New modular compiling
and testing environment
for OASIS3-MCT

Coquart L., Valcke S., Craig A.

CECI, Université de Toulouse, CNRS, CERFACS, Toulouse, France
Technical Report TR-CMGC-23-175

This work was carried out in the framework of the
EU project H2020 IS-ENES3 number 824084.

= CERFACS Cirs

INFRASTRUCTURE FOR THE EUROPEAN NETWORK
FOR EARTH SYSTEM MODELLING

Table des matieres

1 Introduction
2 Compiling and running the toys in the new environment using two global environment
variables

N N L R~ W

2.1 Compiling OASIS3-MCT “manually”

2.2 Compiling and running the toys using local scripts
Compiling and running the toys using top-level scripts
Summary
Conclusion
Bibliography
Appendix A

7.1 File make.inc in oasis3-mct/util/make dir

7.2 One example of a comp_env_${OASIS ENV} file:
comp_env_tioman_intel21.1.1 intelmpi2021.1.1.sh

7.3 One example of a toy parameter file: param_tutorial communication_ testO1
7.4 Ksh script oasis_test build.sh (to compile a toy)
7.5 Ksh script oasis_test_run.sh (to run a test)

7.6 One example of a of env_tests param_ xxxxx :env_tests param example
(tutorial communication and spoc_communication)

7.7 Top-level ksh script sc_top.sh
7.8 Content of sc_compile oasis.sh

7.9 Content of env_tests param_tioman_intel21.1.1 intelmpi2021.1.1

14
14
15
16

17
18
19
21

1 Introduction

OASIS3-MCT is a numerical multi-component coupler widely used in the climate community,
developed at Cerfacs in collaboration with CNRS (Craig, A. et al. (2017)).

The different OASIS3-MCT versions are managed by GIT on the Cerfacs nitrox server since
March 2019 and the developments were tested and validated using Buildbot since 2012. In
2021 all test cases were rewritten. In this latest test suite, the different test cases, called
“toys” hereafter, consist usually of two component models, not containing any physics but
invoking functionalities of the coupler and reproducing coupling algorithms of real coupled
models (Coquart, L. et al. (2021)).

A drawback of this test suite under Buildbot was that, due to its relative complexity, only one
person could run the Buildbot tests and analyze the results. It was also difficult to run only
one test for one toy. This is the reason why a more modular environment of compilation and
run, using toys based on the Buildbot system was created and is available on OASIS3-MCT
master branch since December 2022 (commit 5e9efd18).

In the new environment, all the data needed to run a toy as well as the parameter files are
located in the toy directory. This was not the case before when using Buildbot.

Defining only two global environment variables, it is now possible to compile and run
different tests for each toy after having compiled OASIS3-MCT “manually”. Top-level scripts
were also developed to chain one or more tests for one or more toys creating the ability to
run a test suite.

The first part of the document focuses on the two global environment variables that drive
compilation of OASIS3-MCT and compilation and run of the different toys. The second
section of the document presents the top-level scripts to compile OASIS3-MCT and the toys
and then to run them chaining them automatically. The third part summarizes how to
create, compile and run a new toy on a new computer using local scripts and using top-level
scripts. Then we provide conclusions in the final section.

2 Compiling and running the toys in the new environment
using two global environment variables

2.1 Compiling OASIS3-MCT “manually”

As usual, OASIS3-MCT must first be compiled (Valcke, S. et al. (2021)). In the new modular
compiling environment of OASIS3-MCT, two global environment variables must be defined
where the compilation occurs:

e OASIS_COUPLE : the location of the sources of the OASIS3-MCT coupler (/lib,
/util, /examples, etc. directories)

e OASIS_ENV : The user-defined name specifying the machine, compiler, and
overall environment. This defines the comp_env and header Makefile files.

A header Makefile, named make.S{OASIS_ENV}, adapted to the platform where OASIS3-MCT
is compiled, must be located in the directory oasis3-mct/util/make_dir. We recommend to
compose ${OASIS_ENV} as something like
(computer_name)_(compiler_version)_(MPI_library_version) [for example,
tioman_intel21.1.1_intelmpi2021.1.1], but any unique string defined by the user is
acceptable. The header Makefile defined by make.S{OASIS_ENV} is automatically included in
the OASIS3-MCT TopMakefileOasis3 Makefile via the generic make.inc file. This is shown in
Appendix A section 7.1.

A file named comp_env_S${OASIS_ENV}.sh must also exist in the directory oasis3-
mct/util/make_dir. It sets up the computer environment for compiling and running the tests
via module or other system calls. This file is automatically executed by the test scripts. The
contents of the sample file comp_env_tioman_intel21.1.1_intelmpi2021.1.1.sh used for a
Linux fedora 26 computer called tioman (compute_name) with intel21.1.1
(compiler_version) and intelmpi2021.1.1 (MPI_library_version) is shown in Appendix A
section 7.2 and available in directory oasis3-mct/util/env_tests .

Examples of make.S{OASIS_ENV} and comp_env_S${OASIS_ENV}.sh are provided in directory
oasis3-mct/util/make_dir as shown at Figure 1Erreur ! Source du renvoi introuvable.:

coquart@tioman: /space/coquart/oasis3-mct/util/make dir [16:58:49] (master)
$ —-> 1s
make.common

make.inc

Figure 1: Files in repository oasis3-mct/util/make_dir

The compilation of OASIS3-MCT sources can be done in directory oasis3-mct/util/make_dir
by typing “make -f TopMakefileOasis3” (see section 6.1 of the User Guide for details).

2.2 Compiling and running the toys using local scripts

B B S
Quick Start Example: Compile and run tutorial_communication toy on Linux CECI-Cerfacs
computer tioman

cd /space /coquart/

git clone https://gitlab.com/cerfacs/oasis3-mct.git

export OASIS_COUPLE = /space/coquart/oasis3-mct

export OASIS_ENV = tioman_intel21.1.1_intelmpi2021.1.1

cd S{OASIS_COUPLE}/util/make_dir

make -f TopMakefileOasis3

cd S{OASIS_COUPLE}/examples/tutorial_communication

In -s S{OASIS_COUPLE}/env_tests/oasis_test_build.sh .

In -s S{OASIS_COUPLE}/env_tests/oasis_tes_run.sh .

Define one test to do in a file called param_tutorial_test01, param_tutorial_test02 ...

Compile the toy :

.Joasis_test_build.sh param_tutorial_communication_test01

Run the toy :

.Joasis_test_run.sh param_tutorial_communication_test01

Outputisin:
S{OASIS_COUPLE}/examples/tutorial_communication/TESTS/work_tutorial_communication
_namcouple_Makefile_atmos_1_ocean_1

All files and parameters used above are described below.
o B B S

The toy model examples in oasis3-mct/examples have been adapted to the new compiling
and running environment (except for running /regrid_environment and
/spoc/spoc_regridding, as these are especially complex).

In addition, the toys of the nitrox project “oasis3-mct_tests”! have also been adapted to this
new environment since 2021; the list of toys in oasis3-mct_tests is given in Figure 2:

coquart@tioman: /space/coquart/oasis3-mct_tests [19:55:30] (master)
$ —-> 1s

grids_regional_to_regional toy_multiple_fields_one_communication

toy_multiple_grids_per_partition

LOGPRT

1lrigra_to_<41Zgra gri ritin
y
ldentlcal_grids
bundle to nterp tion
X KOUT to interpolation
toy_lntracomm

t
t
t
t
t
BCG toy_load_balancing toy_restart
t
t
t
t
t

Figure 2: Toys from oasis3-mct_tests adapted to the new modular environment

Figure 3 illustrates the ksh scripts oasis_test_build.sh and oasis_test_run.sh available in
oasis3-mct/util/env_tests and used to compile and run the toy.

! One can get this test suite writing to oasishelp@cerfacs.fr

https://gitlab.com/cerfacs/oasis3-mct.git

A parameter file containing user-defined parameters and named param_S{casename},
where ${casename} is the name of the toy directory, must be provided in the toy directory;
as multiple tests can be done using one single toy, there can be multiple parameter files
named param_S{casename} test01, param_S${casename}_test02, etc. This structure of the
parameter file name is mandatory. Each file specifies:
e the name of the executables, USER_EXE1 until USER_EXES if it is necessary,
e the number of processors for each model, USER_NPEXE1 until USER_NPEXES if it is
necessary,
e the name and directory of the Makefile, USER_MAKEFILE and USER_MAKELOC
e the name and directory of the namcouple, USER_NAMCOUPLE and USER_NAMLOC
e the remapping file directory, USER_RMPLOC,
e the directory containing OASIS3-MCT auxiliary files grids.nc, areas.nc and masks.nc,
USER_AUXLOC,
e the directory containing the coupling restart files, USER_RSTLOC
e the directory that contains the file defining the model grid, USER_MESHLOC.

Specifying all these parameters is mandatory, except that if there is only one executable, it is
necessary to define only USER_EXE1 and USER_NPEXE1.

An example of a parameter file for examples/tutorial_communication is given appendix A
section 7.37.3

oasis_test build.sh

l Read one parameter file of the toy defined locally

_>

Figure 3: Scripts used to locally compile and run the toys of the new modular environment of
OASIS3-MCT tests

Thanks to the definition of the two environment variables OASIS_COUPLE and OASIS_ENV
(see section 2.1), the script oasis_test_build.sh is able to compile the toy. It has to be called
with the parameter file as argument, e.g.:

./ oasis_test_build.sh param_tutorial_communication_test01

It sources the script S{OASIS_COUPLE}/util/make_dir/comp_env_S${OASIS_ENV}.sh, defining
the computer environment and the parameter file, copies the Makefile locally and uses it to
compile the sources of the toy. Note that the Makefile to compile the toy sources has to
start with the line

include S(OASIS_COUPLE)/util/make_dir/make.inc

The script oasis_test_build.sh is described in Appendix A section 7.4.

Then the script oasis_test_run.sh, reading the parameter file of the toy, can be used to run
one test with the toy on a specific computer. It has to be called with the parameter file as an
argument, e.g.:

./ oasis_test_run.sh param_tutorial_communication_test01

It sources the script S{OASIS_COUPLE}/util/make_dir/comp_env_S${OASIS_ENV}.sh, defining
the computer environment, and the parameter file, and calls the script
S{OASIS_COUPLE}/util/env_tests/sc_launch_tests.sh that launches the test. The results are
stored in a local repository called TESTS in the toy repository. The file oasis_test_run.sh is
described in Appendix A section 7.5.

To be able to compile OASIS3-MCT and run many tests for many toys on many platforms,
some top-level scripts were developed (see scripts in oasis3-mct/util/env_tests). They are
described in the next section.

3 Compiling and running the toys using top-level scripts

B B B
Quick Start Example: Compile and run tutorial_communication on Linux CECI-Cerfacs
computer tioman

Once the toy tutorial_communication has been adapted to the new compiling and running
environment, one can use the top-level scripts to compile and run it:

export OASIS_COUPLE = /space/coquart/oasis3-mct

export OASIS_ENV = tioman_intel21.1.1_intelmpi2021.1.1

cd S{OASIS_COUPLE}/util/env_tests

Compile and run test suite defined in env_tests_param_example on Linux:

./scrip_top.sh example

Outputisin:
S{USER_RUNDIR}/work_tutorial_communication_namcouple_Makefile_atmos_1_ocean_1

All files and parameters used above are described below.
o B B B R S

Instead of compiling and running the toys locally in their own directory, it is possible to use
top-level scripts defined in oasis3-mct/util/env_tests.
A list of the files contained in oasis3-mct/util/env_tests is shown below Figure 4:

coquart@Ptioman: /space/coquart/oasis3-mct/util/env_tests [18:05:48] (master)
$ —-> 1s

Figure 4: Files in oasis3-mct/util/env_tests

Figure 5 describes the tasks sequencing to compile OASIS3-MCT and a selection of toys, and
run these toys using different top-level scripts:

env_param defined for one platform

‘ Read one parameter file of the tov defined locallv

sc_compile_oasis.sh

oasis_test_build.sh ‘
e ‘ Read one parameter file of the toy defined locally

T owetonn o O sl

Figure 5: Tasks sequencing to compile and run a selection of toys in the new modular
environment of OASIS3-MCT tests using top-level scripts

A file env_tests_param_xxxxx, where xxxxx is a string defined by the user, specifies the tests
to be automatically compiled and run. That file must exist in the repository oasis3-
mct/util/env_tests; it contains the name of the toys, the number of tests for each toy and
the name of the parameter file for each toy. A very simple example of this file,
env_tests_param_example, is given Appendix A section 7.6. In that example, the user
specifies:

e to compile OASIS3-MCT (OASIS_COMPILE=TRUE)

e to compile and run two different toys (USER_TOY=("/scratch/globc/valcke/oasis3-
mct/examples/tutorial_communication" "/scratch/globc/valcke/oasis3-
mct/examples/spoc/spoc_communication"))

e for tutorial_communication, to run 2 different tests, and for spoc_communication, to
run only one test (USER_TEST=("2""1"));

e for tutorial_communication and for spoc_communication to take the parameter files
from the directories specified USER_PARAMLOC, here the local toy directories; note
that tutorial_communication will automatically take respectively
param_tutorial_communication_test01 and param_tutorial_communication_test02
from /scratch/globc/valcke/oasis3-mct/examples/tutorial_communication as input
parameter file, and spoc_communication will automatically take
param_spoc_communication_test01 from /scratch/globc/valcke/oasis3-
mct/examples/spoc/spoc_communication as input parameter file

e to run the tests in USER_RUNDIR=${OASIS_COUPLE}/OA3_MCT_RES

The user can then compile and run this series of tests with “./sc_top.sh example” and use
env_tests_param_example as input file. (Note that the argument "example" will specify use
of env_tests_param_example). The script sc_top.sh is described Appendix A, section 7.7. As
shown in Figure 5, the script sc_top.sh then calls sc_compile_oasis.sh to compile OASIS3-
MCT if the global environment variable S{OASIS_COMPILE} is set to TRUE. The script
sc_compile_oasis.sh is given in appendix A section 7.8. Then the script sc_top.sh compiles
and runs each toy and test specified by the user using the local scripts oasis_test_build.sh
and oasis_test_run.sh in each toy directory.

Some additional variables are defined by default but they can be specified in
env_tests_param_xxxxxx if necessary, see for example the file
env_tests_param_tioman_intel21.1.1_intelmpi2021.1.1 given in Appendix A section 7.9 and
available in directory oasis3-mct/util/env_tests.
In this file, the user may define:
e OASIS_ROOT to specify the location of the OASIS3-MCT sources. It is useful when
changing the computer where the tests are done
e OASIS_COUPLE to avoid defining it “by hand” as an environment variable (see 2.1). It is
also useful when testing OASIS3-MCT on different platforms
e OASIS_ENV to avoid defining it “by hand” as an environment variable (see 2.1). It is
also useful when testing OASIS3-MCT on different platforms
e OASIS_TESTS for the location of the toys. It is useful when changing of computer where
the tests are done
e OASIS_COMPILE=TRUE; OASIS_DEBUG=TRUE and OPENMP=TRUE: to compile OASIS,
with debugging options, and open MP options
e USER_TOY to define the list of toys to compile and run

e USER_TEST to define the number of tests for each toy
e USER_PARAMLOC to specify the localization of the parameter files
e USER_RUNDIR to define where to run the tests

10

4 Summary

In summary, to create, run, and compile a new toy in this environment on a new computer
using specific compiler and mpi libraries, one must first compile OASIS3-MCT in /oasis3-
mct/util/make_dir on the new computer. For that, it is necessary to define the environment
variables OASIS_COUPLE, the location of the OASIS3-MCT sources, and OASIS_ENV, the
name of the computer environment. The user then has to generate the header Makefile
corresponding to the new computer, make.S{OASIS_ENV} and the computer environment
file, comp_env_S{OASIS_ENV}.sh. The computer environment file will be used to compile
and run the toy(s) on the new computer. The header Makefile is automatically included in
the file make.inc (see 7.1) which is included in the TopMakefileOasis3 file that compiles
OASIS3-MCT. We recommend OASIS_ENV to be composed like
(computer_name)_(compiler_version)_(MPI_library_version). There are some examples of
these files in /oasis3-mct/util/make_dir.

Then, a toy test case can be created anywhere on the computer. The first step should be to
copy or link the scripts oasis_test_build.sh and oasis_test_run.sh from oasis3-
mct/util/env_tests files in the toy directory (see Figure 3: Scripts used to locally compile and
run the toys of the new modular environment of OASIS3-MCT tests). These scripts use the
environment variables OASIS_COUPLE and OASIS_ENV (see above). The local Makefile used
to compile the toy sources has to start with the line

“include S(OASIS_COUPLE)/util/make_dir/make.inc”.

The different tests to be performed with the toy must be configured in a local parameter file,
named “parameter_toyname_test01”, “parameter_toyname_test02”, etc. ... (see 7.3). The
toy can then be compiled and run using the compile and run scripts with the parameter file
given as argument, for example “./oasis_test_build.sh parameter_toyname_01" and
“.[/oasis_test_run.sh parameter_toyname_01".

One can also use the top-level script oasis3-mct/util/env_tests/sc_top.sh to compile and run
different tests for different toys at once (see Figure 5: Tasks sequencing to compile and run
a selection of toys in the new modular environment of OASIS3-MCT tests using top-level
scripts). In addition to the files described in the previous paragraph (to compile and run one
test for one toy), one has to define the different tests for the different toys in a file
env_tests_param_xxxxx in the directory oasis3-mct/util/env_tests where xxxxx is a string
defined by the user. Some additional variables, giving more flexibility in the test setups, can
also be defined in env_tests_param_xxxxx (see section 3 and Appendix 7.9). The tests can
then be launched using the command “./sc_top.sh xxxxx”.

11

5 Conclusion

This report presents the new modular environment used to compile and run OASIS3-MCT
tests. It is based on the definition of two global environment variables, OASIS_COUPLE and
OASIS_ENV, and of two files linked to the platform, make.S{OASIS ENV} and
comp_env_S{OASIS_ENV}.sh, for compilation and for running the tests in the pre-defined
environment.

Section 2 of the document describes how to compile OASIS3-MCT “manually” defining these
two environment variables. Then with the definition of the same variables, it is possible to
compile and run each toy locally in their own directory using the scripts oasis_test_build.sh
and oasis_test_run.sh. The two scripts read a parameter file containing the details of the test
to perform, and source the compiling environment comp_env_S${OASIS_ENV}.sh. The script
oasis_test_run.sh calls the script sc_launch_tests.sh to run the test in the corresponding
platform environment.

Section 3 describes the scripts that can be used to compile and run a series of toys in the new
modular environment using the top-level script sc_top.sh. It is also based on the two global
environment variables OASIS_COUPLE and OASIS_ENV and on the local scripts
oasis_test_build.sh and oasis_test_run.sh. But sc_top.sh allows to compile OASIS3-MCT and
compile and run a series of different tests for different toys based on a user-defined
configuration in the file env_tests_param_xxxxx.

Finally, section 4 provides a summary.
In a near future, this new modular environment will be run under Gitlab CD/CI (GitLab CI/CD

(2023)) on the Cerfacs nitrox server to follow and debug the developments done in OASIS3-
MCT under git, instead of using Buildbot.

12

6 Bibliography

GitLab CI/CD tool for software development (2023) https.//docs.qgitlab.com/ee/ci/

Coquart, L., Valcke, S., Craig, A. and Maisonnave, E. (2021) New Buildbot test suite for the
OASIS3-MCT coupler Fortran source code, CECI, Université de Toulouse, CNRS, CERFACS,
Toulouse, France, TR-CMGC-21-36, Technical report

Valcke, S., Craig, A., Maisonnave, E. and Coquart, L. (2021) OASIS3-MCT User Guide, OASIS3-
MCT 5.0, CECI, Université de Toulouse, CNRS, CERFACS, Toulouse, France - TR-CMGC-21-161,
Technical report

Craig, A., Valcke, S. and Coquart, L. (2017) Development and performance of a new version of

the OASIS coupler, OASIS3-MCT 3.0, Geoscientific Model Development, 10, pp. 3297-3308,
doi: 10.5194/gmd-10-3297-2017

13

https://docs.gitlab.com/ee/ci/

7 Appendix A

7.1 File make.inc in oasis3-mct/util/make_dir

include S(OASIS_COUPLE)/util/make_dir/make.S(OASIS_ENV)

7.2 One example of a comp_env_S${OASIS_ENV} file:
comp_env_tioman_intel21.1.1_intelmpi2021.1.1.sh

This file comp_env_tioman_intel21.1.1_intelmpi2021.1.1.sh is used to set up the environment

of compilation and run on Fedora 26 tioman computer.

#1/bin/ksh

HUB R AR AR AR T
Compilation environment

HUB R AR AR AR R T
source /etc/profile.d/modules.sh
module purge

module load intel/21.1.1

module load intelmpi/2021.1.1
module load lib/netcdf-fortran/4.4.4_phdf5 1.10.4
module load python/3.7.7

echo 'We work on tioman'

echo ‘which mpirun®

export MPIRUN=mpirun

export corespn=1

7.3 One example of a toy parameter file:
param_tutorial_communication_test01

HH AR R R R R R B R R R

PARAMETERS for test 1 for toy tutorial communication

By default, OASIS _TOYDIR is defined as ‘pwd" in oasis_test_build.sh and oasis_test_run.sh;
If top-level script sc_top.sh is used to run multiple tests, OASIS_TOYDIR is defined in sc_top.sh
R R T R T R A R TR R R R

export USER_EXE1=atmos

export USER_EXE2=ocean

export USER_NPEXE1=1

export USER_NPEXE2=1

export USER_MAKEFILE=Makefile

export USER_MAKELOC=S{OASIS_TOYDIR}

export USER_NAMCOUPLE=namcouple

export USER_NAMLOC=S{OASIS_TOYDIR}/data_tutorial
export USER_RMPLOC=S{OASIS_TOYDIR}/data_tutorial
export USER_AUXLOC=""

export USER_RSTLOC=S{OASIS_TOYDIR}/data_tutorial
export USER_ MESHLOC=S{OASIS_TOYDIR}/data_tutorial

14

7.4 Ksh script oasis_test_build.sh (to compile a toy)

#1/bin/ksh

BT R T R R R R R R A

USAGE:

Define following the variable environment:

OASIS_COUPLE: the location of the sources of the coupler (/lib, /util, /examples, etc. dire
ctories)

OASIS_ENV: the extension of the header Makefile to use for OASIS3-MCT compilation
#

Then for example

./oasis_test_build.sh param_casename_test01

./oasis_test_build.sh param_casename_test02

#...

#

The param_casename_test?? are files that exists in the toy

directory and specify several aspects of each test run

#

Be carefull that OASIS3-MCT is compiled with the same environment than the toy
R R T R R R R R R A

testname=51

echo "testname = Stestname"

if [! -f ./Stestname]; then
echo "ERROR in param file argument, usage"
echo " ./oasis_test_build.sh \Stestname"
exit -9

fi

srcdir="pwd"’
export casename="basename Ssrcdir’
export pathname="dirname Ssrcdir’

if [-z "S{OASIS_ENV}" |; then
echo "ERROR OASIS_ENV not defined"
exit -9

fi

if [-z "S{OASIS_COUPLE}" |; then
echo "ERROR OASIS_COUPLE not defined"
exit -9

fi

if [-z "S{OASIS_TOYDIR}"]; then
export OASIS TOYDIR="pwd"
echo "OASIS_TOYDIR is by default S{OASIS_TOYDIR}"
else
echo "OASIS_TOYDIR is set in sc_top.sh and is S{OASIS_TOYDIR}"

fi

. S{OASIS_COUPLE}/util/make_dir/comp_env_S{OASIS_ENV}.sh

15

../Stestname

cp -f S{USER_MAKELOC}/S{USER_MAKEFILE} S{OASIS_TOYDIR}/Makefile
make clean

make

7.5 Ksh script oasis_test_run.sh (to run a test)

#1/bin/ksh

#set -xv

R A R R R R R

USAGE:

Define following the variable environment:

OASIS_COUPLE: the location of the sources of the coupler (/lib, /util, /fexamples, etc. directories)
OASIS _ENV: the extension of the header Makefile to use for OASIS3-MCT compilation
#

Then for example

./oasis_test_run.sh param_casename_test01

./oasis_test_run.sh param_casename_test02

#...

The param_casename_test?? are files that exists in the toy

directory and specify several aspects of each test run

#

R A R R A R R R R

testname=51

echo "testname = Stestname"

if [! -f ./Stestname]; then
echo "ERROR in param file argument, usage"
echo " ./oasis_test_run.sh \Stestname"
exit -9

fi

if [-z "S{OASIS_ENV}" |; then
echo "ERROR OASIS_ENV not defined"
exit -9

fi

if [-z "S{OASIS_COUPLE}" |; then
echo "ERROR OASIS_COUPLE not defined"
exit -9

fi

srcdir="pwd"’
export casename="basename Ssrcdir’
export pathname="dirname Ssrcdir’

if [-z "S{OASIS_TOYDIR}" J; then
export OASIS TOYDIR="pwd"
echo "OASIS_TOYDIR is by default S{OASIS_TOYDIR}"

16

else
echo "OASIS_TOYDIR is set in sc_top.sh and is S{OASIS_TOYDIR}"

fi

if [-z "S{USER_RUNDIR}" |; then
export USER_RUNDIR=S{OASIS _TOYDIR}/TESTS
echo "USER_RUNDIR is by default S{OASIS_TOYDIR}/TESTS"
else
echo "USER_RUNDIR is set in env_param file and is S{USER_RUNDIR}"

fi
. S{OASIS_COUPLE}/util/make_dir/comp_env_S{OASIS_ENV}.sh

Need to reinitialize some variables

to run toys with different models one after the other
Do not modify below, use Stestname

export USER_EXE1=

export USER_EXE2=

export USER_EXE3=

export USER_EXE4=

export USER_EXE5=

R A R R R T R R
../Stestname
S{OASIS_COUPLE}/util/env_tests/sc_launch_tests.sh

7.6 One example of a of env_tests_param_xxxxx :
env_tests_param_example (tutorial_communication and
spoc_communication)

BHB R S S R R S R R R R R Y

USER SECTION

BHB AR S S R R S R R R R R Y

OASIS VARIABLES DEFINITION

+ NAMES OF THE DIFFERENT TOYS

BHB R S S R R S R R B R R R Y

To recompile oasis or not

export OASIS COMPILE=TRUE

List of the toys to run (complete name including directory)

export USER_TOY=("/scratch/globc/valcke/oasis3-mct/examples/tutorial_communication"
"/scratch/globc/valcke/oasis3-mct/examples/spoc/spoc_communication")

Number of tests for each toy

export USER_TEST=("2""1")

Localization of parameter files for each toy

export USER_PARAMLOC=("/scratch/qglobc/valcke/oasis3-mct/examples/tutorial_ communication"
"/scratch/globc/valcke/oasis3-mct/examples/spoc/spoc_communication")

Root directory for all tests

export USER_RUNDIR=S{OASIS_COUPLE}/OA3_MCT_RES

7.7 Top-level ksh script sc_top.sh

#1/bin/ksh
#set -xv
B T T R R T R R A
BT T T R T R T R R A
Link the correct env_tests_param
BT R T R T R R T R R A
BT R T R T R R T R R A
envcomp=51
echo "envcomp=Senvcomp”
if[-z"S1"]; then
echo "No environment argument supplied"
exit -9

fi
In -sf env_tests_param_S{envcomp} env_tests_param
../env_tests_param
B R T R R T R R A
R R T R R R R R R A
Compilation of OASIS3-MCT OR PYOASIS only once
Creation of library verification
comp_env_S{OASIS_ENV}.sh and make.S{OASIS_ENV}
must exist
BT T T R T A T R R A
B T T R T R R R R R A
if [-z "S{OASIS_ENV}" |; then

echo "ERROR OASIS_ENV not defined"

exit -9

fi

if [-z "S{OASIS_COUPLE}" |; then
echo "ERROR OASIS_COUPLE not defined"
exit -9
fi
. S{OASIS_COUPLE}/util/make_dir/comp_env_S{OASIS_ENV}.sh
#
if [-z "S{OASIS_COMPILE}" |; then
echo "BE CAREFULL OASIS_COMPILE not defined, OASIS will not be compiled alone"
elif [S{OASIS_COMPILE} == TRUE]; then
echo "OASIS_COMPILE is set to TRUE, OASIS will be compiled alone"
../sc_compile_oasis.sh
fi
R R R R A R R R
R R R R A R R R
Loop over the toys:
compilation
sc_launch_test call
R A R R R R R
nbtoy=0
for toy in S{USER_TOY[@]}; do
echo "++++++++++++++++++++++++++++++ A+

18

echo "++++++++++++++++++++++++++++++ A+
echo "toy :" Stoy
export OASIS_TOYDIR=5{toy}
export casename="basename Stoy’
echo "casename :" Scasename
echo "+++++++++++++++++++++++++++++++ A+
echo "++++++++++++++++++++++++++++++ A+
export pathname="dirname Stoy"
export paramloc=S{USER_PARAMLOC[Snbtoy]}
echo "Localisation of the parameter test files for the toy" Sparamloc
export nbttot=S{USER_TEST[Snbtoy]}
echo "Total number of tests " Snbttot " for toy " S{casename}
for nb_tests in S(eval echo {1..5{nbttot}}); do
echo "Test number : " S{nb_tests}
cd Sparamloc
if [S{nb_tests} -le 9]; then
../param_S{casename} test0S{nb_tests}
else
../param_S{casename} testS{nb_tests}
fi
Compilation of the toy for this test
echo "OASIS_TOYDIR : S{OASIS_TOYDIR}"
echo "USER_MAKELOC : S{USER_MAKELOC}"
cd S{OASIS_TOYDIR}
echo "Compile Scasename on S{OASIS_ENV}"
if [S{nb_tests} -le 9 |; then
Joasis_test_build param_S{casename} test0S{nb_tests}
else
Joasis_test_build param_S{casename} testS{nb_tests}
fi
B A S A A R A A S A AR
if [S{nb_tests} -le 9]; then
Joasis_test_run.sh param_S{casename}_test0S{nb_tests}
else
Joasis_test_run.sh param_S{casename}_testS{nb_tests}

fi

done
((nbtoy=nbtoy+1))
done
B A S AR R AR S A AR
B A S A A R A A S A AR

7.8 Content of sc_compile_oasis.sh

B A T A A S R R A A A B T R A AR A

Compilation of OASIS or PYOASIS

B A S R AR R AR T R A AR

cd S{OASIS_COUPLE}/util/make_dir

make realclean -f S{OASIS_COUPLE}/util/make_dir/TopMakefileOasis3

make -f S{OASIS_COUPLE}/util/make_dir/TopMakefileOasis3 SOASIS_TARGET

19

if [-z "S{OASIS_TARGET}" J; then
results in INSTALL_OASIS.S{OASIS_ENV}: build-static include lib
#
Is S{OASIS_COUPLE}/INSTALL_OASIS.S{OASIS_ENV}/lib/libmct.a
if [‘'echo S?"-ne 0 J; then
echo "pb libmct.a not created"
exit 1
fi
Is S{OASIS_COUPLE}/INSTALL_OASIS.S{OASIS_ENV}/lib/libmpeu.a
res_command="echo §?"
if [S{res_command} -ne 0 |; then
echo "pb libmpeu.a not created”
exit 1
fi
Is S{OASIS_COUPLE}/INSTALL_OASIS.S{OASIS_ENV}/lib/libscrip.a
res_command="echo §?"
if [S{res_command} -ne 0 |; then
echo "libpsmile.MPI1.a not created"
exit 1
fi
Is S{OASIS_COUPLE}/INSTALL_OASIS.S{OASIS_ENV}/lib/libpsmile.MPI1.a
res_command="echo §?"
if [S{res_command} -ne 0 |; then
echo "libscrip.a not created"
exit 1
fi
else
results in INSTALL_OASIS.S{OASIS_ENV} : build-shared include lib python
#
Is S{OASIS_COUPLE}/INSTALL_OASIS.S{OASIS_ENV}/lib/libmct.so
if [‘'echo S?" -ne 0 J; then
echo "pb libmct.a not created"
exit 1
fi
Is S{OASIS_COUPLE}/INSTALL_OASIS.S{OASIS_ENV}/lib/libmpeu.so
res_command="echo §?"
if [S{res_command} -ne 0 |; then
echo "pb libmpeu.a not created”
exit 1
fi
Is S{OASIS_COUPLE}/INSTALL_OASIS.S{OASIS_ENV}/lib/libscrip.so
res_command="echo §?"
if [S{res_command} -ne 0 |; then
echo "libpsmile.MPI1.a not created"
exit 1
fi
Is S{OASIS_COUPLE}/INSTALL_OASIS.S{OASIS_ENV}/lib/libpsmile.MPI1.so
res_command="echo §?"
if [S{res_command} -ne 0 |; then
echo "libscrip.a not created"
exit 1

20

fi
Is S{OASIS_COUPLE}/INSTALL_OASIS.S{OASIS_ENV}/lib/liboasis.cbind.so
res_command="echo §?"
if [S{res_command} -ne 0 |; then
echo "libscrip.a not created"
exit 1
fi
#
End else test on pyoasis

fi
7.9 Content of env_tests_param_tioman_intel21.1.1_intelmpi2021.1.1

AU R R T B R R A 1

USER SECTION

R T R R R T R R A 1

OASIS VARIABLES DEFINITION

+ NAMES OF THE DIFFERENT TOYS

We need at least grids.nc for each toy to calculate the analytical function
R T T R R R T A 1

OASIS_ROOT

export OASIS _ROOT=/space/coquart

Repository with OASIS3-MCT sources

export OASIS_COUPLE=S{OASIS_ROOT}/oasis3-mct

OASIS_ENV used to launch the environment to test on different machines
(see sc_launch_tests.sh)

export OASIS _ENV=tioman_intel21.1.1_intelmpi2021.1.1

Repository with OASIS3-MCT toys

export OASIS _TESTS=/space/coquart

To compile OASIS or not

export OASIS COMPILE=TRUE

Variables to defined the compilation options of OASIS3-MCT and the toys
TRUE or nothing

export OASIS DEBUG=TRUE

export OPENMP=TRUE

Variable to wait the end of the test before submitting the next one
export OASIS_SUBMITWAIT=1

Localization and name of the toys

export USER_TOY=("S{OASIS_TESTS}/oasis3-mct_tests/toy_interpolation")
Number of tests for each toy

export USER_TEST=("104")

Localization of the file paramater for each toy

export USER_PARAMLOC=("S{OASIS_TESTS}/oasis3-mct_tests/toy_interpolation”)
To run the tests in USER_RUNDIR

export USER_RUNDIR=S{OASIS_ROOT}/OA3_MCT_RES

