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Abstract – Flood forecasting with 2D hydrodynamic model is a 
powerful tool for risk assessment and decision makers as they 
provide water elevation maps over a computational domain. 
However, those models have uncertainties inherent to them due to 
the data used to construct them. Data assimilation (DA) is an 
efficient way to reduce these uncertainties. The assimilation of 
flood extent maps, derived from synthetic aperture radar (SAR) 
observations or, in the near future, 2D water surface elevation 
(WSE) observed from the Surface Water and Ocean Topography 
(SWOT) satellite is a hot topic as these data provide information 
in the floodplain. In this work, we propose an innovative 
framework to directly assimilate the location and the shape of the 
flood extent, by treating these data as interfaces (front-type) 
information. This approach allows to overcome the limitations of 
classical amplitude error correction, therefore allowing for the 
correction of flood edge position and/or deformation errors. To 
deal with complex front topology, an object-oriented approach 
based on the Chan-Vese (CV) contour fitting functional typically 
used in image processing was proposed. This study demonstrates 
the capability of the CV measure in a context of 2D flood 
forecasting to formulate the discrepancy between observed and 
simulated flood extents, used for DA analysis based on an ETKF 
algorithm for sequential parameter estimation. An OSSE 
experiment on a small toy model is presented to show the merit of 
the CV distance implemented in an ETKF algorithm. 

Keywords: Chan-Vese, Front Data, Data Assimilation, 
Remote Sensing, TELEMAC-2D, OSSE 

I. INTRODUCTION 
Between 1995 and 2015, floods accounted for 43% of the 

global natural hazards making it one of the most devastating 
and frequent weather-related disasters worldwide. Estimating 
and reducing the risk of flooding has become essential and 
attracted significant attention in the hydrometeorological and 
remote sensing (RS) communities, as well as the public and 
private sectors [1]. Flood studies aim at mitigating the impacts 
of flooding on population, as they allow flood management 
services to better identify flood-prone areas and reduce socio-
economic losses with timely and reliable alerts. Moreover, the 
world population reached 8 billion in 2022 and is still in 
constant growth. Associated urbanisation growing is often 
located in floodplains and inundation-prone areas. Thus, 
increasing vulnerability to flood events and putting pressure on 
operational flood forecasting services [2]. Several international 
initiatives have joined efforts in forecasting and monitoring 
river hydrodynamics, in order to provide Decision Support 

Systems with accurate flood forecasting capability. Risk 
assessment relies on Earth Observations (EO) and river 
hydrodynamic software. The latter solves Shallow Water (SW) 
equations that are used to predict water surface elevations 
(WSE) and discharge in the riverbed or floodplains, further 
used to assess flood risks. 

Hydrodynamic models are powerful tools for flood 
forecasting systems as they provided a fine resolution 
description of the flow in time and space. However, various 
sources of uncertainties in the model and in the inputs, for 
instance, hydrological forcing, initial conditions, model 
parameters and structures, translate into uncertainties in the 
model outputs. Data assimilation (DA) reduces these 
uncertainties by combining the model forecasts with various 
types of observations, such as in-situ gauge and satellite EO 
data. In the present work, we use the TELEMAC-2D (T2D) 
software (www.opentelemac.org), implemented for a 
simplified test channel case characterized by a narrow 
parabolic-shaped bathymetry, a slightly inclined topography, 
and an artificial hill located at mid-length of the channel. An 
ensemble-based DA filtering algorithm, namely the Ensemble 
Transformed Kalman Filter (ETKF) is used to sequentially 
combine observed flood extents, as wet/dry interface position, 
with T2D WSE simulated maps to improve flood forecasts. The 
ETKF is here favoured with respect to the Ensemble Kalman 
Filter (EnKF). Indeed, the computation of the covariance 
matrices is formulated in the ensemble subspace instead of in 
the state or observation subspace. A localisation feature is 
added to the ETKF using a geolocalized polygon that includes 
the ensemble of front lines. This DA algorithm is carried out 
within the context of an Observing System Simulation 
Experiment (OSSE). Synthetical flood extents, which mimic 
the flood extent maps derived from synthetic aperture radar 
(SAR) images, are assimilated to account for the error in the 
upstream inflow. The a priori water inflows differ from the true 
inflow, and the ETKF analysis aims at bringing the a priori 
value closer to the true and consequently bring the simulated 
fronts closer to the synthetical fronts.  

Over the past decades, the literature on DA for 
hydrodynamic models mainly focused on the assimilation of in-
situ or RS-derived WSE observation (e.g. [3], [4]). This stems 
from the fact that WSE is a state variable in any hydraulic 
model, thereby rendering the DA more straightforward. WSE 
maps can be derived from SAR images, by combining RS-
derived flood extent maps and topography data, yet such 
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methods still require further research (e.g. [5]). Alternatively, 
fully automated methods for mapping flood extents from 
satellite images are described in the literature (e.g. [6], [7]). 
Machine learning algorithms, for instance integrated in 
FloodML, allow to retrieve flood extents from SAR images 
([12]). Recent research works have developed methods to 
directly assimilate RS-derived flood extents, water masks or 
probabilistic flood maps, in hydraulic models and flood 
forecasting chains (e.g. [8], [9] & [10]), thereby paving the way 
for operational applications. Cooper et al. [11] proposed an 
observation operator that directly considers the SAR 
backscatter values as observations in order to bypass the flood 
edge identification or flood probability estimation processes. 
Another approach stands in the computation and the 
assimilation of wet surface ratio (WSR) in floodplain areas 
from SAR-derived flood extents [13]. Satellite SAR imagery 
data provides flood extent information with a large coverage 
from the observed backscatter (BS) values. Satellite SAR 
systems are capable of monitoring flood events with day-and-
night imaging ability, regardless of weather conditions. In 
addition, the recently launched wide-swath radar interferometry 
SWOT satellite is able to compute water surface elevation 
(WSE) maps from its interferometric observations. In this 
paper, we propose a framework for the direct assimilation of 
flood extent location and shape (derived from Sentinel-1 SAR 
images), considering the wet-dry interface as an innovative 
information. Such front-type information aims to overcome the 
limitations of classical amplitude error correction and allows 
for the correction of flood edge position and/or deformation 
errors.  

In several research fields, such as wildfire modelling ([15], 
[16] & [17]), tumour growth monitoring ([18], [19]) and oil 
spill detection and surveillance ([20]), DA algorithms have 
been developed to treat images as front-type information. Such 
approach was developed by Rochoux et al. ([16]) for data-
driven surface wildfire propagation at a regional scale, based on 
a fire front mapping and shape recognition. In this work, the 
position of markers, i.e. the finite set of points positioned along 
the observed and the simulated fire front, are matched and 
compared. The resulting discrepancies were used in an ETKF 
algorithm to reduce the errors in the propagation model 
parameters and state. This prototype was evaluated with a 
synthetic and controlled grassland fire experiment. However, it 
was shown that this marker-based method was suboptimal for 
complex front geometry due to the computation of Euclidean 
distances between markers. Indeed, to deal with complex front 
topology, an object-oriented approach derived from the Chan-
Vese (CV) contour fitting function used in image processing 
([14]) was proposed in [15]. This front shape similarity measure 
was implemented and evaluated for a field-scale experiment in 
[17]. A similar idea is here applied for the assimilation of SAR-
derived flood extent in the context of flood modelling. 
However, it should be noted that the comparison of non-
hydrometric observations, e.g. flood edge locations, or flood 
probability measures, with the model outputs is not 
straightforward and requires the development of appropriate 
observation operators. In the present study, the ETKF algorithm 
is implemented for an OSSE experiment using a 2D 
hydrodynamic model as forward model. RS-derived front-type 

data are assessed with respect to simulated flood extent using 
the CV metrics. 

II. MATERIALS AND METHODS 

A. TELEMAC-2D solver 
Free-surface hydraulic modelling is principally governed by the 
Shallow Water equations (SWE, also known as Saint-Venant 
equations derived from Navier-Stokes Equations), which 
express mass and momentum conservation averaged in the 
vertical dimension. In this work, the hydrodynamic numerical 
model TELEMAC-2D is used to simulate and predict the water 
level (denoted by 𝐻 [m]) and velocity (with horizontal 
components denoted by 𝑢 and 𝑣 [m/s]) from which flood risks 
can be assessed. It solves the SWE with an explicit first-order 
time integration scheme, a finite-element scheme and an 
iterative conjugate gradient method. A complete description of 
the underlying theoretical approach is provided in [21]. At each 
point within the mesh representing the model topography and 
bathymetry (for mesh nodes in the river channel), the results of 
the simulation are water height and velocity averaged over the 
vertical axis. 

 

Figure 1. Topography and bathymetry of the mesh (a and b), Friction 
coefficients (c) and boundary condition (d). For illustration purposes, the x-

axis and y-axis are not proportionally scaled. 

B. TELEMAC-2D test case  
A 15km-long parabolic-shape channel with a uniform slope 

and simplified floodplain test case was set for our work 
(Figure 1). The riverbed is characterized by a parabolic 
geometry (10m maximum depth). The catchment has a constant 
slope of 0.8% from upstream to downstream (x-axis). The 
floodplain has a uniform slope of 8% in the perpendicular 
direction to the river centerline (y-axis). Two topographic 
extrusions at around y = 7000 m are added in the floodplains. 
The extrusion is generated with the following equations: 

T = 10 − [(x − 500)! + (y − 7000)!] ∗ 1.10" 
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with x ∈	[0; 450] ∪	[550; 1000] and y ∈	[6000; 8000] 

Z = T +min	(|T|) 
The topography and bathymetry of the model are displayed 

in Figure 1 (a) and (b).  

The upstream and downstream boundary condition, 
respectively represented in orange and green in Figure 1 (d) are 
prescribed with a constant inflow and a rating curve. The 
Strickler coefficient is prescribed to 15 m⅓/s in the left 
floodplain, to 60 m⅓/s in the right floodplain and to 35 m⅓/s in 
the channel (Figure 1 - (c)). The triangular mesh contains 
around 115,000 nodes, and the global mean mesh edge length 
is 12.5 m. Within the riverbed, the triangles are oriented with a 
mean edge horizontal length of 6.25 m and a mean edge vertical 
length of 12.5m. Floodplains are described on an unstructured 
mesh with a mean edge length of 12.5 m.  

Preliminary analyses on the impact of the mesh density, the 
computational time steps and the friction coefficients were 
carried out. It was shown that an efficient computation with 
reasonable CPU resource cost (around 2 min per run on 6 nodes 
of Intel Xeon Gold 6140 core) was achieved with a time step of 
10 s for this 115,000-node mesh. In addition, such analyses 
showed that the dynamics of the flow is mostly driven by the 
inflow, and that the impact of a variation in friction coefficients 
is of lesser importance. This motivates the choice of the DA 
control vector as a corrective term to the inflow in this 
preliminary work.  

A spin-up simulation with a constant inflow of 5,000 m3/s 
is integrated over 48 h to provide the initial condition for all 
ensemble members of the DA strategy. These members are 
characterized by an inflow value prescribed between 4000 m3/s 
and 6000 m3/s.  

OSSE Framework 

For the DA ensemble test case, two OSSE experiments are 
set. The OSSE framework is based on a deterministic reference 
simulation (denoted as the truth) with a chosen set of 
parameters, in our case, a prescribed corrective term to the 
inflow named 𝛽. 𝛽 is supposed to be a random variable with a 
gaussian distribution characterised by a zero-mean and a 
standard deviation (std) here chosen to 700 m3/s. This factor is 
added to a constant a priori water flow rate prescribed as the 
inflow boundary condition for each ensemble member. Two 
different ensembles of 60 members with a priori settings are 
generated for our following tests: (i) 4,500 and (ii) 5,500 m3/s, 
respectively experiment A and B (noted exp.A and exp.B).  

 Synthetical observations are generated from the truth 
simulation water level (WL) maps, thresholded to express a 
water mask and to mimic SAR derived flood extent maps. 

C.  Wet-dry pixels interface and level set variable  
Level-set (LS) map and LS functions are closely related to 

shape optimization and topology analysis. It is used in several 
research domains to compare and analyse the evolution of an 
object in images as it allows a straightforward treatment of 
topology changes (see [22]). In hydrodynamic study, it can be 
used to take into account the changes and deformations of the 
wet/dry interfaces of a flood map. The wet/dry interfaces are 

extracted from the WL map, thus defining the LS function 
noted Φ. It is here defined as follows: 

Φ(𝑥, 𝑦) = 𝑊𝐿(𝑥, 𝑦) −𝑊𝐿#$ 

where (x, y) denotes the (lon,lat) coordinates of a grid cell 
and WLfr is the threshold between wet and dry areas 
(WLfr = 5 cm in our case). The LS value is null at the interface 
between wet and dry areas. An example of a level-set map for 
exp.B is shown in Figure 2 (a). 

In the framework of OSSE, this simulated interface position 
is compared to synthetical water mask derived from the truth 
simulation, also thresholded to WLfr and represented as a water 
mask as shown in Figure 2 (b). 

(a) (b) 

Figure 2.  
(a) Simulated level-set function computed from T2D water level (from exp.B) 

 (b) Observed binary flood extent map from a synthetical SAR 
image (from the truth WL map) 

D. The Chan-Vese contour fitting functional 
CV distances derived from the CV functional are based on 

two scalars, noted as C0 and C1, which rely on the formulation 
of the contingency map (Figure 3) between the observed and 
the simulated images. In the contingency map, each pixel is 
identified as one of the four following outcomes: 

● False Negative (FN - in yellow in Figure 3) if the pixel 
is flooded in the observation but dry in the simulation, 

● True Negative (TN - in blue in Figure 3) if the pixel is 
non flooded in the observation and dry in the 
simulation, 

● False Positive (FP - in green in Figure 3) if the pixel is 
non flooded in the observation and wet in the 
simulation, 

● True Positive (TP - in orange in Figure 3) if the pixel 
is flooded in the observation and wet in the simulation. 

C0 quantifies the mismatch between the observed and the 
simulated flooded area. It is the ratio between the number of 
flooded pixels that the simulation misses (FN) and the total of 
the non-flooded pixels in the simulation (TN + FN).  

C1 quantifies the match between the observed and the 
simulated flooded area. It is the ratio between the number of 
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flooded pixels that the simulation hits (TP) and the total of 
flooded pixels in the simulation (TP + FP).  

C1 and C0 are then defined as follow: 

𝐶% ≈
𝐹𝑁

𝑇𝑁 + 𝐹𝑁 	𝑎𝑛𝑑	𝐶& ≈
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

In the following, a buffer around the fronts is determined to 
reduce the computational cost of the CV metric and the 
subsequent algebra in the DA algorithm. The contingency map 
(Figure 3) is only computed in this buffer zone near the fronts 
(i.e. white pixels outside the buffer are not taken into account). 
The buffer localisation is described in subsection II-F. The 
observed image is considered as the reference binary map and 
the LS simulation as the experiment to be assessed with respect 
to this reference.  

Figure 3 displays the contingency map for two typical 
scenarios. In Figure 3 (a), the simulated flooded area is totally 
included within the observed flooded area, hence FP = 0 and 
TP+FP = TP, so that 0 < C0 < 1 (TN ≠ 0, FN ≠ 0) and C1=1. In 
Figure 3 (b) the simulated flooded area fully contains the 
observed flooded area, thus FN = 0, therefore C0 = 0 and 0 < 
C1 < 1 (TP ≠ 0, FP ≠ 0).  

Two other scenarios are also possible in general: (i) the 
perfect agreement scenario, when the simulated flooded surface 
perfectly matches the observed flooded surface, i.e. FN = 0 and 
FP = 0, so that C0=0 and C1=1 (TN ≠ 0, TP ≠ 0); and (ii) the 
total disagreement scenario, where the simulated flooded 
surface and the observed flooded area do not overlap nor 
intersect, thus TP = 0 and FN ≠ TN+FN, so that 0 < C0 < 1 and 
C1 = 0 (TN ≠ 0, FP ≠ 0). This last scenario is not possible in 
our case since the riverbed is wet in both simulation and 
observation. An intermediate state, more common in practice, 
is the partial agreement, when the simulated flooded surface 
partially overlaps the observed flooded area, leading to TP ≠ 0, 
FN ≠ 0, so that 0 < C0 < 1 and 0 < C1 < 1. 

The CV functional can be seen as a discrepancy functional 
between two LS. We decompose the CV functional in two 
functionals of the following form:  

𝒥 = 𝒥' + 𝒥( (1) 
where: 

𝒥' =	M 𝐻𝑣(Φ) NΦ)*+ − 𝐶𝑚𝑎𝑥PΦ)*+, ΦQR
!
𝑑𝑥𝑑𝑦

,

 

𝒥( =	MP1 − 𝐻𝑣(Φ)QNΦ)*+ − 𝐶𝑚𝑖𝑛PΦ)*+, ΦQR
!
𝑑𝑥𝑑𝑦

,

 

where Ω is the buffer area. 𝜙obs is the binary observed map and 
𝜙 the simulated LS function. Hv the Heaviside function, it is 
equal to 1 if 𝜙 is non-negative and to 0 otherwise. Cmax and 
Cmin are respectively the max and min between C0 and C1. 𝒥 
will be used as an analytical metric for results assessment in 
Section III. 

(a) exp.A (b) exp.B 

Figure 3. Examples of contingency maps  
blue = TN; green = FP; yellow = FN; orange = TP 

 dashed black line=forecast front; dashed red line=observed front 

From 𝒥' and 𝒥(, which are squared functionals, we define 
Chan-Vese distances that are compatible with the ETKF 
algorithm: 

𝐷PΦ)*+, ΦQ = 𝐷'PΦ)*+, ΦQ + 𝐷(PΦ)*+, ΦQ	 (2)
D+ and D− are defined as follow: 

𝐷'PΦ)*+, ΦQ = 𝐻𝑣(Φ) NΦ)*+ − 𝐶𝑚𝑎𝑥PΦ)*+, ΦQR 	𝑎𝑛𝑑 

𝐷(PΦ)*+, ΦQ = P1 − 𝐻𝑣(Φ)QNΦ)*+ − 𝐶𝑚𝑖𝑛PΦ)*+, ΦQR. 

E. Buffer localisation 
The observation operator in the ETKF is formulated in the 

observation space, here described as the number of pixels. This 
dimension is reduced when a buffer zone is prescribed. 

The buffer selects only the points that are the most 
informative near the ensemble of fronts (from observation 
image and the simulated runs). It consists in three steps 
(illustrated by Figure 4): (i) extract all the fronts in the 
ensemble LS maps and the binary flood extend; (ii) compute for 
each front line a polygon around it with a buffer chosen as twice 
the size of the pixel; (iii) merge all the buffer polygons in order 
to build a unique buffer polygon that is their union altogether. 

F. Ensemble-based data assimilation algorithm (ETKF) 
1) Description of the control vector 

 The control vector, denoted by x composed of a single 
parameter noted 𝛽, that is an additive factor to the water flow 
rate Qup at the upstream boundary condition. x is of size 
(1x Ne) where Ne is the ensemble size. In the following, x is 
noted xf or xa for forecast and analysis respectively. It is 
indexed with i that represents the i-th member between [1, Ne]. 

The implemented DA algorithm consists of a cycled 
deterministic ETKF where each cycle involves one or several 
binary flood extent observations. Each assimilation cycle c 
covers a time window T = [t start, t end] of 3h-duration where 
nobs,c are assimilated. In our case, nobs,c is the number of pixels 
to be assimilated from all the observed images over the cycle c. 
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Figure 4. Framework for the buffer selection 

Over a DA cycle and for each member of the ensemble, the a 
priori Qup is used to run the a priori simulation with the 
hydrodynamic deterministic model with Qup = 4,500 (exp.A) 
or 5,500 m3/s (exp. B). This is the forecast step; it defines the 
background or a priori hydraulic state. The simulated WL map 
is expressed as a water mask that is the model equivalent to the 
observed flood extent at the observation time. The CV 
discrepancy between observed and simulated flood extent for 
each member is used to determine the misfits and the 
covariance matrices, leading to the estimation of the analysis of 
𝛽. This is the analysis step, it describes the a posteriori, or 
analysed hydraulic state. These steps are further detailed in the 
following. For each member, the updated control vector is used 
to perform the analysed trajectory with the hydrodynamic 
model. For each DA cycle, the analysed trajectory starts with a 
spin-up of 2h at t start - 2h in order to reduce the impact of the 
initial condition on the analysis. There is 1h of overlap between 
the 3h-assimilation window and the 2h-spin-up window. It 
provides a final analysed state at t start + 2h which correspond to 
the end of the assimilation window for cycle c.  

2) ETKF forecast step 

An ETKF is used in our DA experiment. The ETKF 
performs the linear algebra of the analysis mostly in the 
ensemble subspace, which is of a smaller dimension than that 
of the observation space. For cycle c, the forecast step consists 
of the propagation in time, over T, of the background control 
and model state vectors.  

The control vector xi is then of size one, the observation 
space is of space nobs and the hydraulic state subspace of size m. 
We consider a time t included in the assimilation cycle c. 𝓜c: 
R → Rn denote the hydraulic model at the cycle c, of size n. 

The background hydraulic state, scf,i, associated with the 
ensemble i-th member of the control background vector is equal 
to:  

𝑠-
#,/ =	𝓜-P𝑠-(&

0,/ , 𝑥-
#,/Q (3)

where xcf,i is the forecasted control vector resulting from the 
previous analysis cycle. sc−1a,i is the analysed state from the 
previous cycle that is used as the initial condition for the current 
cycle. For the first cycle, it is provided by a restart file. Along 
DA cycles, xcf is generated using xc-1a, i and a random 
perturbation in order to avoid the ensemble collapse. 

The equivalent of control vector in the observation space for 
each member, denoted by ytf,i, stems from: 

𝑦-
#,/ = 𝓗-P𝑠-

#,/Q (4)
where 𝓗c: Rm → Rnobs is the observation operator in cycle c, 
from the model state space to the observation space, that selects, 
extracts and eventually interpolates model outputs at times and 
locations of the observation vector yo. 

3) ETKF analysis step 

Details on the ETKF can be found in [23], [24] and [25].  

The EnKF methods, including the ETKF variant, are based 
on the Kalman filter equations: 

𝒙0 = 𝒙# +𝐊	D(𝒚1; 𝒚#) (5) 

𝐏0 = (𝐈 − 𝐊𝐇)𝐏# (6) 

𝐊 = 𝐏#𝐇2(𝐇𝐏#𝐇2 + 𝐑)(& (7) 
with xa the analysed control vector of the ensemble (of size 
(1 x Ne)), K the Kalman gain (of size (Ne x nobs)), Pa the 
analysis error covariance matrix (of size (n x n)), Pf the forecast 
error covariance matrix (of size (n x n)) and R the observation 
error covariance matrix (of size (nobs x nobs)) which is taken 
diagonal in this study. D(yo; yf) is the innovation vector 
between the observation yo and the model equivalent related to 
the forecast ensemble states. In this work, D is the CV distance 
defined in subsection II-E.  

The principle of the EnKF methods is to stochastically the 
covariances matrices P within the ensemble.  
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xf =
1
Neix3

45

36%

(8) 

is the control ensemble mean and P reads: 

𝐏 =
1

Ne − 1i
(𝑥/ − �̅�)(𝑥/ − �̅�)7

89

/6%

=
1

Ne − 1𝐗𝐗
2 (9) 

with [𝑋]/ = (𝑥/ − �̅�) the matrix of the ensemble anomalies. We 
note Xa the analysed anomaly vector and Xf the forecasted 
anomaly vector. 

For each member of the ensemble, the a priori is updated 
during the analysis step: 

𝑥0,/ = 𝑥#,/ +𝐊	D(𝑦1; 𝑦#,/). (10) 

In the EnKF, in order to avoid ensemble collapse, an 
ensemble of perturbed observations is used in place of the 
deterministic observation vector. This way, (6) is validated in a 
statistical way. 

In contrast to the EnKF, the ETKF updates in an explicit 
way the ensemble means and anomalies inside the ensemble 
subspace instead of working the algebra in the observation 
space (as in (3)). The ensemble mean is updated using the 
analysis (1) and the anomalies are updated with an explicit 
transformation represented by the ensemble transform matrix 
T: 

𝐗0 = 𝐗#𝐓 (11)  

The analysed anomalies are defined such that the analysed 
covariance matrix respect (6), given (9) and (11): 

𝐏0 = (I − 𝐊𝐇)𝐏# = (I − 𝐊𝐇)𝐗#𝐗#2 (12) 

𝐏0 = 𝐗0𝐗02 = 𝐗#𝐓𝐓2𝐗#2 (13) 

If we develop (12) according to (7) and (9) we can choose TTT 
as: 

𝐓𝐓2 = qI −
1

𝑁𝑒 − 1𝐘#
7 t

1
𝑁𝑒 − 1𝐘#𝐘#

7 + 𝐑u
(&

v (14) 

𝑎𝑛𝑑	𝐘# = 𝐇𝐗# (15) 

(14) is equivalent, according to the Sherman-Morrison-
Woodbury formula [23], to: 

𝐓𝐓2 = P𝐼 ∗ (𝑁𝑒 − 1) + 𝐘#7𝐑(&𝐘#Q
(&. (16) 

In the present work, Yf,i is computed as the CV distance 
between the mean ensemble background and each member of 
the ensemble: 

x𝐘#y/ = 𝐇x𝐗#y/ =
𝐷(𝐻𝑣(𝑦f#); 𝑦#,/)

√𝑁𝑒 − 1
	and	𝑦f =

1
𝑁𝑒i𝑦#,/

89

/6&

 

[26] propose to decompose T in eigenvectors such that the 
ensemble mean is preserved. T is a positive symmetric matrix. 
The orthogonal matrix U (generally chosen as the identity 
matrix) is introduced so that T decomposes as: 

𝐓 =	√𝑁𝑒 − 1𝐶Γ(
&
!𝐶7𝐔 (17) 

where C are the eigenvectors (because T is symmetric) and 𝚪 
the eigenvalues matrix of T. The analysed thus reads:  

𝐗0 = 𝐗#𝐓 = √𝑁𝑒 − 1𝐗#𝐶Γ(
&
!𝐶7𝐔 (18) 

and the ensemble mean can is updated: 

�̅�0 = �̅�# + 𝐗#𝐰𝐚 (19) 

𝑤𝑖𝑡ℎ	𝐰0 = (𝐶Γ(&𝐶7)𝐘#7𝐑(&D(𝑦1; 𝑦f#) (20) 

with	D(𝑦1; 𝑦f#) the CV distance between the observation and 
the ensemble mean.  

For each member, the analysed control vector is updated as: 

𝑥0,/ = �̅�0 + 𝐗0/ (21) 

where Xai is the i-th column of the matrix Xa. 

We can now compute the new analysed state for the next 
cycle with the hydrodynamic model and the analysed control 
vector with: 

𝑠-0,/ =	𝓜-P𝑠-(&
0,/ , 𝑥-0,/Q (22) 

III. EXPERIMENTAL SETTING AND RESULTS 
The result of the DA for the corrective term on the upstream 

forcing using the CV metric to compute the discrepancy 
between observed and simulated front is assessed in this 
section. In the following, these results are displayed with two 
types of figures with similar layout for exp.A 
(Qup, a priori = 4,500 m3/s) and exp.B (Qup, a priori = 5,500 m3/s). 
Four DA cycles are carried out. 

Figure 5 and Figure 7, represent the ensemble fronts for the 
forecast (subplot a) and the analysis (subplot b) for the last time 
of the last DA cycle, at physical time t = 124,000 s with a start 
at t0 = 86,400 s. Members of the ensemble (forecast or 
analysed) are plotted in thin grey lines, the ensemble mean 
(forecast or analysis) is plotted in green, and the observed front 
is plotted in red. 

In Figure 6 and Figure 8, subplots (a) represents the 
evolution of the ensemble means (upper panels) and the 
standard deviations (bottom panels) over the DA cycles for the 
forecast control vector (in blue) and the analysis control vector 
(in red). Subplots (b) show the evolution of the mean CV 
functional (eq. (1)) computed between the ensemble members' 
levelset and the observed binary images used for results 
analysis. The smaller the CV functional the better; it reaches 
zero if the two images used for the comparison are perfectly 
equal. 

A. Results for experiment A 
In exp.A, the a priori is lower than the truth. Since the true 

value for Qup is 5000m3/s, 𝛽 is expected to be positive and to 
be close to 500 m3/s (because of the observation error) allowing 
for an inflow forecasted and analysed close to the truth. 

For a given DA cycle, the buffer limits the observation 
space so that the number of pixels is about 50,000 for one image 
instead of 150,000 for the whole domain. In the present case 
where three images are assimilated over T for cycle c, 
nobs = 150,000.  
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The forecasted and analysed front lines for the last DA cycle 
are shown in Figure 5 (a) and (b) respectively. The analysis is 
brought closer to the truth so that the members, mean and 
observations seem to overlap.  

 

(a) forecast front lines 

 

(b) analysis front lines 

Figure 5. Exp.A - Front lines of the ensemble members (in light grey), the 
observation (in red) and the ensemble mean (in green) for the last time of the 

last cycle of DA.  

This illustrates how the DA algorithm is capable of 
correctly increasing the inflow to almost reach the truth inflow 
value. 

 
(a) Summary of the analysis phases. 
    (i) ensemble mean; (ii) ensemble 
std 

 
(b) Chan-Vese functional evolution 
in time. 

Figure 6. Analysis metric for Exp.A. 
In blue the forecast, in red the analysis 

The upper panel in subplot a in Figure 6 shows the evolution 
of the ensemble mean for 𝛽 along the DA cycles. It should be 
noted that, as expected, the analysis as well as the forecast is 
reaches almost 500 m3/s which give the truth value when added 
to the a priori value of 4,500 m3/s. Since the truth is prescribed 
as a constant value, the analysis converges to this value along 
the DA cycles and the std of the ensemble decreases to zero. 
This shows that the ETKF DA efficiently brings the a priori 
close to the truth, with a high certainty in spite of the limited 
number of members in the ensemble. Indeed, before the 
analysis, the forecast std values are found between 400 and 800 
m3/s. The values are greatly reduced with the DA algorithm. 
Figure 6 (b) displays the Chan-Vese functional over time from 

eq. (1). This clearly shows the improvement brought by the DA 
analysis with the cost function metrics. As expected, the 
forecast and analysis cost functions decrease over the DA 
cycles, with a smaller 𝒥 value for the analysis. The CV 
functional for the analysis runs decreases almost exponentially. 
Even though it does not reach zero (perfect state) for the 
ensemble, it converges quite well towards it. Indeed, we put a 
strong trust on observations so that we expect that the analysis 
phase brings the control vector near the truth. 

 

(a) forecast front lines 
 

(b) analysis front lines 

Figure 7. Exp.B - Front lines of the ensemble members (in light grey), the 
observation (in red) and the ensemble mean (in green) for the last last time of 

the last cycle of DA.  

B. Results for experiment B 
In exp.B, a second a priori setting was tested when the 

inflow ensemble mean is greater than the truth, i.e. 5,500 m3/s 
compared to the true value 5,000 m3/s. As opposed to exp.A, 
here the beta factor is expected to be negative and approach 
- 500 m3/s, which allows for decreased inflow closer to the 
truth.  

 
(a) Summary of the analysis phases.  
    (i) ensemble mean; (ii) ensemble std 

 
(b) Chan-Vese functional evolution 
in time. 

Figure 8. Analysis metric for Exp.B. 
In blue the forecast, in red the analysis 

Similarly to Section III A, Figure 7 (a) and (b) show the 
forecasted and analysed front lines for the last DA cycle. For 
the analysis all members, mean and observations seem to 
overlap. 
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Figure 8 (a) (upper panel) shows the evolution of the mean 
ensemble beta factor evolution. The analysis as well as the 
forecast reaches - 500 m3/s which give the truth value when 
added to the a priori value of 5,500 m3/s.  

It seems that the convergence over the DA cycles is slower 
than in expA. This suggests that the non-linearity between the 
inflow and the flood extent is stronger when removing water 
from the system, which may relate to the incapacity of the model 
to wash out water from the floodplain as evapotranspiration 
processes are not accounted for. This question is currently being 
investigated. The ensemble inflow std value of the analysis is 
almost zero (Figure 8 (a) bottom panel) meaning that the ETKF 
DA is most certain. Similarly, to expA, the CV cost function 
significantly decreases over the DA cycles with reduced values 
for the analysis with respect to the forecast as shown in Figure 8 
(b), with a lesser efficiency than for exp.A. 

IV. DISCUSSION AND CONCLUSION 
In conclusion, the implementation of the ETKF with the CV 

metric for front distance estimation shows promising results. 
The OSSE framework allows for a sanity validation of the 
algorithm here applied to a simplified test case. The 
construction of a buffer zone to reduce the size of the 
observations space allows to reduce the computational cost of 
the ETKF DA algorithms. For now, the buffer selection phase 
is done for each cycle in the algorithm. This phase could be 
adapted to be more efficient. 

Further work will focus on more advanced test cases where 
the simulated and observed fronts intersect. This could result 
from uncertainties in topography and Strickler coefficient. 

The perspective for this work is to apply the CV-ETKF 
strategy to real test cases, in unsteady conditions, for instance 
for the Garonne Marmandaise model, and extend the 
observations to other satellite-derived flood extents, for 
instance from SWOT.  
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