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Abstract. We explore a scaled spectral preconditioner for the efficient solution of sequences5
of symmetric and positive-definite linear systems. We design the scaled preconditioner not only as6
an approximation of the inverse of the linear system but also with consideration of its use within7
the conjugate gradient (CG) method. We propose three different strategies for selecting a scaling8
parameter, which aims to position the eigenvalues of the preconditioned matrix in a way that reduces9
the energy norm of the error, the quantity that CG monotonically decreases at each iteration. Our10
focus is on accelerating convergence especially in the early iterations, which is particularly important11
when CG is truncated due to computational cost constraints. Numerical experiments provide in12
data assimilation confirm that the scaled spectral preconditioner can significantly improve early CG13
convergence with negligible computational cost.14
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1. Introduction. Efficiently solving sequences of symmetric positive-definite18

(SPD) linear systems19

(1.1) A(j)x(j) = b(j), j = 1, 2, . . .20

is crucial in various inverse problems of computational science and engineering. For21

instance, in data assimilation [4, 15], where one aims to solve a large-scale weighted22

regularized nonlinear least-squares problem via the truncated Gauss-Newton algo-23

rithm (GN) [10, 20], each iteration involves solving a linear least-squares subproblem.24

The latter may be formulated as a large SPD linear system, typically solved using25

the preconditioned conjugate-gradient method (PCG). Since consecutive systems do26

not differ significantly, recycling Krylov subspace information has been explored and27

proven to be effective [6, 17, 11, 19].28

One way of recycling Krylov subspace information involves leveraging search di-29

rections obtained from PCG on earlier systems to construct a limited-memory quasi-30

Newton preconditioner (LMP) [17, 19]. This preconditioner, built solely from PCG31

information, does not require explicit knowledge of any matrix in the sequence, mak-32

ing it particularly suitable for applications where only matrix-vector products are33

available, which is the case of data assimilation. [11] generalizes this limited-memory34

preconditioner, and introduces specific variants when used with eigen- or Ritz pairs.35

They focused on a first-level preconditioner, capable of clustering most eigenvalues36

at 1 with few outliers, is already available for the first linear system in sequence.37

Then, they used LMP as a second-level preconditioner to improve the efficiency of38

the first. The goal of the LMP is to capture directions in a low-dimensional subspace39

that the first-level preconditioner may miss, and use them to improve convergence of40

PCG. When A(j) = A for all j, spectral analysis of the preconditioned matrix when41
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used with k pairs has shown that LMP can cluster at least k eigenvalues at 1, and42

that the eigenvalues of the preconditioned matrix interlace with those of the original43

matrix [11]. The efficiency of this approach has been demonstrated in a real-life data44

assimilation applications [11, 24].45

We focus on improving the performance of the spectral LMP [7, 11], which is46

built by using eigenpairs of A(j). The spectral LMP shares the same formulation47

as the abstract balancing domain decomposition method [18] and is equivalent to48

deflation-based preconditioning when used with a specific initial point [24].49

When designing preconditioners for PCG, the primary focus in the literature is50

mostly on A and the significance of the initial guess is overlooked. Although the im-51

portance of the initial guess is mentioned, its impact on the choice of a preconditioner52

is not well studied. Favorable eigenvalue distributions are also highlighted in terms of53

clustering, but there is little emphasis on the position of the clusters. The performance54

of the preconditioner is also measured in terms of the total number of iterations to55

converge, with little focus on the convergence in the early iterations. When PCG is56

truncated before convergence due to computational budget or when used as a solver57

within a optimization method like GN, the effect of the preconditioner on the early58

convergence of PCG is also crucial. In this paper, we aim to explore those overlooked59

aspects to design a good preconditioner. We not only aim to improve convergence by60

reducing the total number of iterations but also ensure that, from the very first iter-61

ation, the preconditioned iterates outperform those of the original system. In doing62

so, we specifically focus on strategically positioning the eigenvalues captured by the63

LMP, in that the energy norm of the error at each iteration of CG is reduced.64

The paper is organized as follows. In Section 2 we start by introducing the neces-65

sary notation. In Section 3, we review PCG and its convergence properties. We then66

discuss the characteristics of an efficient preconditioner that can be applied to (1.1).67

Section 4 is our main contribution. We define the scaled spectral preconditioner and68

discuss its properties. Next, we outline three key approaches for selecting the scaling69

parameter, which influences the positioning of the eigenvalue cluster, to reduce total70

number of iterations and enhance convergence in the early iterations. In Section 5,71

we provide numerical experiments using the Lorenz 95 reference model from data72

assimilation to validate theoretical results. Finally, conclusions and perspectives are73

discussed in Section 6.74

2. Notation. The matrix A ∈ Rn×n is always SPD. Its spectral radius is ρ(A).75

Its spectral decomposition is A = SΛS⊤ with Λ = diag(λ1, . . . , λn), λ1 ≥ . . . ≥ λn >76

0, and S =
[
s1 · · · sn

]
orthogonal. Its i-th eigenvalue is νi(A). Its range space is77

R(A). The A-norm, or energy norm, of vector x is ∥x∥A =
√
x⊤Ax. The spectral78

norm is ∥.∥2.79

3. Background.80

3.1. CG algorithm. The Conjugate Gradient (CG) method [13] is the work-81

horse for Ax = b with SPD A ∈ Rn×n and b ∈ Rn. If x0 ∈ Rn is an initial guess and82

r0 = b−Ax0 is the initial residual, then at every step ℓ = 1, 2, . . . , n, CG produces a83

unique approximation [22, p.176]84

(3.1) xℓ ∈ x0 +Kℓ(A, r0) such that rℓ ⊥ Kℓ(A, r0),85

which is equivalent [22, p.126] to86

(3.2) ∥x∗ − xℓ∥A = min
x∈x0+Kℓ(A,r0)

∥x∗ − x∥A ,87
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where x∗ is the exact solution, Kℓ(A, r0) := span{r0, Ar0, . . . , A
ℓ−1r0} is the ℓ-th88

Krylov subspace generated by A and r0. In exact arithmetic, the method terminates89

in at most µ iterations, where µ is the grade of r0 with respect to A, i.e., the maximum90

dimension of the Krylov subspace generated by A and r0 [22]. The most popular91

and computationally efficient variant of (3.1) is the original formulation of [13], that92

recursively updates coupled 2-term recurrences for xℓ+1, rℓ+1, and the search direction93

pℓ+1. Algorithm 3.1 states the complete algorithm. A common stopping criterion is94

based on sufficient decrease of the relative residual norm. However, in practical data95

assimilation implementations, a fixed number of iterations is used as stopping criterion96

due to computational budget constraints. CG is presented alongside its companion97

formulation, Algorithm 3.2, to be detailed in Subsection 3.3.98

Algorithm 3.1 CG

1: r0 = b−Ax0

2:

3: ρ0 = r⊤0 r0
4: p0 = r0
5: for ℓ = 0, 1, . . . do
6: qℓ = Apℓ
7: αℓ = ρℓ/(q

⊤
ℓ pℓ)

8: xℓ+1 = xℓ + αℓpℓ
9: rℓ+1 = rℓ − αℓqℓ

10:

11: ρℓ+1 = r⊤ℓ+1rℓ+1

12: βℓ+1 = ρℓ+1/ρℓ
13: pℓ+1 = rℓ+1 + βℓ+1pℓ
14: end for

Algorithm 3.2 PCG

1: r̂0 = b−Ax̂0

2: z0 = F r̂0
3: ρ̂0 = r̂⊤0 z0
4: p̂0 = z0
5: for ℓ = 0, 1, . . . do
6: q̂ℓ = Ap̂ℓ
7: α̂ℓ = ρ̂ℓ/(q̂

⊤
ℓ p̂ℓ)

8: x̂ℓ+1 = x̂ℓ + α̂ℓp̂ℓ
9: r̂ℓ+1 = r̂ℓ − α̂ℓq̂ℓ

10: zℓ+1 = F r̂ℓ+1

11: ρ̂ℓ+1 = r̂⊤ℓ+1zℓ+1

12: β̂ℓ+1 = ρ̂ℓ+1/ρ̂ℓ
13: p̂ℓ+1 = zℓ+1 + β̂ℓ+1p̂ℓ
14: end for

99

3.2. Convergence properties of CG. The approximation xℓ uniquely deter-100

mined by (3.1) minimizes the error in the energy norm:101

(3.3) ∥x∗ − xℓ∥2A = min
p∈Pℓ(0)

∥p(A)(x∗ − x0)∥2A = min
p∈Pℓ(0)

n∑

i=1

p(λi)
2 η

2
i

λi
,102

where ηi = s⊤i r0 and Pℓ(0) is the set of polynomials of degree at most ℓ with value 1103

at zero [22, p.193]. Thus, at each iteration, CG solves a certain weighted polynomial104

approximation problem over the discrete set {λ1, . . . , λn}. Moreover, if z
(ℓ)
1 , . . . , z

(ℓ)
ℓ105

are the ℓ roots of the solution p∗ℓ to (3.3),106

(3.4) ∥x∗ − xℓ∥2A =
n∑

i=1

p∗ℓ (λi)
2 η

2
i

λi
=

n∑

i=1

ℓ∏

j=1

(
1− λi

z
(ℓ)
j

)2
η2i
λi

.107

The z
(ℓ)
j are the Ritz values [5]. From (3.4), if z

(ℓ)
j is close to a λi, we expect a108

significant reduction in the error in energy norm. Based on the above, [5] explains the109

rate of convergence of CG in terms of the convergence of the Ritz values to eigenvalues110

of A. Assuming that λ1, . . . , λn take on the r distinct values ρ1, . . . , ρr, CG converges111

in at most r iterations [20, Theorem 5.4].112
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Using (3.3) and maximizing over the values p(λi) [22, p.194] leads to113

(3.5)
∥x∗ − xℓ∥A
∥x∗ − x0∥A

≤ min
p∈Pℓ(0)

max
1≤i≤n

|p(λi)|.114

By replacing {λ1, . . . , λn} with the interval [λ1, λn] and using Chebyshev polynomials,115

we obtain an upper bound [22, p.194]:116

(3.6)
∥x∗ − xℓ∥A
∥x∗ − x0∥A

≤ 2

(√
κ(A)− 1√
κ(A) + 1

)ℓ

,117

where κ(A) := λ1/λn is the condition number of A. While (3.5) and (3.6) provide the118

worst-case behavior of CG [12], the convergence properties may vary significantly from119

the worst case for a specific initial approximation. Note also that upper bounds (3.5)120

and (3.6) only depend on A, and not on r0. Though (3.6) relates the convergence121

behavior of CG to κ(A), one should be careful as convergence is also influenced by122

the clustering of the eigenvalues and their positioning [2, 3].123

3.3. Properties of a good preconditioner. In many practical applications,124

a preconditioner is essential for accelerating the convergence of CG [1, 25]. Assume125

that a preconditioner F = UU⊤ ∈ Rn×n is available in a factored form, where U is126

SPD, and consider the system with split preconditioner127

(3.7) U⊤AUy = U⊤b,128

whose matrix is also SPD. System (3.7) can then be solved with CG. The latter129

updates estimate yℓ that can be used to recover x̂ℓ := Uyℓ. Algorithm 3.2, the pre-130

conditioned conjugate gradients method, is equivalent to the procedure just described,131

but only involves solves with F and does not assume knowledge of U [8, p.532]. PCG132

updates x̂ℓ directly.133

PCG looks for an approximate solution in the Krylov subspace

x0 + UKℓ(U
⊤AU,U⊤r0),

and as in (3.3), it minimizes the energy norm,134

(3.8) ∥x∗ − x̂ℓ∥A = min
q∈Pℓ(0)

∥Uq(U⊤AU)U−1 (x∗ − x0)∥A.135

Although there is no general method for building a good preconditioner [1, 25],136

leveraging the convergence properties of CG on (3.8) often leads to the following137

criteria: (i) F should approximate the inverse of A, (ii) F should be cheap to apply,138

(iii) κ(U⊤AU) should be smaller than κ(A), and (iv) U⊤AU should have a more139

favorable distribution of eigenvalues than A. Note that, all four criteria only focus on140

A and overlook the significance of the initial guess.141

3.4. Preconditioning for a sequence of linear systems. In the context142

of (1.1), it is common to use a first level preconditioner, F (1), for the initial linear143

system, A(1)x(1) = b(1). The selection of the first-level preconditioner depends on the144

problem and may take into account both the physics of the problem and the algebraic145

structure of A(1) [1, 25, 21]. To further accelerate convergence of an iterative method146

such as PCG on subsequent linear systems A(j+1)x(j+1) = b(j+1), one can perform147
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a low-rank update of the most-recent preconditioner, F (j), leveraging information148

obtained from solving A(j)x(j) = b(j) [17, 11].149

One common choice of low-rank update is to use the (approximate) spectrum150

of A(j) [6, 7, 11]. The main idea is to capture the eigenvalues not captured by the151

first-level preconditioner, and cluster them to a positive quantity, typically around 1.152

In this paper, we will consider the case where only the right-hand side is changing153

over the sequence of the linear systems, i.e., A(j) = A for all j. Perturbation analysis154

with respect to A will be presented in a forthcoming paper.155

4. A scaled spectral preconditioner. We focus on the scaled spectral precon-156

ditioner, known in the literature as the deflating preconditioner [7] or spectral Limited157

Memory Preconditioner (LMP) [11], which is defined using a scaling parameter that158

determines the positioning of the cluster. We will provide several strategies for the159

choice of the scaling parameter, which has a significant impact on the convergence of160

PCG.161

Let us assume that k largest eigenvalues of A, i.e. {λi}ki=1, are available. We162

define the spectral preconditioner163

(4.1) Fθ := In+

k∑

i=1

(
θ

λi
− 1

)
sis

⊤
i = In+Sk(θΛ

−1
k − Ik)S

⊤
k = S

[
θΛ−1

k

In−k

]
S⊤,164

where Sk :=
[
s1 · · · sk

]
and Λk := diag(λ1, . . . , λk). The factor of Fθ = U2

θ is165

(4.2) Uθ = U⊤
θ := In +

k∑

i=1

(√
θ

λi
− 1

)
sis

⊤
i = S

[√
θΛ

− 1
2

k

In−k

]
S⊤.166

Preconditioner Fθ clusters λ1, . . . , λk around θ, and leaves the rest of the spectrum167

untouched, i.e.,168

(4.3) UθAUθ = S

[
θIk

Λ̄k

]
S⊤ = θSkS

⊤
k + S̄kΛ̄kS̄

⊤
k ,169

where S̄k :=
[
sk+1 · · · sn

]
and Λ̄k := diag(λk+1, . . . , λn). As in (3.8), PCG mini-170

mizes171

∥x∗ − x̂ℓ(θ)∥A = min
q∈Pℓ(0)

∥Uθq (UθAUθ)U
−1
θ (x∗ − x0)∥A172

= min
q∈Pℓ(0)

∥q (UθAUθ) (x
∗ − x0)∥A,(4.4)173

where we used Uθq (UθAUθ)U
−1
θ = UθU

−1
θ q (UθAUθ) = q (UθAUθ). Using (3.3) in the174

context of (4.4), we obtain the following result.175

Theorem 4.1. Let x̂ℓ(θ) be generated at iteration ℓ of Algorithm 3.2 applied to176

Ax = b with preconditioner (4.1). Then,177

(4.5) ∥x∗ − x̂ℓ(θ)∥2A = min
q∈Pℓ(0)

k∑

i=1

η2i
λi

q(θ)2 +
n∑

i=k+1

η2i
λi

q(λi)
2,178

where ηi = s⊤i r0 is the i-th component of the initial residual in the basis S.179
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Proof. Given (4.3), we have for any polynomial q,180

q (UθAUθ) = Sq

([
θIk

Λ̄k

])
S⊤.181

Since x∗ − x0 = A−1r0 = SΛ−1S⊤r0,182

(4.6) q (UθAUθ) (x
∗ − x0) = Sq

([
θIk

Λ̄k

])
Λ−1S⊤r0.183

Substituting (4.6) into (4.4), we obtain the result.184

The scaled LMP (4.2) is typically used with θ = 1. This choice is operational in185

numerical weather forecast [6, 24]. In the next subsections, we explore various choices186

for θ aiming to improve convergence properties of PCG.187

4.1. On the choice of the scaling parameter. The scaling parameter θ,188

which defines the position of the cluster, is often set to 1 [6, 7, 11]. This choice is189

motivated by several factors, such as the eigenvalue distribution of A, the behavior of190

the first-level preconditioner, and the convergence behavior of PCG.191

We investigate clustering the eigenvalues at a general θ > 0, which, compared192

with the conventional choice of 1, results in enhanced convergence of PCG. It is193

important to note that the notion of “better convergence” may vary across different194

applications. For instance, in some applications, one may require high accuracy, in195

which case, a better convergence may be defined as a lower number of iterations. In196

other applications, we may want to get an approximate solution quickly, which requires197

to improve the convergence especially in the early iterations. In this case, there is198

no guarantee that the early preconditioned iterates will provide a better reduction199

in the energy norm compared to the unpreconditioned iterates (Subsection 4.2). For200

certain applications, such as numerical weather forecast, where PCG is stopped before201

reaching convergence due to computational budget, early convergence properties could202

be of critical importance. As a first direction, we will focus on the following question:203

Is there θ > 0 such that for any x0,204

(4.7) ∥x∗ − x̂ℓ(θ)∥A ≤ ∥x∗ − xℓ∥A , ℓ = 1, . . . , n?205

To accelerate early convergence, we will investigate optimal choices for θ with respect206

to the error in the energy norm at the first iteration of PCG, i.e.,207

min
θ

Φ(θ) := ∥x∗ − x̂1(θ)∥2A.208

We focus solely on the first iteration as it allows us to derive the optimal value of θ209

in closed form.210

On the other hand, for PCG, it is well known that removing eigenvalues causing211

convergence delay can improve the convergence rate significantly [6, 11]. This can be212

done by using deflation techniques, in which the aim is to “hide” (problematic) parts of213

the spectrum of A from PCG, so that the convergence rate of PCG is improved [14, 23].214

Finally, our focus will be also on answering the question215

Can we choose θ > 0 such that for any x0, PCG generates iterates216

close to those of deflation techniques?217
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4.2. θ providing lower error in energy norm. In general, although scaled218

spectral preconditioning is expected to help reduce the number of iterations required219

to achieve convergence, (4.7) may not hold for any choice of θ > 0 and all iterations220

ℓ as given by the following proposition.221

Proposition 4.2. Let x1 be the first CG iterate when solving Ax = b. Let x̂1(θ)222

be generated at the first iteration of Algorithm 3.2 applied to Ax = b with precon-223

ditioner (4.1). Let x0 be such that η2i = λi for i = k, k + 1 and ηi = 0 otherwise.224

Then,225

∥x∗ − x̂1(θ)∥2A ≤ ∥x∗ − x1∥2A ⇐⇒ λ2
k+1

λk
≤ θ ≤ λk.226

Proof. For ℓ = 1, (3.4) yields ∥x∗ − x1∥2A = p∗1(λk)
2 + p∗1(λk+1)

2, where227

p∗1(λ) = 1− r⊤0 r0
r⊤0 Ar0

λ = 1− λk + λk+1

λ2
k + λ2

k+1

λ.228

Similarly, (4.5) gives ∥x∗ − x̂1(θ)∥2A = q∗1,θ(θ)
2 + q∗1,θ(λk+1)

2, where229

q∗1,θ(λ) = 1− r⊤0 Fθr0
r⊤0 FθAFθr0

λ = 1− θ + λk+1

θ2 + λ2
k+1

λ230

is the polynomial that realizes the minimum. Using these relations, we obtain231

∥x∗ − x1∥2A =

(
1− λk + λk+1

λ2
k + λ2

k+1

λk

)2

+

(
1− λk + λk+1

λ2
k + λ2

k+1

λk+1

)2

=
(λk − λk+1)

2

λ2
k + λ2

k+1

232

and233

∥x∗ − x̂1(θ)∥2A =

(
1− θ + λk+1

θ2 + λ2
k+1

θ

)2

+

(
1− θ + λk+1

θ2 + λ2
k+1

λk+1

)2

=
(θ − λk+1)

2

θ2 + λ2
k+1

.234

Hence,235

(θ − λk+1)
2

θ2 + λ2
k+1

≤ (λk − λk+1)
2

λ2
k + λ2

k+1

⇐⇒ λ2
k+1

λk
≤ θ ≤ λk.236

Proposition 4.2 shows that (4.7) is not satisfied for all θ > 0. If θ > 0 lies outside237

of [λ2
k+1/λk, λk], then ∥x∗−x̂1(θ)∥A > ∥x∗−x1∥A for x0 as defined in Proposition 4.2.238

In what comes next, we focus on the properties of θ such that (4.7) is guaranteed239

for all iterations ℓ, and for any given x0. An intuitive approach is to identify a range240

of θ values where the eigenvalue ratios of the preconditioned matrix are less than or241

equal to those of the unpreconditioned matrix, as noted in [12, Lemma 1]. The next242

lemma shows that this property holds for θ ∈ [λk+1, λk], and for such choice, there243

exists a polynomial that promotes favorable PCG convergence.244

Lemma 4.3. Let λ1 ≥ λ2 ≥ . . . ≥ λn > 0, ℓ ∈ {1, . . . , n}, and k ∈ {1, . . . , ℓ}. For245

any θ ∈ [λk+1, λk], and any polynomial p of degree ℓ such that p(0) = 1 and whose246

roots all lie in [λn, λ1], there exists a polynomial q of degree ℓ such that q(0) = 1 and247

|q(θ)| ≤ |p(λi)|, i = 1, . . . , k248

|q(λi)| ≤ |p(λi)|, i = k + 1, . . . , n.249
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Proof. Let us denote (µj)1≤j≤ℓ the roots of the polynomial p given in decreasing250

order, so p(λ) =
∏ℓ

i=1

(
1− λ

µi

)
for any λ ≥ 0. Then, three cases may occur:251

Case 1: For all j ∈ {1, . . . , ℓ}, µj < θ, we choose q(λ) = p(λ), then simply we
have for i ∈ {k + 1, . . . , n}, |q(λi)| = |p(λi)|. For i ∈ {1, . . . , k}, using the property
that µj < θ ≤ λi, we obtain

1− λi

µj
≤ 1− θ

µj
≤ 0.

Thus, we have |1− θ
µj
| ≤ |1− λi

µj
|, and consequently |q(θ)| ≤ |p(λi)|.252

Case 2: If for all j ∈ {1, . . . , ℓ}, θ ≤ µj , we choose q(λ) =
∏ℓ

j=1

(
1− λ

θ

)
=

(
1− λ

θ

)l
. Then simply for i ∈ {1, . . . , k}, |q(θ)| = 0 ≤ |p(λi)|. For i ∈ {k + 1, . . . , n},

using the property λk+1 ≤ θ ≤ µj , we obtain

0 ≤ 1− λi

λk+1
≤ 1− λi

θ
≤ 1− λi

µj
.

Therefore, for i = k + 1, . . . , n, |q(λi)| ≤ |p(λi)|.253

Case 3: let s ∈ {1, . . . , ℓ − 1} such that for j = 1, . . . , s, θ ≤ µj ≤ λ1, and for
j = s+ 1, . . . , ℓ, λn ≤ µj < θ. Let’s denote

q(λ) =

s∏

j=1

(
1− λ

θ

) ℓ∏

j=s+1

(
1− λ

µj

)
=

(
1− λ

θ

)s ℓ∏

j=s+1

(
1− λ

µj

)
.

We have q(θ) = 0, so |q(θ)| ≤ |p(λi)| for i ∈ {1, . . . , k}. For i ∈ {k + 1, . . . , n} and
j ∈ {1, . . . , s}, we have

0 ≤ 1− λi

λk+1
≤ 1− λi

θ
≤ 1− λi

µj
,

because λk+1 ≤ θ ≤ µj . Therefore, for i = k + 1, . . . , n, |q(λi)| ≤ |p(λi)|.254

Now, we can present a result that enables comparing the error in energy norm between255

the preconditioned system given by (3.7) and the unpreconditioned system, Ax = b.256

Theorem 4.4. Let (xℓ)ℓ∈{1,...,n} and x̂ℓ(θ)ℓ∈{1,...,n} be the sequences generated by257

CG and PCG with Fθ with θ ∈ [λk+1, λk], respectively, when solving Ax = b. Assume258

that x̂0(θ) = x0. Then, for all ℓ = 1, . . . , n, ∥x∗ − x̂ℓ(θ)∥A ≤ ∥x∗ − xℓ∥A.259

Proof. Let ℓ ∈ {1, . . . , n}. From (3.4),260

(4.8) ∥x∗ − xℓ∥2A = min
p∈Pℓ(0)

∥pℓ (A) (x∗ − x0)∥2A =
n∑

i=1

η2i
λi

p∗ℓ (λi)
2,261

where ηi represents the components of the initial residual r0 = b − Ax0 in the262

eigenspace of A. Applying Lemma 4.3 to p∗ℓ , there exists a polynomial q of degree ℓ263

with q(0) = 1 such that264

|q(θ)| ≤ |p∗ℓ (λi)|, i ∈ {1, . . . , k}265

|q(λi)| ≤ |p∗ℓ (λi)|, i ∈ {k + 1, . . . , n}.266
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Applying these inequalities to (4.8) yields267

∥x∗ − xℓ∥2A =
n∑

i=1

η2i
λi

p∗ℓ (λi)
2 ≥

k∑

i=1

η2i
λi

q(θ)2 +
n∑

i=k+1

η2i
λi

q(λi)
2

268

≥ min
q∈Pℓ(0)

(
k∑

i=1

η2i
λi

q(θ)2 +
n∑

i=k+1

η2i
λi

q(λi)
2

)
= ∥x∗ − x̂ℓ(θ)∥2A .269

Theorem 4.4 offers a range of choices for θ. Next, we discuss the practical and270

theoretical choices from this range. Let us remind that to construct the spectral271

LMP (4.2), we are given k eigenpairs. As a result, one practical choice is θ = λk.272

This idea is summarized in the following corollary.273

Corollary 4.5. Let θ = λk. Then, ∥x∗ − x̂ℓ(λk)∥A ≤ ∥x∗ − xℓ∥A for any x0274

and for all ℓ ∈ {1, . . . , n}.275

The next theorem shows that increasing k results in improved convergence.276

Theorem 4.6. Let 1 < k1 ≤ k2 < n and θk1 ∈ [λk1+1, λk1 ], θk2 ∈ [λk2+1, λk2 ]277

with, θk2 ≤ θk1 . Let (x̂ℓ(θk1))ℓ∈{1,...,n}, (x̂ℓ(θk2))ℓ∈{1,...,n} be the sequences obtained278

from PCG iterates when solving Ax = b using Fθk1
and Fθk2

respectively with an279

arbitrary initial guess x0. Then, for all ℓ ∈ {1, . . . , n}, one has:280

∥x∗ − x̂ℓ(θk2)∥A ≤ ∥x∗ − x̂ℓ(θk1)∥A .281

Proof. The eigenvalues of the preconditioned matrix using Fθk1
and Fθk2

are given282

in decreasing order respectively as283

ρi =

{
θk1

i ∈ {1, . . . , k1}
λi otherwise,

and ρ̃i =

{
θk2

i ∈ {1, . . . , k2}
λi otherwise.

284

As k1 < k2, it follows that ρ̃k2
≤ ρk1

= θk1
. Therefore, ρ̃i can be expressed as a285

function of ρi as286

ρ̃i =

{
θk2

∈ [ρk2+1, ρk2
] i ∈ {1, . . . , k2}

ρi otherwise.
287

Using Lemma 4.3, for the polynomial q∗ℓ,θk1
, there exists a polynomial q of degree ℓ288

with q(0) = 1, such that for i ∈ {1, . . . , n},289

|q(θk2)| ≤ |q∗ℓ,θk1
(ρi)|, i ∈ {1, . . . , k2}290

|q(ρi)| ≤ |q∗ℓ,θk1
(ρi)|, i ∈ {k2 + 1, . . . , n}291

292

Applying this result to (4.5) yields that293

∥x∗ − x̂ℓ(θk1)∥2A =

n∑

i=1

η2i
λi

q∗ℓ,θk1
(ρi)

2
294

≥
k2∑

i=1

η2i
λi

q(θk2
)2 +

n∑

i=k2+1

η2i
λi

q(ρi)
2

295

≥ min
q∈Pℓ(0)

(
k2∑

i=1

η2i
λi

q(θk2
)2 +

n∑

i=k2+1

η2i
λi

q(λi)
2

)
= ∥x∗ − x̂ℓ(θk2

)∥2A .296
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One can see that k1 < k2 =⇒ θk2
≤ θk1

, since λi are in decreasing order. In addition,297

when k1 = k2, Theorem 4.6 shows that λk1+1 is the best choice in [λk1+1, λk1
] in terms298

of reducing the error with respect to the unpreconditioned system.299

4.3. Optimal choice for θ with respect to the initial residual. Our ob-300

jective is to determine the value of θ that minimizes the energy norm of the error at301

the initial iterate. This will provide us with the optimal reduction at the first iterate,302

303

(4.9) θr ∈ argmin
θ>0

Φ(θ) := ∥x∗ − x̂1(θ)∥2A .304

The expression for θr is stated in the following theorem.305

Theorem 4.7. Let r0 = b−Ax0. The unique λn ≤ θr ≤ λk+1 satisfying (4.9) is306

(4.10) θr :=

∑n
i=k+1 λiη

2
i∑n

i=k+1 η
2
i

=
r⊤0 Ar0 − r0SkΛkS

⊤
k r0

r⊤0 r0 − r⊤0 SkS⊤
k r0

.307

Proof. First, Theorem 4.1 implies308

(4.11) ∥x∗ − x̂1(θ)∥2A =
k∑

i=1

η2i
λi

q∗1,θ(θ)
2 +

n∑

i=k+1

η2i
λi

q∗1,θ(λi)
2

309

where ηi = s⊤i r0 and q∗1,θ(λ) = 1− r⊤0 Fθr0
r⊤0 FθAFθr0

λ. Using (4.1), we obtain310

(4.12) r⊤0 Fθr0 = θ

k∑

i=1

η2i
λi

+

n∑

i=k+1

η2i and r⊤0 FθAFθr0 = θ2
k∑

i=1

η2i
λi

+

n∑

i=k+1

λiη
2
i .311

Then, for all θ > 0, Φ(θ) simplifies to312

Φ(θ) = a1

(
a2θ − a3
a1θ2 + a3

)2

+

n∑

i=k+1

η2i
λi

(
1− a1θ + a2

a1θ2 + a3
λi

)2

,313

where a1 =
k∑

i=1

η2i
λi

, a2 =
n∑

i=k+1

η2i and a3 =
n∑

i=k+1

λiη
2
i . The derivative of Φ is314

Φ′(θ) =
2a1

(a1θ2 + a3)3
(a2θ − a3)(a

2θ3 + a1a2θ
2 + a1a3θ + a2a3).315

Since Φ′(θ) < 0 on ]0, a3

a2
[ and Φ′(θ) > 0 on ]a3

a2
,+∞[, then a3

a2
is the global minimizer316

of Φ on R∗
+ and is unique. Hence,317

θr = argmin
θ>0

Φ(θ) =
a3
a2

=

∑n
i=k+1 λiη

2
i∑n

i=k+1 η
2
i

.318

Moreover,319

λn =

∑n
i=k+1 λnη

2
i∑n

i=k+1 η
2
i

≤ θr ≤
∑n

i=k+1 λiη
2
i∑n

i=k+1 η
2
i

= λk+1.320

The expression for θr can be rewritten in terms of Sk, Λk, and r0 as follows:321

θr =

∑n
i=1 λiη

2
i −

∑k
i=1 λiη

2
i∑n

i=1 η
2
i −

∑k
i=1 η

2
i

=
r⊤0 Ar0 − r0SkΛkS

⊤
k r0

r⊤0 r0 − r⊤0 SkS⊤
k r0

.322
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Note that θr can be interpreted as the center of mass for the remaining part of
the spectrum in which the weights are determined by η2i , i.e.

n∑

i=k+1

η2i (θr − λi) = 0.

Let us now look at the first iterate,323

(4.13) x̂1(θr) = x0 +
r⊤0 Fθrr0

r⊤0 FθrAFθrr0
Fθrr0,324

to better understand the effect of θr. Using (4.12) and the value of θr,325

r⊤0 Fθrr0
r⊤0 FθrAFθrr0

=

∑n
i=k+1 η

2
i∑n

i=k+1 λiη2i
=

1

θr
.326

Therefore, (4.13) simplifies to327

x̂1(θr) = x0 +
1

θr

(
S̄kS̄

⊤
k + θrSkΛ

−1
k S⊤

k

)
r0 = x0 + SkΛ

−1
k S⊤

k r0 +
1

θr
S̄kS̄

⊤
k r0.328

Then, the residual of the first iteration is given by329

(4.14) b−Ax̂1(θr) = r0 − SkS
⊤
k r0 −

1

θr
S̄kΛ̄kS̄

⊤
k r0 = S̄kS̄

⊤
k r0 −

1

θr
S̄kΛ̄kS̄

⊤
k r0.330

Given (4.14), we conclude that, from the first iteration, we can remove all components331

of the residual with respect to Sk, see Appendix A. We now provide an upper bound332

for the error in the energy norm for later iterations, ℓ > 1, beginning with x̂1(θr).333

With this initial point, we ensure that all iterates yield a residual within Span(S̄k).334

Theorem 4.8. Let x̂ℓ(θr) be the ℓ-th iterate obtained from PCG when solving335

Ax = b using the preconditioner Fθr with an arbitrary initial guess x0. Let xInit
ℓ be336

the ℓ-th iterate generated by CG for solving Ax = b starting from x̂1(θr) as defined337

in (4.13). Then, for all ℓ ∈ {1, . . . , n}, ∥x∗ − x̂ℓ+1(θr)∥A ≤
∥∥x∗ − xInit

ℓ

∥∥
A
.338

Proof. From (4.14), the components of b−Ax̂1(θr) in the eigenspace of A are339

0 (i = 1, . . . , k), and ηi(1− λi/θr) (i > k).340

Thus,341

(4.15)
∥∥x− xInit

ℓ

∥∥2
A
=

n∑

i=k+1

η2i
λi

(
1− λi

θr

)2

p∗,Initℓ (λi)
2,342

where p∗,Initℓ is the polynomial that minimizes p 7→ ∥p (A) (x∗ − x̂1(θr))∥2A over Pℓ(0).343

Define344

q̄(λ) =

(
1− λ

θr

)
p∗,Initℓ (λ),345
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and note that q̄ ∈ Pℓ(0). Now we have346

∥x∗ − x̂ℓ+1(θr)∥2A = min
q∈Pℓ+1(0)

(
k∑

i=1

η2i
λi

q(θr)
2 +

n∑

i=k+1

η2i
λi

q(λi)
2

)
347

≤
k∑

i=1

η2i
λi

q̄(θr)
2 +

n∑

i=k+1

η2i
λi

q̄(λi)
2

348

=

n∑

i=k+1

η2i
λi

(
1− λi

θr

)2

p∗,Initℓ (λi)
2 =

∥∥x− xInit
ℓ

∥∥2
A
.349

Note that, one can interpret x̂1(θr) as the first iteration of CG when solving the350

unpreconditioned system, starting from x0 + SkΛ
−1
k S⊤

k r0, since the search direction351

at the first iteration is equal to:352

(4.16) b−A
(
x0 + SkΛ

−1
k S⊤

k r0
)
= b−Ax0 − SkS

⊤
k r0 = r0 − SkS

⊤
k r0 = S̄kS̄

⊤
k r0,353

and the step-length α0 is given as354

α0 =
1

θr
=

r⊤0 S̄kS̄
⊤
k r0

r⊤0 S̄
⊤
k S̄kAS̄kS̄⊤

k r0
.355

This highlights the strong connection between preconditioning, CG with different356

initial point and deflation techniques [23, 24]. This connection will be explored in357

detail in the next subsection, providing another choice for the scaling parameter.358

4.4. θ as the mid-range between λk and λn. We focus now on choosing a359

scaling parameter θ to obtain approximate iterates to those of deflated CG (see Algo-360

rithm A.1). The deflation technique, with Sk as the deflation subspace, is equivalent361

to standard CG applied to Ax = b with initial guess362

xDef
0 = x0 + SkΛ

−1
k S⊤

k (b−Ax0).363

From (4.16), the residual of xDef
0 is given as364

b−AxDef
0 = S̄kS̄

⊤
k r0.365

One can see that this initial guess gives a residual which is an orthogonal projection366

of r0 onto span(S̄k), so that the ℓ-th iterate of CG, xDef
ℓ , starting with xDef

0 satisfies367

∥∥x∗ − xDef
ℓ

∥∥2
A
= min

q∈Pℓ(0)

(
n∑

i=k+1

η2i
λi

q(λi)
2

)
.368

We now provide the main result of this section.369

Theorem 4.9. Let x̂ℓ(θ) be the ℓ-th iterate obtained from PCG iterates when370

solving Ax = b using Fθ starting from an arbitrary initial guess x0 ∈ Rn. Let xDef
ℓ371

be the ℓ-th iterate generated with CG when solving Ax = b starting with xDef
0 =372

x0 + SkΛ
−1
k S⊤

k (b−Ax0). Then, in exact arithmetic,373

(4.17)
∥∥∥x∗ − xDef

ℓ+1

∥∥∥
A
≤ ∥x∗ − x̂ℓ+1(θ)∥A ≤ α(θ)

θ

∥∥∥x∗ − xDef
ℓ

∥∥∥
A
,374

with α(θ) = max (|λk+1 − θ|, |θ − λn|) .375
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Proof. Let us start by showing the first inequality. From Theorem 4.1376

∥x∗ − x̂ℓ+1(θ)∥2A =
k∑

i=1

η2i
λi

q∗ℓ+1,θ(θ)
2 +

n∑

i=k+1

η2i
λi

q∗ℓ+1,θ(λi)
2

377

≥
n∑

i=k+1

η2i
λi

q∗ℓ+1,θ(λi)
2

378

≥ min
q∈Pℓ+1(0)

(
n∑

i=k+1

η2i
λi

q(λi)
2

)
=
∥∥x∗ − xDef

ℓ+1

∥∥2
A
.379

Now, to prove the second inequality, we consider p∗,Def
ℓ the polynomial that minimizes

p 7→ ∥p (A)
(
x∗ − xDef

0

)
∥2A over Pℓ(0)., i.e.,

∥∥x∗ − xDef
ℓ

∥∥2
A
=

n∑

i=k+1

η2i
λi

p∗,Def
ℓ (λi)

2.

Consider q̃ℓ+1 ∈ Pℓ+1(0) such as for all λ ∈ R,q̃ℓ+1(λ) =

(
1− λ

θ

)
p∗,Def
ℓ (λ). Hence,380

∥x∗ − x̂ℓ+1(θ)∥2A =

k∑

i=1

η2i
λi

q∗ℓ+1,θ(θ)
2 +

n∑

i=k+1

η2i
λi

q∗ℓ+1,θ(λi)
2

381

≤
k∑

i=1

η2i
λi

q̃ℓ+1(θ)
2 +

n∑

i=k+1

η2i
λi

q̃ℓ+1(λi)
2

382

=
n∑

i=k+1

η2i
λi

pDef,∗
ℓ (λi)

(
1− λi

θ

)2

383

≤ max
k+1≤i≤n

(
1− λi

θ

)2 ∥∥x∗ − xDef
ℓ

∥∥2
A
=

α(θ)

θ

∥∥x∗ − xDef
ℓ

∥∥2
A
.384

Choosing θ > 0 such that α(θ)/θ > 1 in (4.17) would give a pessimistic upper385

bound. For a better bound, we select θ > 0 such that α(θ)/θ ≤ 1, which is equivalent386

to impose θ ≥ λk+1/2. The value of θ that minimizes α(θ)/θ is θ∗ = (λk+1 + λn)/2.387

Given that λk+1 is unknown, and λn can be predetermined in various applications,388

e.g., in data assimilation problems λn = 1, a practical approach for selecting θ (the389

closest to θ∗) is by choosing the average between the λk and λn, i.e., θm = (λk+λn)/2,390

for which we have α(θm)/θm = (λk −λn)/(λk +λn) < 1. Note that the choice θ = λk391

yields in (4.17) to a worst upper bound compared to θm, i.e., α(λk)/λk > α(θm)/θm.392

4.5. Discussion. The analysis in this section raises two key questions. The first393

is: why use a scaled spectral preconditioner when we know that deflated CG iterations394

using the deflated subspace Sk, or using an initial guess as defined in (4.13), produce395

better results in exact arithmetic (see Theorem 4.9)? The assumption in this section396

is that the eigenpairs used to construct the deflated subspace or the initial guess are397

exact, ensuring that components of the initial residual within the eigenspace of Sk are398

eliminated. However, when an approximate eigen-spectrum is used, such as the eigen-399

spectrum of A is applied to solve a system involving a perturbed matrix, Ã, the initial400

guess may fail to remove the components of the initial residual within the eigenspace401
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of Ã. For instance, consider the perturbed matrix Ã = A + E, A is modified by a402

small perturbation matrix E. This results in the following expression:403

b− ÃxDef
0 = b−AxDef

0 + ExDef
0 ,404

where the value of b−AxDef
0 from (4.16) becomes: b−ÃxDef

0 = S̄kS̄
⊤
k (b−Ax0)+ExDef

0 .405

This illustrates that the perturbation E introduces additional components to the406

residual, which the initial guess fails to fully eliminate, unlike in the exact case. When407

the perturbation exists, we show in numerical experiments that using a scaled spectral408

LMP becomes advantageous over deflated CG.409

The second question is: why not combine the initial guess (4.13) with the scaled410

spectral LMP using θ = 1. When the initial guess fails to eliminate components411

of the initial residual within the eigenspace of Ã, these components influence the412

convergence of PCG. Their impact on the energy norm of the error can be reduced413

by appropriately positioning the largest eigenvalues.414

5. Numerical Experiments. In this section, we illustrate the performance of415

the scaled spectral LMP, as defined in (4.2), within the context of a nonlinear weighted416

least-squares problem arising in data assimilation, i.e.,417

(5.1) min
w0∈Rn

f(w0) = min
w0∈Rn

1

2
∥w0 − wb∥2B−1 +

1

2

Nt∑

i=1

∥yi −Hi(Mt0,ti(w0))∥2R−1
i

.418

Here, w0 = w(t0), is the state at the initial time t0, for instance temperature value,419

wb ∈ Rn is a priori information at time t0 and yi ∈ Rmi represents the observation420

vector at time ti for i = 1, . . . , Nt. Mt0,ti(·) is a nonlinear physical dynamical model421

which propagates the state w0 at time t0 to the the state wi at time ti by solving422

the partial differential equations. Hi(·) maps the state vector wi to a mi-dimensional423

vector representing the state vector in the observation space. B ∈ Rn×n, Ri ∈ Rmi×mi424

are symmetric positive definite error covariance matrices corresponding to the a priori425

and observation model error, respectively.426

The TGN method [10] is widely used to solve the nonlinear optimization prob-427

lem (5.1). At each iteration j of the TGN method, the linearized least-squares ap-428

proximation to the nonlinear least-squares problem (5.1) is solved. This quadratic429

cost function at the j-th iterate is formulated as430

(5.2) Q(j)(s) =
1

2

∥∥∥s− (wb − w
(j)
0 )
∥∥∥
2

B−1
+

1

2

Nt∑

i=1

∥G(j)
i si − d

(j)
i ∥2

R−1
i

,431

where s ∈ Rn , d
(j)
i = yi − Gi(w

(j)
0 ) with Gi(w

(j)
0 ) = Hi(Mt0,ti(w

(j)
0 )) and G

(j)
i432

represents the Jacobian of Gi at a given iterate w
(j)
0 . The quadratic cost function (5.2)433

is minimized with respect to s which is then used to update the current iterate, i.e.434

w
(j+1)
0 = w

(j)
0 +s(j), where s(j) is an approximate solution of the problem (5.2). This435

process continues till the convergence criterion is met. For large scale problems with436

computationally expensive models Mt0,ti(·), a limited number of TGN iterations are437

applied. The solution to the quadratic problem (5.2) can be found by solving438

(5.3)
(
B−1 + (G(j))⊤R−1G(j)

)
s = B−1(wb − w

(j)
0 )− (G(j))⊤R−1d(j).439

where d(j) is a m-dimensional concatenated vector of d
(j)
i with m =

∑Nt

i=1 mi, G
(j) ∈440

Rm×n represents a concatenation of G
(j)
i ∈ Rmi×n, and R ∈ Rm×m is a block diagonal441
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matrix, i.e. R = diag(R1, . . . , RN ). The matrix B−1 + (G(j))⊤R−1G(j) is SPD,442

matrix-vector products with it are accessible only through operators, and n can be443

large for data assimilation problems. Hence, CG is widely used to solve such systems.444

Let us assume that a square root factorization of B = LL⊤ is available. The linear445

system (5.3) can be then preconditioned by using this first-level split preconditioner,446

(5.4)
(
In + L⊤(G(j))⊤R−1G(j)L

)
x = L⊤

(
B−1(wb − w

(j)
0 )− (G(j))⊤R−1d(j)

)
.447

CG at the ℓ-th iteration provides an approximate solution x
(j)
ℓ which is then used448

to obtain an approximate solution of the linear system (5.3), i.e. s
(j)
ℓ = Lx

(j)
ℓ . In449

operational data assimilation problems, in general m ≪ n. Consequently, the pre-450

conditioned matrix A(j) = In +L⊤(G(j))⊤R−1G(j)L has n−m eigenvalues clustered451

around 1, while the remaining eigenvalues are greater than 1.452

Since in the context of TGN, a sequence of closely related linear systems is453

solved, it is common to update the first-level preconditioner L by using approxi-454

mate eigenspectrum of the previous linear system [6, 11]. Let us denote b(j) :=455

L⊤
(
B−1(wb − w

(j)
0 )− (G(j))⊤R−1d(j)

)
. For j = 1, CG Algorithm 3.1 solves the lin-456

ear system A(1)x = b(1), for the variable x. Using the recurrences of CG, we can457

easily compute approximate eigenpairs of A(1) (see [22, p.174] for more details).458

These pairs can then be used to construct a second-level preconditioner, U
(1)
θ1

, by459

using the formula (4.2). Consequently, (U
(1)
θ1

)2 is an approximation to the inverse of460

the matrix A(1). Then, assuming that A(2) is close to the matrix A(1), for j = 2,461

CG Algorithm 3.1 is applied to the preconditioned system, U
(1)
θ A(2)U

(1)
θ1

x = U
(1)
θ1

b(2).462

The approximate solution at ℓ-iterate is obtained from the relation s
(2)
ℓ = LU

(1)
θ1

x
(2)
ℓ .463

At the end of the CG, we can obtain approximate eigenpairs of U
(1)
θ A(2)U

(1)
θ1

and use464

it to construct a preconditioner for the next linear system. At the j-th outer loop of465

TGN, CG is applied to the preconditioned linear system:466

(5.5) (U
(j−1)
θj−1

. . . U
(1)
θ1

A(j)U
(1)
θ1

. . . U
(j−1)
θj−1

) x = U
(j−1)
θj−1

. . . U
(1)
θ1

b(j),467

and the approximate solution to (5.3) is obtained from s
(j)
ℓ = LU

(j−1)
θj−1

. . . U
(1)
θ1

x
(j)
ℓ .468

5.1. Setup. In our numerical experiments, we use the Lorenz-96 [16] model as469

the physical dynamical system,Mt0,ti(·), which is commonly used as a reference model470

in data assimilation. The observation operator H(·) is defined as a uniform selection471

operator, meaning H(x) extracts a subset of x that is uniformly selected. B is chosen472

as a discretized diffusion operator with a standard deviation σb = 0.8 [9]. We consider473

R1 = R2 = σ2
rIm with σr = 0.2. We choose n = 1000 and Nt = 2, and we consider474

two different scenarios, with a different number of observations: (1) LowObs with475

m1 = m2 = 150 and (2) HighObs with m1 = m2 = 300. For both cases, 2 outer loops476

are performed within TGN. CG is applied to the first linear system A(1)x = b(1) with477

100 iterations. Then, approximate largest eigen-pairs of A(1), (Sk,Λk), are computed478

and selected based on convergence criteria with a tolerance of ε = 10−3 (See [Section479

1.3][24] for further details). With this criteria, the number of selected eigen-pairs is480

45 in the LowObs case and 26 in the HighObs case. Using these pairs, the scaled481

LMP, U
(1)
θ1

, is applied as a preconditioner for j = 2. Matrix-vector products with the482

preconditioner are carried out via an operator using the selected pairs, meaning the483

preconditioner matrix is not explicitly constructed.484



16 Y. DIOUANE, S. GÜROL, O. MOUHTAL AND D. ORBAN

5.2. Numerical Results. In this section, we present numerical results only for485

the second outer loop (j = 2) of the TGN method. We compare the performance of486

the methodologies of Table 1 in terms of convergence rate and computational cost.487

Method Description Initial guess
BPrec Algorithm 3.1 applied to (5.4) x0 = 0
sLMP-Base Algorithm 3.1 applied to (5.5), θ1 = 1 x0 = 0
Init-sLMP-Base Algorithm 3.1 applied to (5.5), θ1 = 1 x0 = U−1

θ1
SkΛ

−1
k S⊤

k b(2)

sLMP-λk Algorithm 3.1 applied to (5.5), θ1 = λk x0 = 0
sLMP-θr Algorithm 3.1 applied to (5.5), θ1 = θr x0 = 0
sLMP-θm Algorithm 3.1 applied to (5.5), θ1 = (λk + 1)/2 x0 = 0
DefCG Algorithm A.1 applied to (5.4), W = Sk x−1 = 0

Table 1: Description of methods used in the numerical experiments
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Fig. 1: Quadratic cost function values along all CG iterates (left) and with respect to
the number of matrix-vector product with the matrix A(1) and A(2) (right).

Note that, for sLMP-θr we compute θr using (4.10) with r0 = b(2) and A = A(1).488

As a result, computation of approximate θr requires an extra matrix vector product489

with A(1). Figure 1 shows the quadratic cost function values (5.2) and number of490

matrix-vector products with A(1) and A(2) along CG iterations.491

We can easily see that sLMP-Base is not necessarily better than BPrec espe-492

cially in the early iterations. This means that the scaled spectral LMP, clustering the493

largest k eigenvalues around 1, might reduce the total number iterations to converge,494

however it does not guarantee better convergence for early iterations. The slow con-495

vergence of sLMP-Base can be partly explained by the fact that perturbations may496

cause some eigenvalues to appear near zero, as depicted in Figure 2. When changing497

the clustering position from 1 to λk by using sLMP-λk, we can see that the method498

performs better than BPrec. In this case, however the gap between the cluster and499
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Fig. 2: Spectrum of U
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for different values of θ1 on a logarithmic scale.
LowObs scenario (k = 45).

the remaining spectrum as defined in Theorem 4.9, i.e. α(θ
(1)
1 )/θ

(1)
1 , can be large.500

When clustering around θr and θm is applied with sLMP-θr and sLMP-θm respec-501

tively, the value of α(θ
(1)
1 )/θ

(1)
1 reduces for both cases (see Fig. 2). This improves the502

convergence compared to sLMP-λk as seen from Figure 1.503

Init-sLMP-Base performs better than sLMP-Base, i.e. starting from x0 =504

SkΛ
−1
k S⊤

k b(2) improves performance compared to starting from x0 = 0. This im-505

provement arises because the initial residual’s components in the eigenbasis of A(2)506

are reduced. In fact, without any perturbation, these components would be com-507

pletely eliminated. Although, the performance is improved with this initial guess,508

it can not reach the performance of DefCG. This demonstrates that modifying the509

initial guess enhances convergence; however, the placement of the eigenvalue cluster-510

ing can have an even more significant impact. This is evident from the fact that the511

performance of sLMP-θm and sLMP-θr are very close to that of DefCG.512

The right panel of Figure 1 shows the values of the quadratic cost function as a513

function of the number of matrix-vector products performed with A(j) for j = 1, 2514

across different methods. Although DefCG performs better, it is computationally515

expensive as it requires forming the projected matrix S⊤
k A(2)Sk. Among the other516

techniques, sLMP-θr requires one additional matrix-vector product with A(1) to com-517

pute θr. However, as shown in Figure 1, sLMP-θm and sLMP-λk do not require518

any extra matrix-vector products either A(1) or A(2).519

These results indicate that the performance of CG, when used with scaled spectral520

LMP, can be significantly improved, approaching that of deflated CG, by selecting the521

position of the eigenvalue clusters based on CG’s convergence properties. The cluster522

position is determined by θ, whose computation incurs no additional cost for sLMP-523

θm and sLMP-λk. Conclusions from experiments with HighObs are very similar, the524

obtained results are depicted in Figures 3 and 4 in Appendix B.525

6. Conclusion. We have proposed a scaled spectral LMP to accelerate the so-526

lution of a sequence of SPD systems A(j)x(j) = b(j) for j ≥ 1. The scaled LMP527

incorporates a low-rank update based on k eigenpairs of the matrix A. We have528

provided theoretical analysis of the scaled spectral LMP when A(j) = A. We have529

shown that the scaled spectral LMP (4.1) clusters k eigenvalues around the scaling530
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parameter θ, and leaves the rest of the spectrum untouched.531

We have focused on the choice of θ to ensure that PCG achieves faster convergence,532

particularly in the early iterations. In the first approach, we have proposed choosing θ533

to guarantee a lower energy norm of the error at each iteration of PCG. In the second534

approach, we have obtained an optimum θ in the sense that it minimizes the energy535

norm of the error at the first iteration. Our analysis reveals that, with the optimal536

θ, the components of the first residual is eliminated from the eigenspace of A, which537

aligns with the core principle of deflated CG. Lastly, we have also explored a scaling538

parameter that approximates the iterates of deflated CG. We have provided the link539

between the deflated CG and PCG with the scaled spectral LMP.540

We have compared different methods for solving a nonlinear weighted least-541

squares problem arising in data assimilation. In our numerical experiments, we used542

approximate eigenpairs to construct the scaled spectral LMP. First, we have demon-543

strated that selecting θ based on PCG convergence properties significantly accelerates544

early convergence compared to the conventional choice of θ = 1. Then, we have shown545

that θ values that reduce the spectral gap between θ and the remaining eigenvalues546

lead to faster convergence. Additionally, we have compared the scaled spectral LMP547

with deflated CG, showing that the scaled spectral LMP produces iterates similar to548

deflated CG, but at a negligible computational cost and memory, unlike deflated CG.549

These numerical results clearly highlight the importance of selecting the precondi-550

tioner not only as an approximation to the inverse of A, but also with consideration551

of its role within PCG. In particular, we have demonstrated the significance of the552

placement of clustered eigenvalues, an often overlooked factor in the literature, on the553

early convergence of PCG.554

As the next step, we will provide a detailed theoretical perturbation analysis in a555

forthcoming paper. Additionally, we aim to validate the proposed preconditioner in556

an operational weather prediction system.557

Appendix A. Deflated CG with Sk. The deflation technique outlined in558

Algorithm A.1 is defined for any deflation subspace W , see [23] for more details. The559

main idea is to speed-up the CG starting from an initial point such that the initial560

residual does not have components in the deflation subspace W and to update the561

search directions such thatW⊤Apj = 0. A widely used approach is to chooseW as the562

eigenvectors corresponding to the eigenvalues that slows down the CG convergence.

Algorithm A.1 Deflated-CG

1: Choose k linearly independent vectors w1, w2, . . . , wk.
2: Define W = [w1, w2, . . . , wk], and choose x−1.
3: Set xDef

0 = x−1 +W (W⊤AW )−1W⊤r−1, where r−1 = b−Ax−1. W⊤r0 = 0

4: Set p0 = r0 −W
(
W⊤AW

)−1
W⊤Ar0. W⊤Ap0 = 0

5: for j = 1, 2, . . . do
6: αj−1 = r⊤j−1rj−1/(p

⊤
j−1Apj−1)

7: xDef
j = xDef

j−1 + αj−1pj−1

8: rj = rj−1 − αj−1Apj−1 W⊤rj = 0
9: βj−1 = r⊤j rj/(r

⊤
j−1rj−1)

10: pj = βj−1pj−1 + rj −W
(
W⊤AW

)−1
W⊤Arj W⊤Apj = 0

11: end for

563

If we choose W = Sk, and using the fact that S⊤
k ASk = Λk and ASk = SkΛk, we564
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can achieve the following simplifications:565

• xDef
0 = x−1 + SkΛ

−1
k S⊤

k r−1,566

• p0 = r0 − SkS
⊤
k r0.567

• pj = βj−1pj−1 + rj − SkS
⊤
k rj .568

Lemma A.1. The residual rj and the direction pj are orthogonal to span(Sk).569

Proof. We proceed by induction. For j = 0, r0 = r−1 − SkS
⊤
k r−1, from which570

it follows that S⊤
k r0 = 0. As a consequence, S⊤

k p0 = 0. Assume that rj and pj are571

orthogonal to span(Sk) for j. We have rj+1 = rj −αjApj . From [23, Proposition 3.3],572

replacing W by Sk, we have ST
k Apj = 0. Since pj , rj ⊥ span(Sk) by assumption, it573

follows that rj+1 ⊥ span(Sk). For pj+1 = βjpj + rj+1 − SkS
⊤
k rj+1 = βjpj + rj+1, we574

get pj+1 ⊥ Span(Sk) since S⊤
k rj+1 = 0 as shown and pj ⊥ Span(Sk) by assumption.575

From Lemma A.1, it follows that pj = βj−1pj−1 + rj − SkS
⊤
k rj = βj−1pj−1 + rj .576

With these simplifications, it is clear that in exact arithmetic, deflated CG, when577

used with the deflated subspace consisting of a set of eigenvectors of A, generates578

iterates equivalent to those generated by using the initial guess xDef
0 in standard CG.579

Appendix B. Results for the HighObs scenario.580
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Fig. 3: Quadratic cost function values along all CG iterates and with respect to the
number of matrix-vector product for the HighObs scenario.
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