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Abstract

Lean blow-out (LBO) is a critical phenomenon in gas turbines. It is enhanced by very to ultra-lean operating
conditions which are considered today to decrease the environmental impact of combustion. Despite many studies
on the subject, the physical mechanisms leading to global flame extinction are not fully understood. Recently,
unsupervised classification has appeared in the literature as an efficient tool to identify key features in reactive
flows. In this work, unsupervised classification relying on Principle Component Analysis (PCA) and K-means
clustering algorithms is used to investigate the underlying mechanisms of a blowoff event in a bluff body config-
uration. The unsupervised classification allows to identify and track in time 4 distinct zones: fresh gases, burnt
gases, fast reacting flame and preheat zone. To elucidate the blow-out processes, an analysis of mass and energy
balances of the different zones is proposed. This analysis describes the temporal evolution of the zones as a result
of their interactions, which is the main driver for flame stabilization or blowoff. For the considered blowoff event,
the extinction is induced by an imbalance between the various contributions identified by the proposed analysis:
while the decrease in fuel mass flow rate modifies both the conductive fluxes and chemistry source terms in the
reactive zones, the convective fluxes remain constant over time as the total mass flow rate is kept constant. This
work suggests that the proposed methodology is a useful tool to analyze unsteady configurations and understand
the main mechanisms at work in such configurations.
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1) Novelty and Significance Statement

The novelty of this research relies in the use of unsupervised classification to study the lean blow-out phenomenon.
Unsupervised classification has already been used to study MILD combustion (e.g. Li et al., Proc. Combust. Inst.
38, 2021). In this work, the unsupervised classification methodology is extended with a balance analysis to extract
physical information on the flow dynamics. This is a significant contribution because it proposes an efficient tool
to analyze lean blow-out in complex flows, which remains a challenge and has no equivalent in the literature.
Furthermore, the proposed methodology could be extended to study many other combustion processes.
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1. Introduction1

Modern gas turbines aim for lower NOx emissions2

by operating in very lean conditions, at the price of3

a higher risk to reach the Lean blow-out (LBO) limit4

[1] and quench. This raises safety concerns in aero-5

nautical engines and demands costly procedures for6

land-based power generation turbines. Consequently,7

important efforts have been made by the community8

to a better understanding on the blowoff phenomenon9

[2, 3].10

First contributions to the blowoff phenomenon fo-11

cused on bluff body flames. Early studies primarily12

relied on experiments to propose semi-empirical cor-13

relations from experimental data and Perfectly Stirred14

Reactor (PSR) assumptions [4]. In the pioneer works15

on the blowoff phenomenom, two main methodolo-16

gies to study LBO were derived, either based on PSR17

[5] or Characteristic Time (CT) [6]. In PSR models,18

the recirculation zone behind the bluff body is inter-19

preted as a PSR: the fresh mixture coming from the20

shear layer mixes instantaneously with the mixture al-21

ready in the recirculation zone. In this framework,22

LBO occurs when the energy released in the recir-23

culation zone is not sufficient to heat the fresh mix-24

ture up to its ignition temperature. On the other hand,25

CT models consider that LBO occurs if the contact26

time in the shear layer between the hot recirculating27

mixture and the fresh mixture is not long enough to28

heat up the latter to the ignition temperature. More29

recently, Wang et al. [7] combined PSR and CT ap-30

proaches to study the LBO of a gas turbine combustor.31

In their methodology the reaction zone is identified32

and described as a collection of PSRs.33

As pointed out by Shanbhogue et al [2], all these34

methods can be expressed in terms of a Damköhler35

number Da = τflow/τchem, as they describe the lo-36

cal competition between fluid mechanics and chemi-37

cal processes, and are particularly well suited to iden-38

tify local extinctions. However they do not consider39

the overall energy balance of the flame and therefore40

cannot predict directly global blowoff.41

To study global extinction, Sturgess et al. [8] pro-42

posed to describe a combustor with a reactor net-43

work, which is a simplification often made in the lit-44

erature [9, 10]. However, the identification of the45

different zones corresponding to the individual reac-46

tors remains a tedious work, especially when consid-47

ering their volume and location fixed in time while48

the combustor dynamics are unsteady for stabilized49

flames and fully transient during an extinction event.50

To overcome the limitation of predefined zones, the51

use of unsupervised machine learning clustering al-52

gorithms have been recently proposed in the literature53

[11, 12].54

Unsupervised classification algorithms consist in55

reducing the dimensionality of the variables and clus-56

tering the data [11]. Such methods have already been57

used to derive combustion model, for example by58

Savarese et al. [12] to automatically generate chem-59

ical reactor networks or by Malik et al. [13] to gen-60

erate the manifold variables of the Direct Numerical61

Simulation of a turbulent premixed NH3/air flame.62

These methods also proved to be very useful to iden-63

tify key features in reactive flows [11]. They were64

used by Zhang et al. [14], coupled with a neural65

network, to identify combustion regimes in turbulent66

non-premixed flames. Doan et al. [15] and Li et al.67

[16] studied MILD combustion with the help of unsu-68

pervised clustering and advanced analysis methods.69

In this paper it is proposed to use classification al-70

gorithms to study LBO. The methodology is applied71

to a bluff body configuration, the VOLVO experi-72

ment [17], to demonstrate its capability to explain the73

driving mechanisms leading to flame blowoff. The74

methodology is in two steps: first, unsupervised clus-75

tering is used to identify the key features of the react-76

ing flow; then, a balance analysis on the classification77

is performed to help understanding the blowoff pro-78

cess.79

The remainder of this paper is organized as fol-80

lows. The details of the methodology are provided in81

Section 2. The test case, numerical set-up and models82

are described in Section 3. The results are discussed83

in Section 4.84

2. Methodology85

2.1. Unsupervised classification86

Unsupervised classification is proposed here to87

pinpoint coherent flow zones to study complex flows88

with a large amount of variables in both space and89

time (high data dimensionality). Dimensionality re-90

duction is first applied. Then clustering divides the91

control volume into subdomains, providing a way to92

identify and study the coherent flow zones.93

Dimensionality reduction is used to sort data and94

identify a limited set of variables that can accurately95

describe the problem. To this purpose, the Princi-96

pal Component Analysis (PCA) is widely used in the97

literature [13–15], where the Principal Components98

(PCs) are built from a linear combination of the orig-99

inal data to form an orthogonal basis. PCA is briefly100

recalled below.101

Consider a data set X of dimension (n × p) con-102

taining n samples of p variables, centered and scaled103

as :104

Xc
n,p =

Xn,p −Xp

σp
(1)

with Xp and σp the mean and standard deviation of105

X , PCA provides q linear combinations correspond-106

ing to the eigenvectors of a covariance matrix com-107

puted from the original data matrix Xc, such that108

Xq = ZqA
t
q (2)

with Xq (n×p) the approximation of Xc based on109

the first q eigenvectors, Zq (n× q) the principal com-110

ponent scores, Aq (p × q) the matrix of the first q111

eigenvectors and the notation t for the transposed.112
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The clustering is applied in cascade with the PCA1

in the PC plane. The number of eigenvectors q used2

for the clustering of the data corresponds to a cumu-3

lative explained variance of at least 95%. This is 1)4

necessary to identify and retain only significant vari-5

ables to reduce biases in the methodology, 2) useful6

to optimize the performance of the chosen clustering7

algorithm as its time complexity is O(n × q × i), i8

being the number of iterations for the clustering con-9

vergence [18].10

Clustering algorithms are widely spread in the lit-11

erature to classify data [12–15]. They are able to12

group unlabeled data that show some form of similar-13

ity. In this work, the K-means algorithm is chosen. K-14

means is a partition-type algorithm that classifies the15

data into a prescribed number of clusters, K. Starting16

with K randomly defined centroids, the data are asso-17

ciated to the cluster with the nearest centroid. Then,18

the position of the centroids is iteratively updated to19

minimize the mean of the Euclidean distance between20

the data in a cluster and its centroid. The objective21

function f to be minimized is expressed as:22

f =

K∑
i=1

m∑
j=1

dij , with dij = ||xi
j − ci||2 (3)

where dij is the Euclidean distance between the j-th23

point in the i-th cluster and the centroid of the i-th24

cluster.25

The number of clusters in the K-means algorithm26

is prescribed by the user. Statistical metrics have been27

developed in the literature to help choose the most28

representative number of clusters as, for instance, the29

silhouette plot [19]. These metrics typically charac-30

terize the data dispersion within clusters, the distance31

between clusters or both.32

2.2. Balances33

To investigate the dynamics of the main flow fea-34

tures, a balance analysis is performed on the clusters.35

The rate of change of a conserved quantity q is de-36

fined in the differential form as:37

∂q

∂t
= −∇ · (qu)−∇ · (J) + Ṡ (4)

where u is the velocity, ∇ · (J) is the diffusion term38

and Ṡ is a volume source term.39

The above equation can be integrated over a cluster40

volume Vi and transformed with the divergence theo-41

rem as:42 ∫
Vi

∂q

∂t
dv = −

∫
Si

(qu+ J) · nds+
∫
Vi

Ṡdv (5)

with Si the surface area of cluster i.43

The rate of change in the cluster i (LHS of Eq. 5)44

can then be explained by the contribution of the dif-45

ferent terms in the RHS of Eq. 5. As the cluster vol-46

ume Vi varies in time, the contributions are studied47

by unit volume to avoid biases due to cluster volume48

variation. The balance analysis studies particularly49

the contributions of the different terms and how they50

vary with time as the mean value of the quantities re-51

mains, by definition, close to the centroid of the en-52

compassing cluster.53

In this work, the rate of change of the total en-54

ergy and species mass fractions are particularly inves-55

tigated. The rate of change of the mass fraction Yk of56

species k is:57

∂ρYk

∂t
= −∇ · (ρuYk)−∇ · (ρVj,kYk) + ω̇k (6)

with −∇·(ρuYk) the convective flux, −∇·(ρVj,kYk)58

the diffusive flux, and ω̇k the chemical source term of59

species k.60

In the absence of body forces, the rate of change of61

the total energy is:62

∂ρE

∂t
= −∇ · (ρuE)−∇ · (−λ

∂T

∂xi
)

−∇ · (ρVj,khk) + ω̇T

+∇ · (σijui)

(7)

with −∇·(ρuE) the convective flux, −∇·
(
−λ ∂T

∂xi

)
63

the conductive heat flux, −∇·(ρVj,khk) the diffusive64

flux due to the diffusion of species with different en-65

thalpies, ω̇T the energy source term, and ∇ · (σijui)66

the flux coming from the viscous term. As the en-67

ergy flux due to the viscous term is found negligible,68

it will not be included in the analysis, as usually done69

in the literature [20]. This also holds for the diffusive70

flux associated to the species diffusion, which will be71

therefore omitted in the analysis.72

The objective of the balance analysis is to identify73

which terms in Eqs. 6 and 7 are involved in the flame74

stabilization and which are responsible for the LBO.75

3. VOLVO test case76

The studied configuration is the VOLVO combus-77

tor [17], widely used to evaluate turbulent combustion78

models [21]. It is a straight channel with a rectangu-79

lar cross-section (0.12 m x 0.24 m). The length of the80

channel is 1.55 m. The bluff body has an equilateral81

triangular section of 0.04 m in height.82

The simulation was performed with the code83

AVBP developed at Cerfacs [22], which solves the84

3D compressible reactive Navier-Stokes equations us-85

ing the Large Eddy Simulation (LES) approach. A86

central-finite volume Lax-Wendroff scheme [23] of87

2nd order both in time and space is used to discretize88

convective terms, and a single Runge-Kutta step is89

used to explicitely integrate over time. A 2nd or-90

der finite element scheme is used for diffusive terms.91

LES equations are closed by the WALE subgrid-scale92

model [24]. Subgrid flame-turbulence interactions are93

taken into account by the TFLES model with a relax-94

ation sensor [25] coupled with the Charlette constant95
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Fig. 1: Computational domain (top) and window of interest for the analysis (bottom) highlighted with a red frame. The vorticity
field is shown for reactive zones (HRR > 0.1 MJ/kg/m3). White isoline : u = 0 m/s.

efficiency model [26]. The NSCBC approach [27] is1

used for the inlet and outlet boundary conditions and2

a no-slip adiabatic condition is set at the walls. The3

chemistry, particularly suited to predict laminar flame4

velocity and final temperature and products in the lean5

combustion regime that is encountered here, is de-6

scribed by a 2-step scheme [28]. The above numer-7

ical method was assessed in this configuration by Ro-8

chette et al. [29]. They show a reasonable agreement,9

though not as precise as higher-order schemes and de-10

tailed chemistry. However, they recover most physi-11

cal features of the flow, which is enough as our goal is12

to demonstrate the analysis methodology’s potential13

rather than quantitatively characterizing the VOLVO14

rig’s blowoff limit.15

The mesh contains 11.9 million nodes and 68.716

million tetrahedral elements. The data that will be17

analyzed by unsupervised clustering corresponds to a18

window of 0.5 m length around the bluff body, which19

contains the entire recirculation zone. The mesh and20

the window of interest are displayed in Fig. 1.21

The procedure to simulate LBO is as follows. A22

perfectly premixed mixture of propane-air is injected23

at an equivalence ratio of ϕ = 0.65 to first stabilize24

the flame. Then, a step of equivalence ratio is imposed25

at the inlet to go from ϕ = 0.65 to ϕ = 0.50. This26

corresponds to a reduction of the laminar flame speed27

by a factor 2 [29]. When the variation of equivalence28

ratio reaches the leading edge of the bluff body, solu-29

tions are saved at a sampling of 0.7 ms until the flame30

blows off. The simulation is performed for a physical31

time of 28 ms until the flame has fully disappeared, so32

that 40 unsteady 3D solutions are used as a database33

for the analysis. Therefore, the entire space-time data34

is used for the PCA and, thus, the clustering.35

4. Results36

4.1. Application of unsupervised clustering37

Two sets of variables are used and compared.38

The first set only provides thermo-chemical variables,39

case A: T and Yk of the 5 reactive species of the40

scheme; N2 is not provided as it is inert and its mass41

fraction can be computed as a linear combination of42

the others. The second set, case B, considers all the43

variables of the reactive flow equations, i.e., 10 vari-44

ables ( ρ, u, v, w, Yk and T in their non-conservative45

form). The obtained cumulative explained variance is46

displayed in Fig. 2 for both cases. For case A, 2 PCs47

explain 99.5% of the variance whereas 5 PCS are re-48

quired to explain more than 95% of the variance for49

case B.50
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Fig. 2: Cumulative explained variance by the Principal Com-
ponents for cases A and B.

The eigenvectors of the PCs are presented in Table51

1 and Table 2 for case A and B respectively. For case52

A, the first PC represents a progress variable from the53

thermo-chemical point of view: the variables that de-54

crease in the flame front have a negative coefficient55

value (YC3H8, YO2) whereas the ones that see an in-56

crease in their value have a positive coefficient (YCO2,57

YH2O and T ). The behavior of PC1 for case B is the58

same, with the particular feature that the axial veloc-59

ity is also correlated to PC1. This can be linked to60

the variation in axial velocity as its main change is61

a decrease in the recirculation zone and in the wake62

behind the bluff body. Both locations contain burnt63

gases. Hence, the axial velocity has a global evolu-64

tion similar to a reactant. Second and third PCs for65

case B are correlated to the transverse velocity com-66

ponents. They represent the perturbation induced by67

the bluff body and the turbulence as the flow is ini-68

tially injected only in the axial direction. Those PCs69

are not captured for case A as only thermo-chemical70

variables were considered. Finally, the fourth and71

fifth PCs for case B are mainly correlated to the ax-72

ial velocity and CO mass fraction: these 2 PCs may73

be correlated to the intense flame zone where CO is74

mainly produced and located in the shear layer where75

axial velocity variations exist. A high correlation with76
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CO is also found for the second PC of case A: CO is1

the only thermo-chemical variable that has a behav-2

ior slightly different from a progress variable as CO3

mass fraction peaks in the reaction zone.4

Table 1: Eigenvectors obtained from the PCA for case A.
Variable PC1 PC2
YC3H8 -0.42 0.17
YCO 0.26 0.96
YCO2 0.43 -0.12
YH2O 0.43 -0.1
YO2 -0.43 0.1

T 0.43 -0.1

Table 2: Eigenvectors obtained from the PCA for case B.
Variable PC1 PC2 PC3 PC4 PC5
YC3H8 -0.38 0 0 0.06 0.14
YCO 0.22 -0.01 -0.01 0.84 0.5
YCO2 0.39 0 0 -0.01 -0.14
YH2O 0.39 0 0 0 -0.13
YO2 -0.39 0 0 0 0.14

T 0.39 0 0 0 -0.14
ρ -0.36 0.01 0 0.03 0.16
u -0.27 -0.01 -0.01 0.54 -0.8
v 0.01 0.65 0.76 0.02 -0.01
w 0 0.76 -0.65 0 0

The silhouette scores plotted in Fig. 3 are used to5

find the number of clusters for the analysis. The max-6

imum score is obtained for 2 clusters: the distinction7

between fresh and burnt gases is clear in both cases.8

However, high silhouette scores are still obtained for9

higher numbers of clusters. For case A, 3 and 4 clus-10

ters have a silhouette score close to 2 clusters and may11

be considered. For case B, 3 clusters provide a score12

close to the maximum. Note also the peak for 5 clus-13

ters. To further understand what the clusters repre-14

sent, they are shown in Fig. 4 for both cases and dif-15

ferent numbers of clusters K.16

2 3 4 5 6 7 8 9 10

Number of clusters

0.4

0.6

0.8

S
ilh

ou
et

te
sc

or
e

case A

case B

Fig. 3: Silhouette scores for cases A and B.

Cases A and B provide similar results for 3 clus-17

ters. Indeed, the 3 clusters correspond to a fresh gases18

zone, a burnt gases zone and an intense flame zone,19

respectively. This can be related to the fact that in20

both cases the majority of the variance is explained21

by a progress variable. By introducing more clusters,22

Fig. 4: Top: instantaneous temperature field in a 2D cut.
Bottom: results of the K-means algorithm at the same instant
for different cases. Black isoline: HRR = 0.7 MJ/kg/m3.

differences appear between case A and case B. In both23

cases, the new clusters are located between the intense24

flame zone and the fresh gases. For case A, the addi-25

tional cluster corresponds to a preheat zone where low26

intensity heat release rate occurs. On the other hand,27

clusters IV and V for case B are correlated with high28

transverse velocity, either positive or negative.29

The previous discussion highlights the importance30

of the physical interpretation of the clusters, show-31

ing the additional features that can be retrieved with32

a higher number of clusters even with a lower silhou-33

ette score. As case A with 4 clusters presents more34

physical features and provides a high silhouette score35

close to the maximum, it is retained for the balance36

analysis discussed hereafter.37

4.2. Physical analysis38

The temporal evolution of the 4 case A-clusters’39

location during blowoff is displayed in Fig. 5. Label-40

ing the clusters is important for the physical analysis.41

Feature correlation tools exist in the literature [11] but42

often labels are assigned following expert user knowl-43

edge [30]. In this work, the labeling is performed fol-44

lowing the study of the mean values of temperature45

and species mass fractions in the clusters, reported46

in Table 3. Cluster 0, corresponding to fresh gases,47

is characterized by a low temperature, high reactant48

mass fractions and low product mass fractions. Con-49

versely, cluster 2 contains burnt gases and, thus, has50
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the highest temperature and product mass fractions.1

Intermediate zones are either preheat (cluster 1) and2

flame (cluster 3), with intermediate values of temper-3

ature and major species. Note that the temperature is4

higher in the flame than in the preheat zone, and that5

CO mass fraction peaks in the flame zone. The label-6

ing of the clusters is summarized in Table 4.7

Table 3: Clusters’ centroids in the physical space
Variables FG PF BG IF

T [K] 423 1223 1615 1484
YCO 4.6e-7 4.6e-5 1.3e-5 1.5e-4
YCO2 0.010 0.073 0.108 0.094
YO2 0.214 0.139 0.097 0.111

YH2O 0.005 0.038 0.55 0.050
YC3H8 0.029 0.009 0.0 0.007

Table 4: Physical Interpretation of the clusters
Cluster # Interpretation Abbrev.

0 Fresh gases FG
1 Preheat/low intensity flame PF
2 Burnt gases BG
3 Intense flame IF

As discussed in the previous section, the initial sta-8

ble flame (t=2.1 ms) features three main clusters: the9

fresh gases (cluster 0 - FG), the burnt gases (cluster10

2 - BG) and the intense flame zone (cluster 3 - IF),11

plus a preheat zone at the border of the intense flame12

zone (cluster 1 - PF). At t=4.7 ms, the equivalence ra-13

tio decrease has reached the flame stabilization zone14

downstream of the bluff body, and starts to perturb the15

flame (cluster 3 - IF), which shrinks and is replaced by16

heated, low reacting gases (cluster 1 - PF). This per-17

turbation, i.e., switch from IF to PF, then propagates18

downstream with the propagation of the equivalence19

ratio decrease until t=11.9 ms. At this point, the zone20

of burnt gases (cluster 2 - BG) divides into two dis-21

connected parts. The part of burnt gases upstream,22

which persists within the recirculation zone immedi-23

ately after the bluff body, is surrounded by PF and24

gradually diminishes, while the detached downstream25

part of burnt gases swiftly evacuates due to the flow.26

From this analysis, a first proposition can be made27

to define a criterion of extinction. Indeed, in this con-28

figuration the flame is anchored in the recirculation29

zone downstream the bluff body. In other words if the30

flame disappears in this zone, global quenching oc-31

curs. This corresponds to no IF in the recirculation32

zone, which can be taken as an extinction criterion33

and in the present case occurs at τLBO = 13.2 ms. The34

use of clusters therefore allows to easily and clearly35

identify global extinction which, as will be seen be-36

low, is not possible with the single time evolution of37

global quantities [2].38

This is illustrated in Fig. 6 showing the time evo-39

lution of key quantities of interest. After 6 ms, the40

thermal power and mean temperature both decrease41

linearly with time and completely ignore the extinc-42

tion event at τLBO=13.2 ms. This is due to the fact43

Fig. 5: Temporal evolution of the clusters in a longitudinal
cut in case A with 4 clusters. Black isoline: HRR = 0.7
MJ/kg/m3. White isoline: Φ = 0.51.

that global extinction always starts in a small volume44

and is masked by the volumes of the burnt gases and45

of the flame, which decrease progressively. It is also46

interesting to look at the maximum CO mass fraction47

which, as seen above, is a good marker of IF. The CO48

mass fraction also decreases with an average constant49

slope, but contrary to the two previous quantities it de-50

creases from the beginning and, at t=24ms, it abruptly51

goes close to zero. This different behavior is due to52

the fact that, because CO mostly exists in IF, there is53

no masking effect by the rest of the chamber volume.54

The sudden final decrease is linked to the sweeping of55

the last remaining pocket out of the chamber.56

Cluster analysis may be used to go deeper in the57

understanding of the occurrence of quenching by es-58

tablishing energy and mass balances of clusters as59

proposed in Section 2.2. The analysis logically fo-60

cuses on the first 12 ms, i.e., before extinction occurs.61

Figure 7 displays the analysis of the rate of change62

of total energy in PF for each contribution term de-63

scribed in Section 2.2. The net convective flux re-64

mains at a constant level over time. This means that65

the flow dynamics in the shear layer where PF is lo-66

cated is not perturbed by the variation in equivalence67

ratio. On the contrary, the balance between conduc-68

tive heat flux and chemistry is perturbed after 4 ms69

as it starts decreasing. This means that the convec-70

tive characteristic time of the flow stays almost con-71

7



0

100

200

300

400

T
h

.
P

ow
er

[k
W

]
t=τLBO

400

500

600

M
ea

n
T

[K
]

0 5 10 15 20 25

time [ms]

2.50e-04

5.00e-04

7.50e-04

1.00e-03

M
ax

.
Y
C
O

Fig. 6: Temporal evolution of the thermal power, mean tem-
perature and maximum CO mass fraction during extinction.

0 2 4 6 8 10 12

time [ms]

0

2

4

6

E
n

er
gy

ra
te

of
ch

an
ge

[J
/m

3
/s

] ×107

Net convec. flux

Conduc. flux and chem.

Net rate of change

Fig. 7: Temporal evolution of the total energy rate of change
by contribution terms for cluster 1 (PF).

0 2 4 6 8 10 12

time [ms]

−2

−1

0

1

2

E
n

er
gy

ra
te

of
ch

an
ge

[J
/m

3
/s

] ×108

Source term

Convec. Flux with FG

Convec. Flux with BG

Convec. Flux with IF

Conduc. Flux with. FG

Conduc. Flux with BG

Conduc. Flux with. IF

Fig. 8: Temporal evolution of the contributions to the total
energy rate of change for cluster 1 (PF).

stant whereas the characteristic time for chemistry in-1

creases. This conclusion is similar to the classical lo-2

cal analysis in terms of Damkhöler number but ex-3

pressed in a global framework.4

The rate of change of the total energy can be fur-5

ther studied by highlighting the contribution of each6

cluster, as shown in Fig. 8. This graph clearly shows7

that the decrease in the chemistry - conduction bal-8

ance in the energy rate of change of Fig. 7 is mainly9

due to the sharp reduction of the conductive energy10

provided by IF. Even though the net convective flux11

remains quasi-constant, the contribution to this flux12

from each cluster changes over time. At first, when13

the flame is stabilized, PF exchanges mainly with FG14

and IF. But during extinction, as IF tends to be re-15

placed by PF in the recirculation zone, its contribution16

to the convective flux reduces, progressively replaced17

by an increasing convective flux from BG, which is18

more and more in contact with PF in the recirculation19

zone.20

Finally, a deeper analysis of the changing conduc-21

tion - chemistry balance can be made by considering22

the time evolution of the CO mass rate of change for23

the clusters PF and IF (Fig. 9). Note that the contri-24

butions are normalized by the cluster volume, which25

explains why the value of the same flux may change26

from one graph to another. PF is the first cluster im-27

pacted by the decrease of equivalence ratio at t=4 ms,28

when both the CO flux from IF and the source term29

start decreasing in absolute value. This decrease con-30

tinues until 10 ms when the source term changes sign31

and becomes positive in PF. This may be associated32

to a change of mechanism. In a stable flame, PF33

acts mainly as a preheat zone between FG and IF,34

where CO produced in IF is consumed. During ex-35

tinction, after a certain time (see Fig. 5, t=8.6 ms), an36

increasing part of PF lies between FG and BG with37

lower CO mass fraction and CO may be produced.38

The cluster IF reacts to the change of equivalence ra-39

tio later than PF, after 6 ms. The source term has a40

sharper decrease than the diffusive fluxes, which ex-41

plains why IF tends to disappear.42

The above cluster analysis agrees with previous43

results in the literature [2]: when decreasing the44

equivalence ratio in the inlet stream, the exchange45

through convection is maintained whereas the balance46

between the chemistry (studied through the rate of47

change of total energy and CO mass fraction com-48

ing from the source term) and diffusive terms is per-49

turbed. This affects mainly the two clusters located in50

the shear layer, cluster 1 (PF) and cluster 3 (IF): PF51

sees a reduction in the net rate of change of the total52

energy mainly driven by the reduction of the conduc-53

tive flux coming from IF.54

5. Conclusions55

A balance analysis that relies on unsupervised clas-56

sification is applied to study the lean blow-out of57

a bluff body configuration, the VOLVO combustor.58

The unsupervised classification, coupling PCA and59

K-means algorithms, is first discussed with a partic-60

ular emphasis on the physical meaning that could be61

retrieved from the classification. If fresh gases and62

burnt gases are easily recognized, the classification63

also identifies reactive zones as key features in the64

flow. This allows to identify a blowoff criterion, based65

8
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Fig. 9: Temporal evolution of the contributions to the CO mass rate of change for clusters 1 (PF) and 3 (IF).

on the total disappearance of the flame cluster in the1

recirculation zone downstream the bluff body.2

The balance analysis performed on the clusters3

shows that the decrease of equivalence ratio in an ex-4

tinction sequence impacts the balance between chem-5

istry and diffusive fluxes in the preheat and flame6

zones located in the recirculating flow downstream7

the bluff body whereas the convection contribution re-8

mains constant.9

Compared to the classical reactor network analysis10

with non-time-dependent zones, which requires user-11

dependent, i.e., biased choices, the present work of-12

fers a non-biased method to define coherent zones in13

the flow through the use of unsupervised classifica-14

tion. In addition, the present methodology particu-15

larly emphasizes how a change in the system affects16

the unsteady balance between the zones, which is key17

for understanding extinction.18

This paper demonstrates the capability of the cou-19

pling of unsupervised classification and balance anal-20

ysis to study unsteady phenomena, like lean blow out.21

This methodology offers a new framework to study22

and understand the underlying mechanisms of com-23

plex unsteady flows and, therefore, opens the perspec-24

tive to use this method in other contexts such as LBO25

in swirled turbulent flames, forced ignition, etc.26
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two-step chemical scheme for kerosene–air premixed37

flames, Combust. Flame 157 (7) (2010) 1364–1373.38

[29] B. Rochette, F. Collin-Bastiani, L. Gicquel, O. Ver-39

morel, D. Veynante, T. Poinsot, Influence of chem-40

ical schemes, numerical method and dynamic turbu-41

lent combustion modeling on les of premixed turbulent42

flames, Combust. Flame 191 (2018) 417–430.43

[30] R. Koopman, S. Wang, Mutual information based la-44

belling and comparing clusters, Scientometrics 11145

(2017) 1157–1167.46

10


