+ℓ−1

1 . . . hm+ℓ−1
N


(m+ℓ)×N

, b := ℓ!


δ0,ℓ
...

δm+ℓ−1,ℓ


(m+ℓ)×1

.

In such a case, the linear system is under-determined and hence admits an
infinite number of solutions. Here, any solution α can be written as the sum
of an arbitrary fixed solution αp and a vector αnull from the nullspace of the
matrix A:

A α = A αp + A αnull = A αp = b.

In this work, αp is the solution of the fully determined linear system
(2.36) (which is solution of the under-determined system (2.37) as well) and
αnull is the projection of the output of the CNN on the nullspace of A (so that
A αnull = 0). This projection is performed as follows: let A ≡ UΣV ⊤ be the
singular value decomposition of A, where U and V are square matrices whose
columns are the so-called left- and right-singular vectors of A, respectively,
and Σ is a diagonal matrix of the so-called singular values of A. It is a
well-known fact that the last N − rank(A) columns of V span the nullspace
of A. The matrix formed by these columns is denoted NA. The projection
of the output x of the CNN on the nullspace of A can be expressed as
αnull := NA x. Such a projection ensures that PALs return discretization
coefficients α that approximate spatial derivatives in cartesian grids with a
constrained order of accuracy.

Only first-order derivatives of the fluxes will be approximated using a
PAL (i.e., ℓ = 1). For equally spaced grids and centered stencils, Eq. (2.37)
then reduces to solving

1 1 . . . 1
−p −p+ 1 . . . p

(−p)2 (−p+ 1)2 . . . p2

... ... . . . ...
(−p)m (−p+ 1)m . . . pm

 α =



0
1/h
0
...
0

 , (2.38)
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where h is the cell size and p ∈ N is such that N ≡ 2p + 1 is the number of
mesh points of the centered stencil.

A series of experiments with CNN-PAL neural network models that em-
ploy Eq. (2.38) was conducted. The parameters common to all the models
used in these experiments are depicted in Tbl. 2.1 below. The next section
is dedicated to show their outcomes.

Parameter Value
Number of convolutional layers 4
Number of hidden features 16
Size of convolutional kernel/filter (3, 3)
Size of input (4, 33, 33)
Size of stencil (N) 5
Constrained order of accuracy (m) 2

Table 2.1: Parameters common to all CNN-PAL models used in experiments.

2.3.2 Numerical experiments
In this section, CNN-PAL neural network models are trained to predict the
dynamics of a given initial condition. It is worth noting that a dimensionless
version of the Euler equations is considered. It reads

∂U ′

∂t′
+ div′ F ′(U ′) = 0, (2.39)

where

U ′ :=


ρ′

ρ′u′

ρ′v′

E ′

 , F ′(U ′) :=


ρ′u′ ρv′

ρ′u′2 + p′ ρ′u′v′

ρ′v′u′ ρ′v′2 + p′

u′(E ′ + p′) v′(E ′ + p′)

 , (2.40)

and ρ′, p′ and E ′ are the dimensionless fields of density, pressure and energy,
respectively; u′ and v′ are the dimensionless components of the flow velocity
field along the x and y directions; t′ is the dimensionless temporal coordinate;
div′ is the dimensionless divergence operator. The dimensionless variables
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relate to their original counterparts by the following expressions:
ρ′ := ρ/ρcharact,

u′ := u/ucharact,

v′ := v/ucharact,

E ′ := E/(ρcharact u
2
charact), (2.41)

p′ := p/(ρcharact u
2
charact),

t′ := t/(lcharact/ucharact),
div′ := lcharact div,

where ρcharact, ucharact, and lcharact are called the characteristic density, speed
and length, respectively. The characteristic quantities are specific to each
initial condition and simulation domain. The training procedure using the
original variables has proven to be numerically unstable, unlike when using
their dimensionless counterparts. This can be explained by the fact that the
scales of the original variables are typically very dissimilar (with E ∼ O(105)
whereas ρ ∼ O(1)), which may affect the convergence of gradient-based opti-
mization methods used in training (Wan, 2019). The numerical instabilities
are related to the exploding gradients problem in ML (Bengio et al., 1994).
During backpropagation (see Sec. 1.1.4), the successive multiplication of gra-
dient values with relatively large norm may lead to a value which cannot
be represented with finite precision floating point arithmetic. The ML lit-
erature encourages performing input normalization to ensure the stability
of the training procedure (Shalev-Shwartz and Ben-David, 2014). More-
over, it helps to faster achieve a given accuracy level during training (Sola
and Sevilla, 1997). This is because input normalization reduces the distance
from the initial state of the trainable parameters of the neural network to the
optimal state. The trainable parameters are typically initialized to random
values within the (−1, 1) interval. When the input normalization compresses
the entire search space into a unitary hypercube, the distance that the back-
propagation algorithm (see Sec. 1.1.4) needs to traverse in each iteration is
reduced. However, input normalization is a non-physical transformation and
the normalized input cannot be used by the PAL. Employing dimensionless
variables instead of applying input normalization allows to (partially) ad-
dress the aforementioned scaling issue in a physical way. Finally, one may
notice that the algorithm that implements a numerical scheme for the Euler
equations (2.1)-(2.32) can be employed without modifications for the dis-
cretization of the dimensionless Euler equations (2.39)-(2.40).
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In a first experiment (n.1), a CNN-PAL model is trained to transport a
single isentropic vortex by a uniform flow. This case is used to test a numer-
ical scheme’s capability to preserve vorticity in unsteady inviscid flows (VI1
Vortex transport by uniform flow | HiOCFD5 2022). The initial condition is
set by superimposing vortex-related velocity fields over homogeneous fields.
The components u0 and v0 of fluid’s velocity along the x and y directions, as
well as the medium temperature field T 0 are given by

u0(x, y) := u∞

[
1− β y − y0

R
exp(−r(x, y)2/2)

]
(2.42)

v0(x, y) := u∞

[
β
x− x0

R
exp(−r(x, y)2/2)

]
(2.43)

T 0(x, y) := T∞ −
u2

∞ β2

2Cp

exp(−r(x, y)2) (2.44)

((x, y) ∈ [0, 1]× [0, 1]),

where u∞ and T∞ are the initialized homogeneous values of velocity and
temperature (with null component of velocity along the y direction), Cp is the
fluid’s heat capacity at constant pressure, β is the vortex strength, R is the
vortex radius, and r(x, y) :=

√
(x− x0)2 + (y − y0)2/R is the dimensionless

distance to the vortex core position (x0, y0). The fluid is considered to be
an ideal gas. Given the adiabatic nature of the vortex transport, the initial
density (ρ0) and pressure (p0) fields read

ρ0(x, y) := ρ∞(T 0(x, y) / T∞)
1

1−γgas (2.45)
p0(x, y) := ρ0(x, y)Rgas T

0(x, y), (2.46)

where Rgas = 287.15 J · kg−1 · K−1 is the ideal gas constant and ρ∞ :=
p∞/(Rgas T∞) is the initialized homogeneous value of density, defined for a
given initialized pressure p∞. The value of Rgas relates to dry air at 15◦C (or
288.15 K) and 101, 325 Pa, for which the adiabatic index value γgas = 1.4.
Finally, the characteristic quantities of the problem are given by

ρcharact := ρ∞, ucharact := u∞ ≡M∞ c∞, and lcharact := 1,

where M∞ is the Mach number and c∞ :=
√
γgas Rgas T∞ is the speed of

sound in the initialized homogeneous medium. Tbl. 2.2 illustrates the values
of parameters used to set the vortex initial condition.
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Experiment n.1: Training on a single isentropic vortex
Parameter Value
Vortex initial position (x0, y0) (0.5, 0.5)
Mach number (M∞) 0.5
Vortex strength (β) 0.2
Vortex radius (R) 0.1

Experiment n.2: Training on a set of isentropic vortices
Parameter Value
Vortex initial position (x0, y0) (0.5, 0.5)
Mach number (M∞) U(0.1, 0.6)
Vortex strength (β) U(0.1, 0.8)
Vortex radius (R) U(0.05, 0.15)

Experiment n.3: Training on a double shear layer
Parameter Value
Initialized x-velocity (u0(x, y)) 0.5 u∞{tanh[20(y−0.25)]

− tanh[20(y−0.75)]−0.2}

Initialized y-velocity (v0(x, y)) 0.5u∞ sin (4πx)
Mach number (M∞) 0.5

Parameters common to all experiments Value
Courant-Friedrichs-Lewy condition number (Nc) 0.8
Initialized pressure (p∞) 105

Initialized temperature (T∞) 300

Table 2.2: Parameter values used in all experiments of Sec. 2.3.2. U(a, b)
stands for a continuous uniform distribution on the real interval (a, b). First
introduced by Courant, Friedrichs, et al. (1928), the Courant-Friedrichs-Lewy
condition number Nc limits the simulation time step size for a given grid
spacing in order to correctly capture wave propagation. The international
system of units is used to express all values.



CHAPTER 2. INTRODUCING DATA-DRIVEN NUMERICAL SCHEMES 80

The dynamics of an isentropic vortex initial condition under the Euler
equations corresponds to its convection at the speed u∞ along the x direction.
In order to match the analytical vortex dynamics, the baseline CNN-PAL
model depicted in Tbl. 2.1 is trained to minimize the distance between its
predictions over time and the exact solution. For a given initial condition
U 0, the loss function reads (see Sec. 1.1.4)

L(U 0) := 1
Nstep

Nstep∑
k=1

∥∥∥U k
CNN-PAL −U k

exact

∥∥∥2

2
, (2.47)

where U k
CNN-PAL and U k

exact are the predicted and analytical solution states
at time step k, respectively. The variable Nstep denotes the length of the
forecasting window which the CNN-PAL model is trained to accurately pre-
dict. Since CNNs benefit from spatial translation invariance (see Sec. 1.1.3)
and the vortex dynamics simply corresponds to the convection of the initial
condition, one can expect that even a relatively small value of Nstep leads
to a trained CNN-PAL model that is capable to accurately perform long-
range forecasts. Two independent CNN-PAL models are trained to predict
Nstep = 4 and Nstep = 16 time steps. The outcomes of the training proce-
dures including error levels after one box turn of the initial condition are
summarized in Fig. 2.7. Additionally, the reader can find in Fig. 2.8 the spa-
tial discretization coefficients (i.e., α solution to Eq. (2.38)) predicted by the
CNN-PAL model before and after the training procedure with Nstep = 16.
Both sets of coefficients approximate the spatial derivatives of the fluxes
along the x direction at the enforced order of accuracy m = 2 (see Tbl. 2.1).
However, the ones predicted by the CNN-PAL model after the training pro-
cedure lead to a less dissipative evolution of the vortex. Finally, Fig. 2.8 also
shows that these coefficients better capture the symmetry of the problem
than those of the untrained model.

A second experiment (n.2) consisted of training CNN-PAL models for the
convection of a set of vortices (instead of a single one as in experiment n.1).
They are trained to predict Nstep = 16 time steps of the initial condition,
which led to better long-range forecasting accuracy levels in experiment n.1.
Fig. 2.9 shows the evolution of the mean value of the loss function (2.47)
during the training of two independent CNN-PAL models using datasets
with Ns = 32 and Ns = 128 samples (i.e., vortices) 3. A batch size Nb = 32

3The reader is referred to Sec. 1.1.4 for an explanation of the training procedure ter-
minology employed here.
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(a) (b)

Figure 2.7: Outcomes of experiment n.1 performed with two independent
CNN-PAL models trained to predict (a) Nstep = 4 time steps; (b) Nstep = 16
time steps of the evolution of the vortex depicted in Tbl. 2.2. (Top) Evolution
of training loss values across epochs. (Center) Evolution of L2 error of density
field over time. (Bottom) Absolute error of density field predicted by the
trained CNN-PAL models after one box turn of the vortex.
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Figure 2.8: Discretization coefficients along the x-direction generated by a
CNN-PAL model for the vortex convection analyzed in experiment n.1 (de-
picted in Tbl. 2.2). The "UNTRAINED" columns refer to the coefficients
returned by the CNN-PAL model before training, while the "TRAINED"
columns relate to the coefficients returned by the same CNN-PAL model af-
ter training. The coefficients are assigned to the neighborhood {(i−2, j), (i−
1, j), (i, j), (i + 1, j), (i + 2, j)} around each mesh point (i, j), composing a
centered stencil of size N = 5 (see Tbl. 2.1).
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was used. The training datasets are composed of vortices whose strength (β),
radius (R) and mach number (M∞) were drawn from uniform distributions,
as depicted in Tbl. 2.2. To assess the generalization capabilities of the trained
CNN-PAL models, one also tracks the evolution of the mean value of the
loss function (2.47) for an indepedent set of vortices, not used to train the
models. This set is referred to as the validation dataset, which contains
1024 vortices whose strength (β), radius (R) and mach number (M∞) were
drawn from uniform distributions in ranges of values identical to those of the
training datasets. Fig. 2.9 shows the evolution of the mean value of the loss
function (2.47) evaluated for the validation dataset. One can observe that
the difference in the sizes of the training datasets plays an important role in
generalization. The CNN-PAL model trained using Ns = 128 samples (see
Fig. 2.9(b)) better predicts Nstep = 16 time steps of the previously unseen
vortices composing the validation dataset than the CNN-PAL model trained
using Ns = 32 samples (see Fig. 2.9(a)).

In a last experiment (n.3), CNN-PAL models are trained for a different
initial condition. Namely, the (periodic) double shear layer. In this case,
the components u0 and v0 of fluid’s velocity along the x and y directions are
given by

u0(x, y) := 0.5u∞ {tanh [20(y − 0.25)]− tanh [20(y − 0.75)]− 0.2} (2.48)
v0(x, y) := 0.5u∞ sin (4πx) (2.49)

((x, y) ∈ [0, 1]× [0, 1]),

where u∞ is some preset value of velocity. The fluid’s density, pressure, and
temperature are initialized to the homogeneous values of ρ∞, p∞, and T∞,
shown in Tbl. 2.2. The characteristic quantities of the problem are given by

ρcharact := ρ∞, ucharact := u∞ ≡M∞ c∞, and lcharact := 1,

where M∞ is the Mach number and c∞ :=
√
γgas Rgas T∞ is the speed of

sound in the initialized homogeneous medium.
Unlike the time evolution of the isentropic vortex initial conditions used

in experiments n.1 and n.2, that of the double shear layer cannot be derived
analytically. In this experiment, reference dynamics for the training of the
CNN-PAL models is produced using a WENO5 scheme implementation for
the Euler equations, combined with the SSP Runge-Kutta third-order time-
stepping method (2.29). For systems of conservation laws such as the Euler
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(a)

(b)
Figure 2.9: Evolution of training and validation loss values across epochs
for independent CNN-PAL models trained to predict Nstep = 16 time steps
of the convection of vortices from training datasets composed of (a) Ns =
32 samples; (b) Ns = 128 samples. Results concern experiment n.2 (see
Tbl. 2.2).
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equations, the WENO flux reconstruction procedure can be performed in one
of the following ways: component- or characteristic-wise. The component-
wise reconstruction is the one described in Sec. 2.2.3. The characteristic-
wise reconstruction consists in applying the operations of the component-wise
reconstruction to the fluxes projected on a so-called characteristic space. The
projection is performed by the averaged flux Jacobian of the system, which
is recomputed at each time step. This makes characteristic-wise WENO
schemes much more computationally demanding than their component-wise
counterparts. Nevertheless, they produce better nonoscillatory results for
spatial orders of accuracy higher than 3 (Shu, 2009). For this reason, a
characteristic-wise WENO5 scheme is used here to generate reference data
for training. The reader is referred to the Algorithm 4.8 of Shu (1999) for
details on the characteristic-wise flux reconstruction procedure. Fig. 2.10
shows grid convergence error plots for the characteristic-wise WENO5 scheme
implementation considering the (smooth) isentropic vortex initial condition
from experiment n.1.

For a given double shear layer initial condition U 0, the loss function reads

L(U 0) := 1
Nstep

Nstep∑
k=1

∥∥∥U k
CNN-PAL −U k

WENO5

∥∥∥2

2
, (2.50)

where U k
CNN-PAL and U k

WENO5 are the predicted and reference solution states
at time step k, respectively. Two independent CNN-PAL models are trained
to predict Nstep = 16 and Nstep = 32 time steps. The outcomes of the
training procedures are summarized in Fig. 2.11. Firstly, one can notice
that the plots of the training loss values contain sudden peaks (see the top
part of Fig. 2.11). They are due to a reset of the optimizer every time the
training procedure is relaunched. Unique training procedures could not be
set due to time limit constraints of the cluster where these computations were
performed. Despite conducting training procedures with many more epochs
than those from experiments n.1 and n.2, one cannot observe improvement in
the prediction accuracy through training (see the central part of Fig. 2.11).
This happens because the errors of the different fields composing U are placed
at different orders of magnitude. The training procedure that employs the
loss function (2.50) tends to improve the accuracy of the predictions of the
fields with the largest error levels, to the detriment of the others (Sola and
Sevilla, 1997). To circumvent this, the loss function is modified to concern
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(a)

(b)
Figure 2.10: Grid convergence error plots for the WENO5 scheme imple-
mentation for the Euler equations considering either (a) mean L2 error or
(b) mean L∞ error of density field over one box turn of the baseline vortex
depicted in Tbl. 2.2. The variable h stands for the grid cell size along a single
direction.
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only the density field, which is the one with the lowest error levels:

L(U 0) := 1
Nstep

Nstep∑
k=1

∥∥∥ρk
CNN-PAL − ρk

WENO5

∥∥∥2

2
. (2.51)

One can expect that training CNN-PAL models using the loss function (2.51)
will reduce prediction error levels not only for density, but for all fields that
compose U , since the time evolution of each field relies on other fields as
well via the Euler equations. This is demonstrated by the results shown in
Fig. 2.12.

The three experiments described in the previous paragraphs (summarized
in Tbl. 2.2) demonstrate the capabilities of a CNN-PAL model to evolve
an initial condition in an accurate fashion. However, the enforcement of
stability conditions in the design of CNN-PAL models was not addressed
by their original authors, namely Bar-Sinai et al. (2019) and Kochkov et
al. (2021). The latter claimed that training for the prediction of longer
time series improved a model’s stability. Fig. 2.13 shows the evolution of
the energy field in a long-range forecasting of the double shear layer from
experiment n.3. The forecasting is performed by trained CNN-PAL models
from all three experiments. One can notice that even for the models trained
for the prediction of longer time series, the energy field experience a growth
after a certain time, which indicates lack of stability of the trained CNN-PAL
models. In the next chapter, a novel spectral analysis that helps to design
accurate and stable data-driven numerical schemes is proposed.
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(a) (b)

Figure 2.11: Outcomes of experiment n.3 performed with two independent
CNN-PAL models trained to predict (a) Nstep = 16 time steps; (b) Nstep = 32
time steps of the evolution of the double shear layer initial condition depicted
in Tbl. 2.2. The training proceure employs the loss function (2.50). (Top)
Evolution of training loss values across epochs. (Center) Evolution of L2
error of density field over time. (Bottom) Absolute error of density field
predicted by the trained CNN-PAL models after 40 simulation time steps.
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(a) (b) (c)

Figure 2.12: Outcomes of experiment n.3 performed with a CNN-PAL model
trained to predict Nstep = 32 time steps of the evolution of the double shear
layer initial condition depicted in Tbl. 2.2. The training procedure employs
the loss function (2.51). (a) Evolution of training loss values across epochs.
(b) Evolution of L2 error of density field over time. (c) Evolution of the
sum of L2 errors of density, components of momentum along the x and y
directions, and energy fields over time.

Figure 2.13: Evolution of energy values in the simulation of the double shear
layer from experiment n.3 (see Tbl. 2.2). The growth in energy values for
the trained CNN-PAL models after a certain time demonstrate numerically
unstable dynamics.



Chapter 3

Proposing a novel spectral
analysis

The previous chapter showed that the lack of stability constraints in for-
mulating data-driven numerical schemes could lead to unstable predicted
dynamics. This chapter introduces a novel spectral analysis that helps to
generate stable and accurate ML-based numerical methods called the Local
Transfer function Analysis (LTA). LTA transforms the problem of developing
stable and accurate numerical schemes into a constraint impedance-matching
problem in the spectral domain. Furthermore, using LTA, one can describe
the complete dynamics of the discrete numerical solution including some
specific numerical artifacts. The considered numerical method belongs to
the Taylor-Galerkin family of finite-element schemes. They are employed in
CERFACS’ solver AVBP for large-eddy simulations in an industrial context,
which is the ultimate application of the methodology proposed in this thesis.
For the linear convection equation, LTA predicts the generation of spurious
waves at the boundary between two distinct uniformly spaced domains and
the presence of a local linear instability at the junction. For the inviscid
Burgers’ equation, LTA is applied at a shock front to explain the emergence
of Gibbs’ phenomenon near the vicinity of the shock. LTA also shows the
lack of numerical dissipation at high wavenumbers for the Two-step Taylor-
Galerkin C (TTGC) scheme, which necessitates adding a diffusion term for
stability.

90
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3.1 The Taylor-Galerkin family of schemes
The Taylor-Galerkin (TG) schemes were designed to numerically solve con-
vection problems with high numerical accuracy and low numerical dissipation
and dispersion errors. The transport of some arbitrary quantity u = u(x, t)
over time and space (in 1D) can be modelled using the simple PDE shown
in Eq. (3.1):

ut = −cux, (3.1)
where c is the convective speed and u(x, 0) = u0(x) is the initial solution.
This convection operator can also be viewed as a one-sided wave equation
(wave moving only to the right). The subscripts (·)t = ∂

∂t
and (·)x = ∂

∂x

denote the partial derivatives with respect to the time and space, respec-
tively. For simplicity, spatial periodicity with a period x ∈ [0, 1] is assumed.
The first step of the TG formulation involves the approximation of the time
derivative in Eq. (3.1) using truncated Taylor series. Two levels of trunca-
tion with leading order of O(∆t2) and O(∆t4) are shown in Eq. (3.2)-(3.3),
respectively:

un
t = un+1 − un

∆t − ∆t
2 un

tt +O(∆t2) (3.2)

un
t = un+1 − un

∆t − ∆t
2 un

tt −
∆t2
6 un

ttt −
∆t3
24 un

tttt +O(∆t4), (3.3)

where the solution at time t = tn is denoted by un and the solution at
a perturbed time t = tn + ∆t is un+1. The temporal derivatives in the
truncated Taylor-series expression can be transformed into spatial derivatives
using Eq. (3.1). The simplest one-step numerical scheme is obtained from
Eq. (3.2) as (Roig, 2007)

δun = −(c∆t)un
x + (c∆t)2

2 un
xx, (3.4)

where δun := un+1 − un. Eq. (3.4) is similar to the Lax-Wendroff (FV-LW)
scheme used in a finite-volume context. Since the spatial derivatives are ob-
tained using a weak-formulation in the Galerkin finite-element method, one
obtains an additional mass-matrix on the RHS of Eq. (3.4), which distin-
guishes it from the FV-LW. More precisely, a linear basis function ψ also
called the hat function (plotted in Fig. 3.1) is considered to project the con-
tinuous operators to the discrete space of the basis function. It is defined
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ψ(x)

Figure 3.1: 1D linear finite-element shape function (hat function) with nodes
and elements enumerated.

as shown in Eq. (3.5), where hi defines the cell size or the width of the 1D
finite-element ei with end nodes i and i + 1. Note that the basis function
satisfies the sifting property ψi(xj) = δij, where δij is the Kronecker delta
function.

ψi(x) :=


0 for x < xi−1 or x > xi+1

h−1
i−1(x− xi−1) for xi−1 ≤ x < xi

1− h−1
i (x− xi) for xi ≤ x < xi+1

(3.5)

Using this basis allows to express the solution u in terms of its nodal values
uj defined at node j : u(x) =

N∑
j=1

ujψj(x). This basis when introduced
into the semi-discrete temporal TG formulation and upon taking the inner
product (Galerkin projection) with this same basis yields the complete weak
formulation of the TG finite-element method. The weak formulation of the
scheme (3.4) is shown in Eq. (3.6), where ⟨a, b⟩ =

∫
ab dx defines the inner

product of two arbitrary functions a = a(x) and b = b(x):

N∑
j=1
⟨δun

j ψj, ψi⟩ = −(c∆t)
N∑

j=1
⟨un

j (ψx)j, ψi⟩ −
(c∆t)2

2

N∑
j=1
⟨un

j (ψx)j, (ψx)i⟩.

(3.6)

In discretization (3.6), the last inner product is obtained through integration
by parts, eliminating the need for the basis function to be twice-differentiable.
According to Sec. 12.15.5 of T. Sengupta (2013), this form is considered to be
beneficial when the physical solution admits discontinuities. Furthermore, if
the governing equation can be cast in self-adjoint form, the linear algebraic
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equation which results from the discretization using integration by parts in-
volves symmetric matrix. This leads to significantly reduced computational
effort by achieving faster convergence. Discretization (3.6) is hereafter re-
ferred to as TG-LW for convenience. Assuming a regular mesh (i.e., hi ≡ h),
the integrals in Eq. (3.6) can be evaluated and simplified for the linear basis
function as follows:

h−1Mijaj =
N∑

j=1
⟨ajψj, ψi⟩ = ai+1 + 4ai + ai−1

6h (3.7)

Kijaj =
N∑

j=1
⟨ajψx,j, ψi⟩ = ai+1 − ai−1

2 (3.8)

h−1Dijaj =
N∑

j=1
⟨ajψx,j, ψx,i⟩ = ai+1 − 2ai + ai−1

h
, (3.9)

where ai is some arbitrary nodal value at node i of function a; M , K and D
are the mass, stiffness and damping matrices. The weak form of TG-LW can
be written in terms of these matrices as

Mijδũ
n
j = −NcKiju

n
j + N2

c

2 Diju
n
j , (3.10)

where Nc := h−1(c∆t) is the Courant-Friedrichs-Lewy (CFL) number, a non-
dimensional quantity that relates to stability conditions for the numerical
scheme as shown in Sec. 3.2.

Donea et al. (1987) developed two-step TG schemes in order to increase
time discretization accuracy. It starts by noticing that the 4th-order trunca-
tion of the time derivative ut from Eq. (3.3) can be rewritten as

un
t = un+1 − un

∆t − ∆t
2 ũn

tt +O(∆t4), (3.11)

where
ũn := un + ∆t

3 un
t + ∆t2

12 un
tt.

This leads to the two-step TG formulation

δũn = α∆t un
t + ᾱ∆t2 un

tt (3.12)

δun = ∆t un
t + ∆t2

2 ũn
tt, (3.13)
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where δũn := ũn − un and the parameters α = 1
3 and ᾱ = 1

12 produce the
so-called fourth-order TTG4A scheme. By choosing ᾱ = 1

9 , one obtains a
third-order scheme named TTG3. The Galerkin projection using the linear
basis function ψ generates the following weak form for TTG3/4A:

Mijδũ
n
j = −αNcKiju

n
j + ᾱN2

cDiju
n
j (3.14)

Mijδu
n
j = −NcKiju

n
j + N2

c

2 Dijũ
n
j . (3.15)

Colin and Rudgyard (2000) proposed a six-parameter TG scheme (namely,
{α, β, θ1, θ2, ϵ1, ϵ2}) that gives third-order accuracy with lower overall dissi-
pation (Eq. (3.16)-(3.17)):

δũn = α∆tun
t + β∆t2un

tt (3.16)
δun = ∆t(θ1u

n
t + θ2ũ

n
t ) + ∆t2(ϵ1u

n
tt + ϵ2ũ

n
tt). (3.17)

By performing the Fourier stability analysis assuming a linear finite-element
basis, they obtained the optimal values for the six-parameter model. The
optimal values reduce the scheme to the single parameter Two-step Taylor-
Galerkin C (TTGC)-γ scheme for which

α = 1
2 − γ, β = 1

6 , θ1 = 0, θ2 = 1, ϵ1 = γ, ϵ2 = 0. (3.18)

Note that γ is a free parameter that controls the dissipation at high wavenum-
bers. The TTGC-γ scheme is third-order accurate on regular meshes. For
the parameter setting α = 1

3 , β = ᾱ, θ1 = 1, θ2 = 0, ϵ1 = 0 and ϵ2 = 1
2 ,

the TTG4A (ᾱ = 1
12) and TTG3 (ᾱ = 1

9) schemes of Donea et al. (1987) can
be derived from this same six-parameter family. The weak form of TTGC-γ
can be written in terms of the mass, stiffness and damping matrices from
Eq. (3.7)-(3.8)-(3.9) as follows:

Mijδũ
n
j = −αNcKiju

n
j + βN2

cDiju
n
j (3.19)

Mijδu
n
j = −NcKijũ

n
j + γN2

cDiju
n
j . (3.20)

3.2 Stability, dissipation and dispersion anal-
ysis

Recently, Najafiyazdi et al. (2018) derived a low-dispersion and dissipation
TTG scheme starting from the TTGC. They show that using multi-staging
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one can prevent the evaluation of the third-order spatial derivative that is
tedious to obtain for Euler and Navier-Stokes equations. In addition, they
provide the connection between the multistage Runge-Kutta (RK) schemes
and the TG family of schemes. In fact, TTGC is a sub-class of the Turan-
type RK methods. An important problem not fully addressed by Colin and
Rudgyard (2000) is the determination of the optimal γ considering a range
of Nc values. The authors utilize a single global optimal value for γ for a
fixed Nc. Using a single global value for γ as in Colin and Rudgyard (2000)
demands additional artificial dissipation when solving non-linear system with
shock or jump discontinuities on irregular meshes (Roux et al., 2010). In this
section, spectral properties of TG schemes in general are depicted and a novel
spectral analysis based on local spatio-temporal features is proposed in order
to theoretically approach the aforementioned problem for the TTGC scheme
in particular.

3.2.1 Global Spectral Analysis (GSA)
Traditional spatial and temporal order of error analysis merely gives the
leading truncation error in space and time but does not shed light on the
stability and spatio-temporal evolution of the numerical solution. The nu-
merical stability of a discretization of a PDE is classically studied using the
von Neumann analysis (Charney et al., 1950). It is based on the decomposi-
tion of the numerical error into Fourier series. The numerical scheme is said
to be stable if the errors do not grow unboundedly over time.

Nevertheless, the von Neumann analysis presents limitations: it is appli-
cable to spatially periodic problems only; it implicitly assumes no interactions
among the Fourier modes of the numerical error; and it assumes that the nu-
merical error and the numerical solution follow the same dynamics (Sagaut
et al., 2023). T. Sengupta, Ganeriwal, et al. (2003) addressed these limi-
tations by proposing a novel analysis named the Global Spectral Analysis
(GSA). GSA provides information on both the stability and spatio-temporal
behavior of the numerical solution. This is achieved by transforming the
discretized form and the governing equation into the spectral space using a
bi-directional Fourier-Laplace transformation:

u(x, t) =
∫

Ω

∫
K
U(k, ω)ei(kx−ωt)dk dω, (3.21)

where k and ω are the spatial wavenumber and temporal frequency, respec-
tively. The convective problem in Eq. (2.4) transforms to the simplified ex-
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pression ω = kc in the spectral space. This is the physical dispersion relation
that relates the phase speed (c) to the wavenumber (k) and circular frequency
(ω). In addition to the individual phase speed of a wave it is also possible to
define the velocity associated with a group of waves called the group velocity,
vg := dω/dk. For linear dispersive wave propagation, the energy propagates
at the group velocity (and not at the phase speed), making it much more
important than the phase. Rayleigh (1899) was instrumental in establishing
the theory of group velocity, as opposed to phase speed. In addition, for
non-dispersive linear propagation, the phase speed and group velocity are
the same. Due to the discretization procedure, the numerical solution rather
follows the so-called numerical dispersion relation ωN = cNk, where cN is the
numerical phase speed (T. K. Sengupta and Dipankar, 2004). Since numeri-
cal solutions are almost always dispersive, matching of numerical and exact
group velocities becomes critical to accurately capture the energy dynamics
of the system. The amplification factor (G) is another important quantity
that measures the amount of dissipation and that affects the dispersion the
solution undergoes within a time interval of ∆t. More precisely, G affects the
value of the numerical phase speed cN , which differs from its physical value c.
Since the linear convection in Eq. (2.4) is non-dissipative and non-dispersive,
its amplification factor is Gphy := e−ikc∆t ≡ cos(kc∆t)−i sin(kc∆t), for which
|Gphy| = 1.

To obtain the numerical amplification, the existence of a continuous initial
condition u(x, tn) at some time level tn is considered. Let Û(k, tn) be the
spatial Fourier transform of the function at tn and Û(k, tn+∆t) is the solution
at tn + ∆t. The functions can be defined using their Fourier transforms as
shown below:

u(x, tn) :=
∫
K

Û(k, tn)eikxdk (3.22)

and

u(x, tn + ∆t) :=
∫
K

Û(k, tn + ∆t)eikxdk. (3.23)

The discrete sampling of this function at points xi is performed by sifting with
the Dirac delta function δ(x−xi) transforming the samples into a generalized
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function representation as shown in Eq. (3.24)-(3.25):

un
i = u(x, tn) ∗ δ(x− xi) =

∫
X
u(x, tn)δ(x− xi)dx

=
∫

X

[∫
K
Û(k, tn)eikxdk

]
δ(x− xi)dx

=
∫

K

[∫
X
Û(k, tn)eikxδ(x− xi)dx

]
dk

=
∫
K

Û(k, tn)eikxidk (3.24)

un+1
i = u(x, tn + ∆t) ∗ δ(x− xi) =

∫
K

Û(k, tn + ∆t)eikxidk (3.25)

Note that X in the integral is the spatial domain of the problem and ∗
is the generalized product (Kanwal, 2004; Lighthill, 1958). In general, the
limits of the integration is −∞ < k < ∞ but in the case of equally spaced
spatial samples (h), the Nyquist sampling theorem states that the numerical
scheme can represent wavenumbers only within the range −π < p < π, where
p := kh.

The numerical amplificationGnum is then defined as the ratio of the spatial
Fourier transforms at time tn and tn + ∆t as shown below (T. Sengupta,
Dipankar, et al., 2007):

Gnum := Û(k, tn + ∆t)
Û(k, tn)

:= Ûn+1

Ûn
(3.26)

Here the numerical phase cN and group vgn velocities are obtained using the
real ℜ(Gnum) and imaginary ℑ(Gnum) parts of the numerical amplification as
follows (T. Sengupta, Dipankar, et al., 2007):

cN

c
:= ϕc

pNc

(3.27)

vgn

c
:= 1

Nc

dϕc

dp
, (3.28)

where

ϕc := − arctan
(
−ℑ(G)
ℜ(G)

)
, Nc := c∆t

h
, (3.29)
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and

dϕc

dp
:= 1
|G|2

(
ℑ(G)dℜ(G)

dp
−ℜ(G)dℑ(G)

dp

)
. (3.30)

An ideal numerical scheme for the convection equation must have unit value
for the above defined ratios, i.e., satisfies the condition |Gnum|/|Gphy| = 1,
cN/c = 1 and vgn/vg = 1. Due to the presence of finite dissipation and
dispersion errors in numerical schemes, these ratios tend to deviate from this
unit value. T. Sengupta, Dipankar, et al. (2007) give an exact dynamics of
the solution error ϵ := (unum − u) in the numerical solution unum using the
above defined ratios using the error propagation equation shown below:

∂ϵ

∂t
+ c

∂ϵ

∂x
=− c

[
1− cN

c

]
∂unum

∂x

−
∫ (

vgn − cN

k

) k∫
0

ik′U0|Gnum|
t

∆t eik′(x−cN t)dk′

 dk
−
∫ ln (|Gnum|)

∆t U0|Gphy|
t

∆t eik(x−cN t)dk (3.31)

It is interesting to note that the error follows the same dynamics as the exact
equation with extra source terms defined by the dispersion and dissipation
errors. The main highlight of GSA is that it identifies that the constant
phase in Eq. (2.4) does not remain a constant, rather the numerical phase
speed (cN) is found to be a function of wavenumber (k), an attribute causing
dispersion of numerical solution (T. K. Sengupta and A. Sengupta, 2016).
For a detailed comparison of GSA with other spectral analysis the reader is
referred to T. K. Sengupta and Dipankar (2004); T. Sengupta (2013).

3.2.2 Application of GSA to Taylor-Galerkin schemes
In order to obtain the numerical amplification, the spatial Fourier transform
is applied to the weak numerical discretization (generalized function repre-
sentation for the samples) in Eq. (3.19)-(3.20) for the TTGC-γ scheme over
equally spaced spatial samples and one obtains the following expression

̂̃
U

n

= Ûn − iαNcM̂
−1K̂Ûn + βN2

c M̂
−1D̂Ûn (3.32)

Ûn+1 = Ûn − iNcM̂
−1K̂

̂̃
U

n

+ γN2
c M̂

−1D̂Ûn, (3.33)
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Method
Amplification factor (G)

Real part ℜ(G) Imaginary part ℑ(G)

Pure convection from Eq. (3.1) cos(pNc) − sin(pNc)

FV-LW (see Roig (2007)) 1 + 2−1N2
c D̂ −NcK̂

TG-LW from Eq. (3.4) 1 + 2−1N2
c ÂD̂ −NcÂK̂

TTG3/4A (see Donea et al. (1987)) 1 + 2−1N2
c ÂD̂(1 + ᾱN2

c ÂD̂) −NcÂK̂(1 + 6−1N2
c ÂD̂)

TTGC-γ from Eq. (3.35) 1 + γN2
c ÂD̂ − α(NcÂK̂)2 −NcÂK̂

(
1 + βN2

c ÂD̂
)

Table 3.1: Amplification factor (real and imaginary part) for indicated nu-
merical method; where Â ≡ M̂−1.

where the transformed mass, stiffness and damping matrices are given by

M̂ = 3−1 [2 + cos(p)] , K̂ = sin(p), D̂ = 2 [cos(p)− 1] ,

and p = kh, where k is the spatial wavenumber of the solution in the trans-
formed plane. The amplification factor (Gnum) for the TTGC-γ numerical
discretization is shown in Eq. (3.34)-(3.35):

G̃ =
̂̃
U

n

Ûn
= 1− iαNcM̂

−1K̂ + βN2
c M̂

−1D̂ (3.34)

Gnum = Ûn+1

Ûn
= 1− iNcM̂

−1K̂G̃+ γN2
c M̂

−1D̂ (3.35)

Notice that the numerical amplification Gnum is a complex function which
varies with Nc and p, i.e., Gnum = Gnum(Nc, p). Therefore, finite dissipation
and dispersion errors in the numerical solution are almost always found.
To compare the numerical and physical amplification the following ratios are
considered: (i) damping ratio (|Gnum|/|Gphy|), (ii) phase velocity ratio (cN/c)
and (iii) group velocity ratio (vgn/vg). A summary of the amplification factor
for the various TG numerical schemes is provided in Tbl. 3.1. The contour
plot of the three ratios for the numerical schemes shown in Tbl. 3.1 are plotted
in Fig. 3.2 versus CFL number (Nc) and non-dimensional wavenumber (p =
kh). All figures stacked column-wise are the ratios |Gnum|/|Gphy|, cN/c and
vgn/vg, while stacked row-wise are the various numerical methods forming a
figure matrix.
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Figure 3.2: Comparison of column-wise (i) |Gnum|/|Gphy|; grey area shows
unstable region |G| > 1, (ii) cN/c; grey area shows region where 0.95 ≤
cN/c ≤ 1.05 and dotted line is p = 1.5 and (iii) vgn/vg; grey area shows
GVP region 0.95 ≤ vgn/vg ≤ 1.05 and dotted line is p = 1 for the indicated
methods (row-wise (a-e)) tabulated in tbl. 3.1.
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3.2.2.1 Group velocity preservation

Group velocity preservation is critical compared to preserving the phase
speed because, in dispersive systems, the group velocity is the true mea-
sure of energy propagation (Rayleigh, 1899). The Group Velocity Preserving
(GVP) region (grey shaded area in the vgn/vg contours of Fig. 3.2) is defined
as the numerical group velocity vgn within the ±5% tolerance of the physical
value. Fig. 3.2(ii) shows the GVP region for various numerical schemes. It
is worth noting that TG schemes have much larger GVP regions compared
to the second order FV-LW scheme, which makes them more suitable for
unsteady computations. This feature is attributed to the additional mass-
matrix term that bestows a compact stencil to the gradient and diffusion
terms.

3.2.2.2 Filtering effect of the mass-matrix

Two features are common to the Taylor-Galerkin schemes considered here
(TG-LW, TTG3, TTG4A and TTGC-γ), namely: (i) they have similar GVP
regions and (ii) their GVP regions are much larger than that of FV-LW
(for relatively low values of the CFL condition number). This is mainly
attributed to the addition of mass-matrix which produces a compact stencil
for the gradient evaluation similar to the compact schemes in finite-difference.
This is the reason one can find a stark contrast in the GVP region between
the FV-LW and other TG schemes. Note that the additional mass-matrix
term (A ≡ M−1) improves significantly the GVP region but at the cost of
reduced stability in TG-LW scheme. To illustrate this, the values of Â are
plotted in Fig. 3.3 for the Nyquist range 0 ≤ kh ≤ π: the inverse mass-
matrix term A ≡ M−1 compensates the dissipation and dispersion at high
wavenumber components by adding anti-diffusion. The role of A in GVP can
be confirmed by noticing that the GVP region of the simple one-step TG-LW
is quite similar to that of other two-step schemes for relatively low values of
the CFL condition number. This is the primary reason approximations to
mass-matrix (by lumping) generate unwanted dispersion errors (Guermond
and Pasquetti, 2013). Petrov-Galerkin (PG) schemes (Cardle, 1995) exploit
this filtering property of mass-matrix to introduce upwind basis function that
adds stabilization by modifying the matrix as M∗ = I+ 6−1(1−βc)D, where
βc is a parameter that controls stabilization. For (i) βc = 0 one recovers the
exact mass-matrix (M∗ = M), (ii) βc = 1 one obtains a block-diagonal form
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Figure 3.3: Inverse mass-matrix spectral plot (Â = M̂−1) compared with the
dissipation D̂ to illustrate its anti-diffusive character and the stabilization
effect of βc.

(M = I) similar to the FV-LW and (iii) βc > 1 the stabilization behaves
like an implicit filter filtering out the high wavenumbers. The inverse of
mass-matrix (A = M−1) is plotted in Fig. 3.3 for 0 ≤ p ≤ π. Essentially
changing βc reduces the anti-diffusion character of M−1 resulting in increased
dispersion and dissipation.

The dissipation and GVP regions for the TG-LW scheme are plotted in
Fig. 3.4 for βc ∈ {0, 0.5, 0.85, 1}. The stability of the TG-LW scheme is
greatly improved by higher values of βc. At the same time the operational
CFL of the scheme can also be increased significantly by varying the pa-
rameter. For convection-diffusion equation, Cardle (1995) gives a variety of
choices for βc based on the type of temporal discretization. Berzins (2001)
suggests to use a non-linear function for βc that preserves the positivity of
the mass-matrix for stabilization and shock capturing.
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βc = 0 βc = 0.5 βc = 0.85 βc = 1

Figure 3.4: Dissipation (solid contour) and GVP region (blue contour) for
various βc values in TG-LW scheme; wavy regions are numerically unstable.

Figure 3.5: |Gnum|/|Gphy| contours for indicated values of parameter γ in
the TTGC-γ scheme; (i) grey shaded area indicates numerically unstable
regions (|Gnum| > 1) and (ii) blue shaded region indicates the group velocity
preserving zone (0.95 ≤ vgn/vg ≤ 1.05).
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Figure 3.6: Global CFL number versus maximum stable γ = γmax; stable
region obtained from GSA indicated in grey shaded area.

3.2.2.3 Need for tuning parameters and adaptive nature of TTGC-
γ scheme

An interesting feature is that the TTGC-γ scheme of Colin and Rudgyard
(2000) can vary its spectral properties at high wavenumbers by varying γ.
The variation of the modulus of the amplification factor of the TTGC-γ
scheme by varying γ is shown in Fig. 3.5. This is not possible in TTG3/4A
that does not have this tunable parameter. The possibility of redesigning the
TTGC-γ such that one varies γ based on the CFL and attenuate spurious
waves to some extent is raised. But one must be careful to ensure stability
because at higher values of γ the scheme becomes unstable for larger Nc.
The range of maximum allowable γ = γmax can be deduced from the stability
analysis and is shown in Fig. 3.6.

3.2.3 Locally tunable TTGC-γ scheme (TTGC-γL)
Using GSA, it was shown that parameters with local behavior in the numer-
ical scheme are essential for achieving optimal accuracy. In irregular meshes,
even if the convection speed c and time step ∆t are kept constant, the local
CFL number Nc (= h−1c∆t) of the finite-element will differ from one ele-
ment to another due to variation in local cell size (h). Note that non-linear
convective equations even on regular meshes (uniformly spaced) give rise to
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variable convective speeds across elements. Therefore, it is clear that for ir-
regular meshes and non-linear convective systems, choosing the right value of
γ becomes critical to the successful application of the TTGC scheme. These
results motivate the construction of a locally tunable TTGC-γ scheme called
TTGC-γL. This scheme allows local variations in γ to minimize errors due
to numerical dispersion/dissipation contrary to fixing a global γ value in
the original TTGC-γ formulation. The weak form of the original TTGC-γ
scheme is stated as

N∑
j=1
⟨δũn

jψj, ψi⟩ = −α(c∆t)
N∑

j=1
⟨un

j (ψx)j, ψi⟩ − β(c∆t)2
N∑

j=1
⟨un

j (ψx)j, (ψx)i⟩

(3.36)
N∑

j=1
⟨δun

jψj, ψi⟩ = −(c∆t)
N∑

j=1
⟨ũn

j (ψx)j, ψi⟩ − γ(c∆t)2
N∑

j=1
⟨un

j (ψx)j, (ψx)i⟩,

(3.37)
where α = 2−1 − γ and β = 6−1. To build TTGC-γL, the coefficients of the
original TTGC-γ scheme are redefined using elemental γ values, i.e., γ can
vary from one element to another. Given that the support of ψi is [xi−1, xi+1],
the sums in Eqs. (3.36)-(3.37) are expressed in the scope of TTGC-γL as

N∑
j=1
⟨δun

jψj, ψi⟩ ←− δun
i−1⟨ψi−1, ψi⟩

+ δun
i ⟨ψi, ψi⟩

+ δun
i+1⟨ψi+1, ψi⟩ (3.38)

α
N∑

j=1
⟨un

j (ψx)j, ψi⟩ ←− un
i−1⟨αei−1(ψx)i−1, ψi⟩

+ un
i

[
⟨αei−1 (ψx)i|ei−1 , ψi|ei−1⟩+ ⟨αei

(ψx)i|ei
, ψi|ei

⟩
]

+ un
i+1⟨αei

(ψx)i+1, ψi⟩ (3.39)

γ
N∑

j=1
⟨un

j (ψx)j, (ψx)i⟩ ←− un
i−1⟨γei−1(ψx)i−1, (ψx)i⟩

+ un
i

[
⟨γei−1 (ψx)i|ei−1 , (ψx)i|ei−1⟩+ ⟨γei

(ψx)i|ei
, (ψx)i|ei

⟩
]

+ un
i+1⟨γei

(ψx)i+1, (ψx)i⟩, (3.40)
where γei

is the value of γ associated with the finite-element ei (with end
nodes i and i+1) and αei

:= 2−1−γei
. Finite element codes on unstructured
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grids make use of the so-called element sub-domain paradigm, which consists
in splitting any integrals into a sum over the sub-domains or elements (Löh-
ner, 2008). The restrictions of the sums (3.38)-(3.39)-(3.40) to an element ei

are expressed as N∑
j=1
⟨δun

jψj, ψi⟩

 ∣∣∣∣∣∣
ei

←− δun
i ⟨ψi|ei

, ψi|ei
⟩

+ δun
i+1⟨ψi+1, ψi⟩ (3.41)α N∑

j=1
⟨un

j (ψx)j, ψi⟩

 ∣∣∣∣∣∣
ei

←− un
i ⟨αei

(ψx)i|ei
, ψi|ei

⟩

+ un
i+1⟨αei

(ψx)i+1, ψi⟩ (3.42)γ N∑
j=1
⟨un

j (ψx)j, (ψx)i⟩

 ∣∣∣∣∣∣
ei

←− un
i ⟨γei

(ψx)i|ei
, (ψx)i|ei

⟩

+ un
i+1⟨γei

(ψx)i+1, (ψx)i⟩. (3.43)

Considering the coordinate x ∈ [0, hi] for the element ei, one has ψi(x) :=
1 − x/hi and ψi+1(x) := x/hi. This results in the following expressions for
the inner products in the restrictions (3.41)-(3.42)-(3.43):

⟨ψi|ei
, ψi|ei

⟩ =
∫ hi

0
(1− x/hi)2 dx = hi/3

⟨ψi+1, ψi⟩ =
∫ hi

0
(1− x/hi)x/hi dx = hi/6

⟨αei
(ψx)i|ei

, ψi|ei
⟩ =

∫ hi

0
(1− x/hi)(−αei

/hi) dx = −αei
/2

⟨αei
(ψx)i+1, ψi⟩ =

∫ hi

0
(1− x/hi)(αei

/hi) dx = αei
/2

⟨γei
(ψx)i|ei

, (ψx)i|ei
⟩ =

∫ hi

0
(−γei

/hi)(−1/hi) dx = γei
/hi

⟨γei
(ψx)i+1, (ψx)i⟩ =

∫ hi

0
(γei

/hi)(−1/hi) dx = −γei
/hi.
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Finally, the TTGC-γL scheme can be represented in a compact and conve-
nient elemental matrix form as shown in Eqs. (3.44)-(3.45):∑

e

PeMeδũ
n
e = −∆t

∑
e

αePeKeu
n
e + β∆t2

∑
e

PeDeu
n
e (3.44)∑

e

PeMeδu
n
e = −∆t

∑
e

PeKeũ
n
e + ∆t2

∑
e

γePeDeu
n
e , (3.45)

where the mass Me, stiffness Ke, dissipation De matrices, and the unknown
nodal degree of freedom ue are given by

Me = hi

3

[
1 1

2
1
2 1

]
, Ke = 1

2

[
−c c
−c c

]
,De = 1

hi

[
−c2 c2

c2 −c2

]
and ue =

[
ui

ui+1

]
.

(3.46)
Assembly of the local mass, stiffness and damping is performed element-
wise to obtain the global ones. The symbol Pe represents a permutation
matrix that maps the local degrees of freedom into the correct row entries
in the global matrix. Inspired from the edge-based FEM schemes of Löhner
(2008); Luo et al. (1994) and control-volume FEM (CV-FEM) of Baliga and
Patankar (1980) and that of Bochev, Peterson, and Gao (2013); Bochev,
Peterson, and Perego (2015), a splitting of the integrals into a diagonal term
Kdiag

e and a dual control-volume edge-flux contribution Kcv
e to the stiffness

matrix is introduced and yields the following:

Ke =
[
−c 0
0 c

]
− 1

2

[
−c −c
c c

]
= Kdiag

e − 1
2Kcv

e (3.47)

In the split stiffness term, only the off-diagonal edge contribution is weighted
using the element local αe value, i.e., the first step of the TTGC-γL becomes

∑
e

PeMeδũ
n
e =− α∆t

∑
e

PeKdiag
e un

e + ∆t
2
∑

e

αePeKcv
e u

n
e

+ β∆t2
∑

e

PeDeu
n
e , (3.48)

where α = 2−1− γ is a global value as used in the original TTGC-γ of Colin
and Rudgyard (2000). Note that this split flux formulation is introduced
only for the stiffness term in the first sub-step. The main highlight of the
TTGC-γL scheme is that the stabilization comes directly from the problem of
adjusting γe such that the numerical solution matches the physical problem
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while maintaining the stability. For γe > 0, the off-diagonal flux residual
is weighted by αe = 2−1 − γe so it behaves like a local flux limiter for the
convective term on the first step of TTGC-γL. For the second TTGC-γL step
it provides additional damping (since γe > 0). By adjusting γe, unresolved
waves can be dissipated while excessive dissipation can be reduced in regions
that are fully resolvable by the numerical scheme.

3.2.3.1 Extension to inviscid Burgers’ equation

The inviscid Burgers’ equation (3.49) in non-conservation form with periodic
boundary conditions is considered:

ut + uux = 0. (3.49)

Applying the weak formulation using Taylor-Galerkin expansion to Eq. (3.49),
one obtains the following elemental matrix form of the TTGC-γL scheme for
the inviscid Burgers’ equation similarly to the linear convection as∑

e

PeMeδũ
n
e = −∆t

∑
e

αePeKeu
n
e + β∆t2

∑
e

PeDeu
n
e (3.50)∑

e

PeMeδu
n
e = −∆t

∑
e

PeKeũ
n
e + ∆t2

∑
e

γePeDeu
n
e , (3.51)

where the mass Me, stiffness Ke, dissipation De matrices and the unknown
nodal degree of freedom ue are given by

Me = hi

3

[
1 1

2
1
2 1

]
, Ke = 1

6

[
−2ui ui+1 + ui

−(ui+1 + ui) 2ui+1

]
, (3.52)

De = 1
3hi

[
−u2

i u2
i+1

u2
i −u2

i+1

]
and ue =

[
ui

ui+1

]
. (3.53)

Pe is a permutation matrix that maps the local degrees of freedom into the
correct row entries in the global matrix. By specifying the appropriate initial
conditions for the state u(x, t = 0) the solution can be marched forward in
time. Similar to the convection discretization, the splitting of the stiffness is
introduced in the first TTGC-γL step into a diagonal term Kdiag

e and a dual
control-volume edge-flux contribution Kcv

e for the stiffness matrix that gives

Ke = 1
3

[
−ui 0

0 ui+1

]
− 1

6

[
−ui+1 −ui+1
ui ui

]
= Kdiag

e − 1
2Kcv

e . (3.54)
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The splitting and overall form of the final stiffness terms in Eq. (3.47) and
Eq. (3.54) are quite similar. The elemental αe weights the off-diagonal term,
whereas a constant global optimal value α = 2−1 − γ weights the main-
diagonal terms (similar to Eq. (3.48)). In the next section, the analytical
framework to optimize the local γe values that lead to a stable and accurate
numerical scheme is presented.

3.2.4 Local Transfer function Analysis (LTA)
GSA gives the global behavior of the numerical solution vis-a-vis the exact
one (dissipation, dispersion, energy propagation speed, etc.). However, the
analysis of numerical schemes on non-uniform meshes has been restricted to
a subset of meshes whose global structure is known (T. K. Sengupta, Ra-
jpoot, Saurabh, et al., 2011; T. K. Sengupta and A. Sengupta, 2016; N.
Sharma et al., 2017). This section considers the numerical convection of a
wave packet (WP) with a central wavenumber k and phase speed c = 1 on
a mesh that has a jump discontinuity in the mesh spacing at some location
x0 is analyzed. The mesh is equally distributed with a spacing of hL and hR

to the left and right of x0 with a jump in size τ = hRh
−1
L = 2 at x0. Fig. 3.7

displays the numerical solution at various time steps for the TTGC-γ scheme
with a constant γ = 0.01 and central frequency of khL = 0.8. The location
of x0 is indicated using the blue dot and the yellow dots are the mesh nodes.
The frequency of this WP is chosen such that the wave is fully resolved (i.e.,
inside the GVP region) on the left and slightly above the GVP region on
the right. This results in the generation of upstream propagating numerical
waves that reflect off the junction x0 toward the left boundary. Non-linear
equations admit shock solutions that produce CFL (Nc) jumps across the
shock even on regular meshes and result in a similar behavior. Due to the
local nature of this problem, GSA in its current form cannot be used for this
analysis.

This motivates the extension of GSA by a new approach which will be
named Local Transfer function Analysis (LTA). In LTA, the local numeri-
cal amplification G represents the transfer function (of the discrete form)
that dictates the dynamics of all degrees of freedom. Therefore, one can con-
ceive these local transfer functions (elemental or nodal degree of freedom) as
transfer function blocks forming a circuit block diagram as shown in Fig. 3.8.
The impedance or the local transfer function can be obtained as follows. The



CHAPTER 3. PROPOSING A NOVEL SPECTRAL ANALYSIS 110

c

t = 26 Δt c

c

t = 48 Δtt = 38 Δt

Figure 3.7: Convection of WP on mesh with discontinuity at junction (♦
is the junction) showing upstream reflected waves indicated by ←−  and
actual wave propagation direction indicated by −→ c;  are the mesh nodes.

hL hR

(a) (b) (c)

1D mesh Cell impedance Nodal impedance

Figure 3.8: Cell and nodal impedance matching problem using local-transfer
function; the dash-pot models externally added artificial dissipation.

residual at node i has contributions from the two elements eL[ui−1, ui] on the
left and eR[ui, ui+1] on the right. Let τ be the (non-dimensional) ratio of the
element sizes eL and eR (i.e., hR = τhL). For linear convection with constant
velocity c, one can define the CFL ratios NR

c := τ−1 h−1
L c∆t = τ−1 NL

c . In
doing so, the mass, stiffness, and damping matrices for each side (left and
right elements) can be obtained, which leads to the following form of TTGC:

MLũn
i −MLun

i + αL(c∆t)KLun
i − β(c∆t)2DLun

i =
− (MRũn

i −MRun
i + αR(c∆t)KRun

i − β(c∆t)2DRun
i ) (3.55)

MLun+1
i −MLun

i + (c∆t)KLũn
i − γL(c∆t)2DLun

i =
− (MRun+1

i −MRun
i + (c∆t)KRũn

i − γR(c∆t)2DRun
i ), (3.56)
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where

MLui = hL

3

(
ui−1

2 + ui

)
, MRui = τhL

3

(
ui+1

2 + ui

)
,

KLui = −ui−1 + ui

2 , KRui = ui+1 + ui

2 ,

DLui = ui−1 − ui

hL

and DRui = ui+1 − ui

τhL

. (3.57)

Following the generalized function GSA approach, one can substitute the
Fourier transform counterpart of the operators to this left/right TTGC form
to obtain

M̂L(G̃− 1) + αLNcK̂
L − βN2

c D̂
L = −

(
M̂R(G̃− 1) + αRNcK̂

R − βN2
c D̂

R
)

(3.58)
M̂L(G− 1) +NcK̂

LG̃− γLN2
c D̂

L = −τ
(
M̂R(G− 1) +NcK̂

RG̃− γRN2
c D̂

R
)
,

(3.59)

where

M̂L = 1
3

(
e−ip

2 + 1
)
, M̂R = τ

3

(
eiτp

2 + 1
)
, K̂L = −e

−ip + 1
2 , K̂R = eiτp + 1

2 ,

D̂L = e−ip − 1, D̂R = eiτp − 1
τ

, p = khL and Nc = NL
c . (3.60)

Rearranging into a new form,
TTGC step 1:

G̃ = M̂L − αLNcK̂
L + βN2

c D̂
L

M̂L + M̂R
+ M̂R − αRNcK̂

R + βN2
c D̂

R

M̂L + M̂R

G̃ = G̃L + G̃R (3.61)

TTGC step 2:

G = M̂L −NcK̂
LG̃+ γLN2

c D̂
L

M̂L + M̂R
+ M̂R −NcK̂

RG̃+ γRN2
c D̂

R

M̂L + M̂R

G = GL +GR (3.62)

Under the assumption of periodicity, Eqs. (3.61)-(3.62) help to idealize the
finite element discretization into an electrical/acoustic circuit having local
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Figure 3.9: |G| contours of LTA nodal impedance (a) |Gi−1| (left node),
(b) |Gi| (junction node) and and (c) |Gi+1| (right); solid shaded region is
numerical phase speed within ±5% error of exact phase speed (DRP region),
vertical striped region indicates the spectral spread of the WP in terms of
local Nyquist frequency p; contours of local instability shown in red (thicker)
contour lines (1, 1.1).

impedance of GL contributing from the left element and GR from the right
element for a given junction i. Therefore, for maximum transmission of
the wave power, one has to satisfy the impedance matching condition, i.e.,
GL = G†

R, where (·)† is the complex conjugate. For minimum reflection, the
matching condition becomes GL = GR. Alternatively, one can also match the
nodal impedances, i.e., Gi+1 = Gi or Gi+1 = G†

i , where the nodal impedance
Gi := Gi|L +Gi|R is simply the sum of the left/right elemental impedances.
Therefore, one has the freedom to change the local characteristics of the
numerical scheme by impedance matching for (i) minimizing wave reflection
or (ii) minimizing the dissipation of the wave energy at the junction. Note
that perfect matching by tuning the numerical scheme might not be possible
over the entire range of Nc and p. Additional damping is usually added
(especially near discontinuities) in order to filter such problematic waves
(idealized as dash-pots in LTA, as illustrated in Fig. 3.8).

3.2.4.1 Further analysis of the junction problem

The |G| contours of the nodal impedance Gi−1, Gi and Gi+1 for the propa-
gation of the WP across a junction of mesh discontinuity (described in the
beginning of Sec. 3.2.4 and summarized in Fig. 3.7) is plotted in Fig. 3.9(a-c).
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An important feature to notice in Fig. 3.9 is the unstable region (shown in red
contour lines) of the numerical amplification Gi at the junction. This implies
that the wave gains energy while crossing the junction. It is clearly evident
in the numerical solution at t = 26∆t and t = 38∆t plotted in Fig. 3.7 that
the wave gains amplitude from a value u ≈ −0.5 to a value u ≈ −0.75. The
reason this local instability does not develop into a global one is due to the
stability of the impedance to the left and right of the junction and that the
numerical phase speed at the junction is non-zero. As a result, the wave
simply moves away from the junction before it can gain sufficient amplitude.

The spectral spread of the WP in terms of the local Nyquist frequency
p is indicated by the vertical striped region. The values NL/R

c = {0.4, 0.2}
of the local CFL numbers on the left and right side of the junction were
deliberately chosen in a region of zero numerical dissipation, i.e., |G| = 1
for the entire spectrum of the WP. The nodal impedance Gi−1 is within the
DRP region (±5%) but, in the case of the nodal impedance Gi+1, a small
fraction of the WP falls outside DRP. This leads to a mismatched impedance
that produces reflections. Vichnevetsky and Bowles (1982) show that the
semi-discrete form of the convection equation is also a consistent discretiza-
tion for the wave equation. Hence, it admits both a downstream numerical
solution called the p-wave (physical) and an upstream numerical solution
called the q-wave (spurious). They also mention that at discontinuities of
the computational domain, spurious q-waves are generated, for example, at
computational boundaries. The junction problem can also be viewed as a
discontinuity in the computational domain that produces spurious reflected
q-waves propagating upstream. At the computational boundary, Vichnevet-
sky and Bowles (1982) employ time-Fourier transforms to derive the reflection
ratio ρ(ω) = q(ω)p−1(ω) in terms of the q-wave and p-wave solution to the
semi-discrete form. Using the LTA, one can obtain the reflection ratio of the
junction problem as shown below:

ρi− 1
2

= Gi−1 −Gi

Gi−1 +Gi

and ρi+ 1
2

= Gi −Gi+1

Gi +Gi+1
(3.63)

Unlike the problem at the computational boundary, the interior junction
problem requires matching the two nodal impedance to the left and right of
the junction to avoid spurious reflection. Note that the reflection formula in
Eq. (3.63) is quite general and can be applied at the computational boundary
to obtain the boundary reflection ratio similar to Vichnevetsky and Bowles
(1982). |ρ| gives the magnitude of the reflected wave in terms of the incident
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(a) (b)

Figure 3.10: Contour of reflection ratio magnitude (|ρ|) due to nodal
impedance mismatch between (a) (i− 1)-(i) and (b) (i)-(i+ 1) for the junc-
tion problem for varying CFL (0 < Nc < 1) and frequency (0 < p < π/2).

wave at the junction between the two nodal impedance and is plotted in
Fig. 3.10 for the range of CFL number 0 < Nc < 1 and frequency 0 < p <
π/2. For the given spectral spread of the WP the LTA predicts a reflected
q-wave with amplitude between 1-5% of the incident wave at the junction,
which is confirmed by the numerical simulation (see Fig. 3.7). Note that q-
waves (reflections) are present almost for the entire Nyquist spectrum of the
incident WP at the junction albeit the amplitudes are very low for khL < 0.5.
For an irregular mesh, several such junctions make the reflected and incident
wave dynamics highly complex.

3.2.4.2 LTA and the spatial spectrogram

It is possible to leverage a spatial analogue of the time-frequency spectral
analysis, i.e., space-wavenumber (SW) analysis along with LTA to yield some
interesting results. The idea is to construct a spectrogram of the function
in the spatial domain and analyze the individual spectrogram snapshots us-
ing LTA to infer global error behavior. To extract this localized SW, spa-
tially compact Fourier transform (SFT) can be used. SFT is a linear space-



CHAPTER 3. PROPOSING A NOVEL SPECTRAL ANALYSIS 115

Figure 3.11: Space-wavenumber idealization and local neighborhood of nodal
and elemental impedance to the continuous initial condition u(x, tn) leading
to the solution at the next step u(x, tn+1).

wavenumber (SW) transform that correlates the spatial signal with a family
of waveform that are well concentrated in spatial and wavenumber domain.
The localized SW kernel is chosen such that it is centered around a spatial
location ξ yielding the following forward SFT, Û(x, k) of a function u(x):

Û(x, k) =
∫
u(ξ)g(ξ − x)e−ikxdξ. (3.64)

Here g(ξ, x) is the symmetric, normalized (i.e., ∥g∥ = 1) and real valued
window function that is compactly supported in space. One can recover the
inverse SFT as shown in Eq. (3.65):

u(x) =
x

Û(x, k)g(x− ξ)eikxdkdξ (3.65)

and the Parseval’s identity for the SFT as shown in Eq. (3.66), respectively:∫
|u(x)|2dx =

x
|Û(x, k)|2dxdk. (3.66)

Let u(x, t) be a spatio-temporally evolving function which is sampled in time
at two time instances tn and tn+1. Fig. 3.11 shows the two snapshots of the
solution u(x, tn) and u(x, tn+1) and an underlying spatial discretization for
numerically evolving the solution. One can now make use of the generalized
product with the delta function to obtain the numerical amplification in the
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SW domain (similar to the approach shown in Sec. 3.2.1):

Ûj(k, tn) =
∫
Û(x, k, tn)δ(x− xj)dx

=
∫ [∫ (

u(ξ, tn)g(ξ − x)e−ikx
)
δ(x− xj)dx

]
dξ

=
∫
u(ξ, tn)g(ξ − xj)e−ikxjdξ, (3.67)

and the generalized product of the delta function with the inverse SFT yields

uj(tn) =
∫ [x

Û(x, k, tn)g(x− ξ)eikxdkdξ
]
δ(x− xj)dx

=
x

Ûj(k, tn)g(xj − ξ)eikxjdkdξ. (3.68)

The window function g(xj−ξ) must have compact support and it is useful to
make its support equal to the Nyquist limit of the underlying discretization
(shaded region in Fig. 3.11).

3.2.4.3 Error norm and maximum power impedance matching

Vichnevetsky and Bowles (1982) applied the Parseval’s identity to connect
the l2 norm of solution error in the physical space to the spectral domain.
Motivated by his work, the l2 solution error will be expressed in terms of the
local impedance model used in LTA. It is considered the squared l2 norm
of the error between the numerical and exact solution at time step n + 1
assuming a known continuous initial solution at time step n. The error is
denoted by L2(un+1) and defined below:

L2(un+1) :=
∫
|ϵ(x, tn+1)|2dx =

∫
|u(x, tn+1)− ū(x, tn+1)|2dx

≈
∑

j

hj+1/2|ϵn+1
j |2 =

∑
j

hj+1/2|un+1
j − ūn+1

j |2. (3.69)

The index j denotes the nodal position as illustrated in Fig. 3.11. In LTA,
the nodal impedance Gj at node j is idealized as the sum of the elemental
impedances to the left (GL) and right (GR) of the node i.e., Gj = GL +GR.
Now the error ϵ̂n+1 in the Fourier space is given by

ϵ̂n+1 = Ûn+1 − ̂̄
U

n+1
≈
∑

j

ϵ̂n+1
j =

∑
j

Ûn
j (Gj −Gphy). (3.70)
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By applying Parseval’s identity to the error ϵ one can connect the l2 norm
of error in the physical and spectral space as

L2(un+1) ≈
∑

j

hj+1/2|ϵn+1
j |2dx =

∑
j

∫
|ϵ̂n+1

j |2dk

=
∑

j

∫
|Ûn

j |2(Gj −Gphy)(G†
j −G

†
phy)dk.

(3.71)

By using the polar form of the complex impedance contributed by the left
and right finite-element of node j denoted as GL = |GL|eiϕL and GR =
|GR|eiϕR then the nodal impedance can be expressed using the polar form
as |Gj|eiϕj = |GL|eiϕL + |GR|eiϕR . Note that the physical impedance for the
convection problem is Gphy = |Gphy|eiϕphy = e−ikc∆t. Now the l2 norm of
solution error in Eq. (3.71) can be expressed using this polar form of nodal
impedance as

L2(un+1) ≈
∑

j

∫
|Ûn

j |2
(
|Gj|2 + |Gphy|2

)
dk

− 2
∑

j

∫
|Ûn

j |2|Gj||Gphy| cos (ϕj − ϕphy) dk (3.72)

and using the polar form of elemental impedance, the l2 norm of solution
error can be expressed using the form below:

L2(un+1) ≈
∑

j

∫
|Ûn

j |2
(
|GL|2 + |GR|2 + |Gphy|2

)
dk

+ 2
∑

j

∫
|Ûn

j |2|GL||GR| cos (ϕL − ϕR) dk

− 2
∑

j

∫
|Ûn

j |2|GL||Gphy| cos (ϕL − ϕphy) dk

− 2
∑

j

∫
|Ûn

j |2|GR||Gphy| cos (ϕR − ϕphy) dk. (3.73)

To minimize the error between the numerical and the exact solution, one
should minimize the l2 error objective L2(un+1). A minimum objective
is reached when the minimum satisfies the conditions, |Gj| ≈ |Gphy| and
ϕj = ϕphy, i.e., the numerical and physical transfer functions match. This
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naturally means that the wave power is maximized, since |Gj| ≈ |Gphy| en-
sures minimum dissipation. Comparing Eq. (3.72) and Eq. (3.73) with the
individual impedances of the left and right elements in Eq. (3.60) it is triv-
ial to show that the elemental transfer function has tendency to have op-
posing elemental phase angles ϕL ≈ −ϕR. Therefore, the minimization of
L2(un+1) is a good approximation to the maximum power impedance match-
ing GL ≈ G†

R. For the minimization of L2(un+1) to perform maximum power
matching it is critical to impose the stability constraint on |GL|, |GR|, i.e.,
|GL|2 + |GR|2 ≤ 1 and bound them close to the physical impedance value.
Otherwise, the minimum solution can lead to an unstable scheme.

3.2.4.4 Total-variation diminishing (TVD) condition

Harten (1983) reasoned that the linear stability of a scheme does not imply its
convergence to discontinuous solutions of nonlinear problems. He introduced
a stronger stability criterion, namely the uniform boundedness of the total
variation of the numerical solution. This condition implied convergence to
the weak solution. The 1-norm total-variation of a discrete quantity u is
given by TV (u) =

N∑
i=1
|ui+1 − ui|. Harten defines a numerical scheme Eh to

be total variation diminishing (TVD) if

TV (Eh · u) ≤ TV (u) (3.74)

and showed that numerical schemes with TVD property can successfully
capture shocks. Motivated by the work of Harten, a connection between the
TVD and the impedance matching condition is sought. It is considered the
2-norm total variation (TV2) defined as

TV 2(un) = 1
2

∫ ∣∣∣∣∣dudx
∣∣∣∣∣
2

dx = 1
2

∫
lim
h→0

∣∣∣∣∣un(x+ h)− un(x)
h

∣∣∣∣∣
2

dx

≈ 1
2
∑

i

hi+ 1
2
|ϵn

h|2 = 1
2
∑

i

|un
i+1 − un

i |2

hi+ 1
2

. (3.75)

Let ϵ̂n
h be the error in the spectral space for the element formed by the

nodes i+ 1 and i. Using the fact that translation in x by h becomes simple
multiplication by eikhi+1/2 in the spectral space, one obtains

ϵ̂n
hi+1/2

= Ûn
i+1e

ikhi+1/2 − Ûn
i = Ûn

i

(
eikhi+1/2 − 1

)
(3.76)



CHAPTER 3. PROPOSING A NOVEL SPECTRAL ANALYSIS 119

Similarly, one can express ϵ̂n+1
h as

ϵ̂n+1
hi+1/2

= Ûn+1
i+1 e

ikhi+1/2 − Ûn+1
i = Ûn

i

(
Gi+1e

ikhi+1/2 −Gi

)
(3.77)

Using Parseval’s identity, one can show that the TV2 from Eq. (3.75) in the
spectral space is given by

TV 2(un) ≈ 1
2
∑

i

∫
|ϵ̂n

hi+1/2
|2dk = 1

2
∑

i

∫
|Ûn

i |2(eikhi+1/2 − 1)(e−ikhi+1/2 − 1)dk

=
∑

i

|un
i |2 −

∑
i

∫
|Ûn

i |2 cos(khi+ 1
2
)dk.

(3.78)

Similarly, one can obtain the spectral equivalent of TV 2(un+1) as

TV 2(un+1) ≈
∑

i

|un+1
i |2

− 1
2
∑

i

∫
|Ûn

i |2
(
Gi+1G

†
ie

ikhi+1/2 +G†
i+1Gie

−ikhi+1/2
)
dk

(3.79)

For the solution at time n+1 to be bounded, the TV 2 norm of the solution at
n+1 has to be bounded by the exact solution TV 2(un+1

exact), i.e., TV 2(un+1) ≤
TV 2(un+1

exact). Since the physical amplification for the convection equation is
|Gphy| = 1, the condition simplifies to

TV 2(un+1) ≤ TV 2(un). (3.80)

For a stable numerical scheme, one can require |Gi+1|, |Gi| ≤ 1, which will
automatically satisfy TV 2 condition if one imposes the stronger element-wise
condition:∫
|Ûn

i |2
(
Gi+1G

†
ie

ikhi+1/2 +G†
i+1Gie

−ikhi+1/2 − 2 cos(khi+1/2)
)
dk ≤ 0. (3.81)

Firstly, a striking similarity of the TV 2 condition in Eq. (3.80) with the one
derived by Harten can be found. Secondly, Eq. (3.81) shows that the TV 2
equality is valid strictly element-wise if the impedance satisfies the matching
condition Gi+1 = Gi. This brings out the one-to-one relationship between
the TVD and the impedance matching condition. Satisfying the TVD condi-
tion is critical to suppress the spurious waves generated near shock because
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it leads to minimum reflection impedance matching (not maximum power
transmission) as shown by the local transfer function analysis. To achieve
minimum reflection, TVD schemes typically sacrifice the conservation of to-
tal energy in the wave (power loss), which is what one finds in practice. The
2-norm TV 2 is considered (rather than the 1-norm TV ) because it directly
relates to the total energy of the wave, which is conserved in pure convection.
One arrives at the same expression by applying the 1-norm TVD condition
of Harten point-wise and squaring to obtain the point-wise 2-norm TVD.

3.2.5 LTA of the inviscid Burgers’ equation
From the LTA perspective, both linear and non-linear convection are equiv-
alent because linearization or averaging (Griewank and El-Danaf, 2009; Ra-
madan and El-Danaf, 2005; Ucar et al., 2017) is used to march the solution
from one time step to another. This attribute motivates extending LTA to
the non-linear inviscid Burgers’ equation shown in Sec. 3.2.3.1. To derive the
LTA for non-linear Burgers’ equation, it is made the key assumption that the
linearization is performed with respect to the time level n (marching solution
to n+1) and keeps the same throughout the sub-step in time leading to n+1.
For Nc < 1, this is a good approximation, since the changes to the lineariza-
tion at sub-steps are minimal. A sub-stepwise impedance matching can also
be performed but this approach is not shown in the current work. Once the
linearization is complete, the convection velocity ci = un

i should be main-
tained a constant from n to n+ 1 as per the assumption. Let τcR|i := ci+1/ci

and τcL|i := ci−1/ci, be two ratios which measure the deviation in velocity
between the nodes i + 1, i and i− 1, i, respectively. Applying the Fourier-
Laplace transform to this linearized system and rearranging, one obtains a
two step impedance formula that looks exactly the same as the convection
case (shown in Eq. (3.61) and Eq. (3.62)); but the stiffness, damping and
CFL number Nc are modified as

K̂L = −τcL(e−ip + 1)
6 , K̂R = τcR(eτip + 1)

6 ,

D̂L = τ 2
cLe

−ip − 1
3 , D̂R = τ 2

cRe
iτp − 1
3τ and Nc = h−1

L ci∆t. (3.82)
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Figure 3.12: LTA model at a Burgers shock (a) initial condition (solid line)
and appearance of solution over-/undershoots (dotted line) created by the re-
flected waves from impedance mismatch and the individual nodal impedance
(b-d) from elemental ones.

3.2.5.1 Analysis at the Burgers’ shock

A simplified scenario of a Burgers’ initial solution containing a shock spread
over three nodes i + 1, i and i − 1 is considered. The value of u transitions
from u = 1 (before shock) to u = 0 (after shock). Besides, mesh distribution
of nodes is assumed to be uniform, i.e., τ = 1. A schematic of the problem
is illustrated in Fig. 3.12(a). The LTA dissipation (|G|) and phase angle
(ϕ) for the three nodal impedances (linearized) shown in Fig. 3.12(b-d) are
plotted in Fig. 3.13. Behind the shock, large variations in phase angle
in comparison to aft of the shock take place. This indicates that heavier
reflections should occur behind the shock compared to the aft of the shock.
Fig. 3.14 shows the numerical solution to a moving shock problem with the
given initial conditions for the first two steps using TTGC scheme and one
can observe exactly the same behavior as predicted by LTA. Book (2005)
made similar observations that the phase angle variation was the primary
cause for the appearance of over/undershoot at shocks.
|G|i contours at the junction i reveals a locally linear unstable region

(|G| > 1) indicated by the grey area in Fig. 3.13. Therefore, the spurious
reflections will grow and sustain behind the shock. Comparing the numerical
results at t = ∆t and t = 2∆t (see Fig. 3.14), one finds the same behavior as
predicted by the LTA. For a standing shock problem, the reflected numerical
waves have phase speeds close to zero, resulting in piling up of reflected
waves at each time step due to this local instability, which continuously
feeds energy leading to numerical blowup. Here, simply adjusting γ is not
sufficient to remove this local instability and demands additional external
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Figure 3.13: Dissipation |G| and phase angle ϕ of the local nodal transfer
function Gi+1, Gi, and Gi−1; grey shaded region are numerically unstable
(|G| > 1). Note that the phase angle mismatch between Gi−1 and Gi is
much more severe than Gi and Gi+1.
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(a) (b)

Figure 3.14: Time evolution of numerical solution zoomed near the Burgers’
shock for the first (left) and second (right) time step from the initial condi-
tion.

dissipation. Note that by adding additional dissipation, one solves a modified
inviscid Burgers’ equation (Eq. (3.83)) that spreads the shock over multiple
cells improving stability (reduced τc) and high kh waves are damped which
reduces the spurious reflected waves (impedance mismatch).

∂u

∂t
+ u

∂u

∂x
= 0 (in smooth regions)

∂u

∂t
+ u

∂u

∂x
− ν ∂

2u

∂x2 = 0 (near shocks and high gradients) (3.83)

To test the improved stability using artificial dissipation, two variants are
considered; where an explicit dissipation term is added (i) at the end of
every time step and (ii) at the end of every sub-step of the TTGC-γ scheme.
The elemental form of the explicit dissipation term D∗

e and its left/right local
transfer function D̂∗,L/R are given by

D∗
e = νe∆t

h2
i

[
−1 1
1 −1

]
, D̂∗,L = PeL(e−ip − 1) and D̂∗,R = PeR(eip − 1),

(3.84)
where νe is the element local value of the coefficient of the artificial viscosity
term and PeL/R = νL/R∆t

h2 are the non-dimensional Péclet number (S. Sen-
gupta et al., 2022) of the left and right elements, respectively. Since TTGC-
γ has two sub-steps, the effective viscosity in variant (ii) will be twice the
amount added in the variant (i) case. |G|i contour of the nodal LTA at the
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shock location i for the variants (i) and (ii) is shown in Fig. 3.15(a)-(b), re-
spectively. A constant Péclet number value of PeL/R = 0.5 is used for variant
(i) and PeL/R = 0.25 at each sub-step for the variant (ii) case. For the results
in the plots, a constant γ value of γ = 0.01 was maintained. Firstly, it can be
observed that variant (i) is unstable both in the low and high wavenumber
regimes and variant (ii) is unstable only in the low wavenumber regime. In

(a) (b) (c)

Figure 3.15: |G| contours of local transfer function at shock location i for the
TTGC-γ scheme for Burgers’ equation (a) for variant (i) with Pe = 0.5, (b)
variant (ii) with Pe = 0.25 and (c) variant (ii) with Pe = 0.375.

(a) (b) (c)

Figure 3.16: Time step t = 16∆t for the evolution of a square wave initial
condition under Burgers’ equation, where ∆t is the simulation time step. (a)
for variant (i) with Pe = 0.5, (b) variant (ii) with Pe = 0.25 and (c) variant
(ii) with Pe = 0.375. Red lines delimit region near shock front where artificial
viscosity is added.

the numerical simulations, as shown in Fig. 3.16, variant (i) produced unsta-
ble numerical results. On the contrary, even in the presence of the unstable
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region at low wavenumber, it was found that variant (ii) was stable even for
a stationary shock problem. The numerical stability of variant (ii) becomes
clear when one considers the spectral energy cascade of the viscous Burgers’
equation shown below (Reid, 1956):

d
[
Û(k)Û †(k)

]
dt

= dÊ(k)
dt

= T (k)−D(k), (3.85)

where Û(k) is the complex representation of the Burgers’ state u in the
wavenumber space, (·)† is the complex conjugate, D(k) = 2νk2Ê(k) repre-
sents the rate at which energy is dissipated by wavenumber k, and T (k) is
the net rate at which energy is input into the wavenumber k. For problems
in 1D, T (k) can be represented using the following form:

T (k) =
∑
k∗
T (k, k∗) = −ikℑ

[
Û †(k)Û(k∗)Û(k − k∗)

]
(3.86)

Note that the term T (k, k∗) is the energy transfer into the wavenumber k
due to its interaction with an arbitrary wavenumber k∗. A positive value of
T (k, k∗) indicates the interactions add energy into k from k∗ and a negative
value indicates the removal of energy from k into k∗. For the Burgers’ equa-
tion, T (k, k∗) is always (i) negative for k∗ > k, (ii) positive for k∗ < k and
(iii) zero for k∗ = k (Girimaji and Zhou, 1995). This means a given scale
with wavenumber k always draws energy from larger scales (k∗ < k) and con-
tinuously loses energy to smaller scales (k∗ > k). Therefore, any numerical
instability in scales at the lower wavenumber k (i.e., |G(kh)| > 1) will sub-
sequently be transferred to the scales in the higher wavenumber, which the
numerical scheme can dissipate (via the term D(k)). As a result, the energy
budget in Eq. (3.85) remains bounded thus providing the stability in variant
(ii). For certain critical values of ν, Reid (1956) shows that a local or global
back-scatter (i.e., reversal of the energy cascade) can occur. By prevent-
ing the usual cascade of energy, back-scatter prevents the transfer of energy
from lower wavenumbers (k) to higher ones (k∗ > k); if |G(kh)| > 1 and
D(k) is insufficient then this will result in a numerical blowup. In numerical
experiments, it was found that for Pe > 0.3 the variant (ii) was unstable (see
Fig. 3.16(c)) showing such a behavior. The instability at lower kh also makes
it impossible to remove over-/undershoots for all shock strengths by simply
adding dissipation. Nevertheless, one can manage the instability by bound-
ing E(k) using the dissipation term D(k). Vajjala et al. (2020) applied GSA
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to the convection-diffusion equation and report a similar route to instability,
which they attribute to numerical focusing; a sudden build up of energy in
a focused region of the domain. A similar behavior for the Burgers’ shock
was observed: the build up of errors in lower kh triggers a focused growth
of instability near the shock at higher kh. The energy cascade equation is
able to clearly explain this numerical focusing or transfer of energy from the
unstable low wavenumber region to the higher ones leading to this energy
build up.

Using LTA, quantitative and qualitative analyses of numerical schemes
on irregular meshes and for non-linear equations were performed. Addition-
ally, LTA suggests that one can optimize numerical schemes either by max-
imizing power transmission (Sec. 3.2.4.3) or by suppressing spurious waves
(Sec. 3.2.4.4). The next chapter is dedicated to exploring the optimization
framework resulting from LTA, which can be used to design stable and ac-
curate data-driven numerical schemes.



Chapter 4

Optimizing TTGC-γL and
Machine-Learned TTGC
(ML-TTGC)

In the previous chapter, a novel spectral analysis for numerical schemes
called the Local Transfer function Analysis (LTA) was introduced. Using
LTA, one can formulate a multi-objective optimization framework for de-
signing optimal numerical schemes with stability constraints. This chapter is
dedicated to defining and exploring this framework. Firstly, an optimization
procedure is used to tune the parameter γ of the original TTGC scheme by
introducing element local (optimal) γ values resulting in the new TTGC-γL

scheme (shown in Sec. 3.2.3). However, this procedure is computationally
expensive, and its application at every time step is inefficient in practice. A
message-passing Graph Neural Network (GNN) model (shown in Sec. 1.1.3)
is used as a surrogate model to predict the element local optimal values of γ
in the TTGC-γL. The resulting numerical method is named ML-TTGC. It
is used to evolve in time 1D problems governed by the Convection/Burgers’
equations. ML-TTGC can diminish dissipation and dispersion errors other-
wise produced by the original TTGC scheme. This shows a promising avenue
that replaces human-defined rules for numerical methods (often derived for
linear systems and on regular grids) with machine-learned discretizations
(that will handle non-linear systems and irregular grids).

127
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4.1 The optimization problem resulting from
LTA

The LTA results derived in Chapter 3 are used to construct a constrained
multi-objective optimization framework for numerical schemes. To demon-
strate this framework, the considered problem is that of estimating the opti-
mal γ parameter of the TTGC-γL numerical scheme (defined in Sec. 3.2.3).
The optimization problem is defined as a weighted sum of the two objectives,
(i) maximum power output and (ii) minimum reflection as

min
γ

θ(GL −G†
R) + (1− θ)(Gi+1 −Gi)

s.t. |GL|2 + |GR|2 ≤ |Gphy|2 (stability condition), (4.1)

where 0 ≤ θ ≤ 1 is the scalarizing weight and θ = 1 implies maximum power
while θ = 0 implies minimum reflection. GL/R and Gi/i+1 are the local left-
/right elemental and nodal impedance in 1D (or an edge in 2D). While LTA
enabled to clearly define the design parameters, the correct objective func-
tion and constraints for designing numerical schemes, practical enforcement
of the impedance matching condition to adjust the dispersion and dissipation
characteristics is inconvenient in the spectral space. Since the numerical so-
lution is calculated in the time domain and the objective function is defined
in the spectral domain it is convenient to enforce these spectral conditions
indirectly in the time domain to optimize the local parameter γ in TTGC-γL.
Using the results from Sec. 3.2.4.3-3.2.4.4, one can show that the equivalent
time domain optimization problem is

min
γ

θL2(un+1) + (1− θ)
[
δTV (un+1) + |δTV (un+1)|

]
|GL|2 + |GR|2 ≤ |Gphy|2 (stability condition), (4.2)

where un+1 is the numerical solution at time n+ 1 obtained from a previous
time un and ūn+1 is a reference or exact solution at time n + 1. The term
δTV (un+1) is the difference between the total-variation of the numerical and
exact or reference solution, i.e., δTV (un+1) = TV 2(un+1)−TV 2(ūn+1). Since
TVD enforcement is of interest (for minimum reflection impedance match-
ing), i.e., TV 2(un+1) ≤ TV 2(ūn+1), only the numerical variations that are
higher than the exact or reference solution in the objective are considered.
Note that the quantities L2 and TV 2 defined in Eq. (3.75) and Eq. (3.69)
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have different mesh scaling of O(h) and 1
O(h) , respectively. Hence, for all the

optimization studies the L2 and TV 2 errors are non-dimensionalized using
the average element size havg to bring them to the same order of magni-
tude, i.e., (havg)−1L2 and havg TV 2, respectively. The optimization problem
should be solved at every time step n to estimate the optimal γ that gives
the best numerical solution un+1 without violating the constraints. Albright
and Shashkov (2020) also found that a balance between L1-norm of the er-
ror and 1-norm of total variation (i.e., TV measure) is beneficial in their
data-driven optimization of artificial viscosity parameters. LTA corroborates
theoretically that a similar competing multi-objective measure of the numer-
ical error using L2 and TV is inevitable.

In this work, known exact solutions to the convection problem are used
as reference values to obtain the optimal γ. Given the scalar objective in
Eq. (4.2) and as many γ as the number of finite-elements, the problem is
best suited for adjoint-based gradient optimization. By employing the reverse
mode of AD (as explained in Sec. 1.2.2), one can obtain exact gradients at
a low computational cost, since it is independent of the number of input
parameters (Griewank and Walther, 2008).

These optimal values are then used to build a surrogate model that learns
to predict these optimal γ values simply given the solution and discretiza-
tion. Surrogate models using Machine Learning (ML) have proven to be quite
reliable and computationally efficient at representing large dimensional prob-
lems (Lapointe et al., 2020; Müller et al., 2019). An important specificity of
the data structure here is that unstructured meshes are unsuitable to simple
convolutional layers used in many popular neural network architectures, for
example, but can instead be represented as a type of graph, as explained in
Sec. 1.1.3. Geometric Deep Learning is a dedicated subfield that use graph
abstractions to treat relations between entities without prior constraints on
their spatial structure, making them most suitable for this task. Battaglia
et al. (2018) recently proposed Graph Neural Network (GNN) models for
unstructured mesh simulations to provide physically consistent rollouts of
dynamical systems (Pfaff et al., 2021; Sanchez-Gonzalez et al., 2020). These
GNNs are natural candidates to learn to predict γ directly on the mesh in
this study, and are therefore selected employing the representations described
later.

A new numerical method named ML-TTGC is proposed, in which the
locally tunable TTGC-γL’s elemental γ values are predicted using the GNN
surrogate model. Such a data-driven discretization of the governing equation
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benefits from improved convergence properties by enforcing stability into the
ML architecture using LTA. This is a key differentiation of ML-TTGC from
recent works on data-driven discretization (Bar-Sinai et al., 2019; Kochkov
et al., 2021), where stability cannot be guaranteed or enforced easily. More
precisely, the neural network can be constrained to return γ values within
the stable regions of TTGC-γL predicted by the LTA. So for any initial con-
dition, one can enforce stable evolution of the solution. Recent applications
of ML models by Stevens and Colonius (2020) and Kossaczká et al. (2021) to
enhance Weighted Essentially Non-Oscillatory (WENO) methods exploited
the consistency and stability of the original schemes into the ML model. Mel-
land et al. (2021) replaced the artificial viscosity component of an existing
staggered-grid Lagrangian hydrodynamics numerical scheme with a learnable
function in the form of an artificial neural network. Magiera et al. (2020) in-
troduced a constraint-resolving layer that allows their ML-based surrogate
model of a Riemann solver to exactly satisfy the Rankine-Hugoniot condition.
An important building block of ML-TTGC is the LTA, which helps identi-
fying the relevant input features for the network. For example, it is known
that variations in local CFL number (Nc) and wavenumber spectrum kh of
the solution dictate the local optimal value of γ, which in turn changes the
impedance. Such a physics-based feature engineering has proven to be use-
ful and effective in the literature. For example, Woo et al. (2022) enhanced
time-series forecasting performance by extracting dominating seasonal pat-
terns with Fourier transformations.

4.2 Numerical implementation and verifica-
tion of the optimization

This section verifies that the optimization settings defined above leads to
a stable evolution of the numerical solution free from spurious waves. The
existence of the optimum is critical to the success of the ML surrogate in pre-
dicting it. All experiments were conducted in a differentiable solver written
in the Julia language (Bezanson et al., 2017) and the gradients were obtained
using the source transformation AD package Zygote (presented in Sec. 1.3.4).
Sequential Least-Squares Quadratic Programming (SLSQP) (Kraft, 1994)
gradient-based optimizer in the NLopt (Johnson, 2007) library was used to
solve the constrained multi-objective optimization problem. The optimiza-
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Figure 4.1: Study n.1. Spatio-temporal evolution of numerical error in the
solution to the WP convection (Eq. (4.3)); WP and its Fast Fourier Transform
(FFT) along with the comparison of numerical errors of optimized and un-
optimized TTGC and the optimal γNLopt obtained using NLopt are plotted
for central wavenumbers (a-c) k0h = 0.4, (d-f) k0h = 0.6, and (g-i) k0h = 0.8
respectively.
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tion results are compared to the exact solution and to the output of TTGC-γ
using the recommended global optimal value of γ = 0.01 by Colin and Rudg-
yard (2000). The stability condition |G| < 1 translates into bounded γ values
to be set in the optimizer. Non-positive and zero value of γ are unstable, so
the lower bound γmin = 0.001. The upper bound of γ is calculated conserva-
tively using GSA (γmax in Fig. 3.6) for the smallest element size that yields a
stable result. The optimization procedure is verified for the linear convection
of a Wave Packet (WP) with the following form:

u(x, t) = sin [k0(x− ct− x0)] exp
[
−α(x− ct− x0)2

]
(x ∈ [0, 1], t ≥ 0),

(4.3)

where k0 is the central wavenumber of the WP, parameter α controls the
spectral spread of the WP and x0 is the spatial location of the centre of the
WP and c is the convection speed.

In the first study (n.1), the TTGC-γL scheme applied to an equally spaced
mesh is optimized. The convection of WP of relatively low wavenumbers
(k0h < 1.0, inside the GVP region illustrated in Fig. 3.2(e)) on a mesh
containing 100 cells (i.e., h = 0.01) is analyzed. Fig. 4.1(a, d, g) show the
spatial and spectral content of the considered initial conditions.

The spatio-temporal evolution of the numerical error ε := |u(x, t) −
uN(x, t)| defined by the absolute difference between the analytical u(x, t)
and numerical uN(x, t) solution is plotted for the (i) original TTGC-γ de-
noted by εTTGC and (ii) the locally optimized TTGC-γ denoted by εNLopt as
a dedicated subfield of the graphs shown in Fig. 4.1(b,e,h) respectively for
indicated kh in the leftmost column. Firstly, one can observe that the opti-
mized scheme has significantly lower error compared to the original scheme
thus indicating that an optimal γ exists. Fig. 4.2 plots the order of error con-
vergence with mesh refinement for the two schemes. The optimized scheme
follows the same order of convergence of the original scheme but the entire
error curve is shifted (reduced) by an order of magnitude (10−1). The third-
order error convergence of TTGC family of schemes is observed only where
the wave packet is inside the GVP region. Outside or near the periphery of
the GVP (kh > 1.0) the order of error fails to conform to the third-order
behaviour. Qualitatively, the GVP demarcates the smooth or well-resolved
region where order of error is valid (Brooks and T. J. Hughes, 1982).

Fig. 4.1(c, f, i) plot the optimal value of γ obtained for the various WP
with central wavenumber k0h = 0.4, 0.6, 0.8 in the x−t plane. Firstly, one can
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Figure 4.2: (a) Numerical error convergence with mesh refinement (b-e)
(finest to coarsest) and the dotted line indicates the third order slope; initial
condition and FFT for the mesh refinement levels containing (b) 256, (c)
128, (d) 64 and (e) 32 elements respectively.



CHAPTER 4. OPTIMIZING TTGC-γL AND MACHINE LEARNED TTGC (ML-TTGC) 134

observe that the optimal γ is highly correlated with the numerical error and
hence the numerical solution itself. Moreover, the optimal value of γ is also
localized in the time and space and its magnitude increases proportionally
with respect to increase in k0. These two observations and the error dynamics
equation in Eq. (3.31) provide enough evidence that modeling γ based on the
spatio-temporal evolution of the numerical solution is feasible.

4.2.1 Multi-objective Pareto optimality
In the second study (n.2), an irregular mesh whose nodes are randomly per-
turbed is considered. Here, the TTGC-γ scheme generates spurious oscilla-
tions even for WP with relatively low wavenumber compared to the Nyquist
frequency of the average size (k0h = 0.5). Fig. 4.3(a) shows a WP initial
condition in low wavenumber regime (k0h = 0.5) and its corresponding spec-
tral content. To obtain the irregular mesh node location x∗

i , perturbations
from a uniform random probability distribution (U(0, 1)) toward the positive
direction of the x-axis scaled by h

2 are imposed on nodes xi from a uniformly
spaced mesh of spacing h, i.e.,

x∗
i = xi + h

2U(0, 1) (4.4)

The optimization problem in Eq. (4.2) is solved for different values of pa-
rameter θ (the scalarizing weight from Eq. (4.2)) to obtain the Pareto front
shown in Fig. 4.3(b). The Pareto front shows that an objective function based
purely on the L2-norm of the error is the best choice for evolving waves with
low wavenumber content. Note that waves having kh < 1.2 are within the
GVP region hence they are well resolved and generate lesser q-waves. Enforc-
ing TVD in this region adds more dissipation and thus cannot provide net
improvement to the objective. Fig. 4.3(c-d) compare the numerical solution
of the TTGC-γL (optimized) and the original TTGC-γ at different time in-
stants of the wave convection. For TTGC-γL, the optimization problem (4.2)
is solved for each timestep. The optimized dynamics shows almost negligible
spurious oscillations compared to the original TTGC-γ scheme. The optimal
values of γ have a high temporal correlation with the numerical solution and
exhibit a similar convection pattern. Therefore, it is important to build this
correlation information into the surrogate model to improve its predictions.

In the next study (n.3), the convection of a high-frequency WP using a
uniform mesh spacing is considered. Here, the original TTGC-γ scheme is
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(a) (b)

(c) (d)

Figure 4.3: Study n.2. (a) Left: Periodic initial condition over an irreg-
ular mesh of 101 nodes (or 100 finite-elements). Parameters values are
(k0h, α, x0, c) = (0.5, 25, 0.5, 1). Right: Fast-Fourier Transform evaluated
over the regular counterpart of the actual mesh; (b) Pareto front for varying
θ ∈ [0., 1.] comparing normalized time-averaged values of the two objective
functions from the optimization problem (mean over 100 steps); (c, d) Com-
parison of NLopt and TTGC-γ outputs at steps n. 40 and 120, respectively.



CHAPTER 4. OPTIMIZING TTGC-γL AND MACHINE LEARNED TTGC (ML-TTGC) 136

(a) (b)

(c) (d)

Figure 4.4: Study n.3. (a) Left: Periodic initial condition over a reg-
ular mesh of 101 nodes (or 100 finite-elements). Parameters values are
(k0h, α, x0, c) = (0.5, 25, 1.2, 1). Right: Fast-Fourier Transform; (b) Pareto
front for varying θ ∈ [0., 1.] comparing normalized time-averaged values of
the two objective functions from the optimization problem (mean over 100
steps); (c, d) Comparison of exact solution, NLopt and TTGC-γ outputs at
steps n. 40 and 120, respectively.
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known to exhibit high numerical dissipation. The initial condition and its
Fourier spectrum are plotted in Fig. 4.4(a) and the Pareto front is plotted in
Fig. 4.4(b). For (n.3) one finds that θ = 0.5 on the Pareto front yields the
lowest TVD and L2 error for the wave convection contrary to (n.2) where θ =
1 was found to be better. For kh = 1.2, slightly outside the periphery of the
GVP region (where the dissipation as well as the dispersion errors dominate),
the optimizer shows that even on regular meshes one can vary γ locally and
mitigate dissipation and dispersion errors. For this wavenumber, the original
TTGC-γ scheme completely dissipates the wave but the optimized results
maintain the wave amplitude as shown by the time evolution in Fig. 4.4(c-
d). One observes the similar highly correlated convection pattern of the
optimal γ values in time for (n.2) as seen in study (n.1).

The final study (n.4) regards the convection of a square wave, which is
defined below:

u(x, t) = 1[x0,x1](x− ct) (x ∈ [0, 1], t ≥ 0), (4.5)

where x0 and x1 are the initial position of the discontinuities of the square
wave and 1 is the indicator function defined as

1A(x) :=
1 if x ∈ A ,

0 if x /∈ A .
(4.6)

In gradient-based optimization, discontinuous objective functions are avoided
to facilitate smooth descent direction. To ensure a differentiable objective
function, a regularized version of the exact solution to the square wave evo-
lution as shown in Eq. (4.7) was used:

ureg(x, t) := {tanh [s(x− ct− x0)]− tanh [s(x− ct− x1)]} /2, (4.7)

where parameter s is an arbitrary steepening factor, i.e., the higher the value
of s steeper is the regularized square wave. In (n.4), a value of s = 150
was used. The Fourier spectrum of the square wave in Fig. 4.5(a) shows
that a major proportion of the energy is contained within the GVP region
and almost all wavenumbers (broadband) in the Nyquist limit are excited
by this waveform. Such a broadband excitation creates spurious waves in
the high wavenumber region and even upstream propagating waves, once
wavenumbers near the Nyquist limit have negative numerical group velocity
(see Fig. 3.2). The Pareto front in Fig. 4.5(b) shows that θ ≈ 1 (i.e., pure
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(a) (b)

(c) (d)

Figure 4.5: Study n.4. (a) Initial condition and its frequency domain coun-
terpart. Parameter a = 1; (b) Pareto front for varying θ ∈ [0., 1.] comparing
normalized time-averaged values of the two objective functions from the opti-
mization problem (mean over 100 steps); (c, d) Comparison of exact solution,
NLopt and TTGC-γ outputs at steps n. 40 and 120, respectively.
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L2-norm of the error) yields the best trade-off of L2 error for the lowest
TVD error. Fig. 4.5(c-d) shows the comparison of the solution evolution of
the original TTGC-γ scheme and Pareto optimal one (θ = 1). It can be
seen that the latter generates over-/under-shoots near the sharp edges of the
square wave of less amplitude than those produced by the TTGC-γ method.
For all four studies (n.1-4), one finds the same pattern that the optimal γ is
highly correlated temporally and moves with the solution.

In conclusion, by means of the study cases above, the existence of local
optimal parameters for the TTGC-γL scheme could be numerically verified.
These optimal values allowed us to address main issues around the original
TTGC-γ scheme, namely the generation of spurious oscillations for irregular
meshes and the excessive dissipation of waves with relatively high wavenum-
ber content. Despite the encouraging results, this latter case demonstrated
that the impedance matching problem cannot always be fully solved (some
wave dissipation is still present, see Fig. 4.4(c-d)). This is due to two scheme
features: stability and resolvable regions. The impedance matching problem
is constrained by a stability condition (see Eq. (4.2)). In order to keep the
scheme stable, the design space of the γ parameter that could be explored has
to be bounded. Along with that, the spectral properties of TTGC-γ indicate
resolvable regions (i.e., GVP/DRP zones) that do not significantly change for
different values of γ (see Fig. 3.5). This means that high-wavenumber con-
tent, out of the resolvable regions for the given scheme, can never be faithfully
convected. By means of these optimization studies, not only achievements
but also the limits of the proposed approach could be assessed.

4.3 Neural network model
The previous section verified that the optimization process on the locally
tunable TTGC-γL scheme leads to improved results on a range of initial
conditions for the convection equation. Here, a surrogate model that will
provide results of similar quality is sought. For that purpose, an Encode-
Process-Decode Graph Neural Network (GNN) architecture inspired by the
work of Pfaff et al. (2021) is used. It is composed of a set V of vertices
whose relationship is represented using an ensemble of directed edges. These
directed edges are represented as a Bipartite graph connecting the sets of
so-called sender S and receiver R vertices. S and R participate in a message-
passing scheme that transforms attributes associated with each vertex and
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Periodic Boundary

Figure 4.6: (a) 1D primal/dual mesh (top) and GN based on the dual mesh
(bottom); (b) Unstructured primal/dual mesh in 2D (left) and GN based on
the dual mesh (right). Arrows denote the GN message-passing, red boxes
are the GN vertices (which are equivalent to the dual mesh nodes, indicated
by red dots), blue dots are the primal mesh nodes and green dotted lines are
the dual mesh edges.

edge using neural network layers.
The quantity γ to be predicted is defined element-wise. A natural choice

for the set V of vertices would then be the set of finite-elements in the physical
mesh, i.e.,

V :=
⋃
i

ei.

For each vertex ei, the following vector of input features (fn
i ) is assigned at

time step n:

(1D) fn
i := [un

i , u
n
i+1, γ

n−1
i ]⊤,

where un
i and un

i+1 are the solution values at the nodes of the element and
γn−1

i is the cell value of the parameter γ that was predicted at the previous
time step. In Sec. 4.2, it was found that the optimal γ are highly corre-
lated temporally (see figs. 4.3(c-d), 4.4(c-d), 4.5(c-d)). Therefore, including
γn−1

i in the input features helps the network to find an optimal γn
i , which

should be close to its previous value. By its inclusion, it was observed that
convergence of the optimizer to the objective function during the training
improved significantly. An edge ϵij in this graph corresponds to a pair of a
sender vertex ei ∈ S along with a receiver vertex ej ∈ R. Every pair (ei, ej) of
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elements sharing a common face is connected by two directed edges, namely
ϵij and ϵji. This is depicted in Fig. 4.6 for 1D and 2D (triangular) meshes.
As input edge attribute gij, the local CFL numbers of the elements ei and ej

are considered, i.e.,

(1D) gij := [Nc,i, Nc,j]⊤.

The above-defined input features are transformed across the Encode-
Process-Decode GNN model, as illustrated in Fig. 4.7. This architecture
extends Def. 3 of a GNN, which originally only contains message-passing
layers. Firstly, an encoding block transports vertices’ and edges’ features
to a higher dimensional latent space (of size L) using independent dense
layers. For the applications presented in Sec. 4.4, L = 32. The output
of the encoder then feeds a core consisting of message-passing layers (that
transforms vertices’ attributes based on messages carried by edges). Two
message-passing layers are used because the results from the entropy condi-
tion (in Appendix D) indicate that second-level neighbours {i − 2, i + 2}
influence impedance matching problem at a given node i. Finally, a decod-
ing block converts vertex attributes to a feature space compatible with our
desired final output, namely the element local γ values. The GNN-predicted
γ values feed the TTGC-γL numerical solver, which outputs an evolved state
un+1. It is worth noting that the decoder’s output is re-scaled using a sig-
moid function so that γn does not violate the stability criteria for the locally
tunable TTGC-γL, which is key to the generalizability of ML-TTGC. During
training, the advanced state is compared to the (regularized) exact solution.
More precisely, the loss function can be expressed as

L(u0) := 1
Nstep

Nstep∑
k=1

θ L2
(
uk

pred

)
+ (1− θ)

[
δTV

(
uk

pred

)
+
∣∣∣δTV (uk

pred

)∣∣∣] ,
(4.8)

where Nstep is the number of time steps to predict from a given initial con-
dition u0, uk

pred is the ML-TTGC output at time k and θ ∈ [0., 1.] is the
scalarizing weight from Eq. (4.2). The reader may notice that the GNN
model could have been trained using a database of optimal γ generated us-
ing NLopt. However, generating such a database for various initial conditions
is expensive especially when solving the problem in higher-dimensions.
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Figure 4.7: ML-TTGC architecture. The GNN instances trained for the
studies presented in Sec. 4.4 use an encoding block, two message-passing
layers and a decoding block, which update the vertices and edges attributes
using dense layers with a hidden feature space of size L = 32. Each instance
has a total of 10, 637 trainable parameters.
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4.4 Application of ML-TTGC
The previous section introduced ML-TTGC: a framework built upon a GNN
model that finely tunes the TTGC-γL scheme. ML-TTGC will now be used
to solve linear and non-linear convection problems. The goal is to assess the
proposed architecture’s capabilities to provide stable and accurate dynamics
for a myriad of initial conditions. More precisely, wiggle-free, less disper-
sive/dissipative solutions in comparison to those provided by the original
TTGC-γ scheme are sought. Tbl. 4.1 below summarizes the set of experi-
ments performed with linear convection and Burgers’ equations.

Problem Training Test Figures

Convection 1

Nc ∈ (0.7, 0.9)
Irregular meshes

Wave packets
k0h ∈ (0., 0.6)

Nc = 0.84
Irregular meshes

Wave packets
k0h ∈ {0.8.1.5}

Fig. 4.8

Convection 2

Nc ∈ (0.5, 0.7)
Regular meshes
Wave packets
k0h ∈ (1., 2.)

Nc = 0.55
Regular meshes

Wave packet
k0h = 1.6

Fig. 4.9

Burgers’ Square wave
a = 1

Square wave
a = 2

Sine wave

Fig. 4.10

Fig. 4.11

Table 4.1: Sets of initial conditions for ML-TTGC applications.

4.4.1 Linear convection equation
The evolution of systems following the linear convection equation as defined
in Eq. (3.1) is investigated. It is proposed to solve the convection of a WP
initial conditions of the form

u(x) = sin [k0(x− x0)] exp
[
−α(x− x0)2

]
(x ∈ [0, 1]), (4.9)

where k0 is the central frequency, α is the spectral spread and x0 is the
spatial location of the peak of the WP. The GNN γ predictor in ML-TTGC
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was trained on the forecasting of Nstep = 16 time steps of a set of 32 samples
at wavenumbers k0h ∼ Uk0h(0, 0.6), where Uk0h is a uniform distribution in
the interval (0, 0.6). Here, h denotes the average mesh size of the irregular
grids used in training. They are generated according to Eq. ((4.4)). Once
only low wavenumber WP are present in the training set, θ = 1 is chosen as
impedance matching balance level in the loss function, following findings in
Sec. 4.2. Each sample is evolved under a global CFL ∼ UCFL(0.7, 0.9) drawn
from the uniform distribution UCFL in the interval (0.7, 0.9), typical to CFD
simulations.

Fig. 4.8 shows the numerical solution of the ML-TTGC and TTGC-γ
scheme for the convection problem of WP at CFL = 0.84, k0h = 0.8 (a)
and k0h = 1.5 (b). Note that these WP are not part of the training data
set and were deliberately chosen outside the set to demonstrate robustness.
One observes that the amplitude of the spurious oscillations is significantly
reduced in ML-TTGC compared to the TTGC-γ scheme where amplitudes of
the spurious waves are quite significant. Many flow simulations can exhibit
sharp gradients such as these, and such numerical wiggles can lead to unphys-
ical values, notably negative quantities. Therefore, it is critical to mitigate
them in the numerical solution. This is most commonly achieved by adding
artificial dissipation, which significantly increases the solver runtime.

In this first experiment, the dissipation of high-frequency waves (Fig. 4.8(b))
has proven to be unavoidable, due to the spectral properties of the basis
scheme at wavenumbers higher than unity. However, it was found that lower-
ing the CFL values at which the simulations are run can address this to some
extent. More precisely, the upper limits for γ under which the scheme is stable
are increased as the CFL lowers (following GSA, Fig. 3.6), and hence a larger
design space leading to less dissipative solutions can be explored by the neu-
ral network. In a second experiment, ML-TTGC was separately trained on
16 samples from the solution sets of WP convection at CFL ∼ UCFL(0.5, 0.7)
and k0h ∼ Uk0h(1., 2.). Fig. 4.9 illustrates the high dissipation of TTGC-γ
(typical at such range of wavenumbers), which contrasts with ML-TTGC’s
ability to preserve the wave amplitude for longer time scales. Results shown
in Fig. 4.8(b), obtained using an irregular mesh, show higher dissipation of
high kh waves; while the results shown in Fig. 4.9(a), obtained using a reg-
ular mesh, show less dissipation. The irregularity poses additional challenge
as the ML model has to match two competing objective functions, minimum
reflection and maximising wave power. Therefore during training the model
learns to trade-off dissipation to recover minimum reflection solution (wig-
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gle free). On a uniform mesh this limitation is non-existent therefore the
ML-TTGC scheme learns to be less dissipative.

(a) (b)

Figure 4.8: (a) Low-frequency WP convection over an irregularly spaced
mesh. (b) High-frequency WP convection over irregular mesh. Top: TTGC-
γ (Default) and analytical/exact solution. Center: ML-TTGC and analyti-
cal/exact solution. Bottom: GNN predicted parameters for locally tunable
TTGC-γL. Initial conditions are not part of the training set.

(a) (b)

Figure 4.9: (a) High-frequency WP convection over regular mesh. Top:
TTGC-γ (Default) and analytical/exact solution. Bottom: ML-TTGC and
analytical/exact solution. Initial condition is not part of the training set.
(b) L2 norm of the error for TTGC-γ (Default) and ML-TTGC, comparing
their dissipation levels over time.
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4.4.2 Inviscid Burgers’ equation
For the inviscid Burgers’ equation, training database is composed of square-
wave initial conditions sampled over irregular meshes:

u(x) = a1[x0,x1](x) (x ∈ [0, 1]), (4.10)

where 1 is the indicator function, as defined in Eq. (4.6), a is the wave
amplitude (fixed at 1) and x0 and x1 are the initial discontinuities positions
that are randomly placed (provided that x0 < x1). The parameters {x0, x1}
are taken as x0 = 1

5 (1 + U0(0, 1)) and x1 = 3
25 (5 + U1(0, 1)), where U0

and U1 are independent random variables following the uniform distribution
in the interval (0, 1). Following the method of characteristics, depicted in
Fig. D.1(e), their dynamics consist of a progressive rarefaction zone and a
moving shock wave that will meet at some point in time. Analytically, the
exact solution as a function of time and space can be expressed as

u(x, t) =


(x− x0)/t, x ∈ (x0, x0 + at]
a, x ∈ [x0 + at, x1 + ct]
0, elsewhere

(t ∈ (0, tm)), (4.11)

where a is the square wave amplitude, c = a/2 the shock speed and tm is the
rarefaction-shock meetup time.

Numerically, the simulation time step for both TTGC-γ and ML-TTGC
is defined as

∆t := Nglobal
c ∆xmin/a, (4.12)

where Nglobal
c = 0.84 and ∆xmin is the minimum cell size of the considered

mesh instance. Results in Fig. 4.10 and Fig. 4.11 compare TTGC-γ and
ML-TTGC at the same physical time.

For this particular problem, it was found that the original TTGC-γ pro-
duces over-/under-shoots around the shock front and oscillations moving up-
stream. Using LTA (see Sec. 3.2.5.1), it was shown a mismatch of nodal
impedance at the shock with the presence of linear instability was the reason
for the over-/under-shoots near the shock. Introducing an artificial dissipa-
tion term every sub-step was quite effective in mitigating these numerical
issues at the shock. Therefore, it is proposed to add an artificial viscosity
term with a locally tunable viscosity parameter into the ML-TTGC scheme.
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The viscous terms added after each ML-TTGC sub-step assume the following
form:

∆ũn+1
e, viscous = ∆t

∑
e

νe D⋆
e u

n
e (1st sub-step) (4.13)

∆un+1
e, viscous = ∆t

∑
e

νe D⋆
e u

n
e (2nd sub-step), (4.14)

where D⋆
e = 1

h2
i

[
−1 1
1 −1

]
.

Since the smooth regions of the flow are well evolved by TTGC-γ, it was
decided to tune artificial viscosity only near shock, whereas keeping ν = 0
for cells far from it (when at least 10 cells far from the shock front in the
upstream direction and 5 cells downstream). A regularized version of the
moving shock wave is used as reference, given by

ureg, shock(x, t) = a {1− tanh [s(x− x1 − ct)]} /2; s = 100. (4.15)

Due to the relatively limited variability of the training set, it was found that
tuning ML-TTGC for the prediction of 20 time steps from 8 initial conditions
is enough to give satisfactory results at inference, even at longer time scales,
as shown in Fig. 4.10(a). One observes that over-/under-shoots as well as
Gibbs’ phenomenon are absent by means of the ML-TTGC predicted values
for γ and ν. The ‘tanh’ function was deliberately chosen to regularize the
exact solution used in the objective function (Eq. (4.15)) because the exact
solution to a moving shock in the viscous Burgers’ equation with constant
viscosity has a ‘tanh’ behavior at the shock. It is interesting to notice that
the network mimics the viscous Burgers’ result by choosing to add constant
viscosity (maximum within the set upper bound) in a major part of the shock
region.

Fig. 4.10(b) illustrates inference outputs on a generalization test. Here,
the jump or amplitude of the shock is doubled when compared to the training
samples (a = 2). Despite this substantial change to the GNN input features,
the resulting dynamics still present significantly fewer undesired oscillations
when compared to the original TTGC-γ scheme. Additionally, the GNN
model trained only on the square wave was used to predict the dynamics
of a sine wave, as shown in Fig. 4.11. The standing shock at the domain
boundaries creates a growing numerical instability in the original TTGC-
γ scheme, leading to numerical blowup (corroborating the LTA findings in
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Sec. 3.2.5.1). ML-TTGC delivers a stable evolution of the numerical solution,
which demonstrates our architectures’ excellent extrapolation capability.

A priori knowledge of the shock location allowed to restrict the tuning
region for viscosity, which helps the network in finding better optima. In gen-
eral, one should consider the use of shock sensors to determine strong gradient
zones of the flow, where the network will be trained on. Recently, Feng et al.
(2020) built shock wave detectors based on machine learning. Alternatively,
precise estimates of the local wavenumber could be used to identify shock
regions. It was found that the one defined in Appendix C was not accurate
enough for the cases studied here, though. Ultimately, one can think of a
plug-and-play ML-TTGC architecture composed of some layers trained only
around shocks while others specialized in handling smooth regions of the
flow. They would be conveniently activated to deliver accurate dynamics in
general cases.

The capacities of a GNN architecture used as a surrogate model of the
element local parameter γ of the TTGC-γL scheme were demonstrated. In
problems governed by the 1D Convection/Burgers’ equations, ML-TTGC
outperformed the original TTGC scheme by producing lower levels of dis-
sipation and dispersion errors. In the next chapter, an extension of the
ML-TTGC method to higher dimensional problems is proposed.
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(a) (b)

Figure 4.10: Numerical solution obtained at time steps (a) t = 35∆t and
(b) t = 40∆t (TTGC-γ and ML-TTGC scheme with predicted parameters
γopt and νopt) to the inviscid Burgers’ equation for the square-wave initial
condition, where ∆t is the simulation time step. Parameter values used are
(a, x0, x1) = (1., 0.2, 0.65) for (a) on the left and (a, x0, x1) = (2., 0.4, 0.75)
for (b) on the right; data is not part of the training set.
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(a) (b)

Figure 4.11: Numerical solution obtained at time steps (a) t = 40∆t and
(b) t = 70∆t (TTGC-γ and ML-TTGC with predicted γopt and νopt) to the
inviscid Burgers’ equation for the sine wave initial condition, where ∆t is the
simulation time step; data is not part of the training set.



Chapter 5

Extending ML-TTGC to
unstructured meshes

Chapter 4 proposed a surrogate model based on graph neural networks
that locally tunes a version of the Two-step Taylor Galerkin C (TTGC)
scheme used in LES. It was employed in 1D problems governed by the Convec-
tion/Burgers’ equations. In this chapter, extensions of this machine learning
model and training procedure to systems governed by the Convection/Euler
equations on higher dimensions are sought. Focus is placed on unstructured
irregular grids, typical of industrial CFD. Firstly, the TTGC scheme formula-
tion in higher dimensions is briefly presented. The corresponding ML-TTGC
numerical method is then defined and applied in benchmarking problems for
numerical schemes on 2D triangular meshes. ML-TTGC’s ability to damp
spurious oscillations is verified, as observed in the 1D simulations. Finally,
an ML-TTGC instance trained only on the convection of vortices following
the Euler equations demonstrate capacity to evolve a double shear layer ini-
tial condition in a stable fashion, where a numerical blowup otherwise occurs
when employing the original TTGC numerical scheme.

151
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5.1 TTGC in higher dimensions
By using the divergence theorem, the hyperbolic conservation law (2.1) as-
sumes the following so-called integral form:

∂

∂t

∫
Ω

U dV +
∫

∂Ω
F · n dS = 0, (5.1)

where Ω is an arbitrary control volume, ∂Ω its boundaries and n is the
outward normal to the boundaries. A domain discretization is required to
represent U in a finite set of points, and Ω is eventually expressed as the
union of polygons (2D) or polyhedrons (3D):

Ω =
⋃

Ke∈M

Ke, (5.2)

where M is the mesh object and Ke is a cell of this mesh. In what follows,
only Triangles (2D) or Tetrahedrons (3D) are considered to be composing a
mesh.

In the discretized domain, within a cell Ke, Eq. (5.1) reads
∂U e

∂t
+ Re = 0, (5.3)

where U e is a mean over Ke of the state variable and Re (as known as cell
residual) is defined as

Re := 1
Ve

∮
∂Ke

F h · n dS, (5.4)

with F h a numerical approximation of the convective flux F and Ve the
volume of Ke (in 2D, it is the triangle area).

Eq. (5.3) is solved in different ways following the numerical scheme of
choice. On the one hand, the so-called cell-centered schemes store state
variables at the center of each cell. On the other hand, cell-vertex schemes
store state variables at the mesh nodes. In cell-vertex schemes, one solves a
nodal form of Eq. (5.3) as follows:

∂U j

∂t
+ Rj = 0, (5.5)

where U j is the value of the state variable at some node j and Rj is its
associated nodal residual. Fig. 5.1 illustrates the difference between cell-
centered and cell-vertex schemes.
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Figure 5.1: Different finite volume schemes: (a) cell-centered, (b) cell-vertex.
Inspired from Crumpton et al. (1993).

In particular, the implementation of the TTGC scheme of Colin and
Rudgyard (2000) inside the CERFACS solver AVBP is a cell-vertex one.
More specifically, it belongs to the class of residual distribution schemes (De-
coninck and Ricchiuto, 2017), which compute the nodal residual Rj by
weighted aggregation of residuals Re from all cells surrounding node j. Such
an aggregation is called the scatter operation and is illustrated in Fig. 5.2
below. In order to compute the cell residual Re, it is raised the assumption
that convective fluxes vary linearly along faces. In 2D, by considering a tri-
angle cell with nodes {1, 2, 3}, this translates to an approximation of the flux
along the triangle face {2− 3} (for instance) as

F h,23(s) = F 2 + s · F 3 − F 2

∆s23
(s ∈ [0,∆s23]),

where ∆s23 is the face length. Eq. (5.4) then reads

Re = 1
Ve

[(
F 2 + F 3

2

)
· n23 +

(
F 3 + F 1

2

)
· n31 +

(
F 1 + F 2

2

)
· n12

]
,

(5.6)
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Figure 5.2: Illustration of cell residuals computation via trapezoidal rule (a)
and of their scattering to nodes (b).

where nij is the outward normal to the face {i−j} weighted by the face length
itself (i.e., nij := n̂ij ∆sij, where n̂ij is the outward unit vector normal to
the face {i − j}). One can rearrange the flux terms shared among pairs of
adjacent faces such that Eq. (5.6) is rewritten as

Re = 1
2Ve

[F 1 · (n31 + n12) + F 2 · (n23 + n12) + F 3 · (n31 + n23)] . (5.7)

Finally, once the face normals satisfy∑
{i−j} ∈ {{1−2}, {2−3}, {3−1}}

nij = 0, (5.8)

one is left with the final formula below for cell residuals in 2D triangular
meshes:

Re = − 1
2Ve

∑
k∈Ke, i, j ̸=k

F k · nij. (5.9)

A relation similar to Eq. (5.9) can be found for 3D tetrahedral meshes. In
practice, one works with the more generic formula:

Re = − 1
d Ve

∑
k∈Ke

F k · Sk, (5.10)
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where Sk is the so-called nodal normal defined as

Sk :=
∑

face ∋ k

− d

nface
vert

nface,

with nface
vert as the number of vertices in a face (equals 2 for triangles and 3 for

tetrahedrons), nface as the outward normal to the face weighted either by its
length (in 2D) or surface (in 3D) and d as the number of spatial dimensions
(2 in 2D, 3 in 3D).

The nodal residual Rj is computed by scattering residuals from all cells
which the given node j belongs to:

Rj := 1
Vj

∑
e ∈ Dj

Dj,e Ve Re, (5.11)

where Dj is the set of this node’s neighboring cells, Vj is a control volume
around the node defined as

Vj :=
∑

e ∈ Dj

Ve

nelem
vert

, (5.12)

with nelem
vert as the number of nodes in a cell and Dj,e is a distribution matrix

following the numerical scheme of choice:
• Central Differences (CD) - It is the simplest numerical scheme one can

obtain from Eq. (5.11) by choosing

DCD
j,e := 1

nelem
vert

Id,

where Id is the identity matrix. It is unconditionally unstable when
used with an Euler explicit first order time stepping scheme.

• Lax-Wendroff (LW) - It is a time–space combined discretization scheme:
forward in time by using first order Euler explicit scheme, and centered
in space by using second order central differences (along with an ad-
ditional diffusive term to ensure stability). Its distribution matrix is
expressed as

DLW
j,e := 1

nelem
vert

Id− ∆t
2 d Ve

Ae · Sj,e, (5.13)

where Ae is the Jacobian matrix of convective fluxes, averaged across
each element.
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Due to the Galerkin projection, Eq. (5.5) assumes the two-step discrete
form below for the TTGC scheme shown in Eq. (3.16)-(3.17)-(3.18) (Lamar-
que, 2007):∫

Ω
δŨ

n
ψj dV = −(0.5− γ) ∆tLj(Un) + β∆t2 Lj(Un) (5.14)∫

Ω
δUn+1ψj dV = −∆tLj(Ũ

n) + γ∆t2 Lj(Un), (5.15)

where δŨn := Ũ
n
−Un and δUn+1 := Un+1 −Un, ψj is a hat function (as

known as P1 element in finite-element terminology) and the operators Lj

and Lj are parts of the nodal residual that can be expressed in terms of the
distribution matrices DCD

j,e and DLW
j,e as follows:

Lj ≡
∑

e∈Dj

DCD
j,e Ve Re (5.16)

Lj ≡
2

∆t
∑

e∈Dj

(DCD
j,e −DLW

j,e ) Ve Re, (5.17)

or, more explicitely,

Lj ≡
1

nelem
vert

∑
e∈Dj

Ve Re (5.18)

Lj ≡
1
d

∑
e∈Dj

(AeRe) · Sj,e, (5.19)

with Sj,e as the nodal normal Sj with respect to the element e.
Finally, the left hand sides of Eq. (5.14)-(5.15) are expressed with the

help of a mass matrix M : M δŨ
n and M δUn+1, respectively. Let Φ be

the resulting nodal residual vector for step 1 of TTGC. The linear system to
be solved is

M δŨ
n = Φ. (5.20)

The Jacobi iterative method is applied, and is given by (Lamarque, 2007)

δŨ
(p) = δŨ

(0)
− V−1(M− V) δŨ (p−1) (5.21)

at iteration step p (with V := diag(Vj) and δŨ
(0) := V−1Φ).

The next section explains how the numerical method is adapted to accept
per-cell values of the parameter γ as done in Sec. 3.2.3 for the 1D case.
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5.2 ML-TTGC for 2D Convection/Euler
The 2D Convection and Euler equations have convective fluxes respectively
given by (see Eq. (2.1))

F Convection(U) :=
[
cX U
cY U

]
, (5.22)

F Euler(U) :=


ρu ρv

ρu2 + p ρuv
ρvu ρv2 + p

u(E + p) v(E + p)

 , with U :=


ρ
ρu
ρv
E

 , (5.23)

where cX and cY are the components of the convection velocity field along
x and y directions, and ρ, u, v, E and p are the scalar fields of density, x-
velocity, y-velocity, (total) energy and pressure, respectively. The variables
E and p are related by

E = p

γgas − 1 + 1
2ρ(u

2 + v2), (5.24)

where γgas is the adiabatic index of the considered fluid.
Locally tunable versions of the TTGC scheme exposed in the previous

section must be derived (as done in Sec. 3.2.3). Eq. (5.14)-(5.15) are refor-
mulated as ∫

Ω
δŨ

n
ψj dV = −∆tLlocal

j (Un) + β∆t2 Lj(Un) (5.25)∫
Ω
δUn+1ψj dV = −∆tLj(Ũ

n) + ∆t2 L
local
j (Un), (5.26)

where the operators Llocal
j and L

local
j include per-cell values of the scheme

parameter γ. For the Convection case, these operators can be defined as
follows :

Llocal
j ≡ 1

3
∑

e∈Dj

[(0.5− γX) (Ve Re)X + (0.5− γY ) (Ve Re)Y ] (5.27)

L
local
j ≡ 1

2
∑

e∈Dj

{(
AConvection

e · Sj,e

Ve

)
[γX (Ve Re)X + γY (Ve Re)Y ]

}
, (5.28)

where γX and γY are components of the parameter γ along x and y directions,
respectively, and (Ve Re)X := −1

2
∑

k∈Ke

FX
k S

X
k and (Ve Re)Y := −1

2
∑

k∈Ke

F Y
k S

Y
k .
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One may notice that (Ve Re)X and (Ve Re)Y result from a splitting of the cell
residuals computation that follows Eq. (5.10):

Ve Re := −1
2
∑

k∈Ke

F k · Sk = −1
2
∑

k∈Ke

(
FX

k S
X
k + F Y

k S
Y
k

)
≡ (Ve Re)X + (Ve Re)Y .

(5.29)

For the Euler case,

Llocal
j ≡ 1

3
∑

e∈Dj

[(0.5− γ)Ve Re] (5.30)

L
local
j ≡ 1

2
∑

e∈Dj

[
(γAEuler

e Re) · Sj,e

]
. (5.31)

Here, a scalar value for the parameter γ is kept for scheme consistency.
Given the locally tunable versions of the TTGC scheme defined above, a

Graph Net (GN) model identical to the one described in Sec. 4.3 is coupled
to the solver as a surrogate model that provides optimal values of the pa-
rameter γ, except that it expects input features of nature and dimensionality
specific to the studied problem. The input features of graph vertex (i.e.,
mesh element) ei at each time step n are

(2D Convection) fn
i :=

[
Un

i1, U
n
i2, U

n
i3, γ

n−1
i,X , γn−1

i,Y

]⊤
, (5.32)

(2D Euler) fn
i := [ρn

i1, ρ
n
i2, ρ

n
i3,

(ρu)n
i1, (ρu)n

i2, (ρu)n
i3,

(ρv)n
i1, (ρv)n

i2, (ρv)n
i3,

En
i1, E

n
i2, E

n
i3,

γn−1
i ]⊤. (5.33)

In other words, γ values from the previous time step and the values of con-
servative variables at the three nodes composing the mesh cell (a triangle)
are provided as information at vertices of the GN. Finally, edges exchanging
messages between graph vertices (mesh cells) carry their per-cell defined CFL
numbers (Nc), such that the input edge attribute gij of an edge sending a
message from cell i to cell j is

gij := [Nc,i, Nc,j]⊤. (5.34)
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Training loss function is also similarly defined as a balance between the
squared l2-norm of the error over time with respect to the available ana-
lytical solution and some Total Variation (TV) error measure specifically set
to 2D problems based on the mesh-edge TV. It can be expressed as

L(U 0) := 1
Nstep

Nstep∑
k=1

θ L2
(
U k

pred

)
+ (1− θ)

[
δTV

(
U k

pred

)
+
∣∣∣δTV (U k

pred

)∣∣∣] ,
(5.35)

where Nstep is the number of time steps to predict from a given initial con-
dition U 0, U k

pred is the ML-TTGC output at time k, θ ∈ [0, 1] is some
scalarizing weight,

L2(U) :=
∑

i

∥∥∥U i −U i

∥∥∥2

2
(5.36)

with U the reference analytical solution, and δTV (Un+1) := TV 2(Un+1) −
TV 2(Un+1) such that

TV 2(U) := 1
2
∑
i,j

∥U i −U j∥2
2 (5.37)

for all pairs {i, j} of adjacent mesh nodes. The reader may notice that the
definitions used here for L2 and TV 2 (coming from Eq. (5.36) and Eq. (5.37))
reduce to those from the 1D studies in Chapter 3 (Eq. (3.69) and Eq. (3.75),
respectively), apart from the mesh geometry dependency. This is done to
avoid related expensive computations during training and is assumed to have
little influence on final results once only the values of the solution field U
are subject to optimization, not the mesh geometry itself.

In what follows, ML-TTGC training/inference is performed on irregular
triangular grids generated from perturbing (interior) regular mesh nodes po-
sitions. The node is placed somewhere within a circle around its original
position, i.e.,

∆xi = Ri cosϕi and ∆yi = Ri sinϕi

are the displacements imposed to the x and y coordinates of a given node i,
respectively. The circle’s radius Ri is drawn from the uniform distribution
U(0, 0.35h), where h is the (minimal) regular grid spacing, and ϕi is a ran-
dom angle drawn from the uniform distribution U(0, 2π). Fig. 5.3 illustrates
irregular mesh generation for ML-TTGC evaluation.
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Figure 5.3: (a) Unstructured regular triangular grid and (b) its perturbed
counterpart.

For the Convection case, the training set was composed of wave packets
of the following form :

U0(x, y) = sin [k0,X (x− x0) + k0,Y (y − y0)] exp
{
−α

[
(x− x0)2 + (y − y0)2

]}
((x, y) ∈ [0, 1]× [0, 1]),

(5.38)

where k0,X and k0,Y are the components along the x and y directions of some
central wavenumber, α is the spectral spread and (x0, y0) is the spatial loca-
tion of the peak of the WP. Training is performed on conditions similar to
those of Sec. 4.4.1, with forecasting of Nstep = 16 time steps of a set of 32
samples at wavenumbers k0,Xh = k0,Y h drawn from the uniform distribution
U(0, 0.8) and (x0, y0) = (0.5, 0.5) for all samples. The convection velocity
(cX , cY ) = (1., 1.) is also a constant for the training set. Fig. 5.4 compares
inference outputs for one of the training samples from network models trained
either on pure l2 loss function (i.e., θ = 1) or on pure TVD one (i.e., θ = 0)
against the original scheme and the exact solution. One may notice a sig-
nificant reduction in the spurious oscillations amplitude as a result of the
training procedure, with the pure TVD trained model giving slightly noisier
dynamics. The fact that the TTGC scheme is linearly unstable for the junc-
tion problem analyzed under the light of LTA in Sec. 3.2.4.1 might explain
the reminiscent wiggles on ML-TTGC outputs: wave reflections originated
from mesh irregularity will not be fully damped out.

For the Euler case, isentropic vortices of varying strengths and radii are
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(a)

(c) (d)

(b)

Figure 5.4: Surface plots of wave packet whose dynamics are governed by
the 2D Convection equation. Time step n. 360. (a) Analytical solution, (b)
Output from TTGC scheme, (c) Output from ML-TTGC scheme trained by
pure l2 loss function, (d) Output from ML-TTGC scheme trained by pure
TVD loss function.
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chosen to compose the training set 1. It consists of 32 samples with con-
stant vortex core position (x0, y0) = (0.5, 0.5), and initialized homogeneous
temperature T∞ = 300 K and pressure p∞ = 100, 000 Pa. The Mach num-
ber M∞ := u∞/

√
γgas Rgas T∞, the vortex strength β and the vortex ra-

dius R are drawn from the uniform distributions U(0.1, 0.6), U(0.1, 0.8) and
U(0.05, 0.15), respectively. Values of Rgas and γgas are assumed to remain
constant in the considered range of pressure and temperature values. The
machine learning model is trained to forecast Nstep = 16 time steps of the
vortex convection, for which the analytical dynamics is given by

U(x, y, t) ≡ U 0(x− u∞t, y) (t > 0). (5.39)

Fig. 5.5 presents inference results for a vortex from the training set. ML-
TTGC was trained on pure l2 loss function only, as reportedly giving smooth-
ier dynamics in the Convection case. Once again, wiggles are significantly
damped in the predicted dynamics, approaching it from the analytical one.
Despite the limited range of initial conditions explored during training, ML-
TTGC also showed generalization capabilities for stabilizing the dynamics of
a double shear layer initial condition it was never trained on, as exposed in
Fig. 5.6.

1The reader is referred to Sec. 2.3.2 for a description of the vortex and of the double
shear layer initial conditions used here.
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(a) (b)

(c) (d)

Figure 5.5: (a, b, c) Surface plots and (d) cut along x = 0.5 of isentropic
vortex after completing one box turn (periodic conditions apply). (a) Ana-
lytical density field, (b) Output density field from TTGC scheme, (c) Output
density field from ML-TTGC scheme trained on pure l2 loss function.
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(a)

(c) (d)

(b)

Figure 5.6: Dynamics of fluid’s momentum component along the x direction
(ρu) for double shear layer problem. (a) TTGC time step n. 600 (just before
simulation crash), (b) ML-TTGC time step n. 600, (c) ML-TTGC time step
n. 2400, (d) ML-TTGC time step n. 3600.



Conclusions and perspectives

In this work, a new spectral analysis for numerical schemes is introduced
based on a local spatio-temporal discretization setting. The Global Spectral
Analysis (GSA) (see Sec. 3.2.1) proposed by T. Sengupta, Ganeriwal, et al.
(2003) is extended by interpreting the mesh as an electrical circuit whose
transfer function is represented by the local numerical amplification factor.
Within such an analogy, each mesh element acts as an impedance block
providing resistance to the solution propagation. The resulting framework
allows to quantify the local spectral properties of a given scheme, applicable
to irregular meshes and non-linear systems. It is named Local Transfer-
function Analysis (LTA). Taylor series or polynomial order of analysis is
only applicable where the order of error makes sense (smooth or well re-
solved regions) (Brooks and T. J. Hughes, 1982). But practical Large-Eddy
Simulations (LES) typically employ coarser, under-resolved meshes that tar-
get the capturing of the larger flow scales. Therefore, the need to design CFD
schemes for bandwidth similar to Roe (2021) is emphasized. LTA being a
spectral approach, it uses bandwidth as the basis of measuring accuracy and
provides a complete overview of the error behavior even near high gradients
and shocks. It provides practical guidance to mitigate errors that might
otherwise trigger numerical instability or compromise solution accuracy.

Using the LTA framework, the optimal design of numerical methods can
be formulated as a simple impedance matching problem. It was shown that
the time-domain counterpart of such a problem corresponds to setting a
balance between Total Variation Diminishing (TVD) and minimal norm of
error conditions. Following this finding, an optimization problem based on
impedance matching to redesign and tune the TTGC scheme of Colin and
Rudgyard (2000) was set out. Differentiable programming methods to com-
pute gradients required by the optimizer and find local optima for the free
parameter of the numerical scheme were employed.
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While effective, these methods require expensive gradient propagation
through the adjoint solver for each new configuration. To alleviate this, a
(finite) database of cases where the analytical solution is known is gener-
ated and a surrogate model is designed by training a Graph Neural Network
(GNN) to predict the local optimal parameters for impedance matching. The
data-driven numerical method that arises is termed ML-TTGC. A novel as-
pect of this architecture is that stability is inbuilt into the ML model through
the LTA. ML models being approximate surrogates can lead to predictions
in the numerically unstable region (for cases outside the training set), which
motivated to constrain their output such that ML-TTGC always provides
stable dynamics. Applications to the 1D Convection and Burgers’ equa-
tions demonstrate both the interpolation and extrapolation of the matched
impedance values for cases outside the training set.

Nevertheless, the reader might have noticed that validation sets as de-
fined in Sec. 1.1.4 are absent from ML-TTGC trainings performed in Sec. 4.4
and in Sec. 5.2. This is on purpose, once the capacity to fully solve a re-
stricted set of problems need to be assessed before evaluating generalization
features of the coupled ML-PDE system. For instance, it was reported in
Sec. 4.4.2 that ML-TTGC without any artificial dissipation term in the nu-
merical scheme side was unable to solve the shock propagation proper to
the inviscid Burgers’ equation, even if trained on a single sample of a square
wave initial condition. Similarly, as shown in Fig. 5.4, tuning of the γ param-
eter of the TTGC scheme in the convection of 2D wave packets was unable
to fully damp all spurious oscillations due to mesh irregularities. Finally,
Fig. 5.5 shows that vortex isentropic convection following ML-TTGC still
present dispersion errors propagating through the wake of the vortex.

It becomes then clear that the choice of numerical scheme to be tuned by
the coupled machine learning model is critical to the success of the proposed
approach. Besides, from the experiments reported in Appendix B, it is also
clear that an efficient differentiation tool that supports array mutation is
required for reasonable performance of the training procedure, both runtime
and memory-wise. Despite being able to handle mutating code from a high-
level programming language (Julia), the Enzyme library (Sec. 1.3.5) does
not offer the same maturity as older tools like Tapenade (Sec. 1.3.3) and
may return unexpected gradient values. Future works will focus on the use
of Tapenade to develop data-driven discretizations in the context of high-
performance CFD, such that the resulting trained ML models can be easily
integrated to mature CFD codes like AVBP for industrial applications.



Recently, large-scale applications of ML models in the field of weather
forecasting have produced exciting results. Bi et al. (2023) proposed Pangu-
Weather: an ML model that can forecast global weekly weather patterns at a
significantly faster pace than conventional forecasting methods, while main-
taining comparable accuracy. Lam et al. (2022) employed GNNs to generate
a 10-day forecast in under 60 seconds. Their GNN model was named Graph-
Cast. It outperformed the European Centre for Medium-Range Weather
Forecasts’ operational method on 90 percent of the 2760 variables. Graph-
Cast surpassed Pangu-Weather on 99 percent of the 252 targets. Despite
the results achieved by these models, they present risks for being exclusively
data-driven (Ebert-Uphoff and Hilburn, 2023). One of these risks concerns
extreme events, which have an increased likelihood in a changing climate.
Besides, these events can lead to highly erratic forecasts, since the perfor-
mance of fully data-driven ML models usually degrades under conditions not
seen during training. Finally, these models do not consider dependencies
between forecasting variables, as opposed to the traditional frameworks.

In order to circumvent the aforementioned issues, this work advocates
using traditional numerical methods as a basis for the development of ML
models in weather forecasting and CFD, in particular, and in physical sci-
ences in general. These hybrid ML models can also produce high-accuracy
results with the advantage of being interpretable (Murdoch et al., 2019). In
regulated industries such as aerospace, compliance with safety standards and
regulations is crucial. Interpretable ML models can facilitate compliance by
providing explanations and justifications for the predictions provided, mak-
ing it easier to demonstrate adherence to safety guidelines. The cited works
of Bar-Sinai et al. (2019) and Kochkov et al. (2021) on data-driven spatial
discretizations of enforced order of accuracy, Stevens and Colonius (2020)
and Kossaczká et al. (2021) on data-driven perturbations of the parame-
ters of WENO methods, and Bezgin, Schmidt, et al. (2021) on data-driven
flux reconstruction for a finite-volume scheme are some examples from the
state-of-the-art literature showing the potential of interpretable hybrid ML
models in solving PDEs. Still recently, Kossaczká et al. (2023) employed
neural networks to approximate the spatial truncation error in finite differ-
ence schemes. The distinguishing building block of the work in this thesis is
employing spectral analysis on both time and space discretizations to better
define stability constraints for the hybrid ML model, and also to interpret the
optimization of the model as an impedance-matching problem to be solved
at each time step.
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Appendix A

Example of
Tapenade-generated adjoint
program

Below is a code snippet illustrating the Fortran subroutine FUNC_B as the
Tapenade-generated adjoint of the subroutine FUNC which computes

z(x,y) :=
∑

i

[sin(xi + 2yi) cos(xi − sin yi)] ,

for some x ∈ RN , y ∈ RN , N ∈ N:

1 MODULE SOLVER_DIFF
2
3 USE ISO_FORTRAN_ENV
4 IMPLICIT NONE
5
6 CONTAINS
7 ! Differentiation of func in reverse (adjoint) mode
8 ! (with options i4 dr8 r4):
9 ! gradient of useful results: z

10 ! with respect to varying inputs: x y z
11 ! RW status of diff variables: x:out y:out z:in−zero
12 SUBROUTINE FUNC_B(n, x, xb, y, yb, z, zb)
13 IMPLICIT NONE
14 INTEGER(int64), INTENT(IN) :: n
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15 REAL(real64), INTENT(IN) :: x(n)
16 REAL(real64) :: xb(n)
17 REAL(real64), INTENT(IN) :: y(n)
18 REAL(real64) :: yb(n)
19 REAL(real64) :: z
20 REAL(real64) :: zb
21 INTRINSIC SIN
22 INTRINSIC COS
23 INTRINSIC SUM
24 REAL(real64), DIMENSION(n) :: temp
25 REAL(real64), DIMENSION(n) :: tempb
26 REAL(real64), DIMENSION(n) :: tempb0
27 xb = 0.0
28 yb = 0.0
29 temp = x − SIN(y)
30 tempb = COS(x+2*y)*COS(temp)*zb
31 tempb0 = −(SIN(temp)*SIN(x+2*y)*zb)
32 xb = tempb0 + tempb
33 yb = 2*tempb − COS(y)*tempb0
34 zb = 0.0
35 END SUBROUTINE FUNC_B
36
37 SUBROUTINE FUNC(n, x, y, z)
38 IMPLICIT NONE
39 INTEGER(int64), INTENT(IN) :: n
40 REAL(real64), INTENT(IN) :: x(n)
41 REAL(real64), INTENT(IN) :: y(n)
42 REAL(real64), INTENT(OUT) :: z
43 INTRINSIC SIN
44 INTRINSIC COS
45 INTRINSIC SUM
46 z = SUM(SIN(x+2*y)*COS(x−SIN(y)))
47 END SUBROUTINE FUNC
48
49 END MODULE SOLVER_DIFF



Appendix B

The mutation problem

Chapter 1 introduced ML-related techniques that are employed in the de-
velopments proper to data-driven discretizations. Among them, Algorithmic
Differentiation (AD) computes the gradients required to train ML models.
The main AD frameworks used in ML pipelines, namely, TensorFlow and
PyTorch, have found great adoption for their relative ease of use and scaling
capabilities. These frameworks fail to deliver performant differentiation for
generic control flow proper to coupled ML-PDE systems, though. This is due
to their lack of support to array mutation, i.e., modifying the contents of an
array after it has been created. This appendix is dedicated to quantifying the
impact of this limitation in chains of operations one can find in PDE solvers
for CFD. Building differentiable solvers for unstructured CFD in frameworks
that lack support to array mutation is prohibitively expensive. To the extent
of the author’s knowledge, a quantitative study of this problem has not yet
been reported in the literature.

B.1 Presentation of the problem
Guido Van Rossum’s efforts in late 1980s to create an easily-extensible, high-
level scripting language (artima - The Making of Python 2022) helped turning
Python into the most popular programming language as of 2022 (according
to the TIOBE Index (2022)). Despite suffering from lack of native support
to performant numerical computing, its ease of use has motivated developers

192
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to build high-level APIs like the NumPy library (Harris et al., 2020) on
top of C/C++ procedures that execute fast linear algebra computations.
In the realm of machine learning, the same reason led big companies like
Google and Meta to launch Python APIs for TensorFlow, JAX and PyTorch.
They can enjoy from the fact that most neural network architectures used in
image recognition, natural language and time series processing boil down to
a relatively small subset of linear algebra kernels whose forward/backward
passes can be highly optimized (Isaksson, 2020). Nevertheless, one common
limitation faced by these popular frameworks is the lack of full support to
array mutation, as illustrated by the code snippets below:

TensorFlow :
1 >>> import tensorflow as tf
2 >>> tf.__version__

3 ’2.9.1’
4 >>> x = tf.random.uniform([10])
5 >>>
6 >>> x[0] += 1.
7 Traceback (most recent call last):
8 File "<stdin>", line 1, in <module>
9 TypeError: ’tensorflow.python.framework.ops.EagerTensor’

10 object does not support item assignment

PyTorch :
1 >>> import torch
2 >>> torch.__version__

3 ’1.11.0’
4 >>> x = torch.rand(10, requires_grad=True)
5 >>>
6 >>> x[0] += 1.
7 Traceback (most recent call last):
8 File "<stdin>", line 1, in <module>
9 RuntimeError: a view of a leaf Variable that requires grad

10 is being used in an in−place operation.
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JAX :
1 >>> import jax
2 >>> jax.__version__

3 ’0.3.13’
4 >>> key = jax.random.PRNGKey(0)
5 >>> x = jax.random.normal(key, (10,))
6 >>>
7 >>> x[0] += 1.
8 Traceback (most recent call last):
9 File "<stdin>", line 1, in <module>

10 File "[...]/jax/_src/numpy/lax_numpy.py", line 4568,
11 in _unimplemented_setitem
12 raise TypeError(msg.format(type(self)))
13 TypeError: ’<class ’jaxlib.xla_extension.DeviceArray’>’
14 object does not support item assignment.
15 JAX arrays are immutable.
16 Instead of ‘‘x[idx] = y’’, use ‘‘x = x.at[idx].set(y)’’
17 or another .at[] method

Apparent workarounds are provided by certain specific methods, like
tf.tensor_scatter_nd_add in TensorFlow, .scatter_add_ in PyTorch,
and .at[] in JAX. None of them perform actual mutation of the original
array, though 1. They rather execute re-assignements by creating new arrays
of same size. This is illustrated in Fig. B.1. Such a limitation is justified
by the fact that reverse mode AD in its simplest form requires all inter-
mediate variables of the forward pass to be stored for the execution of the
backward pass. This is what has probably led TensorFlow, PyTorch and,
to some extent, JAX to not support mutation from the beginning of their
developments:

“ Allowing mutation of variables in-place makes program analy-
sis and transformation difficult. JAX requires that programs are

1In JAX, array mutation (an in-place operation) is guaranteed to be performed when-
ever inside a JIT-compiled function. However, JAX’ sharp bits (JAX - The Sharp Bits —
JAX documentation 2022) may turn the coding experience as a whole quite cumbersome.

https://www.tensorflow.org/api_docs/python/tf/tensor_scatter_nd_add
https://pytorch.org/docs/stable/generated/torch.Tensor.scatter_add_
https://jax.readthedocs.io/en/latest/_autosummary/jax.numpy.ndarray.at.html
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pure functions. ” (From JAX - The Sharp Bits — JAX docu-
mentation (2022))

An excessive number of reassignments in workflows typical to numerical
schemes for unsteady problems (where, for instance, the enforcement of
boundary conditions would require array mutation at each time step) even-
tually leads to high memory pressure, which might be one of the main bottle-
necks for the development of differentiable PDE solvers. The literature con-
tains works pointing to memory consumption issues for adjoint codes. In their
2021 paper, Kochkov et al. (2021) reported using gradient checkpointing 2 at
each time step of a JAX-based CFD solver 3 to avoid prohibitive memory re-
quirements during training. Cardesa et al. (2020) also used checkpointing to
alleviate memory footprint of the adjoint of the CFD solver JAGUAR (Cas-
sagne et al., 2015). However, while Cardesa et al. (2020) could differentiate
very long time-stepping sequences (ca. 106 time steps) in double precision
arithmetics, Kochkov et al. (2021) were limited to only 32 time steps fore-
casting during training of their coupled ML-PDE system, still using single
precision arithmetics. This is mainly due to the native inability of JAX
to handle mutating code. More recently, Bezgin, Buhendwa, et al. (2023)
claimed that the largest limitation of their differentiable solver in JAX 4 was
the available storage space of the GPU, which was an NVIDIA RTX A6000
card with 48 GB of memory, the largest of its series (List of Nvidia graphics
processing units 2022).

Sec. B.2-B.3 illustrate the mutation problem with applications of the re-
verse mode of AD. In each case, a given quantity of interest is computed by
two programs: one that employs array mutation whereas the other just per-
forms reassignments. Both programs are written in the Julia programming
language (Bezanson et al., 2017). Finally, the performances of their adjoints
are benchmarked and compared.

B.2 Analysis of a discretization operator
The first problem consists in building a discretization operator of a scalar
quantity u over a one dimensional uniform mesh. By means of Taylor expan-

2This technique is not detailed here; the interested reader is referred to Sec. 5.5
of Bartholomew-Biggs et al. (2000) for a description.

3Available at https://github.com/google/jax-cfd
4Available at https://github.com/tumaer/jaxfluids

https://github.com/google/jax-cfd
https://github.com/tumaer/jaxfluids
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Figure B.1: Illustration of x[0] += 1. operation done either (a) in-place
(actual mutation of x) or (b) by reassignment of x. Represented by red boxes,
additional memory in the forward pass is required in (b) when compared to
(a).

sions, one can define the derivative

du(x)
dx

∣∣∣∣∣
x=xi

:= 1
2∆x(ui−2 − 4ui−1 + 3ui) +O(∆x2),

where ∆x is the mesh spacing, xi (i ∈ J1, NK) is some of the N mesh nodes
and ui := u(x = xi). Programs that compute the squared l2-norm of the
operator

du(x)|x=xi
:= ui−2 − 4ui−1 + 3ui (B.1)

will be crafted. For the sake of simplicity, the constant 2∆x was ignored.
Here, periodic conditions at the boundaries are considered, so that

du(x1) := uN−1 − 4uN + 3u1, (B.2)
du(x2) := uN − 4u1 + 3u2. (B.3)

Fig. B.2 represents the mutating and non-mutating programs. One can notice
that the forward pass of du_reassignment (Fig. B.2(b)) requires additional
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memory storage when compared to that of du_mutation (Fig. B.2(a)) due
to the allocations of u_m1 and u_m2 (lines 6-7 of du_reassignment), which
are the arrays containing the first- and second-level left neighbors of each
element of the array u.

Fig. B.3 illustrates the computational graph, the forward, and the back-
ward passes for the program du_reassignment (Fig. B.2(b)). Following the
variable naming convention of Griewank and Walther (2008) (see Sec. 1.2),
the arrays du and u are assigned to the input variables v−1 and v0:

v−1 ← du; v0 ← u. (B.4)

The rolling operator circshift is then applied to the input variable v0 (i.e.,
u) to create the arrays u_m1 and u_m2, which will be assigned to the inter-
mediate variables v1 and v2:

v1 ← circshift(v0, 1); v2 ← circshift(v0, 2). (B.5)

Moving further on the program execution, line 8 of du_reassignment reas-
signs du (represented by v−1) to a new variable v3 as follows:

v3 ← v−1 + v2 − 4v1 + 3v0. (B.6)

Finally, the squared l2-norm of v3 is assigned to the output variable y (line
10 of du_reassignment):

y ← ∥v3∥2
2 . (B.7)

Given the forward pass depicted from Eq. (B.4) to Eq. (B.7), one can build
the corresponding backward pass (or adjoint evaluation trace). As explained
in Sec. 1.2.2, the evaluation of reverse derivatives v := ∂y/∂v starts from the
output y:

y ← 1. (B.8)

One then applies the chain rule of calculus successively up the forward pass
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Figure B.2: Illustration of how du is computed either by (a) du_mutation
or (b) du_reassignment. Represented by red boxes, additional memory in
the forward pass is required in (b) when compared to (a). Note that an
array du initialized to zeros beforehand is given as input to each function.
Furthermore, the instruction sum(abs2, v) computes the squared l2-norm
||v||22 := ∑

i |vi|2 of a given vector v.
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Figure B.3: Computational graph, forward primal and adjoint evaluation
traces for the program du_reassignment.
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to compute the other reverse derivatives. For v3, v2, v1 and v−1:

v3 := ∂y

∂v3
≡
(
∂y

∂v3

)(
∂y

∂y

)
⋆
5

←−−−−−−−− (2v3) y (B.9)

v2 := ∂y

∂v2
≡
(
∂v3

∂v2

)(
∂y

∂v3

)
Eq. (B.6)
←−−−−−−−− (1) v3 (B.10)

v1 := ∂y

∂v1
≡
(
∂v3

∂v1

)(
∂y

∂v3

)
Eq. (B.6)
←−−−−−−−− (−4) v3 (B.11)

v−1 := ∂y

∂v−1
≡
(
∂v3

∂v−1

)(
∂y

∂v3

)
Eq. (B.6)
←−−−−−− (1) v3 (B.12)

Finally, changes in the input variable v0 affect variables v1, v2 and v3 of the
computational graph (see Fig. B.3), so that the sensitivity v0 is a function of
the sensitivities v1, v2 and v3:

v0 := ∂y

∂v0
≡
(
∂v1

∂v0

)(
∂y

∂v1

)
+
(
∂v2

∂v0

)(
∂y

∂v2

)
+
(
∂v3

∂v0

)(
∂y

∂v3

)

Eqs. (B.5)−(B.6)
←−−−−−−−−−− circshift(v0, 1, v1) + circshift(v0, 2, v2) + (3) v3,

(B.13)

where circshift is the adjoint of the program representing the circshift
operator. Given shift ∈ Z, an input w and the corresponding output

w_shifted := circshift(w, shift),

the role of

(w, shift, w_shifted) 7→ circshift(w, shift, w_shifted)

is to propagate the contribution of the sensitivity of the output (i.e., w_shifted)
back to the input w, to form the sensitivity w. Deriving circshift is
straightforward. Given any valid index j, a perturbation in the value of
w_shifted[j] simply leads to an identical perturbation in the value of w at

5The derivative of w 7→ ∥w∥2
2 (w ∈ RN , N ∈ N) can be obtained from Fréchet

definition (Berger, 1977): ∥w + ∆w∥2
2 := ⟨w + ∆w, w + ∆w⟩ = ⟨w, w⟩ + 2⟨w, ∆w⟩ +

⟨∆w, ∆w⟩ = ∥w∥2
2 + ⟨2w, ∆w⟩+ o(∥∆w∥2).
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Figure B.4: Schematic representation of circshift operation on some
array w. The sensitivity of the output array w_shifted is propagated
back to the input array w by performing the reverse operation, i.e.,
circshift(w, shift, w_shifted) := circshift(w_shifted, −shift)
(shift ∈ Z).

the corresponding index, namely j + shift (periodic conditions apply). In
other words,

w[j + shift] = w_shifted[j]

or, equivalently,
w[i] = w_shifted[i - shift],

for any valid index i. Fig. B.4 summarizes this reflection. The operator
circshift eventually reads

(w, shift, w_shifted) 7−−−→ circshift(w, shift, w_shifted)

:= circshift(w_shifted, −shift)

and Eq. (B.13) then assumes the final form below:

v0 ← circshift(v1,−1) + circshift(v2,−2) + (3) v3. (B.14)

Given the backward pass depicted from Eq. (B.8) to Eq. (B.14), one can
code the adjoint program of du_reassignment as illustrated in Fig. B.5(b).
The method is named du_reassignment_adjoint. It is possible to recog-
nize the reverse derivatives inside the adjoint program by the suffix b 6: yb
represents the reverse derivative of the output y (i.e., y), ub is the reverse

6The suffix b stands for bar ( ·̄ ) here, the symbol that distinguishes a reverse derivative
from its primal in the text.
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Figure B.5: Adjoint programs of (a) du_mutation (Fig. B.2(a)) and (b)
du_reassignment (Fig. B.2(b)). Note that the arrays ub and dub respec-
tively corresponding to the reverse derivatives of u and du are initialized to
zeros beforehand and given as inputs to each function.

derivative for the input u (i.e., v0) and dub is the reverse derivative for the
input du (i.e., v−1 ≡ v3 ≡ v2). The adjoint program relates to the evalua-
tion traces in Fig. B.3 as follows: lines 8-10 of du_reassignment_adjoint
perform the forward pass up to Eq. (B.6), since the value of the output y
is not required for executing the backward pass; given the updated value of
du (i.e., v3), the program then starts the backward pass in line 12 (following
Eq. (B.8)), and applies Eqs. (B.12)-(B.14) to update dub and ub, respectively.

One can similarly apply the reverse mode of AD to differentiate the
method du_mutation (Fig. B.2(a)). The resulting adjoint program is shown
in Fig. B.5(a). The forward pass is executed first (in lines 8-12) to update
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the value of du and the backward pass follows from line 14 to line 28.
One can now compare the performances of the two adjoint programs il-

lustrated in Fig. B.5 with respect to their primal programs shown in Fig. B.2.
The mutating and non-mutating implementations are compared in terms of
total memory usage and runtime. Fig. B.6 gathers benchmarking results
for varying lengths N of the array u. They were produced in a MacBook
Air (Processor: 1.6 GHz Intel Core i5; RAM: 16 GB 2133 MHz LPDDR3)
with the version 1.8.5 of the Julia programming language and the package
BenchmarkTools.jl (Chen and Revels, 2016). Fig. B.5(a) shows that the ad-
joint program du_reassignment_adjoint allocates approximately twice the
amount of memory allocated by its primal du_reassignment. Meanwhile,
the mutating implementations du_mutation_adjoint and du_mutation ex-
hibit similar memory footprints. Runtime-wise, the mutating implementa-
tions present worse performance because their loops are not parallelized.

An extension of the problem to higher dimensions is analyzed, motivated
by the fact that LES codes handle turbulence, which is inherently a 3D phe-
nomenon. Adjoints of non-mutating and mutating programs that compute

∥dxu(x, y, z)∥2
2 + ∥dyu(x, y, z)∥2

2 + ∥dzu(x, y, z)∥2
2 (B.15)

with 7

dxu(x, y, z)|x=xi,y=yj ,z=zk
:= ui−2,j,k − 4ui−1,j,k + 3ui,j,k (B.16)

dyu(x, y, z)|x=xi,y=yj ,z=zk
:= ui,j−2,k − 4ui,j−1,k + 3ui,j,k (B.17)

dzu(x, y, z)|x=xi,y=yj ,z=zk
:= ui,j,k−2 − 4ui,j,k−1 + 3ui,j,k (B.18)

(i ∈ J1, NK, j ∈ J1, NK, k ∈ J1, NK, N ∈ N)

are benchmarked 8. Fig. B.7 compares performances of the adjoint programs
with respect to their primals for varying problem sizes (N). The exper-
iments were conducted under conditions similar to those of the 1D case.
Memory-wise, the results are equivalent to those found in the 1D experi-
ments. Runtime-wise, the mutating implementations prove to be faster than
the non-mutating ones, as opposed to what was observed in the 1D case.

7Periodic conditions apply.
8The reader can find the adjoint programs in https://github.com/luciano-drozda/

reassignment-vs-mutation/.

https://github.com/luciano-drozda/reassignment-vs-mutation/
https://github.com/luciano-drozda/reassignment-vs-mutation/
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(a)

(b)
Figure B.6: Benchmarking results for the 1D discretization operator problem
regarding the ratios of (a) memory usage; (b) runtime between adjoint and
primal codes.
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In the non-mutating 3D implementations, the runtime spent in array alloca-
tions becomes dominant when compared to that of the vectorized operations
between arrays.

The aftermath of the study conducted in this subsection is that the mem-
ory footprint of the adjoint of a non-mutating program when compared to
its primal is at least twice that of their mutating counterpart. Along with
the elements in the literature already listed (Bezgin, Buhendwa, et al., 2023;
Kochkov et al., 2021), such a result corroborates with the assumption that
building efficient differentiable PDE solvers requires support to array muta-
tion by the AD tool of choice. In the next subsection, a similar analysis is
performed on mutating and non-mutating CFD kernels.

B.3 Analysis of a CFD kernel
In order to evaluate the impact of the mutation problem in a CFD con-
figuration, this section considers a function that updates a numerical solu-
tion to the 3D Euler equations on tetrahedral meshes using the Two-step
Taylor-Galerkin C (TTGC) discretization scheme depicted in Sec. 5.1. No
treatment of boundary conditions is performed here. The non-mutating and
mutating programs applying a TTGC update will be hereafter referred to
as dU_ttgc_reassignment and dU_ttgc_mutation, respectively. They both
return the squared l2-norm of the value ∆U by which some input numerical
solution U should be incremented over one time step. For the sake of short-
ness, only parts of the algorithms of the methods dU_ttgc_reassignment
and dU_ttgc_mutation are represented in Fig. B.8 9.

The part of the TTGC scheme highlighted in Fig. B.8 relate to the compu-
tation of the nodal residuals Rj ∈ Rneq×nnode by scattering of the cell residuals
VeRe ∈ Rneq×ncell (weighted by the cell volumes), with neq ≡ 5 being the
number of equations to be solved (one for density, three for momentum and
one for energy), nnode the number of mesh nodes and ncell the number
of mesh cells. This is a common operation in the class of residual distribu-
tion numerical schemes, which TTGC belongs to (Deconinck and Ricchiuto,
2017). One can notice that the mutating kernel accumulates cells contribu-
tion to a zero-initialized array Rj inside a loop over mesh cells (lines 5-17
of dU_ttgc_mutation). By allowing mutation, one avoids to store VeRe for

9Full implementations are made available in https://github.com/luciano-drozda/
reassignment-vs-mutation/.

https://github.com/luciano-drozda/reassignment-vs-mutation/
https://github.com/luciano-drozda/reassignment-vs-mutation/
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(a)

(b)
Figure B.7: Benchmarking results for the 3D discretization operator problem
regarding the ratios of (a) memory usage; (b) runtime between adjoint and
primal codes.
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Figure B.8: Portions of the algorithms of the (a) mutating and (b) non-
mutating TTGC scheme implementations (3D Euler equations; tetrahedral
meshes).
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all cells at once, as opposed to what happens inside the non-mutating kernel
(see Fig. B.8(b)).

Fig. B.9 presents performance measurements for the adjoints of both
methods, including not only memory usage, but also runtime benchmarks.
The computations were performed using an Intel(R) Xeon(R) Gold 6140
CPU. The adjoints of dU_ttgc_reassignment and dU_ttgc_mutation are
respectively generated by the Zygote package (which only supports reassign-
ments, as seen in Sec. 1.3.4) and by the Enzyme library (which supports
mutation, as seen in Sec. 1.3.5). At the largest problem size under consid-
eration (namely, nnode = 33792), Fig. B.9(a) reveals that the adjoint of
dU_ttgc_reassignment allocates around 250 times the amount of memory
allocated by the method, whereas the adjoint of dU_ttgc_mutation is only
twice as expensive as its primal. Runtime-wise, Fig. B.9(b) shows that the
adjoint of the non-mutating kernel is around 100 times slower than its primal,
whereas the adjoint of the mutating kernel is less than 4 times slower than
its primal. This means that, in general, one can expect the differentiation
of non-mutating PDE kernels to perform much worse than that of mutating
implementations, both runtime- and memory-wise.

The quantitative observations from Sec. B.2-B.3 should be sufficient to
motivate the development of AD tools that support array mutation for en-
abling efficient training of ML-PDE coupled systems. Tapenade (Sec. 1.3.3)
and other tools developed for Fortran/C languages natively support mu-
tation, but seem out of interest of the ML community for their relatively
low-level features when compared to those of the Python APIs of the main
ML frameworks (namely, TensorFlow, PyTorch and JAX). Once the field of
ML for scientific applications leans toward the development of coupled ML-
PDE systems (in a quest for more generalizable predictive capabilities of ML
architectures acting on physical models), the mutation problem should be
given more attention.



APPENDIX B. THE MUTATION PROBLEM 209

(a)

(b)
Figure B.9: Benchmarking results for the TTGC scheme (3D Euler equations;
tetrahedral meshes) regarding the ratios of (a) memory usage; (b) runtime
between adjoint and primal codes.



Appendix C

Local wavenumber analysis and
shock sensor of Jameson

The local wavenumber k is defined as the spatial rate of change of the phase
angle of the convecting wave u(x, t) (Bracewell, 1978), i.e.,

k := ∇θ (C.1)

This quantity is extensively used in the field of magnetism and geology to
identify physical sizes of objects like rock formations under the earth by
measuring the aberrations in the phase angle of the spatial magnetic or grav-
itational field (Pilkington and Keating, 2006). The phase angle variation is
obtained using the Eikonal E = |∇u|, which represents the surface of con-
stant phase angle. Note that the operator | · | is the Euclidean norm. Thus
one can rewrite the local wavenumber using the Eikonal as

k := ∇E
E

(C.2)

The nodal junction i connecting two finite-elements eL[i−1, i] and eR[i, i+1]
is considered. The local gradient at the node junction i can be approximately
evaluated using finite-difference formula as

∇Ei =
(
|∆ui+1/2|

hR

−
|∆ui−1/2|

hL

)(
hL + hR

2

)−1

, (C.3)

where ∆ui+1/2 = ui+1 − ui and ∆ui−1/2 = ui − ui−1. If one approximates
E at the junction as the average of the values at eL and eR, i.e., Ei =

210
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JST

Eikonal

JST

Eikonal

Figure C.1: Comparison of local wavenumber analysis using Eikonal and JST
sensor; (a-c) WP function and (d-f) Gaussian pulse function.

1
2

( |∆ui+1/2|
hR

+ |∆ui−1/2|
hL

)
, one obtains the following numerical approximation

for the local wavenumber:

(kh)∗
i = 2 |∆ui+1/2| − |∆ui−1/2|τ

|∆ui+1/2|+ |∆ui−1/2|τ
. (C.4)

Eq. (C.4) closely resembles the shock sensor operator from the widely ac-
claimed JST dissipation scheme of Jameson (2017). Assuming an equally
spaced mesh (i.e., τ = hR/hL ≡ 1) and only right moving waves (kh is
positive), the following inequality with the JST sensor (SJST ) holds:

SJST = |∆ui+1/2 −∆ui−1/2|
|∆ui+1/2|+ |∆ui−1/2|

≥
|∆ui+1/2| − |∆ui−1/2|
|∆ui+1/2|+ |∆ui−1/2|

. (C.5)

The shock sensor is a conservative upper bound for the local wavenumber in
terms of the Nyquist frequency (on equally spaced meshes). In fact, Jameson
(2017) mentions that this sensor provides robust results near shocks com-
pared to other TVD shock sensors and inspired the CUSP family of schemes.
To the author’s knowledge, this is the first work to reveal this mathematical
connection of the local wavenumber to the shock sensor. Fig. C.1(a) shows a
WP with centre Nyquist frequency kh = 1 whose Fourier spectrum is shown
in Fig. C.1(c). The local wavenumber estimates based on the Eikonal and
JST sensor values are plotted in Fig. C.1(b). The JST overestimates the lo-
cal wavenumber since it is an upper bound. The Eikonal estimates are closer
to the actual Fourier Nyquist limits. Using the local wavenumber, one can



APPENDIX C. LOCAL WAVENUMBER ANALYSIS AND SHOCK SENSOR OF JAMESON 212

determine if the variations are within the resolvable limit of the numerical
scheme. When variations are beyond the numerical resolution (unresolved)
they can be removed using artificial dissipation. Using the uncertainty princi-
ple, one can show that a function u(x) and its Fourier transform Û(k) cannot
be supported on arbitrarily small sets as given by the Heisenberg-Pauli-Weyl
inequality: (∫

x2|u(x)|2dx
)1/2 (∫

k2|Û(k)|2dk
)1/2
≥ 1

4π∥u∥
2
2, (C.6)

where ∥u∥2 is the l2 norm of the function u. Therefore, these spatial esti-
mates are at best approximations to the local wavenumber; when the spatial
variations are sharp, the uncertainty in wavenumber grows quite rapidly.



Appendix D

Entropy condition and
impedance matching

Non-linear convection problems like the Burgers’ equation and compressible
Euler equations in gas dynamics admit discontinuous solutions with jumps
called shock waves. Fig. D.1(b-d) shows the formation of the shock from a
smooth initial solution. Shocks occur at regions where two or more character-
istic lines meet (Fig. D.1(e)), i.e., a region where one wave tries to overtake
another. Overtaking of waves mathematically leads to multiple solutions.
Therefore, the solution that yields the shock wave by enforcing the entropy
condition is chosen. There are several ways to formulate this entropy condi-
tion, but in this work, the Rankine-Hugoniot (RH) relation is used to enforce
the entropy condition. The non-linear conservation law is defined as

ut + [f(u)]x = 0. (D.1)

Then the shock speed ξ is given by the RH condition as

ξ := f(u1)− f(u2)
u1 − u2

, (D.2)

where u1 and u2 are the states before and after the shock (as shown in
Fig. D.1). Then for any u ∈ [u1, u2] the shock speed must be bounded by

f(u1)− f(u)
u1 − u

≤ ξ ≤ f(u)− f(u2)
u− u2

. (D.3)

This is the entropy condition that ensures uniqueness of the shock solution
and eliminates the multiple solution case shown in Fig. D.1(b). For the

213
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Figure D.1: (a) Thermodynamic cycle of a shock wave, (b) waves overtaking
each other, (c) multiple solution at shock, (d) the shock entropy solution and
(e) x-t diagram of the shock problem.

inviscid Burgers’ equation, the flux function is f(u) = 1
2u

2 and the entropy
condition can be rewritten as

u1 + u ≤ 2ξ ≤ u+ u2. (D.4)

The problem of shock capturing using discrete finite-elements as illustrated
in Fig. 3.8 is considered. It is intended to smooth the shock and capture
its location between the two elements ei ∈ [i − 1, i] and ei+1 ∈ [i, i + 1], say
by matching the impedance to the left and right of node i. The entropy
condition in Eq. (D.3) must be satisfied for a valid shock solution between
the elements and this simplifies to

un+1
i−1 ≤ un+1

i+1 . (D.5)

The non-linear Burgers’ equation can be linearized for the time step n to
n + 1 and the averaged convection velocity resulting from the lineariza-
tion (Griewank and Walther, 2008; Ucar et al., 2017) is assumed constant
over the given finite-element. The Fourier transform is applied on both sides
of the inequality and simplified to yield the entropy condition in spectral
space,

|Gi−1| ≤ |Gi+1|. (D.6)
Note that the impedance G is based on the LTA of linearized convection
equation with locally constant (average) convection speed (Griewank and
Walther, 2008; Ucar et al., 2017). In addition, the nodal impedance Gi−1
and Gi+1 are functions of the element impedance pairs [GR

i−2, G
L
i−1] and
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[GL
i+2, G

R
i+1]. With the addition of TVD condition, one can show that the

five nodes (i− 2, i− 1, i, i+ 1, and i+ 2) influence the impedance matching
problem for shock capturing.
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