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Résumé

Mots clés : Assimilation de données, Apprentissage profond, Espace latent, Dy-

namique de substitution, Filtre de Kalman d’ensemble

Cette thèse, située à l’intersection de l’assimilation de données (AD) et de

l’apprentissage profond (AP), introduit un concept nouveau : l’assimilation de

données en espace latent. Elle permet une réduction considérable des coûts de

calcul et des besoins mémoire, tout en offrant le potentiel d’améliorer la précision

des résultats.

Il existe de nombreuses façons d’intégrer l’apprentissage profond dans les al-

gorithmes d’assimilation de données, chacune visant des objectifs différents (Loh

et al., 2018; Tang et al., 2020; Laloyaux et al., 2020; Bonavita and Laloyaux, 2020;

Brajard et al., 2020; Farchi et al., 2021b; Pawar and San, 2021; Leutbecher, 2019;

Ruckstuhl et al., 2021; Lin et al., 2019; Deng et al., 2018; Cheng et al., 2024).

Nous étendons davantage l’intégration de l’apprentissage profond, en repen-

sant le processus même d’assimilation. Notre approche s’inscrit dans la suite des

méthodes à espace réduit (Evensen, 1994, 2009a; Bishop et al., 2001; Hunt et al.,

2007; Courtier, 2007; Gratton and Tshimanga, 2009; Gratton et al., 2013; Farrell

and Ioannou, 2001; Lawless et al., 2008; Cao et al., 2007), qui résolvent le problème

d’assimilation en effectuant des calculs dans un espace de faible dimension. Ces

méthodes à espace réduit ont été principalement développées pour une utilisation

opérationnelle, car la plupart des algorithmes d’assimilation de données s’avèrent

être excessivement coûteux, lorsqu’ils sont implémentés dans leur forme théorique

originelle.

Notre méthodologie repose sur l’entrâınement conjoint d’un autœncodeur et

d’un réseau de neurone surrogate. L’autœncodeur apprend de manière itérative

à représenter avec précision la dynamique physique considérée dans un espace

de faible dimension, appelé espace latent. Le réseau surrogate est entrâıné si-
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multanément à apprendre la propagation temporelle des variables latentes. Une

stratégie basée sur une fonction de coût châınée est également proposée pour garan-

tir la stabilité du réseau surrogate. Cette stabilité peut également être obtenue en

implémentant des réseaux surrogate Lipschitz.

L’assimilation de données à espace réduit est fondée sur la théorie de la stabilité

de Lyapunov qui démontre mathématiquement que, sous certaines hypothèses, les

matrices de covariance d’erreur de prévision et a posteriori se conforment asymp-

totiquement à l’espace instable-neutre (Carrassi et al., 2022), qui est de dimension

beaucoup plus petite que l’espace d’état. Alors que l’assimilation de données en

espace physique consiste en des combinaisons linéaires sur un système dynamique

non linéaire, de grande dimension et potentiellement multi-échelle, l’assimilation de

données latente, qui opère sur les dynamiques internes sous-jacentes, potentielle-

ment simplifiées, est davantage susceptible de produire des corrections significatives.

La méthodologie proposée est éprouvée sur deux cas tests : une dynamique à

400 variables - construite à partir d’un système de Lorenz chaotique de dimension

40 -, ainsi que sur le modèle quasi-géostrophique de la librairie OOPS (Object-

Oriented Prediction System). Les résultats obtenus sont prometteurs.



Abstract

Key words: Data Assimilation, Deep Learning, Latent space, Surrogate dynam-

ics, Ensemble Kalman Filter

This thesis, which sits at the crossroads of data assimilation (DA) and deep

learning (DL), introduces latent space data assimilation, a novel data-driven frame-

work that significantly reduces computational costs and memory requirements,

while also offering the potential for more accurate data assimilation results.

There are numerous ways to integrate deep learning into data assimilation al-

gorithms, each targeting different objectives (Loh et al., 2018; Tang et al., 2020;

Laloyaux et al., 2020; Bonavita and Laloyaux, 2020; Brajard et al., 2020; Farchi

et al., 2021b; Pawar and San, 2021; Leutbecher, 2019; Ruckstuhl et al., 2021; Lin

et al., 2019; Deng et al., 2018; Cheng et al., 2024).

We extend the integration of deep learning further by rethinking the assimi-

lation process itself. Our approach aligns with reduced-space methods (Evensen,

1994; Bishop et al., 2001; Hunt et al., 2007; Courtier, 2007; Gratton and Tshimanga,

2009; Gratton et al., 2013; Lawless et al., 2008; Cao et al., 2007), which solve the as-

similation problem by performing computations within a lower-dimensional space.

These reduced-space methods have been developed primarily for operational use,

as most data assimilation algorithms are prohibitively costly, when implemented in

their full theoretically form.

Our methodology is based on the joint training of an autoencoder and a surro-

gate neural network. The autoencoder iteratively learns how to accurately repre-

sent the physical dynamics of interest within a low-dimensional space, termed latent

space. The surrogate is simultaneously trained to learn the time propagation of the

latent variables. A chained loss function strategy is also proposed to ensure the

stability of the surrogate network. Stability can also be achieved by implementing

Lipschitz surrogate networks.
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Reduced-space data assimilation is underpinned by Lyapunov stability theory,

which mathematically demonstrates that, under specific hypotheses, the forecast

and posterior error covariance matrices asymptotically conform to the unstable-

neutral subspace (Carrassi et al., 2022), which is of much smaller dimension than

the full state space. While full-space data assimilation involves linear combinations

within a high-dimensional, nonlinear, and possibly multi-scale dynamic environ-

ment, latent data assimilation, which operates on the core, potentially disentangled

and simplified dynamics, is more likely to result in impactful corrections.

We tested our methodology on a 400-dimensional dynamics - built upon a

chaotic Lorenz96 system of dimension 40 -, and on the quasi-geostrophic model of

the Object-Oriented Prediction System (OOPS) framework. We obtained promis-

ing results.
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moi les semences de leur existence d’ici-bas, et souhaite les voir un jour éclore à
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CHAPTER 1

Introduction and motivation

This thesis, which sits at the crossroads of data assimilation (DA) and deep learning

(DL), introduces latent space data assimilation, a novel data-driven framework

that significantly reduces computational costs and memory requirements, while

also offering the potential for more accurate data assimilation results.

Operational data assimilation deals with high-dimensional, nonlinear, multi-

scale and potentially unstable and chaotic dynamics, making computations exceed-

ingly demanding and often limiting the accuracy of forecasts. Additionally, various

components of the data assimilation process are typically only partially known,

introducing potential sources of error. For example, covariance matrices may be

imprecise, small-scale physical processes within the dynamics of interest might be

unaccounted for (necessitating ad-hoc parameterizations), and physical models are

very likely to contain inaccuracies.

Meanwhile, the rapid advancements in sensor technology and data acquisition

methods - such as Earth observations (Kuenzer et al., 2014; McNally et al., 2014)

- have positioned deep learning as an effective strategy across a wide range of

applications, including data assimilation (Reichstein et al., 2019; Geer, 2021; Cheng

et al., 2023). The core strength of neural networks lies in their ability to: (i) extract

meaningful information from large raw datasets, (ii) derive inferential rules, and (iii)

deliver fast, real-time predictions that markedly outpace traditional computational

methods.

As a result, hybridizing data assimilation with deep learning has emerged as a

promising approach to achieving faster and more accurate assimilation processes,

1



M. PEYRON - Latent space data assimilation in the context of deep learning 2

as highlighted in recent literature (Cheng et al., 2023).

Abarbanel et al. (2018) and Geer (2021) review equivalences and similarities

between deep learning and data assimilation, advocating for their coupling and

hybridization. For example, both DL and DA solve inverse problems and rely on

gradient descent techniques; the cost function in variational DA is analogous to the

loss function in training neural networks; and the adjoint method is mathematically

identical to backpropagation (Hsieh and Tang, 1998).

There are numerous ways to integrate deep learning into data assimilation al-

gorithms, each targeting different objectives. For instance, to achieve real-time

forecasts, the numerical solvers of physical equations can be replaced with data-

driven surrogate models, as demonstrated by Loh et al. (2018); Tang et al. (2020,

2021b,a). Additionally, integrating deep learning into data assimilation algorithms

has proven effective for model error correction (Laloyaux et al., 2020; Bonavita and

Laloyaux, 2020; Brajard et al., 2020; Wikner et al., 2021; Farchi et al., 2021b),

parameter estimation (Pawar and San, 2021; Legler and Janjić, 2022), background

covariance matrix estimation (Leutbecher, 2019; Chattopadhyay et al., 2023), en-

forcing physical consistency in the analysis (Ruckstuhl et al., 2021), and improving

observational knowledge (Lin et al., 2019; Deng et al., 2018; Cheng et al., 2024),

among other applications.

While these significant advances only target specific components of the data

assimilation process, we extend the approach further by rethinking the assimila-

tion process itself through a data-driven framework. Our approach aligns with

reduced-space methods, which solve the assimilation problem by performing com-

putations within a lower-dimensional space relative. These reduced-space methods

have been developed primarily for operational use, as most data assimilation algo-

rithms, when implemented in their full theoretically form, are prohibitively com-

putationally costly. Reduced-space methods include ensemble data assimilation al-

gorithms (Evensen, 1994; Burgers et al., 1998; Evensen, 2009a; Bishop et al., 2001;

Hunt et al., 2007) for sequential approaches; and methods like the Physical Statisti-

cal Analysis System (PSAS) (Courtier, 2007), Restricted Preconditioned Conjugate

Gradient (RPCG) (Gratton and Tshimanga, 2009; Gratton et al., 2013), and bal-

anced truncation (Farrell and Ioannou, 2001; Lawless et al., 2008) in variational

data assimilation. PCA-based methods have also been employed, as shown by

Robert et al. (2005); Cao et al. (2007). Despite being operationally feasible, these

approaches remain computationally intensive, and their accuracy may be limited,

leaving room for further improvements.

Reduced-space data assimilation is underpinned by Lyapunov stability theory,
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which mathematically demonstrates that, under specific hypotheses, the forecast

and posterior error covariance matrices asymptotically conform to the unstable-

neutral subspace (Carrassi et al., 2022), which is of much smaller dimension than

the full state space. Even when the assumptions required for these mathematical

proofs are relaxed, numerical evidence tends to confirm that the theoretical results

still hold. This suggests that only a portion of the full state space information is

necessary to accurately correct the prior estimate. Moreover, Principal Component

Analysis (PCA) and, more recently, autoencoders have shown that large physical

systems can be accurately represented within a lower-dimensional space. Since au-

toencoders are trained to construct a manifold that the state trajectory statistically

adheres to, corrections made in latent data assimilation are likely to target the most

error-sensitive directions. While full-space data assimilation involves linear com-

binations within a high-dimensional, nonlinear, and possibly multi-scale dynamic

environment, latent data assimilation, which operates on the core, potentially dis-

entangled and simplified dynamics, is more likely to result in impactful corrections.

Furthermore, classical data assimilation faces an inherent mathematical limitation

in that it relies on linear computations. Latent data assimilation, however, offers a

way to overcome this limitation by performing the assimilation directly within the

meaningful underlying structures of the data, obtained through nonlinear transfor-

mations.

The outline of the thesis is as follows. Chapter 2 introduces the fundamental

concepts of data assimilation and provides the necessary background to understand

the principles and objectives of our latent ETKF-Q algorithm. We begin with

foundational methods in data assimilation, namely BLUE and 3D-Var algorithms,

and then extend these to incorporate the time dimension, covering both variational

and sequential approaches. We place particular emphasis on ensemble methods

and their limitations, and specifically discuss the ETKF-Q algorithm developed by

Fillion et al. (2020), which we selected and implemented for our latent space data

assimilation approach.

Chapter 3 offers a literature review that focuses on the growing intersection and

hybridization of deep learning and data assimilation. We begin by outlining the

historical development of artificial intelligence and provide an in-depth overview

of deep learning and common neural network architectures. This foundational

background is crucial for understanding the deep learning concepts discussed later

in the literature review, as well as in our work presented in chapter 4 and chapter 5.

This chapter, therefore, sets the stage for the broader scientific context in which

our research is situated.
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In chapter 4, we give a thorough presentation of our latent data assimilation

methodology. We provide criteria to select the latent dimension and discuss the

desired properties of the latent space with respect to PCA and Lyapunov stability

considerations (which both theoretically support our approach). The chapter also

outlines the training strategies developed to ensure the stability of the surrogate

neural network, as well as the modifications made to adapt the standard ETKF-

Q algorithm to its latent version. Additionally, we introduce an extension of the

algorithm that allows model error correction when the number of ensemble members

exceeds the dimensionality of the assimilation state space, a scenario not addressed

by the standard latent ETKF-Q method.

In chapter 5, we test our latent data assimilation approach on a tailored 40-

dimensional chaotic Lorenz96 system and on the quasi-geostrophic model of the

OOPS framework(1), which is collaboratively developed by ECMWF (European

Centre for Medium-Range Weather Forecasts) and Météo-France. The chapter

includes numerical results and graphs that confirm the validity of our approach

and highlight the potential for further improvements.

In Chapter 6, we summarize the key insights and findings presented throughout

this thesis. We draw conclusions about the achievements and advancements made,

but also about the limitations and challenges that remain. We therefore explore

potential future directions to further enhance, develop, and understand the poten-

tial of latent data assimilation.

Contributions

The main contribution of this thesis is to propose a latent space data assimila-

tion methodology, in which the observations remain in their original space. Impor-

tantly, this approach can be adapted to other data assimilation algorithms (Melinc

and Zaplotnik, 2024). The key aspects of this framework are:

• to define a joint training strategy for the surrogate and the autoencoder,

which yields better results compared to sequential training.

• to propose two different ways of enforcing the stability of the surrogate net-

work: an iterative training strategy through a chained loss function, and the

utilization of Lipschitz networks as surrogates networks.

• to provide an extension of the approach when the number of ensembles is

larger than the state space dimension.

(1)https://www.ecmwf.int/en/elibrary/77561-oops-common-framework-research-and-operations

https://www.ecmwf.int/en/elibrary/77561-oops-common-framework-research-and-operations
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• to demonstrate significant reduction of the computational cost and memory

needs, along with the potential for more accurate analyses.

Some results from this work are published in Peyron et al. (2021).

Context of the PhD and collaborations

This PhD research was conducted within a collaborative framework involving

CERFACS (Centre Européen de Recherche et de Formation Avancée en Calcul

Scientifique), Eviden (formerly Atos), ANITI (Artificial and Natural Intelligence

Toulouse Institute), and IRIT (Institut de Recherche en Informatique de Toulouse).

This project was made possible through the support of Eviden, which funded the

PhD via the CIFRE (Convention Industrielle de Formation par la Recherche) pro-

gram, governed by the French state. The thesis is the result of close collaboration

with the AI4Sim team at Eviden and the Algo-Coop team at CERFACS. As part

of the ANITI initiative, we also benefited from valuable insights and ideas from

Pierre Boudier, a collaborator from NVIDIA.

Part of the work developed throughout this thesis has been presented at the

Congrès des Jeunes Chercheuses et Chercheurs en Mathématiques Appliquées(2)

at École Polytechnique in 2021, and at the ECMWF–ESA Workshop on Machine

Learning for Earth Observation and Prediction(3) in Reading in 2022. I also had

the opportunity to participate in the 2023 edition of the CEMRACS(4) six-week

summer school program. Along with two other PhD students, I explored the topic

1-Lipschitz neural networks for error control in function approximation(5)(6), which

later contributed to the development of stable surrogate networks. This work was

presented at the ALGORITMY conference(7) of 2024 in Slovakia.

On a technical note, all the codes implemented during this research are written

in Python, with the neural networks and deep learning components specifically

relying on the PyTorch framework.

(2)https://cjc-ma2021.github.io/
(3)https://events.ecmwf.int/event/304/
(4)Centre d’Été Mathématique de Recherche Avancée en Calcul Scientifique, Marseille,

France
(5)http://smai.emath.fr/cemracs/cemracs23/projects.html
(6)https://www.math.sk/alg2024/minisymposia-abstracts/
(7)https://www.math.sk/alg2024/minisymposia-abstracts/#machine_learning

https://cjc-ma2021.github.io/
https://events.ecmwf.int/event/304/
http://smai.emath.fr/cemracs/cemracs23/projects.html
https://www.math.sk/alg2024/minisymposia-abstracts/
https://www.math.sk/alg2024/minisymposia-abstracts/#machine_learning




CHAPTER 2

Data assimilation methods

In this thesis, situated at the intersection of data assimilation (DA) and deep

learning (DL), a thorough introduction to DA key concepts is required for a deeper

understanding of the interactions between inverse problems and neural networks.

Inverse problems seek the causes of phenomena from their observed effects.

Unlike forward problems that model direct causal relationships between variables,

parameters, and - physical - conditions, inverse problem theory aims to mathemat-

ically trace a process back from its result to its origin. These problems can be

ill-defined, making them challenging to solve without additional knowledge. Hence,

prior information on the causes or on the initial state is often introduced to regu-

larize the problem.

Data assimilation, which will be developed throughout the following sections,

belongs to the wide class of inverse problems. It involves using both an initial guess

of a physical system’s state and observation data, each with their uncertainties,

to find an optimal estimate. This estimate is designed to be more accurate and

reliable than either the initial guess or the observations alone. The chapter will

later introduce a precise mathematical definition for the optimality criterion that

this estimate must meet.

Within the framework of our research, we are mostly interested in weather

forecast and geophysical DA applications. Advances in various scientific fields, in-

7
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cluding mathematics, physics, and more recently computer science, have allowed us

to develop increasingly precise models of physical systems like atmospheric motions,

oceanographic dynamics, or reservoir modeling.

To obtain precise estimates and reliable forecasts of the state of a physical

system, three complementary conditions must be satisfied in practice.

First, accurately representing and forecasting a natural phenomenon lies pri-

marily in the thorough understanding of the underlying physical laws. Thus, the in-

tegration of increasingly complex mathematical theories, concepts, and tools, along-

side more precise observational instruments, has enabled us to better comprehend

and model the world we live in.

A second critical requirement is a comprehensive knowledge of the system’s

initial state. While for simple systems, such as a gravity pendulum or free-falling

objects, determining the initial state can be straightforward, it becomes significantly

more challenging for complex, real-world physical processes, especially large-scale

ones as encountered in weather forecasting, oceanography, or geosciences.

Lastly, once the first two conditions are met, either exactly or approximately,

computational resources become necessary to carry out the calculations. For cen-

turies, these were done manually or with the help of tools like slide rules, but the

advent of computers has unlocked unprecedented computational power, opening up

new and formidable opportunities for scientific exploration and modeling.

In real-world large-scale applications, not all these three conditions are precisely

met, leading to errors. Also, many physical systems are chaotic, meaning even

very tiny errors in our knowledge of the system’s state will lead to significantly

different trajectories after a finite number of time steps. Weather forecasting is

a prime example of such chaotic systems, illustrated by Edward Lorenz’s famous

metaphorical butterfly effect:

Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?

In this context, data assimilation has emerged as a key solution to complex

challenges like weather forecasting, by merging knowledge-based and observational

information together. The substantial growth in observational data and advance-

ments in algorithms over recent decades have significantly enhanced the reliability

and accuracy of forecasts.

The chapter is organized as follows:

• section 2.1 introduces the BLUE and 3D-Var methods, which represent an
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accessible entry point into data assimilation, while underpinning the founda-

tional principles of data assimilation.

• section 2.2 expands prior algorithms to include a temporal dimension, by

using variational and sequential approaches.

While our research contributions are not tied to a specific data assimilation

algorithm, we focus particularly on ensemble data assimilation, reflecting our main

area of research interest.

Notably, the following subsections are significantly grounded on the remarkable

and lucid lecture notes by Bocquet and Farchi (2014) and, to a lesser extent, to the

thorough, well-articulated book “Data Assimilation” by Evensen (2009a). These

works were chosen for their clarity, depth, and broad coverage of data assimilation

topics, providing a solid foundation for the discussions in the subsequent sections.

2.1 Analysis state estimation approaches in a fixed time frame-

work

Let us consider a physical phenomenon within a continuous spatial domain Ω, where

the variable xt denotes the ground truth state of the system across Ω. That is,

for every point u within Ω, xt(u) is the system’s actual value at u. In practice,

numerical computations require to introduce a grid or a mesh, leading to considering

the projection of xt onto the discretized domain. In real-world applications, direct

access to the ground truth state xt is typically not possible. However, one often

has access to a prior information, xb ∈ Rn, referred to as the background and

often provided by an expert or a numerical model, and to a vector of observations,

y ∈ Rp, along with their associated uncertainties, η and ε, respectively. Given these

notations, we can mathematically define the two following equations:

{
xb = xt + η, (2.1a)

y = H(xt) + ε, (2.1b)

where η ∈ Rn, ε ∈ Rp are random variables named background error and ob-

servation error, respectively. H : Rn 7→ Rp denotes the observation operator, and

may include interpolations and/or unit transformations.
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The background error η represents the mismatch between the prior guess xb and

the ground truth value xt. Likewise, ε accounts for all the errors and uncertainties

related to both the observations y and the observation operator H. These errors

can be divided into two categories:

• measurements errors: errors and uncertainties related to the data acquisi-

tion process. Instrumental devices have a limited and finite accuracy so that

the confidence and the reliability of observations vary from one measurement

to another.

• representativeness errors: when mapping from state xt to the associ-

ated vector of observations y, the operator H inherently holds errors and

uncertainties. Indeed, state variables and observations locations are unlikely

to coincide exactly, which requires interpolations, therefore leading to ap-

proximations and uncertainties. Besides, we do not necessarily have direct

measurements of the physical quantities of interest, i.e., x variables, but

sometimes the observed quantities have a different physical nature. That is

why, operator H also often hides complex physical and mathematical trans-

formations that can be inexact, or error prone.

Within the data assimilation framework, it is conventionally assumed that both

background and observation errors are additive. This assumption, while arbitrary,

is primarily guided by mathematical convenience. Alternatives, such as multiplica-

tive errors, could also be considered if they were deemed relevant.

Operational weather forecasting systems typically involve state variables with

dimensions n that can reach up to 106 to 109, while p is generally about a hundred

times smaller.

Given the formulation in equations (2.1a) and (2.1b), the aim of data assimi-

lation is to derive an “optimal” estimate xa, from the background xb and the ob-

servations y, with the optimality criterion to be defined in subsequent discussions.

The estimate xa is often referred to as the analysis state (hence the upper-script

“a”).

To more precisely quantify uncertainties, we introduce the covariance matrices

associated with η and ε: the background error covariance matrix denoted

by B ∈ Rn×n, and the observation error covariance matrix represented by

R ∈ Rp×p as:
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• [B]ij = E
[
([η]i − E [η])([η]j − E [η])

]
, ∀ i, j ∈ J1, nK.

• [R]ij = E
[
([ε]i − E [ε])([ε]j − E [ε])

]
, ∀ i, j ∈ J1, pK.

where E denotes the expectation operator(1), notation [·]ij indicates the element

located in the ith row and jth column of a matrix, and [·]i specifies the ith element

of a vector.

By definition, B and R are symmetric matrices. In addition, they are assumed

to be positive definite, i.e., they satisfy:

∀ x̃ ∈ Rn\{0}, x̃TBx̃ > 0. (2.3)

∀ ỹ ∈ Rp\{0}, ỹTBỹ > 0. (2.4)

Within a data assimilation framework, we also conventionally make the follow-

ing assumptions:

• background error η is unbiased, i.e., E [η] = 0.

Therefore, [B]ij = E
[
[η]i [η]j

]
, ∀ i, j ∈ J1, nK.

• observation error ε is unbiased, i.e., E [ε] = 0.

Therefore, [R]ij = E
[
[ε]i [ε]j

]
, ∀ i, j ∈ J1, pK.

• η and ε are uncorrelated, i.e., E
[
ηεT

]
= 0Rn×p .

In practice, not satisfying E[η] = 0 or E[ε] = 0 is not an insurmountable limita-

tion, as it can be seamlessly circumvented when the bias is known or quantifiable.

If η or ε is indeed biased, we can always subtract this bias and thereby define a

new unbiased variable that could be used instead.

(1)

Definition 2.1 Expectation operator E: Let us consider a random variable Φ defined
over the continuous domain Ω, and following the probability density function (or distribu-
tion) g. The expectation operator, also known as expectancy or expected value, is defined
as:

E[Φ] =
∫
ϕ∈Ω

ϕg(ϕ)dϕ. (2.2)

Random variable Φ is said to be unbiased when E[Φ] = 0.



M. PEYRON - Latent space data assimilation in the context of deep learning 12

2.1.1 Best Linear Unbiased Estimator (BLUE)

In the context of the so-called Best Linear Unbiased Estimator, we additionally

assume the observation operator H to be linear and therefore denote it by H.

Equations (2.1a) and (2.1b) can therefore be reformulated as:

{
xb = xt + η, (2.5a)

y = Hxt + ε, (2.5b)

As suggested by the terminology Best Linear Unbiased Estimator, we search

for an estimate xa in the form of a linear combination of the background xb and

the observations y. Therefore, let us introduce the unknown matrices L ∈ Rn×n

and K ∈ Rp×n and define xa as follows:

xa = Lxb +Ky. (2.6)

We want the analysis error, denoted by ea, to be unbiased. Let us first express

ea as a function of the variables that are known to be unbiased:

ea = xa − xt

= Lxb +Ky − xt

= L
(
xb − xt + xt

)
+K

(
Hxt + ε

)
− xt

= L
(
xb − xt

)︸ ︷︷ ︸
=η

+Lxt +KHxt +Kε− xt

= Lη + (L+KH − In)xt +Kε. (2.7)

Applying the expectation operator E[·], and utilizing the assumption that η

and ε are unbiased (i.e., their expected values are zero), we obtain:

E [ea] = LE [η]︸︷︷︸
=0Rn

+ (L+KH − In)E
[
xt
]

+KE [ε]︸︷︷︸
=0Rp

= (L+KH − In)xt. (2.8)

To enforce ea to be unbiased, a sufficient condition consists in choosing L and
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K such that:

L+KH − In = 0Rn ,

L = In −KH. (2.9)

Thus, by ensuring the linearity and unbiasedness criteria, our analysis estimate

of equation (2.6) becomes:

xa = (In −KH)xb +Ky,

xa= xb +K
(
y −Hxb

)
, (2.10)

where
(
y −Hxb

)
is called the innovation vector and denotes the misfit between

the observations and the background. Matrix K ∈ Rn×p, known as a gain matrix,

filters which information from the innovation is passed to correct the background.

Let us denote by P a the posterior error covariance matrix associated with the

analysis xa. The optimality criterion leading to the BLUE analysis consists in

minimizing the trace of P a with respect to K. The resulting optimal gain will be

denoted by K∗. First, we therefore consider the expression of P a:

P a = E
[
ea(ea)

T
]
. (2.11)

We can now derive ea from equation (2.7) by substituting L with its known

expression (i.e., In −KH):

ea = Lη + (L+KH − In)xt +Kε

= (In −KH)η + (In −KH +KH − In)︸ ︷︷ ︸
=0Rn×n

xt +Kε

= η −KHη +Kε

= η +K(ε−Hη). (2.12)

Replacing ea in equation (2.11) with its new formulation given by equation (2.12),

we obtain:
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P a = E
[
(η +K(ε−Hη))(η +K(ε−Hη))

T
]

= E

((In −KH)︸ ︷︷ ︸
=L

η +Kε)((In −KH)︸ ︷︷ ︸
=L

η +Kε)T


= E

[
(Lη +Kε)(Lη +Kε)

T
]

= E
[
(Lη +Kε)

(
ηTLT + εTKT

)]
= LE

[
ηηT

]︸ ︷︷ ︸
=B

LT +LE
[
ηεT

]︸ ︷︷ ︸
=0Rn×p

KT +KE
[
εηT

]︸ ︷︷ ︸
=0Rp×n

LT +KE
[
εεT

]︸ ︷︷ ︸
=R

KT

= LBLT +KRKT

= (In −KH)B(In −KH)
T

+KRKT . (2.13)

Given equation (2.13), we can minimize Tr(P a) with respect to K, where

Tr(·) denotes the trace operator and represents the sum of the variances (diagonal

elements) of the error between the analysis state xa and the ground truth state xt.

We can mathematically derive the following expression for the optimal gain K∗:

K∗ = BHT
(
R+HBHT

)−1

. (2.14)

A thorough mathematical derivation of this solution is provided at the end of

the manuscript, in appendix A.1.

When expressing the gain K∗ as in equation (2.14), we notice that a p-by-

p matrix has to be inverted. Relying on the Sherman-Morrison-Woodbury

formula, it is possible to define an equivalent formulation of K∗ for which a n-by-n

matrix needs to be inverted. We show this equivalence in appendix A.2 and thereby

derive the following second expression for K∗:

K∗ =
(
B−1 +HTR−1H

)−1

HTR−1. (2.15)

We thus have two different formulations for the optimal gain, K∗, each offering

practical advantages depending on the specific context of application. Besides, as

shown in equation (2.13), the posterior error covariance matrix P a depends on K.

According to the considered formula of K∗, we can therefore derive two distinct
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expressions for P a, as demonstrated in appendix A.3:

P a = B −BHT
(
R+HBHT

)−1

HB, (2.16)

and,

P a =
(
B−1 +HTR−1H

)−1

. (2.17)

In summary, given the system of equations (2.5a) and (2.5b), the derivation of

the Best Linear Unbiased Estimator (BLUE) yields the following formulas (derived

through equations (2.14) to (2.17)):

xa = xb +BHT
(
R+HBHT

)−1(
y −Hxb

)
,

= xb +
(
B−1 +HTR−1H

)−1

HTR−1
(
y −Hxb

)
.

P a = B −BHT
(
R+HBHT

)−1

HB,

=
(
B−1 +HTR−1H

)−1

.

(2.18a)

(2.18b)

(2.18c)

(2.18d)

Within the BLUE framework, these equations provide a systematic method to

integrate observations with prior information to produce an updated state with

minimized error variance. The gain K∗, in particular, optimally balances the trust

placed in the background versus the observed data, a principle that is foundational

to data assimilation methods. As illustrated throughout this section, BLUE analy-

sis therefore stands as an accessible entry point into the theory of data assimilation.

However, its reliance on the linearity assumption marks a significant limitation to

practical applications: H is indeed seldom linear in practice. Exploring new data

assimilation methods that accommodate nonlinear observation operators is thus

essential.

2.1.2 3D-Var

Shifting from BLUE analysis to an optimization-based framework, allows us to

revisit our data assimilation problem. When the observation operator is no longer

linear, we can indeed search for an estimate xa by solving the following optimization
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problem:

xa = arg min
x∈Rn

 J : Rn → R+

x 7→ 1
2

∥∥x− xb
∥∥2
B−1 + 1

2∥y −H(x)∥2R−1 ,
(2.19)

where norm operators ∥·∥B−1 and ∥·∥R−1 are defined as follows:

∀(x,y) ∈ (Rn × Rp) :

∥x∥B−1 =
√
xTB−1x. (2.20)

∥y∥R−1 =

√
yTR−1y. (2.21)

Notably, ∥·∥B−1 and ∥·∥R−1 are well-defined since B−1 and R−1 are positive

definite.

The minimization problem defined in equation (2.19) is also known as the

three-dimensional variational (3D-Var) optimization problem (Courtier et al.,

1998; Rabier et al., 1998a; Andersson et al., 1998). The term 3D-Var signifies varia-

tional data assimilation within a three-dimensional spatial domain, excluding tem-

poral dynamics, unlike the so-called 4D-Var (see section 2.2.1) which incorporates

time. The designation “3D” does not imply that the state vector Rn is three-

dimensional, but rather refers to the spatial dimensionality of the physical vari-

ables being assimilated (e.g., wind speed, temperature, pressure, humidity) across

a three-dimensional grid or mesh.

Solving the unconstrained optimization problem of equation (2.19) requires the

utilization of iterative optimization methods (Nocedal and Wright, 2006). The

fundamental strategy involves identifying a descent direction, denoted by p(j), and

determining an appropriate step size, α(j) ∈ R+, at each iteration j. This iterative

process is mathematically expressed as:

x(j+1) = x(j) + α(j)p(j). (2.22)

For nonlinear least squares problems (NLSPs) as in equation (2.19), it is

common to apply the Gauss-Newton method (Gratton et al., 2007; Nocedal and

Wright, 2006): Gauss-Newton algorithm is an iterative procedure, that solves a
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sequence of linear least squares problems (LLSPs). At each step of the outer loop,

the observation operator H is linearized at the current iterate. Minimizing the

linear least squares problem leads to finding the solution of an equation of the form

Ax = b: this can be solved through direct or iterative methods, depending on A

(Golub and Van Loan, 2013; Saad, 2003). For large-scale positive-definite systems,

conjugate gradient methods are an efficient common choice.

When the observation operator is linear (i.e., when H = H), 3D-Var is equiv-

alent to BLUE analysis, and the optimization problem reads:

xa = arg min
x∈Rn

 J : Rn → R+

x 7→ 1
2

∥∥x− xb
∥∥2
B−1 + 1

2∥y −Hx∥2R−1 ,
(2.23)

We can mathematically solve equation (2.23) to demonstrate the equivalence

between BLUE and 3D-Var in the linear case.

The cost function J of equation (2.23) is a quadratic function of the variable

x. Besides, J is strictly convex as the error covariance matrices B and R are

positive definite. Therefore, there exists a unique xa ∈ Rn that minimizes J . We

can mathematically derive that:

∇J(x) = B−1
(
x− xb

)
−HTR−1(y −Hx). (2.24)

HessJ(x) = B−1 +HTR−1H. (2.25)

The minimum of the quadratic J is denoted by xa and satisfies ∇J(xa) = 0,

which reads:

B−1
(
xa − xb

)
−HTR−1(y −Hxa) = 0

⇔ B−1xa −B−1xb −HTR−1y +HTR−1Hxa = 0

⇔
(
B−1 +HTR−1H

)
xa = B−1xb +HTR−1Hy

⇔
(
B−1 +HTR−1H

)
xa =

(
B−1 +HTR−1H −HTR−1H

)
xb +HTR−1Hy

⇔
(
B−1 +HTR−1H

)
xa =

(
B−1 +HTR−1H

)
xb +HTR−1H

(
y −Hxb

)
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⇔ xa = xb +
(
B−1 +HTR−1H

)−1

HTR−1H
(
y −Hxb

)
. (2.26)

Therefore, solving the 3D-Var optimization problem given by equation (2.23)

yields the same estimate as the BLUE under similar assumptions. Notably, in the

case of 3D-Var, we also have that P a = HessJ(x) = B−1 +HTR−1H, ∀x ∈ Rn.

2.2 Including temporal dimension

BLUE analysis (section 2.1.1) and 3D-Var (section 2.1.2) are two data assimilation

methodologies for refining the estimation of a physical system’s state by leverag-

ing prior knowledge xb, observational data y, and the error covariance matrices

associated with their respective random noises. However, BLUE and 3D-Var do

not explicitly account for the (possible) temporal evolution of the analysis and its

covariance matrix through time, since no dynamical model is included within the

DA equations (2.1a) and (2.1b).

We now consider the following system of equations:

{
xt
k = Mk

(
xt
k−1

)
+ ηk, (2.27a)

yk = Hk(xt
k) + εk, (2.27b)

where Mk - sometimes also denoted by M(k-1)→k - is a knowledge-based (and as

such imperfect) model, that propagates the system’s state from time tk to time

tk+1. The error between the model prediction and the true state value at time tk

is denoted by ηk. All variables are temporally indexed by k, with k lying in J0, T K.

To complement equations (2.27a) and (2.27b), we commonly make the following

assumptions:

• model error ηk is unbiased, i.e., E [ηk] = 0Rn , ∀k ∈ J0, T K.

• model errors (ηk)k∈J0,T K are uncorrelated in time.

Therefore, E
[
ηkη

T
l

]
=

Qk if k = l

0Rn×n otherwise
, ∀(k, l) ∈ J0, T K × J0, T K.

• observation error εk is unbiased, i.e., E [εk] = 0Rn , ∀k ∈ J0, T K.
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• observation errors (εk)k∈J0,T K are uncorrelated in time.

Therefore, E
[
εkε

T
l

]
=

Rk if k = l

0Rp×p otherwise
, ∀(k, l) ∈ J0, T K × J0, T K.

• (ηk)k∈J0,T K and (εk)k∈J0,T K are uncorrelated.

Therefore, E
[
ηkε

T
l

]
= E [ηk]E

[
εTk
]

= 0Rn×p , ∀(k, l) ∈ J0, T K × J0, T K.

Within the framework of equations (2.27a) and (2.27b) - and under the afore-

mentioned assumptions -, we establish the expression of an optimal estimate along

with its forward error statistics, in the subsequent sections. This is done from two

different lens: variational and sequential data assimilation.

2.2.1 4D-Var

Given equations (2.27a) and (2.27b), the four-dimensional variational (4D-

Var) assimilation algorithm (Le Dimet and Talagrand, 1986; Rabier et al., 1998b;

Mahfouf and Rabier, 2000; Klinker et al., 2000; Lorenc, 1986) expands the 3D-Var

method by adding a time dimension. It is defined as the following optimization

problem:

xa
0 = arg min

x0∈Rn

 J : Rn → R+

x0 7→ 1
2

∥∥x0 − xb
0

∥∥2
B−1 + 1

2

∑T
k=0∥yk − Gk(x0)∥2R−1

k

,
(2.28)

where Gk is called the generalized observation operator and is defined as fol-

lows:

Gk(x0) =

Hk(xk) = Hk ◦Mk ◦ · · · ◦M2 ◦M1(x0), ∀k ∈ J1, T K

H0(x0) if k=0
(2.29)

4D-Var operates over time windows whose length is here denoted by T . For each

time period, 4D-Var iteratively optimizes for the best initial condition x0 of the

considered window: all the available observations are assimilated at once, thanks

to models M1, . . . ,MT and observation operators H0,H1, . . . ,HT . 4D-var is

therefore known to have a smoothing effect over the state trajectory, compared to

sequential approaches.
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Figure 2.2.1 illustrates the principle of the 4D-Var algorithm. For the sake of

simplicity, observations yk and state variables xb
0,xf

k and xa
k are depicted in the

same space. From a prior guess xb
0, 4D-Var searches for an optimal estimate xa

0 so

that the resulting trajectory error over the entire time window is minimized. The

double-headed green arrows represent the discrepancy between the observations yk

and the corrected trajectory states xa
k. Likewise, the double-headed blue arrows

denote the difference between the forecasts computed from xb
0 and the analyses.

time window

Observations

Forecasts

Analyses

original trajectory

corrected trajectory

Figure 2.2.1: Illustration of 4D-Var algorithm over the ith time window of the
assimilation process.

In equation (2.28), we implicitly assume that models M1, . . . ,Mk are perfect:

the optimization problem is therefore named strong-constraint 4D-Var. There

exists extensions, the so-called weak-constraint 4D-Var (Trémolet, 2006, 2007).
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One way to introduce model error is to optimize for both the initial state x0 and

an estimation of a systematic bias η, therefore defining the following optimization

problem:

xa
0 ,η

∗ = arg min
x0,η∈Rn

 J : Rn × Rn → R+

x0,η 7→ 1
2

∥∥x0 − xb
0

∥∥2
B−1 + 1

2

∑T
k=0∥yk − Gk(x0)∥2R−1

k

+ 1
2

∥∥η − ηb
∥∥2
Q−1 ,

(2.30)

where ηb is a background prior of the bias, and Gk is redefined as

Gk(x0) =

Hk(Mk(· · ·M2(M1(x0) + η) + η) + · · ·η), ∀k ∈ J1, T K

H0(x0) if k=0
(2.31)

This weak-constraint formulation is implemented operationally in the ECMWF’s

Integrated Forecasting System (IFS) (Bocquet and Farchi, 2014; Trémolet and

Fisher, 2010) and accounts for a systematic bias that is assumed invariant through

time.

In the following, we will be considering only the case depicted by equation (2.28).

Similarly to 3D-Var, the optimization problem of equation (2.28) can be solved by

using the Gauss-Newton approach (Gratton et al., 2007; Nocedal and Wright, 2006).

Instead of optimizing for x, we rather iteratively search for an increment δx ∈ Rn,

by solving a sequence of LLSPs. At iteration j of the outer loop, we solve the

following LLSP (with x
(0)
0 = xb):

δx
(j,∗)
0 = arg min

δx(j)
0 ∈Rn


J : Rn → R+

δx
(j)
0 7→ 1

2

∥∥∥x(j)
0 + δx

(j)
0 − xb

0

∥∥∥2
B−1

+ 1
2

∑T
k=0

∥∥∥yk − Gk

(
x
(j)
0

)
−Gk

(
x
(j)
0

)
δx

(j)
0

∥∥∥2
R−1

k

,
(2.32)

where Gk

(
x
(j)
0

)
∈ Rp×n is the linear approximation of operator Gk at point x

(j)
0 .

Equation (2.32) is a quadratic functional with respect to δx
(j)
0 , its gradient is

given by:
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∇J
(
δx

(j)
0

)
=B−1

(
δx

(j)
0 + x

(j)
0 − xb

0

)
−H0

(
x
(j)
0

)T
R−1

0

(
y0 −H0

(
x
(j)
0

)
−H0

(
x
(j)
0

)
δx

(j)
0

)
︸ ︷︷ ︸

∆0

−M1

(
x
(j)
0

)T
H1

(
x
(j)
0

)T
R−1

1

(
y1 −H1

(
M1

(
x
(j)
0

))
−H1

(
M1

(
x
(j)
0

))
δx

(j)
0

)
︸ ︷︷ ︸

∆1

−MT
1M

T
2H

T
2 R

−1
2

(
y2 − G2

(
x
(j)
0

)
−H2M2M1δx

(j)
0

)
︸ ︷︷ ︸

∆2

(2.33)

−MT
1M

T
2 . . .MT

TH
T
T R

−1
T

(
yT − GT

(
x
(j)
0

)
−HTMT . . .M2M1δx

(j)
0

)
︸ ︷︷ ︸

∆T

. (2.34)

where Hk

(
x
(j)
k

)
, ∀k ∈ J0, T K and Mk

(
x
(j)
k

)
, ∀k ∈ J1, T K respectively denote the

linearized observation and model operators at point x
(j)
k (with x

(j)
k = M

(
x
(j)
k−1

)
for k > 1). From equation (2.33) - and in the following as well - we do not indicate

the linearization point, so that they are simply denoted by Hk and Mk.

By factorizing the upfront terms HT
0 , MT

1 , MT
2 , . . . , MT

T −1, we can obtain a

Horner factorization of ∇J
(
δx

(j)
0

)
:

∇J
(
δx

(j)
0

)
=B−1

(
δx

(j)
0 + x

(j)
0 − xb

0

)
−
(
HT

0 ∆0 +MT
1

[
HT

1 ∆1 +MT
2

[
HT

2 ∆2 + · · · +MT
TH

T
T ∆T

]
. . .
])

. (2.35)

The computation of the gradient based on this Horner factorization is de-

tailed in Algorithm 2.1: it provides a numerical advantage by efficiently computing

∇J
(
δx

(j)
0

)
and minimizing unnecessary matrix product computations. When con-

sidering Algorithm 2.1, we implicitly assume the error covariance matrices P f
0 ,

R0, . . . ,RT , along with operators M0, . . . ,MT and H0, . . . ,HT to be available.

The direct implementation of the gradient derivation masks a significant chal-

lenge related to the mathematical representation of the adjoint (or transpose here)

of the model matrices Mk and observation operators Hk. In practical data as-

similation applications, physical models are often implemented as operators in pro-

gramming languages (e.g., Fortran, C, or C++), rather than being straightforward
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Algorithm 2.1: Computation of ∇J
(
δx

(j)
0

)
(4D-Var)

Inputs:

Background xb
0 ∈ Rn ;

Current initial estimate x
(j)
0 ∈ Rn ;

Observations {y0, . . . ,yT } ∈ Rp×(T +1) ;

Forward propagation step:

1 for k = 0, 1, . . . , T do

// Compute forecast states

2 x
(j)
k+1 = Mk+1

(
x
(j)
k

)
// Propagate increments with the linearized model

3 δx
(j)
k+1 = Mk+1δx

(j)
k

// Compute the normalized innovations

4 ∆k = R−1
k

(
yk −Hk

(
x
(j)
k

)
−Hkδx

(j)
k

)
5 end

Backward propagation step:

6 δ̃x
(j)

T = HT
T ∆T

7 for k = T , . . . , 1, 0 do

// Iteratively compute the gradient’s terms

8 δ̃x
(j)

k = HT
k ∆k +MT

k+1δ̃x
(j)

k

9 end

10 return ∇J
(
δx

(j)
0

)
= −δ̃x0
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matrix operations. Observation operators are also mappings that rarely take the

form of matrices. Consequently, computing the adjoint of these operators - es-

sentially finding the practical equivalent of MT
k and HT

k - is far from trivial and

demands considerable effort to accurately reflect the theoretical operations in code.

Additionally, since physical phenomena are mostly driven by nonlinear equations,

and as state variables are not always the observed ones, deriving the gradient of

the functional J very often involves linearizing these operators at the considered

point x
(j)
k . All these mathematical and computational considerations are practical

impediments to a simple and straightforward implementation of 4D-Var.

In order to compute the minimum of the functional J , let us introduce the

following notation:

Mk,0 = MkMk−1, . . . ,M2M1, ∀k ∈ J1, T K. (2.36)

We can then reformulate equation (2.35) into:

∇J
(
δx

(j)
0

)
= B−1

(
δx

(j)
0 + x

(j)
0 − xb

0

)
−

T∑
k=0

MT
k,0H

T
kR

−1
k

(
yk − Gk

(
x
(j)
0

)
−HkMk,0δx

(j)
0

)
= B−1

(
δx

(j)
0 + x

(j)
0 − xb

0

)
−

( T∑
k=0

MT
k,0H

T
kR

−1
k

(
yk − Gk

(
x
(j)
0

)))
−

( T∑
k=0

MT
k,0H

T
kR

−1
k HkMk,0

)
δx

(j)
0

=

(
B−1 +

T∑
k=0

MT
k,0H

T
kR

−1
k HkMk,0

)
δx

(j)
0 −

T∑
k=0

MT
k,0H

T
kR

−1
k

(
yk − Gk

(
x
(j)
0

))
−B−1

(
x
(j)
0 − xb

0

)
. (2.37)

When searching for δx
(j)
0 such that ∇J

(
δx

(j)
0

)
= 0, we obtain:

δx
(j,∗)
0 =

(
B−1 +

T∑
k=0

MT
k,0H

T
kR

−1
k HkMk,0

)−1(
B−1

(
x
(j)
0 − xb

0

)
+

T∑
k=0

MT
k,0H

T
kR

−1
k

(
yk − Gk

(
x
(j)
0

)))
, (2.38)

where the matrix to be inverted is a first-order approximation of the Hessian of J .

In real-world applications, the size of the matrices involved in the assimilation

process is significantly large, so that a direct inversion of
(
B−1 +

∑T
k=0M

T
k,0H

T
kR

−1
k HkMk,0

)−1

is unaffordable. We instead use iterative methods to approximate δx
(j,∗)
0 .
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If we now assume that operators Hk and Mk are linear, and models Mk are

supposed to be perfect, 4D-Var algorithm is characterized by a transferability

of optimality property (Li and Navon, 2001; Bocquet and Farchi, 2014). This

property implies that solving the 4D-Var problem over [t0, tT ] yields the same ini-

tial state estimate xa
0 as sequentially optimizing over two sub-windows [t0, ti] and

[ti, tT ]. More precisely, let us start by considering the analysis state at time t0, de-

noted xa,∗
0 and obtained by optimizing over [t0, ti] using 4D-Var. Given this state

xa,∗
0 , the transferability of optimality property states that conducting a subsequent

optimization for x0 considering the observations from [ti, tT ] and using xa,∗
0 as the

background state, is equivalent to a direct 4D-Var application across the entire

interval [t0, tT ], and therefore yields xa,†
0 which is equal to xa

0 . We can mathemat-

ically derive this equivalence, but this would extend beyond the scope of this thesis.

2.2.2 Sequential approaches

In the following subsections, we present four sequential data assimilation approaches

along with their specificities and differences: the Kalman Filter (KF), the Ex-

tended Kalman Filter (EKF), the Ensemble Transform Kalman Filter

(ETKF) and the Ensemble Transform Kalman Filter with model error

(ETKF-Q). In essence, these approaches are grounded on BLUE analysis and offer

extensions of it in the context of equations (2.27a) and (2.27b).

2.2.2.1 Kalman Filter

The Kalman filter (KF) (Kalman, 1960; Welch et al., 1995) extends BLUE method-

ology to cases involving dynamic models and time-sequential observations. On top

of the BLUE analysis step yielding xa
k, the Kalman filter provides a forecast step

which not only propagates xa
k forward in time, but also calculates the associated

error covariance matrix P f
k+1, both of these variables being required for the next

analysis at time tk+1.

Within the context of the Kalman filter, we assume that the models and the

observation operators are linear, so that equations (2.27a) and (2.27b) become:

{
xt
k = Mkx

t
k−1 + ηk, (2.39a)

yk = Hkx
t
k + εk, (2.39b)
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Figure 2.2.2 illustrates how the Kalman filter sequentially computes an anal-

ysis estimate from the background xf
k , the observations yk, and their associated

uncertainties.

Observations

Forecasts

Analyses

truth

Figure 2.2.2: Illustration of the Kalman filter algorithm.

The analysis step of the Kalman filter is the same as the BLUE approach, albeit

with updated notation to reflect the temporal dimension:

xa
k = xf

k +Kk

(
yk −Hkx

f
k

)
,

P a
k = (In −KkHk)P f

k ,

(2.40a)

(2.40b)

where xa
k is the analysis estimate at time tk, xf

k represents the forecast derived from

the previous analysis through model Mk (i.e., xf
k = Mk

(
xa
k−1

)
, ∀k > 1), and xf

0

denotes the initial background state xb
0. The Kalman gain matrix Kk, observation

operator Hk, and observations yk are all specified for time tk.
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One crucial point when forecasting the analysis xa
k to yield xf

k+1 is the evolution

of its error covariance matrix P a
k and its link with respect to P f

k+1. Therefore, let us

derive the error efk+1 = xf
k+1−xt

k+1 in order to estimate P f
k+1 = E

[
efk+1

(
efk+1

)T]
:

efk+1 = xf
k+1 − x

t
k+1

= Mk+1x
a
k − xt

k+1

= Mk+1

(
xa
k − xt

k + xt
k

)
− xt

k+1

= Mk+1

(
xa
k − xt

k

)︸ ︷︷ ︸
=ea

k

−
(
xt
k+1 −Mk+1x

t
k

)︸ ︷︷ ︸
=ηk+1

. (2.41)

From which we derive:

P f
k+1 = E

[
efk+1

(
efk+1

)T]
= E

[(
Mk+1e

a
k − ηk+1

)(
(eak)

T
MT

k+1 − ηT
k+1

)]
= E

[
Mk+1e

a
k(eak)

T
MT

k+1 −Mk+1e
a
kη

T
k+1 − ηk+1(eak)

T
MT

k+1 + ηk+1η
T
k+1

]
= Mk+1E

[
eak(eak)

T
]

︸ ︷︷ ︸
=P a

k

MT
k+1 −Mk+1E

[
eakη

T
k+1

]︸ ︷︷ ︸
=0Rn×n

− E
[
ηk+1(eak)

T
]

︸ ︷︷ ︸
=0Rn×n

MT
k+1 + E

[
ηk+1η

T
k+1

]︸ ︷︷ ︸
=Qk+1

= Mk+1P
a
kM

T
k+1 +Qk+1. (2.42)

The Kalman Filter method is summarized in Algorithm 2.2 (we remind that

most notations along with algorithms structures, are inspired from the lecture notes

of Bocquet and Farchi (2014)).

In real-world scenarios, the linearity assumption for the model and observation

operators (Hk and Mk) rarely holds, necessitating adaptations to the standard

Kalman filter framework for nonlinear systems. This adaptation involves the lin-

earization of these operators around the current estimate, allowing to keep using

the Kalman filter with some slight modifications. Specifically, the nonlinear op-

erators Hk and Mk are employed directly to map the background state into the

observation space and for temporal propagation of the analysis state xa, respec-

tively. Meanwhile, Hk and Mk are redefined to represent the Jacobian matrices

of Hk and Mk at the current estimate, effectively serving as their linear approxi-
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Algorithm 2.2: Kalman Filter

Inputs:

Background xf
0 ∈ Rn ;

Observations {y0, . . . ,yT } ∈ Rp×(T+1) ;

1 for k = 0, 1, . . . , T do

Analysis step

// Compute the Kalman gain

2 Kk = P f
kH

T
k

(
HkP

f
kH

T
k +Rk

)−1

// Derive the analysis

3 xa
k = xf

k +Kk

(
yk −Hkx

f
k

)
// Compute the error covariance matrix of the analysis

4 P a
k = (In −KkHk)P f

k

Propagation step

// Forecast the analysis

5 xf
k+1 = Mk+1x

a
k

// Compute the error covariance matrix of the forecast

analysis

6 P f
k+1 = Mk+1P

a
kM

T
k+1 +Qk+1

7 end
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mations. Also, HT
k and MT

k represent the adjoint of the observation operator and

the transpose of the Jacobian matrix of the model, respectively. This approach,

which relaxes the linearity assumption, is known as the Extended Kalman Fil-

ter (EKF), and maintains the iterative forecast-analysis cycle of the Kalman filter

while accommodating nonlinear model and observation operators.

The extended Kalman filter is presented in Algorithm 2.3 and operates by:

• linearizing the observation operator Hk to get the matrixHk, and computing

HT
k , the adjoint of Hk. These three operators are then used to calculate

the Kalman gain and update the state estimate in the analysis step. The

nonlinear operator Hk is directly used in the calculation of the innovation

term.

• using Mk to forecast the state forward in time, directly applying the nonlin-

ear model. The derivation of the linear operator Mk and its transpose MT
k

allows for the derivation of P a
k from P f

k and Qk.

Therefore, the Kalman filter equation (2.40) and the propagation equation can

be reformulated as follows:

xa
k = xf

k +Kk

(
yk −Hk

(
xf
k

))
,

xf
k = Mk

(
xa
k−1

)
.

(2.43a)

(2.43b)

Despite being grounded on strong theoretical foundations, the applicability of

the KF and the EKF is challenged by the high dimensionality and inherent nonlin-

earity of many real-world systems.

A first significant limitation arises from the sheer high-dimensionality of the

considered physical problem. In weather forecast, oceanography or geosciences, the

state vector’s dimension n can reach up to 106 to 109, meaning that error covari-

ance matrices (P f
k and P a

k) can contain 1012 to 1018 entries. The mere storage of

these covariance matrices is very often not possible, simply because they do not

fit in memory. Also, mathematical computations involving covariance matrices can

be intractable in practice, the most significant limitation being the computation of

P f
k+1 from P a

k: it indeed requires matrix-vector products with Mk+1 and MT
k+1.

Consequently, KF and EKF are naturally rather confined to low-dimensional prob-

lems.
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Algorithm 2.3: Extended Kalman Filter

Inputs:

Background xf
0 ∈ Rn ;

Observations {y0, . . . ,yT } ∈ Rp×(T+1) ;

1 for k = 0, 1, . . . , T do

Analysis step

// Compute the Kalman gain

2 Kk = P f
kH

T
k

(
HkP

f
kH

T
k +Rk

)−1

// Derive the analysis (with nonlinear observation operator)

3 xa
k = xf

k +Kk

(
yk −Hk

(
xf
k

))
// Compute the error covariance matrix of the analysis

4 P a
k = (In −KkHk)P f

k

Propagation step

// Forecast the analysis (with nonlinear model)

5 xf
k+1 = Mk+1(xa

k)

// Compute the error covariance matrix of the forecast

analysis

6 P f
k+1 = Mk+1P

a
kM

T
k+1 +Qk+1

7 end
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The second major hurdle occurs when the dynamics of interest is nonlinear. In-

deed, the evolution of P a
k is given by E

[(
xt
k+1 −Mk+1(xa

k)
)(
xt
k+1 −Mk+1(xa

k)
)T ]

and the derivation of
(
xt
k+1 −Mk+1(xa

k)
)

requires to linearize around the analysis

state xa
k. Linearizing introduce approximations and therefore possible significant

errors and instabilities, which may accumulate over time, leading to divergence from

the true system state. Accounting for higher closure schemes when linearizing could

resolve this issue but is unaffordable in practice because of their high-dimensionality.

2.2.2.2 Ensemble Transform Kalman Filter (ETKF)

In order to overcome the aforementioned limitations of the Kalman filter and the

extended Kalman filter, ensemble approaches based on reduced rank approxima-

tions have been proposed. The Ensemble Kalman Filter (EnKF) is a stochastic

algorithm firstly introduced in 1994 by Evensen, and further developed by Burg-

ers et al. (1998); Houtekamer and Mitchell (1998); Evensen (2009a): instead of

performing the analysis step on a single state xf
k (as done in KF or EKF), the

EnKF considers a set of states, and assimilates a perturbed observation vector for

each one of them. Later, Bishop et al. (2001) and Hunt et al. (2007) published a

deterministic ensemble algorithm, named Ensemble Transform Kalman Filter

(ETKF): the ETKF algorithm is inspired from the reduced rank square root filter

(RRSQRT) (Verlaan and Heemink, 1997; Evensen, 1994), and does not require to

individually perturb the observation yk for each state of the ensemble. The Singu-

lar Evolutive Extended Kalman Filter (SEEK) (Tuan Pham et al., 1998) is another

common ensemble method that is well-known in oceanography.

Ensemble algorithms are optimal under linear and Gaussian assumptions. These

methods utilize a collection of state estimates, known as ensembles, to update the

statistics of the data assimilation estimates. Typically, ensembles consist of tens

to hundreds of state estimates, referred to as “members.”. Integrating ensembles

within the KF or EKF frameworks allows for a strategic and effective circumvention

of the high-dimensionality and nonlinearity issues faced by these filters. A low-rank

approximation of the error covariance matrix can be empirically derived from the

ensemble, enabling partial recovery of the information contained in P f
k from a

relatively small number of members compared to the system’s dimension. This

reduces the need for large storage capacities and extensive linearization schemes.

This frees the constraints for large storage capabilities and extensive closure lin-

earization schemes. However, representing a high-dimensional covariance matrix



M. PEYRON - Latent space data assimilation in the context of deep learning 32

with a relatively small number of members necessarily introduces large sampling

errors. These errors can lead to filter divergence if not properly addressed. In

the following subsection, we will discuss localization and inflation, two common

techniques used to mitigate sampling errors in ensemble algorithms.

Assuming that the considered physical phenomenon follows Gaussian statistics,

ensemble methods update the prior probability density function given the distribu-

tion of the observations. Figure 2.2.3 visually represents how ETKF algorithm is

performed through time.

truth

Observations

Forecasts

Analyses

Figure 2.2.3: Illustration of the ETKF algorithm.

The EnKF and ETKF stand out for their simplicity, ease of implementation,

and applicability to real-world scenarios. Contrary to methods like 3D-Var, EKF

or 4D-Var for which deriving the tangent linear and adjoint operators is known to

be possibly arduous, EnKF and ETKF do not require such heavy computations.

In the following of this subsection, we focus on the Ensemble Transform Kalman

Filter (ETKF) as detailed in the seminal works of Bishop et al. (2001); Hunt et al.

(2007). Although we present our methodology based on the ETKF, it is impor-

tant to note that the approach outlined in this thesis is quite general and readily
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adaptable to various other types of data assimilation algorithms.

Likewise in the KF and the EKF, equations (2.27a) and (2.27b) describe our

physical and observational dynamical system. We define a prior ensemble of m

members (with m ≪ n) at time k as follows:

Ef
k =

{
xf,1
k ,xf,2

k , . . . ,xf,m
k

}
, (2.44)

where Ef
0 can be generated by randomly perturbing an initial background estimate

xf
0 .

Given this ensemble of m members, we can empirically derive a low-rank ap-

proximation of the error covariance matrix P f
k as follows:

P f
k =

1

m− 1

m∑
i=1

(
xf,i
k − xf

k

)(
xf,i
k − xf

k

)T
= Xf

k

(
Xf

k

)T
, (2.45)

where xk denotes the mean of Ek. Xf
k ∈ Rn×m is termed anomalies or ensemble

anomalies and is defined such that:

[
Xf

k

]
i

=
xf,i
k − xf

k√
m− 1

, (2.46)

with [·]i denoting the ith column of matrix Xk.

Likewise the normalized anomalies, we introduce their observational counter-

parts to represent HkX
f
k , namely the observation anomalies Y f

k :

[
Y f

k

]
i

=
[
HkX

f
k

]
i

=
Hk

(
xf,i
k

)
− yf

k
√
m− 1

, (2.47)

where yf
k = 1

m

∑m
i=1 Hk

(
xf,i
k

)
. For the sake of simplicity, we use the notations

HkX
f
k and

(
Xf

k

)T
HT

k to represent
Hk(xf,i

k )−yf
k√

m−1
and

(
Hk(xf,i

k )−yf
k√

m−1

)T

, respec-

tively.

Unlike the stochastic ensemble Kalman filter (Evensen, 1994; Burgers

et al., 1998; Evensen, 2009a) which assimilates perturbed observations for every

member, in the ensemble transform Kalman filter the assimilation is performed on
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the mean of Ef
k solely:

xa
k = xf

k +K∗
(
yk −Hk

(
xf
k

))
. (2.48)

We then develop equation (2.48) and substitute the forecast error covariance

matrix P f
k by its low-rank approximation so that:

xa
k = xf

k +K∗
(
yk −Hk

(
xf
k

))
= xf

k + P f
kH

T
k

(
HkP

f
kH

T
k +Rk

)−1(
yk −Hk

(
xf
k

))

≈ xf
k +Xf

k

(
Xf

k

)T
HT

k︸ ︷︷ ︸
=
(
Y f

k

)T

HkX
f
k︸ ︷︷ ︸

=Y f

k

(
Xf

k

)T
HT

k︸ ︷︷ ︸
=
(
Y f

k

)T

+Rk


−1

(
yk −Hk

(
xf
k

))

≈ xf
k +Xf

k

(
Y f

k

)T(
Y f

k

(
Y f

k

)T
+Rk

)−1(
yk −Hk

(
xf
k

))
︸ ︷︷ ︸

wa∈Rm

(2.49)

≈ xf
k +Xf

kw
a. (2.50)

Notably, the analysis estimate xa
k is not unique. Indeed, for any α ∈ R and for

any w ∈ Rm, we have:

Xf
k(w + α1) = Xf

kw + αXf
k1

= Xf
kw + α

∑m
i=1

(
xf,i
k − xf

k

)
√
m− 1

= Xf
kw + α

(∑m
i=1 x

f,i
k

)
−
(∑m

i=1 x
f
k

)
√
m− 1

= Xf
kw + α

mxf
k −mxf

k√
m− 1

= Xf
kw, (2.51)

where 1 = [1, . . . , 1]
T

. Solutions have been proposed in order to get the uniqueness

of xa
k, such as the gauge-fixing term of Bocquet and Sakov (2014), and the deviation

matrices of Fillion et al. (2020).
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Applying Sherman-Morrison-Woodbury, we get:

wa =

(
Im +

(
Y f

k

)T
R−1

k Y f
k

)−1(
Y f

k

)
R−1

(
yk −Hk

(
xf
k

))
. (2.52)

The analysis can therefore be rewritten as follows:

xa
k = xf

k +Xf
k

(
Im +

(
Y f

k

)T
R−1

k Y f
k

)−1(
Y f

k

)
R−1

(
yk −Hk

(
xf
k

))
. (2.53)

In order to iterate this assimilation procedure, we need to generate a posterior

ensemble Ea
k. It requires to derive a square-root matrix Xa

k of the error covariance

matrix P a
k, so that we could perturb xa

k according to P a
k statistics. We would like

to express P a
k under the form Xa

k(Xa
k)

T
. Therefore, we consider the expression of

P a
k as given in equation (A.10):

P a
k = (In −K∗

kHk)P f
k

≈

(
In −Xf

k

(
Y f

k

)T(
Y f

k

(
Y f

k

)T
+Rk

)−1

Hk

)
Xf

k

(
Xf

k

)T
≈

(
Xf

k −Xf
k

(
Y f

k

)T(
Y f

k

(
Y f

k

)T
+Rk

)−1

HkX
f
k

)(
Xf

k

)T
≈Xf

k

(
Im −

(
Y f

k

)T(
Y f

k

(
Y f

k

)T
+Rk

)−1

Y f
k

)(
Xf

k

)T
. (2.54)

Consequently, we can setXa
k = Xf

k

(
Im −

(
Y f

k

)T(
Y f

k

(
Y f

k

)T
+Rk

)−1

Y f
k

)−1/2

.

Fortunately, we notice that Xa
k comprises the same expression as in equation (2.49)

that can be simplified with the Sherman-Morrison-Woodbury formula:
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Xa
k = Xf

k

(
Im −

(
Im +

(
Y f

k

)T
R−1

k Y f
k

)−1

+
(
Y f

k

)T
R−1

k Y f
k

)1/2

= Xf
k

[(
Im +

(
Y f

k

)T
R−1

k Y f
k

)−1((
Im +

(
Y f

k

)T
R−1

k Y f
k

)
−
(
Y f

k

)T
R−1

k Y f
k

)]1/2

= Xf
k

(Im +
(
Y f

k

)T
R−1

k Y f
k

)−1

Im +
(
Y f

k

)T
R−1

k Y f
k −

(
Y f

k

)T
R−1

k Y f
k︸ ︷︷ ︸

=0Rm×m



1/2

= Xf
k

(
Im +

(
Y f

k

)T
R−1

k Y f
k

)−1/2

︸ ︷︷ ︸
T k

, (2.55)

where T k is known as the ensemble transform matrix.

The members of the posterior ensemble can be derived accordingly:

∀i ∈ J1,mK :

xa
k = xa,i

k +
√
m− 1Xf

k [T k]i . (2.56)

This version of the ETKF algorithm we derived is summarized in Algorithm 2.4.

The smooth and seamless derivation of the ETKF algorithm might suggest it

is a superior and flawless data assimilation method. However, and as the adage

says, “there is no free lunch” and therefore the ETKF is not the odd one out. More

specifically, a primary challenge arises when attempting to faithfully represent real-

world error covariance matrices of Rn×n (with n on the order of O
(
106 − 109

)
)

using only a few tens up to a few hundreds of ensemble members: in such cases,

large sampling errors are ineluctable. Even if the so-called unstable directions -

introduced in section 4.2.1, with further details provided in Strogatz (1994); Legras

and Vautard (1996); Carrassi et al. (2022) - are generally much lower than the state

space dimension, accurately capturing these directions remains a challenge for any

ensemble method due to practical limits on the number of ensemble members. The

computational burden to forecast thousands or millions of members at every cycle

is unaffordable nearly all the time. Also, the Gaussian assumption made in the



M. PEYRON - Latent space data assimilation in the context of deep learning 37

Algorithm 2.4: Ensemble Transform Kalman Filter

Inputs:

Background ensemble Ef
0 =

{
x1
0, . . . ,x

m
0

}
∈ Rn×m ;

Observations {y0, . . . ,yT } ∈ Rp×(T+1) ;

1 for k = 0, 1, . . . , T do

Analysis step

// Compute ensemble forecast mean

2 xf
k = Ef

k1/m

// Compute anomalies

3 Xf
k =

(
Ef

k − xf
k1

T
)
/
√
m− 1

4 Y f
k =

(
Hk

(
Ef

k

)
−Hk

(
xf
k

)
1T
)
/
√
m− 1

// Compute the transform matrix T k

5 T k =

(
Im +

(
Y f

k

)T
R−1

k Y f
k

)−1

// Compute wa

6 wa = T k

(
Y f

k

)T
R−1

k

(
yk −Hk

(
xf
k

))
// Generate posterior ensemble

7 Ea
k = xf

k1
T +Xf

k

(
wa

k1
T +

√
m− 1T

1/2
k

)
Propagation step

// Forecast posterior ensemble

8 Ef
k+1 = Mk+1(Ea

k)

9 end
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context of ensemble data assimilation is unlikely to hold for most real-world ap-

plications. Therefore, if used as described in Algorithm 2.4, the ETKF algorithm

could yield estimates that diverge from the ground truth.

To mitigate these sampling errors, two strategies known as localization and

inflation offer complementary solutions:

Localization addresses the issue by two means:

• Spatial localization: it involves performing local analyses that assimilate only

nearby observations for the considered spatial window.

• Covariance localization: this technique post-processes the error covariance

matrix P f
k by dampening spurious long-range correlations that low-rank ap-

proximations introduce. A Schur product between P f and a well-defined

sparse matrix effectively eliminates unwanted non-zero off-diagonal terms.

Inflation serves as an additional countermeasure to sampling errors which may

still accumulate over successive assimilation cycles. By inflating the covariance

matrix P a
k or the posterior ensemble with a scalar factor, named inflation, this

approach helps to avoid divergence of the filter. The inflation parameter has em-

pirically proved effective when being slightly above 1. Inflation is case-dependent

and as such can be fine-tuned.

When including an inflation parameter, denoted by λ, in Algorithm 2.4, we get

Algorithm 2.5.

2.2.2.3 ETKF-Q: an ensemble Kalman Filter algorithm that ac-

counts for model error

In the following, we detail a specific version of the ETKF algorithm that accounts

for model errors Qk, and therefore named ETKF-Q (Fillion et al., 2020). What

we call ETKF-Q method precisely denotes the IEnKS-Q algorithm as detailed in

(Fillion et al., 2020, Algorithm 4.1) with parameters (L=0, K=0, S=1, G=0, one

Gauss Newton loop, transform version).

In equation (2.51), we prove that the decomposition of xa
k is not unique due

to the rank deficient matrix Xf
k . This yields an ill-defined change of variables in
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Algorithm 2.5: Ensemble Transform Kalman Filter with inflation

Inputs:

Background ensemble Ef
0 =

{
x1
0, . . . ,x

m
0

}
∈ Rn×m ;

Observations {y0, . . . ,yT } ∈ Rp×(T+1) ;
Inflation parameter λ ∈ R.

1 for k = 0, 1, . . . , T do

Analysis step

// Compute ensemble forecast mean

2 xf
k = Ef

k1/m

// Compute anomalies

3 Xf
k =

(
Ef

k − xf
k1

T
)
/
√
m− 1

4 Y f
k =

(
Hk

(
Ef

k

)
−Hk

(
xf
k

)
1T
)
/
√
m− 1

// Compute the transform matrix T k

5 T k =

(
Im +

(
Y f

k

)T
R−1

k Y f
k

)−1

// Compute wa

6 wa = T k

(
Y f

k

)T
R−1

k

(
yk −Hk

(
xf
k

))
// Generate posterior ensemble

7 Ea
k = xf

k1
T +Xf

kw
a
k1

T + λ×
√
m− 1Xf

kT
1/2
k

Propagation step

// Forecast posterior ensemble

8 Ef
k+1 = Mk+1(Ea

k)

9 end
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the ensemble space that has to be fixed with the so-called gauge-fixing term (Boc-

quet and Sakov, 2014). As an alternative Fillion et al. (2020) introduces deviation

matrices to overcome this problem.

Definition 2.2 Deviation matrix. A deviation matrix ∆ of a symmetric semi-

definite-positive matrix Σ is an injective factor verifying: ∆∆T = Σ. A deviation

matrix of an ensemble is a deviation matrix of its sample covariance matrix.

Therefore, we aim to find a deviation matrix ∆k of P f
k such that the formulation

in equation (2.53) yields a unique estimate xa
k. Hence, we apply (Fillion et al., 2020,

Proposition 3.2) to xa
k in order to ensure such a requirement. Thereby, there exists

a unique vector wa
k ∈ Rm−1 such that:

xa
k = xf

k + ∆kw
a
k, (2.57)

and

E [wa
k] = 0m−1,

C [wa
k] = Im−1,

(2.58a)

(2.58b)

where notation C [·] is used to represent the covariance operator.

The issue that remains is to calculate a deviation matrix ∆k ∈ Rn×(m−1) of

P f
k . We therefore rely on (Fillion et al., 2020, Proposition 3.3) which reads:

Proposition 2.1 (Deviation matrix and ensemble construction): Let n,m, l ∈ N

such that n ≥ m, l = m− 1. Let Um ∈ Rm×l such that
[

1m√
m
Um

]
∈ Rm×m be an

orthonormal matrix. If E ∈ Rn×m is a full column rank ensemble, then the mean

µ ∈ Rn and a deviation matrix ∆ ∈ Rn×l of E:

[µ ∆] = E ×
[
1m

m

Um√
l

]
. (2.59)

Conversely, if µ ∈ Rn and ∆ ∈ Rn×l then the ensemble E ∈ Rn×m defined by

E = [µ ∆] ×
[
1m

√
lUm

]T
(2.60)

has µ as sample mean and ∆∆T as sample covariance matrix.

With equation (2.59), we can compute ∆k, a deviation matrix of P f
k (we remind

that l = m− 1):
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∆k =
[
xf,1
k ,xf,2

k , . . . ,xf,m
k

] Um√
m− 1

. (2.61)

The matrix Um ∈ Rm×(m−1), is such that
[

1m√
m
Um

]
is orthonormal (where

1m denotes the m-length vector [1, 1, . . . , 1]T ). It is worth mentioning that Um can

be constructed thanks to Householder’s rotations.

When propagating through time, we know that our model Mk is not perfect

and has an intrinsic error denoted by ηk (see 2.27a). However, we have not yet

included this particular knowledge in our analysis, keeping the erroneous prediction

as it is. Some approaches attempt to leverage this information in order to perform

a model error correction and thus improve the quality of the predictions (Sakov

et al., 2018; Mitchell and Carrassi, 2015; Sakov and Bocquet, 2018; Mandel et al.,

2016; Amezcua et al., 2017; Sommer and Janjić, 2018).

We now come to the core of the ETKF-Q algorithm, by taking model error

into account in the expression of the covariance matrix of xt
k (we remind that xt

k

denotes the ground truth physical state):

xt
k = Mk

(
xt
k−1

)
+ ηk, (2.62)

C
[
xt
k|y0:k−1

]
= C

[
Mk

(
xt
k−1

)
+ ηk|y0:k−1

]
, (2.63)

where y0:j denotes the sequence of all the observations from time 0 to time j.

We suppose that ηk ∀k ∈ J0, T −1K and xt
0 are mutually independent. Then, as

Mk

(
xt
k−1

)
is a function of xt

0 and of η0,η1, . . . ,ηk−1, it emerges that Mk

(
xt
k−1

)
and ηk are independent, which yields that

C
[
xt
k|y0:k−1

]
= C

[
Mk

(
xt
k−1

)
|y0:k−1

]
+ C

[
ηk|y0:k−1

]
. (2.64)

We also assume that propagation and observation errors ηk and εk are mutually

independent ∀k ∈ J0, T − 1K. We then have C
[
ηk|y0:k−1

]
= C [ηk] = Qk. This

yields:

C
[
xt
k|y0:k−1

]
= C

[
Mk(xk−1)|y0:k−1

]
+Qk. (2.65)

However, C
[
Mk(xk−1)|y0:k−1

]
has been empirically approximated by P f

k =
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∆k∆
T
k .

Hence we obtain that

C
[
xt
k|y0:k−1

]
≈ ∆k∆

T
k +Qk. (2.66)

Deviation matrices of ∆k∆
T
k +Qk are supposed to lie in Rn×n, but since a n× l

deviation matrix is required for the next cycle, a reduction must be performed.

As ∆k∆
T
k +Qk is symmetric (as a sum of symmetric matrices), its eigendecom-

position by using the first ℓ = m− 1 dominant eigenvectors yields V k ∈ Rn×(m−1)

and Λk ∈ R(m−1)×(m−1) such that:

(
∆k∆

T
k +Q

)
V k ≈ V kΛk. (2.67)

One notices that this approximation is the best one in the matrix Frobenius

norm.

A square root approximation of ∆k∆
T
k + Qk is thus given by V kΛ

1/2
k . We

hence update ∆k = V kΛ
1/2
k . Then, equation (2.60) enables to update ensemble

Ek according to this new statistic:

Ek = xf
k + ∆k

√
m− 1UT

m. (2.68)

Similarly, we apply equation (2.59) to the observation ensemble to produce Y f
k

which is analogous to the observation anomalies in the regular ETKF algorithm:

Y f
k =

[
Hk

(
x1
k

)
,Hk

(
x2
k

)
, . . . ,Hk(xm

k )
] Um√

m− 1
. (2.69)

For the remainder of the algorithm, we straightforwardly apply the standard

ETKF. The ETKF-Q approach that we derived is summarized in Algorithm 2.6

(we remind that some notations are borrowed from Fillion et al. (2020)).
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Algorithm 2.6: ETKF-Q algorithm

Inputs:

Background ensemble Ef
0 =

{
x1
0, . . . ,x

m
0

}
∈ Rn×m ;

Observations {y0, . . . ,yT } ∈ Rp×(T+1) ;
Inflation parameter λ ∈ R.

Initialization:

Construct Um matrix such that
[

1m√
m
Um

]
is orthonormal ;

Define U =
[
1m

m
Um√
m−1

]
;

1 for k = 0, 1, . . . , T do

Analysis step

// Mean and deviation matrix of forecast ensemble

2

[
xf
k ∆k

]
= Ef

k × U

// Calculate eigenpairs of the error covariance matrix

3

(
∆k∆

T
k +Qk

)
V k ≈ V kΛk

4 where V k ∈ Rn×(m−1) and Λk ∈ R(m−1)×(m−1)

// Update the error covariance matrix accordingly

5 ∆k = V kΛ
1/2
k

// Update the ensemble with the new statistics

6 Ef
k =

[
xf
k ∆k

]
× U−1

// Mean and deviation matrix of observation ensemble

7

[
yk Y f

k

]
= Hk

(
Ef

k

)
× U

// Compute transform matrix T k ∈ R(m−1)×(m−1)

8 T kT
T
k =

(
Im−1 +

(
Y f

k

)T
R−1Y f

k

)−1

// Compute wa

9 wa
k = T kT

T
k Y

f
kR

−1(yk − yk)

// Generate posterior ensemble

10 Ea
k = xk1

T
m + λ×∆k

(
wa

k1m +
√
m− 1T k

)
Propagation step

// Forecast posterior ensemble

11 Ef
k+1 = Mk+1(Ea

k)

12 end





CHAPTER 3

Literature review: enhance data assimilation by

incorporating deep learning models

This chapter explores the emerging interactions and hybridizations between deep

learning and data assimilation, structured as a literature review. In recent years,

deep learning has distinguished itself as a formidable tool across various domains,

including numerical weather prediction, natural language processing, and pattern

recognition, among others. The core strength of neural networks is threefold and re-

sides in their ability to: (i) extract meaningful information from large raw datasets,

(ii) derive inferential rules, and (iii) deliver fast predictions in real-time, markedly

outpacing traditional computational methods.

Data assimilation in real-world applications, such as numerical weather predic-

tion and geosciences, often deals with high-dimensional, nonlinear and multi-scale

physical systems, making computations exceedingly demanding. The state space

dimension can reach O(107 − 109), with observational data typically one to two or-

ders of magnitude smaller — but still computationally significant. Managing such

high-dimensional data constrains the fineness of the spatial discretization and re-

quires approximations when performing linear algebra operations or when solving

optimization problems. Besides, some data assimilation components are only par-

tially known, introducing potential errors: for example, covariance matrices may

be imprecise, small-scale physical processes within the dynamics of interest might

be unaccounted for (necessitating ad-hoc parameterizations), and physical models

45
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are very likely to contain inaccuracies.

As a result, hybridizing data assimilation with deep learning has emerged as a

promising way to achieve a faster and more accurate assimilation process.

The organization of this chapter is as follows:

• section 3.1 outlines the historical background of artificial intelligence, em-

phasizing deep learning. Theoretical aspects of neural networks along with

different types of neural architectures are detailed.

• section 3.2 is a literature review about the replacement of some data assimi-

lation components by neural networks.

• section 3.3 highlights groundbreaking progress in numerical weather predic-

tion (NWP), showcasing novel data-driven models that, for the first time,

rival or even surpass the performances of operational data assimilation sys-

tems for short-term and medium range forecasts.

• Section section 3.4 presents research works that achieved to completely re-

place the traditional data assimilation process with deep learning solutions.

3.1 Essentials of deep learning

3.1.1 Historical introduction to artificial intelligence

John McCarthy, who coined the term Artificial Intelligence (AI), provides the

following definition in McCarthy (2007):

[Artificial Intelligence] is the science and engineering of making intelli-

gent machines, especially intelligent computer programs. It is related

to the similar task of using computers to understand human intel-

ligence, but AI does not have to confine itself to methods that are

biologically observable. Intelligence is the computational part of the

ability to achieve goals in the world. Varying kinds and degrees of

intelligence occur in people, many animals and some machines.

Before artificial intelligence led to the revolution of neural networks (NNs)

and deep learning (DL), it firstly represented a conceptual, even philosophical,

leap in the evolution of programming and computational problem-solving. Tradi-

tional programming paradigms were primarily algorithmic procedures, so that they
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were designed to carry out well-defined and repetitive tasks. This ranged from basic

operations like simple mathematical and physical computations (e.g., aerodynamic

calculations, solving differential equations), and storage of business or government

recordings (e.g., payroll), to more advanced and complex processes including text

editing, email writing, large dimensional numerical simulations, image and video

processing, and the management of network communications, among others (Pot-

tenger et al., 2023; Crosley, 2022). The hallmark of these conventional programs is

their limitation to operate strictly within a predefined framework, thus lacking the

ability for creativity or adaptation beyond their initial programming boundaries.

Artificial intelligence revolutionized computer science by developing systems

capable of handling tasks traditionally believed to be within the human domain.

AI aims to endow computers with decision-making competences, problem-solving

skills, and even the ability to learn from experience.

Whereas traditional programming relies on explicit instructions defined by de-

velopers to achieve specific outcomes, AI - particularly through machine learning

(ML) and deep learning -, involves creating algorithms able to learn patterns, make

inferences, or take actions based on data. This effectively allows the software to

“learn” and improve over time without being explicitly programmed for each spe-

cific task.

This paradigm shift represents a transition from static, rule-based computing

to dynamic, adaptive, and increasingly autonomous systems. AI challenges the

very notion of programming by sometimes blurring the lines between human and

machine capabilities, thereby redefining what programming could mean.

Nowadays, AI covers a wide range of applications such as object detection (Gir-

shick et al., 2014; Ren et al., 2015; Redmon et al., 2016; Redmon and Farhadi, 2018),

image segmentation (Long et al., 2015; Ronneberger et al., 2015; Milletari et al.,

2016; Chen et al., 2017), image classification (Krizhevsky et al., 2012; Simonyan

and Zisserman, 2014; He et al., 2016), natural language processing (NLP) (Mikolov

et al., 2013; Vaswani et al., 2017; Devlin et al., 2018), or, physics surrogate mod-

eling (Loh et al., 2018; Raissi et al., 2019; Tang et al., 2020; Lucor et al., 2021),

among others.
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Artificial Intelligence

Machine Learning

Deep Learning

Figure 3.1.1: Nested links between Artificial Intelligence, Machine Learning and
Deep Learning. Inspired from: https://metaverseadmedia.com/.

The commonly used terms artificial intelligence, machine learning and

deep learning share a nested relationship, as illustrated in Figure 3.1.1. More

precisely, machine learning - which includes deep learning techniques -, is a subfield

of AI that extends beyond just neural networks (NNs) training. ML is a funda-

mental component of data science, representing the set of statistical methods that

enable a computer to perform tasks without the need for explicit instructions (e.g.,

regression, clustering, and classifications).

Regarding deep learning, it consists in iteratively updating the parameters (re-

ferred to as weights and biases) of a so-called artificial neural network (ANN)

through a stochastic process. The optimization aims to minimize an objective func-

tion, known as the loss function, over successive iterations. This process, which

is referred to as learning or training, allows the neural network to progressively

improve its performance on a specified task, but requires a substantial amount of

data. Since neural networks are inherently built upon data, they are often termed

data-driven models. Neural networks’ structure is inspired by the architecture of

the human brain and, thus, aim to artificially mimic the learning process strategy

of acquiring knowledge and extracting information given previously collected data.

Deep learning’s origins date back to the 1940s when McCulloch and Pitts (1943)

https://metaverseadmedia.com/
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introduced the first mathematical model of a neural network, with binary inputs and

outputs, but no optimization strategy. The first concrete advancements in machine

learning emerged later in the 1950s with the development of a championship-level

chess-playing software by Arthur Samuel, an IBM engineer, who is also credited

with popularizing the term machine learning. Rather than exhaustively exploring

the tree of possible moves, the chess program aims to maximize the chances of win-

ning, using the so-called alpha-beta pruning algorithm (Knuth and Moore, 1975).

Deep learning methods gained incredible traction in data science alongside the

remarkable increase in computational power over the last few decades. Notably, the

development of Graphical Processing Unit (GPU) has substantially reduced

training times due to its parallel computing capabilities. Figure 3.1.2 displays the

first artificial neural network developed by Marvin Minsky and Dean Edmonds in

1951 (refer to Gladchuk (2020)), together with the Nvidia H100 GPU launched on

March 21st and offered in three versions, the SXM, the PCIe, and the NVL (in

ascending order of performance). At the time of writing this thesis, it stands as the

most powerful GPU used in data centers for large-scale AI projects, boasting from

756 up to 1, 979 teraflops performance (with a TensorFloat-32 precision format),

from 2TB/s to 7.8TB/s memory bandwidth, and from 600 GB/s to 900 GB/s in-

terconnects, depending on the version(1).

Figure 3.1.2: Left: the Stochastic Neural Analog Reinforcement Calculator
(SNARC) machine (40 interconnected neurons), known as the first artificial neural
network in history. Right: Nvidia H100 GPU, released in March 2023 and becom-
ing to be widespread in AI projects.

In general, machine learning and deep learning algorithms can be assigned to

one of the following categories: supervised learning, unsupervised learning and

reinforcement learning. In supervised learning (LeCun et al., 2015; Goodfellow

et al., 2016), the algorithm is trained on a labeled dataset, where each input is

paired with the corresponding desired output. The goal is for the model to learn

(1)https://www.nvidia.com/en-us/data-center/h100/

https://www.nvidia.com/en-us/data-center/h100/
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the mapping from inputs to outputs, allowing it to infer the correct label of new,

i.e., unseen, data. For instance, in classification tasks, neural networks have proven

to be effective in automatically assigning the correct digit to an input image from

the MNIST dataset(2) (LeCun and Cortes, 2005): MNIST comprises images of

handwritten digits with dimensions of 28 × 28.

Unsupervised learning (Hinton and Salakhutdinov, 2006; Van der Maaten and Hin-

ton, 2008) involves training a model on an unlabeled dataset where the algorithm

must discover patterns, structures, or relationships within the data without explicit

guidance. The objective is often to uncover hidden representations or groupings in

the absence of predefined output labels.

Reinforcement learning (Mnih et al., 2015; Sutton and Barto, 2018) is a type of

learning in which an agent learns to make decisions by interacting with an environ-

ment. The agent receives feedback in the form of rewards or penalties based on its

actions. The goal is to learn a policy that maximizes the cumulative reward over

time.

Given the context of our study, we will exclusively focus on the supervised and au-

toassociative self-supervised (Hinton and Salakhutdinov, 2006; Vincent et al.,

2008) learning cases. Autoassociative self-supervised learning is an intermediate

training framework, in-between supervised and unsupervised learning: it does not

require labels in the conventional sense, it indeed generates its own supervisory tar-

gets from the input data. Autoencoders (see section 3.1.5) are a prime example

of neural network architectures that are trained in a self-supervised manner, and

that will be developed and discussed throughout this manuscript.

3.1.2 Perceptron and Multi-Layer Perceptron

From a mathematical standpoint, and within the framework of this thesis, a neural

network can be defined by:

fθ : X → Y

x 7→ fθ (x) , (3.1a)

where X and Y are typically vector spaces. In the following, they are denoted

by RNx and RNy , respectively. As for θ ∈ Rd, it represents the neural network’s

parameters, namely the weights and the biases.

(2)https://www.kaggle.com/datasets/hojjatk/mnist-dataset

https://www.kaggle.com/datasets/hojjatk/mnist-dataset
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To clearly distinguish the dimension of the data assimilation problem from the

input dimension of a neural network, we use distinct notations for the variable

x in chapter 2 and chapter 3. In the former, x lies in Rn, while in the latter,

x ∈ RNx . This distinction is intended to indicate that the variable x represents

different quantities in each chapter. As chapter 4 and chapter 5 will later introduce

our latent data assimilation method, which integrates deep learning within a data

assimilation framework, the variable x will be common to both data assimilation

and neural networks equations.

The most elementary neural network structure, known as the perceptron

(Rosenblatt, 1958; Rosenblatt et al., 1962; LeCun et al., 2015; Goodfellow et al.,

2016), is depicted in Figure 3.1.3: x ∈ RNx denotes the input vector, w ∈ RNx

represents the weights, b ∈ R is the bias, and σ denotes the so-called activation

function (LeCun et al., 2015; Goodfellow et al., 2016). Activation functions are

crucial in deep learning as they represent the nonlinear part of a neural network,

all the other mathematical computations being vector-matrix and matrix-matrix

operations as detailed later. Figure 3.1.4 presents the graphs of commonly uti-

lized activation functions: sigmoid (Rumelhart et al., 1986), tanh, ReLU (Rectified

Linear Unit)(Nair and Hinton, 2010; Glorot et al., 2011), Leaky ReLU, and ELU

(Exponential Linear Unit) (Clevert et al., 2015). Originally, activation functions

were designed to simulate the brain’s decision-making process, determining whether

a neuron should be fired or not:. For example, as depicted in Figure 3.1.4, the sig-

moid and ReLU functions exhibit no activation (i.e., σ(xi) ≈ 0) for xi < 0, and

propagate the input information xi forward through the network when xi > 0. To

mitigate the dying ReLU issue, variations such Leaky ReLU, ELU or SiLU (Sig-

moid Linear Unit, also known as swish) (Ramachandran et al., 2017) functions,

which limit the occurrences of zero activation have been introduced. These varia-

tions feature a gentle negative slope instead of a plateau at zero, as illustrated in

Figure 3.1.4. Additionally, fully linear neural networks exist, though they are less

common. Given these notations, the perceptron, hereafter denoted by fp
θ , can be

mathematically defined as follows:
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x1

x2

x3

x4

xNx

y

w1w1

w2w2

w3w3

w4w4

wNxwNx

...

= σ(w1x1 + . . . + wNxxNx + b)

= σ

(
Nx∑
i=1

wixi + b

)

Figure 3.1.3: Architecture of the perceptron.

fp
θ : RNx → R

x 7→ σ(wTx+ b). (3.2a)

The perceptron serves as the entry point to deep learning. Strictly speaking,

the perceptron is considered as a shallow neural network (as opposed to deep

ones): it only consists of one linear transformation - i.e., x 7→ wTx + b - followed

by one activation function σ. These two mathematical operations define the so-

called layer of a neural network.

Let us modify the perceptron as defined in equation (3.2a), and let us intro-

duce the weights matrix W ∈ RNx×Nh and the bias vector b ∈ RNh so that the

perceptron now maps from RNx to RNh :


y1

y2
...

yNh

 = σ




w1,1 . . . w1,Nx

w2,1 . . . w2,Nx

...
. . .

...

wNh,1 . . . wNh,Nx




x1

x2

...

xNx

+


b1

b2
...

bNh



 (3.3)

The perceptron’s output is therefore a vector, y ∈ RNh , that can be fed on

another similar perceptron. By stacking several perceptrons one after the other, we
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{
x if x ≥ 0
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)

Figure 3.1.4: Common activation functions. For the Leaky ReLU and ELU acti-
vation functions, α and γ are tunable hyper-parameters that control the steepness
of the slope for negative inputs. Their default values in Pytorch are 0.01 and 1,
respectively. While we retained γ = 1, we adjusted α to 0.1 for better visual clarity
in the figure.
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create the Multi-Layer Perceptron (MLP), also known as a fully-connected

feedforward neural network (Ivakhnenko et al., 1965; Ivakhnenko and Lapa,

1967; Amari, 1967; LeCun et al., 2015; Goodfellow et al., 2016). Figure 3.1.5 illus-

trates the architecture of a MLP. Notably, the first and the last layers are named

input layer and output layer, respectively, while the remaining ones are called

hidden layers. Mathematically, we can define the MLP as:

fθ : RNx → RNy

x 7→ fθ (x) . (3.4a)

Given x ∈ RNx and a MLP with L layers, fθ can be expressed as follows:

fθ (x) = σ(L)
(
W (L)x(L−1) + b(L)

)
, (3.5)

x(1) = σ(1)
(
W (1)x+ b(1)

)
, (3.6)

xi = σ(i)
(
W (i)x(i−1) + b(i)

)
, (3.7)

whereW (1) : RNx → RN1 , W (i) : RN(i−1) → RNi , ∀i ∈ J2, L−2K, W (L) : RN(L−1) →
RNy , and biases b(i) are defined correspondingly to match the output dimension of

each layer.
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Figure 3.1.5: Illustration of a fully-connected feedforward neural network.

As shown by Cybenko (1989), MLPs are universal function approximators, i.e.,

they can theoretically learn any nonlinear mapping to any desired accuracy, given a

sufficiently large and representative dataset and a suitable architecture (sufficiently

deep/wide network).

3.1.3 Convolutional Neural Networks (CNN)

When dealing with images, fully connected neural networks are no longer the most

suitable architecture. Images are often high dimensional which poses practical is-

sues in terms of memory and computations. For instance, a standard classification

image with dimensions of 256 × 256 RGB values results in 196, 608 input dimen-

sions. In fully connected networks, where hidden layers are typically at least as

large as the input size, this can lead to an extensive number of weights, exceeding

billions easily, and necessitating a more appropriate architecture.

The statistical relationship between nearby pixels in images is very informative and

should be preserved when feeding a neural network. While fully connected net-

works treat every input equally without accounting for proximity, convolutional

layers are designed to recognize local patterns. This enables them to capture spa-

tial dependencies and exploit statistical relationships between neighboring pixels

effectively.

The stability of image interpretation under geometric transformations is another
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noteworthy aspect. For example, an image of a given object essentially holds the

same information for a human being when shifted downwards, upwards, rightwards

or leftwards by a few pixels. However, in a fully connected model, this shift alters

every input, necessitating the model to redundantly learn pixel patterns for a spe-

cific object at different positions. Convolutional layers tackle this by independently

processing local regions, ensuring the model generalizes efficiently across spatial

variations. They also utilize a limited number of parameters, which allows these

networks to capture spatial hierarchies and recognize patterns in a translationally

invariant manner, making Convolutional Neural Networks (CNNs) (LeCun

et al., 1989, 1998; Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; Szegedy

et al., 2015; He et al., 2016) well-suited for image-related tasks.

By taking advantage of images structures, CNNs illustrate the concept of in-

ductive bias (Mitchell, 1980; LeCun et al., 2015; Goodfellow et al., 2016; Battaglia

et al., 2018). Inductive bias represents the set of assumptions, factors, or constraints

that steer a model - specifically here, a neural network -, towards effectively general-

izing from training data to new unseen observations. Choosing a CNN architecture

for image processing over a MLP introduces such a bias, compelling the network to

leverage existing knowledge about image structures. This prioritizes a particular

way of computing or representing input data, which is shown to be more effective

in practice, compared to MLP.

Moreover, the utility of CNNs extends beyond image analysis. They are equally

capable when applied to any form of spatial data, such as physical fields where each

input channel (see definition below) may represent a distinct physical quantity. In

these scenarios, CNNs can exploit spatial correlations and the proximity of data

points to process and analyze physical phenomena effectively.

Hereafter, we define some architectural features encountered in most convolu-

tional neural networks:

• kernel: also known as a filter, it denotes a small matrix used for the con-

volution operation. It slides over the input data to detect specific patterns

or features. Kernels are learnable parameters, analogous to the weights in a

fully connected network, that capture relevant information from the input,

helping the network recognize hierarchical features.

• stride: it refers to the step size with which the kernel moves across the
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input data during the convolution operation. A larger stride results in a

downsampled output, reducing the spatial dimensions. Stride influences the

amount of overlap between the receptive fields of neighboring convolutional

operations and affects the spatial resolution of the output.

• padding: padding involves adding extra border pixels to the input data be-

fore applying convolution operations. This is done to prevent the reduction of

spatial dimensions, especially at the edges of the input. Padding ensures that

the convolutional operations consider information near the borders, helping

to preserve spatial relationships and prevent the loss of valuable features.

• channel: in image processing, it refers to the red, green and blue (RGB)

color channels. Channels allow the network to process and learn features

from distinct input colors. Notably, the information associated with a given

channel will not be processed independently of the one contained in the other

channels: they will rather be combined throughout the network, enhancing

the model’s ability to capture complex patterns. More broadly, channels are

not confined to images and can, therefore, also represent physical quantities,

for example.

• max pooling: it is a downsampling operation involving selecting the maxi-

mum value from a group of adjacent values in the input. Max pooling helps

reduce the spatial dimensions of the data while retaining the most prominent

features. It aids in extracting dominant patterns and making the network

more computationally efficient.

Figure 3.1.6 shows a schematic representation of a convolutional neural network,

which helps visualize how the information contained in an image is extracted and

passed forward through the network. With this illustration, one also better picturize

how the image representation evolves in terms of size and number of channels, when

applying convolution and pooling layers.
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Figure 3.1.6: Illustration of a convolutional neural network architecture. Credit to
Saha (2018).

3.1.4 Recurrent Neural Networks (RNN)

In the same way that CNNs are suitable for images, recurrent neural networks

(RNN) are tailored to efficiently learn on sequential data (e.g., time series). RNNs

find applications in a broad range of fields, including language translation, speech

recognition and time propagation of physical systems among others. The term

“recurrent” was introduced by Rumelhart and McClelland (1987) even if the core

idea can be traced back to at least the work of Minsky and Papert (1969). The

key aspect of RNNs lies in their internal memory state whose values are modified

as input data are processed through the network. This memory or hidden state is

often denoted by ht where the subscript t refers to the tth time the network is called.

The most elementary recurrent neural network is known as the Elman net-

work (Elman, 1990). Considering an input sequence [x0,x1, . . . ,xT ], an initial

hidden memory h0, and denoting W h, W y, Uh and Uy the weights matrices, bh

and by the bias, σh and σy the activation functions and yt the output at iteration

t, the Elman network reads:

ht = σh (W hxt +Uhht−1 + bh) . (3.8)

yt = σy (W yht + by) , (3.9)

Since a recurrent neural network is fed ordered input pairs, computing the gra-

dients of the weights requires unfolding the neural network in time, necessitating
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the so-called backpropagation through time (BPTT) (Robinson and Fallside,

1987; Werbos, 1988; Mozer, 1995).

Figure 3.1.7 illustrates the way RNNs process input data and update their in-

ternal state accordingly. The figure also represents the unrolling operation that is

performed during BPTT.

Figure 3.1.7: Illustration of a recurrent neural network (biases are not represented).
Inspired from Kale and Altun (2023).

Despite their theoretical appeal for handling sequential data, training RNNs

presents practical challenges. Specifically, RNNs are susceptible to vanishing or

exploding gradients due to the nature of long data sequences. Vanishing gradients

occur when information diminishes across temporal data sequences, hindering the

network’s learning, whereas exploding gradients result from cumulative gradient

errors, making weight updates unmanageable.

Long Short-Term Memory (LSTM) networks are a type of recurrent neural

networks architectures designed to overcome these challenges, encountered when

learning long-range dependencies in sequential data. Introduced by Hochreiter

and Schmidhuber (1997) and followed by Gers et al. (1999), LSTMs address the

vanishing and exploding gradient problems that traditional RNNs often face: in

addition to the hidden state ht, LSTM networks utilize a memory cell ct, equipped

with gates that control the flow of information. Contrary to the recurrent networks

presented earlier, the output of an LSTM is ht itself. This dual functionality

enables LSTMs to be chained together in sequences, making them powerful tools
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for modeling time-series data or sequences. There exists different variants of LSTM

architectures, and Figure 3.1.8 depicts the most widespread one: it includes an

input, an output, and a forget gate, along with a candidate memory cell. These

gates allow the model to selectively retain or discard information over time, enabling

the network to capture and remember relevant patterns across varying time scales.

The forget gate has a direct effect on the amount of information that will be removed

from ct−1 to ct , while the input gate controls how much data of the new memory

candidate c̃t will be added to ct. The output gate represents the impact of the

memory cell ct to the output ht. We can mathematically summarize this procedure

through the following equations:

• f t = σ(W fxt +Ufht−1 + bf ),

• it = σ(W ixt +U iht−1 + bi),

• ot = σ(W oxt +Uoht−1 + bo),

• c̃t = tanh(W cxt +U cht−1 + bc),

• ct = f t ⊙ ct−1 + it ⊙ c̃t,

• ht = ot ⊙ tanh(ct).

This unique architecture makes LSTMs particularly effective in tasks involving

sequential data, such as natural language processing, speech recognition, and time

series analysis, where capturing dependencies over extended temporal contexts is

crucial for accurate predictions. Figure 3.1.8 provides further architectural details

about LSTMs.



M. PEYRON - Latent space data assimilation in the context of deep learning 61

input

hidden state

memory

forget gate input gate

memory
candidate

Output 
gate

Figure 3.1.8: Architecture of a Long-Short Term Memory neural network. Inspired
from Calzone (2022).

3.1.5 Autoencoders (AE)

Autoencoders (AEs) (Hinton and Zemel, 1993; Hinton and Salakhutdinov, 2006;

Vincent et al., 2008, 2010) are a particular type of neural network architecture

trained in an autoassociative self-supervised (Hinton and Salakhutdinov, 2006; Vin-

cent et al., 2008) manner. Unlike supervised learning where an input/output pair

(x,y) ∈ RNx ×RNy is provided, autoencoders solely require x to serve both as the

input and the target. Historically, the primary goal of autoencoders is to recon-

struct the input data with the constraint of finding a low dimensional representation

of it (Kramer, 1991). For example, given a dataset X = x1,x2, . . . ,xN ∈ RNx×N

the AE iteratively seeks a reduced-space - specifically termed “latent space” - of

a fixed dimension ℓ ≪ Nx. The absence of the data reduction constraint would

essentially lead to learning the identity function, which is of no interest. From a

mathematical point of view, the autoencoder updates its parameters, by iteratively

minimizing a reconstruction cost function (see equation (3.10)) under the latent

space representation constraint. Figure 3.1.9 illustrates the architecture of a classic

autoencoder.

Autoencoders can also be used to map from the input space to a higher di-

mensional space. This can be particularly relevant in the context of the Koopman
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theory (Koopman, 1931), which posits that the dynamics of any finite-dimensional

nonlinear system can be represented as a linear system in an infinite-dimensional

function space.

Within the context of our research, we will only be referring to autoencoders

that exhibit a low dimensional representation of the input data.

Input Layer Latent Representation Output Layer

E (encoder) D (decoder)

x ∈ RNx

z ∈ Rℓ

x̃ ∈ RNx

Figure 3.1.9: Architecture of an autoencoder

An autoencoder comprises three parts:

• the encoder, denoted by E and parameterized by θE , maps from the full

space to the latent space through dimension-decreasing layers.

• the latent representation of the data also known as the bottleneck of the

autoencoder.

• the decoder, denoted by D and parameterized by θD, that maps back the

latent variable to the full space.

When training an autoencoder, the most straightforward error metric is a re-

construction cost function. Given xi ∈X, it is computed as follows:

LAE(xi; θE ; θD) =
1

Nx
∥xi −D(E(xi))∥22. (3.10)
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Autoencoders have been very successful in a wide range of applications (e.g., de-

noising tasks, reducing the computational burden when processing high-dimensional

data, etc.).

Without any constraint, the latent space is unlikely to be regular, smooth, or-

ganized and interpretable. Let us consider one has trained an autoencoder over the

MNIST dataset (LeCun and Cortes, 2005) and let us denote z1 and z2 the latent

representations of digits 0 and 1, respectively. By decoding z3 = (z1 + z2) /2, one

would expect to obtain a new digit close to a combination of a 0 and a 1. This

is not what happens in practice with traditional autoencoders. If some regularity,

smoothness or interpretability within the latent space are required for a given ap-

plication, one can resort to the so-called Variational Autoencoders (VAEs).

VAEs (Kingma and Welling, 2013; Doersch, 2016; Higgins et al., 2016) are

capable of generating completely new data by enforcing the smoothness and the

continuity of the latent space. They enable seamless interpolation between dif-

ferent points in the latent space, preventing the occurrence of gaps within it and

thereby avoiding unrealistic outputs to be returned by the decoder. To do so, VAEs

encode the input data in terms of probability density functions (PDF). In practice

such a probability distribution is assumed to be Gaussian, therefore the encoder

is trained to yield a mean and a covariance matrix associated with a given input.

Figure 3.1.10 gives an illustration of a VAE.
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Figure 3.1.10: Architecture of a Variational Autoencoder (VAE).

Enforcing the probability distribution to be Gaussian can be done by adding

a penalization term in the loss function, known as the Kullback-Leibler diver-

gence or KL-divergence (Kullback and Leibler, 1951). It measures the discrepancy

between two probability distributions. Given xi ∈ X and zi its latent represen-

tation, the loss of a VAE to be minimized, also known as the Evidence Lower

BOund (ELBO), reads:

L (xi; θE ; θD) = EqθE (zi|xi) [ln (pθD (xi|zi))]︸ ︷︷ ︸
reconstruction term

−KL [qθE (zi|xi) ||p (zi)]︸ ︷︷ ︸
regularizing term

, (3.11)

where:

• qθE (zi|xi) is the posterior distribution of latent variable zi given xi.

• pθD (xi|zi) represents the probability distribution of reconstructing xi given

the latent variable zi.

The first term is the expected negative log-likelihood of the input xi, which

encourages the decoder to accurately reconstruct the inputs. It acts as the re-

construction loss. The second term, the Kullback-Leibler divergence between the

encoder’s distribution qθE (zi|xi) and p (zi), the prior distribution over the latent

variable (often chosen to be the standard normal distribution N (0, I), acts as a

regularization term. It encourages the encoder to produce a representation zi that
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is close to the prior, ensuring a well-structured latent space.

Figure 3.1.11 shows the shape of the latent spaces for three different trainings,

when learning a 2D low-dimensional representation of MNIST data (LeCun and

Cortes, 2005). We observe that the autoencoder produces an interpretable but

non-smooth reduced-space (left picture), while the VAE yields a smooth, regular

and interpretable latent space (right image). Besides, only minimizing the KL-

divergence term results in a smooth latent space, but with no spatial correlation

and clarity between encoded points.

Reconstruction loss only KL divergence only Combination

Figure 3.1.11: Left: 2D latent space of an autoencoder trained on MNIST dataset
(LeCun and Cortes, 2005). Middle: 2D latent space of a variational autoencoder
trained with the Kullback-Leibler divergence penalization only. Right: 2D latent
space of a variational autoencoder trained with a two-terms loss function (recon-
struction and penalization terms). Images from Shafkat (2018).

3.1.6 Training neural networks: an optimization problem

In the following, fθ no longer specifically denotes a MLP or a CNN, but any type

of neural network.

The success of deep learning is also related to the effectiveness of the opti-

mization algorithms utilized to iteratively adjust neural networks’ parameters. The

optimization process aims to find the set of parameters that minimizes the discrep-

ancy between the model’s predictions and the true values with respect to a given

metric L, commonly referred to as the loss or cost function (LeCun et al., 2015;
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Goodfellow et al., 2016).

When training a neural network model in a supervised context, one split their

global dataset into train, validation and test sets (LeCun et al., 2015; Goodfel-

low et al., 2016): a common rule-of-thumb consists in randomly picking 80% of the

data for the train stage, 10% for the validation step and the remaining 10% for

the test evaluation. The train dataset is used to iteratively fit the model while the

validation data are dedicated to assessing the performance of the model through

the training and serves for hyperparameters tuning. As for the test dataset, it

is used to evaluate trained models.

Let us denote U ,V and T the train, validation and test datasets, respectively.

Each dataset is made up of (x,y) pairs, where x represents the input to the neural

network and y the associated label.

Mathematically, the minimization problem reads:

min
θ∈Rd

∑
(xi,yi)∈U

L(yi, fθ (xi)). (3.12)

Gradient Descent (GD) (Cauchy et al., 1847; Ruder, 2017) stands as the

cornerstone of neural network optimization. It involves iteratively adjusting the

model parameters in the direction of the steepest decrease in the loss function. The

update rule for each parameter is given by:

θnewi = θoldi − η
∂L
∂θi

, ∀ i ∈ {1, d}, (3.13)

where η is the learning rate, controlling the step size during parameter updates.

The computation of ∂L
∂θi

is enabled thanks to the so-called backpropagation (Kel-

ley, 1960; Rosenblatt et al., 1962; Werbos, 1974; Rumelhart et al., 1986; LeCun

et al., 1989), short for “backward propagation of the errors”, which relies on the

application of the Leibniz chain rule (von Leibniz et al., 1920): specifically, back-

propagation requires all the mathematical operations involved in the considered

neural network to be fully differentiable. In practice, backpropagation is performed

thanks to automatic differentiation (Griewank and Walther, 2008).

Several variants of gradient descent algorithms have been proposed (Ruder,
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2017) to address challenges such as oscillations and slow convergence. Notable

among these are:

• Stochastic Gradient Descent (SGD) (Robbins and Monro, 1951; Zhang,

2004; Bottou, 2010; Ruder, 2017): contrary to GD which processes all the

data at once, SGD is an optimization variant that introduces stochasticity

by randomly picking one sample in the training dataset, computing the loss

function and updating the parameters accordingly. The remaining data are

then iteratively processed one by one. Stochastic Gradient Descent is signif-

icantly less expensive than Gradient Descent. It also offers faster progress in

the initial stages of the training.

• Mini-batch Gradient Descent (Dekel et al., 2012; Li et al., 2014; Ruder,

2017): an intermediate approach between GD and SGD, mini-batch gradient

descent computes parameter updates based on a small, randomly selected

subset (mini-batch) of the training data. Similarly as SGD, Mini-batch Gra-

dient Descent is stochastic but has the advantage to process multiple samples

at once.

• Adam (Adaptive Moment Estimation) (Kingma and Ba, 2017; Ruder, 2017;

Reddi et al., 2019; Loshchilov and Hutter, 2019): Adam smooths out weights’

updates by adapting the learning rates for each parameter based on their

past gradients. Accounting for previous gradients helps in faster convergence

and in overcoming the challenges of local minima and saddle points, which

are common in complex optimization landscapes like those found in deep

learning. The learning rate is updated by the so-called first and second

moments which involve the gradients and the square of the gradients of the

weights, respectively.

When training a neural network, regularization techniques are commonly

used in order to enhance its generalization capabilities and prevent overfitting to the

training data. Here-after, we present three well-known regularization techniques:

weight decay (or L2 regularization), dropout, and early stopping.

Weight decay (Krogh and Hertz, 1991; Goodfellow et al., 2016), also known as

L2 regularization, adds a penalty proportional to the sum of the squared weights of

the model to the loss function. This technique discourages the model from assigning

excessively large weights to any single feature, thereby promoting simpler and more

generalizable models. The modified loss function with weight decay is given by:
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Lnew = Loriginal + ρ
∑
i

θ2i , (3.14)

where ρ is the regularization parameter. We remind that θi represent the parame-

ters (i.e.. weights and biases) of the model. The constant ρ controls the strength

of the regularization, with higher values leading to stronger regularization effects.

Dropout (Srivastava et al., 2014; Gal and Ghahramani, 2016) is a technique

where, during training, randomly selected neurons are deactivated or “dropped out”

at each iteration. This prevents the network from becoming too reliant on specific

neurons and forces it to learn more robust and distributed representations. In each

training iteration, each neuron is retained with a probability p and dropped with

a probability (1 − p). Typically, p is set to 0.5 for hidden layers and 1.0 (i.e.., no

dropout) for output layers during training. During inference, all neurons are used,

but their activations are scaled by p to maintain the same expected output.

Early stopping involves monitoring the model’s performance on the validation

set during training and halting the training process when the performance on this

set stops improving. This helps prevent the model from overfitting to the training

data. During training, the performance metric (e.g.., validation loss or accuracy)

is tracked at the end of each epoch. A patience parameter is set, which specifies

the number of epochs to wait for an improvement before stopping the training. For

example, if the patience is set to 5, training will stop if there is no improvement in

the validation performance for 5 consecutive epochs. The best-performing model

on the validation set is saved during training. If early stopping is triggered, this

best model is restored.

In addition to weight decay, dropout, and early stopping, several other regu-

larization methods are commonly used: batch normalization (Ioffe and Szegedy,

2015), data augmentation (Shorten and Khoshgoftaar, 2019), L1 regulariza-

tion (Lasso) (Tibshirani, 1996), Elastic Net (Zou and Hastie, 2005), knowledge

distillation (Hinton et al., 2015).

Section 3.1 provided the reader with all the essentials of deep learning necessary

to fully understand the neural network architectures we will be discussing, along

with the terminology and optimization procedures specific to this field. For a more

detailed and comprehensive introduction to deep learning, accompanied by further
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explanations, the reader can refer to LeCun et al. (2015); Goodfellow et al. (2016);

Arnulf Jentzen and von Wurstemberger (2023); Prince (2023).

3.2 Neural networks as key ingredients for substituting data

assimilation components

Data assimilation is concerned with accurately predicting the state of a dynamical

system using an imperfect physical predictive model coupled with possibly sparse,

unevenly distributed and often noisy observations. The DA process also accounts

for the associated uncertainties enhancing the reliability of the output state beyond

that of each individual input information considered apart. Further information

and details about data assimilation can be found in chapter 2. We remind the

propagation and observation equations, as already defined in equations (2.27a) and

(2.27b):  xt
k = Mk

(
xt
k−1

)
+ ηk,

yk = Hk (xt
k) + εk,

Operators M and H often stem from limited and incomplete physical knowl-

edge, making them error-prone, especially in real-world scenarios.

The rapid growth in sensor technology and data acquisition methods (e.g.,

Earth observations (Kuenzer et al., 2014; McNally et al., 2014)) has positioned

deep learning as a highly effective strategy for extracting and processing pertinent

information from raw data. Its extraordinary ability to infer or recover underlying

physics, connections and patterns without relying on prior knowledge or specific

research guidelines, is a significant breakthrough in science and in particular in

data assimilation (Reichstein et al., 2019; Geer, 2021; Cheng et al., 2023).

Notably, the works of Abarbanel et al. (2018) and Geer (2021) establish the

equivalence between machine learning and data assimilation, both of them could

be unified under the Bayesian framework.

The most straightforward approaches to incorporating deep learning into data

assimilation algorithms consist in substituting DA operators or components (e.g.,

Mk, Hk, P f
k , Rk, Qk) with neural networks.

Going one step further leads to the development of data-driven models whose

forecasting capabilities rival or even surpass the ones of operational data assimila-
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tion systems for short-term and medium range forecasts.

The ultimate aim is to conduct data assimilation in a fully data-driven manner.

To this end, researchers have developed standalone deep learning models that op-

erate independently of any DA system, relying solely on prior analysis and current

observations.

The following subsections examine a range of hybrid methods that incorporate

neural networks into data assimilation algorithms, and provide examples from the

literature. Although these methods are presented within a unified scope, each piece

of research addresses distinct issues under a unique set of assumptions.

Following this, the subsequent two sections present approaches that further

integrate data-driven models towards a more standalone online running position,

smoothly relegating data assimilation to a background and supportive role.

3.2.1 Surrogate physical models

Data assimilation is applied in diverse fields such as weather forecasting, oceanogra-

phy, climatology, geosciences, epidemiology, or wildfire prediction. As suggested by

these real-world contexts, physical models used in DA can often demand substan-

tial computational resources. For instance, accurately solving the motion equations

of the Earth’s atmosphere on fine grids represents a high-dimensional and compu-

tationally intensive challenge. Given this, deep learning emerges as a compelling

alternative: by harnessing the power of GPUs and parallel computing, deep learn-

ing offers the potential for faster, and possibly even real-time forecasting.

In 2018, the study by Loh et al. (2018) effectively utilizes the large sensor

database available in the gas well industry to train a data-driven surrogate model.

While this task is traditionally performed by costly physical models, the authors

demonstrate the feasibility of training a LSTM network to efficiently predict the

temporal evolution of flow rates in mature gas wells. More precisely, the neural

network learns on a specific gas well, labeled as “A”, and characterized by cer-

tain dynamic behaviors. The trained model proves to be applicable to another gas

well, “B”, which exhibits a slightly different production evolution. This data-driven

model is integrated within an EnKF framework that includes parameter estimation,

as presented in Evensen (2003). Therefore, the data assimilation algorithm corrects

not only the physical variables of interest, but also the bias of the last layer of the

network. This is achieved by concatenating the bias vector to the state variables:
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the method is known as state augmentation. Notably, the augmented system ap-

proach allows for the dynamic updating of the weight bias in the last layer during

the assimilation process. This method has the advantage of being applicable to real

natural gas well production in a real-time context.

Geosciences are also concerned with simulating subsurface flows. The work by

Tang et al. (2020) applies a residual U-Net (Ronneberger et al., 2015) coupled

with a convolutional LSTM to surrogate the prediction of state maps (i.e., sub-

surface flow states) from permeability maps. This architecture termed recurrent

R-U-Net captures both local and global features via the U-Net component of the

network, while the temporal evolution is addressed by the convolutional LSTM.

The methodology is further extended to 3D subsurface flows in Tang et al. (2021b).

Another notable work, Tang et al. (2021a), focuses on modeling pressure buildup

and CO2 plume predictions for geologic carbon storage. Here, two networks - a

residual convolutional network and U-Net - are trained and incorporated within an

Ensemble Smoother Multiple Data Assimilation (ES-MDA) framework (as

described in Emerick and Reynolds (2013)).

In the study of dynamical systems, LSTM networks, as discussed in 3.1.4, have

been widely and effectively utilized as surrogate models. Their structure which in-

cludes a memory cell and several control gates, allows them to retain, add or release

information over time. A pertinent example is the research conducted by Nadler

et al. (2020) about the Covid-19 pandemic. In this study, an LSTM network learns

the highly-nonlinear interactions between a few epidemiological variables in order

to forecast COVID-19 cases.

Our knowledge and understanding of the physical phenomena involved in data

assimilation can be incomplete, limited or imprecisely approximated: governing

equations might be unknown, certain physical quantities neglected, or small-scale

features unresolved. Therefore, there is a growing need to develop data-driven

surrogate models that learn directly from sparse and noisy observations, rather

than solely depending on physical simulation data. Pursuing this research direc-

tion, the studies by Gottwald and Reich (2021b,a) introduce a supervised learning

strategy based on observations and random feature maps. Though not involving

any stochastic gradient algorithms or back-propagation, random feature maps are

comparable to shallow networks and also verify the universal approximation theo-

rem. The approach, termed RAFDA - Random Feature maps Data Assimilation -

encompasses both parameter and state estimation and demonstrates efficiency in
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a Lorenz63 (Lorenz, 1963) experimental setup. Likewise, the research by Brajard

et al. (2020) proposes to alternate between deep learning training phases and data

assimilation cycles to iteratively learn the dynamics of a Lorenz96 system (Lorenz,

1996) and thereby progressively produce more accurate analysis and predictions.

The physical dynamics is assumed to be unknown and the neural network learns

solely from the output of the data assimilation procedure (EnKF), which randomly

observes half of the state vector at each time step. However, the convergence of

this method highly depends on the chosen initialization strategy. Prior to the ac-

tual training stage, the authors resort to a preliminary phase of “light learning”:

in this phase, the network is trained using cubic interpolations of the observations

across both space and time. This approach ensures convergence for the subsequent

training phase. Additionally, the same research team renews the methodology in

Bocquet et al. (2020) by relying on a Bayesian formalism.

Another significant advantage of deep learning in the context of variational data

assimilation is its capability to derive tangent linear and adjoint models directly

from the surrogate neural network, as discussed in Hatfield et al. (2021). In the

study by Penny et al. (2022), the authors successfully perform data assimilation

in the hidden/reservoir state of a RNN. This is achieved in scenarios with both

full and sparse observation coverage, across varying noise levels. The effectiveness

of this method is demonstrated on a Lorenz96 dynamics model (Lorenz, 1996),

using both the ETKF and the 4D-Var algorithms. Unlike in deep learning, here

only one matrix of the RNN - namely W out - is trained through the resolution of

regularized least squares problems, while other parameters, having been randomly

selected initially, remain fixed throughout the process.

Performing data assimilation in a distinct space from the state space is an

innovative approach that has attracted the attention of researchers within the

data assimilation community. In particular, coupling Reduced-Order Modelling

(ROM) techniques with data-driven surrogate models have successfully been inves-

tigated over the last few years (Amendola et al., 2020; Tang et al., 2021a; Amendola

et al., 2021; Cheng et al., 2022b,a; Silva et al., 2022). Section 4.1 reviews this area

of research, providing a more in-depth discussion.
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3.2.2 Enforcing physical constraints within the data assimi-

lation process

Data assimilation and neural networks both encounter similar drawbacks when it

comes to handling physical processes: typically, they are physics-agnostic. That is,

they do not guarantee adherence to physical laws. For instance, while the back-

ground in a DA algorithm or the input in a neural network might satisfy a particular

Partial Differential Equation (PDE), the resulting analysis or output may not. This

disregard for physical laws can lead to inaccuracies and suboptimal solutions. For

example, localization techniques, commonly used in EnKF algorithms to reduce

sampling errors, can produce analyses that violate physical properties. Studies

such as Janjić et al. (2014); Zeng and Janjić (2016); Zeng et al. (2017); Ruckstuhl

and Janjić (2018) demonstrate how neglecting the conservation of mass, energy, or

enstrophy can significantly diminish the quality of state analysis.

Similarly, the a priori physics-agnostic nature of neural networks poses risks,

particularly in numerical simulations. While knowledge-based models can maintain

physical properties, ensuring non-divergent runs, neural networks might accumulate

errors, leading to diverging and non-physical outputs, rendering them operationally

ineffective. Consequently, ensuring that neural networks adhere to physical laws has

become a primary research focus in recent years, as seen in studies like Greydanus

et al. (2019); Cranmer et al. (2020), and in the development of Physics-Informed

Neural Networks (PINNs) (Raissi et al., 2019).

In data assimilation, algorithms such as the Quadratic Programming En-

semble (QPEns) (Janjić et al., 2014) have been designed to produce more physi-

cally realistic estimates. However, these methods often come with significant com-

putational burdens, making them prohibitive for high-dimensional problems. Thus,

leveraging deep learning to facilitate fast and accurate data assimilation analysis

emerges as a key strategy to circumvent the limitations of traditional data assimi-

lation algorithms.

The research conducted by Ruckstuhl et al. (2021) exemplifies this approach,

using a convolutional neural network to learn the discrepancies between an EnKF

analysis and its equivalent produced by the QPEns algorithm. The decision to

utilize a deep learning architecture is driven by the natural capacity of convolutional

kernels to perform localization. This study conducts numerical experiments using

a shallow water model, focusing on two test scenarios: one with a sufficiently short

model time step (here analogous to 5min) ensuring EnKF convergence, and another
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with a longer time step (analogous to 10min) leading to EnKF divergence.

In the former scenario, the CNN-assisted data assimilation achieves perfor-

mances comparable to that of the QPEns. In the latter case, while the results

with the CNN do not quite match the QPEns, they are significantly superior to the

outcomes obtained solely with the EnKF.

In He et al. (2020), the authors utilize the PINN formulation to train a feed

forward neural network and later assimilate multiphysics measurements in the con-

text of sparse observations, heterogeneous porous media and high-computational

costs.

3.2.3 Model error correction

In the context of data assimilation, multiple sources of uncertainties impact physical

models and result in the so-called model errors. These errors typically fall into one

of the following categories:

• incomplete understanding of real-world physical dynamics, that can lead to

misrepresented physical phenomena.

• the high dimensionality of the problem (e.g., in weather forecast or geo-

sciences) coupled with limited computer resources that can translate into

unresolved small-scale processes.

• inevitable numerical integration errors.

We can also mention the erroneous initial conditions that are evolved over time

by the linearized model and contribute further to these sources of error as shown

in equation (2.42), and reminded here-below:

P f
k = MkP

a
k−1M

T
k +Qk.

Model errors are commonly assumed to be additive, zero-mean, and white in

time. However, these conditions are rarely met simultaneously in practice, and are

often relaxed operationally: e.g., at ECMWF, a multiplicative term is adopted in

model error parameterization. Furthermore, the assumption of zero-mean can be

detrimental, particularly when dealing with systematic model errors, also known as

biases.

Recent developments in weak-constrained 4D-Var indicate that a significant

portion of model errors can be estimated and corrected (Laloyaux et al., 2020). This
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insight supports the view that model error correction is one of the most promising

avenues for producing better forecasts in NWP.

In contrast to the previous subsection, where we discuss the opportunity to fully

surrogate a physical model, here, we highlight the advantages of combining physical

knowledge with deep learning. Numerical models benefit from a long history of

modeling, as well as numerical improvements and parameterizations, making them

a solid baseline for predictions. With the ever-growing availability of observational

Earth data in NWP, it is legitimate to explore the development of a hybrid model.

Such a model would integrate a knowledge-based part with a data-driven surrogate

that addresses model errors.

The first insight to integrate deep learning into operational NWP were exam-

ined by Bonavita and Laloyaux (2020). Specifically, the study demonstrates that

feedforward neural networks can achieve performances comparable to the weak-

constrained 4D-Var system of the Integrated Forecasting System (IFS) at ECMWF.

A notable advantage of neural networks is their ability to provide corrections across

the entire atmospheric column, unlike the variational algorithm in the IFS, which

is inactive below 100hPa — a limitation that has been a significant concern since

the weak-constrained 4D-Var became operational, over a decade ago.

Model error estimation can be performed either by examining the discrepancies

between observations and background (i.e., observations− background) or analysis

(i.e., observations−analysis), or by assessing the increment between the background

and the analysis (i.e., analysis − background). The latter, being more technically

feasible, was the chosen method by the authors. This concept of accounting for the

discrepancy to the analysis was initially proposed by Leith (1978) and subsequently

adopted by Dee (2005) and Carrassi and Vannitsem (2011). In this study, three neu-

ral network architectures — relu one layer, relu two layers, and relu three layers —

are considered and benchmarked against a linear regression baseline. The neural

networks are trained using inputs that either solely consist of model variables or are

supplemented with climatological predictors (latitude, longitude, time of day and

month). The authors also investigate the potential benefits of data augmentation,

by including past states in addition to the current predictors.

In line with the research efforts of Gottwald and Reich (2021b,a); Brajard et al.

(2020), addressing the challenge of sparse and noisy observations remains a crucial

direction in data assimilation studies. In Wikner et al. (2021), the authors intro-

duce a machine learning approach (distinct from deep learning though) to correct
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model errors given sparse and noisy observations. In this method, they focus on

optimizing the output weights of a reservoir computer to fit the analysis produced

by an ETKF algorithm. This approach shares a similarity with deep learning in

that it necessitates a training phase during which, the weights are fine-tuned to

minimize a cost function. Afterwards, the model can be used for predictions. The

authors further develop their algorithm by proposing an iterative version of it.

This enhanced approach combine the imperfect model with the continually learn-

ing reservoir computer during the training stage, thereby improving the efficacy of

the model error correction process. The success of the technique is demonstrated

for the Lorenz63 (Lorenz, 1963) and the Kuramoto-Sivashinsky systems and the

model error is introduced via a misspecified parameter in each case.

Building on the innovative method of Brajard et al. (2020), the study by Farchi

et al. (2021b) focuses on correcting a knowledge-based model using sparse and

noisy observations, employing a strong-constraint 4D-Var algorithm. Contrary to

Brajard et al. (2020), the convergence of the approach when iterating between data

assimilation and training stages is not a concern in this case. The weights are indeed

initialized to zero, so that within the first data assimilation step, time propagation

only relies on the knowledge-based model (no model error correction). While in

Brajard et al. (2020), the fully data-driven surrogate may produce nonphysical

states, here the forecasts are first generated with numerical solvers, which ensures

convergence of the subsequent steps. When attempting to correct model error, two

approaches can arise and are pointed out by the authors:

1. correcting the resolvent: Mk(p,x) = Mo
k(x) +Mml

k (p,x), where Mo
k repre-

sents the resolvent of the knowledge-based model, and Mml
k is the machine

learning model, with p denoting its parameters.

2. correcting the tendencies: dx
dt = Fo(x)+Fml(p, x), where Fo is the tendency

of the original model and Fml is the machine learning model. This method

requires the integration of the tendency in order to obtain the corrected

surrogate model.

In their research, the authors opt not to explore the second option due to

its complexity in implementation. They test two neural network architectures on

the Quasi-Geostrophic (QG) model of the ECMWF. In this setup, model error is

introduced through a perturbed configuration, differing from the reference setup

in four aspects: upper and lower layers’ depths, integration time, and orography.

The numerical results validate the neural networks’ capability to enhance forecasts
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compared to the original model by correcting the model’s resolvent. However, the

authors identify some areas requiring further investigation:

• the potential benefits of implementing tendency correction in terms of the

accuracy and quality of the analysis.

• the development of an online model error correction system.

The authors further discuss and address these two points in Farchi et al. (2021a).

Within the framework of Brajard et al. (2020); Farchi et al. (2021b), they success-

fully perform resolvent and tendency corrections under sparse and noisy observation

conditions by hybridizing a knowledge-based model with neural networks. The ap-

proach is tested on a Lorenz system (Lorenz, 1996) that exhibits large-scale and

small-scale physical processes, and which is commonly referred to as L05III. To

facilitate online learning, the authors introduce a novel formulation of the weak-

constraint 4D-Var based on an augmented state method. This involves concate-

nating the current state xk with the neural network parameters p, leading to the

following weak-constraint 4D-Var formulation:

J (pk,xk) =
1

2

∥∥pk − pb
k

∥∥2
B−1

p
+

1

2

∥∥xk − xb
k

∥∥2
B−1

x

+
1

2

L−1∑
ℓ=0

∥yk+ℓ −H ◦M(pk,xk)∥2R−1 . (3.15)

Other studies like Laloyaux et al. (2022) and Gregory et al. (2023), explore dif-

ferent applications of combining physical models with neural networks. In Laloyaux

et al. (2022), CNNs learn to correct model biases from radio occultation measure-

ments. Initially trained on 12 years of ERA5 reanalysis data (2008 - 2019), the

authors subsequently leverage transfer learning to specifically target the years 2019-

2020. Similarly, Gregory et al. (2023) employ CNNs to identify climatological biases

in sea ice concentration forecasts.

3.2.4 Estimation of the background covariance matrix

One essential ingredient for successful data assimilation is an accurate background

covariance matrix, P b
t . A wide range of DA applications like NWP are concerned

with high-dimensional and nonlinear dynamical processes: e.g., weather forecast-

ing systems typically involve state variables with dimension n in the order of
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O(106 − 108). Consequently, storing or explicitly computing the associated state

error covariance matrix P b
t , of dimension n2, is practically unfeasible.

To address this challenge, ensemble algorithms conduct data assimilation using

small ensembles, typically in the order of O(101−102) members (Leutbecher, 2019).

This approach allows for a computationally manageable low-rank approximation of

P b
t . However, this rank-deficient matrix is prone to sampling errors, leading to

spurious correlations. These errors necessitate the use of an ad-hoc localization

term to mitigate them (Asch et al., 2016). Nonetheless, such a corrective measure

risks eliminating physically consistent correlations (Miyoshi et al., 2014).

On the other hand, accurately approximating the background error covariance

matrix theoretically requires a number of ensemble members comparable to the

dimension of the unstable-neutral subspace (Strogatz, 1994; Legras and Vautard,

1996; Carrassi et al., 2022), a requirement that often comes with a high compu-

tational burden in operational data assimilation: indeed, the number of unstable-

neutral directions can possibly represent thousands up to millions degrees of free-

dom (Bocquet and Farchi, 2014), and most real-world physical models are too

resource-intensive to process large ensembles swiftly.

As previously discussed in section 3.2.1, deep learning offers a viable solution for

surrogating physical dynamics with significantly reduced computational costs. In

line with this, the study by Chattopadhyay et al. (2023) introduces an innovative

data-driven method for efficiently estimating the background covariance matrix.

This approach involves using a neural network to learn the physical dynamics and

leveraging its rapid inference capabilities to propagate a large ensemble of members.

Specifically, the technique utilizes two sets of ensembles and conducts numerical

experiments on the streamfunction, denoted by ψ, of a Quasi-Geostrophic (QG)

model.

Given the analysis state ψa
t at time t, a Gaussian noise N (0, σ2

b ) is used to

generate the ensembles ED and EN whose number of members is in the order of

O(1000) and O(10), respectively: the numerical model propagates the samples of

EN , while a pre-trained U-Net (Ronneberger et al., 2015) handles the temporal

propagation of the numerous members in ED. The stochastic EnKF algorithm

is then applied to the smaller ensemble EN , but it benefits from the accurate

background covariance matrix estimated using the larger sample set.

It is worth mentioning that in this context, the U-Net is not expected to achieve

highly accurate long-term forecasts: indeed, the surrogate’s predictions are only
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used to compute a reliable estimate of the background covariance matrix, while the

numerical model is specifically utilized for accurate temporal propagations.

3.2.5 Improve observational knowledge

In the theoretical framework of data assimilation, the primary focus is on mathe-

matically deriving accurate and reliable estimates from imperfect initial conditions

and noisy observations. However, operational and practical considerations often

have to be set aside, as they are case-dependent and require specific solutions.

Specifically, efficiently processing observations is a source of concerns in real-world

applications like weather forecasting. Despite the unprecedented volume of available

observations and sensor measurements, these data are subject to various operational

limitations:

• noise that is inherent to data acquisition

• sparsity of collected data

• heterogeneity of observations

• unevenly distributed data

• unstructured data

• placement and number of sensors that can dynamically evolve over time

• time delays among different observation sources

• indirect and possibly nonlinear mappings between observational space and

state space

While previous subsections are dedicated to state variables and their covari-

ance matrices, this section explores the potential of deep learning to enhance the

utilization of observational data within the data assimilation framework.

As early as 2019, the study by Lin et al. (2019) highlighted the advantages of

incorporating a neural network into a data assimilation algorithm to address the

scarcity of observations. Data assimilation is relatively new to the field of chemical

transport, having been in use for only about two decades. This research focuses

on predicting PM10 – particulate matter of 10 micrometers or smaller in diame-

ter – concentrations in the context of dust storms. One prerequisite for accurate

forecasts is knowledge of local human emissions. However, in some cases, no real-

time measurements of such emissions are available. To address this, the authors
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trained a LSTM network to estimate local non-dust aerosol levels using historical

observation records from approximately 1000 ground-based stations across China.

Operationally, this trained LSTM network can infer local non-dust PM10 concen-

trations from real-time observations. The dust concentration is then determined

by subtracting the neural network’s estimate from the raw PM10 observations.

The accuracy of acquiring observations is undeniably crucial, but equally im-

portant is determining the optimal locations for placing sensors (Deng et al., 2018).

In this context, the study by Deng et al. (2021) reveals an intriguing finding: using

only the five most sensitive sensors can yield assimilation performances compara-

ble to those obtained when utilizing observations from the entire flow field. This

research employs a feed-forward neural network, augmented with a feature impor-

tance layer, to identify the most sensitive locations in the spatial field of a jet flow

simulation. To achieve this, a set of model parameters are selected to generate as-

sociated velocity fields, enabling the neural network to learn the spatial sensitivity

relative to these input parameters.

A significant challenge in data assimilation is handling sparse, unstructured, and

time-varying observation data. Addressing this, the study by Cheng et al. (2024)

introduces VIVID (Voronoi-tessellation Inverse operator for VariatIonal Data as-

similation). This innovative approach involves training a neural network to function

as an inverse operator. It maps from the observation space to the state space, ac-

commodating unstructured and dynamically evolving sensor measurements over

time in terms of both location and quantity. By nature, this defines an ill-posed

problem and it thus requires to be integrated into a data assimilation framework

(e.g., a variational one).

The concept of Voronoi tessellation (Watson, 1981) involves partitioning space

into Voronoi cells based on the locations of observations. A convolutional neu-

ral network is trained to reconstruct and estimate the state variable, taking the

Voronoi tessellation as input. This methodology aligns with the steps described

and implemented in Fukami et al. (2021). However, Cheng et al. (2024) differs

by incorporating this approach into a variational framework to avoid an ill-defined

problem. The cost function for the 3D-Var optimization problem is thus defined

as:

J(x) =
1

2

∥∥x− xb
t

∥∥2
B−1

t
+

1

2
∥yt −Ht(x)∥2R−1

t

. (3.16)
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In Cheng et al. (2024), an additional regularization term is introduced:

J(x) =
1

2

∥∥x− xb
t

∥∥2
B−1

t
+

1

2
∥yt −Ht(x)∥2R−1

t

+
1

2
∥x− xv,t∥2P−1

t

, (3.17)

where xv,t represents the output of the learned operator when applied to the

Voronoi tessellation of the observations at time t. The error covariance matrix

of the CNN, P t, is empirically estimated using a validation set. Figure 3.2.1 pro-

vides a visual aid for understanding the operational workings of VIVID.

Figure 3.2.1: VIVID architecture. This illustration is from Cheng et al. (2024).

Furthermore, VIVID is compatible with Principal Component Analysis, en-

abling its application in reduced-order modeling contexts.

In data assimilation, the observation operator H, which maps physical space to

observation space, is non-invertible. This limitation can complicate the minimiza-

tion process in data assimilation. Addressing this issue, the work by Frerix et al.

(2021) showcases the potential benefits of a data-driven inverse observation oper-

ator, denoted by hθ, in improving the 4D-Var optimization problem. Specifically,

they aim to achieve two primary goals, as depicted in Figure 3.2.2:

• enhancing the initialization of the non-convex optimization problem.

• reformulating the cost function in terms of state variables rather than obser-

vational data.
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Figure 3.2.2: The two primary goals when learning an inverse observation operator.
Credit to Frerix et al. (2021)

.

The authors propose an alternative to the standard 4D-Var objective function

by neglecting the prior term and setting the error covariance matrix to the identity.

The resulting formulation is:

J(x0) =

T∑
t=0

∥yt −H(xt)∥22, (3.18)

where xt+1 = M(xt). Incorporating the data-driven model hθ, parameterized by

θ, leads to the following reformulated objective:

J̃(x0) =

T∑
t=0

∥xt − hθ(yt)∥
2
2. (3.19)

The authors demonstrate that minimizing equation (3.19) is more straightfor-

ward than tackling equation (3.18) directly. However, given the limitations of hθ

in accurately reconstructing the state field from observations, minimizing equa-

tion (3.19) serves as an intermediate step to establish an initial point for the mini-

mization of equation (3.18).

This innovative method’s effectiveness is validated using a Lorenz96 (Lorenz,

1996) system and a Kolmogorov flow (Chandler and Kerswell, 2013). The authors

also state that their approach is applicable to the standard 4D-Var minimization

problem.

In the same idea of transforming the objective function to get a smoother op-

timization space, we can mention the work of Fillion et al. (2018).
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In their research, Liang et al. (2023) focus on applying deep learning techniques

to directly learn the observation operator for satellite microwave brightness tem-

perature. They define a reference setup that combines the nonhydrostatic icosahe-

dral atmospheric model (NICAM) with the local ensemble transform Kalman filter

(LETKF). in this setting, the observation operator is complemented with a bias

correction step and is referred to as RTTOV-OO. With they framework, they run

a one-month data assimilation and utilize the results along with the corresponding

observations, to train a feed-forward neural network. This network named ML-OO

is intended to surrogate the traditional observation operator. While the approach

is shown to be functional, the neural network, in practice, exhibits slower predic-

tion speeds and less accuracy in assimilating both conventional observations and

brightness temperature data, compared to the traditional RTTOV model.

3.2.6 Parameter estimation

In real-world applications, data assimilation frequently deals with dynamics charac-

terized by physical processes occurring at vastly different scales, which can hinder

accurate forecasting. Phenomena at the largest and smallest scales exhibit such dis-

tinct spatio-temporal behaviors that a grid size or time step suitable for large-scale

dynamics may be inadequate for smaller scales, and vice versa. For most real-world

cases, the computational expense of resolving both large and small scale variables

simultaneously is impractical. Consequently, not all multiscale physical processes

are explicitly resolved, yet their interaction necessitates some level of representa-

tion. Commonly, ad-hoc parameterization schemes for the resolved variables are

used to model subgrid scale processes (Stensrud, 2007; Duan and Nadiga, 2006;

Randall, 1989). However, devising an interplay between the resolved variables that

accurately represents the influence of small-scale dynamics remains a substantial

challenge. Thus, incorporating deep learning into data assimilation emerges as a

key approach for developing both qualitative and precise closure models: neural

networks indeed have the capacity to discern complex interactions between mul-

tiscale variables by leveraging the large amount of observational data currently

available.

In this vein, the study by Pawar and San (2021) develops a data-driven clo-

sure model by hybridizing neural networks with data assimilation. The authors

trained three types of feedforward neural networks in a supervised framework to

learn small-scale variables from large-scale ones. This method demonstrates effec-

tiveness on the L05III system (Lorenz, 1996), and a Kraichnan turbulence model.
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When dealing with parameter estimation, data assimilation often employs the

augmented state approach (Jazwinski, 2007; Annan and Hargreaves, 2004; Smith

et al., 2013). This method consists in concatenating the state variable with the

parameters, creating an extended new variable upon which data assimilation is per-

formed. However, this approach has its limitations: e.g., parameters typically lack

direct observations, so their updates rely on cross-correlations, and the assumption

of Gaussian distributions may not always hold true.

The study by Legler and Janjić (2022) successfully demonstrates the application

of deep learning to parameter estimating within a data assimilation framework. The

authors trained a neural network to estimate the parameters of a shallow-water

model using sparse and noisy observations. Additionally, the work of Li et al.

(2022) uses a deep residual neural network to learn the assimilation process in the

context of parameter estimation.

3.3 Fully data-driven approaches to surpass traditional nu-

merical weather prediction models

In the field of numerical weather prediction, the increasing availability of large

datasets has opened up new opportunities for fully data-driven models. This shift

is paving the way for end-to-end learning approaches that directly predict weather

from observations. Over the past two years, several tech companies have published

several outstanding deep learning-based weather forecast models (Keisler, 2022;

Pathak et al., 2022; Lam et al., 2023; Bi et al., 2022; Chen et al., 2023; Price et al.,

2023; Nguyen et al., 2023). These models, often utilizing transformers (Vaswani

et al., 2017) or graph neural networks (GNNs) (Wu et al., 2023), are trained on

decades of ERA5 reanalysis data from ECMWF and are competing with leading

operational NWP systems in terms of performance.

These global, data-driven, high-resolution weather models demonstrate perfor-

mances that are comparable to, or even surpass, those of cutting-edge operational

systems. Their accuracy has extended from short-term (1-3 days) to medium-range

forecasts (10 days). Their most notable advantage lies in their computational speed,

ranging from seconds to a minute, significantly faster than traditional NWP pro-

cesses that take about an hour. Additionally, such models hold the potential to

enlarge current data assimilation ensembles and therefore provide more reliable

forecasts. Also, some of these models can predict extreme weather events (Pathak

et al., 2022; Lam et al., 2023; Bi et al., 2022; Price et al., 2023) like tropical or
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extra-tropical cyclones.

Whether utilizing graph networks (Keisler, 2022; Lam et al., 2023; Price et al.,

2023) or transformers (Pathak et al., 2022; Bi et al., 2022; Chen et al., 2023), these

models commonly employ an autoencoder-type structure, underlining its effective-

ness. Transformer architectures benefit from the attention mechanism (Vaswani

et al., 2017), while graph neural networks straightforwardly handle Earth’s spher-

ical geometry and are suitable for multi-mesh and multi-resolution computations.

Figures 3.3.1 and 3.3.2 illustrate the neural network architectures used in Lam et al.

(2023) and Chen et al. (2023), respectively.

Figure 3.3.1: GNN-based autoencoder architecture of GraphCast (illustration from
Lam et al. (2023)).
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Figure 3.3.2: Transformer-based autoencoder architecture of FengWu model (illus-
tration from Chen et al. (2023)).

A common practice in these models for efficient autoregressive forecasting is

the use of a multi-step loss function, which encourages the network to mitigate

error propagation over time. To circumvent the cost of accumulating gradients

in memory when using a multi-step loss, Chen et al. (2023) introduces the replay

buffer approach that consists in adding predicted states into the training dataset

during the learning stage: it implicitly mimic the effect of the multi-step loss and

thus enhances successful medium-range forecasts.

These fully data-driven models have shown results comparable or superior to

current state-of-the-art operational systems (Lam et al., 2023; Bi et al., 2022; Chen

et al., 2023; Price et al., 2023; Nguyen et al., 2023). They are revolutionizing NWP

by underscoring the benefits of integrating deep learning into operational weather

systems. Weather centers like ECMWF are increasingly integrating data-driven ap-

proaches into their operational frameworks. Currently, models like FourCastNetv2-

small, Graphcast, and Pangu-Weather are available at ECMWF.

The ultimate goal of the deep learning community is to explore the possibility of

replacing an entire operational system like IFS with fully data-driven models. Such

models would use prior forecasts and current observations to generate new fore-

casts. The advantages of this approach are numerous, including efficient handling

of multi-resolution systems, improved accounting for unresolved physical processes,

and significantly faster inference times that facilitate processing large ensembles

to enhance forecast accuracy and reliability. Additionally, these models have the
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potential to more effectively correct model errors and relax Gaussian assumptions.

Although sometimes considered magical, these data-driven models suffer from

important hurdles when viewed through the lens of weather forecasting. In partic-

ular, performance is tied to the metric used during the training. The widespread

choice of the mean squared error (MSE) cost function therefore has smoothing

consequences that can be detrimental to the predictions: by averaging over the

uncertainties, they can lack fidelity and produce unrealistic and not physically con-

sistent forecasts compared to physics-based models (Bonavita, 2023; Kochkov et al.,

2024). The price to pay for a better performance of deep learning model on the

MSE criterion is a significantly lower forecast activity (Bouallegue et al., 2023). The

smoothing effect also degrades the variability and extremes of the forecast, making

neural networks less likely to accurately predict rare weather events, compared to

physics-based models. While ensembles provide statistical information and cover

different weather scenarios, ML models are limited to generating what appears to be

the most likely estimate, in a deterministic manner. In the context of climate mod-

eling, fully data-driven models struggle to produce realistic forecasts over long time

windows (Kochkov et al., 2024). Bonavita (2023) provides interesting insight into

the differences between deep learning and numerical models, by providing spectral

decomposition analyses.

To address these limitations, Kochkov et al. (2024) published NeuralGCM

(Neural General Circulation models for Weather and Climate), a hybrid and fully

differentiable model trained on ERA5 reanalysis that couples deep learning com-

ponents and governing equations, to produce physically consistent forecasts. Addi-

tionally, making these interactions between neural networks and physical equations,

allows for online training.

Finally, in order to have a fair evaluation of the performance of weather pre-

diction models, Google provides WeatherBench 2 (Rasp et al., 2024), an online

service that evaluates the performance of major published models on several rele-

vant metrics.

3.4 End-to-end learning of the data assimilation process

In the previous sections of this chapter, our focus has largely been on integrating

deep learning tools into various aspects of the data assimilation process. Data as-

similation, as a field, encompasses a range of mathematical operators, assumptions,

and formulations, such as variational and ensemble data assimilation, along with
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practical challenges that necessitate innovative solutions. Deep learning emerges

as a key and valuable technological resource in this context, offering effective and

relevant solutions. We have explored numerous methods to cleverly and efficiently

combine data assimilation with artificial intelligence, highlighting the potential of

this synergistic approach.

Moving beyond mere hybridization, some recent studies have ventured into the

realm of fully data-driven data assimilation. They are exploring the potential of

what is known as end-to-end learning, aiming to transform the entire data assimi-

lation process into a data-centric paradigm.

As early as 2010, Härter and de Campos Velho (2010, 2012) explored the po-

tential of emulating the Kalman filter using a multilayer perceptron (Härter and

de Campos Velho, 2010) and Elman Neural Networks (Härter and de Campos Velho,

2012). This research aimed to reduce computational costs associated with high-

dimensional data. While a loss in accuracy compared to the traditional Kalman

filter algorithm was observed, both MLP and ENN demonstrated success in a non-

linear 1D shallow water problem known as DYNAMO.

The study by Fablet et al. (2021) establishes an end-to-end learning framework

within a 4D-Var context, allowing for both supervised and unsupervised train-

ing strategies with noisy and unevenly distributed data. Tested on the Lorenz63

(Lorenz, 1963) and Lorenz96 (Lorenz, 1996) systems, this approach yields signif-

icant improvements over the standard 4D-Var algorithm. The method involves

learning a representation of the physical dynamics with a neural network along

with a data-driven model that learns to minimize the 4D-Var cost function. Such

a minimization is possible thanks to using automatic differentiation tools available

in deep learning packages like PyTorch or TensorFlow.

The context of their study is set by the following two equations: ∂x
∂t (t) = M(x(t)) + η(t),

y(t, p) = x(t, p) + ε(t).
(3.20)

In this case, the observation operator is the identity, so that the system is fully

observed. The flow operator Φ is defined as:

Φ(x)(t) = x(t− ∆t) +

∫ t

t−∆t

M(x(u))du. (3.21)

For the 4D-Var problem, they do not consider the regularizing background term



M. PEYRON - Latent space data assimilation in the context of deep learning 89

and assume spherical covariance matrices (i.e. matrices that are proportional to

the identity) for both model and observation errors. The cost function therefore

reads:

Uθ(x,y) = λ1

∑
i

∥x(ti) − y(ti)∥2 + λ2

∑
i

∥x(ti) − Φ(x)(ti)∥2. (3.22)

The authors define Φ via a neural network, either by directly learning this opera-

tor or by learning the resolvent Mθ. This allows the use of automatic differentiation

tools to compute ∇xUθ, facilitating the application of an iterative gradient scheme:

x(k+1) = x(k) − α∇xUθ(x(k),y). (3.23)

Given an initial state x(0) and a sequence of observations y(0), . . . ,y(T ), the

authors demonstrate it is possible to combine two neural networks to solve the

4D-Var problem. Figure 3.4.1 illustrates this end-to-end learning architecture. The

network which represents Φ alongside the one that iteratively minimizes the cost

function (using residual units of LSTM or RNN cells) are jointly trained together.

It is important to remind that the training can be unsupervised or supervised,

according to whether ground truth states x(0), . . . ,x(T ) are provided.

Figure 3.4.1: End-to-end learning of the 4D-Var algorithm. Illustration from Fablet
et al. (2021).

This methodology is further extended in Fablet et al. (2023) to include the case

where both the observation operator and the prior are trainable, leading to the

development of the so-called 4D-VarNet.
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In the Bayesian data assimilation framework, the study by Boudier et al.

(2023) introduces a novel end-to-end RNN-based training strategy for approxi-

mating prior and posterior probability density functions from noisy observations.

This data-driven approach termed Data Assimilation Networks (DAN), optimizes

a log-likelihood cost function, analogous to the Kullback-Leibler divergence, in a

supervised manner. It is particularly adapted for nonlinear dynamics and non-

Gaussian densities. The strategy is built around three key operators:

a : S× Y → S, (analyzer), (3.24)

b : S → S, (propagator), (3.25)

c : S → PX, (procoder), (3.26)

where S,Y,X represent the value spaces of random variables x,y, s, respectively,

and PX denotes the space of pdfs over X. As suggested by the notations, Y cor-

responds to the observation space, X to the state space, and S to an internal rep-

resentation of the state. Operators a, b, and c perform specific transformations:

a assimilates within the memory space S, b performs the time propagation within

this space, and c maps to an actual pdf over X. Numerical experiments on the

Lorenz96 system (Lorenz, 1996) proves that the accuracy of DAN, without using

any explicit regularization technique like localization and inflation, is comparable

to the ones reached by IEnKF-Q (Sakov et al., 2018) and LETKF algorithms (Hunt

et al., 2007).



CHAPTER 4

Latent Space Data Assimilation

After a detailed introduction to data assimilation in chapter 2, with particular em-

phasis on ensemble methods, we provided a comprehensive review in chapter 3 of

scientific contributions that hybridize data assimilation algorithms with artificial

intelligence techniques. Now, we turn our focus to our main research topic, what

we have termed latent space data assimilation.

In the following, we present the key ingredients that theoretically motivate a

data-driven reduced-space data assimilation approach. This methodology is artic-

ulated around three main points:

1. exploring the ability of deep learning to create an ℓ-dimensional reduced-

space from a full dynamics of dimension n (with ℓ ≪ n).

2. defining a surrogate network within the latent space to perform the time prop-

agation. We introduce an innovative iterative training approach to ensure

the surrogate’s temporal stability. Additionally, we propose a joint training

strategy for the surrogate and the autoencoder, which yields better results

compared to sequential training.

3. performing data assimilation within the learned ℓ-dimensional latent space

using the trained autoencoder and surrogate.

The proposed methodology:

• offers significant reduction of the computational cost and memory needs.

91
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• may improve the accuracy of the data assimilation analysis.

This chapter also guides the implementation of our novel approach within the

framework of ensemble data assimilation. While latent data assimilation is a general

concept, we will discuss the features of the ETKF-Q algorithm and feed-forward

networks that are specific to our application cases. Nevertheless, it is important to

note that this method could be adapted to other reduced rank methods (see sec-

tion 2.2.2.2) such as RRSQRT (Verlaan and Heemink, 1997; Evensen, 1994), SEEK

(Tuan Pham et al., 1998), EnKF (Evensen, 1994; Burgers et al., 1998; Houtekamer

and Mitchell, 1998; Evensen, 2009a), or ETKF (Bishop et al., 2001; Hunt et al.,

2007). It could also be further adapted to variational algorithms (Melinc and

Zaplotnik, 2024).

The organization of this chapter is as follows:

• section 4.1 highlights the limitations encountered in operational data assim-

ilation and details how, in practice, variational and sequential approaches

perform computations within a lower-dimensional space. We review papers

and algorithms that are used operationally and that fall into the category of

reduced-space methods. Within this context, we introduce our latent data

assimilation approach and position it in relation to similar scientific papers.

• the introduction of section 4.2 outlines the overall framework of the latent

ETKF-Q (ETKF-Q-L) algorithm and presents the core concepts of this

novel methodology. In the subsections of section 4.2, we first provide rele-

vant and insightful developments about Principal Component Analysis

(PCA) and chaos theory, which help determine appropriate latent space

dimensions. We then derive mathematical connections between PCA and

linear autoencoders to gain initial insights into how autoencoders shape the

latent space. Following this, we present the role of the surrogate network

in latent data assimilation, explaining how the encoder, decoder, and sur-

rogate network work together to propagate the state vector forward in time

through the reduced-space. We detail the block-residual architecture of the

surrogate network and the loss function we use. Additionally, we discuss the

importance of the temporal stability of the surrogate network and provide

practical implementation techniques to ensure the trained surrogate network

remains stable over time. Lastly, we describe the all-at-once training strategy

we implemented.
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• section 4.3 exposes how we switch from the ETKF-Q algorithm (see sec-

tion 2.2.2.3) to its latent version. This section also addresses the challenges

posed by the limited number of ensemble members inherent in the ETKF-Q

algorithm (and therefore in the ETKF-Q-L as well) and discusses the solution

implemented, named SQRT-DEP and introduced by Raanes et al. (2015).

4.1 Reduced space methods for data assimilation

As reviewed in chapter 2 and chapter 3, a major hurdle in data assimilation — both

for sequential and variational approaches — is the significant computational bur-

den involved in real-world applications. Specifically, operational data assimilation

deals with high-dimensional, nonlinear, multi-scale, and potentially unstable and

chaotic physical dynamics. Consequently, the demands for computational resources

and memory far exceed the capabilities of standard computers, necessitating the

use of high-performance computing clusters. In sequential data assimilation, the

two main computational challenges are the propagation of the covariance matrix at

each step and the need to solve large linear systems. On the variational side, the

difficulties arise from the need to compute adjoint operators and the potential for

the problem to be poorly conditioned. Additionally, both sequential and variational

methods must produce real-time analysis to be operationally useful, as delays can

render the analysis obsolete.

Several remedies have been proposed to alleviate the computational cost of oper-

ational data assimilation algorithms. The core common idea among these methods

is to find the solution, namely the analysis, by performing computations within a

lower-dimensional space compared to the original state space. These techniques are

often referred to as reduced-space data assimilation methods.

In sequential data assimilation, ensemble algorithms compute a weighting term

wa lying in Rm (where m denotes the number of members in the ensemble) to adjust

the background xf
k and thereby build the analysis xa

k, as shown in equation (2.49).

Operationally, the number of ensemble members affordable is limited, so m ≪ n.

Consequently, the adjustment term added to the background is computed in the

ensemble space, Rm, which has a much smaller dimension than the state space Rn.

More precisely, given Xf
k

(
Xf

k

)T
a low-rank approximation of the forecast covari-

ance matrix, the correcting term (expressed as Xf
kw

a in equation (2.49)) lies in the

column space of Xf
k . However, a downside effect of ensemble approaches relates to
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the large sampling errors it introduces. They lead to spurious correlations in the

covariance matrices and can also make the filter diverge in the absence of proper

fixes (inflation and localization).

When considering variational data assimilation, the minimization of the non-

linear least squares problem is performed by iteratively minimizing a series of linear

quadratic problems, thereby defining the incremental approach (see section 2.2.1).

Similarly to the Kalman filter (see section 2.2.2.1) for which the gain K∗ can be

equivalently defined by equation (2.14) or equation (2.15) - according to whether

the inversion occurs in Rn or Rp -, the incremental approach also exhibits dual

properties. Courtier (2007) first introduced a dual approach, known as the Phys-

ical Statistical Analysis System (PSAS), which performs the minimization of

the dual objective function in the observation space Rp. As a result, whenever

p ≪ n, the dual minimization offers significant gains in terms of memory and com-

putational costs compared to the primal one. In operational data assimilation,

p is about two orders of magnitude smaller than n, making PSAS an appealing

approach. However, Gauthier et al. (2008) and Gratton and Tshimanga (2009) re-

ported non-monotone and chaotic behavior of PSAS algorithm, resulting in many

inner iterations.

Gratton and Tshimanga (2009) proposed an alternative dual approach known as

the Restricted Preconditioned Conjugate Gradient (RPCG) method. This method

generates the same iterates in exact arithmetic as the primal approach (see section

2 of Gratton and Tshimanga (2009) for a definition of primal and dual approaches),

but it significantly reduces memory and computational costs while maintaining the

desired convergence properties, unlike the PSAS algorithm. However, the relation-

ship between these two dual approaches and the development of efficient precondi-

tioners are not addressed by Gratton and Tshimanga (2009). Gratton et al. (2013)

tackles these unresolved issues by designing preconditioning techniques and a trust-

region globalization that maintain the one-to-one correspondence between primal

and dual iterates, ensuring cost-effective and globally convergent computations.

In practice, the introduction of the incremental approach enabled NWP centers

to implement 4D-Var operationally. However, in its original form, incremental 4D-

Var remains too computationally expensive for practical use, necessitating further

improvements. To address this, it is common to run a simplified version of the lin-

ear model, often achieved by lowering the spatial resolution or performing spectral

truncation. These methods, however, are driven purely by computational consid-
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erations and offer no guarantees regarding the extent of information loss due to

these simplifications. Lawless et al. (2008) employed balanced truncation (Moore,

1981) to derive a low-order linear model that preserves the important features of

the original system. This model is then used in the incremental 4D-Var algorithm

to perform the minimization in a reduced-space of dimension r. The Hankel matrix

of a dynamical system (Antoulas, 2005) captures its input-output behavior over

time: it is a structured matrix that encodes information about the system’s im-

pulse response or transfer function. Balanced truncation ensures that the Hankel

matrix of the reduced model retains the first r singular values of the full system

Hankel matrix. Similar to PCA, balanced truncation provides a restriction opera-

tor UT ∈ Rr×n and a prolongation matrix V ∈ Rn×r that allow mapping back and

forth between Rr and Rn. Consequently, the incremental 4D-Var minimization is

performed within Rr, with the exact linear model M being replaced by UTMV ,

and the observation operator H with HV . In the context of sequential data as-

similation, Farrell and Ioannou (2001) employed balanced truncation in a Kalman

filter algorithm.

Notably, Robert et al. (2005) and Cao et al. (2007) utilize PCA to perform a

low-dimensional 4D-Var data assimilation.

Despite reducing the computational cost of data assimilation systems, these

reduced-space methods still face significant limitations that cannot be overlooked,

especially in operational data assimilation. For instance, ensemble algorithms can

remain computationally expensive as they require a sufficient number of members

to accurately represent the error covariance matrices. Propagating large ensembles

can therefore be prohibitive, particularly if the numerical model M is costly to

apply. In large-scale data assimilation systems, M is typically expensive, adding

to the computational burden.

Dual approaches to incremental 4D-Var, such as PSAS or RPCG, share some

of the same issues as incremental 4D-Var. Both dual algorithms require the compu-

tation of the tangent and the adjoint model and observation operators, which can

represent a substantial computational burden in operational settings. Moreover, no

solution is provided to reduce the cost of the numerical model M, and the linear

systems to solve remain large, despite being smaller than those of the original state

space. Similarly to the primal incremental 4D-Var approach, PSAS and RPCG can

also struggle with highly nonlinear systems.
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Balanced truncation does not alleviate the computational cost issue of incre-

mental 4D-Var, as simplifications in the linear model already existed. Regardless of

the choice of linear model approximation (e.g., balanced truncation, low-resolution

model, or spectral truncation), incremental 4D-Var remains an expensive algorithm

(see conclusion of (Lawless et al., 2008)). Furthermore, balanced truncation is not

yet suitable for real-life large-scale systems as pointed out by Lawless et al.. Be-

yond these issues, we can also question the relevance of using a linear mapping

to represent the full state variable x into an r-dimensional space. When dealing

with nonlinear or highly nonlinear dynamics, there is no guarantee that such a

low-dimensional representation will be accurate. This concern also applies to the

works of Robert et al. (2005) and Cao et al. (2007) where PCA is used.

Consequently, while reduced-space methods reviewed in this section overcome

significant data assimilation challenges, they still leave room for further improve-

ments. In particular, the use of nonlinear data reduction techniques such as au-

toencoders (see section 3.1.5) has not been explored. Also, the question of whether

it might be possible to perform more accurate data assimilation within the low-

dimensional space compared to the original has not been addressed as well.

With the advent of deep learning (see section 3.1) and the ever-increasing

amount of available data, integrating neural networks into existing scientific frame-

works has allowed researchers to overcome many practical and operational limita-

tions. This integration has also opened new research horizons that were previously

inaccessible. In this thesis, which sits at the intersection of data assimilation and

deep learning, we aim to perform a data-driven latent space data assimilation,

that exhibits significant computational speed-ups and offers the potential for more

accurate analysis.

Peyron et al. (2021) is the first paper published in a peer-reviewed journal to

implement data assimilation within the latent space of an autoencoder. This ap-

proach addresses some of the aforementioned issues that were not handled by the

reduced-space methods reviewed in this section. Firstly, most real-life dynamics

of interest are nonlinear, making PCA transformations or any linear mapping lim-

ited in their ability to accurately represent such dynamics within a low-dimensional

space. Therefore, we rely on autoencoders (see section 3.1.5) and their nonlinear

activation functions to outperform PCA in discovering a suitable latent space for

the state variable x. Additionally, we train a surrogate neural network to learn the
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temporal mapping between two successive latent states. In addition to allowing la-

tent space data assimilation, this data-driven model is cheap to apply compared to

its numerical full space counterpart. This novel data assimilation framework offers

the formidable advantage of being computationally highly efficient while providing

the potential for more accurate analysis compared to full-space assimilation. These

points are theoretically supported and will be elaborated on later in this chapter.

Building on the work of Peyron et al. (2021), subsequent publications (Amen-

dola et al., 2021; Cheng et al., 2022b,a; Yoon and Kadeethum, 2022; Silva et al.,

2022; Akbari et al., 2023; Mücke et al., 2024) have further explored these concepts

across different applications.

Before exploring the specific features of these works, we present RODDA (a

Reduced Order Deep Data Assimilation model), a methodology proposed by Casas

et al. (2020), which innovatively combines reduced-space representations, data as-

similation, and deep learning. While not being exactly aligned with the idea of

latent space data assimilation, the work Casas et al. (2020) is a first step into this

direction. The primary aim of RODDA is to enhance the accuracy of Computa-

tional Fluid Dynamics (CFD) simulations, by learning the misfit between outputs

from the CFD model and the analysis returned by the 3D-Var algorithm (see sec-

tion 2.1.2). Coupling the physical CFD model with a trained LSTM allows RODDA

to produce accurate forecasts at a low cost. The computational burdens induced by

the demanding numerical model, the DA algorithm and the neural network train-

ing, led the authors to introduce two distinct PCA-based reduced-spaces: one for

the CFD model predictions and another for the DA output states. The combination

of the reduced-spaces with the LSTM network yields a speed-up gain of 8 × 102,

compared to the original data assimilation procedure. RODDA methodology is

applied to a real-case air pollution scenario in South London. The CFD numerical

simulations are carried out by the open-source computational fluid dynamics code

Fluidity(1) (Davies et al., 2011). Contrary to Peyron et al. (2021), the reduced-

space solely serves the aggregation of the numerical model output with the neural

network misfit inference, but the assimilation remains in the full space. Addition-

ally, Casas et al. (2020) rely on PCA to create two distinct reduced-spaces, while

Peyron et al. (2021) make the most of autoencoders to represent the input phys-

ical state into a unique low-dimensional space. This work therefore remains very

distinct from our approach both in the objective and implementation strategy.

(1)https://fluidityproject.github.io/

https://fluidityproject.github.io/
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Similarly to our approach, Amendola et al. (2021) performs data assimilation

within the latent space of a convolutional autoencoder and train an LSTM network

to propagate the latent states forward in time. Although the data assimilation

framework and principles are similar to our method, there are some key differences

worth mentioning. Specifically, in their approach, the observations are mapped

to the latent space, introducing an additional source of errors compared to our

methodology. In their process, the observations yk ∈ Rm are first interpolated to

form ŷk ∈ Rn, which are then mapped into the latent space by the encoder. The

observation error covariance matrix and model error covariance matrix are also

empirically computed within the latent space, by considering samples of s model

states and s observation vectors. Mapping the observations along with the error

covariance matrices into the latent space introduces additional errors into the as-

similation process compared to our approach. Moreover, our choice to employ an

ensemble Kalman Filter with a model error is more challenging and closely aligns

with operational data assimilation systems than the standard Kalman filter.

The work of Cheng et al. (2022b) builds strongly on Amendola et al. (2021), as

they also map observations and error covariance matrices to the latent space. One

distinctive element in their work is the combination of PCA with the autoencoder

to produce an accurate low-dimensional representation of the input data. They

employ a 3D-Var cost function, formulated within the latent space. Again, map-

ping the observations and error covariance matrices to the latent space leads to

approximations and, consequently, errors compared to our latent data assimilation

approach. The same authors extended this work to heterogeneous observations in

Cheng et al. (2022a).

In the continuation of our work, Yoon and Kadeethum (2022) performs latent

space data assimilation for real-time forecasting in the context of geologic carbon

storage. They rely on a convolutional variational autoencoder (see section 3.1.5) to

represent 2D distribution of static inputs and aggregate them with dynamic data

to perform the time propagation with a LSTM model. Similarly, Akbari et al.

(2023) train a recurrent surrogate model within a reduced-space obtained by PCA,

to perform a latent space Kalman filter analysis, in the context of Boussinesq flows.

One important distinctive aspect of our approach lies in that our autoencoder

and surrogate are jointly trained together, which has demonstrated superior re-
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sults compared to sequential training. Notably, Amendola et al. (2021); Cheng

et al. (2022b,a); Mücke et al. (2024) train the autoencoder first and the surrogate

afterwards.

4.2 Latent space data assimilation methodology

As pointed out in chapter 2, achieving cost-effective data assimilation in Earth sys-

tem modeling is crucial, especially in this era of big data where huge quantities of

observations are available. Moreover, time integration models that propagate the

analysis estimate forward in time represent major computational burdens in data

assimilation. They are currently a strong limiting factor to increasing the number

of ensemble members, especially in large-scale applications like weather forecasting.

Resorting to a surrogate neural network that emulates the effects of the physical

solver while leveraging rapid GPU computations offers a promising route to faster

and potentially more accurate data assimilation forecasts. Besides, in the context

of latent data assimilation, mathematically defining a physical model within the

reduced-space that can propagate latent variables is far from trivial: the latent

space indeed results from a stochastic optimization process, which precludes mak-

ing assumptions about its physical/mathematical properties. Therefore, instead of

relying on the knowledge-based model to propagate the analysis forward in time

(by applying the decoder, the physical model and the encoder), it is advantageous

to develop a surrogate network trained to learn the latent time-stepping operation.

Our methodology thus involves coupling an autoencoder with a surrogate neural

network to perform the assimilation along with time propagation within the latent

space, eliminating the need to utilize the physical model.

We therefore leverage the capability of neural networks to discover reduced-

space representations and to approximate physical dynamics, integrating these

methods into our data assimilation framework. More precisely, we exploit the

latent structure provided by autoencoders (see section 3.1.5) to design an ensem-

ble transform Kalman filter (see section 2.2.2.2) operating within a reduced-space,

while being faster and more accurate than its original full space version. The model

dynamics is also propagated within this latent space using a surrogate neural net-

work. An innovative iterative training approach enforces the surrogate to be stable

over time. We adapt the ETKF-Q algorithm (refer to section 2.2.2.3) to include the

trained encoder, decoder surrogate networks, thus establishing the ETKF-Q La-

tent (ETKF-Q-L) algorithm (Peyron et al., 2021). Our approach is tested on a
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tailored instructional version of the Lorenz96 equations (Lorenz, 1996) and on the

quasi-geostrophic model from the Object-Oriented Prediction System (OOPS(2))

framework, developed collaboratively by ECMWF and Météo-France.

A key aspect of our methodology involves utilizing an autoencoder to identify

a low-dimensional representation of the state space data. This allows for data as-

similation within a reduced-space, thereby speeding up computations and reducing

memory storage usage, while offering the potential for accuracy improvements.

Figure 4.2.1 illustrates how an autoencoder combined with a surrogate neural

network can represent a physical dynamics x(3) into a latent space, and propagate

the corresponding latent variable z. The decoder ensures that any latent state

zk can be mapped back to the physical space. For the sake of simplicity, the au-

toencoder and surrogate are depicted as feed-forward neural networks, however,

depending on the application, other choices of architectures are possible (convolu-

tional networks, LSTM, graph neural networks, etc.).

(2)https://www.ecmwf.int/en/elibrary/77561-oops-common-framework-research-and-operations
(3)Unlike in chapter 2 and chapter 3, where distinct notations are used for the dimension

of x, we will now use n for the remainder of the manuscript. This choice is driven by
the fact that neural networks now serve the purpose of data assimilation, which allows us
to drop the notation Nx in favor of the common notation n to denote the dimension of
vector x.

https://www.ecmwf.int/en/elibrary/77561-oops-common-framework-research-and-operations
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Input Layer Latent Representation Output Layer

E (encoder) D (decoder)

xk ∈ Rn

zk zk+1

x̃k ∈ Rn

S (surrogate model)

Rℓ

Figure 4.2.1: Illustration of the forward propagation of the physical state xk

through the latent space of an autoencoder. The encoder maps xk to its latent
representation, denoted by zk, which is then propagated one step in time with the
surrogate network S, yielding zk+1. This forecast latent variable is decoded to get
the associated physical state vector x̃k+1, which is an approximation of the ground
truth xk+1.

4.2.1 Defining an appropriate latent dimension

By considering training an autoencoder on a physical process, we implicitly assume

that the phenomenon possesses an underlying low-dimensional dynamics, allowing

the full physical space to be accurately recovered from a limited number of latent

dimensions.

Within the framework of this thesis, we consider a physical system of size n

for which a latent space of lower dimension ℓ is deemed to exist and in which the

observed dynamical system can be described. Our encoder maps from Rn to Rℓ,

whereas the decoder performs the reverse operation. We emphasize that there is

absolutely no reason for the latent space of dimension ℓ produced by the autoen-

coder to be unique. The loss function used in the training promotes coherence

between the triplet consisting of the decoder, encoder, and latent space on the one

hand, and the data on the other hand. Whenever one particular latent space is

discovered (the network is completely free in how it designs the latent space), other

latent spaces exist as well and can be simply obtained by transformations such as
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rotations or changes of scale. We remind the expression of the MSE loss function

for autoencoders, as firstly introduced in equation (3.10):

LAE (xk; θE ; θD) =
1

n
∥xk −D(E(xk))∥22, (4.1)

where xk denotes the state variable at time tk, θE is the encoder’s parameters and

θD represents the weights of the decoder.

A key question that naturally arises when training an autoencoder, is whether

the physical process under consideration can be represented in a lower dimensional

space. There is indeed no guarantee that an arbitrarily chosen dynamical system

can be accurately mapped back and forth from/to a smaller space.

A first relevant indicator to determine whether a reduced-space representation ex-

ists, and if so, to assess a suitable size for the latent space, is the principal component

analysis, which is a widely used statistical technique for dimensionality reduction

and feature extraction. In the context of latent space data assimilation, it is there-

fore possible to accurately represent the original data with only a few vectors as

long as most variables are linearly correlated. For example, by selecting only the

top eigenvectors that capture a cumulative explained variance threshold (e.g., 90%

or 95%), we can project the full-space data onto these vectors without significant in-

formation loss. This approach is particularly useful for visualizing high-dimensional

data, as often only the first two or three eigenvectors are needed for effective 2D/3D

representations.

Plotting of cumulative explained variance against the number of eigenvectors

can therefore provide a first insight into a possible latent dimension. However,

since autoencoders take advantage of nonlinear transformations, their information

compressing capability often go beyond the one of PCA. In chapter 5, we calculate

the PCA components for the Lorenz96 and quasi-geostrophic datasets and derive

the reconstruction scores for different reduced-space dimensions. Alongside these

curves, we also plot the reconstruction performances of autoencoders trained for

the same range of low dimensions. This comparison allows us to comprehensively

assess the relative performances of PCA and autoencoders, enabling us to make

an informed decision when selecting the optimal latent dimension for latent space

data assimilation. For linearly dependent variables, a linear autoencoder (without

activations) performs similarly to PCA (Hinton and Salakhutdinov, 2006; Bourlard

and Kamp, 1988; Baldi and Hornik, 1989; Plaut, 2018). More specifically, the op-
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timal weight matrices of a linear autoencoder, and interestingly, of an autoencoder

with sigmoid activations as well, match those of the PCA solution.

Since our aim is to perform sequential data assimilation within the latent space

of an autoencoder, it is also crucial to take into account DA theory aspects regarding

possible important subspaces.

As developed in the introduction of chapter 2, data assimilation is particularly

relevant when dealing with chaotic dynamical systems, as encountered in weather

forecast or in geophysical applications. Understanding how physical chaotic be-

haviors can influence the outcome of a data assimilation algorithm is therefore of

primary importance. A dynamical system x ∈ Rn with an initial state x0, is said

to be chaotic if for any perturbation δx0, however small, the resulting perturbed

system describes a considerably different trajectory than the original variable x(t),

after a finite number of time steps. This does not mean that the norm of the dif-

ference between the two dynamics keeps increasing over time, but rather that, at

some point in time, the knowledge of the perturbed dynamics does not provide any

clue about the state of the exact trajectory at the same time step. In particular,

most studied chaotic systems have one or more attractor(s), so that the dynamics

of various close initial conditions will describe very similar trajectories and cover

much the same space regions, but without any global coherence or synchronicity

(at least after a finite number of time steps). As a result, a chaotic dynamics does

not allow for long-term predictions from any inexactly known initial state.

Contrary to what we could intuitively imagine, chaotic systems do not rely on

stochasticity as they are fully deterministic, e.g., the Lorenz96 equations (Lorenz,

1996).

Within the framework of data assimilation, studying and quantifying how the

initial error δx0 will evolve over time is therefore a significant subject. The insight

we provide are based on the detailed work of Carrassi et al. (2022). Let us consider

an ordinary differential equation (ODE) of the form:

dx

dt
= f(x,σ), (4.2)

where x ∈ Rn is the state variable and σ is a set of parameters.

From equation (4.2), we can derive a subsequent ODE that approximates the

evolution of the perturbation δx(t) over time, given that δx0 is sufficiently small
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and smooth:

dδx

dt
≈ ∂F

∂x|x(t)
δx. (4.3)

At any time t, computing δx(t) involves a matrix operatorM(t,x(t0)) ∈ Rn×n -

hereafter simply denoted byM - from which we can derive the so-called Lyapunov

vectors and Lyapunov exponents, that play a major role in the understanding

of error growth and error decay directions and magnitudes over time from δx0.

Given t0 ∈ R+, the Oseledets theorem (Kuptsov and Parlitz, 2012) states that

the following limit, denoted by S, exists:

S = lim
t→+∞

(
MTM

)1/(t−t0)

. (4.4)

The eigenvectors of S are called the forward Lyapunov vectors (Legras

and Vautard, 1996) and the logarithm of their eigenvalues are the Lyapunov ex-

ponents. While the forward Lyapunov vectors change over time - as matrix M

depends on both t and x(t0) -, and therefore define local properties of the dynam-

ics, the Lyapunov exponents are a limit computed when t → +∞, independent

of x(t0), and are thus global properties of the flow, characterizing how much the

dynamical system is asymptotically stable/unstable. More precisely, the Lyapunov

exponents larger than 0 represent the average number of unstable directions, i.e.,

the dimension of the space within which any error to the state dynamics will, in

average, grows exponentially over time. Likewise, the negative Lyapunov exponents

relate to the stable directions, namely the subspace for which perturbations asymp-

totically decay across time. Regarding the null Lyapunov exponents, they define

the so-called neutral space. Chaotic systems are therefore characterized by having

at least one positive Lyapunov exponent.

The multiplicative ergodic (MET) theorem as presented in (Barreira and Pesin,

2002, Theorem 2.1.2) states that we can also define an equivalent limit to equa-

tion (4.4), denoted by S
′
, by considering

(
MMT

)1/(t−t0)

when infinitely going

backward in time:

S
′

= lim
t0→−∞

(
MMT

)1/(t−t0)

. (4.5)

The MET demonstrates that S and S
′

share the same eigenvalues, but that
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their eigenvectors are different and therefore named the backward Lyapunov

vectors. While forward Lyapunov vectors are suitable to detect directions of ex-

ponential error growth over time, the backward Lyapunov vectors track the sub-

space of exponential error decay. Additionally, it is important to explicitly mention

that the unstable, neutral and stable subspaces are not fixed, and therefore evolve

across time. The covariant Lyapunov vectors - which span the Oseledets sub-

spaces (Carrassi et al., 2022), themselves defined from the forward and backward

Lyapunov vectors - align with the unstable, neutral and stable subspaces according

to their associated Lyapunov exponents.

Understanding the role of the unstable, neutral and stable susbpaces on the

assimilation process, is therefore key to further improve current DA algorithms and

achieve better accuracy and efficiency (Bocquet et al., 2017; Bocquet and Carrassi,

2017; Gurumoorthy et al., 2017; Grudzien et al., 2018a,b; Carrassi et al., 2022).

When assuming the observation and model operators to be linear, the model

operator to perfectly describe the dynamics, and their associated noises to be Gaus-

sian, theoretical results exist for both the Kalman filter and the EnKF algorithms.

More precisely, we can prove that the forecast and posterior error covariance ma-

trices asymptotically conform to the unstable-neutral subspace, i.e., the column

space of those matrices collapses to the directions of the forward Lyapunov vectors

associated with the non-negative Lyapunov exponents. This means that the assimi-

lation process, which essentially aims to correct erroneous forecasts, asymptotically

occurs within the unstable-neutral subspace. In ensemble data assimilation, it is

important that the number of members is at least equal to the dimension of this

unstable-neutral space. Complementary results about the rate of converge of the

eigenvalues of P k (that is related to the Lyapunov exponents), the dependence

of P k to P 0, and sufficient conditions for P k to forget about P 0 are also known

(Carrassi et al., 2022; Gurumoorthy et al., 2017; Bocquet et al., 2017; Bocquet and

Carrassi, 2017). Mathematical results can also be derived when the model is not

perfect anymore (Grudzien et al., 2018a,b). When the dynamics is nonlinear, nu-

merical evidences tend to confirm the results known for the linear case (Carrassi

et al., 2022).

As we will be referring to it in chapter 5, we briefly introduce the Kaplan and

Yorke conjecture (Kaplan and Yorke, 1979). In chaos theory, the Kaplan-Yorke

dimension, also known as the Lyapunov dimension quantifies the complexity of
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strange attractors. An attractor is said to be strange if it has a fractal structure,

meaning its Hausdorff dimension (Hausdorff, 1918) is a non-integer. For example,

the Lorenz63 system as defined in equation (5.1), has a strange attractor of di-

mension 2.06. The Kaplan-Yorke dimension DKY is defined using the Lyapunov

exponents of the system. For a system with n Lyapunov exponents λ1, λ2, . . . , λn

sorted in descending order (λ1 ≥ λ2 ≥ · · · ≥ λn), the Kaplan-Yorke dimension is

given by:

DKY = j +

∑j
i=1 λi

|λj+1|
, (4.6)

where j is the largest integer such that the sum of the sum of the first j Lyapunov

exponents is non-negative, that is:

j∑
i=1

λi ≥ 0 and

n∑
i=j+1

λi < 0.

The conjecture has been proven for two-dimensional dynamical systems and for

a substantial class of stochastic systems. Generally, the Kaplan-Yorke dimension

is known to be an upper bound for the Hausdorff dimension. While it is possible

to construct contrived counterexamples, it is widely believed that the conjecture

holds true for most “generic” dynamical systems.

Principal component analysis and Lyapunov stability theory provide valuable

insights and mathematical tools for defining the latent space dimension. PCA,

along with autoencoder reconstruction curves, offers a visual method to select ap-

propriate latent dimensions. This selection ensures a number of degrees of freedom

that guarantee faithful data reconstruction while significantly enhancing computa-

tional speed and reducing memory costs.

The intersection of PCA and chaos theory thus allows us to define a latent

dimension that harmoniously balances the requirements of accuracy and speed,

potentially outperforming standard full space assimilation in both criteria.

4.2.2 Searching for a suitable latent space: PCA and autoen-

coder study

Before delving into the theoretical motivations and practical implementations of

latent data assimilation, we first provide some insights into autoencoder learning.
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Specifically, we consider a two-layer autoencoder with linear activation functions

and no bias, and derive optimal weight matrices for the encoder and the decoder,

under different scenarios. The cost function for our optimization problems is the

MSE. We show that there are similarities between PCA and the optimal weights

of linear autoencoders. The mathematical details are provided in appendix B.

Recently, we noted that our study on the optimal solution for autoencoders’ weights

had already been investigated by Bourlard and Kamp (1988), Baldi and Hornik

(1989), and more recently by Plaut (2018). However, we believe it is important

and relevant to explicitly present the mathematical connections we derived between

PCA and linear autoencoders in this manuscript.

4.2.2.1 An introductory case: PCA

Let us first properly define principal component analysis (PCA).

In 1901, the seminal work of Pearson (1901) early introduced what would later

become PCA in 1933, when Hotelling (1933) extended Pearson’s work and formal-

ized PCA in its modern matrix decomposition form. PCA yields a basis of sorted

orthogonal vectors along which the variance of the data is maximized. With this

orthogonal coordinate system, PCA removes correlations, so that each basis vector

defines a single feature of the total information that is uncorrelated with the others.

By avoiding redundancies and disentangling correlated variables, PCA maximizes

the spread of the points in the new basis, along with the amount of information

held by each vector. The basis corresponds to the eigenvectors of the covariance

matrix computed from the standardized data. They are sorted in descending order

of their eigenvalues, so that we can quantify the percentage of information - here,

the percentage of explained variance - carried by each vector of the basis.

Let us consider an ensemble X ∈ Rn×m containing m samples, each of dimen-

sion n: X = [x1,x2, . . . ,xm]. We assume m ≪ n, which is typically encountered

in data assimilation.

The covariance matrix associated with X is computed as follows:

C =

(
X − 1

m
X11T

)(
X − 1

m
X11T

)T

(4.7)

We denote by Ψ ∈ Rn×n the matrix composed of the column-wise concatena-
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tion of the eigenvectors of C sorted in descending order of their eigenvalues. Given

r < n, we denote by Ψr the restriction of Ψ to its first r columns. Thus, we have

Ψr ∈ Rn×r.

Let us consider ℓ such that ℓ ≪ n. PCA can provide an optimal ℓ-dimensional

representation of the data by applying matrix ΨT
ℓ to the centered input samples.

Let X ′ denote a validation dataset made up of m′ samples. To represent X ′

in a ℓ-dimensional space, we compute the following:

X ′
ℓ = ΨT

ℓ

(
X ′ − 1

m′X
′11T

)
(4.8)

An approximation of the original data, denoted by X̃ ′ can be obtained from

X ′
ℓ, by performing the reverse operation:

X̃ ′ = ΨℓX
′
ℓ +

1

m′X
′11T (4.9)

PCA is considered an optimal linear transformation, defined as the solution of

the following optimization problem:

max
Ψℓ∈Rn×ℓ

ΨT

ℓ Ψℓ=Iℓ

m∑
i=1

∥∥∥∥∥∥ΨT
ℓ xi −

1

m

m∑
j=1

ΨT
ℓ xj

∥∥∥∥∥∥
2

2

(4.10)

which is also equivalent to the following one:

max
Ψℓ∈Rn×ℓ

ΨT

ℓ Ψℓ=Iℓ

Tr

[
ΨT

ℓ X

(
Im − 1

m
11T

)
XTΨℓ

]
(4.11)

4.2.2.2 Linear autoencoder to find a reduced-subspace

1-dimensional case:

To better understand how autoencoders learn and determine the optimal so-

lution matrices that lead to the best reconstruction score, we start with a simple

case where the dimension of the reduced-space is one, and the unknown is a single

vector (as opposed to regular autoencoders for which the encoder and decoder have

distinct variables).
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We aim to find a linear mapping u1 : Rn → R that best represents X ∈ Rn×m

in a 1-dimensional space, under the constraint uT
1 u1 = 1 (i.e., u1 is a unit vector).

Mathematically, the problem we define can read:

u∗
1 = arg min

u1∈Rn s.tuT
1 u1=1

∥∥u1u
T
1X −X

∥∥2
F

(4.12)

where ∥.∥F denotes the Frobenius norm.

The solution to equation (4.12) is the unit vector associated with the largest

eigenvalue of matrix C = XXT . Therefore, it matches the PCA solution. the

mathematical derivations leading to this result can be found in appendix B.1.

We now consider the scenario where we add one degree of freedom to the op-

timization problem defined in equation (4.12) by introducing variable v1. The

aim here is to better fit the structure of an autoencoder, for which the encoder

and the decoder weights are distinct matrices. We therefore define the following

optimization problem, with u1 ∈ Rn×1 and v1 ∈ Rn×1:

u∗
1,v

∗
1 = arg min

u1,v1∈Rn×1

∥∥u1v
T
1X −X

∥∥2
F

(4.13)

We can mathematically derive that a solution of equation (4.13) is a pair

(u∗
1,v

∗
1) such that u∗

1 is the eigenvector of C = XXT associated with the largest

eigenvalue, and v∗1 is any vector of Rn such that (v∗1)
T
u∗
1 = 1. Mathematical details

are provided in appendix B.3.

ℓ–dimensional case

We extend our previous analysis from appendix B.1 to the more realistic case

when the dimension of the reduced-space is an arbitrary value ℓ within the range

J1, nK. Let us consider U ℓ ∈ Rn×ℓ and define the following minimization problem:

U∗
ℓ = arg min

U ℓ∈Rn×ℓ s.tUT

ℓ U ℓ=Iℓ

∥∥∥U ℓU
T
ℓ X −X

∥∥∥2
F

(4.14)

If we denote by λ∗
1, . . . , λ

∗
ℓ the ℓ largest eigenvalues of C and u∗

1, . . . , u
∗
ℓ their

associated eigenvectors, the solution of equation (4.14) is the following pair of ma-
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trices:

U∗
ℓ , Λ

∗ =


...

... . . .
...

u∗
1 u∗

2 . . . u∗
ℓ

...
... . . .

...

 ,


λ∗
1 0 . . . 0

0 λ∗
2 . . . 0

...
...

. . .
...

0 0 . . . λ∗
ℓ

 (4.15)

Here again, we match the PCA solution. Mathematical details to derive this

solution are provided in appendix B.2.

A standard autoencoder represents the input data within an ℓ-dimensional la-

tent space, where ℓ is set between 1 and n, and is generally much lower than n.

Unlike PCA, which uses a single mapping Ψℓ to convert physical space data into

their latent versions and vice versa, an autoencoder relies on two distinct opera-

tors: the encoder and the decoder. We now mathematically define an optimization

problem that fits the autoencoder structure, by setting U ℓ ∈ Rn×ℓ and V ℓ ∈ Rn×ℓ.

The optimization problem is given by:

U∗
ℓ ,V

∗
ℓ = arg min

U ℓ,V ℓ∈Rn×ℓ

∥∥∥U ℓV
T
ℓ X −X

∥∥∥2
F

(4.16)

U ℓX comprises eigenvectors of C and Λ holds their related eigenvalues. Note

that W and C share the same eigenvalues. Thus, the optimization problem is

equivalent to searching for U∗
ℓ and V ∗

ℓ such that Tr
(
(V ∗

ℓ )TCU∗
ℓ

)
is the sum of the

ℓ largest eigenvalues of C.

4.2.3 Surrogate networks to propagate the latent dynamics

We aim to train a surrogate network to perform time propagation of the model

dynamics within the latent space obtained by the autoencoder (AE). Therefore,

our surrogate network is trained using encoded data as input and produces the

corresponding latent forecasts as output.

In the architecture of the surrogate, we found it decisive to use so-called skip-

connections (He et al., 2016) which is now a common and good practice. This

consists in adding the result of layer i to the one of layer i + 1 in the form

z = z + layeri(z). In this way, we predict the increment needed to reach zk+1

from zk rather than the raw output directly. We go a step further in using the

updated version of skipconnections proposed by Bachlechner et al. (2021) that per-

forms better: z = z+αi× layeri(z) where αi are trainable parameters. The better
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results obtained when training the surrogate with versus without the modulation

parameters αi, clearly reveal that they are clearly beneficial. Figure 4.2.2 exposes

the architecture of the surrogate network.
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n

Figure 4.2.2: Architecture of the surrogate network based on residual blocks (He
et al., 2016), and more precisely on an updated version of them Bachlechner et al.
(2021). The network consists of r layers of dimension ℓ, followed by an activation
function: each activation is generally meant to be nonlinear, except for the last layer
for which we use the identity function. Network’s parameters αi are multiplicative
coefficients that weights the residual vector at layer i, before it is summed to the
input. Looping back after the summation operator allows a depiction of the network
in a concise form.

4.2.3.1 Temporal stability of the surrogate networks

When performing time propagation with a numerical or data-driven model, ensur-

ing the long-term stability of forecasts is crucial. In NWP, it is important to be

able to generate medium and long-range predictions, not only to simply forecast the

weather but also to provide insights into various possible weather scenarios through

ensemble forecasts. Even though the quality of predictions naturally degrades over

time, ensemble members can still indicate weather tendencies. Therefore, it is de-

sirable to have stable data-driven models. In addition to accuracy, stability is thus

a significant criterion for determining the relevance of a given model.

To achieve stable neural networks, we consider two primary approaches: a

chained loss training and Lipschitz neural networks.

We assess the performance of our data-driven latent models, by computing and

plotting different metrics and scores, later detailed in section 5.1.3.
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Chained loss

Similar to the AE, a straightforward approach would be to train the surrogate

network using an MSE loss function as follows:

LSur(xk,xk+1; θS) =
1

n
∥xk+1 − T (xk)∥22, (4.17)

where xk,xk+1 ∈ Rn are the state vectors at time tk and tk+1, respectively and the

operator T is such that T (.) = D(S(E(.))) with E , S and D denoting the encoder,

the surrogate and the decoder, respectively.

Nonetheless, as shown later in section 5.1.3, training our surrogate network

with equation (4.17) may not yield a stable solution. This is especially easy to un-

derstand when the dynamics under consideration is chaotic, as is often encountered

in data assimilation. In this case, if the nonvanishing components of the dynamics

are not represented with enough accuracy, the surrogate dynamics is expected to

be of insufficient quality. This effect is aggravated when the original dynamics ex-

hibits conservative components; if the surrogate dynamics does not capture these

components accurately enough, nonphysical unstable subspaces may occur, making

the latent space time stepping with the surrogate inappropriate for DA.

Issues related to stable NNs approximation of time stepping methods have

already been investigated in the literature, albeit outside of our DA context. They

have been linked to exploding or vanishing gradients issues as well as the robustness

of NNs. Haber and Ruthotto (2017); Haber et al. (2019) obtain some insight in

this direction by proposing groundbreaking methods to make deep neural networks

stable. However, the problem they address is not exactly the one we are looking

at: they focus on the robustness of deep neural networks to input perturbations,

on their capability to distinguish between two initial vector states, that is not to

bring both of them to 0 nor cause them to diverge.

Within the framework of DA, the presence of non-physical unstable dynamics

components is controlled by using a simple penalty approach involving a technique

we now describe.

Our method relies on a chained loss function (Peyron et al., 2021), meaning

that we train the surrogate to predict c successive states to enforce stability. In

practice, given xk ∈ Rn, the encoder yields zk ∈ Rℓ. Then, the surrogate outputs
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zk+1, . . . zk+c which are all decoded afterwards and their distances to the ground-

truth states are measured through a custom loss function defined as follows:

LSur(xk,xk:k+C ; θS) =

C∑
c=1

1

n
∥xk+c − T c(xk)∥22, (4.18)

where T c is a straightforward extension of operator T and is defined as T c(.) =

D(Sc(E)), and xk:k+C denotes the sequence [xk,xk+1, . . . ,xk+C ]. The notation Sc

indicates that the surrogate is applied c times in a row over the given data.

One remaining question is the number of iterations C one must perform to

achieve this stability criterion: according to our numerical experiments, just 2 con-

secutive predictions already guarantee a stable behaviour. In the numerical tests

we performed, we picked this parameter in {2, 3, 4}.

Lipschitz neural networks

Lipschitz neural networks are particularly relevant for developing stable sur-

rogate networks because the Lipschitz property ensures that the largest singular

value of each weight matrix is bounded. This limitation reduces the risk of the

network generating directions of exponential error growth. Moreover, the lower the

Lipschitz constant, the more stable the resulting trained network becomes.

Let us consider a function g defined by:

g : X → Y

x 7→ g (x) , (4.19a)

where X and Y are two metrics spaces, with metrics dX and dY respectively.

For any k ≥ 0, a function g is considered k-Lipschitz if, for all x1,x2 ∈ X :

dY(g(x1) − g(x2)) ≤ k × dX (x1 − x2), (4.20)

with k as the Lipschitz constant.

A neural network, being a function between two vector spaces (see equation (3.4a)),
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can thus be defined as a k-Lipschitz network if it adheres to this condition (Anil

et al., 2019).

The building block of Lipschitz neural networks is the 1-Lipschitz network. By

constructing a 1-Lipschitz network and scaling its output by any desired constant

k, we obtain a k-Lipschitz network. Similarly, we define the extended Lipschitz

network - abbreviated as ext-Lipschitz -, which consists in adding a regular (i.e.,

not a 1-Lipschitz) layer at the end of a 1-Lipschitz network. The term “extended

Lipschitz network” is used instead of “k-Lipschitz” to avoid confusion with the

strict mathematical definition of a k-Lipschitz function or network as described in

equation (4.20). This terminology also clarifies that, in our case, the exact Lipschitz

constant is not predetermined.

1-Lipschitz networks are of interest in the context of temporally stable data-

driven models because they ensure that the discrepancy between the predicted state

and the ground truth is bounded in norm by the perturbation to the initial state

xk. Specifically, the difference between S(xk) and S(xk + δk) is constrained by the

norm of δk, ensuring bounded variations and enhancing model reliability (the use

of index ‘k’ can be a bit misleading here, as it serves dual purposes in this para-

graph, both as a temporal index and a Lipschitz constant). The advantage of the

extended Lipschitz networks lies in the relaxation of the 1-Lipschitzness constraint,

while encouraging the Lipschitz constant to remain low.

To achieve a 1-Lipschitz constraint, every layer of a neural network, including

both affine transformations and nonlinear activations, must also be 1-Lipschitz.

This requirement primarily affects the weights since standard activation functions

like Sigmoid, ReLU, Leaky ReLU, and Tanh naturally adhere to the 1-Lipschitzness

property. The constraint on the network weights is closely tied to their spectral

norm, that is their largest singular value. The authors employ the Björck orthonor-

malization algorithm (Björck and Bowie, 1971) to the weight matrices, so that all

their singular values are equal to 1: it consists in computing the closest orthonormal

matrix of the input, in an iterative manner (Taylor expansion of the polar decompo-

sition). The algorithm has the desirable property to be fully differentiable, making

it particularly suitable for neural networks trainings. Besides, Björck method has

the advantage to preserve the norm of the gradients across layers during back-

propagation: Anil et al. (2019) indeed identified this property as key in order to

obtain expressive neural networks. Since most activations do not guarantee the

norm preservation of the gradient, the authors propose utilizing a specific activa-
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tion, called GroupSort (Chernodub and Nowicki, 2016; Anil et al., 2019).

Despite the constraints, the modified networks (especially those using Group-

Sort) can universally approximate Lipschitz functions. This is significant because

it shows that adding these constraints does not prevent the networks from being

able to learn a wide variety of functions.

In order to train 1-Lipschitz and ext-Lipschitz neural networks, we rely on the

open source Python API Deel-torchlip(4), developed by Serrurier et al. (2020).

Similarly to the chained loss, the utilization of 1-Lipschitz and ext-Lipschitz neural

networks enables to enforce the stability of the surrogate network.

While the chained loss function strategy is a statistical method that can only

affect certain directions of the latent trajectory, the 1-Lipschitz and extended Lips-

chitz networks impose global constraints, which makes them less flexible. However,

the autoencoders can still adapt the shape of the latent space to better accommo-

date these stringent Lipschitz constraints.

4.2.4 An all-at-once training strategy

As is often the case when optimizing functions of several variables, performing se-

quential optimization by groups of variables may be appealing since it reduces the

search space in each optimization step. However it generally leads to a suboptimal

solution. In our case too, numerical experiments (not reported in this manuscript),

showed that training both the AE and surrogate together gives better results than

training the AE first and then the surrogate. Since the quality of the AE influ-

ences the performances of the surrogate, such combined training allows them to

“communicate” and “share” information to learn more properly: the latent space

is designed to fit the surrogate time-stepping operation and vice versa. To achieve

this, we define a custom loss function with a weighting parameter ρ that balances

between equation (4.17) and equation (4.18):

L(xk,xk:k+C ; θE,D,S) = LAE(xk:k+C ; θE,D) + ρ× LSur(xk,xk:k+C ; θE,D,S), (4.21)

where θE,D,S and θE,D are shorts for θE ; θD; θS and θE ; θD respectively, and LAE(xk:k+C ; θE,D)

and LSur(xk,xk:k+C ; θE,D,S) are defined as follows:

(4)https://github.com/deel-ai/deel-torchlip

https://github.com/deel-ai/deel-torchlip
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LAE (xk; θE ; θD) =

C∑
c=0

1

n
∥xk+c −D(E(xk+c))∥22, (4.22)

and

LSur(xk,xk:k+C ; θE ; θD; θS) =

C∑
c=1

1

n
∥xk+c − T c(xk)∥22. (4.23)

4.3 Latent ETKF-Q (ETKF-Q-L)

Our goal with the ETKF-Q-L algorithm is to perform DA analysis within the latent

space of our autoencoder. Indeed, we now assume the existence of a n-dimensional

system possessing a latent representation of much lower dimension ℓ (i.e., ℓ ≪ n).

Algorithm 4.1 describes the changes we made to do so. When applied to an en-

semble, Hk is a columnwise operator. We highlight that ensemble E0 ∈ Rn×m is

first encoded into Z0 ∈ Rℓ×m and then all computations happen within the latent

space. To calculate the misfit vector dk = yk −Hk(xk), first the decoder D is used

to map the ensemble from the latent space to the full space, then the observation

operator Hk maps the decoded ensemble to the observation space. Therefore, we

do not need to perform any transformation to the observations: they remain in

their original space. Since time propagation is performed in the latent space, we no

longer refer to matrix Q but rather introduce Qℓ. Instead of using ∆k to represent

a deviation matrix, we refer to it as Γk in the case of the latent algorithm. For

simplicity, we assume that R = σ2
RIp and Qℓ = σ2

Qℓ
Iℓ. Standard deviation σQℓ

represents the error committed by the surrogate network within the latent space,

and is a tuned parameter of the data assimilation process.

The overall architecture of our DA framework is illustrated in Figure 4.3.1.



M. PEYRON - Latent space data assimilation in the context of deep learning 117

Algorithm 4.1: Latent ETKF-Q algorithm

Inputs:

Background ensemble Ef
0 =

{
x1
0, . . . ,x

m
0

}
∈ Rn×m ;

Observations {y0, . . . ,yT } ∈ Rp×(T+1) ;
Inflation parameter λ ∈ R.

Initialization:

Construct Um matrix such that
[

1m√
m
Um

]
is orthonormal ;

Define U =
[
1m

m
Um√
m−1

]
;

Define Z0 = E(E0) ;

1 for k = 0, 1, . . . , T do

Analysis step

// Mean and deviation matrix of forecast ensemble

2

[
zfk Γk

]
= Zf

k × U

// Calculate eigenpairs of the error covariance matrix

3

(
ΓkΓ

T
k +Qℓ

)
V k ≈ V kΛk

4 where V k ∈ Rℓ×(m−1) and Λk ∈ R(m−1)×(m−1)

// Reassign Γk accordingly

5 Γk = V kΛ
1/2
k

// Update ensemble with new statistics

6 Zf
k =

[
zfk Γk

]
× U−1

// Mean and deviation matrix of observation ensemble

7

[
yk Y f

k

]
= Hk

(
D
(
Zf

k

))
× U

// Compute transform matrix T k ∈ R(m−1)×(m−1)

8 T kT
T
k =

(
Im−1 +

(
Y f

k

)T
R−1Y f

k

)−1

// Compute wa

9 wa
k = T kT

T
k Y

f
kR

−1(yk − yk)

// Generate posterior ensemble

10 Za
k = zk1

T
m + λ× Γk

(
wa

k1m +
√
m− 1T k

)
Propagation step

// Forecast posterior ensemble

11 Zf
k+1 = Mk+1(Za

k)

12 end
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Observations

Physical states

Latent variables

Assimilation

Figure 4.3.1: Outline of the latent DA framework, depicting the connections be-
tween the physical, latent and observational spaces.

The strong difference between algorithm 2.6 and algorithm 4.1, is the reduction

of the computational space from Rn to Rℓ, which straightforwardly reduces both

the computational cost and the memory storage. In practice, our latent space is

ten times smaller than our full space.

4.3.1 Extending ETKF-Q-L to larger ensemble sizes

When performing data assimilation the latent space of an autoencoder, as discussed

in section 4.3, we have the flexibility to increase the number of ensemble members.

This is feasible because the surrogate network facilitates low-cost time propagation

(compared to the full space model), and the reduced dimensionality allows for com-

putationally manageable linear algebra operations.

In practice, the dimension of the latent space can be small enough that the num-

ber of members m can equal or even exceed ℓ. However, the ETKF-Q algorithm

(see Algorithm 2.6) from Fillion et al. (2020), and its latent variant ETKF-Q-L (see

Algorithm 4.1), typically do not support more ensemble members than the dimen-

sion of the state space. This limitation stems from the model error correction step

in these algorithms. Specifically, at line 3 of algorithms 2.6 and 4.1, a square root

approximation of the updated error covariance matrix is computed. If m ≤ n + 1
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(resp. m ≤ ℓ + 1), it is possible to compute the (m − 1) eigenpairs and define the

square root approximation V kΛk ∈ Rn×(m−1) (resp. ∈ Rℓ×(m−1)). However, when

m > n + 1 (resp. m > ℓ + 1), at most n (resp. ℓ) eigenpairs can be computed,

limiting the dimension of V kΛk to Rn×n (resp. Rℓ×ℓ) and resulting in a dimension

mismatch at the forecast ensemble update step at line 6.

We therefore modified the model error correction step of our algorithm, adopt-

ing a methodology that effectively handles cases where the number of members

exceeds the state space dimension. Our research led us to consider the square root

methods proposed by Raanes et al. (2015) that are part of the Python package

DAPPER(5) (which stands for Data Assimilation with Python: a Package for Ex-

perimental Research). DAPPER is an open-source Python package designed for

benchmarking the performance of data assimilation methods using synthetic twin

experiments. It enables the testing of different data assimilation techniques by

generating a synthetic truth from specified dynamic and observational models, and

comparing how well various methods estimate this truth. DAPPER supports the

development and assessment of data assimilation methods, providing valuable tools

for research and education in the field.

In Raanes et al. (2015), the authors detail three variants of the square root

method, namely SQRT-CORE, SQRT-ADD-Z, and SQRT-DEP, listed in in-

creasing order of complexity and performance. We provide mathematical develop-

ments only for the SQRT-CORE methodology; the other two variants build upon

the former.

The model is assumed linear and is therefore denoted by M . We aim to remain

consistent with the data assimilation notations introduced in chapter 2 as much as

possible, adopting notations from Raanes et al. (2015) only for variables not defined

in chapter 2. Notably, temporal subscripts are dropped as the analysis does not

depend on time.

Under the linearity condition, the propagation equation reads:

Ef = MEa +D, (4.24)

D = Q1/2Ξ, (4.25)

(5)https://github.com/nansencenter/DAPPER

https://github.com/nansencenter/DAPPER
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where Ξ = [ξ1, ξ2, . . . , ξm] and each ξi is independently drawn from the Gaussian

distribution N (0, In). Thus, the columns of D follow N (0,Q).

Common practice is to center D by subtracting the mean from every column

to eliminate the first-order sampling error. Consequently, we consider D to be

centered, ensuring that D1 = 0 (where 1 = [1, 1, . . . , 1]
T

).

Given equation (4.24), we aim to derive the expression of P f = Xf
(
Xf
)T

, the

ensemble estimator of the second order moment of ground truth xt. To save calcula-

tion time, we point out that variable Xf introduced in section 2.2.2.2 and defined

as
(
Ef − xf1T

)
/
√
m− 1, can also be computed by Ef

(
In − 11T /m

)
/
√
m− 1.

Also, we draw the reader’s attention to the fact that our variable Xf corresponds

to 1√
m−1

Af in Raanes et al. (2015)’s notations. For simplicity and consistency

with Raanes et al. (2015), we adopt the A notations in the following (which in-

clude A,Aa and Af ).

Derivation of P f is as follows:
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P f =
1

m− 1
Af
(
Af
)T

=
1

m− 1
Ef

(
Im − 11T

m

)(
Im − 11T

m

)T(
Ef
)T

=
1

m− 1
(MEa +D)

(
Im − 11T

m

)(
Im − 11T

m

)T

(MEa +D)
T

= M
1

m− 1
Ea

(
Im − 11T

m

)(
Im − 11T

m

)T

(Ea)
T

︸ ︷︷ ︸
=P a

MT +

1

m− 1
MEa

(
Im − 11T

m

)(
Im − 11T

m

)T

︸ ︷︷ ︸
=
(
Im− 11T

m

)
DT +

1

m− 1
D

(
Im − 11T

m

)(
Im − 11T

m

)T

︸ ︷︷ ︸
=
(
Im− 11T

m

)
(Ea)

T
MT +

1

m− 1
D

(
Im − 11T

m

)(
Im − 11T

m

)T

︸ ︷︷ ︸
=
(
Im− 11T

m

)
DT

= MP aMT +
1

m− 1
MAaDT − 1

m− 1
MEa1

=0Rn︷ ︸︸ ︷
1TDT

m
+

1

m− 1
D(MAa)

T − 1

m− 1

=0Rn︷︸︸︷
D1 1T

m
+

1

m− 1
DDT

= MP aMT +Q+
(
Q−Q

)
+

1

m− 1

(
MAaDT +D(MAa)

T
)
, (4.26)

where Q − 1
m−1DD

T . Besides, we mention here that the derivation of equa-

tion (4.26) shows that (Raanes et al., 2015, equation 26) holds a typo: there is

no minus sign in front the fourth term of the sum.

Ideally, and as pointed out by (Raanes et al., 2015, section 3.1),P f should

rather satisfy the following equation (which is the one verified by the estimators,

see equation (2.66)):
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P f = MP aMT +Q. (4.27)

We illustrate the problem of the classic by assuming the model to be linear,

but we aim to satisfy equation (4.27) whether the model is linear or not. In the

following, we therefore consider the general case where the model is M.

In accordance with the notations of Raanes et al. (2015), we denote by A (no

superscript) the anomalies related to the propagated ensemble before the model

error correction step. Then, variable Af represents the propagated ensemble after

noise inclusion(6).

Given that P a = 1
m−1A

a(Aa)
T

and P f = 1
m−1A

f
(
Af
)T

, equation (4.27) is

satisfied if Af meets the condition:

AfAf = AA+ (m− 1)Q (4.28)

However, finding a matrix A that verifies equation (4.28) is an ill-defined prob-

lem, since the rank of the left-hand side is at most m, while the right-hand side has

a rank of n (assuming Q is full-rank).

Raanes et al. (2015) thus defines the orthogonal projector onto the column space

of A, denoted by ΠA = AA+, where A+ is the Moore-Penrose pseudoinverse of A

(Moore, 1920; Penrose, 1955). The authors then introduce Q̂ = ΠAQΠA, a sym-

metric orthogonal projection of Q onto the column space of A. The SQRT-CORE

algorithm aims to satisfy the following modified equation instead of equation (4.28):

AfAf = AA+ (m− 1)Q̂ (4.29)

Equation (4.29) can be reformulated as:

AfAf = AGfAT , (4.30)

where Gf = Im + (m− 1)A+Q(Q)
T

.

As a result, in the SQRT-CORE algorithm, ones computes T f , a square root

matrix of Gf so that A = AfT f fulfills equation (4.29). Regarding the choice

(6)in algorithm 2.6 (resp. algorithm 4.1), we have made the choice of simply overwriting
variables ∆k (resp Γk).
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of T f , the authors recommend using a symmetric matrix for T f , as it has shown

advantageous properties (see (Raanes et al., 2015, sections 2.3 and 4)), such as pre-

serving the ensemble mean (Wang et al., 2004; Evensen, 2009b), confining the affine

subspace (Evensen, 2003), satisfying equality constraints, or minimizing ensemble

displacement (Ott et al., 2004; Hunt et al., 2007).

The difference between equation (4.28) and equation (4.29) lies in the term

(m− 1)[Q− Q̂], called “residual noise,” which the SQRT-CORE method does not

account for. To address this, the authors propose the SQRT-ADD-Z algorithm,

followed by SQRT-DEP to reintroduce statistical dependence.

Conclusion

Throughout this chapter, we have presented and discussed the most important

aspects of our latent data assimilation approach. Specifically, we have reviewed

the neural network architectures we employ, along with the adaption of the regular

ETKF-Q algorithm to operate within a latent space. Beyond these critical ele-

ments, chaos theory and PCA are fundamental in underpinning our methodology

and providing valuable insights into latent space data assimilation.

Dynamical systems theory emphasizes the importance of ensuring that the la-

tent dimension is at least equal to the dimension of the unstable-neutral subspace.

Ideally, an autoencoder should also capture some stable directions, as these are

crucial for the long-term dynamics and overall behavior of the system. Accurately

representing the unstable-neutral directions helps to correct the forecast state by

mitigating errors in these subspaces. Furthermore, since autoencoders are trained to

build a manifold that the state trajectory statistically adheres to, data assimilation

corrections will likely target the most error-sensitive directions. Like PCA, au-

toencoders efficiently disentangle complex, nonlinearly related variables into more

meaningful and simpler components. While full space data assimilation involves

linear combinations within a high-dimensional, nonlinear, and possibly multi-scale

dynamics, latent data assimilation, which operates on the core, potentially disen-

tangled and simplified, dynamics, is more likely to result in impactful corrections.

Data assimilation faces an inherent and insurmountable mathematical limitation

in that it relies on linear computations. Latent data assimilation, however, offers

a way to overcome this limitation by performing the assimilation directly within

meaningful underlying structures of the data, as illustrated in Figure 4.3.2, and
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later demonstrated by numerical experiments in chapter 5.

State space in Rn

y

xa1

xb

Latent space in Rℓ

xa2

xt

Figure 4.3.2: Comparison between full space DA and latent space DA (temporal
subscript is dropped here). Variables xb, xa1 , xa2 and xt denote the background
knowledge, the full space estimate, the latent estimate and the ground truth state,
respectively. We also assume Hk = In.



CHAPTER 5

Numerical experiments

In chapter 4, we presented the latent data assimilation approach and provided the-

oretical motivations for its computational efficiency and accuracy. In the following

sections, we demonstrate that this novel methodology meets our expectations using

two different instructive numerical models: in section 5.1, we present results ob-

tained for a tailored version of the Lorenz96 system, and in section 5.2, we present

those for the quasi-geostrophic model of the Object-Oriented Prediction System

(OOPS), a weather forecast framework developed collaboratively by ECMWF and

Météo-France(1).

In both section 5.1 and section 5.2, we begin by introducing and describing

the numerical system under consideration. We then determine a suitable latent

space dimension for the subsequent numerical experiments, based on PCA and the

number of positive Lyapunov exponents. Following this, we provide detailed infor-

mation about the neural network architectures, the dataset structure, the training

settings, and the performance of the trained network (comprising the autoencoder

and the surrogate). We then offer a comprehensive analysis of the surrogate’s sta-

bility according to various criteria. Lastly, we define data assimilation benchmark

experiments and draw conclusions for both latent space and physical space assim-

ilation. Additionally, we present results when model error correction is performed

using the SQRT-DEP method by Raanes et al. (2015), implemented in the DAP-

PER package.

(1)https://www.ecmwf.int/en/elibrary/77561-oops-common-framework-research-and-operations
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5.1 An augmented version of the Lorenz96 system

To demonstrate the efficacy of our latent data assimilation approach, we define a dy-

namical system that is, by design, exactly representable within a lower-dimensional

space. This is achieved by applying a nonlinear embedding to a chaotic 40-variable

Lorenz96 system, mapping it into a 400-dimensional space.

Edward Lorenz (1917–2008), a mathematician and meteorologist, is renowned

for his pioneering contributions to chaos theory. In 1963, he introduced what is

now known as the Lorenz63 dynamics, a set of three coupled ordinary differential

equations (ODEs):

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z) − y,

dz

dt
= xy − βz,

(5.1a)

(5.1b)

(5.1c)

where σ, β and ρ are system parameters typically assumed to be positive.

For certain parameter values, the system exhibits chaotic behavior: e.g., Lorenz

considered σ = 10, β = 8
3 and ρ = 28.

In 1996, Lorenz proposed the following dynamical system of arbitrary dimension

N ≥ 4:

d[x]i
dt

=
(
[x]i+1 − [x]i−2

)
[x]i−1 − [x]i + F, ∀i = 1, . . . , N (5.2)

with periodic boundary conditions [x]−1 = [x]N−1, [x]0 = [x]N and [x]N+1 = [x]1.

F is a forcing term, often set to 8 to induce chaos.

In equation (5.2), quadratic terms represent the advection that conserves the

total energy, the linear term is the damping through which the energy decreases,

and the constant term denotes the external forcing keeping the total energy away

from zero. The N variables may be thought of as values of some atmospheric quan-

tity in the N sectors of a latitude circle.
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Both Lorenz63 and Lorenz96 systems serve as exemplary and educational mod-

els, often used within the scientific community to test new methods or algorithms.

For instance, within the scope of our research, multiple papers cited in chapter 3

employ these models to validate their approaches, with Lorenz96 being more fre-

quently used than Lorenz63: Gottwald and Reich (2021b,a); Brajard et al. (2020);

Farchi et al. (2021b); Penny et al. (2022); Wikner et al. (2021); Frerix et al. (2021);

Fablet et al. (2023, 2021); Boudier et al. (2023).

For the purpose of our research, we developed what we term the augmented

Lorenz96 system based on the standard chaotic 40-dimensional model, ensur-

ing by design the existence of a latent space where the dynamics can be exactly

expressed. Our augmented Lorenz dynamics has therefore an inner latent dimen-

sionality of 40.

Specifically, we consider a dataset of 40-dimensional Lorenz96 simulations gen-

erated with a forcing term F set to 8 to induce chaos, integrated using a fourth-order

Runge-Kutta scheme. We define an orthonormal matrix O ∈ Rℓ×n that maps from

R40 to R400, artificially expanding the number of variables from 40 to 400. Sub-

sequently, we apply an element-wise nonlinear function, specifically an invertible

3rd-degree polynomial, to make the difficulty of discovering a 40-dimension latent

space by an autoencoder more challenging. Python implementations of these two

successive functions are provided in appendix C.1. We denote by F−1, the func-

tion that maps from the Lorenz96 system to the augmented system, and by F the

reverse mapping.

Figure 5.1.1 shows a 40-dimensional Lorenz96 dynamics from our dataset, along-

side its augmented counterpart. The upper plots depict the entire state vector

across time, while the bottom graphs offer a detailed look at six selected variables

from both systems, providing insight into the differences in dynamics and scale

between the standard and augmented models.

5.1.1 Latent space dimension

From a theoretical perspective, it is quite straightforward and natural to look for

a latent space of dimension 40, since the augmented dataset is built upon a 40-

variable chaotic Lorenz96 system. Furthermore, the mapping between the original

dynamics and the augmented one is bijective, meaning that all the information

held in R400 can be fully represented in R40. However, in real-life problems, it is
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Figure 5.1.1: Comparative visualization of a 40-dimensional Lorenz96 dynamics
alongside its augmented counterpart. In the top pair of images, the full state
vector is represented over time, with the left depicting the original Lorenz96 and
the right showing the augmented system. The bottom images offer a detailed look
at six selected variables from both systems.

pretty unlikely that one would know in advance the appropriate latent dimension

for properly representing the dynamics of interest.

Therefore, to validate this intuitive and natural choice, we demonstrate that

ℓ = 40 is consistent with PCA and autoencoder reconstruction analyses, as well as

with the number of positive Lyapunov exponents (see section 4.2.1 for theoretical

details).

First, PCA offers insightful information about the compression ratio achievable

by a linear transformation of the data. We perform PCA over latent dimensions

ranging from ℓ = 5 to ℓ = 100 with a step of 5. As we eventually aim to work

with neural networks solely, we also train autoencoders section 3.1.5 on the aug-
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mented data using the same latent dimensions as those employed for PCA. The

encoder layers sequentially reduce the dimension from R400 to Rℓ through interme-

diary sizes of 300, 200, and 150, with 0.2 slope Leaky ReLU activations, except for

the last layer, whose activation function is tanh. The decoder performs the reverse

operation, with the activation function of the last layer being the identity. This

comparison between PCA and autoencoders allows us to evaluate their representa-

tion performances.

Figure 5.1.2 reports the results obtained for the two methods in terms of MSE

scores on the training and test datasets. For both PCA and autoencoders, MSE

values decrease sharply up to ℓ = 40. Beyond this point, PCA scores continue to

decrease but at a much slower rate, while those of autoencoders stagnate, indicating

that more epochs would be required during training to achieve lower reconstruc-

tion errors. These results suggest that setting ℓ = 40 is the most relevant choice

in the context of our research: it indeed ensures the recovery of most of the orig-

inal information, while reducing the physical space dimension by a factor of 10.

Additionally, any latent dimension value larger than 40 does not offer significant

improvement, especially for autoencoders, which far outperform PCA with much

better reconstruction performances.
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Figure 5.1.2: Left: MSE reconstruction curves over train (solid curve) and test
(dashed curve) datasets for PCA (blue curve) and autoencoders (orange curve).
Right: the same plot, but with a log-scale on the y-axis.

Regarding the number of unstable and neutral directions of the augmented

data, they correspond to those of the underlying Lorenz96 dynamics, only the val-
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ues of the Lyapunov exponents and the Kaplan-Yorke dimension differ. Therefore,

by setting ℓ = 40, we ensure that the autoencoder can represent the unstable, neu-

tral and stable subspaces within the latent space. However, rather than directly

moving on to the neural network architecture, we think it is insightful and relevant

to provide some information about the chaotic behavior of the Lorenz96 system.

To compute the Lyapunov exponents, we use a dedicated module of the DAP-

PER package(2). The method involves considering an initial state x0 and adding

m orthonormal perturbations to it, thus defining an ensemble of m deviations (also

known as members). For a system of n variables, this approach can compute at

most m Lyapunov exponents, so that computing all of them requires setting m = n.

The initial state x0 is propagated through time to define the ground truth trajec-

tory. By also propagating the ensemble through time, we can compute the temporal

evolution of the perturbations. At every time step, the set of perturbation vectors

is reorthonormalized using the QR decomposition (Golub and Van Loan, 2013).

This step is crucial to prevent numerical errors and ensure accurate computation

of the Lyapunov exponents. The latter are tracked by storing the logarithm of the

absolute values of the diagonal elements of the upper triangular matrix from the

QR decomposition. To allow the method to converge, a sufficient number of time

steps has to be defined (here 40000).

In the left plot of Figure 5.1.3, we represent the number of positive Lyapunov

exponents along with the Kaplan-Yorke dimension (see section 4.2.1) of Lorenz96

systems whose dimensions vary from 5 up to 40. For each run, the number of

members is set to the dimension of the system, so that all the Lyapunov exponents

can be computed. We observe that the dimension of the attractor is always greater

than the number of chaotic directions. In the right plot of Figure 5.1.3, we show the

number of positive Lyapunov exponents with respect to the number of members in

the perturbed ensemble. We have that for a 40-dimensional Lorenz96 system, the

dimension of the unstable subspace is 13 and the Kaplan-Yorke dimension is equal

to 27.

(2)https://github.com/nansencenter/DAPPER/blob/cb357afed32cf81aad008d792fd55bf9c2e6a5c3/

dapper/mods/explore_props.py

https://github.com/nansencenter/DAPPER/blob/cb357afed32cf81aad008d792fd55bf9c2e6a5c3/dapper/mods/explore_props.py
https://github.com/nansencenter/DAPPER/blob/cb357afed32cf81aad008d792fd55bf9c2e6a5c3/dapper/mods/explore_props.py
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Figure 5.1.3: Left: number of positive Lyapunov exponents (blue curve) and
Kaplan-Yorke dimension (orange curve) with respect to the dimension of the
Lorenz96 system. Right: for a 40-dimensional Lorenz96 system, the number of
positive Lyapunov exponents as a function of the number of members.

In Figure 5.1.4, we plot the values of the 40 Lyapunov exponents, in decreasing

order. Below, we also provide the first 16 Lyapunov exponents (with a 2-digit pre-

cision): 1.68, 1.48, 1.31, 1.17, 1.01, 0.875, 0.743, 0.625, 0.488, 0.376, 0.262, 0.143,

0.0326, −0.0002, −0.0848. The dimension of the neutral subspace is therefore 0, as

there are no Lyapunov exponents equal or close enough to 0.
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Figure 5.1.4: Lyapunov spectrum of the 40-dimensional Lorenz96 system.
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The signs of the Lyapunov exponents remain the same from the Lorenz96 sys-

tem to the augmented one; however, their values do change. In Figure 5.1.5, we

plot the first 40 Lyapunov exponents in decreasing order. We also provide the

values of the first 16 Lyapunov exponents with a 2-digit precision (except for the

fourteenth exponent, for which we give a 3-digit round-off): 0.65, 0.56, 0.50, 0.45,

0.40, 0.34, 0.29, 0.25, 0.20, 0.14, 0.09, 0.06, 0.01, -0.003, -0.04, -0.09. As mentioned

earlier, for the augmented dynamics, the dimension of the unstable subspace is 13,

the one of the neutral space is 0, and the stable space comprises the remaining 387

dimensions. The Kaplan-Yorke dimension differs between Lorenz96 and augmented

Lorenz, being 27 in the former case and 25.3 in the latter.
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Figure 5.1.5: Lyapunov spectrum of the 400-dimensional augmented Lorenz96 sys-
tem.

In summary, the PCA and autoencoder analyses, along with the Lyapunov

spectrum, confirm that setting ℓ = 40 offers an excellent latent representation of

the physical dynamics. This choice also allows to capture the unstable and the

attractor subspaces, while reducing the dimensionality by a factor of 10.

5.1.2 Neural networks architectures and training settings

In the following, we present the exact neural architecture we train and subsequently

use for latent space data assimilation. We remind that the chained loss function
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we use for the trainings is defined in equation (4.21). Before detailing the specific

features we set, it is important to note that we tuned numerous hyperparameters in

order to find the architecture and the training settings that work best: the number

of hidden layers, the choice of activation functions, whether to normalize the data,

the batch size, the noise magnitude, the learning rate, the loss weighting parameter

ρ, and the number of forward steps C.

The encoder is made of four fully connected layers, each one followed by a 0.2

slope Leaky ReLU activation, except for the last layer, whose activation function is

tanh. These layers sequentially reduce the dimension from R400 to R40 through in-

termediary sizes of 300, 200, and 150. The decoder performs the reverse operation,

with the activation function of the last layer being the identity. Several variants

have been tested, and this configuration has proven to yield the best results. Fig-

ure 5.1.6 helps visualize the autoencoder architecture.
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Figure 5.1.6: Autoencoder architecture used for numerical experiments: xk ∈ R400

refers to the input vector, zk ∈ R40 to the latent variable, and x̃k ∈ R400 to the
reconstructed vector. Trapeziums denote dense layers, while rectangles represent
activation functions.

The surrogate network consists of six fully connected layers, maintaining a con-

sistent dimension of R40, with each layer followed by a Leaky ReLU activation with

a 0.2 slope, except the last. The structure and residual blocks (Bachlechner et al.,

2021) of this network are detailed in Figure 5.1.7.
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Figure 5.1.7: Our surrogate network is composed of six residual blocks mapping
from R40 to R40. Latent variable zk is the input, and zk+1 refers to the latent
vector at time tk+1 yielded by the network. Also, we have that αi ∈ R40, ∀i ∈ J1, 6K.
Multiplicative and additive operators are also represented.

Our dataset comprises 1000 Lorenz96 simulations, each with 500 time steps

across 40 dimensions, producing 1000 instances of 500× 40 matrices. Each simula-

tion represents the temporal evolution of the 40 Lorenz96 variables under a specific

initial condition, formatted as a 500 × 40 matrix.

We then transform the 1000 Lorenz96 simulations into their augmented ver-

sions, generating 1000 instances of 400-dimensional data. The dataset is normal-

ized (mean and standard deviation normalization), and split into 80% for training,

with the remaining 20% equally divided between validation and testing. A white

Gaussian noise with a magnitude of 0.01 is added to the input data during the

training stage. The batch size is set to 32, and we chose the Adam optimizer with

a learning rate of 10−3. The number of epochs is fixed at 200, and early stopping

regularization (see section 3.1.6) with a patience of 15 epochs is implemented to

save computational time. Network weights are saved each time a lower loss score on

the validation set is reached. The weighting parameter ρ of our custom loss func-

tion defined in equation (4.21) is set to 5, and the number of iterations C is set to 2.

Our network, comprising the autoencoder and the surrogate, has 443, 580 train-

able parameters. The training takes 2 hours and 52 minutes over 109 epochs on a

2021 MacBook Pro equipped with the Apple M1 Pro chip. Figure 5.1.8 shows the

training and validation loss curves, along with the test loss value. The test MSE is

computed at the end of the training after loading the best model - i.e., after loading

the weights for which the network reaches the lowest MSE on the validation dataset

- and is therefore not related to the training phase (nor to the epochs, contrary to

what Figures 5.1.8 and 5.1.9 might suggest at first glance). However, to make this

test score visible in these two figures, we represent it similarly to the training and

validation curves along the x-axis.
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The loss values in Figure 5.1.8 are computed according to equation (4.21). The

three curves validate the effective learning of the network: indeed, the smooth ex-

ponential decrease of the loss function indicates that it performs its assigned task

increasingly better over the course of training.
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Figure 5.1.8: Loss values (see equation (4.21)). We remind that the score on the
test dataset is repeated along the x-axis with a dotted line for visual convenience.

Figure 5.1.9 reports the reconstruction loss as expressed in equation (4.22) (left

plot), and the chained loss given by equation (4.23) (right plot).
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Figure 5.1.9: Left: reconstruction loss (see equation (4.22)) with a log-scale on the
y-axis. Right: chained loss (see equation (4.23) with a log-scale on the y-axis. We
remind that the score on the test dataset is repeated along the x-axis with a dotted
line for visual convenience.

The left and right plots confirm that both the AE and the surrogate effectively

learn; that is, neither of them is left behind during the training stage. One can also

notice that LAE and LSur have almost the same values throughout the learning

process: this might suggest setting ρ to 1 rather than 5 in order to define a fair

loss function. However, it turns out that increasing the weighting on LSur yields

better scores, meaning that more effort is needed for the surrogate to properly learn

than for the AE. Along with the stability issues presented in section 4.2.3.1, this

confirms that the surrogate network is the more challenging to train. The best

model is saved at epoch 94, and achieves the following loss scores:

• validation loss score: 0.0395

• test loss score: 0.0395

• validation reconstruction loss score: 0.0064

• test reconstruction loss score: 0.0064

• validation chained loss score: 0.0066

• test chained loss score: 0.0066

We draw the reader’s attention to the fact that the scores are actually different

between the validation and test sets, but rounding may make them appear strictly
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equal here.

In the following, we provide some insights into the performances of our trained

neural network. The loss scores on the training, validation and test sets already

suggest that the network is effective in representing the input data into a 40-

dimensional latent space as well as propagating within it. However, we are inter-

ested in going one step further by seeing how this performance actually translates

into our augmented dynamics in terms of reconstructed simulations and variables.

We first consider an entire simulation from the test dataset. We encode and

decode all the 500 states of this simulation and compute the differences in absolute

value between the reconstruction and the original data. The results are shown in

Figure 5.1.10: we observe that errors range from approximately 0 to about 2.5 and

that most states appear to be correctly reconstructed. We notice a few outliers,

such as the ones located at variable 263 from approximately the 40th time step to

the 80th one.
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Figure 5.1.10: Left: ground truth simulation from the test dataset. Right: differ-
ences in absolute value between the ground truth and the reconstructed simulations
(using autoencoder only).

We zoom in and plot the temporal evolution of six variables out of 400 to lo-

cally compare the discrepancies between the ground truth and the reconstruction.

In addition to the autoencoder reconstruction, we also include another form of re-

construction, called one latent step propagation reconstruction. The idea here is to

encode the initial state x0 into z0, propagate it once with the surrogate to obtain

z1 and then decode it to get x̃1. We repeat the process of encoding, propagating
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once and decoding until the end of the simulation, resulting in the following approx-

imated trajectories [x̃1, x̃2, . . . , x̃499]. To produce a full simulation of 500 temporal

states, we also encode and decode x0, so that we actually get [x̃0, x̃1, x̃2, . . . , x̃499].

We therefore consider the same simulation as the one depicted in Figure 5.1.10, and

perform both the regular reconstruction and the one latent step propagation recon-

struction. The results are shown in Figure 5.1.11. Visually, the two plots appear

to be exactly the same, indicating that the one latent step propagation does not

introduce any noticeable error: in both plots, the ground truth and reconstruction

curves almost perfectly superimpose.
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Figure 5.1.11: Left: reconstruction of six out of 400 variables from a simulation
in the test dataset (the same one as in Figure 5.1.10) using only the autoencoder.
Right: the same reconstruction as in the left plot, but with one-step latent propaga-
tion also performed. Ground truths are represented solid lines, and reconstructions
with dashed lines.

We are also interested in how the autoencoder represents the latent informa-

tion in a 40-dimensional space. We know that the original Lorenz96 system evolves

smoothly and continuously over time, as depicted in Figure 5.1.1. Figure 5.1.12

shows the latent representations of two simulations from the test datasets: we

observe that the encoding stage preserves the smoothness and continuity of the

variables across time. It is important to note that one cannot expect the autoen-

coder to produce a latent representation that is very similar to the top left plot

of Figure 5.1.1. The adjacent variables of the Lorenz96 system are indeed tightly

linked through the governing equations, and since they are plotted side by side in

the same order as they appear in the equations, this visually results in continuous
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and smooth wavy patterns. However, the autoencoder arranges the latent variables

randomly, making such patterns very unlikely to be produced.
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Figure 5.1.12: Left: latent space representation of an entire simulation from the
test dataset. Right: another latent space representation from the test dataset, with
the same network.

Subsequently in this chapter, we will present the reconstruction, stability, and

numerical data assimilation results obtained with the trained 1-Lipschitz and ext-

Lipschitz surrogate networks. We remind that we refer to an extended Lipschitz

network (abbreviated as ext-Lipschitz) as a data-driven model in which all lay-

ers are 1-Lipschitz, except for the final layer, which remains unconstrained. Since

the latent spaces produced by the combination of autoencoders with a Lipschitz

surrogate show a different structure compared to those depicted in Figure 5.1.12,

we believe it is relevant to offer the reader a visual comparison here, rather than

waiting for these two Lipschitz networks to be introduced in the next subsection.

Figure 5.1.13 shows the latent space representations of two simulations from the test

datasets. Unlike Figure 5.1.12, where the representations are smooth and visually

homogeneous, Figure 5.1.13 reveals that latent variable 38 has a nearly constant

value over time. This behavior is not specific to a single simulation, as both plots

in Figure 5.1.13 display the same constant band at variable 38.

A similar pattern is observed when the surrogate is not restricted to 1-Lipschitzness

but is ext-Lipschitz, as shown in Figure 5.1.14. In this case, variable 13 appears

constant over time, while variable 34 shows minor but still visible changes. An

interesting observation from Figures 5.1.12 to 5.1.14 is that the autoencoder ar-

chitecture is identical in all three cases; the only difference lies in the surrogate
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network. This indicates that the autoencoder’s weights are optimized to produce a

latent space adapted to the specific surrogate network it is paired with.
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Figure 5.1.13: Left: latent space representation of an entire simulation from the
test dataset obtained with our trained 1-Lipschitz network (later introduced in this
section). Right: another latent space representation from the test dataset with the
same network.
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Figure 5.1.14: Left: latent space representation of an entire simulation from the
test dataset obtained with our trained ext-Lipschitz network (later introduced in
this section). Right: another latent space representation from the test dataset with
the same network.

5.1.3 Enforcing stability of the surrogate network

As mentioned in section 4.2.3.1, we initially aim to learn the latent temporal propa-

gation process using a regular, non-chained loss function. Therefore, we first trained
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the neural network presented in section 5.1.2 with the loss function parameter C

(see equation (4.18)) set to 1, meaning the surrogate is applied only once to the

encoded data. We refer to this network as the “one-step neural network”, as op-

posed to the regular model (i.e., the one trained with C = 2) which is now referred

to as the “two-step neural network”. We first present the numerical results for the

two-step neural network before moving on to the stability study of the 1-Lipschitz

and ext-Lipschitz network.

Stability analysis of the one-step neural network

First, when comparing the reconstruction performance of the one-step and two-

step networks by examining Figure 5.1.15 and Figure 5.1.10, as well as Figure 5.1.16

and Figure 5.1.11, we do not observe any significant visual differences between these

pairs of plots.
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Figure 5.1.15: Left: ground truth simulation from the test dataset. Right: differ-
ence in absolute value between the ground truth and the reconstructed simulations
(using autoencoder only) achieved by the one-step neural network.
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Figure 5.1.16: Left: reconstruction of five out of 400 variables from a simulation
in the test dataset (the same one as in Figure 5.1.10) using only the autoencoder,
produced by the one-step neural network. Right: the same reconstruction as in the
left plot, but with one-step latent propagation also performed. Ground truths are
represented by solid lines, and reconstructions by dashed lines.

Despite showing satisfactory results, the performance of the one-step neural

network significantly degrades when it comes to temporal stability, unlike the two-

step network (to be discussed subsequently). As detailed in section 4.2.3.1, one

way to quantify a neural network’s temporal stability is to apply it recursively a

sufficient number of times from a given initial state. In our experiments with the

augmented Lorenz96 system, we assess the stability of the neural networks sepa-

rately on the training and test datasets. For the initial state, we consider two cases:

either it is set to x0 or to x250. Since x0 is the first state of the simulation, it is

less likely to be well represented in the data distribution compared to subsequent

states (such as x250). Consequently, a full reconstruction starting from x0 is more

likely to diverge than one starting from x250.

Figure 5.1.17 and Figure 5.1.18 compare the reconstruction performances of the

one-step neural network in terms of dataset type and choice of the initial point, for

two simulations (one from the training dataset and one from the test dataset). At

first glance, the plots reveal that in every case, the one-step neural network fails

to produce a stable reconstruction, as predictions (and therefore RMSE scores)

quickly diverge to extremely large values. Interestingly, the errors are larger on

the training simulation than on the test one. However, we cannot yet draw any

general conclusions since we are currently considering only two distinct elements of

the training and test datasets. One point previously mentioned and that tends to
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be verified here (at least with these two simulations) is that the reconstruction is

worse when starting at x0 rather than x250.
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Figure 5.1.17: Top left: RMSE between a ground truth simulation from the training
dataset and its full reconstruction by the one-step trained neural network over 250
time steps from x0. Top right: RMSE between a ground truth simulation from the
test dataset and its full reconstruction by the one-step trained neural network over
250 time steps from x0. Bottom left: same as top left but with the initial state set
as x250. Bottom right: same as top right, but the initial state set as x250. Blue
and green colors are used to differentiate between training (blue) and test (green)
data.
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Figure 5.1.18: Top left: full temporal reconstruction of five out of 400 variables
by the one-step trained network from a simulation in the training dataset (initial
state x0). Top right: full temporal reconstruction of five out of 400 variables by the
one-step trained network from a simulation in the test dataset (initial state x0).
Bottom left: same as top left but with x250 as the initial state. Bottom right: same
as top right, but with x250 as the initial state. Ground truths are represented by a
solid line, and reconstructions with a dashed one.

We also consider another reconstruction metric, which is the reconstruction of

the entire simulation. This involves applying the surrogate network 500 times con-

secutively over the encoded initial state z0. The results are shown in Figure 5.1.19

and Figure 5.1.20. As expected, given the one-step neural network’s poor perfor-

mance over 250 time steps, the same plots extended to 500 time steps confirm its

unstable and diverging behavior.
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Figure 5.1.19: Plots similar to the top left and top right ones in Figure 5.1.17, but
with the surrogate applied over a total of 500 time steps.
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Figure 5.1.20: Same plots as the top left and top right ones of Figure 5.1.18, but
with the surrogate applied over 500 time steps in total.

However, we cannot draw global conclusions about the behavior of the one-step

neural network based on two simulations only. Therefore, we chose to consider

RMSE statistics over both the training and test datasets rather than selecting one

simulation from each. Our strategy is as follows:

1. Compute the RMSE scores for every simulation in both the training and

test datasets. This produces time series RMSE values like those shown in

Figure 5.1.17 and Figure 5.1.19. As before, we distinguish between the full

reconstructions of 500 time steps and those involving only 250 time steps.
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2. For each RMSE time series, compute its mean temporal value.

3. For each mean temporal value, compute its base 10 logarithm.

4. Plot the RMSE distributions (in percentage) of the base 10 logarithm values

using bar charts. Results are reported in Figure 5.1.21 and Figure 5.1.22.

Contrary to what we might have concluded from Figure 5.1.17 and Figure 5.1.18,

the global statistics shown in Figure 5.1.21 indicate that starting from x0 or x250

does not make much of a difference in the mean RMSE values achieved. When

comparing the ratios per bin between the upper and lower plots, we notice that

they are almost identical for the training dataset simulation and still quite similar

for the test dataset one. However, a closer look at these ratios shows that the re-

sults are very slightly better when the initial state is x250. As expected, extending

the reconstructions for another 250 time steps results in much higher mean RMSE

values, causing a significant shift in the RMSE’s power of ten from Figure 5.1.21

to Figure 5.1.22.
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Figure 5.1.21: Top left: distribution of the mean RMSE values when reconstructing
the entire training dataset simulations over 250 time steps with the one-step net-
work (initial state is x0). Top right: distribution of the mean RMSE values when
reconstructing the entire test dataset simulations with the one-step network (initial
state x0). Bottom left: same as top left but with x250 as the initial state. Bottom
right: same as top right, but with x250 as the initial state.
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Figure 5.1.22: Plots similar to the top left and top right ones in Figure 5.1.21, but
with the surrogate applied over a total of 500 time steps.

In conclusion, despite the impressive reconstruction capabilities of the one-step

neural network, our thorough analysis of its stability performance demonstrates

that setting C to 1 leads to unstable dynamics and an inability to perform long-

term predictions. This also confirms that the accuracy of a neural network can be

completely uncorrelated with its temporal stability.

Stability analysis of the two-step neural network

In the following, we present the results achieved with the two-step neural net-

work. We demonstrate that introducing recursivity in the training by simply setting

C to 2 results in outstanding temporal stability of the network. We use exactly

the same metrics and plot the same variables as those reported for the one-step

network to show the significant positive change brought by the C = 2 setting. Fig-

ure 5.1.23 and Figure 5.1.24 show that the two-step neural network is completely

stable over 250 time steps for the two reported simulations, and exhibits relatively

accurate forecasts up to about the first 50 time steps. As opposed to the one-step

network, for which the RMSE over 250 time steps explode to values between 20.103

and 200.106, the RMSE scores here seem to stabilize below 1.5.
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Figure 5.1.23: Top left: RMSE between a ground truth simulation from the training
dataset and its full reconstruction by the two-step trained neural network over 250
time steps from x0. Top right: RMSE between a ground truth simulation from the
test dataset and its full reconstruction by the two-step trained neural network over
250 time steps from x0. Bottom left: same as top left but with the initial state set
as x250. Bottom right: same as top right, but the initial state set as x250. Blue
and green colors are used to differentiate between training (blue) and test (green)
data.
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Figure 5.1.24: Top left: full temporal reconstruction of five out of 400 variables
by the two-step trained network from a simulation in the training dataset (initial
state x0). Top right: full temporal reconstruction of five out of 400 variables by the
two-step trained network from a simulation in the test dataset (initial state x0).
Bottom left: same as top left but with x250 as the initial state. Bottom right: same
as top right, but with x250 as the initial state. Ground truths are represented by a
solid line, and reconstructions with a dashed one.

When extending the full reconstruction of Figure 5.1.23 for another 250 time

steps, the RMSE slightly increases but remains stable around 1.5 on the training

dataset, and fluctuates around 1.4 on the test dataset, as shown in Figure 5.1.25.

Regarding the predictions themselves, as depicted in Figure 5.1.26, we can draw

the same conclusion as in Figure 5.1.24: from time step 50 onward, the forecasts no

longer fit the ground truth. Over the time window [250, 500], they continue to devi-

ate from reality but remain approximately in the same range as the ground truth in

terms of variable values (at least for the five variables shown in Figure 5.1.25). How-

ever, since we have only examined two simulations (one from the training dataset
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and another from the test dataset), we cannot draw general conclusions about the

network’s stability. Therefore, we now consider global statistics, similar to those

presented in Figure 5.1.21 and Figure 5.1.22 for the one-step network.
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Figure 5.1.25: Plots similar to the top left and top right ones in Figure 5.1.23, but
with the surrogate applied over a total of 500 time steps.
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Figure 5.1.26: Plots similar to the top left and top right ones in Figure 5.1.24, but
with the surrogate applied over a total of 500 time steps.

In the case of a full reconstruction over 250 consecutive time steps, the mean

RMSE values are remarkably lower (compared to those of the one-step network)

and are mostly concentrated between 10−0.2 and 100.2 as shown in Figure 5.1.27.

Notably, there is not a single simulation in either the training or test dataset for
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which the reconstruction diverges, with the largest mean RMSE being around 10.

Additionally, the statistics are very similar whether the initial point is set to x0 or

x250.
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Figure 5.1.27: Top left: distribution of the mean RMSE values when reconstructing
the entire training dataset simulations over 250 time steps with the two-step net-
work (initial state is x0). Top right: distribution of the mean RMSE values when
reconstructing the entire test dataset simulations with the two-step network (initial
state x0). Bottom left: same as top left but with x250 as the initial state. Bottom
right: same as top right, but with x250 as the initial state.

When considering a full reconstruction of 500 time steps from x0, the statistics

remain impressive as 95% of the mean RMSE values are smaller than 10 on both

the training and test datasets, as shown by Figure 5.1.28. Unlike Figure 5.1.27, we

notice here in Figure 5.1.28 that the surrogate can lead to errors larger than 103,

even if this occurs in less than 1.5% of the data.
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Figure 5.1.28: Plots similar to the top left and top right ones in Figure 5.1.27, but
with the surrogate applied over a total of 500 time steps.

In conclusion, the mere introduction of recursivity when performing latent prop-

agation with the surrogate during training has a significant impact on the stability

of the resulting trained neural network. While the one-step model is unable to show

any stable behavior on a single simulation from either the training or test datasets,

the two-step network demonstrates remarkable performance with very low RMSE

values over all the considered simulations and over at least 500 consecutive calls of

the surrogate.

Stability analysis of Lipschitz surrogate network:

As presented in section 4.2.3.1, we also train 1-Lipschitz and ext-Lipschitz sur-

rogate networks to achieve stable data-driven models. As the stability of the sur-

rogate networks is intended to be ensured by the Lipschitzness of the surrogates,

parameter C is set to 1. When training the two Lipschitz surrogates with a patience

parameter set to 15, the results are not satisfactory, showing high loss values, with

the 1-Lipschitz network performing better than the ext-Lipschitz one (even though

being ext-Lipschitz offers more flexibility to the network than being 1-Lipschitz).

Therefore, we remove early stopping and train these two networks for 200 epochs,

which allows them to demonstrate equivalent performance. The loss values over the

validation and test datasets are very similar and are reported below in table 5.1.

We observe that the loss scores of the Lipschitz networks are clearly below those of

the one-step network: this significant difference can be attributable to the strong
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constraints imposed by the Lipschitzness of the two surrogate networks. The loss

scores for the two-step network are not included here: they are already provided in

section 5.1.2, and since the parameter C is different in this case, we cannot fairly

compare them with those of the one-step, 1-Lipschitz, and ext-Lipschitz networks.

Dataset Loss type One-step network 1-Lipschitz network ext-Lipschitz

Validation
reconstruction 0.0068 0.0141 0.0142

chained 0.0068 0.0138 0.0141
total 0.0407 0.0833 0.0844

Test
reconstruction 0.0069 0.0146 0.0143

chained 0.0069 0.0143 0.0143
total 0.0416 0.0860 0.0858

Table 5.1: Loss scores of training involving the one-step, 1-Lipschitz and ext-
Lipschitz neural networks over the validation and test datasets.

Lipschitz surrogate networks prove to be very stable over time. For the sake of

conciseness, we only show the reconstruction curves of the five selected variables (see

Figure 5.1.29) and the bar charts over 500 time steps (see Figure 5.1.30). Despite

the high reconstruction loss values of table 5.1, Figure 5.1.29 shows that the autoen-

coders trained with the Lipschitz surrogate networks perform well visually (at least

for the five selected variables shown here), even though the performance is clearly

inferior to the results depicted in Figure 5.1.16 and Figure 5.1.11. Specifically,

in Figure 5.1.29, the curves do not perfectly superimpose, as seen in the extreme

yellow and green peaks at time steps 70 and 445. Additionally, as suggested by

table 5.1, the reconstructions (both regular and one-step latent propagation) are

so similar that we can barely distinguish between the 1-Lipschitz and ext-Lipschitz

reconstructions.
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Figure 5.1.29: Top left: reconstruction of five out of 400 variables by the 1-Lipschitz
trained network from a simulation in the test dataset, using only the autoencoder.
Top right: same as top left plot, but with one latent propagation. Bottom left:
reconstruction of five out of 400 variables by the ext-Lipschitz trained network
from a simulation in the test dataset, using only the autoencoder. Bottom right:
same as bottom left plot, but with one latent propagation. Ground truths are
represented by a solid line, and reconstructions with a dashed one.

The primary advantage of the 1-Lipschitz and ext-Lipschitz neural networks

is their impressive stability performance, as reported in Figure 5.1.30, which is

comparable to that of the two-step network (see Figure 5.1.28 for comparison).

Lipschitz networks might be slightly better at enforcing stability than the two-

step trained model. Specifically, the 1-Lipschitz network does not produce a single

diverging simulation over the entire dataset, and the ext-Lipschitz network has only

5 simulations with a mean RMSE larger than 100, compared to 32 for the two-step

network (these figures are derived from our computations but are not directly visible

from Figure 5.1.30 or Figure 5.1.28). Therefore, Lipschitz networks are a highly
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effective way to enforce long-term stability. However, upon closer examination of

the computed data, we also found that the two-step network achieves a lower mean

RMSE over 500 time steps compared to the Lipschitz networks.
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Figure 5.1.30: Top left: distribution of the mean RMSE values when fully re-
constructing the entire training dataset simulations over 500 time steps with the
1-Lipschitz network. Top right: same as top left, but with the test dataset. Bot-
tom left: distribution of the RMSE values when fully reconstructing the entire train
dataset simulations over 500 time steps with the ext-Lipschitz network. Bottom
right: same as bottom left, but with the test dataset.

5.1.4 Assessing the performance of our data assimilation frame-

work

In this section, we present the data assimilation experiments conducted to assess

and benchmark the efficiency of our ETKF-Q-L algorithm, as described in sec-

tion 4.3. The comparison criterion used is the mean temporal RMSE, computed
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in the physical space of dimension 400. To objectively and fairly evaluate our

ETKF-Q-L approach, we define the following benchmark experiments:

• ETKF-Q: this is the standard ETKF-Q algorithm (Fillion et al., 2020). As-

similation is performed within the augmented Lorenz96 space without using

any neural network. Temporal propagation involves mapping the augmented

data into the original 40-dimensional space, applying the regular Lorenz96

propagator (using the fourth-order Runge-Kutta scheme), and then mapping

this forecast back to the augmented space.

• ETKF-Q-L: this is our proposed method. Data assimilation is performed

within the latent space of the two-step network’s autoencoder. Temporal

propagation is directly performed on the latent analysis za, by the trained

surrogate network.

• ETKF-Q-L-1-step: data assimilation is performed within the latent space

of the one-step network’s autoencoder. Temporal propagation is directly

performed on the latent analysis za, by the trained surrogate network.

• ETKF-Q-L-1-Lipschitz: data assimilation is performed within the latent

space of the 1-Lipschitz network’s autoencoder. Temporal propagation is

directly performed on the latent analysis za, by the 1-Lipschitz surrogate.

• ETKF-Q-L-ext-Lipschitz: data assimilation is performed within the la-

tent space of the ext-Lipschitz network’s autoencoder. Temporal propagation

is directly performed on the latent analysis za, by the ext-Lipschitz surrogate.

• ETKF-Q-L-PCA: data assimilation is performed within the latent space

obtained by PCA on the augmented Lorenz96 data. Temporal propagation

is directly performed on the latent analysis za, by the trained surrogate

network.

• ETKF-Q-L-PCA-LinReg: data assimilation is performed within the la-

tent space obtained by PCA. Temporal propagation is directly performed on

the latent analysis za, by a linear regression operator. This operator is first

fitted on the low-dimensional data produced by PCA.

In addition to the six latent DA benchmark experiments, we define their physical-

latent data assimilation counterparts. For each experiment involving latent data

assimilation, we define a new experiment where assimilation is performed in the

physical (i.e., augmented Lorenz96) space using the regular ETKF-Q algorithm,
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but time propagation occurs in the latent space. Specifically, at every DA prop-

agation step, the analysis xa is encoded (either by the trained encoder or PCA),

propagated forward in time (either by the trained surrogate or the linear regression

operator), and then decoded (either by the trained decoder or the inverse PCA

operation). We add the character string “-P-” to the name of each experiment

to define the following new ones: ETKF-Q-L-P, ETKF-Q-P-L-1-step, ETKF-

Q-P-L-1-Lipschitz, ETKF-Q-P-L-ext-Lipschitz, ETKF-Q-P-L-PCA, and

ETKF-Q-P-L-PCA-LinReg. The only difference between the latent DA and

physical-latent DA versions is the assimilation space. This approach aims to demon-

strate that performing assimilation within a reduced-space can lead to faster and

more accurate results.

We summarize the details of each data assimilation experiment in table 5.2 and

table 5.3. For ease of comparison, both tables include the results of the reference

ETKF-Q experiment, which performs data assimilation in the physical space.

Experiment name Data assimilation space Propagation operator

ETKF-Q-L Latent space S
ETKF-Q-L-1-step Latent space S1-step

ETKF-Q-L-1-Lipschitz Latent space S1-Lip

ETKF-Q-L-ext-Lipschitz Latent space Sext-Lip

ETKF-Q-L-PCA Latent space SPCA

ETKF-Q-L-PCA-LinReg Latent space LinReg

Table 5.2: Latent data assimilation benchmark experiments. Data assimilation
analyses are performed within the latent space of each respective experiment. Sub-
script notation for the surrogate networks distinguishes between the different latent
propagators. Plain notation S is used exclusively for our ETKF-Q-L method, and
refers to the two-step network’s surrogate, as described in section 5.1.2 and sec-
tion 5.1.3.

As indicated by the common notations for the surrogate networks in table 5.2

and table 5.3, they denote the same trained networks in both tables. For the exper-

iments ETKF-Q-L-PCA and ETKF-Q-P-L-PCA, which combine PCA and a

surrogate network, we specifically trained a neural network to propagate forward in

time within the reduced-space obtained via PCA. In this context, the parameter C,

defining the recursivity of the surrogate network, is set to 2. This ensures that the

trained surrogate exhibits strong temporal stability, similar to the stability reported

for the two-step network in section 5.1.2 and section 5.1.3. The reduced-space itself
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Experiment name Data assimilation space Propagation operator

ETKF-Q Physical space F ◦ L96 ◦ F−1

ETKF-Q-P-L Physical space E ◦ S ◦ D
ETKF-Q-P-L-1-step Physical space E1-step ◦ S1-step ◦ D1-step

ETKF-Q-P-L-1-Lip Physical space E1-Lip ◦ S1-Lip ◦ D1-Lip

ETKF-Q-P-L-ext-Lip Physical space Eext-Lip ◦ Sext-Lip ◦ Dext-Lip

ETKF-Q-P-L-PCA Physical space PCA ◦ SPCA ◦ PCA−1

ETKF-Q-P-L-PCA-LinReg Physical space PCA ◦ LinReg ◦ PCA−1

Table 5.3: Benchmark experiments where assimilation is performed within the phys-
ical space, i.e., within the augmented Lorenz96 space. Recall that F is defined in
section 5.1 and denotes the function that maps from the augmented system to the
Lorenz96 system, while F−1 represents the reverse mapping. Subscript notation for
the encoder, surrogate, and decoder distinguishes between the different networks.
Plain notations E ,S,D are used exclusively for our ETKF-Q-L method, denoting
the two-step network’s components, as described in section 5.1.2 and section 5.1.3.

is generated by applying PCA to the training dataset.

We establish a common data assimilation framework to assess the relative per-

formances of the ETKF-Q-L method and the benchmark experiments listed in

table 5.2 and table 5.3:

• 40 ensemble members.

• 1000 cycles.

• observation operator H is the identity matrix, i.e., I400.

• observation error covariance matrix R = σ2
RI400, with σR = 1.0. This

matrix is used at every cycle.

• background error covariance matrix B = σ2
BI400, with σB = 0.3.

In the case of the ETKF-Q experiment, we have to define a model error covari-

ance matrix, denoted by Q (see section 2.2.2.3). We set Q as a diagonal matrix

weighted by variance σ2
Q. When performing data assimilation on the Lorenz96 sys-

tem, typical values range from about 0.1 to 0.5, but can also exceed this interval.

For instance, Brajard et al. (2020) compute statistics over a broader spectrum of

values, ranging from 0.0 (no model error) up to 10. In the ETKF-Q experiment,

the model error is directly applied within the Lorenz96 space, so relevant values

can be considered within the range of [0.1, 0.5], we picked σQ = 0.13.
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Additionally, we are interested in understanding how model errors in the Lorenz96

dynamics translate into the augmented system. Since the augmented dynamics are

built upon the Lorenz96 equations, we can use our knowledge of typical model er-

rors used for data assimilation in Lorenz96 to infer the corresponding errors in the

augmented system.

To achieve this, we take Lorenz96 data and add white Gaussian noise with a

standard deviation varying from 0.1 to 10 in increments of 0.05. We then apply

the operator F−1 to both the regular and perturbed Lorenz96 data and compute

the standard deviations of the differences. The results are shown in Figure 5.1.31.

We observe that the standard deviations of the augmented data are approximately

half the magnitude of the input perturbations, except for input standard deviations

larger than 5, where input and output errors tend to converge to similar values.
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Figure 5.1.31: Standard deviations on the augmented Lorenz96 system, when
adding a white Gaussian noise to the underlying Lorenz 96, with standard de-
viations ranging from 0.01 up to 10. We use log-scale for both x and y axis.

For all the experiments listed in table 5.2 and table 5.3, we have to tune two

parameters: the inflation parameter λ (see section 2.2.2.2) and the model error

correction term denoted by Qℓ (see section 4.3). We consider Qℓ to be a diagonal

matrix weighted by σ2
Qℓ

. We perform a grid search over inflation values ranging
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from 1.01 up to 1.9, and over σQℓ
values lying in [1e-4, 1]. These ranges have been

fine-tuned experimentally and are therefore appropriate to optimize over λ and σQℓ
.

The numerical results of the grid search runs, along with computational times,

are reported in table 5.4 and table 5.5. Mean temporal RMSE values are computed

between the ground truth and the data assimilation analyses, omitting the first

fifth of the total number of cycles to ensure RMSE scores are not affected by the

stabilization period of the data assimilation system. Computational time statistics,

that is means and standard deviations, are computed over the 414 runs resulting

from the grid search strategy.

Our ETKF-Q-L algorithm outperforms all other benchmark experiments, both

for latent and physical assimilations. It also shows one of the shortest computational

times, completing 1000 cycles in about 2 seconds compared to about 22 seconds

for the regular ETKF-Q algorithm. Notably, latent space assimilation experiments

ETKF-Q-L, ETKF-Q-L-1-step, ETKF-Q-L-1-Lipschitz, ETKF-Q-L-ext-Lipschitz,

ETKF-Q-L-PCA, and ETKF-Q-L-PCA-LinReg are between 25 to about 60 times

faster than their physical counterparts.

The one-step network also demonstrates strong performance, with a mean tem-

poral RMSE value of 0.189 for latent DA, but it still remains below the 0.159 mean

RMSE score achieved by the two-step network in the same context. The one-step

surrogate only slightly surpasses the two-step network in physical data assimila-

tion, with a difference of 0.008. Despite being the least costly models in latent

space data assimilation, both the 1-Lipschitz and ext-Lipschitz neural networks

perform poorly compared to the simple combination of PCA with linear regres-

sion. However, they achieve lower mean RMSE in physical space assimilation,

outperforming the ETKF-Q-P-L-PCA and ETKF-Q-P-L-PCA-LinReg benchmark

experiments. For both latent and physical assimilation, we observe that the combi-

nation of a surrogate network and an autoencoder consistently surpass a surrogate

network trained within a reduced-space obtained by PCA.

In the current configuration, the standard ETKF-Q algorithm achieves the

second overall performance behind ETKF-Q-L, with a score of 0.169, reached for

λ = 1.04 and σQℓ
= 0.5.

As theoretically motivated in section 4.2.1, latent space data assimilation as
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the potential to be more accurate than physical space data assimilation. This ob-

servation holds true for all benchmark experiments that run assimilation in both

spaces, with the exception of those involving Lipschitz surrogate networks or PCA-

based dimensionality reduction. It is possible that the Lipschitz constraint limits

the latent space’s ability to accurately align with the unstable-neutral subspace

or to capture other critical directions. Similarly, PCA may not be the optimal

method for reduced-space representation when it comes to accounting for the most

important subspaces. Nonetheless, the results presented in table 5.4 and table 5.5

tend to confirm that there exists latent space representations of the original data

for which the ETKF-Q assimilation process is more accurate than the standard full

space algorithm.

Notably, performing the assimilation in the physical space proves to be very

costly when using neural networks or PCA combined with linear regression, com-

pared to data-driven latent space data assimilation. This loss of time relates to

the convergence of scipy and numpy eigendecomposition functions: it is therefore

likely that neural networks lead to poorly-conditioned matrices when performing

the assimilation within the physical space.

In conclusion, our ETKF-Q-L algorithm proves to be both more accurate and

faster than all other benchmark experiments, validating the relevance of the pro-

posed methodology, as theoretically motivated in section 4.2.1.

Experiment name Mean temporal RMSE Inflation σQℓ
Time Avg. Time Std.

ETKF-Q 0.169 1.04 0.5 21.79s 7.88s

ETKF-Q-L 0.159 1.03 0.006 2.043s 0.263s

ETKF-Q-L-1-step 0.189 1.09 0.006 2.038s 0.258s

ETKF-Q-L-1-Lip 0.602 1.16 0.07 4.01s 0.818s

ETKF-Q-L-ext-Lip 0.422 1.04 0.08 3.40s 0.804s

ETKF-Q-L-PCA 0.357 1.18 0.15 1.52s 0.216s

ETKF-Q-L-PCA-LinReg 0.413 1.01 0.5 1.44s 0.211s

Table 5.4: Data assimilation results when performing the assimilation within the
latent space, along with the reference experiment ETKF-Q (first row) which per-
forms the assimilation in the physical space. Along with the mean temporal RMSE
(mean over the DA cycles, with omission of the first fifth), we indicate the inflation
and model error correction values found by grid search. Additionally, we report the
average computational times and their associated standard deviations.
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Experiment name Mean temporal RMSE Inflation σQℓ
Time Avg. Time Std.

ETKF-Q 0.169 1.04 0.5 21.79s 7.88s

ETKF-Q-P-L 0.224 1.08 0.35 1m 31s 9.98s

ETKF-Q-P-L-1-step 0.216 1.03 0.45 1m 25s 17.36s

ETKF-Q-P-L-1-Lip 0.240 1.03 0.6 1m 34s 5.7s

ETKF-Q-P-L-ext-Lip 0.243 1.1 0.45 1m 35s 17s

ETKF-Q-P-L-PCA 0.343 1.07 0.3 1m 20s 6.97s

ETKF-Q-P-L-PCA-LinReg 0.409 1.01 0.5 1m 21s 7.1s

Table 5.5: Data assimilation results when performing the assimilation within the
physical space. Along with the mean temporal RMSE (mean over the DA cycles,
with omission of the first fifth), we indicate the inflation and model error correction
values found by grid search. Additionally, we report the average computational
times and their associated standard deviations.

In section 4.3.1, we introduced the DAPPER package(3), which implements

three variants of the square root method proposed by Raanes et al. (2015). This

package allows for model error correction when the number of ensemble members

is larger than the assimilation state space, a scenario not handled by the current

ETKF-Q algorithm. We conducted latent space data assimilation experiments us-

ing the ETKF-Q-L method, varying the number of ensemble members to 60, 80,

and 100. The numerical results are reported in table 5.6. The addition of more

ensemble members does not result in significant differences. Only when the number

of ensemble members is set to 60, we observe a minor improvement in the mean

temporal RMSE score. This can be attributed to the fact that the augmented

Lorenz96 system is built upon 40-dimensional Lorenz96 data, and having 40 en-

semble members already correctly represents the data distribution and the error

covariance matrix.

We also observe that the computational efficiency of our latent assimilation

method is significantly impacted by the use of the SQRT-DEP model error cor-

rection algorithm from the DAPPER package. Whereas the regular ETKF-Q-L

methodology allows the assimilation process to complete within a few seconds, as

shown in table 5.4, the integration of the SQRT-DEP algorithm increases the com-

putational times to levels comparable to those of the physical latent assimilation

experiments reported in table 5.5. This increase is primarily due to the costly linear

algebra computations of the SQRT-DEP approach.

(3)https://github.com/nansencenter/DAPPER

https://github.com/nansencenter/DAPPER
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Number of members RMSE Inflation σQℓ
Time Avg. Time Std.

60 0.1567 1.03 0.006 1m 54s 3.99s

80 0.1588 1.03 0.006 1m 55s 3.16s

100 0.1573 1.05 0.005 2m 3s 4.76s

Table 5.6: Data assimilation results of the ETKF-Q-L algorithm when using the
SQRT-DEP model error correction method as described by Raanes et al. (2015)
and implemented in the DAPPER package. Along with the Root Mean Squared
Error, we indicate the inflation and model error correction values found by grid
search. Additionally, we report the average computational times and their associ-
ated standard deviations.

5.2 The quasi-geostrophic (QG) model

The quasi-geostrophic (QG) model is used to describe the horizontal dynamics of

atmospheric or oceanic motion on the synoptic scale in middle latitudes. In the

following, we are specifically interested in the QG model applied to the atmosphere.

Figure 5.2.1 highlights the mid-latitudes areas of the globe. The synoptic scale refers

to large-scale atmospheric phenomena that typically span hundreds to thousands

of kilometers and have timescales of several days. The dynamics at this scale

are primarily governed by the balance between the Coriolis force and the pressure

gradient force. The geostrophic approximation assumes that the horizontal pressure

gradient force is exactly balanced by the Coriolis force. By relaxing this hypothesis,

we achieve a better representation of real-world atmospheric motions, defining what

is known as the quasi-geostrophic approximation. A visualization of global weather

conditions can be found at https://earth.nullschool.net/, with updates made

every three hours.

https://earth.nullschool.net/


M. PEYRON - Latent space data assimilation in the context of deep learning 165

Figure 5.2.1: World map highlighting the middle latitudes regions with two red
bands. Credit to https://en.wikipedia.org/wiki/Middle_latitudes.

The quasi-geostrophic model simplifies the full equations of motion (Wallace

and Hobbs, 2006) by focusing on the dominant forces in geophysical fluid dynam-

ics: the Coriolis force and the pressure gradient force. QG is particularly valuable

for understanding the dynamics of large-scale weather systems, such as cyclones

and anticyclones, and is an essential tool in both theoretical and applied meteorol-

ogy.

The QG model is based on several key assumptions that simplify the atmo-

spheric equations of motion:

1. Geostrophic Balance: the model assumes that the atmospheric flow is pre-

dominantly in geostrophic balance, meaning the Coriolis force nearly balances

the horizontal pressure gradient force.

2. Hydrostatic Balance: the vertical pressure gradient force is balanced by the

gravitational force, a reasonable assumption for large-scale atmospheric mo-

tions.

3. Small Rossby Number: the Rossby number, which measures the ratio of iner-

tial to Coriolis forces, is assumed to be small. This allows the simplification

of the momentum equations.

https://en.wikipedia.org/wiki/Middle_latitudes
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The atmosphere is stratified, meaning that properties like temperature, pres-

sure, and wind can vary significantly with altitude. To capture these variations,

the QG model can include multiple layers, each representing a distinct level or

layer in the atmosphere. These layers can interact with each other, allowing for a

more comprehensive representation of the vertical structure of atmospheric motions.

A common simplification is the two-layer QG model, which divides the atmo-

sphere into two discrete layers:

1. the upper layer, which typically represents the upper troposphere or lower

stratosphere.

2. the lower layer, which usually describes the lower to mid-troposphere.

For greater accuracy, the atmosphere can be divided into more than two layers,

creating a multi-layer QG model. This allows for finer resolution of vertical struc-

tures and dynamics, but also increases computational complexity.

For further information about the quasi-geostrophic model and meteorology in

general, we recommend Pedlosky (1987); Holton and Hakim Gregory (2004); Vallis

(2017). Francophone readers might also refer to Malardel (2022).

5.2.1 A two-layer weather forecast model of the OOPS frame-

work

To further assess the performance of our latent data assimilation approach, we

consider the QG model implemented within OOPS. We remind that the Object-

Oriented Prediction System (OOPS) is a collaborative project developed by ECMWF

and Météo-France. OOPS aims to create a flexible, modular, and extensible frame-

work for developing, testing, and implementing numerical weather prediction mod-

els and data assimilation systems. The primary goal of OOPS is to facilitate the

integration of various components of NWP systems, making it easier to update and

improve forecasting capabilities.

The two-layer quasi-geostrophic model is described by two variables: the stream-

function ψ and the potential vorticity q. Each variable is labeled with subscripts

1 and 2, indicating whether it represents the dynamics of the upper layer (sub-

script 1) or the lower layer (subscript 2). The two-layer QG equations, given by
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Fandry and Leslie (1984) (see also Pedlosky (1987)), are expressed in terms of

non-dimensionalized variables and connect q and ψ as follows: q1 = ∇2ψ1 − F1 (ψ1 −ψ2) + βy

q2 = ∇2ψ2 − F2 (ψ2 −ψ1) + βy + Rs,
(5.3)

where ∇2 denotes the two-dimensional Laplacian, β is the (non-dimensionalized)

northward derivative of the Coriolis force parameter, Rs represents orography, and

y is a normalized meridional distance (along the north-south axis). F1 and F2 are

parameters that couple the two layers together (see Fisher and Gürol (2017) for

further details).

The model domain is assumed to be cyclic in the zonal direction (i.e., along the

x-axis or latitudinal lines), and the meridional velocity is assumed to vanish one grid

space to the north and south of the domain. More physical and technical details

can be found in Fandry and Leslie (1984); Pedlosky (1987); Fisher and Gürol (2017).

In our numerical experiments, the QG model runs over two 40×20 rectangular

grids, one grid per atmospheric layer, representing atmospheric motions at 4 km

(lower layer) and 6 km (upper layer) of altitude. Thus, the streamfunction ψ

and the potential vorticity q each amount to 2 × (40 × 20) = 1600 scalar values.

Figure 5.2.2 provides a visual representation of these two grids.
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Figure 5.2.2: Representation of the atmospheric grids for the two-layer quasi-
geostrophic model.
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The numerical model runs with a time step of 8 minutes, and data are saved

every two hours. From our numerical experiments, we concluded that a two-hour

interval offers sufficient changes for a data-driven model to properly learn. Running

a 20-day simulation takes about 2 seconds on our 2021 Macbook Pro equipped with

the Apple M1 Pro chip. Figure 5.2.3 shows the contour lines of the streamfunction

and potential vorticity for the upper and lower atmospheric layers at day 20 of the

simulation. It is observed that the streamfunction represents the low frequencies

of the dynamics, while the potential vorticity contains the high-frequency informa-

tion. Since data assimilation is focused on forecasting the streamfunction variable,

we do not further discuss potential vorticity in the following.
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Figure 5.2.3: Left: contour lines of the streamfunction ψ in the upper and lower
layers at day 20. Right: contour lines of the potential vorticity q in the upper and
lower layers at day 20.

The initial state of the QG simulation for both the streamfunction and the po-

tential vorticity consists of horizontally constant contour lines. The model is known

to have a relaxation period of several days and day 16 is commonly considered as

a physically meaningful day to start data assimilation with (Farchi et al., 2021b).

Figure 5.2.4 shows the initial state of the QG model, along with the streamfunction

states at day 4 and day 16.
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Figure 5.2.4: Top: contour lines of the initial streamfunction state for the upper
and lower layers. Middle: contour lines of the streamfunction state at day 4 for the
upper and lower layer, simulated from the initial state. Bottom: same as middle
plot, but for the streamfunction state at day 16.
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The QG model of the OOPS framework implements ensemble forecasts. Given

an initial ground truth state and perturbation statistics, we can generate as many

members as desired. This allows us to create our dataset for subsequently training

our autoencoder and surrogate networks. However, we first need to determine

appropriate values for the following parameters:

1. number of ensemble members. It must be large enough to accurately repre-

sent the variability of the perturbed initial state over the considered period.

2. temporal window. We need to ensure that the dynamics’ statistics (i.e., mean

and standard deviation) indicate a stable regime

To determine the optimal number of ensemble members, we compute mean and

standard deviation values over time, considering ensemble sizes ranging from 1 (a

single vector) to 400. The total temporal window covers a 100-day period, starting

from day 16 of the simulation (referred to as “day 0” in the legend) to day 116. We

refer to day 16 as day 0 because it represents the first physically meaningful state.

We separate the computations of the mean and standard deviation values for

the upper and lower layers. The results are reported in Figure 5.2.5: the x-axis

indicates the ensemble size, while the legend helps visualize which curves correspond

to which part of the time window. We observe that the standard deviation values

stabilize with relatively few members for both layers, with about 25 to 30 samples

being sufficient. However, the mean values require significantly more members to

stabilize, with around 150 samples being necessary to achieve steady values. The

number of ensemble members is also guided by deep learning requirements. To

ensure a sufficiently large dataset for training, we therefore had to set the ensemble

size to 400. This choice not only meets the deep learning needs but also ensures

that we can faithfully represent the variability of the generated simulations.
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Figure 5.2.5: Top left: mean values for the upper layer with ensemble sizes ranging
between 1 (a single vector) to 400, computed at different times over a 100-day
period. Top right: standard deviation values for the upper layer with ensemble
sizes ranging between 1 (a single vector) to 400, computed at different times over
a 100-day period. Bottom left: same as top left, but for the lower layer. Bottom
right: same as top right, but for the lower layer.

With the number of ensemble members set, we next need to select an appro-

priate time window to define our dataset. To do this, we compute the mean and

standard deviation values for each layer over the 400-member ensemble and across

the grid. These results are plotted with respect to time, as shown in Figure 5.2.6.

In the top plots, we observe that the mean value for both layers reaches conver-

gence earlier than the standard deviation, around day 60 for the former and day 80

for the latter. Since positive and negative values can sometimes offset each other,

the mean over the grid might suggest stabilization while individual values can still

vary significantly. To confirm our initial observations, the bottom plots show the

same statistics, but computed in absolute values. Similar conclusions can be drawn,

leading us to set the start of the temporal window at day 80. This ensures that the
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QG dynamics is in a stable regime at this time. We chose a 10-day time window to

provide a sufficient amount of data for training while ensuring the neural networks

are exposed to and learn different behaviors of the QG dynamics.
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Figure 5.2.6: Top left: mean values for the upper layer with ensemble sizes ranging
between 1 (a single vector) to 400, computed at different times over a 100-day
period. Top right: standard deviation values for the upper layer with ensemble
sizes ranging between 1 (a single vector) to 400, computed at different times over
a 100-day period. Bottom left: same as top left, but for the lower layer. Bottom
right: same as top right, but for the lower layer.

5.2.2 Determining a suitable latent dimension

As with the augmented Lorenz96 system (see section 5.1), we rely on PCA and

Lyapunov stability theory to determine an appropriate latent space dimension for

the two-layer QG model. However, unlike the augmented dynamics, where 40 was

known to be a good candidate for the reduced-space dimension, we have no initial

clue for our QG model. We only know from Figure 5.2.3 that the streamfunction
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exhibits low-frequency patterns, suggesting that PCA is likely to be very effective

in reducing the 1,600 variables of the system.

We first perform PCA on our QG data, exploring latent dimensions ranging

from ℓ = 5 to ℓ = 200 with increments of 5 within the interval J5, 100K and incre-

ments of 10 within J120, 200K. Similarly to the augmented system, we also compare

PCA with deep learning by training autoencoders over a common range of latent

space dimensions. The encoder layers sequentially reduce the dimension from R1600

to Rℓ through an intermediary size of 800, using Leaky ReLU and identity activa-

tion functions. The choice of an almost fully linear autoencoder was guided by the

highly linear nature of the QG dynamics (as demonstrated by PCA results in Fig-

ure 5.2.7), and the inability of more complex nonlinear autoencoders to outperform

this simpler design.

Figure 5.2.7 shows the reconstruction performances of PCA and autoencoders

in terms of MSE scores on the training and test datasets. We observe that PCA

achieves impressively accurate reconstructions with very limited information from

the latent space. For instance, the MSE with only 5 latent variables is about 0.05

and dramatically decreases to 0.005 when considering a latent space dimension of

10. From ℓ = 10 up to ℓ = 200, the MSE continues to decrease at a sustained

pace, reaching 121e-6 with ℓ = 50, 12e-6 with ℓ = 100, and finally 689e-9 for a

latent space of 200 dimensions. These figures confirm that the streamfunction dy-

namics are composed of a few low-frequency linear patterns that hold most of the

total information, allowing the dynamics to be accurately recovered with only a

few latent dimensions. Since the dynamics is highly linear, we also notice that

the autoencoder can leverage its nonlinear capabilities when ℓ < 40, outperforming

PCA in this range. However, for larger latent dimensions, autoencoders cannot

compress the information better than PCA. Based on this analysis and given the

accurate reconstructions with very few latent variables, a latent dimension between

10 and 30 would be appropriate. More precisely, since autoencoders perform best

at ℓ = 20, this would be the ideal setting.
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Figure 5.2.7: Left: MSE reconstruction curves over train (solid curve) and test
(dashed curve) datasets for PCA (blue curve) and autoencoders (orange curve).
Right: the same plot, but with a log-scale on the y-axis.

Lyapunov stability theory (see section 4.2.2) also provides valuable information

to define a sufficiently large latent space, ensuring that the unstable-neutral sub-

space along with the attractors are well-represented. Mathematical details about

the computation of the Lyapunov exponents are given in section 5.1.2.

Figure 5.2.8 shows the number of unstable dimensions as a function of the en-

semble size. By considering a maximum ensemble size of 100, we can detect at

most one hundred chaotic directions, here we notice that we only have three. In

Figure 5.2.9, we plot the values of the first 100 Lyapunov exponents, in decreasing

order. Although it is not apparent from the plot, we numerically find that the

dimension of the neutral subspace is 0. Additionally, we computed the dimension

of the attractor, which is 4.7. Consequently, this stability analysis suggests that an

appropriate latent space dimension should be at least 8.
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Figure 5.2.8: Number of positive Lyapunov exponents as a function of the number
of members.
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Figure 5.2.9: Lyapunov spectrum of our two-layer QG model.

In summary, combining insights from PCA and Lyapunov theory encourages us

to consider a latent dimension between 10 and 30. Given that the trained autoen-

coders achieve the most accurate results at ℓ = 20, this is our chosen dimension for

performing latent space data assimilation.
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5.2.3 Neural networks architectures and training setting

In this section, we present the neural network architectures of the autoencoder and

the surrogate, and provide details about the training settings. The chained loss

function we use for training is defined in equation (4.21). Similar to the augmented

system, we have tuned numerous hyperparameters to find the neural architecture

and training settings that yield the best results. These include the number of

hidden layers, choice of activation functions, data normalization, batch size, noise

magnitude, learning rate, the loss weighting parameter ρ, and the number of for-

ward steps C.

A single element from our dataset corresponds to the streamfunction at a spe-

cific time for a particular ensemble member. This element can be plotted over

two 2D grids, as shown in Figure 5.2.4, and is numerically represented by a 5-

dimensional tensor. The default format of this tensor’s shape within the OOPS

framework is (nl, ny, nx), where nl denotes the number of layers (here 2), ny the

number of grid points along the y-axis (here 20), and nx those along the x-axis

(here 40). Since convolutional networks are often preferred over traditional MLPs

when learning from images or multi-dimensional data, they are a good candidate

for our dataset. While convolutional autoencoders can be directly fed the input

streamfunction data, feed-forward neural networks first require a flattening layer to

convert the input tensor of shape (2, 20, 40) into a one-dimensional vector of size

1,600. After training both types of autoencoders, results turned out to be better

with the MLP.

The encoder consists of two layers: the first compresses the 1,600 input vari-

ables into 800, followed by a 0.5 slope Leaky ReLU activation, while the second

layer maps from R800 to R20 with no activation function. The decoder performs

the reverse operation. Several variants have been tested, and this configuration

yielded the best results. Figure 5.2.10 depicts the autoencoder architecture.
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Figure 5.2.10: Autoencoder architecture used for numerical experiments: ψk ∈
R1600 refers to the input vector, zk ∈ R20 to the latent variable, and ψ̃k ∈ R1600

to the reconstructed vector. Trapeziums denote dense layers, while rectangles rep-
resent activation functions.

The surrogate network is composed of six fully connected layers, each mapping

from R20 to R20. The first four layers are followed by a Tanh activation, the fifth

by a 0.5 slope Leaky ReLU activation, and the last layer has no activation. Similar

to the augmented Lorenz96 system, our surrogate also leverages the residual block

structure (Bachlechner et al., 2021), as detailed in Figure 5.2.11.
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Figure 5.2.11: Our surrogate network is composed of six residual blocks mapping
from R20 to R20. Latent variable zk is the input, and zk+1 refers to the latent
vector at time tk+1 yielded by the network. Also, we have that αi ∈ R20, ∀i ∈ J1, 6K.
Multiplicative and additive operators are also represented. For the second and third
layer, the activation functions is also Tanh.

We remind that our dataset consists of 400 simulations generated with OOPS,

each covering a 10-day time window with a 2-hour interval between successive

snapshots. This represents a total of 120 time steps. Consequently, we have 400
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instances of 120 × 2 × 20 × 40 matrices to train our neural networks.

The dataset is normalized using mean and standard deviation normalization

and then split into 80% for training, with the remaining 20% equally divided be-

tween validation and testing. During the training stage, white Gaussian noise with

a magnitude of 0.01 is added to the input data. The batch size is set to 16, and

we use the Adam optimizer with a learning rate of 10−4. Unlike the augmented

Lorenz system, for which we defined an early stopping criterion, we set the number

of epochs to 300 for the QG model. This choice is motivated by the fact that train-

ing the QG model takes more time than training the Lorenz model, and using early

stopping can lead to a significantly different number of effective epochs between

two networks, making it difficult to draw fair comparisons. Network weights are

saved each time a lower loss score on the validation set is reached. The weighting

parameter ρ of our custom loss function defined in equation (4.21) is set to 0.5, and

the number of iterations C is set to 2.

Training the autoencoder and surrogate, as defined earlier, involves optimizing

a total of 2,597,740 parameters. The training process is completed in approximately

3 hours and 56 minutes on a 2021 MacBook Pro equipped with the Apple M1 Pro

chip. Figure 5.2.12 shows the training and validation loss curves, along with the

test loss value. We remind that the test MSE is a single value computed at the end

of the training on the test dataset, after loading the best model’s weights. While

the test score is not related to the training phase, it is represented alongside the

training and validation curves for visibility.

The loss values in Figure 5.2.12 are computed according to equation (4.21).

We observe that the loss scores decrease by a factor of about 100 between the first

epoch and the end of the training. The learning process appears to be somewhat

erratic, with small deviations from the current optimal weights leading to signifi-

cant changes in the loss scores. However, this does not prevent the network from

performing its task increasingly better over the course of the training, ultimately

achieving impressively low MSE scores.
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Figure 5.2.12: Loss values (see equation (4.21)). We remind that the score on the
test dataset is repeated along the x-axis with a dotted line for visual convenience.

Figure 5.2.13 reports the reconstruction loss as expressed in equation (4.22) (left

plot) and the chained loss given by equation (4.23) (right plot). These plots con-

firm that the autoencoder and surrogate properly learn, despite the rapid changes

in loss scores over a few successive epochs.
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Figure 5.2.13: Left: reconstruction loss (see equation (4.22)) with a log-scale on
the y-axis. Right: chained loss (see equation (4.23) with a log-scale on the y-axis.
We remind that the score on the test dataset is repeated along the x-axis with a
dotted line for visual convenience.

The best model is saved at epoch 246, and achieves the following loss scores

(rounded):

• validation loss score: 8.04e-05

• test loss score: 8.59e-05

• validation reconstruction loss score: 4.84e-05

• test reconstruction loss score: 5.18e-05

• validation chained loss score: 6.38e-05

• test chained loss score: 6.82e-05

At this stage of the analysis, we know that the autoencoder and the surrogate

have successfully learned their respective tasks. In the following section, we provide

insights into the performance of our trained neural network. The loss scores on the

training, validation, and test sets suggest that the network effectively represents the

input data within a 20-dimensional latent space and accurately propagates within

it. However, we are interested to know how this loss scores visually translate in

terms of reconstructed two-layer images and variables.
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To do this, we consider a full simulation from the test dataset and apply the

autoencoder to the 120 states it comprises. We then compute the absolute dif-

ferences between the reconstruction and the original data. The results are shown

in Figure 5.2.14: the top plot represents the ground truth, the middle plot shows

the reconstruction obtained with the autoencoder, and the bottom image plots the

computed absolute differences. We observe that the streamfunction is reconstructed

so accurately that it is visually impossible to discern any differences between the

two top images. This is confirmed by the bottom plot, where errors range from

approximately 0 to about 0.02, which is very low compared to the magnitude of the

streamfunction values. Therefore, the original information contained in a 1,600-

dimensional space can be almost exactly represented in a latent space consisting of

only 20 variables, representing a reduction by a factor of 80.
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Figure 5.2.14: Top: contour lines of the streamfunction state for the upper and
lower layers at day 85 of a simulation from the test dataset. Middle: reconstruction
of the top image with the trained autoencoder. Bottom: differences in absolute
value between the top and middle plot.
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While Figure 5.2.14 demonstrates the impressive performance of the autoen-

coder, we also want to examine how this accuracy holds up when focusing on a

subset of variables. To do this, we randomly select 5 variables out of the 1,600 and

plot their reconstructions. Additionally, we assess the performance of the surrogate

by plotting the reconstruction of these variables after one latent propagation, mean-

ing both the autoencoder and surrogate’s performances are evaluated. The results

are shown in Figure 5.2.15. Notably, we observe a perfect superposition of the re-

construction curves and ground truth trajectories for both the regular reconstruc-

tion and the reconstruction after one latent propagation. Unlike the augmented

Lorenz96 system, where small discrepancies could be discerned between the solid

and dashed lines, here, they perfectly coincide. Another remarkable observation

is the visual similarity of the two plots: for these 5 variables in this test dataset

simulation, no differences can be detected between the two reconstruction metrics.

This indicates that the surrogate does not introduce any visually detectable errors.
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Figure 5.2.15: Left: reconstruction of five out of 1,600 variables from a simulation
in the test dataset (the same one as in Figure 5.2.14) using only the autoencoder.
Right: the same reconstruction as in the left plot, but with one-step latent prop-
agation also performed. Ground truths are represented by solid lines, and recon-
structions with dashed lines.

We are also interested in how the autoencoder represents the latent informa-

tion in a 20-dimensional space. Figure 5.2.16 shows the latent representations of

two simulations from the test dataset. Remarkably, each latent variable seems to

represent a pattern that cycles over time. At any given time tk, the right combi-

nation of these cycling patterns allows zk to faithfully represent ψk with only 20

variables. Since the autoencoder has two layers but only one activation function, a
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0.5 slope Leaky ReLU, it performs an almost linear transformation when encoding

and decoding data. Thus, the information contained within the latent space and

represented in Figure 5.2.16 almost corresponds to a linear decomposition of the full

space data, similar to what PCA does. This is a distinctive feature of our autoen-

coder applied to the QG model, which is not shared by the latent space obtained

in the augmented Lorenz system with a deeper and more nonlinear autoencoder.
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Figure 5.2.16: Left: latent space representation of an entire simulation from the
test dataset. Right: another latent space representation from the test dataset with
the same network.

We also provide the latent spaces of the same simulation produced when com-

bining the autoencoder with a 1-Lipschitz surrogate (see Figure 5.2.17) and with

a ext-Lipschitz surrogate (see Figure 5.2.18). We remind that we refer to an ex-

tended Lipschitz network (abbreviated as ext-Lipschitz) as a data-driven model

in which all layers are 1-Lipschitz, except for the final layer, which remains un-

constrained. Unlike the augmented Lorenz96 system, where introducing Lipschitz

networks resulted in different latent space representations characterized by one or

more constant variables over time, here, we cannot visually detect any differences

resulting from using a Lipschitz surrogate during the training.
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Figure 5.2.17: Left: latent space representation of an entire simulation from the
test dataset obtained with our trained 1-Lipschitz network (later introduced in this
section). Right: another latent space representation from the test dataset with the
same network.
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Figure 5.2.18: Left: latent space representation of an entire simulation from the
test dataset obtained with our trained ext-Lipschitz network (later introduced in
this section). Right: another latent space representation from the test dataset with
the same network.
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5.2.4 Stability of the surrogate network

Ensuring the stability of the surrogate neural network over time is crucial, partic-

ularly for medium-range and long-term predictions. In this section, we compare

the stability of four autoencoders, each one being trained with a different surrogate

network: either the one-step, two-step, 1-Lipschitz, or ext-Lipschitz neural network.

The one-step and two-step networks are defined in section 5.1.3, while the Lipschitz

networks are introduced in section 4.2.3.1. We remind that the one-step network

refers to the surrogate trained with the parameter C of equation (4.23) set to 1

(i.e., no iterative training), whereas the two-step network is trained with C set to

2, thereby implementing a chained loss function.

We first compare the reconstruction, chained, and total loss scores for three dif-

ferent network combinations: the autoencoder with the one-step surrogate, the au-

toencoder with the 1-Lipschitz network, and the autoencoder with the ext-Lipschitz

network. The corresponding figures are provided in table 5.7. It is important to

note that we cannot include the loss scores for the autoencoder paired with the

two-step surrogate in this comparison, as the parameters used—specifically, setting

C to 2 and the loss parameter ρ to 0.5 (compared to ρ = 1 when C = 1)—make a

direct comparison unfair. For all networks, the loss scores on both the validation

and test datasets are quite similar. While the training results for the 1-Lipschitz

and ext-Lipschitz networks yield comparable loss scores, the experiment with the

one-step network achieves values that are approximately five times smaller, making

it the most effective combination among the three.

Dataset Loss type One-step network 1-Lipschitz network ext-Lipschitz

Validation
reconstruction 57.25e-6 195.98e-6 168.67e-6

chained 61.88e-6 391.05e-6 414.1e-6
total 119.13e-6 587.03e-6 582.80e-6

Test
reconstruction 61.32e-6 198.07e-6 170.52e-6

chained 65.77e-6 374.96e-6 412.01e-6
total 127.10e-6 573.03e-6 582.53e-6

Table 5.7: Loss scores of trainings involving the one-step, 1-Lipschitz and ext-
Lipschitz neural networks over the validation and test datasets.

The chaotic nature of the augmented Lorenz96 system necessitates either an

iterative training strategy or the use of Lipschitz networks to ensure the stability of

the surrogate (as discussed in section 4.2.3.1). In contrast, the QG model exhibits
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significantly less chaotic behavior, with only 3 chaotic directions out of 1,600 vari-

ables, compared to 13 out of 40 for the augmented Lorenz system. Consequently,

the one-step surrogate network for the QG model already demonstrates stability

over the 120 time steps of the dataset, as we will show.

We begin by briefly evaluating the reconstruction performances of the four au-

toencoders, as we also did in section 5.1.3. We select a simulation from the test

dataset and plot the absolute differences between the ground truth state and the

reconstructions produced by each of the autoencoders. Since one state at a given

time is represented as a 2D figure, we cannot display the entire simulation. We

therefore focus on the state at day 85, which lies in the middle of the time window.

The results are shown in Figure 5.2.19.

The colorbars in the plots indicate that the reconstruction error ranges are quite

similar for the autoencoders associated with the one-step, two-step, and 1-Lipschitz

neural networks, with minimum values around 0.005 and maximum values between

0.02 and 0.04, depending on the specific plot. The reconstruction errors produced

by the autoencoder associated with the ext-Lipschitz network range from about

0.01 to 0.06, which are higher than those of the other three autoencoders. Vi-

sually, the experiment involving the two-step network appears to produce smaller

errors across both the upper and lower layers, followed closely by the one-step

surrogate experiment. Despite the higher maximum values in its colorbar, the ext-

Lipschitz surrogate seems to induce fewer significant reconstruction errors than the

1-Lipschitz network, as evidenced by the darker areas observed in the bottom right

plot compared to the bottom left plot.
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Figure 5.2.19: Top left: contour lines of the differences in absolute values between
the ground truth state of a test dataset simulation at day 85 and its reconstruction
by the autoencoder trained with the one-step surrogate network. Top right: same
as top left, but for the autoencoder trained with the two-step surrogate network.
Bottom left: same as top left, but for the autoencoder trained with the 1-Lipschitz
surrogate network. Bottom right: same as top left, but for the autoencoder trained
with the ext-Lipschitz surrogate network.

We now assess the performance of the four surrogate networks by evaluating the

full temporal reconstruction of a simulation from the test dataset (the same sim-

ulation referenced in Figure 5.2.19). Starting from the initial state ψ0, we encode

it into z0 for each surrogate network and then propagate it forward in time across

120 steps, generating latent variables z1, z2, . . . ,z119. These are subsequently de-

coded into the reconstructed states ψ̃1, ψ̃2, . . . , ψ̃119. We then compute the RMSE
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between the ground truth states and their reconstructed counterparts at each time

step. The resulting temporal RMSE curves for the one-step, two-step, 1-Lipschitz,

and ext-Lipschitz surrogate networks are shown in Figure 5.2.20. The two-step

neural network exhibits the best performance, closely followed by the one-step sur-

rogate, with both networks delivering stable and accurate forecasts over time. In

contrast, the 1-Lipschitz and ext-Lipschitz surrogate networks diverge rapidly from

the ground truth, with RMSE values oscillating between approximately 0.8 and

1.8 after the first 10 epochs. Despite their lower accuracy, the Lipschitz networks

demonstrate a strong capacity to remain stable over time, a characteristic already

verified in the augmented Lorenz96 system (see section 5.1.3).
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Figure 5.2.20: Top left: RMSE between a ground truth simulation from the training
dataset and its full reconstruction by the one-step trained neural network over 120
time steps. Top right: same as top left, but for the experiment involving the two-
step surrogate network. Bottom left: same as top left, but for the experiment
involving the 1-Lipschitz surrogate network. Bottom right: same as top left, but
for the experiment involving the ext-Lipschitz surrogate network.

To gain a deeper understanding of the stability and accuracy of the different

surrogate networks, we closely examine the full temporal reconstructions of five

selected variables out of the 1,600 total. The reconstruction curves are presented

in Figure 5.2.21. The two-step surrogate network clearly outperforms the other

data-driven models, with reconstruction curves that nearly perfectly align with the

ground truth values. In the first half of the simulation, the dashed lines and solid

lines coincide exactly, while in the second half, only very slight differences can be

discerned between them. The one-step surrogate network also delivers highly ac-

curate predictions, nearly matching the performance of the two-step network. As
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indicated by Figure 5.2.20, the Lipschitz neural networks, although not capable of

making medium-range or long-term accurate predictions, maintain stability over

time by predicting nearly constant values throughout the simulation, which ex-

plains the periodic nature of the RMSE curves in Figure 5.2.20

Overall, the analysis of the results shown in Figures 5.2.19 to 5.2.21 suggests

that all four surrogate networks are capable of maintaining stability over the 120

time steps of the simulation. However, only the one-step and two-step networks

demonstrate the ability to provide accurate long-term predictions.
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Figure 5.2.21: Top left: full temporal reconstruction of five out of 1,600 variables
from a simulation in the test dataset (the same as one as in Figure 5.2.19) using the
autoencoder and the one-step surrogate network. Top right: same as top left, but
for the experiment involving the two-step surrogate network. Bottom left: same as
top left, but for the experiment involving the 1-Lipschitz surrogate network. Bottom
right: same as top left, but for the experiment involving the ext-Lipschitz surrogate
network. Ground truths are represented with solid lines, and reconstructions with
dashed lines.

Despite the insightful information provided by Figures 5.2.19 to 5.2.21, we

cannot draw global and definitive conclusions about the behavior of the surrogate

networks from these plots. Therefore, we consider RMSE statistics over both the

training and test datasets rather than selecting one simulation from each. We

remind our strategy introduced in section 5.1.3:

1. Compute the RMSE scores for every simulation in both the training and test

datasets.
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2. For each RMSE time series, compute its mean temporal value.

3. For each mean temporal value, compute its base 10 logarithm.

4. Plot the RMSE distributions (in percentage) of the base 10 logarithm values

using bar charts.

The results shown in Figure 5.2.22 corroborate the preliminary conclusions

drawn from Figures 5.2.19 to 5.2.21, confirming that the two-step network is the

most stable and accurate data-driven model for long-term predictions, closely fol-

lowed by the one-step surrogate, which exhibits comparable performance. Both

the two-step and one-step networks significantly outperform the Lipschitz neural

networks, which, despite their lower accuracy, still demonstrate strong stability

and a narrow spread in their mean RMSE values. Additionally, in the augmented

Lorenz96 system, the one-step neural network exhibits complete instability, whereas

in this context, it demonstrates the opposite behavior. This difference may be at-

tributed to the significantly less chaotic nature of the QG model compared to the

augmented Lorenz dynamics, as well as the difference in the number of time steps

in the reconstruction plots (500 for the augmented Lorenz96 versus 120 for the QG

model). Across all the networks, the mean RMSE scores are consistent between the

training and test datasets, though the training set may include outlier simulations

that increase the spread of the distribution.
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Figure 5.2.22: Distributions of the mean RMSE values when fully reconstructing the
entire training (left column plots) and test (right column plots) datasets simulations
over 120 times steps, with different surrogate networks.
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5.2.5 Data assimilation results

After presenting the quasi-geostrophic model, the neural network architectures, and

the stability of the trained models, we now assess the performance of the ETKF-Q

algorithm (see section 4.3) in a benchmark context similar to that of the augmented

Lorenz96 system discussed in section 5.1.4. The comparison metric we use is also

the mean temporal RMSE, computed in the physical space of dimension 1,600. The

naming conventions and definitions for the QG experiments are those provided for

the augmented dynamics in section 5.1.4, with one exception: the definition of the

ETKF-Q experiment is adjusted to account for the use of the QG model for state

propagation, instead of the Lorenz96 equations to solve. The revised definition is

as follows:

• ETKF-Q: this is the standard ETKF-Q algorithm (Fillion et al., 2020).

Assimilation is conducted within the 1,600-dimensional physical space of the

QG dynamics, without involving any neural network. Temporal propagation

is performed using the regular model from the OOPS package.

Latent data assimilation experiments are therefore also denoted by ETKF-Q-L,

ETKF-Q-L-1-Lipschitz, ETKF-Q-L-ext-Lipschitz, ETKF-Q-L-PCA and ETKF-Q-

L-PCA-LinReg, as summarized in table 5.2 for the augmented Lorenz96 system.

We also define their physical-latent data assimilation counterparts, with the

same naming convention as that in section 5.1.4. For each experiment involving

latent data assimilation, a corresponding experiment is defined where the assim-

ilation is performed in the physical space using the regular ETKF-Q algorithm,

while the time propagation occurs in the latent space. Further details are provided

in section 5.1.4. Information on the physical-latent experiments is summarized in

table 5.8.

We also remind that in all experiments utilizing PCA as a reduced-space method,

the fitting is conducted on the training dataset. Similarly, the linear regression op-

erator is calibrated to represent the mapping between successive latent variables

that are obtained by a PCA transformation.

To assess the performance of each method, we define the following data assim-

ilation setting:

• 20 ensemble members.
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Experiment name Data assimilation space Propagation operator

ETKF-Q Physical space QG model

ETKF-Q-P-L Physical space E ◦ S ◦ D
ETKF-Q-P-L-1-step Physical space E1-step ◦ S1-step ◦ D1-step

ETKF-Q-P-L-1-Lip Physical space E1-Lip ◦ S1-Lip ◦ D1-Lip

ETKF-Q-P-L-ext-Lip Physical space Eext-Lip ◦ Sext-Lip ◦ Dext-Lip

ETKF-Q-P-L-PCA Physical space PCA ◦ SPCA ◦ PCA−1

ETKF-Q-P-L-PCA-LinReg Physical space PCA ◦ LinReg ◦ PCA−1

Table 5.8: Benchmark experiments where assimilation is performed within the phys-
ical space, i.e., within the 1,600-dimensional space of the QG dynamics. Subscript
notation for the encoder, surrogate, and decoder distinguishes between the different
networks. Plain notations E ,S,D are used exclusively for our ETKF-Q-L method,
denoting the two-step network’s components, as described in section 5.2.3 and sec-
tion 5.2.4.

• 48 cycles (equivalent to a 4-day analysis).

• observation operator H is the identity matrix, i.e., I1600.

• observation error covariance matrix R = σ2
RI1600, with σR = 0.4. This

matrix is used at every cycle.

• background error covariance matrix B = σ2
BI1600, with σB = 0.8.

For the ETKF-Q experiment, we also define a model error covariance matrix,

denoted by Q (see section 2.2.2.3). Here, Q is set as a diagonal matrix weighted

by variance σ2
Q such that σQ = 0.1.

Similar to the approach used for the augmented system, the inflation parameter

λ (see section 2.2.2.2) and the model error correction term Qℓ (see section 4.3) need

to be optimized. Specifically, Qℓ is considered as a diagonal matrix weighted by

σ2
Qℓ

, meaning that the standard deviation of Qℓ is the only parameter requiring op-

timization. We conduct a grid search over inflation values ranging from 0.8 to 1.9,

and over σQℓ
values in the range [1e-3, 1]. These ranges have been experimentally

fine-tuned to effectively optimize both λ and σQℓ
.

The numerical results of the grid search, along with computational times, are

presented in table 5.9 and table 5.10. For ease of comparison, both tables include

the results of the reference ETKF-Q experiment, which performs data assimilation

in the physical space. The mean RMSE is computed over the 48 cycles of the as-

similation. Computational time statistics, that is means and standard deviations,
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are computed over the 576 runs resulting from the grid search strategy.

As shown by table 5.9 and table 5.10, the latent ETKF-Q-L algorithm combined

with the one-step neural network achieves the best overall mean RMSE score, reach-

ing 0.194 with λ = 1.0 (which is equivalent to no inflation) and σQℓ
= 0.55. The

superior performance of the one-step surrogate over the two-step network could be

attributed to the relatively low number of assimilation cycles (i.e., 48) compared to

the 1,000 cycles used in the augmented Lorenz experiments. Additionally, the low

chaotic nature and linearity of the QG model may also foster the trained one-step

network to be more stable in this case than for the augmented Lorenz96 system.

The surrogate within the PCA-derived latent space, as well as the combination

of PCA with a linear regression operator, demonstrates impressive performance

in both latent and physical assimilations. This is particularly noteworthy given

the simplicity of implementing these methods. While the ETKF-Q-L experiment

does yield better results as those of the aforementioned models, its mean RMSE

of 0.239 still surpasses that of the two experiments with Lipschitz surrogate net-

works. Furthermore, as observed with the latent assimilation of the augmented

Lorenz96 system (see table 5.4), the 1-Lipschitz surrogate network yields a higher

mean RMSE than its ext-Lipschitz counterpart in table 5.9, likely due to the strong

constraint imposed by the 1-Lipschitz condition.

Comparing the mean RMSE values between table 5.9 and table 5.10 reveals

that for the ETKF-Q-L-1-step, ETKF-Q-L-PCA, and ETKF-Q-L-PCA-LinReg ex-

periments, latent space assimilation is more accurate than physical space assim-

ilation. This supports the hypothesis presented in section 4.2.1, which suggests

that performing data assimilation within a reduced-space can enhance the correc-

tion process by focusing on directions of maximum error growth. However, this

is not guaranteed, as demonstrated by the ETKF-Q-P-L, ETKF-Q-P-L-1-Lip, and

ETKF-Q-P-L-ext-Lip experiments, where physical assimilation yields better results

than latent assimilation.

Interestingly, the ETKF-Q-P-L-1-Lip experiment surpasses its ext-Lipschitz

counterpart, which is the opposite of what we observe when the assimilation is

performed within a latent space rather than the physical space. This highlights the

potential for significant differences in outcomes between latent and physical space

assimilations.
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In the current setup, the ETKF-Q-L-1-step algorithm outperforms the stan-

dard ETKF-Q experiment in both accuracy and computational time. Notably, the

ETKF-Q approach is the slowest to complete the 48 data assimilation cycles, in-

dicating that the numerical model of OOPS is significantly more computationally

demanding than the data-driven models.

In terms of computational time, the latent experiments are, on average, 280

times faster than the full-space data assimilation ETKF-Q experiment that uti-

lizes the standard numerical model from the OOPS framework. This remarkable

speedup is made possible by the autoencoder’s ability to accurately represent the

1,600-variable dynamics within a 20-dimensional space. Among the quickest meth-

ods, the ETKF-Q-L-PCA stands out with an average runtime of 0.06 seconds for

48 cycles, followed by the ETKF-Q-L-PCA with 0.10 seconds, and the ETKF-Q-L-

1-step with a mean runtime of 0.12 seconds.

In conclusion, the iterative training approach of the ETKF-Q-L method does

not provide additional benefits for the QG case - in contrast to the augmented

Lorenz system -, with the ETKF-Q-1-step outperforming all benchmark experi-

ments. As theorized in section 4.2.1 and initially verified in section 5.1.4, latent

assimilation has the potential to surpass physical assimilation both in terms of ac-

curacy and computational efficiency. Importantly, the QG model illustrates that

data-driven latent space assimilation can be 280 times faster than its physical space

counterpart that relies on the traditional numerical solver, while also producing

more accurate results.

As with the augmented Lorenz96 system, we also replace the model error correc-

tion step in the latent ETKF-Q algorithm with the SQRT-DEP approach proposed

by Raanes et al. (2015) from the DAPPER package(4). More details on the method-

ology of Raanes et al. (2015) are provided in section 4.3.1. This method enables

model error correction when the number of ensemble members exceeds the dimen-

sionality of the assimilation state space, a scenario that the standard ETKF-Q al-

gorithm cannot handle. We conducted latent space data assimilation experiments

using the ETKF-Q-L-1-step method — chosen since it achieves the lowest mean

RMSE score —, while varying the number of ensemble members to 40, 60, 80, and

100. The numerical results are presented in table 5.11.

(4)https://github.com/nansencenter/DAPPER

https://github.com/nansencenter/DAPPER


M. PEYRON - Latent space data assimilation in the context of deep learning 200

Experiment name Mean temporal RMSE Inflation σQℓ
Time Avg. Time Std.

ETKF-Q 0.200 1.08 0.4 39.60s 2.45s

ETKF-Q-L 0.239 1.01 0.55 0.13s 0.04s

ETKF-Q-L-1-step 0.194 1.0 0.55 0.12s 0.04s

ETKF-Q-L-1-Lip 0.584 1.0 0.25 0.26s 0.07s

ETKF-Q-L-ext-Lip 0.378 1.05 0.3 0.18s 0.056s

ETKF-Q-L-PCA 0.204 1.05 0.7 0.10s 0.04s

ETKF-Q-L-PCA-LinReg 0.231 1.15 0.9 0.06s 0.03s

Table 5.9: Data assimilation results when performing the assimilation within the
latent space, along with the reference experiment ETKF-Q (first row) which per-
forms the assimilation in the physical space. Along with the mean temporal RMSE
(mean over the DA cycles), we indicate the inflation and model error correction
values found by grid search. Additionally, we report the average computational
times and their associated standard deviations.

Experiment name Mean temporal RMSE Inflation σQℓ
Time Avg. Time Std.

ETKF-Q 0.200 1.08 0.4 39.60s 2.45s

ETKF-Q-P-L 0.237 1.1 0.75 7.67s 2.16s

ETKF-Q-P-L-1-step 0.206 1.15 0.7 8.13s 2.82s

ETKF-Q-P-L-1-Lip 0.287 1.04 1.0 7.84s 2.22s

ETKF-Q-P-L-ext-Lip 0.331 1.05 1.0 7.45s 2.19s

ETKF-Q-P-L-PCA 0.208 1.2 0.55 7.75s 2.31s

ETKF-Q-P-L-PCA-LinReg 0.235 1.15 0.9 7.20s 2.16s

Table 5.10: Data assimilation results when performing the assimilation within the
physical space. Along with the mean temporal RMSE (mean over the DA cycles),
we indicate the inflation and model error correction values found by grid search.
Additionally, we report the average computational times and their associated stan-
dard deviations.
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First, all experiments listed in table 5.11 yield mean RMSE values between

0.191 and 0.193, which are very slightly lower than the 0.194 mean RMSE achieved

by the standard 20-member ETKF-Q-L approach. This suggests that replacing the

model error correction step in the latent ETKF-Q methodology with the SQRT-

DEP approach may improve the RMSE scores, but not significantly. Therefore,

it appears that no significant improvement can be expected from the current im-

plementation of this extended algorithm. Similar to the augmented dynamics, we

also notice for QG a substantial increase in computational cost when integrating

the SQRT-DEP code from DAPPER. While latent algorithms typically complete

the 48 cycles in under a second, as reported in table 5.9, the running times here

range from approximately 16 to 50 seconds. This increase in the computational

time compared to table 5.9 is largely due to the high computational cost associated

with the linear algebra operations introduced by the SQRT-DEP method.

Number of members RMSE Inflation σQℓ
Time Avg. Time Std.

40 0.191 1.04 0.5 16.15s 1.12s

60 0.193 1.02 0.55 21.18s 0.76s

80 0.193 1.02 0.45 24.32s 1.44s

100 0.193 1.06 0.45 25.36s 0.58s

Table 5.11: Data assimilation results of the ETKF-Q-L-1-step algorithm when us-
ing the SQRT-DEP model error correction method as described by Raanes et al.
(2015) and implemented in the DAPPER package. Along with the Root Mean
Squared Error, we indicate the inflation and model error correction values found
by grid search. Additionally, we report the average computational times and their
associated standard deviations.





CHAPTER 6

Conclusions and perspectives

In this thesis, we introduced and explored latent space data assimilation, a novel

data-driven framework designed to achieve low-cost and accurate data assimilation.

Importantly, this approach can be adapted to other data assimilation algorithms

(Melinc and Zaplotnik, 2024).

In chapter 3, we provided a comprehensive review of research that demonstrates

how deep learning can address various limitations of traditional data assimilation

methods. We specifically highlighted scientific publications that illustrate the inte-

gration of deep learning into data assimilation, offering a broad perspective on the

evolving literature in this field.

We explored the potential of rethinking the assimilation process itself through a

data-driven framework, extending the concepts of traditional reduced-space meth-

ods. As demonstrated in chapter 4, our latent space data assimilation methodology

is theoretically grounded in Lyapunov stability theory (Carrassi et al., 2022).

Our methodology is based on the joint training of an autoencoder and a sur-

rogate neural network. The autoencoder iteratively learns to accurately represent

the physical dynamics of interest within a low-dimensional space, while the surro-

gate is simultaneously trained to propagate the latent variables through time. To

ensure stability, we proposed a chained loss function strategy, and alternatively, the

implementation of 1-Lipschitz and extended Lipschitz surrogate networks.

We validated our methodology on two distinct systems: a 400-dimensional sys-

tem derived from a 40-variable chaotic Lorenz96 dynamics and the quasi-geostrophic

model of the OOPS framework. These systems present unique challenges, the aug-

203
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mented Lorenz96 is highly chaotic and nonlinear, while QG is less chaotic and

characterized by linear combinations of simple patterns. For these tests, we uti-

lized the ETKF-Q algorithm (Fillion et al., 2020), with MLP networks for both the

autoencoder and surrogate.

The augmented Lorenz96 system allowed us to demonstrate the effectiveness of

the iterative chained loss approach. By adding just one iteration of the surrogate

network within the loss function, we transformed a highly unstable one-step network

(which reached RMSE values up to 10e19 after 500 time steps) into a two-step

network that achieved RMSE values of about 1.5 over the same time window.

While the chained loss function strategy is a statistical method affecting specific

directions of the latent trajectory, the 1-Lipschitz and extended Lipschitz networks

impose global constraints, making them less flexible. Consequently, the chained loss

method not only performs on par with the Lipschitz network in terms of stability

but also significantly outperforms it in accuracy. Additionally, the two-step network

proved superior to the one-step network over 1,000 assimilation cycles, with lower

mean RMSE values. Importantly, our latent experiments were approximately 10

times faster than the regular ETKF-Q approach and more than five times faster

than other physical assimilation experiments.

The QG dynamics further highlighted the substantial computational gains pro-

vided by latent space data assimilation. On average, the latent experiments were

280 times faster than the full-space data assimilation ETKF-Q experiment that

utilizes the standard numerical model from the OOPS framework. This remarkable

speedup was made possible by the autoencoder’s ability to accurately represent the

1,600-variable dynamics within a 20-dimensional space. Unlike with the augmented

Lorenz96 system, we did not need to employ a chained loss strategy or Lipschitz

neural networks to ensure the surrogate’s stability. The QG model’s low chaotic

nature and linearity allowed the one-step network to perform comparably to the

two-step network.

For both the augmented Lorenz96 and QG systems, our experiments confirmed

that there exists a low-dimensional space where the assimilation process is not only

faster but also more accurate than traditional full-space data assimilation, thereby

validating our theoretical expectations.

However, it is important to note that the training process does not always yield

a latent space where assimilation is more accurate than in the full space. This

was particularly evident for data assimilation experiments using Lipschitz surro-

gate networks. Despite demonstrating impressive stability in long-term predictions,

Lipschitz networks increased training time due to the Björck orthonormalization al-
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gorithm and provided less accurate forecasts compared to regular MLP networks.

Our numerical results suggest that the iterative training strategy we introduced,

using a chained loss function, outperforms Lipschitz networks in both stability and

accuracy.

We also proposed an extension of the ETKF-Q algorithm to accommodate

scenarios where the number of ensemble members exceeds the state space dimension

— a situation not addressed by the standard ETKF-Q algorithm. This was achieved

by incorporating the SQRT-DEP model error correction method of Raanes et al.

(2015) in place of the ETKF-Q’s standard model error correction approach.

The work presented in this thesis is foundational, however, it opens up several

questions and research directions that remain to be explored. For the augmented

Lorenz96 system and the QG model, we employed simple MLP networks, but real-

world data assimilation problems may necessitate the use of more advanced, state-

of-the-art neural network architectures, such as transformers Vaswani et al. (2017)

or recurrent surrogate networks.

Additionally, in our numerical experiments, we assumed the observation oper-

ator to be an identity matrix. Future work should test the latent data assimilation

methodology under more challenging operational scenarios, where the observation

operator is more complex, nonlinear, and provides partial or indirect information

relative to the state variables.

A crucial aspect of our approach is the neural networks’ ability to capture the

unstable-neutral subspace. Enhancing the latent space of the autoencoder to adhere

to specific mathematical or physical properties could further improve the accuracy

of the results. More broadly, the ability to endow the latent space with targeted

features or structures is highly desirable. Notably, the unstable-neutral subspace is

not static; it evolves over time. Ideally, we would like the autoencoder to capture

this temporal evolution to better represent the state information at each time step.

In our numerical experiments, increasing the ensemble size did not yield signif-

icant improvements. This warrants further investigation into the potential benefits

of using larger ensembles in latent space data assimilation.





APPENDIX A

Data Assimilation methods: mathematical details

A.1 BLUE: minimization of P a with respect to the gain K

Minimizing the trace of the posterior error covariance matrix P a with respect to

K, represents an optimization problem to solve. Let us introduce function f so

that this minimization problem reads:

K∗ = arg min
K∈Rn×p

 f : Rn×p → R

K 7→ Tr
(

(In −KH)B(In −KH)
T

+KRKT
)
.

(A.1)

For the sake of clarity and simplicity in the subsequent mathematical deriva-

tions, we express f as the sum of two functions, namely f1 and f2. Let us therefore

define f1 and f2 as follows:

f1 : Rn×p → R

K 7→ Tr
(

(In −KH)B(In −KH)
T
)
, (A.2)

207
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f2 : Rn×p → R

K 7→ Tr
(
KRKT

)
, (A.3)

such that ∀K ∈ Rn×p, f(K) = f1(K) + f2(K).

Functions f1, f2 are differentiable as sums and products of matrices, and by

the linearity of the trace operator. Therefore f is also differentiable. Let us denote

by V, a neighbourhood of 0Rn×p , and by ∥·∥, a norm operator in Rn×p. According

to the Taylor series expansion formula, we therefore have that:

∀K ∈ Rn×p, ∀ δK ∈ V:

1. f(K + δK) = f(K) + df(K)(δK) + o(∥δK∥),

2. f1(K + δK) = f1(K) + df1(K)(δK) + o(∥δK∥),

3. f2(K + δK) = f2(K) + df2(K)(δK) + o(∥δK∥),

where df , df1 and df2 are the differential functions of f , f1 and f2, respectively.

We want to determine these differential functions. We will be using the following

property of the trace operator:

∀A ∈ Rs×s, T r(A) = Tr
(
AT
)
. (A.4)

Let us consider K ∈ Rn×p and δK ∈ V:
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• Determining df1(K)(δK):

f1(K + δK) = Tr
(

(In − (K + δK)H)B(In − (K + δK)H)
T
)

= Tr
(

((In −KH) − δKH)B(In −KH)
T −HT (δK)

T
)

= Tr
(

((In −KH)B − δKHB)(In −KH)
T −HT (δK)

T
)

= Tr
(

(In −KH)B(In −KH)
T
)

︸ ︷︷ ︸
=f1(K)

− Tr
(

(In −KH)BHT (δK)
T
)

− Tr
(
δKHB(In −KH)

T
)

+ Tr
(
δKHBHT (δK)

T
)

︸ ︷︷ ︸
o(∥δK∥)

= f1(K) − Tr
(

(In −KH)BHT (δK)
T
)
− Tr

((
(In −KH)BHT (δK)

T
)T)

+ o(∥δK∥)

= f1(K) − 2Tr
(

(In −KH)BHT (δK)
T
)

+ o(∥δK∥).

Therefore, by the uniqueness of Taylor series expansion at point K, we ob-

tain:

df1(K)(δK) = −2Tr
(

(In −KH)BHT (δK)
T
)
. (A.5)

• Determining df2(K)(δK). Similar calculations lead to:

df2(K)(δK) = 2Tr
(
KR(δK)

T
)
. (A.6)

• Determining df(k)(δK). From equations (A.5) and (A.6), we get:

df(K)(δK) = 2Tr
(
KR(δK)

T
)
− 2Tr

(
(In −KH)BHT (δK)

T
)

= 2Tr
(
KR(δK)

T − (In −KH)BHT (δK)
T
)

= 2Tr
((
KR− (In −KH)BHT

)
(δK)

T
)
. (A.7)

As shown in equation (A.1), function f is a quadratic function with respect to

K. Also, by considering the o(∥δK∥) terms in the previous derivations, we can

prove that Hess(f)K (δK) = Tr
(
δK
(
HBHT +R

)
(δK)

T
)

, which is positive defi-

nite. Therefore, f has a minimum, denoted K∗, such that df(K∗) = 0L(Rn×p,Rn×p),

where L(Rn×p,Rn×p) denotes the set of all linear mappings of Rn×p. We thus have:
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K∗R− (In −K∗H)BHT = 0Rn×p

K∗R−BHT +K∗HBHT = 0Rn×p

K∗
(
HBHT +R

)
= BHT

K∗ = BHT
(
R+HBHT

)−1

. (A.8)

A.2 BLUE: derive a second expression for the gain K

Let us introduce G = B−1 +HTR−1H, so that:

BHT
(
HBHT +R

)−1

= G−1GK∗

= G−1
(
B−1 +HTR−1H

)
BHT

(
HBHT +R

)−1

= G−1

B−1B︸ ︷︷ ︸
=In

HT +HTR−1HBHT

(HBHT +R
)−1

= G−1
(
HT +HTR−1HBHT

)(
HBHT +R

)−1

= G−1
(
HTR−1R+HTR−1HBHT

)(
HBHT +R

)−1

= G−1HTR−1
(
R+HBHT

)(
HBHT +R

)−1

︸ ︷︷ ︸
=Ip

=
(
B−1 +HTR−1H

)−1

HTR−1. (A.9)

A.3 BLUE: deriving two formula for P a under optimal K

Let us first derive a simplified expression of P a when when K = K∗:
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P a = (In −K∗H)B(In −K∗H)
T

+K∗R(K∗)
T

= (In −K∗H)B
(
In −HTKT

)
+K∗R(K∗)

T

= (In −K∗H)B − (In −K∗H)BHTKT +K∗R(K∗)
T

= (In −K∗H)B −
(
K∗R− (In −K∗H)BHT

)
︸ ︷︷ ︸

C

KT .

Here-below, we can show that C = 0Rn×n , by using equation (2.15):

C =
(
B−1 +HTR−1H

)−1

HTR−1R︸ ︷︷ ︸
=Ip

−
(
In −

(
B−1 +HTR−1H

)−1

HTR−1H

)
BHT

=
(
B−1 +HTR−1H

)−1

HT −
(
B−1 +HTR−1H

)−1((
B−1 +HTR−1H

)
−HTR−1H

)
BHT

=
(
B−1 +HTR−1H

)−1

HT −
(
B−1 +HTR−1H

)−1

B−1 +HTR−1H −HTR−1H︸ ︷︷ ︸
=0Rp×p

BHT

=
(
B−1 +HTR−1H

)−1

HT −
(
B−1 +HTR−1H

)−1

B−1B︸ ︷︷ ︸
=In

HT

=
(
B−1 +HTR−1H

)−1

HT −
(
B−1 +HTR−1H

)−1

HT

= 0Rn×n .

Therefore, by substituting K in equation (2.13) by K∗ as expressed in equa-

tion (2.14), we get the following first formula for P a:

P a = (In −K∗H)B (A.10)

=

(
In −BHT

(
R+HBHT

)−1

H

)
B

= B −BHT
(
R+HBHT

)−1

HB. (A.11)

By using equation (2.15), we obtain a second expression of P a:
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P a =

(
In −

(
B−1 +HTR−1H

)−1

HTR−1H

)
B

=
(
B−1 +HTR−1H

)−1(
B−1 +HTR−1H −HTR−1H

)
B

=
(
B−1 +HTR−1H

)−1

. (A.12)



APPENDIX B

Latent space data assimilation: relation between

PCA and autoencoders

B.1 Minimization in a 1-dimensional reduced space

In the following, we solve the optimization problem defined in equation (4.12).

To mathematically decompose equation (4.12), we first remind the definition of

the Frobenius norm operator:

∀A ∈ Rk×p, ∥A∥2F = Tr
(
ATA

)
. (B.1)

Given equation (B.1), we can reformulate equation (4.12) in terms of matrix

traces. Since the optimization problem in equation (4.12) is subject to an equality

constraint, we introduce the Lagrange multiplier λ ∈ R and define the following:

u∗
1, λ

∗ = arg min
u1∈Rn, λ∈R

[
Tr
((
u1u

T
1X −X

)T (
u1u

T
1X −X

))
+ λ

(
uT
1 u1 − 1

)]
(B.2)

We define C = XXT and recall following trace property:

∀A ∈ Rk×p, ∀B ∈ Rp×k, T r (AB) = Tr (BA) (B.3)

213
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u∗
1, λ

∗ = arg min
u1∈Rn, λ∈R

[
Tr
((
u1u

T
1X −X

)(
u1u

T
1X −X

)T)
+ λ

(
uT
1 u1 − 1

)]
u∗
1, λ

∗ = arg min
u1∈Rn, λ∈R

[
Tr
((
u1u

T
1 − In

)
XXT

(
u1u

T
1 − In

))
+ λ

(
uT
1 u1 − 1

)]
Then, we have:

u∗
1, λ

∗ = arg min
u1∈Rn, λ∈R

[
Tr
(
C
(
u1u

T
1 − In

)(
u1u

T
1 − In

))
+ λ

(
uT
1 u1 − 1

)]
u∗
1, λ

∗ = arg min
u1∈Rn, λ∈R

[
Tr
(
C
(
u1u

T
1 u1u

T
1 − u1u

T
1 − u1u

T
1 + In

))
+ λ

(
uT
1 u1 − 1

)]
u∗
1, λ

∗ = arg min
u1∈Rn, λ∈R

[
Tr
(
C
(
In − u1u

T
1

))
+ λ

(
uT
1 u1 − 1

)]
u∗
1, λ

∗ = arg min
u1∈Rn, λ∈R

[
Tr
((
In − u1u

T
1

)
C
)

+ λ
(
uT
1 u1 − 1

)]
u∗
1, λ

∗ = arg min
u1∈Rn, λ∈R

[
Tr (C) − Tr

(
u1u

T
1C
)

+ λ
(
uT
1 u1 − 1

)]
u∗
1, λ

∗ = arg min
u1∈Rn, λ∈R

[
−Tr

(
u1u

T
1C
)

+ λ
(
uT
1 u1 − 1

)]
(B.4)

Let us define the Lagrangian function L1 such that:

L1 : Rn × R → R

(u1, λ) 7→ −Tr
(
u1u

T
1C
)

+ λ
(
uT
1 u1 − 1

) (B.5)

In order to find the solution of equation (4.12), the following optimality condi-

tions have to be satisfied: 
∂L1

∂u1
(u∗

1, λ
∗) = 0

∂L1

∂λ (u∗
1, λ

∗) = 0

(B.6)

Using standard trace derivative rules(1), we get:
∂L1

∂u1
(u∗

1, λ
∗) = 0 ⇐⇒ −

(
Cu∗

1 +CTu∗
1

)
+ 2λu∗

1 = 0

∂L1

∂λ (u∗
1, λ

∗) = 0 ⇐⇒ (u∗
1)Tu∗

1 − 1 = 0

Since C is symmetric we have:

(1)https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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∂L1

∂u1
(u∗

1, λ
∗) = 0 ⇐⇒ Cu∗

1 = λ∗u∗
1 (B.7)

∂L1

∂λ
(u∗

1, λ
∗) = 0 ⇐⇒ (u∗

1)Tu∗
1 = 1 (B.8)

From equations equation (B.7), and equation (B.7), we know that u∗
1 is an

eigenvector of C and that λ∗ is its related eigenvalue.

Let us consider ū1 ∈ Rn×1 that satisfies equation (B.7) and equation (B.7): ū1

is an eigenvector of C and its related eigenvalue is denoted λ̄. One could note that

since C is a semi-definite positive matrix (i.e.∀x ∈ Rn,xTCx ≥ 0), all eigenvalues

are positive. Including ū1 into equation (B.4):

u∗
1 = arg min−Tr

(
ū1ū1

TC
)

⇐⇒ u∗
1 = arg min−Tr

(
ū1

TCū1

)
⇐⇒ u∗

1 = arg maxTr
(
ū1

TCū1

)
⇐⇒ u∗

1 = arg max λ̄

The solution that maximizes λ̄ and thus minimizes our optimization problem

is the eigenpair (u∗
1, λ

∗) such that λ∗ is the largest eigenvalue of the covariance

matrix C = XXT .

B.2 Minimization in a ℓ-dimensional reduced space

In the following, we solve the optimization problem of equation (4.14). Since it is

subject to an equality constraint, we introduce the Lagrange multipliers λ1, λ2, . . . , λℓ

via the diagonal matrix Λ ∈ Rℓ×ℓ :

U∗
ℓ ,Λ

∗ = arg min
U ℓ∈Rn×ℓ

[
Tr

((
U ℓU

T
ℓ X −X

)(
U ℓU

T
ℓ X −X

)T)
+ Tr

(
Λ
(
UT

ℓ U ℓ − Iℓ
))]

(B.9)

Similarly to the upper calculations of appendix B.1, we get:

U∗
ℓ ,Λ

∗ = arg min
U ℓ∈Rn×ℓ

[
−Tr

(
U ℓU

T
ℓ C
)

+ Tr
(
Λ
(
UT

ℓ U ℓ − Iℓ
))]

(B.10)
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We define function the Lagrangian function L2 such that:

L2 : Rn×ℓ × Rℓ×ℓ → R

(U ℓ,Λ) 7→
[
−Tr

(
U ℓU

T
ℓ C
)

+ Tr
(
Λ
(
UT

ℓ U ℓ − Iℓ
))] (B.11)

Following optimality conditions have to be satisfied:
∂L2

∂U ℓ
(U∗

ℓ ,Λ
∗) = 0

∂L2

∂Λ (U∗
ℓ ,Λ

∗) = 0

(B.12)

Then, using the trace derivative rules we get:


∂L2

∂U ℓ
(U∗

ℓ ,Λ
∗) = 0 ⇐⇒ CU∗

ℓ = U∗
ℓΛ

∗ (B.13)

∂L2

∂Λ
(U∗

ℓ ,Λ
∗) = 0 ⇐⇒ UT

ℓ U ℓ = Iℓ (B.14)

From equation (B.13), we infer:

∂L2

∂U ℓ
(U∗

ℓ ,Λ
∗) = 0 ⇐⇒ C


u∗
11 u∗

12 . . . u∗
1ℓ

u∗
21 u∗

22 . . . u∗
2ℓ

...
...

. . .
...

u∗
n1 u∗

n2 . . . u∗
nℓ

 =


λ∗
1u

∗
11 λ∗

2u
∗
12 . . . λ∗

ℓu
∗
1ℓ

λ∗
1u

∗
21 λ∗

2u
∗
22 . . . λ∗

ℓu
∗
2ℓ

...
...

. . .
...

λ∗
1u

∗
n1 λ∗

2u
∗
n2 . . . λ∗

ℓu
∗
nℓ


∂L2

∂U ℓ
(U∗

ℓ ,Λ
∗) = 0 ⇐⇒ U∗

ℓ is made of eigenvectors of C and Λ∗ comprises their related eigenvalues.

Let us consider Ū ℓ ∈ Rn×ℓ that verifies equations B.13 and B.14: Ū ℓ is made

of ℓ arbitrarily picked eigenvectors of C and is such that Ū ℓ
T
Ū ℓ = Iℓ. Their

corresponding eigenvalues are denoted λ̄1, λ̄2, . . . , λ̄ℓ. Incorporating Ū ℓ into equa-
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tion (B.10) gives:

U∗
ℓ = arg min−Tr

(
Ū ℓŪ ℓ

T
C
)

⇐⇒ U∗
ℓ = arg min−Tr

(
Ū ℓ

T
CŪ ℓ

)
⇐⇒ U∗

ℓ = arg maxTr
(
Ū ℓ

T
CŪ ℓ

)
⇐⇒ U∗

ℓ = arg max

ℓ∑
i=1

λ̄i

This sum is maximized when the eigenvectors horizontally stacked in Ū ℓ are

related to the largest eigenvalues of C (which are all positive since C is semi-

definite positive). Therefore, if we denote λ∗
1, . . . , λ

∗
ℓ the ℓ largest eigenvalues of C

and u∗
1, . . . , u

∗
ℓ their related eigenvectors, the solution we are looking for is:

U∗
ℓ , Λ

∗ =


...

... . . .
...

u∗
1 u∗

2 . . . u∗
ℓ

...
... . . .

...

 ,


λ∗
1 0 . . . 0

0 λ∗
2 . . . 0

...
...

. . .
...

0 0 . . . λ∗
ℓ

 (B.15)

B.3 Minimization in a 1-dimensional reduced space: a more

flexible scenario with two mapping operators

In the following, we solve the optimization problem defined in equation (4.13).

Similarly to the calculations made in appendix B.1, we have:

u∗
1,v

∗
1 = arg min

u1,v1∈Rn

Tr
((
u1v

T
1 − In

)
XXT

(
v1u

T
1 − In

))
u∗
1,v

∗
1 = arg min

u1,v1∈Rn

Tr
(
u1v

T
1Cv1u

T
1 − u1v

T
1C −Cv1uT

1 +C
)

u∗
1,v

∗
1 = arg min

u1,v1∈Rn

Tr (C) + Tr
(
u1v

T
1Cv1u

T
1

)
− Tr

(
u1v

T
1C
)
− Tr

(
Cv1u

T
1

)
u∗
1,v

∗
1 = arg min

u1,v1∈Rn

Tr
(
u1v

T
1Cv1u

T
1

)
− Tr

(
u1v

T
1C
)
− Tr

(
Cv1u

T
1

)
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Let us define function h such that:

h : Rn × Rn → R

u1,v1 7→ Tr
(
u1v

T
1Cv1u

T
1

)
− Tr

(
Cu1v

T
1

)
− Tr

(
Cv1u

T
1

) (B.16)

Following optimality conditions have to be satisfied:
∂h
∂u1

(u∗
1,v

∗
1) = 0

∂h
∂v1

(u∗
1,v

∗
1) = 0

(B.17)

From which we derive:
∂h
∂u1

(u∗
1,v

∗
1) = 0 ⇐⇒ u1

(
vT1Cv1

)T
+ u1

(
vT1Cv1

)
−Cv1 −Cv1 = 0

∂h
∂v1

(u∗
1,v

∗
1) = 0 ⇐⇒ Cv1u

T
1 u1 +Cv1u

T
1 u1 −Cu1 −Cu1 = 0


∂h
∂u1

(u∗
1,v

∗
1) = 0 ⇐⇒ Cv1 = u1v

T
1Cv1

∂h
∂v1

(u∗
1,v

∗
1) = 0 ⇐⇒ Cu1 = Cv1u

T
1 u1

(B.18)

We can simplify equation (B.18) by introducing scalars α and β such that:
Cv1 = u1

α∈R+︷ ︸︸ ︷
vT1Cv1

Cu1 = Cv1 u
T
1 u1︸ ︷︷ ︸

β∈R+Cv1 = αu1

Cu1 = βCv1Cv1 = αu1

Cu1 = αβu1

(B.19)

By definition, β ∈ R+. A first thing we can tell is that β ̸= 0:

1. Let us assume β = 0.

2. Then, ∥u1∥22 = uT
1 u1 = β = 0 and by definition of a norm u1 = 0Rn .
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3. By assigning 0Rn to u1, the cost of the function to be minimized (see equa-

tion (4.13)) is ∥X∥2F which is not optimal: indeed, by simply choosing

u1 = v1 = [1, 0, . . . , 0], we get:

u1v
T
1 =


1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0



⇐⇒ u1v
T
1X −X =


0 0 · · · 0

−x21 −x22 · · · −x2m

...
...

. . .
...

−xn1 −xn2 · · · −xnm


∥∥u1v

T
1X −X

∥∥2
F
≤ ∥X∥2F

4. In all likelihood, we will not have x11 = x12 = · · · = x1m = 0 since

x1, . . . xm are randomly perturbed samples. We can therefore claim that∥∥u1v
T
1X −X

∥∥2
F
< ∥X∥2F and thus β > 0.

Likewise, α ∈ R+ and we can prove that α ̸= 0:

1. Let us assume that α = 0 and denote ṽ1 a vector such that ṽ1
T
Cṽ1 = 0.

2. Then, considering the cost function as expressed in equation (B.16), we have

∀u1 ∈ Rn:

h(u1, ṽ1) = Tr
(
u1ṽ1

T
Cṽ1u

T
1

)
− Tr

(
Cu1ṽ1

T
)
− Tr

(
Cṽ1ũ

T
)

h(u1, ṽ1) = Tr
(
u1 × α× uT

1

)
− Tr

(
Cu1ṽ1

T
)
− Tr

(
Cṽ1ũ

T
)

h(u1, ṽ1) = 0 − Tr
(
Cu1ṽ1

T
)
− Tr

(
Cṽ1ũ

T
)

From first line of equation (B.18), we have Cṽ1 = αu1, thus Cṽ1 = 0.

Then, by replacing Cṽ1 by 0 in the second line of equation (B.18), we also

get Cu1 = βCṽ1 = 0. Therefore:

h(u1, ṽ1) = 0 − 0 − 0 = 0

3. C is a semi-definite positive matrix, then ∀w ∈ Rn, wTCw ≥ 0.

4. Since C ̸= 0Rn×n , it exists a unitary vector v̄1 such that v̄1
TCv̄1 > 0.
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5. Let us denote ᾱ = v̄1
TCv̄1.

6. Applying function h to the pair (v̄1, v̄1) gives:

h(v̄1, v̄1) = Tr
(
v̄1v̄1

TCv̄1v̄1
T
)
− Tr

(
Cv̄1v̄1

T
)
− Tr

(
Cv̄1v̄1

T
)

h(v̄1, v̄1) = Tr
(
v̄1 × ᾱ× v̄1T

)
− Tr

(
v̄1

TCv̄1
)
− Tr

(
v̄1

TCv̄1
)

h(v̄1, v̄1) = ᾱ× Tr
(
v̄1v̄1

T
)
− 2ᾱ

h(v̄1, v̄1) = ᾱ× ∥v̄1∥22 − 2ᾱ

h(v̄1, v̄1) = ᾱ× 12 − 2ᾱ

h(v̄1, v̄1) = −ᾱ

h(v̄1, v̄1) < 0

h(v̄1, v̄1) < h(u1, ṽ1), ∀u1 ∈ Rn

7. Finally, if we consider pair solutions (u∗
1,v

∗
1) to our minimization problem,

they lead to α ̸= 0.

Let us consider a pair solution (u∗
1,v

∗
1), then from equation (B.19), we get:Cv∗1 = αu∗
1, α ̸= 0

Cu∗
1 = αβu∗

1, β ̸= 0
(B.20)

We then infer that u∗
1 is an eigenvector of C and its related eigenvalue is

αβ = ∥u∗
1∥

2
2(v∗1)

T
Cv∗1.

We also have the following:

αu∗
1 = Cv∗1

α(v∗1)
T
u∗
1 = (v∗1)

T
Cv∗1

α(v∗1)
T
u∗
1 = α

(v∗1)
T
u∗
1 = 1 (since α ̸= 0)

By considering h(u∗
1,v

∗
1), we get:
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h(u∗
1,v

∗
1) = Tr

(
u∗
1(v∗1)

T
Cv∗1(u∗

1)
T
)
− Tr

(
u∗
1(v∗1)

T
C
)
− Tr

(
Cv1(u∗

1)
T
)

h(u∗
1,v

∗
1) = Tr

(
Cv∗1(u∗

1)
T
)
− Tr

(
u∗
1(v∗1)

T
C
)
− Tr

(
Cv1(u∗

1)
T
)

(since u1v
T
1Cv1 = Cv1)

h(u∗
1,v

∗
1) = Tr

(
Cv∗1(u∗

1)
T
)
− Tr

((
u∗
1(v∗1)

T
C
)T)

− Tr
(
Cv1(u∗

1)
T
)

h(u∗
1,v

∗
1) = Tr

(
Cv∗1(u∗

1)
T
)
− Tr

(
Cv1(u∗

1)
T
)
− Tr

(
Cv1(u∗

1)
T
)

h(u∗
1,v

∗
1) = −Tr

(
Cv1(u∗

1)
T
)

h(u∗
1,v

∗
1) = −Tr

(
(u∗

1)
T
Cv1

)
h(u∗

1,v
∗
1) = −Tr

(
(u∗

1)
T
αu1

)
h(u∗

1,v
∗
1) = −αβ

In order to minimize h, we have to maximize the positive scalar αβ and therefore

to choose u∗
1 to be the eigenvector of C related to the largest eigenvalue λmax =

(αβ)max. Then, v∗1 can be any vector of Rn such that (v∗1)
T
u∗
1 = 1.

B.4 Minimization in a ℓ-dimensional reduced space: a more

flexible scenario with two mapping operators

In the following, we derive properties that the solution of equation (4.16) must

satisfy.

Similarly to the calculations made in appendix B.3, we have:

U∗
ℓ ,V

∗
ℓ = arg min

U ℓ,V ℓ∈Rn×ℓ

Tr
((
U ℓV

T
ℓ − In

)
XXT

(
V ℓU

T
ℓ − In

))
U∗

ℓ ,V
∗
ℓ = arg min

U ℓ,V ℓ∈Rn×ℓ

Tr
(
U ℓV

T
ℓ CV ℓU

T
ℓ −U ℓV

T
ℓ C −CV ℓU

T
ℓ +C

)
U∗

ℓ ,V
∗
ℓ = arg min

U ℓ,V ℓ∈Rn×ℓ

Tr (C) + Tr
(
U ℓV

T
ℓ CV ℓU

T
ℓ

)
− Tr

(
U ℓV

T
ℓ C
)
− Tr

(
CV ℓU

T
ℓ

)
U∗

ℓ ,V
∗
ℓ = arg min

U ℓ,V ℓ∈Rn×ℓ

Tr
(
U ℓV

T
ℓ CV ℓU

T
ℓ

)
− Tr

(
U ℓV

T
ℓ C
)
− Tr

(
CV ℓU

T
ℓ

)
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Let us define function ϕ such that:

ϕ : Rn×ℓ × Rn×ℓ → R

U ℓ,V ℓ 7→ Tr
(
U ℓV

T
ℓ CV ℓU

T
ℓ

)
− Tr

(
CU ℓV

T
ℓ

)
− Tr

(
CV ℓU

T
ℓ

)
(B.21)

Following optimality conditions have to be satisfied:
∂ϕ

∂U ℓ
(U∗

ℓ ,V
∗
ℓ ) = 0

∂ϕ

∂V ℓ
(U∗

ℓ ,V
∗
ℓ ) = 0

(B.22)

From which we derive:
∂ϕ

∂U ℓ
(U∗

ℓ ,V
∗
ℓ ) = 0 ⇐⇒ U ℓ

(
V T

ℓ CV ℓ

)T
+U ℓ

(
V T

ℓ CV ℓ

)
−CV ℓ −CV ℓ = 0

∂ϕ

∂V ℓ
(U∗

ℓ ,V
∗
ℓ ) = 0 ⇐⇒ CV ℓU
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(B.23)

Let us consider U ℓ ∈ Rn×ℓ and V ℓ ∈ Rn×ℓ that verify equation (B.23). Let us

inject U ℓ and V ℓ in equation (B.21):

U∗
ℓ ,V

∗
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U ℓ,V ℓ∈Rn×ℓ

Tr
(
U ℓV

T
ℓ CV ℓU
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ℓ C
)
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T
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)
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V T
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)
(B.24)
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Also, we have:

CU ℓ = U ℓV
T
ℓ CV ℓU

T
ℓ U ℓ

CU ℓ = U ℓ

(
V T

ℓ CV ℓU
T
ℓ U ℓ

)
CU ℓ = U ℓ

(
V T

ℓ CU ℓ

)

CU ℓ = U ℓW (B.25)

Let us denote X the eigenvectors of W . Then, it exists a diagonal matrix

Λ ∈ Rℓ×ℓ comprising the eigenvalues of W and such that WX = WΛ.

From equation (B.25) we derive:

CU ℓX = U ℓWX

CU ℓX = U ℓXΛ

C(U ℓX) = (U ℓX)Λ

Therefore, U ℓX comprises eigenvectors of C and Λ holds their related eigenval-

ues. One could note thatW and C share the same eigenvalues. Thus, the optimiza-

tion problem is equivalent to searching for U∗
ℓ and V ∗

ℓ such that Tr
(
(V ∗

ℓ )TCU∗
ℓ

)
is the sum of the ℓ largest eigenvalues of C.



APPENDIX C

Numerical Experiments: implementation details

C.1 Augmented Lorenz96

We provide the Python implementation of the Lorenz96 class we specifically defined

to represent the Lorenz96 system of equation (5.2):

1 import numpy as np

2

3 class Lorenz96:

4

5 def __init__(self , dim: int , time_step: float , forcing_term:float =8.0) -> None:

6 self.n = dim

7 self.F = forcing_term

8 self.dt = time_step

9

10 def l96_ode(self , x: np.ndarray) -> np.ndarray:

11 d = np.zeros(x.shape)

12

13 # Calculate derivatives for the 3 edge cases: i=1, 2, n

14 d[0] = (x[1] - x[self.n - 2]) * x[self.n - 1] - x[0]

15 d[1] = (x[2] - x[self.n - 1]) * x[0] - x[1]

16 d[self.n - 1] = (x[0] - x[self.n - 3]) * x[self.n - 2] - x[self.n - 1]

17

18 # Calculate derivatives for the general case

224
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19 d[2: self.n - 1] = (x[3: self.n] - x[0: self.n - 3]) * x[1: self.n - 2] - x[2:

self.n - 1]

20

21 return d + self.F

22

23 def RKstep(self , x: np.ndarray) -> np.ndarray:

24 k1 = self.l96_ode(x)

25 k2 = self.l96_ode(x + (self.dt/2.0) * k1)

26 k3 = self.l96_ode(x + (self.dt/2.0) * k2)

27 k4 = self.l96_ode(x + self.dt * k3)

28 return x + (self.dt/6.0) * (k1 + 2.0 * k2 + 2.0 * k3 + k4)

29

30

31 def traj(self , x: np.ndarray , nb_time_steps: int =1) -> np.ndarray:

32 assert x.shape [0] == self.n

33 x = x.copy()

34

35 for _ in range(nb_time_steps):

36 x = self.RKstep(x)

37 return x

38

39 def trajT(self , x: np.ndarray , nb_time_steps: int =1) -> np.ndarray:

40 return self.traj(x.T, nb_time_steps=nb_time_steps).T

Listing C.1: Implementation of the Lorenz96 class. This class is instantiated in

listing C.2.

The Python code provided in listing C.2 details the generation of our 40-

dimensional Lorenz96 dataset. The variable time step specifies the time increment

for the integration, set at 0.01, using a fourth-order Runge-Kutta scheme. The

forcing term is fixed at 8 to induce chaotic behavior, and a seed ensures the repro-

ducibility of the simulations.

1 import numpy as np

2 import random

3 from tqdm import tqdm

4

5 def generate_lorenz96_dataset(num_simulations , dim , nb_time_steps , time_step ,

6 burning_period , forcing_term =8.0, seed =26):

7

8 model = Lorenz96(dim , time_step , forcing_term=forcing_term)
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9 dataset = np.zeros(( nb_time_steps , num_simulations , dim))

10

11 np.random.seed(seed)

12 random.seed(seed)

13

14 initial_states = np.random.randn(num_simulations , dim)

15

16 dataset [0] = model.trajT(initial_states , nb_time_steps=burning_period)

17

18 for i in tqdm(range(1, nb_time_steps)):

19 dataset[i] = model.trajT(dataset[i-1], nb_time_steps =1).astype(’float32 ’)

20

21 return dataset

Listing C.2: Python code to generate the 40-dimensional Lorenz96 dataset.

The conversion of the Lorenz96 dataset into its 400-dimensional augmented

version is performed in two steps. First, an orthonormal matrix maps the original

data from R40 to R400. The Python class performing this linear dimension augmen-

tation is provided below in listing C.3. Second, a nonlinear invertible 3rd-degree

polynomial is applied element-wise on the linearly augmented data. The code for

this second transformation is provided in listing C.4.

1 import numpy as np

2 import random

3 from scipy.stats import ortho_group

4

5 class LinearAugmentation:

6 def __init__(self , in_dim , out_dim , seed =26):

7 self.in_dim = in_dim

8 self.out_dim = out_dim

9

10 np.random.seed(seed)

11 random.seed(seed)

12 self.ortho = ortho_group.rvs(out_dim)[: in_dim]

13

14 def convert(self , x):

15 return x @ self.ortho

16

17 def invert(self , xx):

18 return xx @ self.ortho.T
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19

20 def traj(self , xx , inner_model , nb_time_steps =1):

21 x = self.invert(xx)

22 x_ = inner_model.traj(x, nb_time_steps=nb_time_steps)

23 return self.convert(x_)

Listing C.3: Python code of the LinearAugmentation class, used to generate the

400-dimensional augmented Lorenz96 dataset.

1 import numpy as np

2 import random

3

4 class PolynomialAugmentation(LinearAugmentation):

5 def __init__(self , in_dim , out_dim , seed =26):

6 super().__init__(in_dim , out_dim , seed=seed)

7

8 np.random.seed(seed)

9 random.seed(seed)

10 sign = np.sign(np.random.random(out_dim) - 0.5)

11 self.A = np.random.random(out_dim) / 10 * sign

12 self.B = (1 + (np.random.random(out_dim) - 0.5) * 0.2) * sign

13 self.C = np.random.random(out_dim) * 2 - 1

14

15 def cardan_solver(self , xx):

16 p = self.B / self.A

17 q = (self.C - xx) / self.A

18 delta = -(4 * p * p * p + 27 * q * q)

19 v = np.cbrt(1 / 2 * (-q + np.sqrt(-delta / 27)))

20 u = np.cbrt(1 / 2 * (-q - np.sqrt(-delta / 27)))

21 return v + u

22

23 def convert(self , x):

24 xx = super ().convert(x)

25 return self.A * xx ** 3 + self.B * xx + self.C

26

27 def invert(self , xx: np.array):

28 x = self.cardan_solver(xx)

29 return super().invert(x)

Listing C.4: Python code of the PolynomialAugmentation class, used to generate

the 400-dimensional augmented Lorenz96 dataset.
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Legler S, Janjić T. 2022. Combining data assimilation and machine learning to

estimate parameters of a convective-scale model. Quarterly Journal of the Royal

Meteorological Society 148(743): 860–874, doi:https://doi.org/10.1002/qj.4235,

URL https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.4235.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022MS003016
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022MS003016
https://journals.ametsoc.org/view/journals/mwre/136/4/2007mwr2103.1.xml
https://journals.ametsoc.org/view/journals/mwre/136/4/2007mwr2103.1.xml
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0870.1986.tb00459.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0870.1986.tb00459.x
https://api.semanticscholar.org/CorpusID:60282629
https://api.semanticscholar.org/CorpusID:60282629
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.4235


M. PEYRON - Latent space data assimilation in the context of deep learning 246

Legras B, Vautard R. 1996. A guide to liapunov vectors. In: Predictability, Seminar

Proceedings, vol. 1. ECMWF, Reading, United-Kingdom, pp. 143–156.

Leith C. 1978. Objective methods for weather prediction. Annual Review of Fluid

Mechanics 10(1): 107–128.

Leutbecher M. 2019. Ensemble size: How suboptimal is less than infinity? Quar-

terly Journal of the Royal Meteorological Society 145(S1): 107–128, doi:https:

//doi.org/10.1002/qj.3387, URL https://rmets.onlinelibrary.wiley.com/

doi/abs/10.1002/qj.3387.

Li M, Zhang T, Chen Y, Smola AJ. 2014. Efficient mini-batch training for stochastic

optimization. In: Proceedings of the 20th ACM SIGKDD international conference

on Knowledge discovery and data mining. pp. 661–670.

Li X, Xiao C, Cheng A, Lin H. 2022. Joint estimation of parameter and state

with hybrid data assimilation and machine learning. doi:10.22541/au.164605938.

86704099/v1, URL https://doi.org/10.22541/au.164605938.86704099/v1.

Li Z, Navon IM. 2001. Optimality of variational data assimilation and its re-

lationship with the kalman filter and smoother. Quarterly Journal of the

Royal Meteorological Society 127(572): 661–683, doi:https://doi.org/10.1002/qj.

49712757220, URL https://rmets.onlinelibrary.wiley.com/doi/abs/10.

1002/qj.49712757220.

Liang J, Terasaki K, Miyoshi T. 2023. A machine learning approach to the obser-

vation operator for satellite radiance data assimilation. Journal of the Meteoro-

logical Society of Japan. Ser. II 101(1): 79–95, doi:10.2151/jmsj.2023-005.

Lin HX, Jin J, van den Herik J. 2019. Air quality forecast through integrated data

assimilation and machine learning. In: International Conference on Agents and

Artificial Intelligence. pp. 787–793, URL https://api.semanticscholar.org/

CorpusID:88497517.

Loh K, Omrani PS, van der Linden R. 2018. Deep learning and data assimilation

for real-time production prediction in natural gas wells. doi:10.48550/arXiv.1802.

05141, URL http://arxiv.org/abs/1802.05141.

Long J, Shelhamer E, Darrell T. 2015. Fully convolutional networks for semantic

segmentation. In: Proceedings of the IEEE conference on computer vision and

pattern recognition. pp. 3431–3440.

https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3387
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3387
https://doi.org/10.22541/au.164605938.86704099/v1
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49712757220
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49712757220
https://api.semanticscholar.org/CorpusID:88497517
https://api.semanticscholar.org/CorpusID:88497517
http://arxiv.org/abs/1802.05141


M. PEYRON - Latent space data assimilation in the context of deep learning 247

Lorenc AC. 1986. Analysis methods for numerical weather prediction. Quarterly

Journal of the Royal Meteorological Society 112(474): 1177–1194, doi:https://

doi.org/10.1002/qj.49711247414, URL https://rmets.onlinelibrary.wiley.

com/doi/abs/10.1002/qj.49711247414.

Lorenz EN. 1963. Deterministic nonperiodic flow. Journal of Atmospheric

Sciences 20(2): 130 – 141, doi:10.1175/1520-0469(1963)020⟨0130:DNF⟩2.

0.CO;2, URL https://journals.ametsoc.org/view/journals/atsc/20/2/

1520-0469_1963_020_0130_dnf_2_0_co_2.xml.

Lorenz EN. 1996. Predictability: A problem partly solved. In: Proc. Seminar on

predictability, vol. 1. Reading, pp. 1–18.

Loshchilov I, Hutter F. 2019. Decoupled weight decay regularization.

Lucor D, Agrawal A, Sergent A. 2021. Physics-aware deep neural networks for surro-

gate modeling of turbulent natural convection. arXiv preprint arXiv:2103.03565

.

Mahfouf JF, Rabier F. 2000. The ecmwf operational implementation of four-

dimensional variational assimilation. ii: Experimental results with improved

physics. Quarterly Journal of the Royal Meteorological Society 126(564):

1171–1190, doi:https://doi.org/10.1002/qj.49712656416, URL https://rmets.

onlinelibrary.wiley.com/doi/abs/10.1002/qj.49712656416.

Malardel S. 2022. Fondamentaux de météorologie. Cépaduès.
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Titre : Assimila�on de données en espace latent par des techniques de deep learning
Mots clés : Assimila�on de données, Appren�ssage profond, Espace latent, Dynamique de subs�tu�on, Filtre de Kalman d'ensemble
Résumé : Ce�e thèse, située à l’intersec�on de l’assimila�on de données (AD) et de l’appren�ssage profond (AP), introduit un concept nouveau
: l’assimila�on de données en espace latent. Elle permet une réduc�on considérable des coûts de calcul et des besoins mémoire, tout en offrant
le poten�el d’améliorer la précision des résultats. 

 Il existe de nombreuses façons d’intégrer l’appren�ssage profond dans les algorithmes d’assimila�on de données, chacune visant des objec�fs
différents (Loh et al., 2018; Tang et al., 2020; Laloyaux et al., 2020; Bonavita and Laloyaux, 2020; Brajard et al., 2020; Farchi et al., 2021b;
Pawar and San, 2021; Leutbecher, 2019; Ruckstuhl et al., 2021; Lin et al., 2019; Deng et al., 2018; Cheng et al., 2024). Nous étendons
davantage l'intégra�on de l'appren�ssage profond, en repensant le processus même d’assimila�on. Notre approche s’inscrit dans la suite des
méthodes à espace réduit (Evensen,1994; Bishop et al., 2001; Hunt et al., 2007; Cour�er, 2007; Gra�on and Tshimanga, 2009; Gra�on et al.,
2013; Lawless et al., 2008; Cao et al., 2007), qui résolvent le problème d’assimila�on en effectuant des calculs dans un espace de faible
dimension. Ces méthodes à espace réduit ont été principalement développées pour une u�lisa�on opéra�onnelle, car la plupart des algorithmes
d’assimila�on de données s'avèrent être excessivement coûteux, lorsqu’ils sont implémentés dans leur forme théorique originelle. 

 Notre méthodologie repose sur l’entraînement conjoint d’un autoencodeur et d’un réseau de neurone surrogate. L’autoencodeur apprend de
manière itéra�ve à représenter avec précision la dynamique physique considérée dans un espace de faible dimension, appelé espace latent. Le
réseau surrogate est entraîné simultanément à apprendre la propaga�on temporelle des variables latentes. Une stratégie basée sur une fonc�on
de coût chaînée est également proposée pour garan�r la stabilité du réseau surrogate. Ce�e stabilité peut également être obtenue en
implémentant des réseaux surrogate Lipschitz. 

 L’assimila�on de données à espace réduit est fondée sur la théorie de la stabilité de Lyapunov qui démontre mathéma�quement que, sous
certaines hypothèses, les matrices de covariance d’erreur de prévision et a posteriori se conforment asympto�quement à l’espace instable-
neutre (Carrassi et al., 2022), qui est de dimension beaucoup plus pe�te que l’espace d’état. Alors que l’assimila�on de données en espace
physique consiste en des combinaisons linéaires sur un système dynamique non linéaire, de grande dimension et poten�ellement mul�-échelle,
l’assimila�on de données latente, qui opère sur les dynamiques internes sous-jacentes, poten�ellement simplifiées, est davantage suscep�ble
de produire des correc�ons significa�ves. 

 La méthodologie proposée est éprouvée sur deux cas tests : une dynamique à 400 variables - construite à par�r d'un système de Lorenz
chao�que de dimension 40 -, ainsi que sur le modèle quasi-géostrophique de la librairie OOPS (Object-Oriented Predic�on System). Les résultats
obtenus sont prome�eurs.

Title: Latent space data assimila�on by using deep learning
Key words: Data Assimila�on, Deep Learning, Latent space, Surrogate dynamics, Ensemble Kalman Filter
Abstract: This thesis, which sits at the crossroads of data assimila�on (DA) and deep learning (DL), introduces latent space data assimila�on, a
novel data-driven framework that significantly reduces computa�onal costs and memory requirements, while also offering the poten�al for
more accurate data assimila�on results. 

 There are numerous ways to integrate deep learning into data assimila�on algorithms, each targe�ng different objec�ves (Loh et al., 2018; Tang
et al., 2020; Laloyaux et al., 2020; Bonavita and Laloyaux, 2020; Brajard et al., 2020; Farchi et al., 2021b; Pawar and San, 2021; Leutbecher,
2019; Ruckstuhl et al., 2021; Lin et al., 2019; Deng et al., 2018; Cheng et al., 2024). We extend the integra�on of deep learning further by
rethinking the assimila�on process itself. Our approach aligns with reduced-space methods (Evensen,1994; Bishop et al., 2001; Hunt et al.,
2007; Cour�er, 2007; Gra�on and Tshimanga, 2009; Gra�on et al., 2013; Lawless et al., 2008; Cao et al., 2007), which solve the assimila�on
problem by performing computa�ons within a lower-dimensional space. These reduced-space methods have been developed primarily for
opera�onal use, as most data assimila�on algorithms are prohibi�vely costly, when implemented in their full theore�cally form. 

 Our methodology is based on the joint training of an autoencoder and a surrogate neural network. The autoencoder itera�vely learns how to
accurately represent the physical dynamics of interest within a low-dimensional space, termed latent space. The surrogate is simultaneously
trained to learn the �me propaga�on of the latent variables. A chained loss func�on strategy is also proposed to ensure the stability of the
surrogate network. Stability can also be achieved by implemen�ng Lipschitz surrogate networks. 

 Reduced-space data assimila�on is underpinned by Lyapunov stability theory, which mathema�cally demonstrates that, under specific
hypotheses, the forecast and posterior error covariance matrices asympto�cally conform to the unstable-neutral subspace (Carrassi et al.,
2022), which is of much smaller dimension than the full state space. While full-space data assimila�on involves linear combina�ons within a
high-dimensional, nonlinear, and possibly mul�-scale dynamic environment, latent data assimila�on, which operates on the core, poten�ally
disentangled and simplified dynamics, is more likely to result in impac�ul correc�ons. 

 We tested our methodology on a 400-dimensional dynamics - built upon a chao�c Lorenz96 system of dimension 40 -, and on the quasi-
geostrophic model of the Object-Oriented Predic�on System (OOPS) framework. We obtained promising results.
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