
THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présenté et soutenu le 26/11/2024 par :

RACHID EL MONTASSIR

Approche hybride basée sur la physique et l’IA pour l’advection
des champs de probabilités. Application à la prévision

immédiate de la couverture nuageuse.

JURY
FABRICE GAMBOA IMT / Univ. Toulouse III Président du jury
FRANÇOIS FLEURET Meta / Univ. Genève Rapporteur
GUILLAUME GASTINEAU LOCEAN Rapporteur
GUILLAUME BALARAC LEGI / Grenoble INP Examinateur
SIDONIE LEFEBVRE ONERA Examinatrice
OLIVIER PANNEKOUCKE CNRM / CERFACS Directeur de thèse
CORENTIN LAPEYRE NVIDIA Invité

École doctorale et spécialité :
SDU2E : Océan, Atmosphère, Climat

Unité de Recherche :
UMR 5318 - CECI - Climat, Environnement, Couplages et Incertitudes / CER-
FACS

Directeurs de Thèse :
Olivier Pannekoucke et Corentin Lapeyre

Rapporteurs :
François Fleuret et Guillaume Gastineau

2

Abstract

During the last decades, as the global warming has accelerated, so has the frequency

of extreme weather events, significantly affecting societies and the economies. These

events highlight the growing need for accurate weather forecasting. Traditional numer-

ical weather prediction models, while effective, remain computationally expensive and

struggle to predict small-scale phenomena such as thunderstorms. Meanwhile, deep

learning models have shown promise in weather forecasting but often lack physical

consistency and generalisation capabilities.

This thesis addresses the limitations of traditional deep learning methods in produc-

ing realistic and physically consistent results that can generalise to unseen data. In this

thesis, we explore hybrid methods that seek to reconcile the accuracy of first-principle

methods with the data-leveraging power of learning techniques, with an application to

cloud cover nowcasting. The cloud cover data used are satellite images with cloud type

classification, and the goal is to predict the cloud cover position over the next two hours

while preserving the classification of the cloud types.

The proposed approach, named HyPhAICC, enforces physical behaviour based on

probability fields advection. In the first model, denoted HyPhAICC-1, multi-level ad-

vection dynamics are used to guide the learning of a U-Net model. This is achieved by

solving the advection equation for multiple probability fields, each corresponding to a

different cloud type, while simultaneously learning the unknown velocity field.

Our experiments show that the hybrid formulation outperforms not only the EUMET-

SAT Extrapolated Imagery model (EXIM) but also the U-Net model in terms of standard

metrics such as F1 score, Critical Success Index (CSI), and accuracy. We also demon-

strate that the HyPhAICC-1 model preserves more details and produces more realistic

results compared to the U-Net model. To quantitatively measure this aspect, we use a

modified version of the Hausdorff distance which is, to the best of our knowledge, the

first time this metric is used for this purpose in the literature. This first version shows

also a significant faster convergence. It also performed significantly better compared to

the U-Net when trained on smaller datasets, highlighting the computational efficiency

of the proposed approach. Another model, denoted HyPhAICC-2, adds a source term to

the advection equation. While this impaired the visual rendering, it displayed the best

performance in terms of accuracy.

These results suggest that the proposed hybrid Physics-AI architecture provides a

promising solution to overcome the limitations of traditional AI methods. This could

motivate further research to combine physical knowledge with deep learning models

for more accurate and efficient weather forecasting.

Résumé

Au cours des dernières décennies, le réchauffement climatique s’est accéléré, tout comme

la fréquence des événements météorologiques extrêmes, affectant considérablement les

sociétés et les économies. Ces événements soulignent le besoin croissant de prévi-

sions météorologiques précises. Les modèles traditionnels de prévision numérique du

temps, bien qu’efficaces, restent coûteux en termes de calcul et peinent à prédire les

phénomènes à petite échelle tels que les orages. Parallèlement, les modèles d’apprentissage

profond se sont révélés prometteurs dans les prévisions météorologiques, mais man-

quent souvent de cohérence physique et de capacités de généralisation.

Cette thèse aborde les limites des méthodes traditionnelles d’apprentissage profond

dans la production de résultats réalistes et physiquement cohérents qui peuvent se

généraliser à des données non vues. Dans cette thèse, nous explorons des méthodes

hybrides qui cherchent à concilier la précision des méthodes de premier principe avec

la puissance d’exploitation des données des techniques d’apprentissage, avec une appli-

cation à la prévision immédiate de la couverture nuageuse. Les données de couverture

nuageuse utilisées sont des images satellites avec classification des types de nuages,

et l’objectif est de prédire la position de la couverture nuageuse au cours des deux

prochaines heures tout en préservant la classification des types de nuages.

L’approche proposée, nommée HyPhAICC, impose un comportement physique basé

sur l’advection des champs de probabilités. Dans le premier modèle, dénommé HyPhAICC-

1, des dynamiques d’advection multi-niveaux sont utilisées pour guider l’apprentissage

d’un modèle U-Net. Cela est réalisé en résolvant l’équation d’advection pour plusieurs

champs de probabilité, chacun correspondant à un type de nuage différent, tout en

apprenant simultanément le champ de vitesse inconnu.

Nos expériences montrent que la formulation hybride surpasse non seulement le

modèle d’imagerie extrapolée d’EUMETSAT (EXIM), mais également le modèle U-Net

en termes de métriques standard telles que le score F1, l’indice de succès critique (CSI)

et l’accuracy. Nous démontrons également que le modèle HyPhAICC-1 préserve plus

de détails et produit des résultats plus réalistes par rapport au modèle U-Net. Pour

mesurer quantitativement cet aspect, nous utilisons une version modifiée de la distance

de Hausdorf qui est, à notre connaissance, la première fois que cette métrique est util-

isée à cette fin dans la littérature. Cette première version montre aussi une convergence

remarquablement rapide. Elle a également affiché de meilleures performances par rap-

port au U-Net lorsqu’elle a été entraînée sur des ensembles de données plus petits,

soulignant l’efficacité computationnelle de l’approche proposée.

Un autre modèle, dénommé HyPhAICC-2, ajoute un terme source à l’équation d’advection.

Bien que cela ait dégradé le rendu visuel, il a affiché les meilleures performances en ter-

mes d’accuracy. Ces résultats suggèrent que l’architecture hybride physique-IA proposée

1

2

constitue une solution prometteuse pour surmonter les limitations des méthodes d’IA

traditionnelles. Cela pourrait motiver des recherches supplémentaires pour combiner

les connaissances physiques avec les modèles d’apprentissage profond afin d’améliorer

la précision et l’efficacité des prévisions météorologiques.

Acknowledgements

First, I would like to thank the members of the jury for taking the time to review this

work, for attending my defense, and for their helpful feedback.

I am very grateful to my thesis advisors, Olivier Pannekouce and Corentin Lapeyre,

for their support, guidance, and advice throughout these three years. Their knowledge

and availability were essential for the success of this project.

I would also like to thank my parents and my wife for their constant support and

encouragement, which have motivated me during this journey.

A big thank you to my colleagues and friends for their valuable discussions and

assistance. In particular, my office mate Victor Coulon, and all the members of the Algo-

COOP and GlobC teams. I also want to thank Laurent Terray and Luciano Drozda for

their support and advice during the past few months.

I would like to thank the technical support and administrative teams, especially

Isabelle D’Ast and Chantal Nasri for their help and efficiency throughout these years.

Finally, I am grateful to CERFACS for giving me the opportunity to complete this

thesis in such a supportive and stimulating environment.

3

Contents

1 Introduction 16

2 Fundamentals of deep learning 29

2.1 A brief history of deep learning (DL) . 29

2.2 Artificial neural networks . 31

2.3 Multi-layer perceptron (MLP) . 32

2.4 Loss functions . 33

2.5 Gradient descent optimisation methods 34

2.5.1 Gradient descent . 34

2.5.2 Stochastic gradient descent (SGD) 35

2.5.3 SGD with momentum . 36

2.5.4 Nesterov accelerated gradient . 37

2.5.5 AdaGrad . 37

2.5.6 RMSprop . 38

2.5.7 Adam . 38

2.6 Back-propagation . 39

2.7 Universal approximation theorem . 42

2.8 Regularisation . 44

2.9 Classification and regression . 46

2.10 Classical architectures . 48

2.10.1 Convolutional neural networks 48

2.10.2 Recurrent neural networks (RNN) 50

2.10.3 Residual networks . 51

2.10.4 Transformers . 52

2.11 Conclusion . 54

3 Numerical resolution of partial differential equations 56

3.1 Introduction . 56

3.2 Spatial discretisation using finite differences 57

3.3 Time integration . 58

4

CONTENTS 5

3.4 Example: advection equation . 60

3.5 Numerical errors . 60

3.5.1 Central finite differences . 61

3.5.2 First-order upwind scheme . 62

4 Physics-informed machine learning 65

4.1 Introduction . 65

4.2 Physical constraints in the loss . 66

4.3 Physics-guided initialisation . 67

4.4 Residual modelling . 67

4.5 Hybrid physics-ML models . 68

4.6 Implementing and solving PDEs using neural layers 69

4.6.1 Automatic differentiability . 70

4.6.2 Approximating derivatives and time integration in neural networks 71

4.6.3 Finite-difference methods and convolutional layers 71

4.6.4 Temporal schemes and residual networks 73

5 Methods for weather forecasting 75

5.1 Numerical weather prediction (NWP) . 75

5.2 Limitations of numerical weather prediction 77

5.3 Deep learning for weather and climate forecasting 78

5.4 Challenges and limitations of deep learning in weather forecasting . . . 80

5.5 Hybrid models . 82

6 Proposed hybrid architecture 83

6.1 The principle of the proposed hybrid architecture 83

6.2 Cloud cover data . 84

6.3 Advection of cloud cover: HyPhAICC-1 85

6.4 Which discretisation scheme to use? . 87

6.4.1 Mass conservation . 88

6.4.2 Non-negativity and bound preservation 90

6.5 Training . 92

6.6 Experimental setup . 93

6.7 Standard classification metrics . 94

6.8 HyPhAICC-1: results . 95

6.8.1 Visual impressions . 96

6.8.2 Quantitative evaluation . 97

6.9 Time efficiency . 98

6.10 Data efficiency . 98

6.11 Application on Earth’s full disk . 100

CONTENTS 6

6.12 Visual quality assessment . 102

6.12.1 Hausdorff distance . 104

6.12.2 Results . 105

6.13 Discussion . 106

7 Extending the physical modelling 107

7.1 Heuristic-based source term: HyPhAICC-2 107

7.2 HyPhAICC-2: results . 108

7.3 Markov-based modelling of the source term 111

7.3.1 Fundamentals of Markov chains 111

7.3.2 Markov-based source term: HyPhAICC-3 113

7.3.3 It is not Fokker-Planck equation! 116

7.3.4 Reducing the training time: which convolution to use? 120

7.3.4.1 Using 2D convolutions 121

7.3.4.2 Using 3D convolutional layers 121

7.3.4.3 Using depthwise 2D convolutions 121

7.3.5 Limited regimes-based source term: HyPhAICC-4 122

8 Conclusion 124

8.1 Conclusion . 124

8.2 Discussion and perspectives . 126

8.3 Conclusion . 128

8.4 Discussion et perspectives . 130

9 Appendix 132

9.1 Confidence intervals . 132

9.1.1 Bootstrapping . 132

9.1.2 Scores with confidence intervals 132

9.2 Stochastic differential equations: Fokker-Planck equation 133

9.2.1 Brownian motion . 133

9.2.2 Additional details . 135

9.2.3 Adjoint operator . 136

9.3 Additional ressources . 137

9.3.1 Robustness to change of coordinates 137

9.4 Journal article . 138

10 Bibliography 164

List of Figures

1.1 Large ponds formed in the middle of a desert in Merzouga, Morocco after

heavy rains (September 2024). Source: Al Jazeera. 16

1.2 Example of cloud cover prediction using a U-Net model at 120 minutes

ahead. Left: observed cloud cover. Right: predicted cloud cover, each

colour represents a different cloud type. 18

1.3 Structure and interactions between thesis chapters. The orange colour

represents the parts containing the contributions of this thesis. 21

1.4 De grands étangs formés au milieu du désert à Merzouga, au Maroc,

après de fortes pluies (septembre 2024). Source : Al Jazeera. 22

1.5 Exemple de prédiction de la couverture nuageuse à l’aide d’un modèle

U-Net à 120 minutes. Gauche : couverture nuageuse observée. Droite

: couverture nuageuse prédite, chaque couleur représente un type de

nuage différent. 24

1.6 Structure et interactions entre les chapitres de la thèse. La couleur orange

représente les parties contenant des contributions de cette thèse. 28

2.1 Schematic of a biological neuron. The dendrites receive signals from

other neurons, which are transmitted to the cell body. The axon transmits

signals to other neurons. Synapses are the connections between neurons.

(Image source: Prof. Loc Vu-Quoc, University of Florida). 29

2.2 A single-layer perceptron with two input features and a single output. . . 31

2.3 A two-layer MLP with two input features, three hidden neurons, and a

single output. 33

2.4 The computation graph of f(x, y) = log(x ∗ y). 42

2.5 Approximation of the function f14 with a single hidden layer MLP. For

training, we used a learning rate starting from 0.001, a batch size of

256, and 20 epochs. The neural networks were trained using data points

sampled from the interval [−3, 3] (training range). 44

7

LIST OF FIGURES 8

2.6 Approximation of three images with three hidden layers MLP. For train-

ing, we used a learning rate starting from 0.001, a batch size of 256 and

10 epochs. 45

2.7 Generating a high resolution image using an MLP of 16 hidden layers of

1024 neurons each. 45

2.8 Overfitting illustration. 46

2.9 Convolution operation using a 2 × 2 kernel and a 4 × 4 input feature map. 48

2.10 How multichannel convolution is applied using a 2 × 2 kernel on a 4 × 4
input with 3 channels (e.g. RGB). 48

2.11 The U-Net architecture consists of an encoder part and a decoder part.

The encoder part captures the features of the input data, and the de-

coder part reconstructs the input data from the features captured by the

encoder part. 50

2.12 An example of a Recurrent Neural Network. 51

2.13 Illustration of an LSTM cell: an additional input has been added to the

cell compared to a standard RNN cell. This input is used to store the

information from the previous time steps. Inside the cell, some of the

information is kept, some is forgotten, and some new information is added. 52

2.14 Illustration of a residual block. 52

2.15 The self-attention mechanism works as follows: Let’s consider an input

vector X ∈ Rn×d, with n being the number of tokens in the sequence and

d the dimension of each token, also known as the embedding dimension.

Three vectors are generated using linear transformations of the input:

Q = X ·WQ, K = X ·WK , and V = X ·WV . WQ ∈ Rd×dq , and WV ∈ Rd×dv

are learned weights. Attention scores are computed by taking the dot

product of Q ∈ Rn×dq and KT ∈ Rdq×n, followed by scaling and applying

the softmax function as follows: S = softmax
(

Q·KT
√

dk

)
. The output is then

computed as a weighted sum of the values V ∈ Rn×dv using the attention

scores: Y = S · V . 53

2.16 Multi-Head Attention mechanism. The input vector X ∈ Rn×d is trans-

formed into multiple sets of Query (Qi), Key (Ki), and Value (Vi) vectors

for each attention head i ∈ {1, 2, · · · , h}. The attention scores Si are

computed for each head, and the outputs Yi are obtained by applying the

attention scores to the values. The outputs of all heads are concatenated

and projected using a linear transformation. 54

LIST OF FIGURES 9

2.17 An overview of the transformer architecture, it is an encoder-decoder

structure with multi-head attention and feed-forward layers. The en-

coder processes the input sequence into a context-rich representation,

which the decoder then uses to generate the output sequence. Figure

from [Vaswani et al., 2017]. 55

4.1 Illustration of a loss constrained feedforward neural network. The loss

function is a combination of a supervised error term and a physics-based

term. 66

4.2 Illustration of residual modelling. The physics-based model is used to

predict the output and the ML model is used to predict the residuals.

Adapted from Forssell and Lindskog [1997]. 68

4.3 Illustration of a hybrid physics-ML model. The output of the physics-

based model is used as an input to the ML model. 68

4.4 Illustration of a hybrid physics-ML model. The output of the ML model is

used as an input to the physics-based model. 69

4.5 In order to calculate the numerical derivative of f , a kernel K1 is used to

slide across an input vector, which is a discretised version of f with N ele-

ments, element-wise multiplying values within its window and summing

the results to approximate the derivative at each position. The result is

a new vector of size N − 2 containing the numerical derivative of f (us-

ing zero-pair or duplicate values in the input vector can be applied at

the bounds to produce an output vector of size N). This is equivalent

to a convolution between K1 and f , and can be reproduced using a 1D

convolutional layer with K1 as a kernel. 73

6.1 Sample of cloud cover data . 85

6.2 HYPHAICC-1: The proposed hybrid model consists of a U-Net Xception-

style model to estimate the velocity field from the last observations, the

estimated velocity field is smoothed using a Gaussian filter. The equation

is numerically integrated using the 4th-order Runge–Kutta method over

multiple time steps. The initial condition (f0) is updated, after each time

step, to the current state, allowing the computation of the next state. . . 87

6.3 Initial condition of the probability fields 88

6.4 The advection of probabilities using central finite differences discretisa-

tion presents a dispersion effect . 90

6.5 The probability conservation property is maintained even in presence of

dispersion effects. 91

6.6 The advection of probabilities using first order upwind discretisation presents

a diffusion effect . 91

LIST OF FIGURES 10

6.7 The probability conservation property is maintained even in presence of

diffusion effects . 92

6.8 The U-Net-based architecture considered in the comparison. A U-Net of

type Fig. 2.11 is applied iteratively to predict the next state given the

previous ones. 94

6.9 Example of the HyPhAICC-1 model’s predictions. The top row shows the

observations and the second row shows the model’s predictions at 30,

75, and 120 minutes ahead. 96

6.10 Estimated velocity field by the U-Net Xception-style used in the HyPhAICC-

1 model . 97

6.11 Performance comparison between HyPhAICC-1, U-Net, EXIM, and

the Persistence. Using five metrics including averaged F1 score(%), ac-

curacy(%) and CSI(%). These scores were computed over 1000 random

samples covering France in 2021. 98

6.12 Per epoch validation F1 score comparison between HyPhAICC-1 and

the U-Net. Scores were calculated from 100 random samples covering

France (averaged over all lead times). 99

6.13 Total training time and maximum validation F1 scores over the last 5

epochs for the U-Net and HyPhAICC-1 using different training data sizes

(averaged over all the lead times). 99

6.14 Full disk cloud cover nowcasting predictions. The predictions were

generated by our model without any specific training on the full disk

data (of size 3712 × 3712). 100

6.15 Full disk cloud cover nowcasting predictions. Zoomed-in views of the

120-minute observation and prediction. 101

6.16 Estimated velocity field by the U-Net Xception-style used in the HyPhAICC-

1 model. 102

6.17 Case study of different models’ forecasts. Left column: ground truth

at different time steps; middle columns: HyPhAICC-1 and the U-Net’s

predictions, respectively; right column: EXIM’s predictions. The light

beige colour corresponds to the land areas, and ’ST’ abbreviation in the

legend stands for ’Semi Transparent’. 103

6.18 Illustration of the minp∈A d(p, q1) and minq∈B d(p1, q) quantities used to

compute the Hausdorff distance; for each point, we look for the closest

point in the other region. 104

6.19 Hausdorff distance (H) comparison between HyPhAICC-1, U-Net, EXIM,

and the Persistence. 105

LIST OF FIGURES 11

7.1 HYPHAICC-2: The second version of the proposed hybrid model. It con-

sists of a U-Net Xception-style to estimate the velocity field and a sec-

ond U-Net to estimate the source term from the last observations. We

highlighted the additional parts compared to Fig. 6.2 and faded the un-

changed ones. 108

7.2 Performance comparison between HyPhAICC-1, HyPhAICC-2, U-Net,

EXIM, and the Persistence baseline. Using five metrics including av-

eraged F1 score(%), precision(%), recall(%), accuracy(%), CSI(%) and

the rHD (defined in Eq. (6.10)). These scores were computed over 1000

random samples covering France in 2021. See Fig. 9.2 for confidence

intervals. 109

7.3 Case study of different models’ forecasts. Left column: ground truth at

different time steps; middle columns: HyPhAICC-1, HyPhAICC-2 and the

U-Net’s predictions, respectively; right column: EXIM’s predictions. The

light beige colour corresponds to the land areas, and ’ST’ abbreviation in

the legend stands for ’semi transparent’. 110

7.4 Probability evolution in the case of inter-class transitions. 115

7.5 Graphs showing the transition rates and the class probabilities at the

initial and final states. 115

7.6 HYPHAICC-3: The third version of the proposed hybrid model. It consists

of a U-Net Xception-style to estimate the velocity field and a second U-Net

to estimate the per-pixel transition matrices from the last observations. . 116

7.7 Simulation of multiple trajectories of an Ito diffusion process, using µ(Xt) =
0.1Xt, σ(Xt) = 0.2, a time step ∆t = 2 · 10−3, an initial condition x = 1,

1000 time steps and 5 realisations. Each curve represents a different re-

alisation of the stochastic process over time and noted ωi. The red line

indicates the expectation of the process, calculated as the average across

all trajectories. The simulation was performed using the Euler-Maruyama

method (see Appendix 9.2.1 for more details). 118

7.8 The shape of 3D convolution kernels on PyTorch. The same principle

applies to 2D and 1D convolutions. 121

7.9 HYPHAICC-4: The fourth version of the proposed hybrid model. It con-

sists of a U-Net Xception-style to estimate the velocity field and a second

U-Net to estimate the α factors from the last observations, these factors

are used to choose which transition regime to consider for each pixel. . . 123

LIST OF FIGURES 12

9.1 Bootstrapping begins with an original sample of data of size n. From

this original sample, many bootstrap samples (usually 1,000 or more)

are generated by sampling with replacement. Each bootstrap sample is

of the same size n as the original sample. For each of these bootstrap

samples, the statistic of interest, such as the mean, median, or standard

deviation, is calculated. The distribution of these bootstrap statistics is

then used to estimate the standard error, construct confidence intervals,

or perform hypothesis testing. 133

9.2 Performance comparison between our HyPhAI-1, U-Net, EXIM, and

the Persistence baseline. Using five metrics including averaged F1 score(%),

precision(%), recall(%), accuracy(%), CSI(%) and Hausdorff distance

(defined in Eq. (6.10)). These scores were computed over 1000 ran-

dom samples covering France in 2021. The confidence intervals were

estimated using Bootstrapping with a threshold of 99%. 134

9.3 Multiple realisations of the standard Brownian motion. The expectation

of the process is shown in red. 135

List of Tables

5.1 Computational resources needed to train recent deep learning models for

weather prediction. 80

7.1 Score comparison at the 120-minute lead time (↑: higher is better, ↓:

lower is better). The best scores are indicated in bold font. 108

7.2 Average time taken by each operation on both the CPU and the GPU

(NVIDIA V100) over 1000 run. The speed-up is calculated as the ratio of

the time taken by the Conv2D operation (as a baseline) to the time taken

by the other operations. 122

13

List of abbreviations

The next list describes several abbreviations that will be later used within the body of

the document

AdaGrad Adaptive Gradient Algorithm

Adam Adaptive Moment Estimation

AI Artificial Intelligence

ANN Artificial Neural Network

BERT Bidirectional Encoder Representations from Transformers

CFL Courant-Friedrichs-Lewy

CNN Convolutional Neural Network

CSI Critical Success Index

DL Deep Learning

ECMWF European Centre for Medium-Range Weather Forecasts (in-

ternational organisation)

EDP Équations aux Dérivées Partielles

EUMETSAT European Organisation for the Exploitation of Meteorolog-

ical Satellites

FCN Fully Convolutional Networks

GAN Generative Adversarial Network

GFS Global Forecast System (NCEP)

GRU Gated Recurrent Unit

HyPhAICC Hybrid Physics-AI architecture for Cloud Cover nowcasting

14

LIST OF ABBREVIATIONS 15

IFS Integrated Forecasting System (ECMWF)

IoU Intersection over Union

LSTM Long Short-Term Memory

MAE Mean Absolute Error

ML Machine Learning

MSE Mean Squared Error

MSG Meteosat Second Generation

NAG Nesterov Accelerated Gradient

NCEP National Centers for Environmental Prediction (US)

NLP Natural Language Processing

NWP Numerical Weather Prediction

ODE Ordinary Differential Equation

PDE Partial Differential Equation

PINN Physics-Informed Neural Networks

PNT Prévision Numérique du Temps

ResNet Residual Network

rHD Restricted Hausdorff Distance

RMSprop Root Mean Square Propagation

RNN Recurrent Neural Network

SDE Stochastic Differential Equation

SGD Stochastic Gradient Descent

ViT Vision Transformer

C
ha

pt
er 1 Introduction

We would like to start this thesis with Fig. 1.1. This picture was taken in September

2024 in the south-east of Morocco, more precisely in Merzouga.

Figure 1.1: Large ponds formed in the middle of a desert in Merzouga, Morocco after
heavy rains (September 2024). Source: Al Jazeera.

This picture shows a beautiful contrast between the desert and the water. However,

it also shows the devastating reality of the floods that hit the region. The world is facing

an alarming increase of extreme weather events. Thus, accurate, timely and reliable

weather forecasting is essential more than ever to reduce the impact of these events on

human lives and activities.

Weather forecasting has been essential for centuries, linked to farming, navigation,

and safety. Ancient civilisations, like the Babylonians, predicted weather using cloud

formations and animal behaviour [Ossendrijver, 2021, Hazen, 1900]. The introduc-

tion of meteorological instruments in the 17th century, including the barometer, ther-

mometer, and hygrometer, enabled systematic atmospheric observations, though early

forecasts remained qualitative.

In the 19th century, advances in thermodynamics and fluid dynamics deepened the

16

CHAPTER 1. INTRODUCTION 17

understanding of weather forces. In 1904, physicist Vilhelm Bjerknes proposed that

weather could be mathematically predicted by solving atmospheric equations, marking

a significant shift in meteorology.

Building on this concept, numerical weather prediction (NWP) models began to

emerge. These models rely on mathematical equations to simulate the atmosphere’s

behaviour using data like temperature, pressure, and wind conditions. The first real

revolution came in the 1920s, when Lewis Fry Richardson developed an NWP model

that laid the foundation for the sophisticated forecasting systems we rely on today. Even

if Richardson’s manual calculations were slow and impractical for real-time forecasting,

his work laid the foundation for modern numerical methods. The advent of digital

computers in the mid-20th century revolutionised weather prediction by enabling the

rapid computation of complex equations. The 1950s saw the first operational NWP

models Charney et al. [1950], which have since become the cornerstone of weather

forecasting.

However, even with their success, NWP models have their limitations. They often

struggle to capture small-scale weather events, such as thunderstorms, tornadoes, and

localised heavy rainfall events [Schultz et al., 2021, Matte et al., 2022, Joe et al., 2022].

These phenomena often evolve too quickly and on a finer scale for traditional NWP

models to accurately predict.

Recent advances in Artificial Intelligence (AI) and Machine Learning (ML) have

opened new possibilities for weather prediction. Deep Learning (DL), a subset of ML,

has transformed fields like computer vision, natural language processing, and now,

weather forecasting. In weather prediction, DL models have shown promise in process-

ing large datasets, including satellite imagery and radar data, leading to improvements

in forecast accuracy and efficiency.

One of the first notable applications of DL in weather prediction was the "Convo-

lutional LSTM (Long Short-Term Memory)" model introduced by Shi et al. [2015], de-

signed for precipitation nowcasting by predicting radar echo maps. This pioneering

work has inspired further research to apply DL to various weather prediction tasks.

However, DL models for weather forecasting face significant limitations. One of these

limitations is the lack of physical consistency in the predictions, as illustrated in Fig. 1.2

for cloud cover nowcasting task, where a significant loss of small cloud structures is

observed in the prediction.

CHAPTER 1. INTRODUCTION 18

Ground truth | T+120min Unet | T+120min

Figure 1.2: Example of cloud cover prediction using a U-Net model at 120 minutes
ahead. Left: observed cloud cover. Right: predicted cloud cover, each colour represents
a different cloud type.

Indeed, traditional DL models are typically trained to minimise a loss function, often

without regard to the physical principles that govern atmospheric dynamics. This can

lead to predictions that are accurate in terms of data-driven metrics but physically im-

plausible. Another limitation is the challenge of generalisation. DL models tend to excel

when making predictions on data similar to what they were trained on but can struggle

with unseen scenarios. This limitation is more crucial in meteorology, where weather

patterns can vary widely depending on the geographic location or season. This means

that a DL-based model that performs well in one region or season may not necessarily

do so in another, which poses a significant challenge for global or long-term forecasting.

In addition, DL often requires large amounts of labelled data, which can be difficult to

obtain for rare or extreme weather events.

To address these limitations, there is a growing interest in integrating physical laws

into ML models, particularly in domains where such laws play a critical role in governing

the behaviour of the system. This approach, often referred to as physics-informed ML

or hybrid modelling, combines the pattern recognition capabilities of DL with the rigour

and consistency of physical models.

In weather forecasting, hybrid models that combine DL with physical dynamics offer

the potential to produce more accurate and physically consistent forecasts. By guid-

ing the learning process with physical principles, these models can better capture the

underlying mechanisms of atmospheric phenomena, leading to improved performance,

particularly in scenarios where traditional DL models struggle.

In this study, we consider a particular weather forecasting task: cloud cover now-

casting. Nowcasting refers to the process of generating short-term weather forecasts

- typically on the timescale of minutes to a few hours - using recently acquired high-

resolution observational data. This data, which can come from sources such as radar,

CHAPTER 1. INTRODUCTION 19

satellite imagery, and ground-based sensors, is used to generate real-time estimates of

weather conditions. Nowcasting is particularly valuable for predicting rapidly develop-

ing weather phenomena, such as thunderstorms, heavy rain, and severe winds, which

can pose significant risks to public safety and property Reyniers [2016], Wilson et al.

[1998].

Although traditional NWP models are effective fsor longer-term forecasts, they often

struggle with the spatial and temporal resolution required for nowcasting. Here, now-

casting techniques excel by leveraging near-real-time data. By processing recent obser-

vations, nowcasting models can provide highly localised and timely forecasts, making

them essential for applications such as aviation, emergency management, and outdoor

event planning.

Cloud cover nowcasting is less treated in the literature compared to other weather

forecasting tasks such as precipitation nowcasting. However, it is a crucial component

of weather forecasting, as cloud formation and movement are closely related to the

development of precipitation, thunderstorms, and other hazardous weather events. Ac-

curate short-term predictions of cloud cover are particularly important for sectors such

as aviation, agriculture, and renewable energy, where even slight inaccuracies can lead

to significant operational challenges.

Traditionally, cloud cover forecasting has relied on physics-based methods, such as

tracking cloud motion vectors, optical flow, or NWP-based Data Assimilation. These

methods model the evolution of clouds on the basis of the laws of physics, such as

fluid dynamics and thermodynamics, providing predictions that are consistent with our

understanding of atmospheric processes.

Recently, there has been a growing interest in data-driven approaches for cloud cover

nowcasting. These methods use historical data to learn patterns and make predictions,

offering the potential for improved accuracy and efficiency. However, as discussed ear-

lier, purely data-driven approaches can struggle with physical consistency and generali-

sation, particularly in the complex and variable environment of the atmosphere. Above

all,

why train a model to learn processes that are already known and can be modelled ?

Given the limitations of both traditional physics-based methods and purely data-

driven models, a hybrid approach that combines the strengths of both is necessary. This

research proposes a hybrid architecture for cloud cover nowcasting, integrating physical

dynamics into neural networks to enhance accuracy, efficiency, and physical consistency.

However,

how can we effectively integrate physical knowledge into AI models?

CHAPTER 1. INTRODUCTION 20

The cloud cover data used in this study consists of satellite images with cloud type

classifications, leading us to adopt a probabilistic approach for predicting cloud type

probabilities. Yet,

how can we maintain this probabilistic characteristic within the hybrid model?

Moreover,

what if we want to introduce a source term into the physical formulation?

The central hypothesis of this research is that incorporating physical knowledge into

AI models will enhance cloud cover nowcasting performance. The key objectives in-

clude developing a hybrid model, evaluating its performance against traditional mod-

els, and analysing the computational efficiency (training time and data requirements)

of the proposed approach, assessing the potential for generalisation to unseen situa-

tions, and exploring the potential trade-offs between the different approaches. This

study contributes to the emerging field of hybrid modelling, with broader implications

for improving the accuracy, reliability and efficiency in weather forecasting and other

areas where physical laws should be considered.

The remainder of this thesis is structured as follows:

• Chapter 2 provides an overview of the foundations and basic concepts of deep

learning and some classical architectures.

• Chapter 3 is an introduction to numerical methods for solving partial differential

equations, focusing on the finite differences.

• Chapter 4 is an overview of the hybrid modelling approaches that have been

proposed in the literature, focusing on the method used in this study for solving

PDEs within neural networks.

• Chapter 5 presents the methods used in the literature for weather forecasting,

first focusing on NWP models and then on DL models.

• Chapter 6 presents the proposed hybrid model for cloud cover nowcasting, detail-

ing the architecture, training process, and evaluation procedure.

• Chapter 7 presents other versions of the hybrid model extending the physical

formulation to include source terms.

• Chapter 8 is the conclusion of this thesis, summarising the main results and dis-

cussing potential future research directions.

Figure 1.3 illustrates the structure of this thesis.

CHAPTER 1. INTRODUCTION 21

Chapter 2 Chapter 3

Chapter 5 Chapter 4

Chapter 6 Chapter 7

Chapter 8

Foundations of deep learning Numerical methods for PDEs

Physics-informed machine learningMethods for weather forecasting

Proposed hybrid architecture Extending the physical modelling

Conclusion

Figure 1.3: Structure and interactions between thesis chapters. The orange colour
represents the parts containing the contributions of this thesis.

Introduction (French version)

Nous souhaitons commencer cette thèse par la figure 1.4. Cette image a été prise en

septembre 2024 dans le sud-est du Maroc, plus précisément à Merzouga.

Figure 1.4: De grands étangs formés au milieu du désert à Merzouga, au Maroc, après
de fortes pluies (septembre 2024). Source : Al Jazeera.

Cette image montre un beau contraste entre le désert et l’eau. Cependant, elle révèle

également la réalité dévastatrice des inondations qui ont frappé la région. Le monde est

confronté à une augmentation alarmante des événements météorologiques extrêmes.

Ainsi, des prévisions météorologiques précises, rapides et fiables sont plus essentielles

que jamais pour réduire l’impact de ces événements sur la vie humaine et les activités.

Les prévisions météorologiques sont essentielles depuis des siècles, elles sont liées à

l’agriculture, à la navigation et à la sécurité. Les anciennes civilisations, comme les

Babyloniens, prédisaient le temps en utilisant les formations nuageuses et le com-

portement animal [Ossendrijver, 2021, Hazen, 1900]. L’introduction d’instruments

météorologiques au 17e siècle, y compris le baromètre, le thermomètre et l’hygromètre,

a permis d’avoir des observations atmosphériques systématiques. Bien que les premières

prévisions demeurent qualitatives.

Au 19e siècle, les avancées en thermodynamique et en dynamique des fluides ont

approfondi notre compréhension des forces météorologiques. En 1904, le physicien Vil-

helm Bjerknes a suggéré que la météo pourrait être prédite mathématiquement en ré-

solvant des équations atmosphériques, marquant un tournant significatif en météorolo-

gie.

22

CHAPTER 1. INTRODUCTION 23

En s’appuyant sur ce concept, des modèles de prévision numérique du temps (PNT)

ont commencé à émerger. Ces modèles reposent sur des équations mathématiques pour

simuler le comportement de l’atmosphère en utilisant des données telles que la tempéra-

ture, la pression et les conditions de vent. La première véritable révolution est survenue

dans les années 1920, lorsque Lewis Fry Richardson a développé un modèle PNT qui a

jeté les bases des systèmes de prévisions sophistiqués sur lesquels nous comptons au-

jourd’hui. Bien que les calculs manuels de Richardson aient été lents et peu pratiques

pour les prévisions en temps réel, son travail a ouvert la voie aux méthodes numériques

modernes. L’avènement des ordinateurs numériques au milieu du 20e siècle a révo-

lutionné la prévision météorologique en permettant le calcul rapide d’équations com-

plexes. Les années 1950 ont vu les premiers modèles PNT opérationnels Charney et al.

[1950], qui sont depuis devenus la pierre angulaire des prévisions météorologiques.

Cependant, même avec leur succès, les modèles PNT ont leurs limites. Ils peinent

souvent à capturer des événements météorologiques à fine échelle, tels que les orages,

les tornades et les événements de fortes pluies localisées [Schultz et al., 2021, Matte

et al., 2022, Joe et al., 2022]. Ces phénomènes évoluent souvent trop rapidement et à

une échelle plus fine pour que les modèles PNT traditionnels puissent les prédire avec

précision.

Les récentes avancées en intelligence artificielle (IA) et en apprentissage automa-

tique (ML) ont ouvert de nouvelles possibilités pour la prévision météorologique. L’apprentissage

profond (DL), un sous-ensemble du ML, a transformé des domaines comme la vision par

ordinateur, le traitement du langage naturel, et maintenant, la prévision météorologique.

Dans la prévision météorologique, les modèles DL ont montré leur promesse en traitant

de grands ensembles de données, y compris des images satellites et des données radar,

conduisant à des améliorations de la précision et de l’efficacité des prévisions.

L’une des premières applications notables du DL dans la prévision météorologique

était le modèle "Convolutional LSTM (Long Short-Term Memory)" introduit par Shi et al.

[2015], conçu pour la prévision immédiate des précipitations en prédisant des cartes

d’écho radar. Ce travail pionnier a inspiré d’autres recherches visant à appliquer le DL à

diverses tâches de prévision météorologique. Cependant, les modèles DL pour la prévi-

sion météorologique font face à des limitations significatives. L’une de ces limitations

est le manque de cohérence physique dans les prédictions, comme illustré dans Fig. 1.5

sur une tâche de prévision immédiate de la couverture nuageuse, sur laquelle une perte

significative des petites structures nuageuses est observée dans la prédiction.

CHAPTER 1. INTRODUCTION 24

Ground truth | T+120min Unet | T+120min

Figure 1.5: Exemple de prédiction de la couverture nuageuse à l’aide d’un modèle U-Net
à 120 minutes. Gauche : couverture nuageuse observée. Droite : couverture nuageuse
prédite, chaque couleur représente un type de nuage différent.

En effet, les modèles DL traditionnels sont généralement entraînés pour minimiser

une fonction de perte, souvent sans tenir compte des principes physiques qui régissent

la dynamique atmosphérique. Cela peut conduire à des prédictions qui sont précises

en termes de métriques basées sur les données, mais physiquement peu plausibles.

Une autre limitation est le défi de la généralisation. Les modèles DL ont tendance à

exceller lorsqu’il s’agit de faire des prédictions sur des données similaires à celles sur

lesquelles ils ont été entraînés, mais peuvent avoir des difficultés avec des situations

non vues, ou avec des conditions extrêmes qui ne sont pas représentées dans les don-

nées d’entraînement.

Cette limitation est particulièrement prononcée en météorologie, où les modèles

météorologiques peuvent varier considérablement en fonction de l’emplacement géo-

graphique ou de la saison. Cela signifie qu’un modèle d’apprentissage profond qui

fonctionne bien dans une région ou une saison donnée peut ne pas nécessairement

fonctionner de la même manière ailleurs, ce qui représente un défi important pour les

prévisions globales ou à long terme. De plus, le DL nécessite souvent de grandes quan-

tités de données étiquetées, ce qui peut être difficile à obtenir pour des événements

météorologiques rares ou extrêmes.

Pour remédier à ces limitations, un intérêt croissant se manifeste pour l’intégration

des lois physiques dans les modèles d’apprentissage automatique (ML), en particulier

dans des domaines dans lesquels ces lois jouent un rôle critique dans le comportement

du système. Cette approche, souvent appelée physics-informed ML ou modélisation hy-

bride, combine les capacités de reconnaissance des patterns des réseaux de neurones

avec la rigueur et la cohérence des modèles physiques.

Dans les prévisions météorologiques, les modèles hybrides qui combinent le DL

avec les dynamiques physiques offrent le potentiel de produire des prévisions plus

CHAPTER 1. INTRODUCTION 25

précises et physiquement cohérentes. En guidant le processus d’apprentissage par des

principes physiques, ces modèles peuvent mieux capturer les mécanismes sous-jacents

des phénomènes atmosphériques, menant à une performance améliorée, notamment

dans des scénarios où les modèles DL traditionnels rencontrent des difficultés.

Dans cette étude, nous considérons une tâche particulière de prévision météorologique

: la prévision immédiate de la couverture nuageuse. La prévision immédiate fait référence

au processus de génération de prévisions météorologiques à court terme — typique-

ment à l’échelle de quelques minutes à quelques heures — en utilisant des données

d’observation, généralement de haute résolution, les plus récentes. Ces données, qui

peuvent provenir de sources telles que le radar, les images satellites et les capteurs au

sol, sont utilisées pour générer des estimations en temps réel des conditions météorologiques.

La prévision immédiate est particulièrement utile pour prédire des phénomènes météorologiques

en développement rapide, tels que les orages, les fortes pluies et les vents violents, qui

peuvent poser des risques significatifs pour la sécurité publique et les biens.

Bien que les modèles PNT traditionnels soient efficaces pour les prévisions à long

terme, ils ont souvent du mal avec la résolution spatiale et temporelle requise pour

la prévision immédiate. Ici, les techniques de prévision immédiate excellent en tirant

parti des données quasi temps réel. En traitant des observations récentes, les modèles

de prévision immédiate peuvent fournir des prévisions très localisées et opportunes, ce

qui les rend essentiels pour des applications telles que l’aviation, la gestion des urgences

et la planification d’événements en plein air Reyniers [2016], Wilson et al. [1998].

La prévision immédiate de la couverture nuageuse est moins traité dans la littéra-

ture par rapport à d’autres tâches de prévision météorologique, telles que la prévision

immédiate des précipitations. Cependant, il reste un élément crucial de la prévision

météorologique, car la formation et le mouvement des nuages sont étroitement liés au

développement des précipitations, des orages et d’autres événements météorologiques

dangereux. Des prévisions précises à court terme de la couverture nuageuse sont partic-

ulièrement importantes pour des secteurs tels que l’aviation, l’agriculture et les énergies

renouvelables, où même de légères inexactitudes peuvent entraîner d’importants défis

opérationnels.

Traditionnellement, la prévision de la couverture nuageuse s’est appuyée sur des

méthodes basées sur la physique, telles que le suivi des vecteurs de mouvement des

nuages, le flux optique ou les modèles PNT [Dupuy et al., 2020]. Ces méthodes mod-

élisent l’évolution des nuages sur la base des lois de la physique, telles que la dynamique

des fluides et la thermodynamique, fournissant des prévisions qui sont cohérentes avec

notre compréhension des processus atmosphériques.

Récemment, un intérêt croissant s’est manifesté pour les approches basées sur les

données pour la prévision immédiate de la couverture nuageuse [Berthomier et al.,

2020]. Ces méthodes utilisent des données historiques pour apprendre des modèles et

CHAPTER 1. INTRODUCTION 26

faire des prévisions, offrant un potentiel d’amélioration de la précision et de l’efficacité.

Cependant, comme discuté précédemment, les approches purement basées sur les don-

nées peuvent rencontrer des difficultés en matière de cohérence physique et de générali-

sation, en particulier dans l’environnement complexe et variable de l’atmosphère. Avant

tout,

pourquoi entraîner un modèle pour apprendre des processus qui sont déjà connus et
peuvent être modélisés ?

Compte tenu des limitations des méthodes traditionnelles basées sur la physique et

des modèles purement basés sur les données, une approche hybride qui combine les

forces des deux est nécessaire. Cette recherche propose une architecture hybride pour

la prévision immédiate de la couverture nuageuse, intégrant les dynamiques physiques

dans des réseaux neuronaux pour améliorer la précision, l’efficacité et la cohérence

physique. Cependant,

comment pouvons-nous intégrer efficacement les connaissances physiques dans les modèles
d’IA ?

Les données de couverture nuageuse utilisées dans cette étude se composent d’images

satellites avec des classifications de types de nuages, ce qui nous amène à adopter une

approche probabiliste pour prédire les probabilités des types de nuages. Pourtant,

comment pouvons-nous maintenir ce caractère probabiliste au sein du modèle hybride ?

De plus,

que se passe-t-il si nous voulons introduire un terme source dans la formulation physique ?

L’hypothèse centrale de cette recherche est que l’incorporation de connaissances

physiques dans les modèles d’IA améliorera les résultats de la prévision immédiate

de la couverture nuageuse. Les objectifs clés comprennent le développement d’un

modèle hybride, l’évaluation de ses performances par rapport aux modèles tradition-

nels, l’analyse de l’efficacité computationnelle (temps d’entraînement et exigences en

matière de données) de l’approche proposée, l’évaluation du potentiel de généralisation

à des situations non vues, et l’exploration des compromis potentiels entre les différentes

approches. Cette étude contribue au domaine émergent de la modélisation hybride,

avec des implications plus larges pour améliorer la précision, la fiabilité et l’efficacité

des prévisions météorologiques et d’autres domaines où les lois physiques doivent être

prises en compte.

Le reste de cette thèse est structuré comme suit :

• Chapitre 2 fournit un aperçu des fondements et des concepts de base de l’apprentissage

profond et de certaines architectures classiques.

CHAPTER 1. INTRODUCTION 27

• Chapitre 3 est une introduction aux méthodes numériques pour résoudre les

équations dérivées partielles (EDP), en se concentrant sur les différences finies.

• Chapitre 4 donne un aperçu sur les approches de modélisation hybride qui ont

été proposées dans la littérature, en se concentrant sur la méthode utilisée dans

cette étude pour résoudre les EDP au sein des réseaux neuronaux.

• Chapitre 5 présente les méthodes utilisées dans la littérature pour la prévision

météorologique, en se concentrant d’abord sur les modèles PNT, puis sur les mod-

èles DL.

• Chapitre 6 présente le modèle hybride proposé pour la prévision immédiate de

la couverture nuageuse, détaillant l’architecture, le processus d’entraînement et la

procédure d’évaluation.

• Chapitre 7 présente d’autres versions du modèle hybride étendant la formulation

physique pour inclure des termes sources.

• Chapitre 8 est la conclusion de cette thèse, résumant les principaux résultats et

discutant des orientations possibles pour des future travaux.

Figure 1.6 illustre la structure de cette thèse.

CHAPTER 1. INTRODUCTION 28

Chapitre 2 Chapitre 3

Chapitre 5 Chapitre 4

Chapitre 6 Chapitre 7

Chapitre 8

Fondements de l’apprentissage profond Méthodes numériques pour les EDP

Apprentissage machine informé par la physiqueMéthodes de prévision du temps

Architecture hybride proposée Extension de la modélisation physique

Conclusion

Figure 1.6: Structure et interactions entre les chapitres de la thèse. La couleur orange
représente les parties contenant des contributions de cette thèse.

C
ha

pt
er 2 Fundamentals of deep learning

This work relies on deep learning and related concepts. To provide a solid foundation,

this chapter offers an introduction to the core principles of DL, along with the key

concepts that will be referenced throughout the subsequent chapters.

The chapter is organised as follows: Section 1 provides a historical overview of DL

and highlights key developments that have led to its widespread adoption in recent

years. Sections 2.2 to 2.9 introduce the fundamental concepts of DL, including percep-

trons, multi-layer perceptrons and gradient descent optimisation methods. Followed by

some classical architectures in Section 2.10.

2.1 A brief history of deep learning (DL)

The concept of artificial neural networks (ANNs) was first introduced in the 1940s by

McCulloch and Pitts [1943], who proposed a simplified mathematical abstraction of

a biological neuron (Figure 2.1). The model consisted of a network of interconnected

Figure 2.1: Schematic of a biological neuron. The dendrites receive signals from other
neurons, which are transmitted to the cell body. The axon transmits signals to other
neurons. Synapses are the connections between neurons. (Image source: Prof. Loc Vu-
Quoc, University of Florida).

29

2.1. A BRIEF HISTORY OF DEEP LEARNING (DL) 30

neurons, each of which could be in one of two states: on or off. The state of each neuron

was determined by the weighted sum of the states of its input neurons, with the weights

representing the strength of the connections between neurons. This model, known

as the McCulloch-Pitts neuron, provided the foundation for subsequent developments

in neural network theory. In 1957, Rosenblatt introduced the perceptron, an early

neural network model designed for binary classification tasks. The perceptron is able

to learn weights from input features to make decisions, but its limitations in solving

complex problems and handling non-linearities became apparent. In 1969, Minsky and

Papert demonstrated that single-layer perceptrons had limitations in solving problems

that were not linearly separable, contributing to a period of decreased interest in AI

research during the 1970s and 1980s known as the "AI winter".

In the 1980s, the development of the backpropagation algorithm by Rumelhart et al.

[1986] enabled the training of multi-layer neural networks, overcoming the limitations

of single-layer perceptrons. This breakthrough paved the way for the development of

more sophisticated neural network architectures, including recurrent neural networks

(RNN) and radial basis function networks. However, the computational complexity of

training these models limited their widespread adoption. In the late 1980s and early

1990s, convolution-based neural networks (CNNs) were introduced, offering a more

efficient approach to training neural networks.

The 21st century witnessed a resurgence of interest in neural networks, particularly

with the advent of DL. Advances in hardware, such as graphics processing units (GPUs),

and the availability of large datasets enabled the training of deep neural networks [Le-

Cun et al., 2015]. Breakthroughs in computer vision, natural language processing, and

other domains have propelled the widespread adoption of DL across various industries.

In the 21st century, artificial neural networks (ANNs) have experienced significant

advancements, fueled by increased computational power, the availability of large datasets,

and breakthroughs in training algorithms. In 2012, the ImageNet Large Scale Visual

Recognition Challenge demonstrated the effectiveness of DL in image classification.

AlexNet, a deep CNN architecture, outperformed traditional methods and paved the

way for the widespread adoption of convolutional neural networks in computer vision

tasks [Krizhevsky et al., 2012].

RNNs gained prominence for their ability to model sequential data, making them

well-suited for natural language processing and time-series analysis. Long Short-Term

Memory (LSTM) networks [Hochreiter and Schmidhuber, 1997] and Gated Recurrent

Units (GRUs) were introduced to address challenges related to vanishing gradients [Pas-

canu et al., 2013] and long-term dependencies in RNNs.

Researchers started leveraging pre-trained models on large datasets to improve the

performance of neural networks on specific tasks with limited data. Transfer learning,

where a model trained on one task is adapted to another related task, became a common

2.2. ARTIFICIAL NEURAL NETWORKS 31

practice, leading to the development of versatile and effective models [Pan and Yang,

2010].

Introduced by Ian Goodfellow and his colleagues in 2014, Generative Adversarial

Networks (GANs) revolutionised the field of generative modelling. GANs consist of

two neural networks, a generator and a discriminator, trained adversarially to generate

realistic data, such as images or text [Goodfellow et al., 2014].

The Transformer architecture, introduced by Vaswani et al. [2017], revolutionised

natural language processing tasks. The attention mechanisms within Transformers al-

lowed models to focus on different parts of the input sequence, which led to improved

performance in tasks such as machine translation and language understanding [Brown

et al., 2020]. In 2018, Bidirectional Encoder Representations from Transformers (BERT)

demonstrated remarkable success in natural language understanding tasks. Pre-trained

language models, such as GPT-3 (Generative Pre-trained Transformer 3) by OpenAI,

showcase the power of large-scale pre-training on diverse language tasks [Devlin et al.,

2019].

Today, deep neural networks are fundamental components of many cutting-edge

technologies, including image recognition, natural language processing, and autonomous

systems, reaching human-level performance in some tasks [Silver et al., 2017]. The field

of DL continues to evolve rapidly, with ongoing research in areas such as reinforcement

learning, unsupervised learning, and explainable AI. The next sections provide an intro-

duction to some fundamental concepts of DL.

2.2 Artificial neural networks

The perceptron, introduced by Rosenblatt [1958], is a simple neural network model that

can be used for binary classification tasks. The perceptron consists of a single layer of

neurons, each of which is connected to the input features by a set of weights. The output

of the perceptron is determined by the weighted sum of the inputs, which is passed

through an activation function to produce a binary output as shown in Figure 2.2. It

Threshold function

Figure 2.2: A single-layer perceptron with two input features and a single output.

2.3. MULTI-LAYER PERCEPTRON (MLP) 32

can be represented mathematically as follows:

y =

1 if
∑n

i=1 wixi + b > 0

0 otherwise
(2.1)

where xi is the ith input feature, wi is the weight associated with the ith input, b is the

bias term, and y is the output of the perceptron. The bias term is a constant value that

is added to the weighted sum of the inputs.

The weighted sum
∑n

i=1 wixi can be written as W.x, where W ∈ Rp×n and x ∈ Rn×1 are,

respectively, the weight matrix and input vector, with p being the number of neurons in

the layer (p = 1 in this case) and n being the number of input features (n = 2 in this

case).

The activation function is a non-linear function that help the model to represent

non-linear complex relationships between the inputs and outputs. The most common

activation function is the sigmoid function, which is defined as follows:

σ(x) ≜ 1
1 + e−x

(2.2)

The sigmoid function is bounded between 0 and 1, making it suitable for binary classi-

fication tasks. Other activation functions, such as the hyperbolic tangent function, can

also be used for this purpose.

2.3 Multi-layer perceptron (MLP)

The MLP is a feedforward neural network consisting of multiple layers of neurons, each

of which is connected to the neurons in the previous layer. The first layer is the input

layer, which receives the input features. The last layer is the output layer, which pro-

duces the output of the network. The layers in between are known as hidden layers.

The neurons in each layer are connected to the neurons in the previous layer by a set

of parameters. The output of each neuron is determined by the weighted sum of the

inputs, which is passed through an activation function. The output of the previous layer

is the input to the next layer, until the output layer. A two-layer MLP example is shown

in Figure 2.3 and can be represented mathematically as follows:

y = σ(W (2)(W (1)x + b(1)) + b(2)) (2.3)

where x is the input vector, W (1) and W (2) are the weight matrices, b(1) and b(2) are the

bias vectors, and σ is an activation function.

A generalised representation form of the MLP can be written as a composition of

2.4. LOSS FUNCTIONS 33

Activation function

Figure 2.3: A two-layer MLP with two input features, three hidden neurons, and a single
output.

linear transformations and activation functions as follows,

y = σ(L) ◦ A(L) ◦ σ(L−1) ◦ A(L−1) ◦ · · · ◦ σ(1) ◦ A(1)(x) (2.4)

where σ(l) is the activation function of the lth layer, A(l) (x) = W (l)x + b(l) is the linear

transformation of the lth layer, and L is the number of layers in the network. Note that

the identity function can be used as an activation function.

The possibility of training a neural network with multiple layers was at the origin of

the term "DL", generally attributed to Dechter [1986]. The following sections introduce

the training process of neural networks.

2.4 Loss functions

The training process involves adjusting the weights and biases of the neural network

to minimise a loss function. This loss function measures the difference between the

predicted output and the actual output and can be expressed as follows:

L(θ) = 1
N

N∑
i=1

L (F (xi; θ) , ŷi) (2.5)

where θ is the set of parameters of the neural network (weights and biases), F is the

neural network function, xi is the ith input and ŷi is the ith output. Note that throughout

this manuscript, ŷ denotes the estimator of the target variable y. Here, N represents

the number of training samples considered at each iteration, also known as the batch

size, and L is the function that measures the model error. Among the most common

loss functions are the mean-squared error (MSE) and the mean absolute error (MAE).

2.5. GRADIENT DESCENT OPTIMISATION METHODS 34

The MSE is defined as follows:

L(θ) = 1
N

N∑
i=1

(F (xi; θ) − ŷi)
2 (2.6)

and the MAE is defined as follows:

L(θ) = 1
N

N∑
i=1

|F (xi; θ) − ŷi| (2.7)

The process of adjusting the weights and biases of the neural network to minimise the

loss is called optimisation. The optimisation process is performed using gradient descent

algorithms, which are discussed in the following section.

2.5 Gradient descent optimisation methods

In order to minimise the loss function of a DL model, the goal is to find the optimal

values for the model parameters. This can be achieved by computing the loss function

gradient with respect to the model parameters and adjusting the parameters in the

opposite direction of the gradient. This process is known as gradient descent.

2.5.1 Gradient descent

The gradient descent algorithm is an optimisation method that iteratively updates the

variables of a function by moving in the direction of the negative gradient of the func-

tion. The algorithm is based on the observation that the gradient at a point indicates

the direction of the steepest ascent of the function. Thus, by moving in the opposite

direction, one can minimize the function. In the following, we present a mathematical

formulation of the gradient descent algorithm.

Let E be a Hilbert space with the inner product denoted by ⟨·, ·⟩ and the associated

norm denoted by ∥ · ∥. Consider a derivable function f : E → R. The gradient of f at

x ∈ E is denoted by ∇f(x). For a small δx ∈ E, the first-order Taylor expansion of f

around x is given by:

f(x + δx) = f(x) + ⟨∇f(x), δx⟩ + o(∥δx∥),

where o(∥δx∥) represents a function of δx such that lim∥δx∥→0
o(∥δx∥)

∥δx∥ = 0.

To minimize f , we seek δx that decreases f(x). Specifically, we want to minimize

the linear approximation:

⟨∇f(x), δx⟩,

2.5. GRADIENT DESCENT OPTIMISATION METHODS 35

subject to ∥δx∥ ≤ 1. This leads to the optimisation problem:

min
∥d∥≤1

⟨∇f(x), d⟩, (2.8)

assuming that ∇f(x) ̸= 0. If ∇f(x) = 0, the function is already at a local minimum.

The optimisation problem in Eq. (2.8) have as a solution d = − ∇f(x)
∥∇f(x)∥

1, which points

in the opposite direction of the gradient. Thus, the opposite direction of the gradient is

a direction of descent. The maximum decrease possible on the unit sphere is given by:

f(x + d) − f(x) =
〈

∇f(x), − ∇f(x)
∥∇f(x)∥

〉
+ o(

∥∥∥∥∥ ∇f(x)
∥∇f(x)∥

∥∥∥∥∥)
= −∥∇f(x)∥ + o(1).

At each iteration t, the gradient descent algorithm updates the variable x as follows:

x(t+1) = x(t) − ∇f(x(t))
∥∇f(x(t))∥ ,

Generally, we consider small research regions around x(t) of radius α > 0, the same

reasoning as above leads to the update rule:

x(t+1) = x(t) − α∇f
(
x(t)

)
.

This α is also known as the step size, or learning rate in the context of DL.

This forms the foundation of the gradient descent algorithm, as introduced by Cauchy

[1847]. In the following sections, we will explore common variants of gradient descent

used in DL.

2.5.2 Stochastic gradient descent (SGD)

In the context of neural networks, the loss function is a function of the model param-

eters. These parameters are adjusted iteratively during the training using optimisation

algorithms. Using the gradient descent algorithm, the model parameters are updated

as follows:

θ(t+1) = θ(t) − α∇θL(θ(t)) (2.9)

where θ(t) is the set of model parameters at iteration t, α is the learning rate, and

∇θL(θ(t)) is the gradient of the loss function with respect to the model parameters and

1By the Cauchy-Schwarz inequality, the minimum value of this problem is −∥∇f(x)∥
∥∇f(x)∥ , which is achieved

by d

2.5. GRADIENT DESCENT OPTIMISATION METHODS 36

computed as follows:

∇θL(θ(t)) = 1
N

N∑
i=1

∇θL(θ(t); xi, yi) (2.10)

where xi and yi are the input and output of the ith training sample, respectively. The

learning rate is a hyperparameter that controls the step size of the gradient descent

algorithm. A high learning rate can cause the algorithm to diverge or fail to converge,

while a low learning rate can result in slow convergence. The learning rate is generally

chosen based on the problem at hand and the size of the dataset. The gradient descent

algorithm is repeated until the loss function converges to a minimum.

In practice, the gradient descent algorithm is computationally expensive when the

dataset is large, as it requires computing the gradient of the loss function for all training

samples at each iteration. To address this issue, the stochastic gradient descent (SGD)

algorithm was introduced. It is based on the idea of considering the gradient of the loss

over a small random subset Bof size m ≪ N , called stochastic gradient, as an estimator

of the full gradient, as follows:

∇̂θL(θ(t)) = 1
m

∑
i∈B

∇θL(θ(t); xi, yi). (2.11)

The stochastic gradient is considered an unbiased estimator of the full gradient, i.e.,

E
[
∇̂θL(θ(t))

]
= ∇θL(θ(t)).

The SGD algorithm is expressed as follows:

θ(t+1) = θ(t) − α∇̂θL(θ(t)) (2.12)

This simple gradient descent has some known limitations, such as the sensitivity to

the learning rate. Indeed, a small learning rate can lead to a slow but precise conver-

gence in the best scenario, but it can also lead to the algorithm getting stuck in a local

minimum. On the other hand, a large learning rate may accelerate the convergence, but

it can stop the algorithm from converging to the minimum, as it may oscillate around

it.

2.5.3 SGD with momentum

To address the limitations of the SGD algorithm, discussed in Section 2.5.2, Polyak

[1964] introduced the momentum method, which adds a fraction of the previous update

2.5. GRADIENT DESCENT OPTIMISATION METHODS 37

to the current update. The momentum method can be implemented as follows:

v(t+1) = µv(t) + (1 − µ)∇θL(θ(t))

θ(t+1) = θ(t) − αv(t+1)
(2.13)

where α is the learning rate, v(t) is the velocity vector, and µ is the momentum parame-

ter. This is the implementation considered in Liu et al. [2020] and in PyTorch. Another

implementation which is considered in Sutskever et al. [2013] and in TensorFlow is the

following:
v(t+1) = µv(t) − α∇θL(θ(t))

θ(t+1) = θ(t) + v(t+1)
(2.14)

The term ’momentum’ in µ stems from its role in helping the algorithm gather momen-

tum in the descent direction, facilitating escape from local minima and saddle points. µ

characterises the resistance to change in the direction of the gradient and is usually set

to a value close to 1. The momentum method is also known to reduce the oscillations

in the convergence path.

2.5.4 Nesterov accelerated gradient

A very well-known variant of the momentum method (see Section 2.5.3) is the Nesterov

accelerated gradient (NAG) [Nesterov, 1983], which computes the gradient at the point

θ(t) + µv(t) instead of θ(t). This method can be expressed as follows:

v(t+1) = µv(t) + (1 − µ)∇θL(θ(t) + µv(t))

θ(t+1) = θ(t) − αv(t+1),
(2.15)

This method is known to converge faster than the momentum method because it antic-

ipates the gradient at the next point. This anticipation allows the algorithm to adjust

the velocity vector more accurately, leading to a more precise convergence.

This idea of computing the gradient at an anticipated point is also used in the higher

order time integration methods, such as the second order Runge–Kutta method (see

Eq. (3.14)).

2.5.5 AdaGrad

AdaGrad [Duchi et al., 2011] is another optimisation algorithm that adapts the learning

rate for each parameter based on historical gradients. The idea behind AdaGrad is to

decrease the learning rate for parameters that have accumulated large gradients and

2.5. GRADIENT DESCENT OPTIMISATION METHODS 38

vice versa. This method is expressed as follows:

v(t+1) = v(t) +
(
∇θL(θ(t))

)2

θ(t+1) = θ(t) − α√
v(t+1) + ϵ

∇θL(θ(t)),
(2.16)

where ϵ is a small constant added to the denominator to prevent division by zero and(
∇θL(θ(t))

)2
and

√
v(t+1) + ϵ are element-wise operations. AdaGrad balances the learn-

ing rate for each parameter based on historical gradients, which can be useful in some

cases. However, AdaGrad has been shown to have limitations in practice, such as a de-

caying learning rate that can become too small before reaching the minimum point. This

limitation led to the development of other optimisation algorithms, such as RMSprop

and Adam.

2.5.6 RMSprop

Unlike AdaGrad, discussed in Section 2.5.5 which uses the sum of the squared gradi-

ents to adjust the learning rate, another method called Root Mean Square Propagation

(RMSprop) uses a moving average of the squared gradients to adjust the learning rate

for each parameter, with a decaying factor controlling the influence of the historical

gradients. The RMSprop algorithm is expressed as follows:

v(t+1) = µv(t) + (1 − µ)
(
∇θL(θ(t))

)2

θ(t+1) = θ(t) − α√
v(t+1) + ϵ

∇θL(θ(t))
(2.17)

This unpublished method, developed in the team of Geoffrey Hinton, showed better

performance than AdaGrad in practice, as it prevents the learning rate from decaying

too quickly. However, RMSprop still has limitations, such as the need to manually adjust

the learning rate and the decaying factor.

2.5.7 Adam

Adam [Kingma and Ba, 2015] (Adaptive Moment Estimation) is an optimisation algo-

rithm that combines the advantages of RMSprop (see Section 2.5.6) and the momentum

methods (see Section 2.5.3, Section 2.5.4). Adam uses the moving average of the gra-

dients and the squared gradients to adjust the learning rate for each parameter. It is

2.6. BACK-PROPAGATION 39

expressed as follows:

m(t+1) = µ1m
(t) + (1 − µ1)∇θL(θ(t))

v(t+1) = µ2v
(t) + (1 − µ2)

(
∇θL(θ(t))

)2

m̂(t+1) = m(t+1)

1 − µt+1
1

v̂(t+1) = v(t+1)

1 − µt+1
2

θ(t+1) = θ(t) − α√
v̂(t+1) + ϵ

m̂(t+1)

(2.18)

where m(t) and v(t) are the first and second moments of the gradients, respectively, µ1

and µ2 are the exponential decay rates for the first and second moments. The Adam

algorithm has been shown to be effective in practice and is widely used in training deep

neural networks.

The choice of the optimisation algorithm depends on the problem at hand and the

characteristics of the dataset. In practice, it is common to use Adam as a default opti-

misation algorithm due to its robustness and ease of use. However, it is recommended

to experiment with different optimisation algorithms and learning rates to find the best

combination for a given problem.

2.6 Back-propagation

The back-propagation algorithm, introduced by Rumelhart et al. [1986], is a method for

computing the gradient of the loss function. The algorithm consists of two phases: the

forward and the backward pass. In the forward pass, the input is propagated through

the network layers to compute the output as follows:

z(1) = σ(1)(A(1)(x))
...

z(L−1) = σ(L−2)(A(L−2)(z(L−2)))

ŷ = σ(L−1)(A(L−1)(z(L−1)))

(2.19)

where x is the input vector, ŷ is the output vector, z(l) is the output of the lth layer, A(l)

is the linear transformation of the lth layer, and σ(l) is the activation function of the lth

layer.

In order for the model to learn, the gradient of the loss function with respect to the

model parameters should be computed, as we have seen in Section 2.5.

Let’s consider the single-layer MLP example in Figure 2.2 with two input features,

2.6. BACK-PROPAGATION 40

one output, and a sigmoid activation function instead of the threshold function. The

MLP can be represented as follows:

z(1) = A(1)(x) = W (1)x + b(1)

ŷ = σ(1)(z(1)) = σ(1)(W (1)x + b(1))
(2.20)

where x = [x1, x2]T is the input vector, ŷ = [y1] is the output vector, W (1) = [w1, w2] is

the weight vector, b(1) is the bias term, and σ(1) is the sigmoid activation function. The

loss function is the MSE, which can be written as follows:

L(θ) = 1
N

N∑
i=1

(F (xi; θ) − yi)
2 = 1

N

N∑
i=1

(ŷi − yi)2 (2.21)

where θ = [W (1), b(1)] is the set of model parameters, N is the number of training

samples, and yi is the target value of the ith sample. In the case of multidimensional

output, the (ŷi − yi)2 term is replaced by ∥ŷi − yi∥2.

The gradient of the loss function with respect to the model parameters can be com-

puted as follows:

∇W (1)L(θ) = 1
N

N∑
i=1

∂L(θ)
∂W (1) = 1

N

N∑
i=1

∂L(θ)
∂ŷ

∂ŷ

∂z(1)
∂z(1)

∂W (1)

∇b(1)L(θ) = 1
N

N∑
i=1

∂L(θ)
∂b(1) = 1

N

N∑
i=1

∂L(θ)
∂ŷ

∂ŷ

∂z(1)
∂z(1)

∂b(1)

(2.22)

this method is known as the chain rule [Leibniz, 1920], where ∂L(θ)/∂ŷ is the gradient

of the loss function with respect to the output, and it’s given by the following formula:

∂LMSE(θ)
∂ŷ

= ∂

∂ŷ
(ŷ − y)2 = 2 (ŷ − y) (2.23)

For the MAE loss function, the gradient is given by the following formula:

∂LMAE(θ)
∂ŷ

= ∂

∂ŷ
|ŷ − y| = sign(ŷ − y) (2.24)

∂ŷ/∂z(1) is the gradient of the output with respect to the output of the first layer and

it’s given by the following formula2:

∂ŷ

∂z(1) = ∂σ(1)(z)
∂z

= ŷ ⊙ (1 − ŷ). (2.25)

where ⊙ is the element-wise product, also known as the Hadamard product. For the

2The sigmoid derivative is given by σ′(x) =
(

1
1+e−x

)′
= e−x

(1+e−x)2 = σ(x) · (1 − σ(x)).

2.6. BACK-PROPAGATION 41

ReLU activation function, the gradient is given by the following formula:

∂ŷ

∂z(1) = ∂ReLU(z)
∂z

=

1 if z > 0

0 otherwise
(2.26)

Next, ∂z(1)/∂W (1) and ∂z(1)/∂b(1) are the gradients of the output of the first layer with

respect to the model parameters. The formulas for these intermediate gradients are

theoretically known and computed as follows:

∂z(1)

∂W (1) = ∂ (W x + b)
∂W

∣∣∣∣∣
W =W (1)

= x

∂z(1)

∂b(1) = ∂ (W x + b)
∂b

∣∣∣∣∣
b=b(1)

= 1
(2.27)

Now, we have all the intermediate gradients to compute the gradient of the loss function

with respect to the model parameters. The gradients are computed as follows:

∇W (1)L(θ) = 1
N

N∑
i=1

2 (ŷi − yi) ⊙ ŷi ⊙ (1 − ŷi) ⊙ xi

∇b(1)L(θ) = 1
N

N∑
i=1

2 (ŷi − yi) ⊙ ŷi ⊙ (1 − ŷi) ⊙ 1,

(2.28)

where ŷ = σ(1)(z(1)
i) = σ(1)(W (1)xi + b(1)).

This process of computing the gradient of a function using the chain rule and the

exact mathematical formulas for the intermediate gradients is known as automatic dif-

ferentiation. In order to avoid redundant computations of the same intermediate gra-

dients, the gradients can be computed iteratively, starting from the output layer and

moving backward to the input layer. This process is known as reverse-mode automatic

differentiation, reverse accumulation, or more commonly in the context of neural net-

works, backpropagation. Efficient backpropagation implementations are provided by

key libraries such as TensorFlow [Abadi et al., 2016], PyTorch [Paszke et al., 2019],

and JAX [Frostig et al., 2018]. These libraries represent the chain of operations using

a graph structure, called a computation graph. Each node in the graph represents an

operation, and the edges represent the variables involved in the operation. Figure 2.4

shows an example of a computation graph. TensorFlow uses a static computation graph

representing the operations of the neural network, while PyTorch uses a dynamic one.

The static computation graph is constructed before the training process, storing the

operations and the variables involved in the computation. This allows for more optimi-

sations and better performance. The dynamic computation graph is built on the fly as

the operations are executed at each iteration. This allows for more flexibility and ease

2.7. UNIVERSAL APPROXIMATION THEOREM 42

x

Multiplication

y

v Log w z

∂z
∂w

Log Derivative∂z
∂v

Mult Derivative

∂z
∂x

∂z
∂y

Forward

Backward

Figure 2.4: The computation graph of f(x, y) = log(x ∗ y).

of use, which means that the size of the inputs can be changed at every iteration, and

control flow operations such as loops with variable lengths and conditional statements

can be used.

2.7 Universal approximation theorem

The universal approximation theorem states that a feedforward neural network with

a single hidden layer (i.e. the layer between the input and output layers) containing

a finite number of neurons can approximate any continuous function on a compact

subset of Rn [Hornik et al., 1989]. This theorem provides a theoretical basis for the use

of neural networks as universal function approximators. However, it does not provide

any insight into the number of neurons required to approximate a given function.

Later studies have proposed bounds on the number of neurons required to approxi-

mate a function with a given error [e.g. Pinkus, 1999, Yarotsky, 2017, Kidger and Lyons,

2020]. These bounds are based on the width (the number of neurons) of the hidden

layer. The following theorems provide bounds on the width of the hidden layer required

to approximate a function with a given error.

We assume K ⊂ Rd is a compact set.

2.7. UNIVERSAL APPROXIMATION THEOREM 43

Theorem [Pinkus, 1999]. Let f : K → R with d = 1, be a continuous function. Then

given an ϵ > 0 and a non-polynomial continuous activation σ, there exists an MLP,

Fϵ,H,L, with a single hidden layer (L = 1) of width H, such that

max
x∈K

|Fϵ,H,L,σ(x; θ) − f(x)| ≤ ϵ.

Theorem [Kidger and Lyons, 2020]. Let f : K → RD be a continuous vector-valued

function, and let σ : R → R be any nonaffine continuous function which is continuously

derivable at at least one point, with nonzero derivative at that point. Then given an ϵ >

0, there exists an MLP, Fϵ,L,H,σ, with L hidden layers, each having width H ≥ d + D + 2,

such that

max
x∈K

∥Fϵ,L,H,σ(x; θ) − f(x)∥ ≤ ϵ.

To observe the first theorem [Pinkus, 1999] in practice, let’s consider the following

functions:

fn(x) = sin2n(x) + cos(x) (2.29)

where n is a positive integer. Theses functions are C∞ for all n and their curves have a

cat-like shape.

In the following experiment, we consider n = 14. Figure 2.5 shows the approxi-

mation of the function f14 with a single hidden layer MLP with different numbers of

neurons, referred to as H, and a ReLU activation function. We observe that the ap-

proximation improves as the number of neurons in the hidden layer increases until the

approximation fully captures the function with H = 32. However, this doesn’t mean

that the approximation will be accurate outside the training range. The approximation

is only guaranteed to be accurate within the training range, which is expected.

To observe the second theorem [Kidger and Lyons, 2020] in practice, we consider

more complex functions, e.g. images. Here, three images are considered, and the goal

is to approximate each image with an analytical function of the form

f :[0, 1] × [0, 1] → [0, 1]3

(x, y) 7→ (R(x, y), G(x, y), B(x, y))
(2.30)

where R(x, y), G(x, y), and B(x, y) are the red, green, and blue values of the pixel at a

position (x, y) in the image, respectively.

We implemented 16 hidden layers MLP to approximate the function f with different

numbers of neurons in the hidden layers, referred to as H, and H ≥ 2 + 3 + 2 = 7 to

satisfy the theorem. The ReLU activation function is used after each hidden layer. The

approximation functions learned by the MLP for each image and different numbers of

neurons in the hidden layers are shown in Figure 2.6.

2.8. REGULARISATION 44

−4 −2 0 2 4

−1

0

1

x

(a):H = 2
True Learned Training range

−4 −2 0 2 4

−1

0

1

x

(b):H = 4

−4 −2 0 2 4

−1

0

1

x

(c):H = 8

−4 −2 0 2 4

−1

0

1

x

(d):H = 16

−4 −2 0 2 4

−1

0

1

x

(e):H = 32

−4 −2 0 2 4

−1

0

1

x

(f):H = 64

Figure 2.5: Approximation of the function f14 with a single hidden layer MLP. For
training, we used a learning rate starting from 0.001, a batch size of 256, and 20 epochs.
The neural networks were trained using data points sampled from the interval [−3, 3]
(training range).

As expected, the approximation improves with the width of the network. We observe

that with H ≥ d + D + 2, we are able to have a relevant approximation of the two

first images, which is consistent with the theorem, but the third one, which is more

complex, shows that it’s problem dependent, which is still consistent with the theorem.

The condition about the width of the hidden layer is a necessary condition, but not a

sufficient one. While challenging, it would be valuable to establish an upper bound on

the number of neurons and layers required to achieve a given approximation error.

Interestingly, once the network has learned the image, we have access to an ana-

lytical function approximating the image. This function can be used, for example, to

generate a higher resolution image as shown in Figure 2.7, as we are no longer limited

by the initial discretisation of the image.

2.8 Regularisation

Neural networks can be easily complex and present a high capacity to learn complex

patterns from the data. However, this high capacity can lead to overfitting, where the

model learns the noise in the training data and fails to generalise to new data, especially

when the training data is limited. Figure 2.8 shows an illustrative overfitting situation.

2.8. REGULARISATION 45

(a) H = 8 (b) H = 32 (c) H = 128 (d) Original

(e) H = 8 (f) H = 128 (g) H = 1024 (h) Original

(i) H = 8 (j) H = 128 (k) H = 1024 (l) Original

Figure 2.6: Approximation of three images with three hidden layers MLP. For training,
we used a learning rate starting from 0.001, a batch size of 256 and 10 epochs.

(a) Original image (486 × 386) (b) Generated high-res image (4860 × 3860)

Figure 2.7: Generating a high resolution image using an MLP of 16 hidden layers of
1024 neurons each.

2.9. CLASSIFICATION AND REGRESSION 46

One of the reasons of overfitting is the model parameters taking large values, this can

Input features Input features

Target
Model output

OverfittingOptimal

Figure 2.8: Overfitting illustration.

be mitigated by adding a regularisation term to the loss function. The most common

terms are the L1 and L2 regularisation, which are defined as follows:

LL1(θ) = L(θ) + λ∥θ∥1 (2.31)

LL2(θ) = L(θ) + λ∥θ∥2
2 (2.32)

where λ is the regularisation parameter, ∥θ∥1 is the L1 norm of the model parameters,

and ∥θ∥2 is the L2 norm of the model parameters. The L1 norm is defined as ∥θ∥1 =∑n
i=1 |θi|, and the L2 norm is defined as ∥θ∥2 =

√∑n
i=1 θ2

i . The L1 regularisation is also

known as Lasso, and the L2 regularisation is also known as Ridge. The regularisation

parameter λ controls the strength of the regularisation. A large value of λ leads to a

stronger regularisation, which can help prevent overfitting.

Beyond the regularisation aim, constraints can be added to the loss function for

other reasons such as enforcing physical consistency, as shown in Raissi et al. [2017]

and will be discussed in Chapter 4.

2.9 Classification and regression

Neural networks can be used for both classification and regression tasks. In the case of

regression tasks, the output of the neural network is a continuous value, generally rep-

resenting a quantity of interest and can be in bounded or unbounded intervals. In the

case of classification tasks, the output of the neural network is a categorical value, rep-

resenting a class or a label. The optimisation algorithms used to train neural networks

are designed for continuous optimisation, Hence, the output of the neural network is a

continuous value. Hence, the model is trained to predict the probability of each class

rather than the class itself. The predicted class is then determined by the class with the

2.9. CLASSIFICATION AND REGRESSION 47

highest probability. To ensure that the output of the neural network is a valid proba-

bility distribution, the softmax function is used to transform the output of the neural

network into a probability distribution over the classes. The softmax function is defined

as follows:

softmax(z)i ≜
ezi∑K

j=1 ezj
(2.33)

where z is the output of the neural network, zi is the ith element of z, and K is the

number of classes. The softmax function ensures that the output of the neural network

is positive and is a valid probability distribution by normalising the output to sum to

1. The predicted class is then determined by the class with the highest probability.

The cross-entropy loss is the commonly used loss function for classification tasks. For a

binary classification task, the cross-entropy loss is defined as follows:

L(θ) = − 1
N

N∑
i=1

(yi log (F (xi; θ)) + (1 − yi) log (1 − F (xi; θ))) (2.34)

where yi is the target value of the ith sample (0 or 1), F (xi; θ) is the output of the

neural network after applying the softmax, and N is the number of training samples.

For a multi-class classification task, the cross-entropy loss is defined as follows:

L(θ) = − 1
N

N∑
i=1

K∑
k=1

yi,k log (F (xi; θ)k) (2.35)

where yi is the one-hot encoded vector of the ith output. The one-hot encoding is

a representation of categorical variables as binary vectors, where each vector has a

length equal to the number of categories. The vector has a value of 1 in the position

corresponding to the category and 0 in all other positions. For example, a categorical

variable with three categories can be represented as follows:

Category One-hot encoding Index

A [1, 0, 0] 0
B [0, 1, 0] 1
C [0, 0, 1] 2

. (2.36)

The cross-entropy loss is commonly used for classification tasks because it encourages

the model to predict the correct class with high confidence.

2.10 Classical architectures

2.10. CLASSICAL ARCHITECTURES 48

In this section, we present some classical neural network architectures that are widely

used in practice.

2.10.1 Convolutional neural networks

MLPs can be used for diverse tasks, including image classification, time series prediction,

and natural language processing. However, they face challenges when dealing with

these types of tasks. For example, images are high-dimensional data, and the number of

parameters in an MLP grows quadratically with the number of input features, making it

difficult to train MLPs on large images. Additionally, MLPs apply pixel-wise operations,

which do not capture the spatial structure of the input data, making a slightly shifted

image completely different from the original image from the MLP’s perspective.

Figure 2.9: Convolution operation using a 2 × 2 kernel and a 4 × 4 input feature map.

Figure 2.10: How multichannel convolution is applied using a 2 × 2 kernel on a 4 × 4
input with 3 channels (e.g. RGB).

Convolutional neural networks are designed to capture the spatial structure of the

input data, making them well suited for tasks involving images, videos, and other mul-

2.10. CLASSICAL ARCHITECTURES 49

tidimensional data. CNNs are based on the concept of convolution, which is a mathe-

matical operation that is defined as follows:

(f ∗ k)(t) ≜
∫ ∞

−∞
f(τ)k(t − τ) dτ (2.37)

where f and k are functions, and ∗ is the convolution operator.

The convolution operation is applied to the input data using a set of filters, also

known as kernels. Filters are learned during the training process and capture different

features of the input data.

In a CNN, the input data is passed through a set of convolutional layers, activation

functions, and also fully connected layers (especially in the last layers). Another opera-

tion commonly used in CNNs is the pooling operation. The pooling operation is used to

reduce the dimensionality of the feature maps and to capture the most important fea-

tures of the input data. The most common pooling operation is the max-pooling, which

takes the maximum value of a set of values in the feature map.

Figure 2.9 shows the convolution operation using a 2 × 2 kernel and a 4 × 4 input

feature map.

The convolution operation can be extended to multiple channels, e.g. image with

RGB channels. In this case, the kernels have the same number of channels as the input

feature map. The convolution operation is applied to each channel of the input feature

map, and the results are summed to produce the output feature map (see Figure 2.10).

Notice that the output feature map has a size of 3 × 3, which is smaller than the input

feature map. This size reduction is due to the kernel size, as the kernel cannot be

applied to the edges of the input. Generally, the output size is given by the formula:

Output size = Input size − Kernel size + 1. (2.38)

Some tasks require maintaining the input size or that the intermediate feature maps

have a specific size. In these cases, padding can be added to the border of the input

feature map to ensure that the output feature map has the desired size. The padding is

generally added as zeros around the input feature map along each direction. For odd

kernel sizes, the padding is generally added symmetrically on both sides and given by

the formula:

Padding size[i] = Kernel size[i] − 1
2 . (2.39)

where i is the axis (for example, i = 1 for the vertical axis and i = 2 for the horizontal

axis).

For even kernel sizes, it is common to add different padding sizes to the top and

bottom/left and right of the input feature map to ensure that the output feature map

2.10. CLASSICAL ARCHITECTURES 50

64 64

25
6

x
25

6

128 128

12
8

x
12

8
N

256 256

64
x6
4

512 512

32
x3
2

1024 1024

1024 512

512 256

256 128

64 64

25
6

x
25

6

M

12
8

x
12

8

64
x6
4

32
x3
2

16
x1
6

2 x 2 Max
Pooling

2 x 2 Transposed
convolution Skip connection3 x 3 Conv

+ ReLU M Out channels
N In channels

128

Figure 2.11: The U-Net architecture consists of an encoder part and a decoder part. The
encoder part captures the features of the input data, and the decoder part reconstructs
the input data from the features captured by the encoder part.

matches the input size. In this case, the padding size is given by the formula:

Padding size[i] =


Kernel size[i]

2 is added in one side
Kernel size[i]

2 − 1 is added in the other side
(2.40)

where i is the axis (e.g. i = 1 for the vertical axis and i = 2 for the horizontal axis).

One of the most popular CNN architectures is the U-Net architecture, which is widely

used for computer vision tasks. The U-Net architecture introduced by Ronneberger et al.

[2015] is based on the concept of an autoencoder, which is a neural network that learns

to reconstruct data from a compressed representation, called latent space, which is the

bottleneck in Fig. 2.11.

The U-Net architecture has been shown to be effective in capturing the spatial struc-

ture of the input data and has been widely used in image segmentation tasks, but also

in other tasks such as weather nowcasting [see Ayzel et al., 2020, Berthomier et al.,

2020].

2.10.2 Recurrent neural networks (RNN)

RNN are designed to capture the temporal structure of the input data, making them

well-suited for tasks involving time series data, natural language processing, and other

sequential data. RNNs are based on the concept of recurrence, which is a mathematical

operation that is defined as follows:

ht = f(ht−1, xt) (2.41)

2.10. CLASSICAL ARCHITECTURES 51

where ht is the output at time t, ht−1 is the output at time t − 1, xt is the input at time

t, and f is the recurrence function. The recurrence function is generally a non-linear

function that merges the input and the previous output to produce the current output.

The output at time t is then used as the input at time t+1, and the process is repeated for

the entire sequence (see Figure 2.12). The last output or all the outputs concatenated

can be used to make predictions using a fully connected layer. RNNs face challenges

Concat

Input

Concat Concat

Outputs

Dense layer

Figure 2.12: An example of a Recurrent Neural Network.

when dealing with long sequences, as the gradients can vanish or explode during the

training process. This problem is known as the vanishing gradient problem. Indeed,

as explained in Section 2.6, the gradients are computed iteratively starting from the

output layer and moving backward to the input layer. The gradients are multiplied at

each step, and if these gradients are small (< 1), it results in a very small value of the

gradient of the loss function with respect to the model parameters, which can lead to

slow convergence or no convergence at all. On the other hand, if the gradients are large

(> 1), it results in a very large value of the gradient of the loss function, which can lead

to divergence. This problem is commonly referred to as the exploding gradient.

To address the vanishing gradient problem, several RNN variants have been pro-

posed, including LSTM networks [Hochreiter and Schmidhuber, 1997] and GRU net-

works [Cho et al., 2014]. These networks introduce additional gates that control the

flow of information in the network, allowing the network to capture long-range depen-

dencies in the input data and avoid the vanishing gradient problem (see Figure 2.13 for

an illustration of an LSTM cell).

RNNs were not the only architectures to suffer from the vanishing gradient problem,

CNNs also faced this problem. To address this problem, the ResNet architecture was

proposed, as explained in Section 2.10.3.

2.10.3 Residual networks

Some convolutional networks also have suffered from the vanishing gradient problem,

especially when the network is deep, i.e. when it has many layers. To address this

2.10. CLASSICAL ARCHITECTURES 52

Figure 2.13: Illustration of an LSTM cell: an additional input has been added to the cell
compared to a standard RNN cell. This input is used to store the information from the
previous time steps. Inside the cell, some of the information is kept, some is forgotten,
and some new information is added.

problem, He et al. [2016] proposed the Residual Network (ResNet) architecture. The

ResNet architecture introduces a particular building block called the residual block. This

block uses skip connections, which allow a part of the gradients to flow directly from

the output to the input of the network, bypassing the intermediate layers. Figure 2.14

shows the general form of a residual block. This architecture has been successful in

Figure 2.14: Illustration of a residual block.

training very deep networks and has been widely used in image classification tasks.

2.10.4 Transformers

Transformer network is a DL architecture introduced by [Vaswani et al., 2017]. These

models have since revolutionised natural language processing (NLP) and other fields

due to their ability to handle sequential data without relying on traditional recurrent or

convolutional neural network architectures.

The core innovation of transformers is the self-attention mechanism (Fig. 2.15),

which allows the model to weigh the importance of different words in a sentence when

making predictions. This mechanism captures dependencies regardless of their distance

in the sequence, unlike traditional models that are limited by fixed context windows.

2.10. CLASSICAL ARCHITECTURES 53

X ∈ Rn×d

Input

Q = X · WQ|WQ ∈ Rd×dq

Query ∈ Rn×dq

K = X · WK |WK ∈ Rd×dk

Key ∈ Rn×dk=dq

V = X · WV |WV ∈ Rd×dv

Value ∈ Rn×dv

S = softmax
(

Q·KT

√
dk

)
Attention scores ∈ Rn×n

Y = S · V

Output ∈ Rn×dv

Figure 2.15: The self-attention mechanism works as follows: Let’s consider an input vec-
tor X ∈ Rn×d, with n being the number of tokens in the sequence and d the dimension
of each token, also known as the embedding dimension. Three vectors are generated
using linear transformations of the input: Q = X · WQ, K = X · WK , and V = X · WV .
WQ ∈ Rd×dq , and WV ∈ Rd×dv are learned weights. Attention scores are computed by
taking the dot product of Q ∈ Rn×dq and KT ∈ Rdq×n, followed by scaling and applying
the softmax function as follows: S = softmax

(
Q·KT
√

dk

)
. The output is then computed as

a weighted sum of the values V ∈ Rn×dv using the attention scores: Y = S · V .

As it can be noticed on Fig. 2.15, the size of the weight matrices WQ, WK , and WV is

independent of the input size n, which allows the model to capture dependencies re-

gardless of the sequence length. This is one of the key advantages of the self-attention

mechanism over recurrent-based architectures. Since transformers do not inherently

understand the order of sequences (unlike RNNs), positional encodings are added to

the input embeddings to provide information about the position of a word in a sen-

tence. To capture different aspects of the relationships between words, transformers

use multi-head attention (Fig. 2.16, which involves multiple self-attention operations in

parallel. Each head can focus on different parts of the sequence. Other layers, such as

layer normalisation and residual connections, are used to stabilise and speed up train-

ing. Transformers have been used in a wide range of applications, especially in natural

language processing, showing scalability properties that allow them to perform well

on large datasets compared to LSTM and GRU models. Transformers were not used

for image processing as images contains more data points than sentences. However,

recently a study by Dosovitskiy et al. [2021] introduced the Vision Transformer (ViT)

model, which applies the transformer architecture to image data. The ViT model divides

the image into patches, which are then flattened and passed through the transformer

encoder. This ViT model shows promising results and can leverage the scalability of

transformers to process large datasets for computer vision tasks.

2.11 Conclusion

2.11. CONCLUSION 54

Q1 = X · WQ1

K1 = X · WK1

V1 = X · WV 1

Q1 = X · WQ1

K1 = X · WK1

V1 = X · WV 1

S1 = softmax
(

Q1·KT
1√

dk

)
S1 = softmax

(
Q1·KT

1√
dk

)
Y1 = S1 · V1

Y1 = S1 · V1

X ∈ Rn×d

Input

Q1 = X · WQ1

Queries

K1 = X · WK1

Keys

V1 = X · WV 1

Values

S1 = softmax
(

Q1·KT
1√

dk

)Scores

Y1 = S1 · V1

Outputs

Concat(Y1, Y2, · · · , Yh)

Y · W

Figure 2.16: Multi-Head Attention mechanism. The input vector X ∈ Rn×d is trans-
formed into multiple sets of Query (Qi), Key (Ki), and Value (Vi) vectors for each
attention head i ∈ {1, 2, · · · , h}. The attention scores Si are computed for each head,
and the outputs Yi are obtained by applying the attention scores to the values. The
outputs of all heads are concatenated and projected using a linear transformation.

In this chapter, we have introduced the basic concepts of deep learning, including neu-

ral networks, activation functions, loss functions, and optimisation algorithms. We

have also presented some classical neural network architectures, including convolu-

tional neural networks, recurrent neural networks, and residual networks. We have

also introduced the transformer architecture, which has revolutionised natural language

processing and started to be used in other fields such as computer vision and recently in

climate science[Nguyen et al., 2023]. In the next chapter, we will present some basics

of numerical methods for solving partial differential equations.

2.11. CONCLUSION 55

Figure 2.17: An overview of the transformer architecture, it is an encoder-decoder struc-
ture with multi-head attention and feed-forward layers. The encoder processes the input
sequence into a context-rich representation, which the decoder then uses to generate
the output sequence. Figure from [Vaswani et al., 2017].

C
ha

pt
er 3 Numerical resolution of partial

differential equations

In this chapter, we introduce the numerical methods used to solve partial differential

equations (PDEs). In particular, we discuss the spatial discretisation of a PDE using

finite differences and the time integration of the resulting ordinary differential equation

(ODE), and we highlight the numerical errors that can arise from these methods and

discuss potential challenges and limitations.

3.1 Introduction

PDEs are fundamental mathematical tools used to model a wide range of physical phe-

nomena, including heat transfer, fluid dynamics, and electromagnetic fields. These

equations involve multiple independent variables and their partial derivatives, making

them challenging to solve analytically. Consequently, numerical methods, such as finite

difference methods, play a crucial role in approximating solutions to PDEs.

Numerical weather prediction involves addressing PDEs representing physical phe-

nomena, e.g. the advection equation or the diffusion equation. These equations can be

expressed as follows:

∂tf + v∂xf = 0, (3.1)

∂tf − κ∂2
xf = 0, (3.2)

where f is the field of interest, v is the velocity field, and κ is the diffusion coefficient.

Or more generally, the Navier–Stokes equations, which describe the motion of fluid

56

3.2. SPATIAL DISCRETISATION USING FINITE DIFFERENCES 57

substances, can be expressed as follows:

∂tu + (u · ∇)u = −∇p + ν∇2u,

∇ · u = 0,
(3.3)

where p is the pressure field, and ν is the diffusion coefficient.

These equations can be expressed at a more abstract level as follows:

∂tf = F
(
f, ∂xf, ∂2

xf, . . .
)

, (3.4)

where F is a function that describes the evolution of a univariate or multivariate field

f over time. Computers cannot directly solve symbolic PDEs, and a common approach

involves a two-stage process to transform the PDE into a mathematical formulation

more suitable for computational handling. This process begins by discretising the partial

derivatives with respect to spatial coordinates, resulting in an ODE. Subsequently, a

temporal integration describes the evolution of the system over time.

3.2 Spatial discretisation using finite differences

Spatial discretisation can be performed using several methods, e.g. finite volumes,

finite elements, or spectral methods. However, the simplest one is the finite-difference

method. This is among the most widely used techniques for numerically solving PDEs.

Finite-difference discretisation involves dividing the spatial and temporal domains

of the PDE into a grid or mesh of discrete points. The value of the solution at each

grid point is then approximated using finite-difference approximations of the partial

derivatives. For example, on a 1D periodic domain [0, L] of coordinate x, discretised in

N grid points (xi)[0,n−1] (xn = x0), the spatial derivatives of a function f at a point xi can

be approximated using central differences, forward differences, backward differences

or more complex schemes, such as first-order upwind schemes [Hirsch, 1990] or the

WENO scheme [Liu et al., 1994]. These approximations are generally obtained from

the Taylor expansion of the function around the grid point xi which is the basis of the

finite difference method. The third-order Taylor expansion of a function f around a

point xi is given by

f(t, x + δx) = f(t, x) + δx∂xf(t, x) + δx2

2 ∂2
xf(t, x) + δx3

6 ∂3
xf(t, x) + O(δx4),

f(t, x − δx) = f(t, x) − δx∂xf(t, x) + δx2

2 ∂2
xf(t, x) − δx3

6 ∂3
xf(t, x) + O(δx4).

(3.5)

3.3. TIME INTEGRATION 58

Using central differences, the first-order derivative can be approximated as follows:

∂xf(t, xi) ≈ f(t, xi+1) − f(t, xi−1)
2δx

, (3.6)

where δx = xi+1 − xi represents the grid resolution. Forward and backward differences

are given, respectively, by

∂xf(t, xi) ≈ f(t, xi+1) − f(t, xi)
δx

, (3.7)

and

∂xf(t, xi) ≈ f(t, xi) − f(t, xi−1)
δx

. (3.8)

This discretisation scheme can be used to solve the advection equation (Eq. (3.1)) or

diffusion equation (Eq. (3.2)), among others.

In this case of the advection equation (Eq. (3.1)), the first-order upwind scheme is

used to approximate the derivative of a function at a point xi using the value of the

function at the point xi−1 or xi+1 depending on the sign of the velocity field. Its formula

is given by

∂xf(t, xi) ≈


f(t,xi)−f(t,xi−1)

δx
if vi > 0,

f(t,xi+1)−f(t,xi)
δx

if vi ≤ 0,
(3.9)

3.3 Time integration

Following spatial discretisation, Eq. (3.4) can be written as an ODE as follows:

df
dt

= F̂ (f), (3.10)

where f(t) is the discretised form of f over the spatial domain, e.g. the vector of grid-

point values of f at time t, i.e. f(t) = (f(t, xi))i in the 1D domain mentioned above.

For time integration, various methods can also be employed, e.g. Euler’s method

and Runge–Kutta methods [Runge, 1895, Kutta, 1901]. These methods differ in their

accuracy, stability, and computational cost. As for the spatial discretisation, these meth-

ods are based on the Taylor expansion of the solution around the time t which is given

by

f(t + δt, x) = f(t, x) + δt∂tf(t, x) + δt2

2 ∂2
t f(t, x) + O(δt3). (3.11)

An explicit Euler time integration of Eq. (3.10) reads

fq+1 = fq + δtF̂ (fq), (3.12)

3.3. TIME INTEGRATION 59

where fq = f(tq), with tq = qδt the discretised time of time step δt. Euler method is the

simplest time integration scheme, but it is known to be less accurate than higher-order

methods. However, it is computationally less expensive and can be used as a starting

point for more complex methods.

Runge–Kutta methods are a family of implicit and explicit iterative methods that are

used to solve ODE. They are based on the idea of solving the ODE by taking multiple

intermediate steps between two time steps. Here, we focus on the explicit Runge–Kutta

methods, which can be expressed as follows:

fq+1 = fq + δt
s∑

i=1
biki,

ki = F̂ (fq + δt
i−1∑
j=1

aijkj),

k1 = F̂ (fq),

(3.13)

where fq is the solution at time tq, ki are the intermediate time derivatives, aij and bi

are the coefficients of the method, and s represents the order of the method. However,

few particular cases are commonly used, such as the second-order Runge–Kutta method

(RK2) and the fourth-order Runge–Kutta method (RK4). The second order Runge–Kutta

method (RK2) is given by

fq+1/2 = fq + δt

2 F̂ (fq),

fq+1 = fq + δtF̂ (fq+1/2),
(3.14)

where an intermediate time integration is done at the midpoint of the time step, fq+1/2,

before computing the complete time integration step starting from this intermediate

estimation of the solution. This method is slightly more accurate than the Euler method

and requires two times more function evaluations per time step.

The most popular Runge–Kutta method is the fourth-order method (RK4), which is

given by
k1 = F̂ (fq),

k2 = F̂ (fq + δt

2 k1),

k3 = F̂ (fq + δt

2 k2),

k4 = F̂ (fq + δtk3),

fq+1 = fq + δt

6 (k1 + 2k2 + 2k3 + k4).

(3.15)

In this method, four intermediate time derivatives are estimated at different points

within the time step, and the time integration is computed using a weighted average

of these intermediate time derivatives. This method is more accurate than the RK2

3.4. EXAMPLE: ADVECTION EQUATION 60

method, but it requires two times more function evaluations per time step. However,

this double cost could be partially compensated using a higher time step, which is pos-

sible with higher order time schemes such as the RK4.

3.4 Example: advection equation

For the sake of illustration, we consider the advection over the above-mentioned 1D

periodic domain, given by the following equation:

∂tf + v∂xf = 0, (3.16)

where v is a velocity field whose values on the grid are denotes as (vi)i∈[0,n−1]. Applying

central difference and an Euler scheme discretisation to the advection equation, we

obtain the following equation:

fq+1,i − fq,i

δt
+ vi

fq,i+1 − fq,i−1

2δx
= 0, (3.17)

which can be rearranged to yield the following sequential resolution:

fq+1,i = fq,i − δt

2δx
vi(fq,i+1 − fq,i−1). (3.18)

Using the first-order upwind scheme, we obtain the following equation:

fq+1,i − fq,i

δt
+


vi

δx
(fq,i − fq,i−1) if vi > 0,

vi

δx
(fq,i+1 − fq,i) if vi ≤ 0,

= 0, (3.19)

which can be rearranged to yield the following sequential resolution:

fq+1,i = fq,i − δt

δx

vi(fq,i − fq,i−1) if vi > 0,

vi(fq,i+1 − fq,i) if vi ≤ 0.
(3.20)

This example illustrates the integration of the advection equation over time using an

explicit Euler method. However, depending on the characteristics and requirements of

the problem, other time integration schemes may be more suitable.

3.5 Numerical errors

Numerical methods for solving PDEs, such as the central, forward, and backward dif-

ference schemes, may introduce various numerical effects and errors that can impact

3.5. NUMERICAL ERRORS 61

the accuracy and stability of the solutions especially in the presence of discontinuities

or sharp gradients. These errors include truncation errors, round-off errors, diffusion,

and dispersion errorsBoyd [1989], Hirsch [2007]. Truncation errors arise from the ap-

proximation of the derivatives, while round-off errors result from the finite precision of

the numerical representation of real numbers.

3.5.1 Central finite differences

For example, in the advection equation, the central difference scheme introduces nu-

merical diffusion and dispersion effects; these effects can be observed in the equivalent

equation of the advection equation using this numerical scheme. The equivalent equa-

tion is obtained by replacing the spatial derivatives in the original PDE by their Taylor

formula approximations, and represents the actual equation that is solved by the numer-

ical scheme. In the following lines, we present the equivalent equations (also called the

modified equations) [Hirt, 1968] of the central differences and the first-order upwind

scheme for the advection equation.

Applying the Taylor formulas (see Eq. (3.5)) to the advection equation Eq. (3.17),

we get the following expansion:

∂tf + δt

2 ∂2
t f + O(δt) = −v

(
∂xf − δx2

6 ∂3
xf + O(δx2)

)
(3.21)

Whereas we require just a first-order expansion in time, we can replace the second-

order time derivative by another term coming from a Taylor first order expansion of the

Eq. (3.17):

∂t(∂tf) + O(δt) = −∂t(v∂xf) + O(δx) (3.22)

Then,

∂2
t f = −∂tv∂xf − v∂2

xtf + O(δt, δx)

Using the same approach, as in Eq. (3.22), the derivative ∂2
xtf can be computed as

follows:

∂x(∂tf) = −∂xv∂xf − v∂2
xf + O(δt, δx)

We replace the derivative ∂2
xtf in the last formula :

∂2
t f = −∂tv∂xf − v

(
−∂xv∂xf − v∂2

xf
)

+ O(δt, δx) (3.23)

3.5. NUMERICAL ERRORS 62

Finally, we replace the second-order derivative in Eq. (3.21) by the expression in Eq. (3.23):

∂tf + δt

2
(
−∂tv∂xf − v

(
−∂xv∂xf − v∂2

xf
))

= −v

(
∂xf − δx2

6 ∂3
xf

)
+ O

(
δt2, δx2

)
.

Hence,

∂tf + ṽ∂xf = −κ∂2
xf + δx2

6 v∂3
xf + O(δx2), (3.24)

where ṽ = v − δt
2 ∂tv + δt

2 v∂xv is the effective velocity field, κ = δt
2 v2 is the diffusion

coefficient, the −κ∂2
xf term introduces a negative diffusion effect, and the δx2

6 v∂3
xf term

introduces a dispersion effect. The negative diffusion term keeps adding energy to the

system, making it unstable and exploding, while the dispersion term introduces high-

frequency oscillations.

It is important to note that the negative diffusion term comes from the second-order

time derivative present in the time scheme expansion (check Eq. (3.23)). On the other

hand, the dispersion term comes from the spatial discretisation scheme. In fact, when

using higher-order time integration schemes, the negative diffusion term may disappear.

Indeed, the approximation error of an kth order time integration scheme presents only

terms of order δtp, and (p + 1)th order time derivatives, with p ≥ k. Thus, higher order

time integration schemes will not introduce any type of diffusion.

Overall, the central differences method has a number of advantages. It is relatively

simple to implement and can be used to approximate derivatives with a few function

evaluations. It is also well-suited for use with functions that have smooth, well-behaved

derivatives. However, it can be less accurate than some other methods for approximat-

ing derivatives, particularly for functions that have discontinuities or sharp changes in

slope. In these cases, other methods, such as the first-order upwind scheme, may be

more appropriate.

3.5.2 First-order upwind scheme

The first-order upwind scheme, shown in Eq. (3.9), is a method to discretise PDEs

that takes into account the direction in which waves propagate. It is called an upwind
scheme because it treats the flow of the solution as moving upwind relative to the spatial

discretisation, meaning that the discretisation stencil, i.e. the group of grid points used

to compute a solution at a particular point, is biased towards points in the direction

opposite the flow. This helps to prevent numerical oscillations and instabilities that can

occur when using finite difference methods to solve PDEs with advection terms. In the

following lines, we present the equivalent equation of the first-order upwind scheme for

the advection equation.

3.5. NUMERICAL ERRORS 63

Considering the case of v ≥ 0 of Eq. (3.19), using the Taylor formulas, we get the

following.

∂tf + δt

2 ∂2
t f + O

(
δt2
)

= −v

(
∂xf − δx

2 ∂2
xf + O

(
δx2

))
(3.25)

As in the case of the central differences, we replace the second-order time derivative in

the Eq. (3.25) by the expression in Eq. (3.23). :

∂tf + δt

2
(
−∂tv∂xf − v

(
−∂xv∂xf − v∂2

xf
))

= −v

(
∂xf − δx

2 ∂2
xf

)
+ O

(
δt2, δx2

)

Hence,

∂tf + ṽ∂xf = vnum∂2
xf + O

(
δt2, δx2

)
, (3.26)

where ṽ = v − δt
2 ∂tv + δt

2 v∂xv, and vnum = v
2 (δx − vδt) the introduced numerical viscos-

ity/diffusion.

The equivalent equation for the second case of Eq. (3.19) (case v ≤ 0) is written as:

∂tf + ṽ∂xf = vnum∂2
xf + O

(
δt2, δx2

)
, (3.27)

where vnum = v
2 (−δx − vδt)

From Eq. (3.26) and Eq. (3.27) we can write the equivalent equation as follows:

∂tf + ṽ∂xf = vnum∂2
xf + O(δt2, δx2), (3.28)

where ṽ = v − δt
2 ∂tv + δt

2 v∂xv, and vnum = v
2 (sign(v)δx − vδt). The term vnum∂2

xf

represents the introduced numerical diffusion. For the solution to this equation to be

damped over time, the diffusion coefficient vnum must be positive, unlike the central

difference scheme, where the diffusion coefficient is negative. This added positive dif-

fusion/viscosity stabilises the solution and prevents it from oscillating. However, it also

introduces a damping effect that can smooth out the solution and reduce its accuracy.

This is a trade-off that must be considered when choosing a numerical method for solv-

ing PDEs.

For vnum to be positive the following condition must be satisfied

C = v · δt

δx
≤ Cmax = 1, (3.29)

where C is called the Courant number, and Cmax is the maximum Courant number, in

this case, it is equal to 1. This condition is called the Courant-Friedrichs-Lewy (CFL)

condition [Courant et al., 1928], and ensures that the time step is small enough to

capture the fastest propagation in the system.

3.5. NUMERICAL ERRORS 64

There are other numerical methods that can be used to solve the advection equation,

such as the Lax-Wendroff scheme. These methods have different properties and trade-

offs, and the choice of method depends on the specific requirements of the problem to

be solved.

There are other stability analysis methods that can be used to determine the stability

of a numerical method, such as the von Neumann stability analysis, which can be used

to determine the stability of a numerical method based on the properties of the discrete

Fourier transform of the solution. However, this method can be applied only to linear

PDEs.

C
ha

pt
er 4 Physics-informed machine learn-

ing

This study introduces a hybrid architecture to address the difficulties encountered by

purely data-driven models, in particular in the context of cloud cover nowcasting. Be-

fore delving into our approach, this chapter reviews the existing literature on physics-

guided learning, which integrates physical principles into ML models. Section 4.2 exam-

ines how physical constraints can be incorporated into loss functions, while Section 4.3

covers physics-guided initialisation techniques. Section 4.4 discusses residual modelling

for error correction, and Section 4.5 explores the development of hybrid physics-ML

models. Finally, Section 4.6 describes a method for embedding the resolution of PDEs

within neural networks.

4.1 Introduction

Machine learning models hold great promise for addressing scientific challenges asso-

ciated with processes that cannot be fully simulated, either due to lack of resources

or complexity of the physical process. However, their application in scientific domains

faced challenges, including constraints related to large data needs, difficulty generating

physically coherent outcomes, limited generalisability, and issues related to explainabil-

ity [Karpatne et al., 2017]. To overcome these challenges, incorporating physics into

ML models is of paramount importance. It uses the inherent structure and principles

of physical laws to improve the interpretability of the model, handle limited labelled

data, ensure consistency with known scientific principles during optimisation, and ulti-

mately improve the overall performance and applicability of the models, making them

more likely to be generalisable to out-of-sample scenarios. As discussed by Willard et al.

[2022], the physics-ML hybridisation available techniques leverage different aspects of

65

4.2. PHYSICAL CONSTRAINTS IN THE LOSS 66

ML models, e.g. the cost function, the design of the architecture or the weights’ initiali-

sation.

4.2 Physical constraints in the loss

A common method to ensure the consistency of ML models with physical laws is to

embed physical constraints within the model’s loss function [Karpatne et al., 2017]. This

involves incorporating a physics-based term weighted by a hyperparameter, alongside

the supervised error term in the loss function as follows:

L = Lsupervised + λLphysics, (4.1)

the hyperparameter λ controls the trade-off between the two terms, ensuring that the

model learns to balance the physics-based constraints with the data-driven constraints.

Fig. 4.1 illustrates this concept. This addition enhances prediction accuracy and ac-

Figure 4.1: Illustration of a loss constrained feedforward neural network. The loss
function is a combination of a supervised error term and a physics-based term.

commodates unlabelled data. It has proven to be effective in addressing a range of

problems, including uncertainty quantification, parameterisation, and inverse prob-

lems [Daw et al., 2022, Jia et al., 2019, Raissi et al., 2019b]. Raissi et al. [2019a]

introduced the well-known Physics-Informed Neural Networks (PINNs) that leverage

this concept to solve PDEs in a data-driven way and to learn the underlying physics

from the data.

This method has also been applied with generative models. Indeed, a very well-

known challenge in GANs is to generate samples that are physically consistent. Thus,

incorporating physical constraints into the loss function can help generate physically

plausible samples even using a small dataset [Cang et al., 2017, Wu et al., 2020], to

accelerate convergence [Yang et al., 2020] or improve resolution [Bode et al., 2019].

4.3. PHYSICS-GUIDED INITIALISATION 67

4.3 Physics-guided initialisation

Given that many ML models necessitate initialisation of parameters before training,

researchers explore ways to inform the initial state of a model with physical insights.

For instance, in neural networks, weights are commonly initialized through random

distributions prior to training. However, inadequate initialisation may lead models to

get trapped in local minima, a particularly prevalent issue in deep neural networks.

However, leveraging physical knowledge to guide weight initialisation can accelerate or

enhance model training. An effective approach involves employing transfer learning, an

ML technique in which a model is initially trained on a related task and subsequently

fine-tuned with limited data to address the desired task [Torrey and Shavlik, 2010].

This pre-trained model serves as an informed starting point, ideally positioning it closer

to the desired parameters for the target task compared to random initialisation, thus

facilitating faster convergence, improved performance and avoiding local minima [Jia

et al., 2021]. The term transfer learning is generally used when the pre-training is done

on large datasets.

Another approach to guide the model’s training is to use simulated data from physics-

based models for pre-training, before fine-tuning on real-world data. This method has

found applications in diverse fields. For instance, in temperature modelling, Jia et al.

[e.g. 2019] where the model is pre-trained on generated data from a physics-based

model before being fine-tuned using a smaller real-world dataset. We can also mention

the work of Shah et al. [2018] on autonomous vehicle training, where driving algo-

rithms are pre-trained in a simulated environment before being fine-tuned in the real

world. This method is also applied in biophysics [Sultan et al., 2018]. However, this

method requires the assumption that the underlying physics of the simulated data aligns

with the real-world data.

4.4 Residual modelling

To address imperfections in physics-based models, a common strategy is residual mod-

elling. Here, an ML model learns to predict the errors (residuals) made by the physics-

based model [Forssell and Lindskog, 1997]. This approach takes advantage of learned

biases to correct predictions. For example, San and Maulik [2018a,b] propose a data-

driven machine learning framework, employing a feedforward network, to predict clo-

sure terms within differential equations stabilising temporal mode evolution, which

often suffers from amplitude errors due to truncation of dissipative modes. Another

example is the work of Wan et al. [2018] who used a neural network to complete an

imperfect reduced-order extreme event model.

4.5. HYBRID PHYSICS-ML MODELS 68

PHYSICS

ML

Error for supervision

Used only during the training Differentiable parts

Figure 4.2: Illustration of residual modelling. The physics-based model is used to pre-
dict the output and the ML model is used to predict the residuals. Adapted from Forssell
and Lindskog [1997].

This method has some limitations. For instance, it does not have the ability to en-

force physics-based constraints, as it primarily deals with errors rather than physical

states. In addition, the predicted errors may be overfitted to the training data, leading

to poor generalisation.

4.5 Hybrid physics-ML models

An advanced variation of residual modelling involves the integration of physics-based

models and ML models. This hybridisation can take different forms depending on the

problem at hand.

PHYSICS

ML

Figure 4.3: Illustration of a hybrid physics-ML model. The output of the physics-based
model is used as an input to the ML model.

In scenarios where the dynamics of Physics are fully defined, a straightforward

method involves using the output of a physics-based model as an input to an ML model

(see Fig. 4.3). This approach has demonstrated enhanced predictions in tasks such as

lake temperature modelling [Daw et al., 2022].

4.6. IMPLEMENTING AND SOLVING PDES USING NEURAL LAYERS 69

ML

PHYSICS

Figure 4.4: Illustration of a hybrid physics-ML model. The output of the ML model is
used as an input to the physics-based model.

In other scenarios, hybridisation is done by replacing a component of the physics-

based model with an ML model., e.g. Vlachas et al. [2018] used a neural network to

estimate the trend term of a PDE, given the past states of the system, before integrating

it to predict the future states.

In cases where a physical model contains unknown elements requiring coupling with

an ML model for joint resolution, a viable strategy involves introducing a neural net-

work to estimate the missing information; in this situation the machine learning model

provides inputs to the physics-based model as illustrated in Fig. 4.4. An illustrative ex-

ample is a study on sea surface temperature prediction, where de Bézenac et al. [2019]

used a neural network to estimate the motion field. However, this method uses an an-

alytical solution of the advection equation to estimate the motion field, which is not

always possible, making it less generalisable to other modelling scenarios. In the fol-

lowing section, we discuss another way to integrate physics into neural networks.

4.6 Implementing and solving PDEs using neural lay-

ers

Let’s consider an artificial neural network fθ with parameters θ that takes input x and

produces output ŷ. We consider a physics-based model ϕ representing the underlying

physical processes, or equations, that govern the behaviour of a system. To incorporate

physics into the neural network, one possible approach involves feeding the output of

the physics-based model as an input to the neural network as follows:

ŷ = fθ (x, ϕ (xPhy)) , (4.2)

where xPhy are the inputs of the physics-based model ϕ. The residual modelling ap-

proach, discussed in Section 4.4, is a particular case of this method. This approach is

illustrated in Fig. 4.3. This method could be effective when the physics-based model is

4.6. IMPLEMENTING AND SOLVING PDES USING NEURAL LAYERS 70

self-contained and its components are explicitly known. However, it becomes impracti-

cal in scenarios where the physics-based model presents unknown variables that need

to be estimated. This is the case in the application considered in this work, where the

cloud motion field is unknown. In such instances, a more suitable approach is to pursue

a joint resolution. Here, the physical model takes the output of the neural network and

computes the predictions as shown in Fig. 4.4. This results in a composition of fθ and ϕ

as follows:

ŷ = ϕ ◦ fθ (x, xPhy) . (4.3)

In this approach, ϕ implicitly applies a hard constraint on these outputs, this could con-

tribute to accelerate the convergence of the neural network during the training process.

Unlike the first method (Eq. (4.2)), where the physics-based model ϕ is passive

and not involved in the training procedure, the second method raises some challenges

regarding the trainability of the architecture.

4.6.1 Automatic differentiability

As mentioned in Section 2.4, neural networks learn to minimise a loss function Lθ

by adjusting its set of parameters θ using data. The loss function measures the error

between the predicted outcomes ŷ and the ground truth y.

During this training process, the backpropagation algorithm is used to optimise

model parameters by computing the gradient of the loss function with respect to the

network’s parameters. These gradients indicate how much each weight contributed to

the error.

In fact, neural networks are part of a broader class of algorithms called differentiable
programming. Differentiable programming can be defined as

a programming paradigm in which complex computer programs (including

those with control flows and data structures) can be differentiated end-to-

end automatically, enabling gradient-based optimization of parameters in

the program. – Blondel and Roulet [2024].

In order to perform backpropagation, we assume that the gradient of the loss function

with respect to the model parameters could be calculated using the chain rule. This as-

sumption is called (automatic) differentiability. This is a crucial property that allows the

use of gradient-based optimisation algorithms to update the model’s parameters dur-

ing training. In fact, neural networks are based on differentiable activation functions

and operations, allowing gradients to be propagated backward through network lay-

ers. Examples of differentiable operations commonly used in neural networks include

linear transformations (such as matrix multiplications and additions), element-wise op-

erations (such as sigmoid, tanh, and ReLU activations), and pooling operations (such as

4.6. IMPLEMENTING AND SOLVING PDES USING NEURAL LAYERS 71

average pooling).

However, there are certain operations that are non-differentiable in the context of

automatic differentiation. For example, operations involving creating a new tensor in

the middle of the computation graph without using the tensor from the last operation

leads to non-differentiability, as the chain rule breaks down. The argmax operation is a

typical example of a non-differentiable operation. This operation returns the index of

the maximum value in a tensor, and it is not differentiable because the gradient of the

output with respect to the input is not well-defined.

In this proposed hybrid approach, PDEs are solved to produce model predictions.

If the PDE solver includes non-differentiable steps, the chain rule breaks down, mak-

ing it impossible to compute gradients within the standard deep learning frameworks.

In what follows, we describe our strategy for modelling and solving PDEs using basic

differentiable operations commonly employed in neural networks.

4.6.2 Approximating derivatives and time integration in neural net-

works

In this study, we propose to model and solve PDEs of the form Eq. (3.4) within a neural

network. This is achieved by describing the equivalent of spatial and temporal dis-

cretisation in the frame of neural network layers; thus, it can be implemented in a DL

framework such as TensorFlow [Abadi et al., 2016] or PyTorch [Paszke et al., 2019].

4.6.3 Finite-difference methods and convolutional layers

To implement a finite-difference discretisation, different approaches can be used. For

instance, the spatial discretisation could be implemented as a matrix-vector product,

using a matrix where each row corresponds to a grid point and each column to a finite-

difference coefficient. The general form of the spatial discretisation can be written as

∂α
x f ≈ Mf, (4.4)

where M is a diagonal-constant matrix (also called a Toeplitz matrix) containing the

finite-difference coefficients for the αth derivative. For example, the central difference

scheme in Eq. (3.6) can be implemented as a matrix-vector product as follows:

∂xf ≈ 1
2δx



0 1 0 . . . −1
−1 0 1

0 0
... . . . −1 0 1
1 . . . 0 −1 0





f1

f2
...

fN−1

fN


, (4.5)

4.6. IMPLEMENTING AND SOLVING PDES USING NEURAL LAYERS 72

where N is the number of grid points. This method is simple and could be implemented

in a deep learning framework. However, it is not the most efficient way to implement

finite-difference methods in neural networks. Indeed, the matrix-vector product is com-

putationally expensive and requires a large amount of memory, e.g. for a 1D domain

the complexity is O(N2).
An alternative approach is to use convolutional layers [Després, 2022]. Using con-

volutions (presented in the Section 2.10.1) is simpler and more efficient than matrix-

vector products. For a 1D domain, the complexity is reduced to O(N). For example, the

1D convolution associated with Eq. (3.6) can be mathematically written as:

(K1 ∗ f) [i] =
M−1∑
m=0

K1 [i] f [m + i] , (4.6)

where K1 is the kernel or filter used for the convolution and expressed as

K1 =
[

−1
2δx

0 1
2δx

]
,

and f represents the input data. The variable M corresponds to the size of the kernel.

It is the number of finite-difference coefficients, also called the stencil size. In this case,

a three-point stencil is considered (M = 3). Finally, ∗ is the convolution operator.

This leads to an interesting interaction with Deep Learning frameworks. Indeed,

CNNs rely on the operation

ConvLayer(f) [i] = σ

(
M−1∑
m=0

K [m] f [m + i] + b

)
,

where σ is called activation function and b is a parameter representing the bias. Observ-

ing that using σ = identity and b = 0 leads to the same operation as in Eq. (4.6), deep

learning frameworks can be used to approximate derivatives, which enables derivative-

based operations in neural networks, as shown in Fig. 4.5. The same principle applies

to higher derivative orders. For any positive integer α, we can write the approximation

of the αth derivative of f as

∂αf ≈ Kα ∗ f, (4.7)

where Kα are the finite difference coefficients for the αth derivative.

Finally, using convolutions is a straightforward method to model the spatial term of

a PDE as follows:

F̂ (f) = N (f). (4.8)

This results in a neural network that can be used for time integration.

4.6. IMPLEMENTING AND SOLVING PDES USING NEURAL LAYERS 73

Figure 4.5: In order to calculate the numerical derivative of f , a kernel K1 is used
to slide across an input vector, which is a discretised version of f with N elements,
element-wise multiplying values within its window and summing the results to approx-
imate the derivative at each position. The result is a new vector of size N −2 containing
the numerical derivative of f (using zero-pair or duplicate values in the input vector
can be applied at the bounds to produce an output vector of size N). This is equivalent
to a convolution between K1 and f , and can be reproduced using a 1D convolutional
layer with K1 as a kernel.

4.6.4 Temporal schemes and residual networks

The time integration expressed in the Eq. (3.12) can be written by using the neural

network implementation N of the trend as

fn+1 = fn + δtN (fn). (4.9)

Interestingly, this formulation is very similar to that of the residual block (see Fig. 2.14).

Indeed, the residual block operation is formulated as follows:

y = x + F(x), (4.10)

where x is the input to the block, y is the output, and F is called a residual function,

made up of multiple neural layers. These layers represent the difference between the

input and output. This function aims to capture the additional information or adjust-

ments needed to transform the input into the desired output. This similarity between

residual blocks and time schemes, also observed in Ruthotto and Haber [2020], Chen

et al. [2018], Fablet et al. [2018], suggests that the time integration step can be done

inside a neural network, all we need is the residual function, which can be modelled

4.6. IMPLEMENTING AND SOLVING PDES USING NEURAL LAYERS 74

using convolutional layers as shown previously. Pannekoucke and Fablet [2020] pro-

posed a general framework called PDE-NetGen1, to model a PDE in a neural network

form using this method.

Residual blocks were originally designed to address vanishing gradient issues in im-

age classification tasks. Intriguingly, these blocks were shown to function similarly to

time schemes, where they introduce small changes over incremental time steps. This

challenges the traditional black-box perception of neural networks, although full inter-

pretability remains a distant goal.

We have shown that spatial derivatives of PDEs can be approximated within a neu-

ral network in a differentiable way. This allows us to compute gradients and back-

propagate them during the training process. This fundamental knowledge serves as a

foundation for our investigation of novel hybrid Physics-AI architectures. With these

established principles, we present in Chapter 6 the proposed hybrid architecture, which

is used for cloud cover nowcasting. Before that, in the next chapter, we present the

methods used in weather forecasting.

1https://github.com/opannekoucke/pdenetgen

C
ha

pt
er 5 Methods for weather forecasting

This current chapter is a review of the literature on weather forecasting, focusing on

the evolution of weather forecasting methods, the limitations of numerical weather

prediction models, the use of deep learning for weather and climate forecasting, and

the challenges and limitations faced by deep learning models in weather forecasting.

We also discuss the potential of hybrid models that combine physical knowledge with

deep learning methods to improve the accuracy and physical consistency of weather

predictions.

5.1 Numerical weather prediction (NWP)

For several decades, NWP has been the primary method for weather forecasting. NWP

models are based on the laws of physics and use mathematical equations to simulate

the atmosphere and predict the weather. These models are used by meteorological

agencies around the world to produce weather forecasts for different time scales, from

short-term forecasts (up to 3 days) to medium-range forecasts (up to 10 days) and

long-range forecasts (up to 30 days).

The equations used in NWP models includes the Navier-Stokes and mass continuity

equations (accounting for Earth’s rotation), the first law of thermodynamics, and the

ideal gas law. These equations describe changes in atmospheric wind, pressure, density,

and temperature.

These equations are highly complex and cannot be solved analytically for practical

weather prediction. Instead, they must be solved numerically. This approach means

that the model only directly resolves motions and processes that occur on scales larger

than the grid size, known as the resolved scales. However, many important atmospheric

phenomena, such as small-scale turbulence, cloud microphysics, friction, and processes

75

5.1. NUMERICAL WEATHER PREDICTION (NWP) 76

like condensation, evaporation, and radiative heating occur at scales smaller than the

grid size and are therefore not directly resolved by the model. These are referred to as

unresolved scales.

To account for the effects of these unresolved processes on the larger, resolved scales,

NWP models use parametrisations. Parametrisations involves representing the effects of

small-scale processes with simplified mathematical formulas or empirical relationships

that relate them to the larger-scale variables that the model does resolve. For example,

instead of simulating each droplet within a cloud, the model uses parametrisations to

estimate the overall impact of cloud processes on temperature, humidity, and other

variables.

This distinction between resolved and unresolved scales is crucial. This is because it

allows NWP models to efficiently simulate the atmosphere’s large-scale dynamics with-

out needing to directly compute every tiny detail, which would be computationally

unfeasible. Parametrisations, therefore, play a key role in making weather and climate

predictions practical, though it also introduces some level of approximation and poten-

tial uncertainty into the model’s predictions.

The accuracy of NWP models is heavily dependent on initial conditions, which are

determined by assimilating observational data from satellites, weather stations, radar,

and other sources. Data assimilation techniques, such as variational methods and en-

semble Kalman filters, are used to optimally blend observations with model predictions

to generate the initial state of the atmosphere. High-resolution models can capture

small-scale weather phenomena (e.g., thunderstorms), but they require significant com-

putational resources. Models vary in their resolution and complexity, with global models

covering the entire Earth and regional models focusing on specific areas with finer grids.

Simplifications have been applied to reduce the complexity of these equations, start-

ing with Richardson’s early attempts, although with limited success. The first use of

an electronic computer for weather prediction occurred in Princeton in 1950, with the

first real-time forecasts made in Stockholm in 1954. It was not until the 1970s, with

the advent of supercomputers, that it became feasible to solve the full set of equations

proposed by Abbe and Bjerknes.

Various numerical methods emerged to enhance stability, accuracy, and computa-

tional speed, incorporating key components like spatial discretisation, time-stepping

methods, boundary treatments, and initialisation approaches. These developments laid

the foundation for NWP. Today, a diverse hierarchy of models exists, ranging from global

climate projections to local weather and air-quality prediction, each with varying com-

plexity to address specific forecasting needs.

Key numerical weather prediction (NWP) models include the Integrated Forecasting

System (IFS) from the European Centre for Medium-Range Weather Forecasts (ECMWF),

the Global Forecast System (GFS) developed by the National Centers for Environmen-

5.2. LIMITATIONS OF NUMERICAL WEATHER PREDICTION 77

tal Prediction (NCEP), the Unified Model (UM) from the UK Met Office, and ARPEGE,

developed by the Centre National de Recherches Météorologiques (CNRM) in France

in collaboration with ECMWF. Additionally, AROME is a regional model designed to

explicitly address a part of the convection process [Seity et al., 2011]. These models

are continually improved with advancements in data assimilation, computational tech-

niques, and atmospheric science, making them central tools in modern weather and

climate forecasting.

5.2 Limitations of numerical weather prediction

Although NWP models are globally used for weather forecasting, they have several limi-

tations. One of these limitations is that the accuracy of NWP models is highly dependent

on the initial conditions of the atmosphere. Due to the chaotic nature of the atmosphere,

small errors - at the atmosphere scale - in initial data can grow rapidly, leading to large

differences in the outcome of the system over time and inaccurate forecasts. This fun-

damental property of chaotic systems is known as the "butterfly effect"; referring to the

idea that

a butterfly flapping its wings in Brazil can set off a tornado in Texas. Lorenz.

This sensitivity to initial conditions imposes a limit on the predictability of the atmo-

sphere, beyond which forecasts become unreliable. Ensemble forecasting techniques

have been developed to account for this uncertainty by running multiple simulations

with slightly different initial conditions to generate probabilistic forecasts. However,

these simulations increase the computational cost of the forecast.

Another limitation of NWP models is that the representation of physical processes

in the atmosphere is based on parametrisations that can introduce significant errors.

The development of accurate parametrisation schemes is a major challenge, as these

processes are highly variable and often not well understood.

Although high-resolution models can capture fine-scale weather phenomena, such

as thunderstorms and local wind patterns, they require significant computational re-

sources. This trade-off between model resolution and computational feasibility limits

the ability to run very high-resolution models over large domains. Operational centers

must balance model resolution, domain size, forecast lead time, update frequency, and

the number of ensemble members, often compromising on one or more aspects due to

computational constraints.

Other limitations of NWP models include systematic bias due to imperfect model

physics, handling of extreme events, and integration of new types of data. Meteorolog-

ical agencies are continuously working to improve NWP models and are beginning to

5.3. DEEP LEARNING FOR WEATHER AND CLIMATE FORECASTING 78

slowly integrate machine learning and deep learning methods to improve the efficiency

of weather forecasts and correct some of the model biases.

5.3 Deep learning for weather and climate forecast-

ing

Deep learning has been increasingly used in earth science for a wide range of tasks,

including weather and climate prediction[e.g. Espeholt et al., 2022, Ravuri et al., 2021,

Trebing et al., 2021, Ayzel et al., 2020, Berthomier et al., 2020, Shi et al., 2015]. The

use of deep learning in weather and climate science has been motivated by the need to

improve the accuracy of weather and climate models. Weather and climate models are

complex and computationally expensive. Deep learning methods are effective for learn-

ing complex patterns from large amounts of data and for making accurate predictions

within a reasonable amount of time.

Deep learning methods have been used for time series prediction tasks in weather

and climate science. Tasks like temperature, pressure, wind speed at a specific site are

examples of time series prediction tasks. For example, Kuligowski and Barros [1998]

uses a feedforward neural network for localised precipitation prediction, El Mghouchi

et al. [2019] also uses a feedforward neural network for filtering the most relevant input

features for a solar radiation prediction task, and Han et al. [2021] used a Recurrent

Neural Network to generate synthetic weather data.

Other tasks in weather and climate science involve the prediction of spatial data,

such as precipitation, cloud cover, and temperature maps. These types of data are more

challenging to process and analyse as the methods used for time series data are not

directly applicable and computationally expensive. Convolutional neural networks are

well-suited for processing satellite data, as they are designed to capture the spatial struc-

ture of the input data. Convolutional neural networks have been used for tasks such

as cloud detection, precipitation nowcasting, and the prediction of extreme weather

events. For example, Kim et al. [2023] used a CNN for cloud cover estimation and

Berthomier et al. [2020] used a U-Net architecture for cloud cover nowcasting. A U-Net

has also been used for precipitation nowcasting as highlighted by Ayzel et al. [2020],

a modified version was used for a similar task in Trebing et al. [2021] and in another

study, Baño-Medina et al. [2021] proposed using CNN to downscale climate change

projections.

Generative adversary networks have also been used to generate realistic skilful pre-

cipitation forecasts [Ravuri et al., 2021] or to generate realistic climate states, as in

Besombes et al. [2021].

During the last three years, end-to-end learning models capable of forecasting mul-

5.3. DEEP LEARNING FOR WEATHER AND CLIMATE FORECASTING 79

tiple variables at a global scale have emerged with promising results. Although meteo-

rological agencies possess vast datasets and substantial computational resources, there

has been significant scepticism and hesitation regarding the performance of these mod-

els compared to traditional NWP models. This hesitation is partly due to their existing

hardware being optimised for running physics-based models, which is not directly suit-

able for training large deep learning models, requiring GPUs. In addition, the lack of

expertise in deep learning within meteorological agencies and the high computational

cost of training these models have presented significant challenges. Consequently, the

development of these advanced models has predominantly been driven by major private

technology companies, such as Google, Microsoft, and Huawei, which have the capacity

to train large-scale deep learning models on extensive datasets.

Several studies have introduced these global forecasting models, demonstrating im-

pressive results that challenge the long-standing dominance of traditional NWP models.

Notable examples include the transformer-based Pangu-Weather [Bi et al., 2022], the

graph neural network-based GraphCast [Lam et al., 2022], the transformer-based Cli-

max [Nguyen et al., 2023], Feng-Wu [Chen et al., 2023] and AURORA [Bodnar et al.,

2024]. AURORA and Climax, are large models that havebeen trained on large corpus

of data in order to learn the intrinsic patterns of the atmosphere, then fine-tuned on

smaller datasets to make more accurate for specific tasks, these types of models are

known as foundation models.

These models have shown that deep learning approaches can outperform traditional

NWP models, such as the ECMWF IFS, across a wide range of climate variables.

These advancements were possible due to a particular dataset known as ERA5, the

fifth generation of the ECMWF reanalysis dataset, which provides high-quality global

climate data at a spatial resolution of 0.25 degrees and a temporal resolution of one

hour from 1940 onwards. A large number of variables are available in ERA5 and at

different altitudes in the atmosphere, weighting around 5 petabytes in total, and it is

continuously updated.

These advancements are prompting a strategic shift within meteorological agencies,

which are increasingly prioritising AI development in their forecasting efforts. Even

the ECMWF, renowned for its high-performing IFS, considered to be the most accurate

physics-based global NWP forecasting system in the world, is now investing in a data-

driven forecasting model known as AIFS (Artificial Intelligence/Integrated Forecasting

System), which leverages Graph Neural Networks [Lang et al., 2024].

The success of these deep learning models marks a significant shift in the landscape

of weather and climate prediction. They have demonstrated competitive accuracy and

higher computational efficiency, making them a compelling alternative for forecasting

tasks, even if high-resolution phenomena are not captured due to the coarse resolution

of training data (ERA5). However, despite their promising capabilities, these models are

5.4. CHALLENGES AND LIMITATIONS OF DEEP LEARNING IN WEATHER FORECASTING80

still in the early stages of development. Substantial work remains to be done to further

enhance their performance, address their current limitations, and fully integrate them

into operational forecasting systems.

5.4 Challenges and limitations of deep learning in

weather forecasting

Despite the success of deep learning methods in weather and climate science, at a point

where they are replacing traditional numerical weather prediction models, they face

several challenges and limitations. One of the main challenges is the need for large

amounts of data to train deep learning models. Weather and climate data are often

limited, especially for extreme weather events, which are rare events with heavy conse-

quences. Another challenge is the need for large computational resources to train deep

learning models, especially for large-scale weather and climate prediction tasks. Deep

learning models are complex and require large amounts of memory and computational

power to train. This can be a barrier to the use of deep learning methods in weather and

climate science, especially for researchers and institutions with limited computational

resources. In the following table 5.1, we show the resources needed to train some of

the recent deep learning models:

Model Training time Hardware

Pangu-Weather [Bi et al., 2022] 15 days 192 Nvidia V100
GraphCast [Lam et al., 2022] 21 days 32 TPU v4
Feng-Wu [Chen et al., 2023] 17 days 32 Nvidia A100

Table 5.1: Computational resources needed to train recent deep learning models for
weather prediction.

This implies that each training run can incur costs of up to $100,000 when using

cloud services. Once the model is trained, a single GPU can be enough for inference.

However, the training process is not a one-shot attempt; it involves extensive tuning and

testing. Moreover, even after initial training, the model may require regular retraining

to stay aligned with new data, especially in the context of climate change.

One of the most common challenges when deep learning models are used for weather

prediction is the inconsistency with physical laws and real world data, which lead to un-

realistic predictions. For example, deep learning models do not always respect funda-

mental principles of physics, such as the conservation of mass and energyBeucler et al.

[2019]. Another example is producing progressively smoother and blurrier predictions

as the forecast lead time increases [Ayzel et al., 2020, Tran and Song, 2019, Ravuri

5.4. CHALLENGES AND LIMITATIONS OF DEEP LEARNING IN WEATHER FORECASTING81

et al., 2021, Sønderby et al., 2020]. This is due to lack of physical constraints in the

model, the increase in uncertainty as the forecast lead time increases, and using loss

functions such as the MSE that have as an optimal solution the average of the training

data, this explains also the absence of intensive values in the predictions. This is a major

limitation of deep learning models in weather and climate science, as the predictions of

these models are used to make decisions that have a significant impact on society and

the environment and should be able to predict the extreme values of the variables.

A study by Selz and Craig [2023] found that deep learning models, such as Pangu-

Weather [Bi et al., 2022], struggle to capture the butterfly effect. The research revealed

that, compared to physics-based models, deep learning models, Pangu-Weather in par-

ticular, exhibit limited error growth when subjected to small perturbations in the initial

conditions. However, when perturbations of magnitudes comparable to current initial

condition uncertainties were introduced, the error growth in deep learning models was

consistent with that of physics-based models. This indicates that while deep learning

models may not capture the butterfly effect as effectively as physics-based models, they

still behave normally within the range of current uncertainties. Thus, this should not be

viewed as a limitation of deep learning for weather forecasting but rather a constraint

on their potential future use as digital twins for the Earth system.

Another issue with studies presenting deep learning models for weather prediction is

the benchmarking. Classical machine learning metrics such as the MSE or accuracy are

used to evaluate the performance of the models, but these metrics are not sufficient to

assess the performance of a weather prediction model. Although these metrics provide

a measure of the model’s accuracy, they do not capture the model’s ability to predict,

for instance, intensive values or extreme events. Indeed, the available objective metrics

are not generally suitable for a comprehensive evaluation of weather prediction models,

especially the sharpness and visual quality of the predictions. Several studies already

pointed this metric issue, in particular, Ravuri et al. [2021] called in meteorologists to

assess the performance of their proposed generative approach in comparaison to other

models.

For a weather forecasting model to pass from the research phase to the operational

phase, it passes through a series of tests and evaluations, a post processing, and in-

cluding output interpretation. Deep learning models interpretability is a point that

has been raised by several studies, as it is important to understand how these mod-

els make predictions and to be able to explain their outputs. However, deep learning

models are frequently perceived as black boxes, posing challenges in discerning the

mechanisms underlying their predictions. This is particularly important in weather and

climate science, where the predictions of deep learning models can have far-reaching

consequences, hence, the interpretability of deep learning models is an active area of

research in this field Yang et al. [2024].

5.5. HYBRID MODELS 82

5.5 Hybrid models

Hybrid Physics-AI models are a promising approach to either improve the performance

of traditional numerical weather prediction models or to address the limitations of deep

learning models in weather forecasting. Several studies have proposed hybrid models

for different tasks, as discussed in the Chapter 4. However, the use of hybrid models

in weather forecasting is still in its early stages and limited to specific tasks, mostly

related to lake and sea temperature prediction. For example, de Bézenac et al. [2019]

proposed a hybrid model using the analytical solution of the advection equation with a

learned motion field to predict sea surface temperature, Beucler et al. [2019] proposed

to apply a conservation equation to a neural network to simulate the outgoing lowgwave

radiation. Jia et al. [2019, 2021] proposed an recurrent neural network with energy

conservation incorporated to predict lake temperature and Daw et al. [2019] used an

LSTM-based model while ensuring that the monotonicity of water density is preserved

to predict the lake temperature profiles.

These studies show that integrating physical knowledge can improve the physical

consistency of the predictions and the generalisation of the model. However, these are

still limited applications and the methods used are very task-specific and not generalis-

able to other tasks.

In this context, we propose a hybrid architecture allowing to combine the physical

knowledge of the atmosphere with the data-driven capabilities of deep learning models

to improve the accuracy and the physical consistency of cloud cover predictions, while

being flexible and generalisable to different tasks.

C
ha

pt
er 6 Proposed hybrid architecture

In the following sections, we present the proposed hybrid architecture for cloud cover

nowcasting, which combines physical models based on probability fields advection with

trainable neural networks to learn the unknown quantities. We discuss the challenges of

advecting probability fields and the discretisation schemes used in this study. We then

present the first hybrid model, HYPHAICC-1, using the advection dynamics to estimate

the velocity field from the cloud cover data.

6.1 The principle of the proposed hybrid architecture

The proposed hybrid architecture is a dual-component system (see Fig. 6.2). The first

component is composed of one or more classical deep learning models. These models

process the most recent observations, yielding predictions for the physical unknowns

of interest. The second block takes as inputs the physical variables, whether known or

predicted by the neural networks, along with initial conditions. This second component

time integrates one or multiple PDEs to generate the subsequent state of the system. The

4th-order Runge–Kutta (RK4) method is used for time integration. These PDEs encode

essential physical knowledge. As discussed in the Section 4.6, the spatial derivatives are

approximated using convolutional layers.

The parameters of the first component are trainable; they are optimised during train-

ing to estimate the unknown variables. However, we froze the parameters of the second

block, as it represents already-known operations. This ensures that the second block

maintains its fixed structure, representing the known physical knowledge encoded in

the equations, while the trainable block focusses on learning and predicting the un-

known aspects of the system. This architecture combines the physical knowledge en-

coded in the equations with the pattern-extraction capabilities of neural networks.

83

6.2. CLOUD COVER DATA 84

In this work, a particular application of the proposed hybrid architecture is consid-

ered, which is cloud cover nowcasting. It is a challenging application that requires the

prediction of cloud cover over a short period of time, typically from a few minutes to

a few hours. Cloud cover is an important meteorological variable that affects various

aspects of weather and climate, such as temperature, precipitation, and radiation. Ac-

curate nowcasting of cloud cover is essential for various applications, such as weather

forecasting, climate modelling, and renewable energy production. In this chapter, we

present the proposed hybrid model for cloud cover nowcasting, which combines physi-

cal models based on probability fields advection with trainable neural networks to learn

the unknown quantities.

6.2 Cloud cover data

Cloud cover data is typically represented as a 2D field, where each grid point corre-

sponds to a specific location on the Earth’s surface. In our application, the data are

satellite images captured by the Meteosat Second Generation (MSG) satellite at 0 de-

grees longitude. The spatial resolution of the data over France is ≈ 4.5 km and the

time step is 15 minutes, and each image is of size 256 × 256. These images have been

processed by EUMETSAT [García-Pereda et al., 2019], to provide the presence or not

and the type of the cloud cover at each grid point1 (see Fig. 6.1). This cloud type data

is typically classified into sixteen categories, three of them are not cloud related :

• Non-processed: no data or corrupted data

• Snow over land

• Ice over sea

These three categories are merged into a single category, denoted as "No cloud" along

with two other categories:

• Cloud-free land

• Cloud-free sea

The other categories are:

• Very low clouds

• Low clouds

• Mid-level clouds
1https://www.nwcsaf.org/ct_description

https://www.nwcsaf.org/ct_description

6.3. ADVECTION OF CLOUD COVER: HYPHAICC-1 85

Ground truth | T+30min

Figure 6.1: Sample of cloud cover data

• High clouds

• Very high clouds

• Fractional clouds

• High semitransparent thin clouds

• High semitransparent meanly thick clouds

• High semitransparent thick clouds

• High semitransparent above low or medium clouds

• High semitransparent above snow/ice

6.3 Advection of cloud cover: HyPhAICC-1

The dynamics of cloud cover can be modeled using a simplified advection equation,

where the cloud cover is transported by the wind. One possible approach is to advect

the 2D cloud cover map using a velocity field, expressed as:

6.3. ADVECTION OF CLOUD COVER: HYPHAICC-1 86

∂f

∂t
+ v · ∇f = 0,

where f represents the cloud cover field, v is the velocity field, and ∇ denotes the

gradient operator.

Although this method is straightforward, it is not well-suited for cloud cover data.

The numerical solution of the advection equation tends to introduce diffusion or dis-

persion, which alters the cloud cover labels, particularly at the boundaries of different

cloud types. For instance, in the case of numerical diffusion, the cloud cover labels at

these boundaries can be smoothed or degraded to lower values, leading to a loss of

information and a degradation in the accuracy of cloud cover predictions.

The most natural way is to model the cloud cover as a probability fields, where each

map or field represents the probability of the presence of a specific type of cloud cover at

each grid point. This allows to model the uncertainty and variability of the cloud cover,

and to account for the different types of clouds that can be present in the atmosphere.

In this case, the advection equation becomes a set of advection equations for each cloud

type, expressed as:
∂Pi

∂t
+ v · ∇Pi = 0 for i = 1, . . . , C, (6.1)

where Pi is the cloud cover probability field for the ith type of cloud cover, and v is the

velocity field.

The velocity field can be obtained from weather models or observed data. However,

in practice, the velocity field is not always available or accurate. In this case, a neural

network can be used to learn the velocity field from the cloud cover data. This is the

approach we propose in this work. This modelling is the base of the first hybrid model,

denoted HYPHAICC-1, see Fig. 6.2.

In this hybrid model we use a U-Net Xception-style model [Tamvakis et al., 2022]

inspired by the Xception architecture [Chollet, 2017]. It takes the last four observations

stacked on the channel axis and estimates the velocity field. This model will be guided

during training by the advection equation to learn the cloud motion patterns.

This modelling considers the same velocity field for all cloud types, which is a sim-

plification of the real dynamics where we could have different velocities at different

altitudes. However, using different velocity fields will yield difficulties to preserve the

probability conservation property. The following section delve deeper into these prop-

erties, and the challenges that arise when advecting probability fields.

6.4 Which discretisation scheme to use?

6.4. WHICH DISCRETISATION SCHEME TO USE? 87

Equations
Time

Integration
Scheme

U-Net Xception-
style

Equations =

Pred.@2h

Pred.@15minObs.@-45min

Obs.@t=o

FrozenTrainable

Figure 6.2: HYPHAICC-1: The proposed hybrid model consists of a U-Net Xception-style
model to estimate the velocity field from the last observations, the estimated velocity
field is smoothed using a Gaussian filter. The equation is numerically integrated using
the 4th-order Runge–Kutta method over multiple time steps. The initial condition (f0)
is updated, after each time step, to the current state, allowing the computation of the
next state.

Advecting Probability fields causes less issues than advecting labels, however it is still

a challenging task. In this section, we are considering a three-class problem where

we have a discrete random variable X with values in the set 1, 2, 3, and we denote by

X(t, x) the value of X at time t and space x, with t ∈ [0, T] and x ∈ [0, L]. We are

interested in studying the evolution of the state probabilities of X with respect to t and

x. For this purpose, we define a vector P as

P =


P 1

X

P 2
X

P 3
X

 ,

here, P c
X(t, x) represents the probability of the cth class;

P c
X(t, x) = P (X(t, x) = c)

.

6.4. WHICH DISCRETISATION SCHEME TO USE? 88

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

Class 1 - P (X = 1)

Initial condition
0 0.2 0.4 0.6 0.8 1

0

0.5

1

x

Class 2 - P (X = 2)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

Class 3 - P (X = 3)

Figure 6.3: Initial condition of the probability fields

Let’s consider the advection of three probability fields as follows:

∂P 1
X

∂t
+ v · ∇P 1

X = 0,

∂P 2
X

∂t
+ v · ∇P 2

X = 0,

∂P 3
X

∂t
+ v · ∇P 3

X = 0.

(6.2)

The Figure 6.3 shows an example of the initial condition. At the initial time, the neces-

sary probabilistic properties are satisfied, i.e.:

1. Non-negativity: P (x, t) ≥ 0 for all x and t, with x = (x, y), which ensures that the

probabilities remain non-negative.

2. Bound preservation: P (x, t) ≤ 1 for all x and t, which ensures that no probability

exceeds 1.

3. Probability conservation:
∑C

i=1 P i
X(x, t) = 1 for all x and t, with C = 12 is the total

number of cloud types. This property guarantees that the sum of all probabilities

is equal to 1.

These properties must be preserved during the advection process.

6.4.1 Mass conservation

The probability conservation property is crucial in the context of advection of probability

fields. It ensures that the total probability mass remains constant over time, i.e. the sum

of the probabilities of all classes at each grid point is equal to 1. Let’s consider a general

case where the advection of the probability fields is described by the following system

of equations:

∂tPj + L (Pj) = 0 ∀j ∈ {1, 2, . . . , C} , (6.3)

6.4. WHICH DISCRETISATION SCHEME TO USE? 89

where L represents a linear differential operator with non-zero positive derivative or-

ders.

Proposition 1. The probability conservation property is ensured if L is a linear differential
operator with non-zero positive spatial derivative orders.

Proof. Let’s sum the three equations in Eq. (6.2):

3∑
i=1

∂tP
i
X(x, t) + L

(
P i

X(x, t)
)

= 0

∂t

3∑
i=1

P i
X(x, t) = −

3∑
i

L
(
P i

X(x, t)
)

,

For the specific case where L is a linear differential operator with non-zero positive

spatial derivative orders. Assuming
∑3

i=1 P i
X(x, t0) = 1, the linearity property of L allows

us to interchange the summation and the operator, resulting as follows:

3∑
i

L
(
P i

X(x, t0)
)

= −L
(3∑

i=1
P i

X(x, t0)
)

= −L (1)

= 0

L (1) = 0 as L have only derivatives with positive non-zero orders.

Applying and summing the first order Taylor expansion at t0 on each of the time deriva-

tives of Eq. (6.2) give

3∑
i

Pi(x, t0 + δt) − Pi(x, t0)
δt

+ O(1) = −
3∑
i

L
(
P i

X(x, t)
)

= 0

3∑
i

Pi(x, t0 + δt) =
3∑
i

Pi(x, t0) + O(δt),

when δt is small enough,
∑3

i Pi(x, t0 + δt) = 1.

Iteratively, starting from t0, ∀t

3∑
i

Pi(x, t) =
3∑
i

Pi(x, t0) = 1

■

In this study, we consider the advection equation using the same velocity field for all

6.4. WHICH DISCRETISATION SCHEME TO USE? 90

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Class 1 - P (X = 1)

Initial condition Exact solution at t=10 Central difference at t=10
0 0.2 0.4 0.6 0.8 1

0

0.5

1

Class 2 - P (X = 2)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Class 3 - P (X = 3)

Figure 6.4: The advection of probabilities using central finite differences discretisation
presents a dispersion effect

probability maps, where the operator L is written as follows:

L (Pi) = v · ∂xPi, i ∈ {1, 2, ·, C}.

This differential operator is linear and have non-zero positive derivative order. There-

fore, the sum of probabilities is conserved over time and remains equal to the initial

value. This property is illustrated numerically in Fig. 6.5 and Fig. 6.7, and holds even

in scenarios where the discretisation scheme introduces some diffusion or dispersion

effects during the resolution process.

6.4.2 Non-negativity and bound preservation

The Section 3.2 presents details about two differents spatial discretisation schemes, the

central finite difference and the first-order upwind scheme. The first one is a second

order accurate scheme but suffers from instability issues as it introduces a negative

difusion expressed by the −κ∂2
xf term and a dispersion effect expressed by the δx2

6 v∂3
xf

term in the following equation:

∂tf + ṽ∂xf = −κ∂2
xf + δx2

6 v∂3
xf + O(δx2), (6.4)

where ṽ = v − δt
2 ∂tv + δt

2 v∂xv is the effective velocity field, κ = δt
2 v2 is the diffusion

coefficient. The Fig. 6.4 shows these effects. While the later is a first order accurate

scheme, it is more robust at the discontinuities, even if it presents some diffusion effects

represented by the vnum∂2
xf term in the following equation:

∂tPi + ṽ∂xPi = vnum∂2
xPi + O(δt2, δx2), (6.5)

6.4. WHICH DISCRETISATION SCHEME TO USE? 91

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

x

P (X(t = 10) = 1) P (X(t = 10) = 2)
P (X(t = 10) = 3)

∑3
i=1 P (X(t = 10) = i)

Figure 6.5: The probability conservation property is maintained even in presence of
dispersion effects.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Class 1 - P (X = 1)

Initial condition Exact solution at t=10 First order upwind at t=10
0 0.2 0.4 0.6 0.8 1

0

0.5

1

Class 2 - P (X = 2)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Class 3 - P (X = 3)

Figure 6.6: The advection of probabilities using first order upwind discretisation
presents a diffusion effect

where ṽ = v − δt
2 ∂tv + δt

2 v∂xv, and vnum = v
2 (sign(v)δx − vδt). The Fig. 6.6 shows these

diffusion effects.

Other schemes have been explored in practice, such as the second-order upwind

scheme, which uses a three-point stencil instead of a two-point stencil as in the first-

order upwind scheme (see Eq. (3.9)). The spatial derivative is approximated as follows:

∂xf(t, xi) = 1
2δx

3f(t, xi) − 4f(t, xi−1) + f(t, xi−2) if v ≥ 0,

−f(t, xi+2) + 4f(t, xi+1) − 3f(t, xi) if v < 0,
(6.6)

where v is the velocity field. This scheme is a second-order accurate scheme that is more

robust than the central finite difference scheme. However, it introduces the same level

of dispersion as the central finite difference scheme.

6.5. TRAINING 92

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

x

P (X(t = 10) = 1) P (X(t = 10) = 2)
P (X(t = 10) = 3)

∑3
i=1 P (X(t = 10) = i)

Figure 6.7: The probability conservation property is maintained even in presence of
diffusion effects

To summarise, we have shown that the probability conservation property is main-

tained even in the presence of dispersion or diffusion effects introduced by the spatial

discretisation schemes. We have also shown that the non-negativity and bound preser-

vation properties are not always satisfied depending on the discretisation scheme used.

In practice, the first-order upwind scheme is preferred due to its robustness at disconti-

nuities, even if it introduces some diffusion effects.

For time integration, the fourth-order Runge-Kutta method is preferred due to its

accuracy and stability properties, even if it is computationally more expensive than the

Euler method.

During the time integration process, we perform the integration by subdividing the

time step ∆t = 1 (representing 15 minutes) into smaller steps δt = 0.1 to satisfy the

CFL condition, which ensures the stability of the numerical solution (see Section 3.5.2

for details).

6.5 Training

The training dataset consisted of approximately three years of satellite imagery data,

spanning from 2017 to 2019, with a total of 105,120 images. To refine the dataset,

images representing zero cloud cover were removed, and sequences of 12 consecutive

images were assembled to form the training samples. After this data cleaning step, the

dataset was randomly split into training and validation sets, with 8,224 sequences used

for training and 432 sequences reserved for validation. The test set was drawn from

a separate dataset from the same geographic region but from 2021, ensuring temporal

separation and reducing the risk of data leakage.

6.6. EXPERIMENTAL SETUP 93

To enhance the diversity of the training set and mitigate potential overfitting to the

cloud patterns typical of Western Europe, we applied a series of random data augmen-

tation techniques. These included simple transformations such as rotations of 90, 180,

and 270 degrees. This approach increased the effective size of the training dataset and

improved the model’s ability to generalise by learning a broader range of cloud motion

patterns.

The models were implemented using the PyTorch framework, leveraging its flexibil-

ity and performance advantages for deep learning tasks. The training process used the

cross-entropy loss function (defined in Eq. (2.35)).

Training was conducted using gradient-based optimisation methods, specifically the

Adam optimizer [Kingma and Ba, 2015], configured with a learning rate of 10−3. A

batch size of 4 with 16 gradient accumulation steps was employed, effectively simulat-

ing a batch size of 64, allowing for efficient use of GPU memory. The model was trained

over 30 epochs on a single Nvidia A100 GPU, providing the computational power nec-

essary to handle the extensive dataset and the complex training process.

6.6 Experimental setup

To benchmark our models, we included established baselines for comparison. One key

baseline is the classical U-Net [Ronneberger et al., 2015] (refer to Section 2.10.1 for de-

tails on the U-Net architecture), which serves as a common reference in the literature for

image segmentation tasks [e.g. Ayzel et al., 2020, Berthomier et al., 2020, Trebing et al.,

2021]. The U-Net architecture features a contracting path of convolutional and pooling

layers that extract hierarchical features, followed by an expansive path of convolutional

and upsampling layers that reconstruct the segmentation map. The U-Net was applied

iteratively to predict future states from the past observations, as represented in Fig. 6.8,

generating sequential predictions for multiple future time steps.

We also compared our models against EXIM (Extrapolated Imagery), a kinematic ex-

trapolation product developed by EUMETSAT within their NWCSAF/GEO suite [García-

Pereda et al., 2019]. EXIM leverages motion vectors derived from satellite imagery to

forecast future cloud positions, offering a practical benchmark for extrapolative tech-

niques in cloud cover forecasting.

Additionally, we evaluated the models against the "Persistence" baseline, which pre-

dicts future cloud cover based on the most recent observation. This simple yet effective

approach leverages the relatively slow evolution of cloud formations, making it a strong

competitor in short-term nowcasting scenarios.

All models were tested on 1,000 satellite image samples collected over France from

January to October 2021, allowing for a robust comparison across different seasons and

6.7. STANDARD CLASSIFICATION METRICS 94

U-Net

Pred.@15min
Obs.@-45min

Obs.@t=o

U-Net

Pred.@30min
Obs.@-30min

Pred.@15min

U-Net

Obs.@-15min

Pred.@30min

. . .

Outputs
Context

Figure 6.8: The U-Net-based architecture considered in the comparison. A U-Net of type
Fig. 2.11 is applied iteratively to predict the next state given the previous ones.

cloud patterns. The selected period and region ensure that the evaluation captures a

wide range of meteorological conditions, from clear skies to dense cloud cover, provid-

ing a fair assessment of each model’s forecasting capabilities.

6.7 Standard classification metrics

To evaluate the performance of the models, we used standard classification metrics.

These metrics included accuracy, precision, recall, F1 score and critical success index

(CSI), also known as Intersection over Union (IoU) or Jaccard Index [Gilbert, 1884].

These metrics provide insights into different facets of the model’s performance:

• Accuracy measures the overall proportion of correct predictions. It is computed

for each class j using the following formula:

Accuracyj = TPj + TNj

TPj + TNj + FPj + FNj

,

• Precision quantifies the proportion of correct positive predictions relative to the

6.8. HYPHAICC-1: RESULTS 95

total positive predictions made by the model:

Precisionj = TPj

TPj + FPj

,

• Recall evaluates the proportion of actual positives correctly identified by the model:

Recallj = TPj

TPj + FNj

,

• F1 Score provides a harmonic mean of Precision and Recall, balancing the two:

F1j = 2 × Precisionj × Recallj
Precisionj + Recallj

,

• CSI measures the overlap between the predicted and actual classes, offering a

measure of similarity between the two:

CSIj = TPj

TPj + FPj + FNj

.

These metrics are calculated per class, with TP (True Positives), TN (True Negatives),

FP (False Positives), and FN (False Negatives) representing the counts of correctly and

incorrectly classified instances.

To assess overall performance, we calculate the overall accuracy as follows:

Accuracy =
∑

j TPj

Total number of cases
.

For the other metrics, both macro-averaging (arithmetic mean of the class-wise met-

rics) and micro-averaging (aggregating over all instances) can be used. Due to the

highly imbalanced label distribution in our dataset, the macro-average was preferred,

as it treats all classes equally, thus mitigating the influence of dominant classes [Fernan-

des et al., 2020, Wang et al., 2021].

6.8 HyPhAICC-1: results

After training the HyPhAICC-1 model, we evaluated its performance on the test set,

comparing it against the U-Net, EXIM, and Persistence baselines.

6.8. HYPHAICC-1: RESULTS 96

6.8.1 Visual impressions

Figures 6.9 shows two examples of the model’s predictions, illustrating the ability to

capture cloud motion patterns and predict future cloud cover states.

Ground truth | T+30min Ground truth | T+60min Ground truth | T+120min

HyPhAI-1 | T+30min HyPhAI-1 | T+60min HyPhAI-1 | T+120min

Figure 6.9: Example of the HyPhAICC-1 model’s predictions. The top row shows the
observations and the second row shows the model’s predictions at 30, 75, and 120
minutes ahead.

In Figure 6.10, we present the estimated velocity field generated by the HyPhAICC-

1 model, illustrated in Fig. 6.2. This field exhibits a high level of coherence with the

observed cloud cover displacements, with exceptions in cloud-free areas, as expected.

It is important to emphasize that this velocity field is derived exclusively from cloud

cover images, without relying on external wind data or similar sources. This aspect

adds a layer of interest, especially in the context of other applications beyond the cloud

cover nowcasting. However, it is worth noting that this velocity field is not eaxctly an

estimation of the wind field, regardless of the altitude, but rather a representation of

the cloud motion patterns observed in the satellite images, even if it may be correlated

or similar to the wind field. This question has not been deeply investigated in this study,

as it would require wind data to be used as a reference for comparison, which is beyond

the scope of this work. This aspect could be the subject of a future study to explore

the potential of cloud motion patterns as a proxy for wind fields in meteorological

applications.

6.8. HYPHAICC-1: RESULTS 97

10°W

10°W

5°W

5°W

0°

0°

5°E

5°E

10°E

10°E

15°E

15°E

36°N 36°N

39°N 39°N

42°N 42°N

45°N 45°N
48

°N
48°N

51°N 51°N

54°N 54°N

57°N 57°N

50.0

100.0

150.0

200.0

250.0

300

Ve
lo

cit
y

(k
m

 h
1)

Figure 6.10: Estimated velocity field by the U-Net Xception-style used in the HyPhAICC-
1 model

6.8.2 Quantitative evaluation

To quantitatively assess the model’s performance, we calculated the macro-averaged F1

score, overall accuracy, and macro-averaged Jaccard index (IoU) for lead times ranging

from 15 to 120 minutes. The results are presented in Figure 6.11a, Figure 6.11b, and

Figure 6.11c, respectively.

The results confirms the visual impressions presented in Section 6.8.1 as the HyPhAICC-

1 produces consistent predictions. In particular, we observe a consistent superiority of

data-driven models, HyPhAICC-1 and U-Net, over the physics-based EXIM and Persis-

tence baselines. Regarding our hybrid model, HyPhAICC-1, it outperforms all other

models across all lead times in terms of F1 score and CSI (Jaccard index). However, the

U-Net model exhibits a slightly higher accuracy than HyPhAICC-1, especially at longer

lead times. This discrepancy can be attributed to the U-Net being purely data-driven

and free from any physical constraints, thus giving more weight to the dominant classes

at the expense of the other classes, resulting in a good accuracy but also a higher false

positive rate.

In addition to the performance metrics, we also evaluated the computational ef-

ficiency of the HyPhAICC-1 model in comparaison to the U-Net, as discussed in the

following sections.

6.9 Time efficiency

6.9. TIME EFFICIENCY 98

50 100

30

40

hi
gh

er
is

be
tt

er

Lead time (min)

Macro-averaged F1
HYPHAICC-1 U-Net EXIM Persistence

(a)

50 100
50

60

70

hi
gh

er
is

be
tt

er

Lead time (min)

Overall Accuracy

(b)

50 100

20

30

hi
gh

er
is

be
tt

er

Lead time (min)

Macro-averaged CSI

(c)

Figure 6.11: Performance comparison between HyPhAICC-1, U-Net, EXIM, and the
Persistence. Using five metrics including averaged F1 score(%), accuracy(%) and
CSI(%). These scores were computed over 1000 random samples covering France in
2021.

By including physical constraints into these hybrid models, we expect a decrease in

training time compared to that of the U-Net. Indeed, Fig. 6.12 illustrates the evolu-

tion of the validation F1 score for both the U-Net and the HyPhAICC-1 model across

epochs. HyPhAICC-1 converges faster than the U-Net, indeed, its convergence occurs

after just about 10–15 epochs. Each epoch of the HyPhAICC-1 training takes approxi-

mately 55 minutes using a single Nvidia A100 GPU, the entire training over 30 epochs

takes 27h. On the other hand, the U-Net necessitates up to 200 epochs for achieving

similar performance, with each epoch taking around 23 minutes using the same hard-

ware, which corresponds to thereabout three days of training. This difference implies

that training the U-Net is significantly more expensive compared to the HyPhAICC-1.

In inference mode, the hybrid models and the U-Net generate predictions within a few

seconds, while EXIM’s predictions are produced within 20 minutes [Berthomier et al.,

2020], which is one of the main drawbacks of this product.

6.10 Data efficiency

To delve deeper into the efficiency of the proposed HyPhAICC-1 model, we carried

out various experiments using different training data sizes. In each experiment, both

HyPhAICC-1 and the U-Net were trained with 70 %, 50 %, 30 % and 10 % of the

available training data (Fig. 6.12, Fig. 6.13). In particular, we observed a more sig-

nificant performance drop for the U-Net compared to HyPhAICC-1. Interestingly, the

6.10. DATA EFFICIENCY 99

10 20 30
0.15

0.2

0.25

0.3

0.35

Epochs

F1
sc

or
e

(a): HyPhAICC-1

HyPhAICC-1 - 10% of data
HyPhAICC-1 - 30% of data
HyPhAICC-1 - 50% of data
HyPhAICC-1 - 70% of data
HyPhAICC-1 - All data

50 100 150 200
Epochs

(b): U-Net

U-Net - 10% of data
U-Net - 30% of data
U-Net - 50% of data
U-Net - 70% of data
U-Net - All data

20 40 60

hi
gh

er
is

be
tt

er

Training time (hours)

(c): HyPhAICC-1 vs U-Net

HyPhAICC-1 - All data
U-Net - All data

Figure 6.12: Per epoch validation F1 score comparison between HyPhAICC-1 and
the U-Net. Scores were calculated from 100 random samples covering France (averaged
over all lead times).

0 10 20 30 40 50 60 70 80

32

34

36

More expensive

M
or
e
ac
cu
ra
te

10%

30%
50%70%

All data

10%

30%

50%

70%

All data

Total Training Time (min)

F
1
sc
or
e

HyPhAICC-1 U-Net

1

Figure 6.13: Total training time and maximum validation F1 scores over the last 5
epochs for the U-Net and HyPhAICC-1 using different training data sizes (averaged
over all the lead times).

6.11. APPLICATION ON EARTH’S FULL DISK 100

Ground truth | T+30min Ground truth | T+60min Ground truth | T+120min

HyPhAICC-1 | T+30min HyPhAICC-1 | T+60min HyPhAICC-1 | T+120min

1

Figure 6.14: Full disk cloud cover nowcasting predictions. The predictions were
generated by our model without any specific training on the full disk data (of size
3712 × 3712).

hybrid model exhibited similar performance with only 30 % of the training data as it

did with the entire dataset (Fig. 6.12). This finding indicates that this hybrid model is

remarkably data-efficient, capable of delivering satisfactory performance even with lim-

ited training data, which has been highlighted by other studies [Schweidtmann et al.,

2024, Cheng et al., 2023]. This quality is very important, particularly for tasks with

insufficient provided data.

In the next section, we extend the evaluation of the HyPhAICC-1 model by testing it

on a larger domain to examine its generalisation capabilities.

6.11 Application on Earth’s full disk

To check HyPhAICC-1’s capabilities on broader scales after training it on a small region,

we tested it on a much larger domain, an entire hemisphere of the Earth - also called

a full disk - centred at 0 degrees longitude. The satellite observations of this expansive

full-disk domain are of size 3712 × 3712, which is 210.25 times larger than the train-

6.11. APPLICATION ON EARTH’S FULL DISK 101

Ground truth | T+120min

Ground truth | T+120min

Ground truth | T+120min

HyPhAI - Advection | T+120min

HyPhAI - Advection | T+120min

HyPhAI - Advection | T+120min

Figure 6.15: Full disk cloud cover nowcasting predictions. Zoomed-in views of the
120-minute observation and prediction.

ing ones. It has diverse meteorological conditions and includes projection deformations

when mapped onto a two-dimensional plane, while the extreme deformations at the

edge of the disk make this data less useful for operation purposes, it still provides an

interesting testing ground for HyPhAICC-1’s generalisation ability. In this analysis, we

focus only on visual aspects. Despite the significant differences between the training do-

main and the full disk, we observed good qualitative forecasts of the HyPhAICC-1 model

on this new domain without any specific training on it (see Fig. 6.15 and Fig. 6.14).

The cloud motion estimation on the full disk was found to be visually consistent (see

Fig. 6.16).

This successful transferability of the model highlights its potential robustness and

suggests that the underlying principles of cloud motion captured during training are ap-

plicable across different domain sizes and different projections. Refer to Appendix 9.3.1

for more details on the robustness of the model.

Note that the model requires a data size divisible by 2d, where d is the number of the

encoder blocks within the U-Net-Xception model. Indeed, the possibility to run a model

using different data sizes is one of the advantages of fully convolutional networks (FCN)

as the convolution operation is independent of the input size.

Overall, HyPhAICC-1 offers an effective and cheaper approach compared to EXIM,

with higher efficiency, requiring fewer data compared to the U-Net, with the potential to

outperform existing models and enable more accurate and efficient weather forecasting.

The ability of the HyPhAICC-1 to adapt and perform well on the full-disk data, despite

being trained on a smaller domain, demonstrates the generalisation capabilities of this

hybrid model. This is an important property for weather forecasting models, as it is not

always possible to train a model on full-disk data due to the high computational cost.

In the next section, we try to assess the visual quality of the predictions made by the

different models.

6.12. VISUAL QUALITY ASSESSMENT 102

0.0 50.0 100.0 150.0 200.0 250.0 300
Velocity (km h 1)

Figure 6.16: Estimated velocity field by the U-Net Xception-style used in the HyPhAICC-
1 model.

6.12 Visual quality assessment

Among the other evaluation aspects that are considered when assessing the perfor-

mance of weather forecasting models, the visual quality and realism of the predictions.

Fig. 6.17 shows a case study of the predictions made by the different models in com-

parison to the ground truth. We observe that EXIM and the Persistence baseline keep

the same level of details as in the ground truth, this due to the fact that Persistence is

simply the last observation, while EXIM is using a kinematic extrapolation technique

without any detail loss. On the other hand, the U-Net has the most loss of details.

The HyPhAICC-1 model, however, maintains a good level of details even if it present

some diffusiveness over time due to the first upwind spatial discretisation scheme which

introduces some diffusion effects.

These observations are qualitative and subjective, and a more quantitative evalu-

ation is needed to assess the visual quality of the predictions. However, there is no

standard metric that can be used to evaluate the visual quality of the predictions. In

the next section, we propose a modified version of the Hausdorff distance to assess the

spatial similarity between the predictions and the ground truth and also to penalise the

details loss.

6.12. VISUAL QUALITY ASSESSMENT 103

Ground truth | T+30min HyPhAI-1 | T+30min Unet | T+30min EXIM | T+30min

Ground truth | T+60min HyPhAI-1 | T+60min Unet | T+60min EXIM | T+60min

Ground truth | T+120min HyPhAI-1 | T+120min Unet | T+120min EXIM | T+120min

Figure 6.17: Case study of different models’ forecasts. Left column: ground truth at
different time steps; middle columns: HyPhAICC-1 and the U-Net’s predictions, respec-
tively; right column: EXIM’s predictions. The light beige colour corresponds to the land
areas, and ’ST’ abbreviation in the legend stands for ’Semi Transparent’.

6.12. VISUAL QUALITY ASSESSMENT 104

Figure 6.18: Illustration of the minp∈A d(p, q1) and minq∈B d(p1, q) quantities used to
compute the Hausdorff distance; for each point, we look for the closest point in the
other region.

6.12.1 Hausdorff distance

The Hausdorff distance is a widely used metric for medical image segmentation [e.g.

Karimi and Salcudean, 2020, Aydin et al., 2021], this metric measures the similarity

between the predicted region and the ground truth region, by comparing structures,

rather than just individual pixels. It can be expressed using either Eq. (6.7) or Eq. (6.8)

described as follows:

h1(A, B) = 1
|A|

∑
p∈A

min
q∈B

d(p, q), (6.7)

h2(A, B) = max
p∈A

min
q∈B

d(p, q), (6.8)

where d(p, q) is the Euclidean distance between p and q. The former computes the mean

distance between each point A and the closest point in B, providing an overall measure

of similarity. The latter measures the maximum distance between a point in A and the

closest point in B (Fig. 6.18), this formulation is a more conservative measure that

focuses on the largest discrepancies between the sets.

Both formulations exhibit sensitivity to the loss of small structures. Specifically,

when small regions in the ground truth are non-empty while their corresponding re-

gions in the prediction are empty, the search area expands, which increases the overall

distance. We opt to limit this search region to the maximum distance traversable by

a cloud. Consequently, we introduce the restricted Hausdorff distance (rHD) defined as

6.12. VISUAL QUALITY ASSESSMENT 105

20 40 60 80 100 120

3

4

5

6

lo
w

er
is

be
tt

er

Lead time (min)

Hausdorff distance (H)

HyPhAICC-1 U-Net EXIM Persistence

Figure 6.19: Hausdorff distance (H) comparison between HyPhAICC-1, U-Net, EXIM,
and the Persistence.

follows:

h3(A, B) = 1
|A|

∑
p∈A

min
q∈Br(p)

d(p, q), (6.9)

where Br(p) is the ball of radius r centred at p. In our experiments, we set r to 10

pixels, which corresponds to a radius of approximately 45-50 km, corresponding to the

maximum distance crossed by clouds in one time step, considering 200 km h−1 as the

cloud’s maximum speed. This means that for each pixel in the first set, we compute

the distance to the closest pixel in the second set, but only if it is within a radius of 10

pixels. This allows us to reduce the impact of small regions in the ground truth that

are not present in the prediction, while still rewarding the model if it correctly predicts

them.

The Hausdorff distance is a directed metric, i.e. hp(A, B) ̸= hp(B, A), thus, we

consider the maximum of the two directed distances as follows:

H(S, Ŝ) = max
(
h3(S, Ŝ), h3(Ŝ, S)

)
(6.10)

where S and Ŝ are the coordinates of positive pixels in the ground truth and prediction,

respectively.

6.12.2 Results

Fig. 6.19 presents the rHD for the various models, confirming the qualitative observa-

tions made in Section 6.12. The Persistence model exhibits a lower rHD compared to

HyPhAICC-1 and U-Net, while the EXIM model shows the highest rHD. This is because

EXIM keeps the same level of details as Persistence, while providing a more accurate

6.13. DISCUSSION 106

prediction than just the last observation. Additionally, as observed, the HyPhAICC-1

model outperforms the U-Net in terms of rHD.

This metric demonstrates that visual aspects can be quantitatively assessed, which is

crucial for evaluating weather forecasting models. However, this metric is not without

flaws; a more thorough analysis is necessary to understand its limitations, improve its

accuracy, and determine the optimal value for the radius parameter r.

6.13 Discussion

HyPhAICC-1’s performance is not perfect. It can not predict the formation and dissi-

pation of clouds, as well as the transition between different cloud types, even if some

of these effects are captured by the velocity field; concentrated arrows in the velocity

field indicate the dissipation of clouds, while diverging arrows indicate the formation of

clouds. It is also worth mentioning that the data present some imperfections, as some

clouds are not correctly classified, whose classification change over time and incoher-

ently, especially at sunrise and sunset.

In order to improve the model’s performance, we investigate in the next chapter

the use of a source term in the advection equation to account for the formation and

dissipation of clouds, as well as the transition between different cloud types.

C
ha

pt
er 7 Extending the physical modelling

After presenting the first version of the hybrid model, HYPHAICC-1 and the evaluation

procedure in the previous chapter. In this chapter, we present extended versions of the

first hybrid model. HYPHAICC-2 includes a simple trainable source term. HYPHAICC-3

and HYPHAICC-4 include more complex source terms based on markovian transitions.

7.1 Heuristic-based source term: HyPhAICC-2

In order to take into account non-advective effects, such as the formation or dissipation

of clouds, we propose to add a source term to the advection equation. There are dif-

ferent ways to model the source term, one possible way is to add a simple/raw source

term of the following form to the advection equation:

∂tPj = tanh(Sj) ∀j ∈ {1, 2, . . . , C} , (7.1)

where Sj is a 2D map. The hyperbolic tangent activation function (tanh) is used to keep

the values of the source term in a range of [−1, 1], preventing it from exploding. In

the second version of our hybrid model, we use this simple source term, see Fig. 7.1.

Therefore, the advection equation with the source term can be written as follows:

∂tPj + −→
V ·

−→
∇Pj = tanh(Sj) ∀j ∈ {1, 2, . . . , C} , (7.2)

where Sj is estimated using a U-Net model (see Fig. 7.1), this U-Net model the same

inputs as U-Net Xception-style model used to estimate the velocity field, i.e. the last

four observations stacked on the channel axis. Its output are C 2D maps stacked on

the channel axis, where each map represents the source term for the corresponding

equation.

107

7.2. HYPHAICC-2: RESULTS 108

Equations
Time

Integration
Scheme

U-Net Xception-
style

=

U-Net

Equations

Pred.@2h

Pred.@15minObs.@-45min

Obs.@t=o

FrozenTrainable

Figure 7.1: HYPHAICC-2: The second version of the proposed hybrid model. It consists
of a U-Net Xception-style to estimate the velocity field and a second U-Net to estimate
the source term from the last observations. We highlighted the additional parts com-
pared to Fig. 6.2 and faded the unchanged ones.

7.2 HyPhAICC-2: results

Table 7.1: Score comparison at the 120-minute lead time (↑: higher is better, ↓: lower
is better). The best scores are indicated in bold font.

Model ↑ F1 ↑ Precision ↑ Recall ↑Accuracy ↑ CSI ↓ rHD (H)

HYPHAICC-1 26.6 % 27.5 % 25.9 % 55.4 % 17.2 % 6.23
HYPHAICC-2 26.5 % 27.6 % 25.7 % 57.3 % 17.1 % 6.54

U-Net 24.9 % 25.6 % 24.5 % 56.0 % 16.1 % 6.90
EXIM 23.5 % 23.5 % 23.6 % 49.4 % 14.9 % 5.08

Persistence 21.8 % 21.9 % 21.8 % 47.9 % 13.8 % 5.53

Table 7.1 and Fig. 7.2 show that HyPhAICC-2 is slightly better in terms of precision

and accuracy than HyPhAICC-1, and both of these hybrid models significantly outper-

form U-Net in terms of F1 score, precision, and CSI, and perform similarly in terms of

accuracy and recall.

Figure 7.3 presents a case study comparing HyPhAICC-1, HyPhAICC-2, U-Net, EXIM,

Persistence, and the ground truth. It is evident that HyPhAICC-2 loses some details in its

predictions compared to HyPhAICC-1, though it still retains more detail than the U-Net

model. This loss is attributed to the inclusion of a learned statistical component—the

source term—which follows a similar trend as the U-Net by favouring the most probable

cloud types in the training dataset.

This observation is supported by the rHD metric, as shown in Fig. 7.2 and Table 7.1.

7.2. HYPHAICC-2: RESULTS 109

20 40 60 80 100 120

30

40

50

h
ig
h
er

is
b
et
te
r

Lead time (minutes)

Macro-averaged F1 score
HyPhAICC-1 HyPhAICC-2 U-Net EXIM Persistence

(a)

20 40 60 80 100 120

30

40

50

h
ig
h
er

is
b
et
te
r

Lead time (minutes)

Macro-averaged Precision

(b)

20 40 60 80 100 120

30

40

h
ig
h
er

is
b
et
te
r

Lead time (minutes)

Macro-averaged Recall

(c)

20 40 60 80 100 120

50

60

70

h
ig
h
er

is
b
et
te
r

Lead time (minutes)

Overall Accuracy

(d)

20 40 60 80 100 120

20

30

h
ig
h
er

is
b
et
te
r

Lead time (minutes)

Macro-averaged Jaccard index

(e)

20 40 60 80 100 120

3

4

5

6

lo
w
er

is
b
et
te
r

Lead time (minutes)

Hausdorff distance (H)

(f)

1

Figure 7.2: Performance comparison between HyPhAICC-1, HyPhAICC-2, U-Net,
EXIM, and the Persistence baseline. Using five metrics including averaged F1
score(%), precision(%), recall(%), accuracy(%), CSI(%) and the rHD (defined in
Eq. (6.10)). These scores were computed over 1000 random samples covering France
in 2021. See Fig. 9.2 for confidence intervals.

7.2. HYPHAICC-2: RESULTS 110

Ground truth | T+30min HyPhAI-1 | T+30min HyPhAI-2 | T+30min Unet | T+30min EXIM | T+30min

Ground truth | T+60min HyPhAI-1 | T+60min HyPhAI-2 | T+60min Unet | T+60min EXIM | T+60min

Ground truth | T+120min HyPhAI-1 | T+120min HyPhAI-2 | T+120min Unet | T+120min EXIM | T+120min

Figure 7.3: Case study of different models’ forecasts. Left column: ground truth at
different time steps; middle columns: HyPhAICC-1, HyPhAICC-2 and the U-Net’s predic-
tions, respectively; right column: EXIM’s predictions. The light beige colour corresponds
to the land areas, and ’ST’ abbreviation in the legend stands for ’semi transparent’.

Ultimately, the HyPhAICC-2 model sacrifices some detail in exchange for improved

quantitative performance, a trade-off commonly observed in machine learning models

when probabilistic loss functions such as cross-entropy and MSE are used.

While this simple source term can capture some of the non-advective effects, it does

not take into account the probabilistic nature of the cloud cover data. In particular, it

does not preserve properties discussed in Sect. 6.4. Even if we still managed to train

the model, we believe that it is important to model a more adapted and ’clean’ source

term.

To address this issue, we propose to model the source term using Markovian tran-

sition matrices between the different types of cloud cover. This allows the transfer of

probabilities between the different types of cloud cover, including from and to the class

"No cloud".

7.3 Markov-based modelling of the source term

7.3. MARKOV-BASED MODELLING OF THE SOURCE TERM 111

7.3.1 Fundamentals of Markov chains

Markov chains are foundational tools in the study of stochastic processes, providing

a way to model systems that transition between states in a probabilistic manner. A

Markov chain is a sequence of random variables X1, X2, X3, . . . that represent the states

of a system at discrete time steps. The defining feature of a Markov chain is the Markov
property, which states that the probability of transitioning to the next state depends only

on the current state, not on the sequence of events that preceded it. This is mathemati-

cally expressed as:

P (Xn+1 = sj | X1 = s1, X2 = s2, . . . , Xn = si) = P (Xn+1 = sj | Xn = si) (7.3)

where si and sj are possible states, or values, of the random variable X, the set of all

possible states is denoted by S.

The state space S of a Markov chain could be finite or countably infinite. For a

Markov chain with a finite state space S = {s1, s2, . . . , sN}, the transitions between

states are typically represented using a transition matrix Π. The transition matrix P is

an N × N matrix where each entry Πi,j represents the probability of transitioning from

state xi to state xj in the next time step. The transition matrix is defined as follows:

Π =


P (Xn+1 = s1 | Xn = s1) P (Xn+1 = s2 | Xn = s1) . . . P (Xn+1 = sN | Xn = s1)
P (Xn+1 = s1 | Xn = s2) P (Xn+1 = s2 | Xn = s2) . . . P (Xn+1 = sN | Xn = s2)

...
...

P (Xn+1 = s1 | Xn = sN) P (Xn+1 = s2 | Xn = sN) . . . P (Xn+1 = sN | Xn = sN)


Each row of the transition matrix must sum to 1, as they represent the total probability

of transitioning from a given state to any other state in the next time step:

N∑
j=1

Πi,j = 1 ∀i

The behaviour of a markovian process depends on the initial distribution, denoted π.

The initial distribution is typically represented as a row vector:

π(0) = [P (X1 = s1), P (X1 = s2), . . . , P (X1 = sN)]

In case where the initial starting state is known then the initial distribution is a one-hot

vector (refer to 2.9).

Using the transition matrix, the probability distribution at time n and the markov

7.3. MARKOV-BASED MODELLING OF THE SOURCE TERM 112

property (Eq. (7.3)), the probability distribution at time n + 1 can be computed as

follows:

π(n+1) = π(n)P (7.4)

It is important to note that the row vector-matrix multiplication is the usual notation in

mathematics, it is equivalent to the following matrix-column vector multiplication:

π(n+1)⊺ = Π⊺π(n)⊺

which will be used in the numerical implementation in the next section (7.3.2).

Definition 1. A Markov chain is said to be irreducible if it is possible to reach any state
from any other state in a finite number of steps. Which means that the chain cannot be
divided into separate graphs or components that are unreachable from each other. Irre-
ducibility ensures that the chain can explore all possible states over time.

Definition 2. A Markov chain is aperiodic if the greatest common divisor of the lengths of
all cycles in the chain is 1. In other words, we cannot predict when the chain will return to
a given state. Aperiodicity ensures that the chain does not get stuck in a loop, allowing it
to explore the state space freely.

Definition 3. A Markov chain is said to have a stationary distribution if there exists a
probability distribution π∞ over the states such that, after applying the transition matrix,
the distribution remains unchanged:

π∞Π = π∞

This stationary distribution represents the long-term behaviour of the Markov chain, where
the probabilities of being in each state stabilize over time.

Proposition 2. If a Markov chain is irreducible and aperiodic, then it has a unique sta-
tionary distribution.

Proposition 3. Given the initial distribution π(0) and the transition matrix P , the distri-
bution of the states after n steps, π(n), can be found by repeated multiplication:

π(n) = π(0)Πn

As n increases, π(n) will converge to the stationary distribution π, assuming the chain is
ergodic.

7.3. MARKOV-BASED MODELLING OF THE SOURCE TERM 113

Example: Consider a simple weather model with two states: sunny and cloudy. The

transition matrix might look like this:

P =
0.8 0.2

0.3 0.7


This matrix indicates that if it is sunny today, there is an 80% chance it will be sunny

tomorrow and a 20% chance it will be cloudy. If it is cloudy today, there is a 70% chance

it will continue to be cloudy and a 30% chance it will be sunny tomorrow.

If the initial distribution is π(0) = (0.5, 0.5), meaning there is an equal chance of it

being sunny or cloudy today, then the distribution after one time step can be computed

as follows:

π(1) = π(0)P = (0.5, 0.5)
0.8 0.2

0.3 0.7

 = (0.55, 0.45)

Over time, this distribution will converge to the stationary distribution, which rep-

resents the long-term probabilities of sunny and cloudy days in this model:

Π∞ = lim
n→∞

Πn =
7

9
2
9

7
9

2
9


applied to the initial distribution, the stationary distribution is:

π∞ = π(0)Π∞ = (0.5, 0.5)
7

9
2
9

7
9

2
9

 =
(7

9 ,
2
9

)

i.e. in the long run, there is a 78% probability of sunny days and a 22% probability of

cloudy days.

In the next section, we will use this concept to model the transitions between differ-

ent types of cloud cover in the source term of the advection equation.

7.3.2 Markov-based source term: HyPhAICC-3

In this section, we propose a third version of the hybrid model, called HYPHAICC-3,

which uses Markov chains to model the source term in the advection equation. This

source term is expressed as follows:

∂tPj =
C∑

i=1
Λj,iPi ∀j ∈ {1, 2, . . . , C} , (7.5)

where
D2 7→ R

x 7→ Λj,i(x)

7.3. MARKOV-BASED MODELLING OF THE SOURCE TERM 114

is a map representing the transition rates between i and j, D is spatial domain, here it

represents the pixels of an image of size 256 × 256.

For a small fixed time step ∆t, Eq. (7.5) can be approximated as:

P (t + ∆t) ≈ P (t) + ∆tΛP (t),

P (t + ∆t) ≈ (I + ∆tΛ) P (t),

in order to model a markovian process, the matrix (I + ∆tΛ)⊺ involved in the transi-

tion step should be stochastic, this is the transition matrix Π defined in Section 7.3.1.

Therefore, the matrix Λ can be computed as follows:

Λ (x) = Π (x)⊺ − I

∆t
.

The matrix Λ represents what is known as the infinitesimal generator of a Markov

process; it defines the transition rates between the various states of the process.

This modelling ensures that the probabilistic properties are maintained over time.

Let’s consider the following example of a source term for a three-class problem on a

single point domain without considering the advection term:

∂P 1
X

∂t
= Λ1,1P

1
X + Λ2,1P

2
X + Λ3,1P

3
X ,

∂P 2
X

∂t
= Λ1,2P

1
X + Λ2,2P

2
X + Λ3,2P

3
X ,

∂P 3
X

∂t
= Λ1,3P

1
X + Λ2,3P

2
X + Λ3,3P

3
X .

(7.6)

Let’s consider the following transition rates:

Λ1,1 =
[−0.5

∆t

]

Λ1,2 = [0.0]

Λ1,3 = [0.0]

Λ2,1 =
[0.5

∆t

]

Λ2,2 = [0.0]

Λ2,3 = [0.0]

Λ3,1 = [0.0]

Λ3,2 = [0.0]

Λ3,3 = [0.0]

The Figures 7.4 and 7.5 show the evolution of the probabilities using Eq. (7.6) with

∆t = 10.

Physically, Λj,i(x) represents, in the context of cloud cover, the transition rate from

cloud type i to cloud type j at grid point x and ∆t represents the time step, and I(x)
denotes the identity matrix. This third version of the hybrid model,HYPHAICC-3, (see

Fig. 7.6), uses this source term combined with the advection as showed in the following

equations:

∂tPj + −→
V ·

−→
∇Pj =

C∑
i=1

Λj,iPi ∀j ∈ {1, 2, . . . , C} , (7.7)

7.3. MARKOV-BASED MODELLING OF THE SOURCE TERM 115

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

Time

Pr
ob

ab
ili

ty
P (X(t) = 1) P (X(t) = 2)
P (X(t) = 3) ∑3

i=1 P (X(t) = i)

Figure 7.4: Probability evolution in the case of inter-class transitions.

(a) Initial state (b) Final state

Figure 7.5: Graphs showing the transition rates and the class probabilities at the initial
and final states.

7.3. MARKOV-BASED MODELLING OF THE SOURCE TERM 116

Equations
Time

Integration
Scheme

U-Net Xception-
style

=
Trainable

Frozen
Equations

U-Net
Pred.@2h

Pred.@15minObs.@-45min

Obs.@t=o

Figure 7.6: HYPHAICC-3: The third version of the proposed hybrid model. It consists
of a U-Net Xception-style to estimate the velocity field and a second U-Net to estimate
the per-pixel transition matrices from the last observations.

where the stochastic property of Π is ensured by construction using the Softmax func-

tion as follows:

Πi,k = Softmax (Mi)k = eMi,k∑C
j=1 eMi,j

,

where the matrix M is generated using a U-Net.

This representation of cloud cover dynamics offers a comprehensive description of

cloud formation and dissipation. However, it increases the output dimension size of the

U-Net, as a C × C transition matrix is generated for each pixel. This makes the U-Net

model poorly constrained, which led to provideding the same results as the HyPhAICC-1

model using only the advection. In fact, during training, the Λ matrices in Eq. (7.7) are

consistently estimated as zeros meaning that no inter-class transitions were captured.

Furthermore, in our experiments, we faced difficulties in training the model due to the

high dimensionality of the output space. We also noticed an increased memory usage

during the training process and a significant increase in the training time.

7.3.3 It is not Fokker-Planck equation!

The Eq. (7.5) presented in the previous section is a form of the so-called master equa-

tion, which describes the evolution of the probability distribution of a discrete-time

Markov chain. In the continuous limit, the master equation converges to another PDE

called the Fokker-Planck equation, which describes the evolution of the probability den-

sity function of a continuous-state Markov process. Although the modelling presented

in Eq. (7.5) share similarities with the Fokker-Planck equation, both equations are fun-

damentally different. We believe that it is important to clarify this distinction to avoid

any confusion. In this section, we provide a detailed derivation of the Fokker-Planck

7.3. MARKOV-BASED MODELLING OF THE SOURCE TERM 117

equation to highlight the differences between the two approaches.

Following the same path as in [Øksendal, 2010], we consider the pricing of a fi-

nancial asset, such as a stock. A simple model for the stock price S(t) over time might

assume constant growth:

dS

dt
= µS(t)

Here, S(t) is the stock price at time t, and µ represents the rate of return. This model

assumes that the stock price increases smoothly at a fixed rate.

However, in reality, stock prices fluctuate due to market volatility and random events.

To capture this randomness, we adjust the rate of return:

µ(t) = µ + "random fluctuations"

In this form, the random fluctuations, let’s note them as ξ(t), represent the unpre-

dictable changes in the stock price. The exact nature of these fluctuations isn’t known.

The modified equation becomes:

dS

dt
= µS(t) + ξ(t)S(t) (7.8)

The solution to this modified equation describes not a single path for the stock price,

but a set of possible future price paths, reflecting the uncertainty in how the market will

evolve over time. Thus, it is impossible to predict the exact future price of the stock, but

we still use some statistical tools to model its behaviour.

In general, PDEs similar to Eq. (7.8) presenting random terms are called stochastic

differential equations (SDEs). SDEs are part of the stochastic calculus field, which deals

with systems containing some sort of randomness. The goal of this section is not to

provide a comprehensive and rigorous introduction to Fokker-Planck equation, but to

give a general idea of this equation in order to highlight the differences with Eq. (7.5).

In the stochastic theory, an Ito diffusion process is a markovian process of continuous

state and that is almost surely continuous in time, and that is defined using Ito integrals

as follows [Øksendal, 2010]:

Xt = X0 +
∫ t

0
µ(Xs)ds +

∫ t

0
σ(Xs)dBs, (7.9)

or in a differential form:

dXt = µ(Xt)dt + σ(Xt)dBt, (7.10)

where Xt is the state of the system at time t, µ(Xt)dt is called the drift term, σ(Xt)dBt

is called the martingale term representing random fluctuations where Bt is a Brownian

motion, i.e., a stochastic process with independent and normally distributed increments

7.3. MARKOV-BASED MODELLING OF THE SOURCE TERM 118

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

ω1

ω2

ω3

ω4
ω5

E[Xx
t]

Time (t)

X
t

Ito diffusion simulations

Figure 7.7: Simulation of multiple trajectories of an Ito diffusion process, using µ(Xt) =
0.1Xt, σ(Xt) = 0.2, a time step ∆t = 2 · 10−3, an initial condition x = 1, 1000 time
steps and 5 realisations. Each curve represents a different realisation of the stochastic
process over time and noted ωi. The red line indicates the expectation of the process,
calculated as the average across all trajectories. The simulation was performed using
the Euler-Maruyama method (see Appendix 9.2.1 for more details).

with mean zero and variance dt [Øksendal, 2010, chap. 2] (Appendix 9.2.1 provides

more details and Fig. 9.3 shows some realisations of a Brownian motion), µ and σ are

in L2(Rn).
This equation models the evolution of the deterministic evolution dx

dt
= µ(x) in the

presence of random fluctuations (white noise). The Fig. 7.7 shows an example of a

simulation of an Ito diffusion process with µ(x) = 0.5x and σ(x) = 0.2. The goal is to

determine the evolution of the probability distribution of the system over time.

Let us consider a function g ∈ C2
0(Rn) (the space of twice-differentiable functions

with compact support), called an observable, and let Yt = g(Xt). If Xt is an Ito diffusion,

then Yt is also an Ito diffusion. The Ito formula provides the shift and the martingale

7.3. MARKOV-BASED MODELLING OF THE SOURCE TERM 119

terms of Yt[Øksendal, 2010, chap. 4], and states that the SDE of Yt is given by:

dYt =
(

µ(Xt)∂xg(Xt) + 1
2 (σ(Xt))2 ∂2

xg(Xt)
)

dt + σ(Xt)∂xg(Xt)dBt. (7.11)

In the stochastic frame, the observable dynamics is described through the expectation

of the observable at time t given an initial condition X0 = x:

gt(x) = E[g(Xt) | X0 = x] = E[g(Xx
t)], (7.12)

Using Eq. (7.11), and the Kolmogorov backward equation, we can show that the expec-

tation of the observable satisfies the following partial differential equation:

∂tgt = Lgt, (7.13)

where L is the infinitesimal generator of the process, defined as:

L = µ(x)∂x + 1
2σ2(x)∂2

x. (7.14)

Assuming the initial probability distribution P0 = P(X0) has a density x 7→ P0(x), mean-

ing P(X0 ∈ A) =
∫

A P0(x) dx, we demonstrate in Appendix 9.2.2 that the expectation of

the observable gt with respect to the initial probability density, i.e.

P0[gt] =
∫
Rn

gt(x)P0(x) dx, (7.15)

is equivalent to an expectation of the initial observable g0 under a new probability

density x 7→ Pt(x) at time t, i.e.

Pt[g0] =
∫
Rn

g0(x)Pt(x) dx, (7.16)

where x 7→ Pt(x) is defined as a measure of the probability density of the system at time

t, i.e.

Pt[g0] ≡ P0[gt], (7.17)

and that the probability density function x 7→ Pt(x) satisfies the following partial differ-

ential equation:

∂tP = L⋆P, (7.18)

where L⋆ is the formal adjoint of L. Using simple integration by parts as explained in

Appendix 9.2.3, we can show that the formal adjoint operator L⋆ is given by:

L⋆(·) = −∂x (µ·) + 1
2∂2

x

(
σ2·
)

(7.19)

7.3. MARKOV-BASED MODELLING OF THE SOURCE TERM 120

Thus, Eq. (7.18) can be rewritten as:

∂tP + ∇ · (µP) = 1
2∆

(
σ2P

)
(7.20)

This equation is known as the Fokker-Planck equation.

It should be noted that the variable x in ∂x and ∂2
x in Eq. (7.19) does not repre-

sent the spatial dimension, but the state of the system. For example, in the context of

climate modelling, the temperature fluctuations in a given location could be modelled

using the Fokker-Planck equation to take into account both the deterministic evolution

of the temperature (seasonal variations, etc.) and the unpredictable weather/climate

perturbations. In this case, L⋆ would be written as:

L⋆ = −∂T (µ·) + 1
2∂2

T

(
σ2·
)

,

where µ : T 7→ µ(T) and σ : T 7→ σ(T) are functions of the temperature random

variable T .

In summary, the Fokker-Planck equation describes the evolution of the probability

distribution of a stochastic process over time. This equation is different from the equa-

tion presented in Eq. (7.5), which describes the evolution of the probability distribution

of a discrete-time Markov chain.

7.3.4 Reducing the training time: which convolution to use?

In this part, we delve into the implementation details of the proposed hybrid models,

and we discuss the strategies used to reduce the training time.

The numerical scheme is the most computationally expensive part of the model, as

it requires the resolution of the advection equation at each time step. The resolution

of the advection equation involves the computation of the spatial derivatives of each of

the C equations. This process is repeated ten times for each time step, as the time step

is subdivided into ten smaller steps to satisfy the CFL condition. Thus, it is crucial to

carefully consider how spatial derivatives are calculated.

As discussed in Section 3.5, the first-order upwind scheme is preferred over the

central finite difference scheme due to its robustness at discontinuities. One of the

drawbacks of this scheme among those already discussed is that it requires two times

more computations than the central finite-difference scheme. This is because the up-

wind scheme requires computing the spatial derivative in both directions. This adds a

significant computational overhead; however, we decided to keep this scheme in the

absence of a better alternative. Therefore, the only way to reduce the training time is

to effectively implement the convolutional part.

7.3. MARKOV-BASED MODELLING OF THE SOURCE TERM 121

7.3.4.1 Using 2D convolutions

One simple approach is to use C convolutional layers, along x and y axis and for the

two cases of the upwind scheme (C × 2 × 2 convolutional layers in total). These layers

take as input a tensor of size (B, 1, H, W) where:

• B is the batch size,

• 1 is the number of input channels,

• H = 256 is the height of the input tensor,

• W = 256 is the width of the input tensor.

Each of these layers uses a kernel of size 1 × 1 × 3 × 3 (Fig. 7.8 explains the shape of

the convolution kernels on PyTorch). This approach is the slowest as it does not take

advantage of the parallelism of the GPU and was not used in our experiments.

1 × 1 × 3 × 3 × 3

Cin Cout kernelx kernely kernelz

Figure 7.8: The shape of 3D convolution kernels on PyTorch. The same principle applies
to 2D and 1D convolutions.

7.3.4.2 Using 3D convolutional layers

The second approach is the one initially used in our experiments. It consists of using

four 3D convolutional layers for both axes and the two cases of the upwind scheme.

Each of these layers takes as input a tensor of size (B, 1, H, W, C) and uses a kernel of

size 1 × 1 × 3 × 3 × 1 (number of input channels, number of output channels, kernel size

along the x axis, kernel size along the y axis, kernel size along the z axis). Indeed, it is

a 3D convolution that does not take into account the third dimension. This approach is

faster than the first one, as we remove the sequential part of the computation. However,

it is not the most efficient. This approach was the first one used in our experiments.

7.3.4.3 Using depthwise 2D convolutions

The third approach is the one we used in the final version of the model. In this approach,

we use four 2D convolutional layers, for both axes and the two cases of the upwind

scheme, taking as input a tensor of size (B, C, H, W). Each of these layers uses C

kernels of size 1 × 1 × 3 × 3 concatenated along the output channel axis, resulting in a

7.3. MARKOV-BASED MODELLING OF THE SOURCE TERM 122

CPU GPU

Operation Time Speedup Time Speedup

Conv2D 0.560ms - 6.777ms -
Conv3D 0.049ms 11.43 6.262ms 1.08

Depthwise Conv2D 0.019ms 29.47 1.561ms 4.34

Table 7.2: Average time taken by each operation on both the CPU and the GPU (NVIDIA
V100) over 1000 run. The speed-up is calculated as the ratio of the time taken by the
Conv2D operation (as a baseline) to the time taken by the other operations.

kernel of size C ×1×3×3 each of these 3×3 kernels is applied separately to only one of

the C input channels, hence the second dimension of the kernel is 1 even if the output

tensor has C channels. This operation is known as depthwise convolution. Using this

approach, we take advantage of the parallelism of the GPU, as the convolutional layers

are applied to the C channels in parallel. The following table shows the time taken

by each of these operations on both the CPU and the GPU. The depthwise convolution

is the fastest operation on both the CPU and the GPU, however the speedup is more

significant on the GPU, which is expected as explained before. The 3D convolution has

the same performance as the 2D convolution on the CPU, as the computation is still

done sequentially.

7.3.5 Limited regimes-based source term: HyPhAICC-4

Using the depthwise 2D convolutional layers, we were able to reduce the training time

compared to the other approaches, however, the memory usage is still high due to the

high dimensionality of the output space. To address this issue, we propose a fourth ver-

sion of the hybrid model, HYPHAICC-4. In this model, we assume a limited number of

transition regimes, each representing one of the most frequent transitions. For instance,

in the case of two regimes, the source term is described as follows:

∂tPj = α1 ·
C∑

i=1
Λ1

j,iP
i + α2 ·

C∑
i=1

Λ2
j,iP

i,

where Λ1 and Λ2 are the transition matrices, α1 and α2 are positive factors, these factors

determine which regime to consider at each pixel, with the constraint that α1 + α2 ≤ 1.

This source term combined with the advection equation is expressed as follows:

∂tPj + −→
V ·

−−→
∇Pj = α1 ·

C∑
i=1

Λ1
j,iP

i + α2 ·
C∑

i=1
Λ2

j,iP
i, (7.21)

where, α1 and α2 are estimated using a U-Net, and Λ1 and Λ2 are learned as model

parameters (see Fig. 7.9).

7.3. MARKOV-BASED MODELLING OF THE SOURCE TERM 123

Equations
Time

Integration
Scheme

U-Net Xception-
style

=
Trainable

Frozen

U-Net

Equations

Pred.@2h

Pred.@15minObs.@-45min

Obs.@t=o

Figure 7.9: HYPHAICC-4: The fourth version of the proposed hybrid model. It consists
of a U-Net Xception-style to estimate the velocity field and a second U-Net to estimate
the α factors from the last observations, these factors are used to choose which transi-
tion regime to consider for each pixel.

This model reduces memory usage and training time compared to previous versions,

as the number of parameters is reduced. However, it adds a new hyperparameter to be

tuned, the number of regimes.

Unfortunately, this model did not outperform the previous version, HyPhAICC-3, as

the transition matrices were consistently learned as zeros during training. The training

process began with random values for the matrices, but the model quickly converged

on the strategy of ignoring transitions altogether to avoid penalties from false transi-

tions. Thus, HyPhAICC-3 and HyPhAICC-4 were not considered in the performance

evaluation.

Finally, despite not yielding the expected results, both models were valuable to ex-

plore, demonstrating the flexibility of the proposed architecture.

C
ha

pt
er 8 Conclusion

8.1 Conclusion

In this thesis, we introduced the HyPhAICC framework, a hybrid approach that inte-

grates physical principles with neural networks, and applied it to cloud cover nowcast-

ing. The principal objective of this research was to improve the learning, efficiency, and

physical consistency of neural networks by incorporating physical dynamics into classi-

cal neural network frameworks. Another goal was to enhance cloud cover nowcasting

by using a hybrid Physics-AI model. Several key results that emerged from the study

show the effectiveness, advantages, and limitations of this approach.

The key elements and components of the architecture were presented, including im-

plementing the derivatives in neural networks, the probability advection dynamics, and

additional source terms. Different models were developed for the cloud cover nowcast-

ing task.

The first model, HyPhAICC-1, successfully combined the advection dynamics and a

U-Net into a single trainable neural network. This model outperforms the U-Net, tradi-

tionally used for similar applications, particularly in qualitative metrics (Section 6.8,6.12).

This outcome confirms the potential of hybrid models to enhance the physical consis-

tency of predictions, an important aspect in meteorological applications.

Additionally, the HyPhAICC-1 model demonstrated remarkable data efficiency. They

achieved high performance with significantly less training data compared to the U-Net

(Section 6.10). This efficiency is particularly valuable in operational settings, where

data availability may be limited or costly to acquire.

The proposed hybrid approach also facilitated rapid convergence of HyPhAICC-1

during training (Section 6.9). This is due to the physical constraints guiding the learn-

ing process, leading to improved overall model efficiency. We also observed that the

124

8.1. CONCLUSION 125

HyPhAICC-1 model was robust to domain change and showed a consistent behaviour

over the full-disk data (Section 6.11). It also indirectly provides a way to estimate the

velocity field of the clouds (Section 6.8).

Finally, the introduction of a source term in HyPhAICC-2 resulted in the highest

accuracy among the models tested (Section 7.2). Although this addition led to some

compromises in visual rendering, the trade-off was justified by the gains in predictive

accuracy. This provides a second option with a better accuracy to the HyPhAICC-1

model, each could be more suitable than the other depending on the use purpose. Two

other versions of the source term were also developed, for HyPhAICC-3 and HyPhAICC-

4 models in order to keep the physical consistency of the modelling, but they did not

show improvements in the results (Section 7.3.2,7.3.5). This is mainly due to the diffi-

culty of estimating the unknown variables in the source term. This difficulty is probably

due to the unbalanced representation of the cloud types in the dataset.

This study highlights the value of interdisciplinary approaches in addressing com-

plex scientific problems. Collaboration between meteorology, computer science, and

physics can lead to promising solutions that leverage the strengths of each field. Such

collaborations should be encouraged and supported, especially in contexts where each

field has its own limitations but still strive to assert superiority. Such collaborations

are more crucial than ever in tackling the challenges of climate change and extreme

weather events (e.g., heatwaves, floods). Particularly in regions with limited weather

monitoring infrastructure to acquire high quality data and perform accurate predictions.

Beyond cloud cover nowcasting, the principles demonstrated in this research could

be applied to other areas of weather, climate science and beyond. The flexibility of these

types of hybrid approaches opens new avenues for exploration and application.

Despite the promising results, this study revealed several limitations and challenges

that need to be addressed. One of the primary issues was model diffusiveness, par-

ticularly in HyPhAICC-1. This was mainly attributed to the use of a first-order up-

wind discretisation scheme, which impacted the precision of predictions, especially in

high-contrast scenarios. This suggests a need for future research to explore alterna-

tive discretisation methods that could mitigate this issue and enhance the quality of

predictions.

Another challenge involved stability concerns. The process of setting appropriate

time-step sizes for the advection dynamics, especially given the uncertainty in cloud

velocities, posed a risk of instability during model inference. Ensuring robust model

performance in varying atmospheric conditions will require careful consideration of

stability criteria such as the CFL condition.

Additionally, the study acknowledged limitations in the estimation of certain un-

known variables within the physical modelling framework (Section 7.3.2). To address

this, future investigations should focus on refining the approach, potentially incorporat-

8.2. DISCUSSION AND PERSPECTIVES 126

ing techniques such as class imbalance penalties, to improve the physical consistency

and accuracy of the model.

The essential of this work is published in the Geoscientific Model Development jour-

nal [El Montassir et al., 2024] at https://doi.org/10.5194/gmd-17-6657-2024. This

article is also provided in Appendix 9.4.

The source code of the models presented in this study is available on GitHub at

https://github.com/relmonta/hyphai and at https://doi.org/10.5281/zenodo.1151854.

8.2 Discussion and perspectives

Building on the results and challenges identified in this research, several potential

avenues for future work emerge. One promising direction is the exploration of ad-

vanced discretisation schemes. By investigating higher-order discretisation methods,

researchers could improve the accuracy of the HyPhAICC models, particularly by reduc-

ing diffusiveness and improving the representation of sharp gradients in cloud struc-

tures.

Another significant area for future exploration involves the integration of additional

physical processes into the models. Incorporating factors such as moisture dynamics

or thermodynamic variables could improve the performance of hybrid models. This

integration would allow for a more comprehensive understanding of cloud formation

and behaviour, potentially leading to more accurate and reliable predictions.

Another rising approach is to use foundation models, which are large-scale pre-

trained models designed to be adapted to various tasks [Bishop and Bishop, 2024].

These models excel at capturing patterns in large datasets [Nguyen et al., 2023, Bodnar

et al., 2024]. However, the inherently complex and chaotic nature of atmospheric phe-

nomena presents significant challenges. Weather systems are governed by fundamental

physical laws that dictate how variables such as temperature, pressure, and moisture

interact over time. We believe that, without embedding these physical principles into AI

models, there is a risk of developing predictions that, while accurate in specific cases,

may lack robustness and fail to generalise across different conditions or geographical

regions [Bonavita, 2023].

The HyPhAICC framework exemplifies how integrating physics with AI can lead

to more reliable and consistent results. By incorporating physical constraints directly

into the model architecture, the HyPhAICC approach ensures that predictions remain

physically plausible, even when applied to unseen data. This integration is crucial for

maintaining the model’s validity and relevance in real-world applications, where un-

derstanding the underlying physical processes is as important as the accuracy of the

predictions themselves. In the other direction, ML models can also help to discover

https://doi.org/10.5194/gmd-17-6657-2024
https://github.com/relmonta/hyphai
https://doi.org/10.5281/zenodo.1151854

8.2. DISCUSSION AND PERSPECTIVES 127

new physical laws or to improve the understanding of the existing ones as shown in

Raissi et al. [2019a] and Pannekoucke and Fablet [2020], but on a larger scale where

large derivative dictionaries are involved or using foundation models as in Herde et al.

[2024].

Therefore, as we look toward the future of AI for weather forecasting, it is clear

that foundation models alone may not suffice. The integration of physical principles

into these models is not just beneficial, but necessary to achieve the accuracy and gen-

eralisability required for operational weather forecasting. This approach represents a

balanced path forward, leveraging the strengths of both data-driven and physics-based

methods to tackle the complexities of atmospheric science.

The results of this hybrid architecture underscores the potential for integrating sci-

entific knowledge with machine learning to improve the accuracy and reliability of

weather predictions. As the field continues to evolve, integrating green computing

principles into the development of AI models will become increasingly important. Fu-

ture work should focus on optimising computational efficiency and minimising energy

consumption without sacrificing predictive performance. We hope that the principles

and results of this study will serve as motivation for further innovations, ultimately

contributing to more effective and environmentally responsible approaches to weather

forecasting and beyond.

With the advent of foundation models, the future of meteorological modelling holds

great promise. However, it is essential to recognise the limitations of purely data-driven

approaches and the importance of embedding physical principles into AI models. This

way, we guarantee that we can leverage AI advancements efficiently, leading to more

accurate, generalisable, and responsible weather forecasting solutions.

Conclusion (French version)

8.3 Conclusion

Dans cette thèse, nous avons introduit l’architecture HyPhAICC, une approche hybride

qui intègre des principes physiques aux réseaux de neurones, et l’avons appliqué à la

prévision immédiate de la couverture nuageuse. L’objectif principal de cette recherche

était d’améliorer l’apprentissage, l’efficacité et la cohérence physique des réseaux de

neurones en intégrant les dynamiques physiques dans des cadres de réseaux de neu-

rones classiques. Un autre objectif était d’améliorer la précision de la prévision immé-

diate de la couverture nuageuse. Plusieurs résultats clés émanant de l’étude montrent

l’efficacité, les avantages et les limites de cette approche.

Les éléments et composants clés de l’architecture ont été présentés, y compris l’implémentation

des dérivées dans les réseaux de neurones, la dynamique d’advection probabiliste et les

termes sources supplémentaires. Différents modèles ont été développés pour la tâche

de prévision de la couverture nuageuse.

Le premier modèle, HyPhAICC-1, a réussi à combiner les dynamiques d’advection et

un U-Net de style Xception en un seul réseau de neurones entraînable. Ce modèle sur-

passe le U-Net, traditionnellement utilisé pour des applications similaires, notamment

en termes de métriques qualitatives (Section 6.8,6.12). Ce résultat confirme le potentiel

des modèles hybrides pour améliorer la cohérence physique des prévisions, un aspect

important dans les applications météorologiques.

De plus, le modèle HyPhAICC-1 a démontré une remarquable efficacité des don-

nées. Ils ont atteint de bonnes performances avec significativement moins de données

d’entraînement par rapport au U-Net (Section 6.10). Cette efficacité est particulière-

ment précieuse dans les contextes opérationnels, où la disponibilité des données peut

être limitée ou coûteuse à acquérir.

L’approche hybride proposée a également facilité une convergence rapide du modèle

HyPhAICC-1 lors de l’entraînement (Section 6.9). Cela est dû aux contraintes physiques

qui guident le processus d’apprentissage, menant à une amélioration de l’efficacité glob-

ale du modèle. Nous avons également observé que le modèle HyPhAICC-1 était robuste

face aux changements de domaine et montrait un comportement consistent sur les don-

128

8.3. CONCLUSION 129

nées de disque complet (Section 6.11). Il fournit également, de manière indirecte, un

moyen d’estimer le champ de vitesse des nuages (Section 6.8).

Enfin, l’introduction d’un terme source dans HyPhAICC-2 a abouti à la plus grande

précision parmi les modèles impliqués dans l’evaluation (Section 7.2). Bien que cette

addition ait entraîné certains compromis dans le rendu visuel, le compromis était justifié

par les gains en précision prédictive. Cela fournit une seconde option avec une meilleure

précision par rapport au modèle HyPhAICC-1, chaque modèle pouvant être plus adapté

selon l’objectif d’utilisation. Deux autres versions du terme source ont également été

développées pour les modèles HyPhAICC-3 et HyPhAICC-4 afin de maintenir la co-

hérence physique de la modélisation, mais elles n’ont pas montré d’améliorations dans

les résultats (Section 7.3.2,7.3.5). Cela est principalement dû à la difficulté d’estimer les

variables inconnues dans le terme source, qui est probablement due à la représentation

déséquilibrée des types de nuages dans les données d’entraînement.

Cette étude met en lumière la valeur des approches interdisciplinaires pour abor-

der des problèmes scientifiques complexes. La collaboration entre la météorologie,

l’informatique et la physique peut conduire à des solutions prometteuses qui tirent parti

des forces de chaque domaine. De telles collaborations devraient être encouragées et

soutenues, surtout dans des contextes où chaque domaine a ses propres limites mais es-

saye d’affirmer sa superiorité. Ces collaborations sont plus cruciales que jamais pour

relever les défis liés au changement climatique et aux événements météorologiques

extrêmes (par exemple, les canicules ou les inondations).En particulier dans les ré-

gions manquant d’infrastructures météorologiques robustes pour acquérir des données

de haute qualité et effectuer des prévisions précises.

Au-delà de la prévision de la couverture nuageuse, les principes démontrés dans

cette recherche pourraient être appliqués à d’autres domaines de la science météorologique,

climatique et au-delà. La flexibilité de ces types d’approches hybrides ouvre de nouvelles

avenues d’exploration et d’application.

Malgré les résultats prometteurs, cette étude a révélé plusieurs limites et défis qui

doivent être abordés. L’un des principaux problèmes était la diffusivité du modèle, en

particulier dans HyPhAICC-1. Cela est due à l’utilisation d’un schéma de discrétisa-

tion de premier ordre, ce qui a impacté la précision des prévisions, notamment dans

des scénarios à fort contraste. Cela suggère un besoin de recherches futures pour ex-

plorer des méthodes de discrétisation alternatives qui pourraient atténuer ce problème

et améliorer la qualité des prévisions.

Un autre défi concernait les problèmes de stabilité. Le processus de définition

de tailles de pas de temps appropriées pour les dynamiques d’advection, notamment

compte tenu de l’incertitude des vitesses des nuages, posait un risque d’instabilité lors

de l’inférence du modèle. Assurer des performances robustes du modèle dans des con-

ditions atmosphériques variées nécessitera une attention particulière aux critères de

8.4. DISCUSSION ET PERSPECTIVES 130

stabilité tels que la condition CFL.

De plus, l’étude reconnait des limites dans l’estimation de certaines variables incon-

nues dans le cadre de modélisation physique (Section 7.3.2). Pour remédier à cela, de

futures recherches devraient se concentrer sur le raffinement de l’approche, en intégrant

potentiellement des techniques telles que les pénalités d’imprégnation des classes, pour

améliorer la cohérence physique et la précision du modèle.

L’essentiel de ce travail est publié dans la revue Geoscientific Model Development [El Mon-

tassir et al., 2024] à https://doi.org/10.5194/gmd-17-6657-2024. Cet article est égale-

ment fourni en annexe 9.4.

Le code source des modèles présentés dans cette étude est disponible sur GitHub à

https://github.com/relmonta/hyphai.

8.4 Discussion et perspectives

En s’appuyant sur les résultats et les défis identifiés dans cette recherche, plusieurs

pistes potentielles pour des travaux futurs émergent. Une direction prometteuse est

l’exploration de schémas de discrétisation avancés. En étudiant des méthodes de dis-

crétisation d’ordre supérieur, les chercheurs pourraient améliorer la précision des mod-

èles HyPhAICC, notamment en réduisant la diffusivité et en améliorant la représentation

des gradients abrupts dans les structures nuageuses.

Un autre domaine significatif pour de futures explorations concerne l’intégration

de processus physiques supplémentaires dans les modèles. L’incorporation de facteurs

tels que les dynamiques de l’humidité ou des variables thermodynamiques pourrait

améliorer les performances de ces modèles. Cette intégration permettrait une com-

préhension plus complète de la formation et du comportement des nuages, menant

potentiellement à des prévisions plus précises et fiables.

Une autre approche émergente consiste à utiliser des modèles fondation, qui sont des

modèles pré-entraînés à grande échelle conçus pour être adaptés à diverses tâches [Bishop

and Bishop, 2024]. Ces modèles excellent à capturer des motifs dans de grands ensem-

bles de données [Nguyen et al., 2023, Bodnar et al., 2024]. Cependant, la nature com-

plexe et chaotique des phénomènes atmosphériques présente des défis significatifs. Les

systèmes météorologiques sont régis par des lois physiques fondamentales qui dictent

comment des variables telles que la température, la pression et l’humidité interagis-

sent au fil du temps. Nous croyons que, sans intégrer ces principes physiques dans les

modèles d’IA, il y a un risque de développer des prévisions qui, bien que précises dans

des cas spécifiques, peuvent manquer de robustesse et échouer à généraliser à travers

différentes conditions ou régions géographiques [Bonavita, 2023].

L’architecture HyPhAICC illustre comment l’intégration de la physique avec l’IA peut

https://doi.org/10.5194/gmd-17-6657-2024
https://github.com/relmonta/hyphai

8.4. DISCUSSION ET PERSPECTIVES 131

conduire à des résultats plus fiables et cohérents. En intégrant directement des con-

traintes physiques dans l’architecture du modèle, l’approche HyPhAICC garantit que

les prévisions restent physiquement plausibles, même lorsqu’elles sont appliquées à des

données non vues. Cette intégration est cruciale pour maintenir la validité et la per-

tinence du modèle dans les applications réelles, où la compréhension des processus

physiques sous-jacents est tout aussi importante que la précision des prévisions elles-

mêmes. Dans l’autre sens, les modèles de ML peuvent également aider à découvrir de

nouvelles lois physiques ou à améliorer la compréhension des lois existantes, comme le

montrent Raissi et al. [2019a] et Pannekoucke and Fablet [2020], mais à une échelle

plus grande où de grands dictionnaires de dérivées sont impliqués ou en utilisant des

modèles fondation comme dans Herde et al. [2024].

Ainsi, alors que nous envisageons l’avenir de l’IA pour la prévision météorologique,

il est clair que les modèles fondation seuls peuvent ne pas suffire. L’intégration de

principes physiques dans ces modèles n’est pas seulement bénéfique, mais nécessaire

pour atteindre la précision et la généralisabilité requises pour la prévision météorologique

opérationnelle. Cette approche représente une voie équilibrée, tirant parti des forces des

méthodes basées sur les données et sur la physique pour relever les complexités de la

science atmosphérique.

Les résultats de cette architecture hybride souligne le potentiel d’intégrer la connais-

sance scientifique avec l’apprentissage automatique pour améliorer la précision et la

fiabilité des prévisions météorologiques. À mesure que le domaine continue d’évoluer,

l’intégration des principes du green computing dans le développement des modèles

d’IA deviendra de plus en plus importante. Les travaux futurs devraient se concentrer

sur l’optimisation de l’efficacité de l’entraînement et la minimisation de la consomma-

tion d’énergie sans compromettre les performances prédictives. Nous espérons que les

principes et les résultats de cette étude serviront de motivation pour d’autres innova-

tions, contribuant à des approches plus efficaces et respectueuses de l’environnement

dans le domaine des prévisions météorologiques et au-delà.

Avec l’avènement des modèles fondation, l’avenir de la modélisation météorologique

semble prometteur. Cependant, il est essentiel de reconnaître les limites des approches

purement basées sur les données et l’importance d’intégrer des principes physiques dans

les modèles d’IA, en plus d’imaginer des métriques d’évaluation plus adaptés et plus

représentatives de la qualité des prévisions. De cette manière, nous garantissons que

nous pouvons exploiter efficacement les avancées de l’IA, conduisant à des solutions de

prévision météorologique plus précises, généralisables et responsables.

C
ha

pt
er 9 Appendix

9.1 Confidence intervals

9.1.1 Bootstrapping

Bootstrapping is a statistical method used to estimate the sampling distribution of a

statistic by resampling with replacement from the original data. It is widely used to

estimate standard error, confidence intervals, and other statistical measures when the

theoretical distribution is unknown or difficult to derive. The key idea behind boot-

strapping is to treat the observed sample as the best representation of the population

and to generate many new samples (called bootstrap samples) by randomly sampling

from the observed data with replacement. The steps of the bootstrapping procedure are

described in Fig. 9.1.

Bootstrapping is particularly useful because it makes few assumptions about the

underlying distribution of the data and can be applied to a wide range of statistics.

However, it is important to note that bootstrapping is not a panacea and has limitations.

For example, bootstrapping may not be appropriate for small sample sizes or when the

data is not independent and identically distributed (i.i.d.).

9.1.2 Scores with confidence intervals

The Fig. 9.2 represents the score comparison showed in the Fig. 7.2, but with additional

confidence intervals. These confidence intervals were estimated using Bootstrapping,

with a threshold of 99%.

132

9.2. STOCHASTIC DIFFERENTIAL EQUATIONS: FOKKER-PLANCK EQUATION 133

Original Sample
Size n

Resample with replacement

Bootstrap sample Bootstrap sample Bootstrap sample

Statistic Statistic Statistic

Bootstrap distribution of the statistic

Figure 9.1: Bootstrapping begins with an original sample of data of size n. From this
original sample, many bootstrap samples (usually 1,000 or more) are generated by
sampling with replacement. Each bootstrap sample is of the same size n as the origi-
nal sample. For each of these bootstrap samples, the statistic of interest, such as the
mean, median, or standard deviation, is calculated. The distribution of these bootstrap
statistics is then used to estimate the standard error, construct confidence intervals, or
perform hypothesis testing.

9.2 Stochastic differential equations: Fokker-Planck

equation

9.2.1 Brownian motion

Brownian motion is a stochastic process that describes the random motion of particles in

a fluid. It is named after the botanist Robert Brown, who observed the random motion

of pollen grains in water. Brownian motion is a continuous-time stochastic process with

independent and stationary increments. It has several properties, including the Markov

property, i.e.

P[Bt+dt | Bt, Bs<t] = P[Bt+dt | Bt],

the paths of the process are almost surely continuous, i.e.,

lim
dt→0

P[|Bt+dt − Bt| > ϵ] = 0,

it has no drift E[Bt] = 0, and the variance of the process grows linearly with time

E[B2
t] = t. This standard Brownian motion is also known as the Wiener process.

In order to simulate the Brownian motion, we use the Euler-Maruyama method,

which is a numerical method to solve SDEs. The Euler-Maruyama method is an ex-

9.2. STOCHASTIC DIFFERENTIAL EQUATIONS: FOKKER-PLANCK EQUATION 134

20 40 60 80 100 120

30

40

50

h
ig
h
er

is
b
et
te
r

Lead time (minutes)

Macro-averaged F1 score
HyPhAICC-1 HyPhAICC-2 U-Net EXIM Persistence

(a)

20 40 60 80 100 120

30

40

50

h
ig
h
er

is
b
et
te
r

Lead time (minutes)

Macro-averaged Precision

(b)

20 40 60 80 100 120

30

40

h
ig
h
er

is
b
et
te
r

Lead time (minutes)

Macro-averaged Recall

(c)

20 40 60 80 100 120

50

60

70

h
ig
h
er

is
b
et
te
r

Lead time (minutes)

Overall Accuracy

(d)

20 40 60 80 100 120

20

30

h
ig
h
er

is
b
et
te
r

Lead time (minutes)

Macro-averaged Jaccard index

(e)

20 40 60 80 100 120

3

4

5

6

lo
w
er

is
b
et
te
r

Lead time (minutes)

Hausdorff distance (H)

(f)

1

Figure 9.2: Performance comparison between our HyPhAI-1, U-Net, EXIM, and the
Persistence baseline. Using five metrics including averaged F1 score(%), precision(%),
recall(%), accuracy(%), CSI(%) and Hausdorff distance (defined in Eq. (6.10)). These
scores were computed over 1000 random samples covering France in 2021. The confi-
dence intervals were estimated using Bootstrapping with a threshold of 99%.

9.2. STOCHASTIC DIFFERENTIAL EQUATIONS: FOKKER-PLANCK EQUATION 135

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−3

−2

−1

0

1

2

ω1

ω2

ω3

ω4

ω5

E[Bt]

Time (t)

B
t

Brownian motion simulation

Figure 9.3: Multiple realisations of the standard Brownian motion. The expectation of
the process is shown in red.

tension of the Euler method for ODEs. The Euler-Maruyama method for the Brownian

motion is given by:
Bt+dt = Bt +

√
dtξ,

ξ ∼ N (0, 1),
(9.1)

The Fig. 9.3 shows multiple realisations of Brownian motion using the Euler-Maruyama

method, each trajectorie is noted as ωi.

9.2.2 Additional details

In this section, we provide the details about the transition from Eq. (7.15) to Eq. (7.16).

The formal solution of the Eq. (7.13) is given by the exponential of the infinitesimal

generator L acting on the initial observable g0:

gt(x) =
(
etLg0

)
(x) (9.2)

gt is measurable, and the expectation of gt under the initial distribution P0(x) is

given by:

P0[gt] =
∫
Rn

gt(x)P0(x) dx

9.2. STOCHASTIC DIFFERENTIAL EQUATIONS: FOKKER-PLANCK EQUATION 136

This tracks how the average value of g evolves over time based on the initial state of

the system.

Replacing gt by its analytical expression (Eq. (9.2)) gives:

P0[gt] =
∫
Rn

(
etLg0

)
(x)P0(x) dx (9.3)

Using the adjoint operator of L, we can rewrite Eq. (9.3) as:

P0[gt] =
∫
Rn

g0(x)
(
etL⋆

P0
)

(x) dx (9.4)

where L⋆ is the adjoint operator of L, verifying the inner product property of ⟨Lg, h⟩ =
⟨g, L⋆h⟩.

Rewriting Eq. (9.4) gives:

P0[gt] =
∫
Rn

g0(x)Pt(x) dx (9.5)

which corresponds to the expectation of the initial observable g0 under a certain time-

dependent measure Pt(x).
Pt(x) ≜

(
etL⋆

P0
)

(x) (9.6)

As L⋆ is a linear operator, then etL⋆ is also a linear operator. The linear transformation

of a measure is a measure. Thus, Pt is a measure, that is, a probability density function.

This shows that the expectation of the observable gt under the initial distribution

P0 (Eq. (9.3)) is equivalent to the expectation of the initial observable g0 under the

distribution Pt(x) (Eq. (9.5)).

Moreover, Eq. (9.6) is a linear flow map, whose dynamics reads as

∂tP = L⋆P. (9.7)

9.2.3 Adjoint operator

As explained in Section 7.3.3, the operator L is defined as:

L = µ∂x + σ2

2 ∂2
x (9.8)

It remains to express the formal adjoint operator L⋆. The formal adjoint operator verifies

the inner product property of

⟨Lf, h⟩ = ⟨f, L⋆h⟩ ∀f, h ∈ C2
0(Rn)

9.3. ADDITIONAL RESSOURCES 137

where C2
c (Rn) is the space of smooth functions with compact support. The inner product

is defined as

⟨f, g⟩ =
∫

f(x)g(x) dx.

For the first term of the operator L, µ · ∂x, we proceed using the integration by parts:

⟨µ · ∂xf, h⟩ =
∫
Rn

µ(x)∂xf(x)h(x) dx

= [µ(x)f(x)h(x)] −
∫
Rn

f(x)∂x (µ · h) (x) dx

= ⟨f, −∂x (µ · h)⟩

[µ(x)f(x)h(x)] = 0 as f and h are compact support functions. Thus, the formal adjoint

operator of µ · ∂x is −∂x (µ · .).
For the second term of the operator L; 1

2σ2∂2
x, we proceed using the integration by

parts twice:

⟨1
2σ2 · ∂2

xf, h⟩ =
∫ 1

2σ2(x)∂2
xf(x)h(x) dx

=
[1
2σ2(x)∂xf(x)h(x)

]
−
∫ 1

2∂xf(x)∂x

(
σ2 · h

)
(x) dx

= −
∫ 1

2∂xf(x)∂x

(
σ2 · h

)
(x) dx

=
[
−1

2σ2(x)f(x)h(x)
]

+
∫ 1

2f(x)∂2
x

(
σ2 · h

)
(x) dx

= ⟨f,
1
2∂2

x

(
σ2 · h

)
⟩

Thus, the formal adjoint operator of 1
2σ2∂2

x is 1
2∂2

x (σ2·).
Therefore, the formal adjoint operator of the infinitesimal generator L is:

L⋆ = −∂x (µ·) + 1
2∂2

x

(
σ2·
)

9.3 Additional ressources

9.3.1 Robustness to change of coordinates

In a given coordinate system x = (xi), the advection of a passive scalar c(t, x) by a

velocity field u = (ui) reads as

∂tc + ui∂xi
c = 0. (9.9)

9.4. JOURNAL ARTICLE 138

A change of coordinate system from the coordinate system x to the coordinate system

y = (yj) related by x = x(y), remains to the dynamics

∂tC + vj∂yj
C = 0, (9.10)

where C(t, y) = c(t, x(y)) and where the velocity v = (vj) is deduced from the chain

rule

vj = ui∂xi
yj, (9.11)

(using Einstein’s summation convention).

Since HyPhAICC-1 architecture estimates a velocity field from the data, that is either

u or v, depending on the choice of the coordinate system, it implicitly accounts for

the chain rule Eq. (9.11). As a result, the HyPhAICC-1 architecture is not sensitive to

the coordinate system and can apply to regional domain as well as global projections.

However, numerical effects due to the finite spatio-temporal resolution associated with

the discretisation, can lead to abnormal distortion of signals after several time steps of

integration, e.g. the disk resulting from an orthographic projection of the Earth may be

deformed by the advection near its boundaries unless the velocity field is close to zero,

meaning that the apparent displacement is small.

Note that this relative invariance of HyPhAICC-1 to the choice of coordinate is be-

cause it only concerns the advection of a scalar field. Covariant transport of vector or

tensor fields would imply additional terms (Christoffel symbols, e.g. Nakahara [2003])

that would break the invariance of HyPhAICC-1 as it is formulated here.

9.4 Journal article

Geosci. Model Dev., 17, 6657–6681, 2024
https://doi.org/10.5194/gmd-17-6657-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odeldescription

paperHyPhAICC v1.0: a hybrid physics–AI approach for probability
fields advection shown through an application to cloud cover
nowcasting
Rachid El Montassir1, Olivier Pannekoucke1,2,3, and Corentin Lapeyre1

1CERFACS, Toulouse, France
2INPT-ENM, Toulouse, France
3CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France

Correspondence: Rachid El Montassir (elmontassir@cerfacs.fr) and Olivier Pannekoucke (olivier.pannekoucke@meteo.fr)

Received: 20 December 2023 – Discussion started: 20 February 2024
Revised: 8 July 2024 – Accepted: 18 July 2024 – Published: 10 September 2024

Abstract. This work proposes a hybrid approach that com-
bines physics and artificial intelligence (AI) for cloud cover
nowcasting. It addresses the limitations of traditional deep-
learning methods in producing realistic and physically con-
sistent results that can generalise to unseen data. The pro-
posed approach, named HyPhAICC, enforces a physical be-
haviour. In the first model, denoted as HyPhAICC-1, a multi-
level advection dynamics is considered a hard constraint for a
trained U-Net model. Our experiments show that the hybrid
formulation outperforms not only traditional deep-learning
methods but also the EUMETSAT Extrapolated Imagery
model (EXIM) in terms of both qualitative and quantitative
results. In particular, we illustrate that the hybrid model pre-
serves more details and achieves higher scores based on sim-
ilarity metrics in comparison to U-Net. Remarkably, these
improvements are achieved while using only one-third of the
data required by the other models. Another model, denoted as
HyPhAICC-2, adds a source term to the advection equation,
it impaired the visual rendering but displayed the best per-
formance in terms of accuracy. These results suggest that the
proposed hybrid physics–AI architecture provides a promis-
ing solution to overcome the limitations of classical AI meth-
ods and contributes to open up new possibilities for combin-
ing physical knowledge with deep-learning models.

1 Introduction

Meteorological services are responsible for providing accu-
rate and timely weather forecasts and warnings to ensure
public safety and mitigate damage to property caused by
severe weather events. Traditionally, these forecasts have
been based on numerical weather prediction (NWP) mod-
els, which provide predictions of atmospheric variables such
as temperature, humidity, and wind speed. However, NWP
models have inherent limitations in their ability to capture
small-scale weather phenomena such as thunderstorms, tor-
nadoes, and localised heavy-rainfall events (Schultz et al.,
2021; Matte et al., 2022; Joe et al., 2022).

To address this limitation, the concept of nowcasting has
emerged as a valuable tool in meteorology (Lin et al., 2005;
Sun et al., 2014). Nowcasting refers to the process of us-
ing recently acquired high-resolution observations to gener-
ate short-term forecasts of weather conditions, typically on a
timescale of minutes to a few hours. Nowcasting techniques
exploit various observational data sources, including radar,
satellite, lightning, and ground-based observations, to gener-
ate real-time estimates of weather conditions and can take ad-
vantage of these recent data to significantly outperform NWP
on short lead times (Lin et al., 2005; Sun et al., 2014).

Cloud cover nowcasting is a critical component of weather
forecasting. It is used to predict the likelihood of precipi-
tation, thunderstorms, and other hazardous weather events.
Accurate cloud cover forecasts on a short timescale are par-
ticularly important for weather-sensitive applications such as
aviation, agriculture, and renewable energy production.

Published by Copernicus Publications on behalf of the European Geosciences Union.

6658 R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting

Traditionally, cloud cover forecasting has been done us-
ing physics-based methods, relying on the laws of physics to
model the evolution of cloud cover, e.g. cloud motion vectors
as in Bechini and Chandrasekar (2017) and García-Pereda
et al. (2019), optical flow (Wood-Bradley et al., 2012), or
NWP-based data assimilation (Ballard et al., 2016). How-
ever, with the recent advances in artificial intelligence (AI)
and machine learning (ML), data-driven methods have be-
come increasingly popular for these types of tasks (e.g. Es-
peholt et al., 2022; Ravuri et al., 2021; Trebing et al., 2021;
Ayzel et al., 2020; Berthomier et al., 2020; Shi et al., 2015).

Among these data-driven methods, long short-term mem-
ory (LSTM) networks, introduced by Hochreiter and
Schmidhuber (1997), stand out. LSTMs are a type of re-
current neural network capable of learning long-term depen-
dencies; they are useful for time series predictions, as they
can learn from past entries to predict future values. In tasks
involving multidimensional data, they are commonly used
with convolutional layers, forming what is known as a con-
volutional LSTM. This neural architecture excels in captur-
ing spatio-temporal correlations compared to fully connected
LSTMs (Shi et al., 2015). Spatio-temporal LSTM (Wang
et al., 2018) increases the number of memory connections
within the network, allowing efficient flow of spatial infor-
mation. This model was further optimised by adding stacked
memory modules (Wang et al., 2019). U-Net is another pop-
ular architecture; it was originally designed by Ronneberger
et al. (2015) for biomedical image segmentation. Unlike
LSTMs, U-Net has no explicit memory modelling, yet it has
shown good performance for a binary cloud cover nowcast-
ing task as shown in Berthomier et al. (2020). Furthermore,
it has found application in precipitation nowcasting, as high-
lighted by Ayzel et al. (2020), and a modified version was
used for a similar task in Trebing et al. (2021).

Machine learning models hold great promise for address-
ing scientific challenges associated with processes that can-
not be fully simulated due to either a lack of resources or
the complexity of the physical process. However, their appli-
cation in scientific domains faced challenges, including con-
straints related to large data needs, difficulty in generating
physically coherent outcomes, limited generalisability, and
issues related to explainability (Karpatne et al., 2017). To
overcome these challenges, incorporating physics into ML
models is of paramount importance. It leverages the inher-
ent structure and principles of physical laws to improve the
interpretability of the model, handle limited labelled data, en-
sure consistency with known scientific principles during op-
timisation, and ultimately improve the overall performance
and applicability of the models, making them more likely
to be generalisable to out-of-sample scenarios. As discussed
by Willard et al. (2022) and Cheng et al. (2023), the avail-
able hybridisation techniques leverage different aspects of
ML models, e.g. the cost function, the design of the archi-
tecture, or the weights’ initialisation.

Figure 1. Illustration of error modelling. The physics-based model
is used to predict the output, and the ML model is used to predict
the residuals. Adapted from Forssell and Lindskog (1997).

A common method to ensure the consistency of ML mod-
els with physical laws is to embed physical constraints within
the loss function (Karpatne et al., 2017). This involves in-
corporating a physics-based term weighted by a hyperpa-
rameter, alongside the supervised error term. This addition
enhances prediction accuracy and accommodates unlabelled
data. It has proven to be effective in addressing a range of
problems, including uncertainty quantification, parameteri-
sation, and inverse problems (Daw et al., 2021; Jia et al.,
2019; Raissi et al., 2019). However, one drawback lies in the
challenge of appropriately tuning the hyperparameter.

Given the necessity for an initial choice of model pa-
rameters in many ML models, researchers explore ways to
inform the initial state of a model with physical insights.
One possible way is transfer learning, where a pre-trained
model is fine-tuned with limited data (Jia et al., 2021). Addi-
tionally, simulated data from physics-based models can be
employed for pre-training, akin to methods used in com-
puter vision. This technique has found application in diverse
fields, including biophysics (Sultan et al., 2018), temperature
modelling (Jia et al., 2019), and autonomous vehicle train-
ing (Shah et al., 2017). However, this method requires the
assumption that the underlying physics of the simulated data
aligns with the real-world data.

To address imperfections in physics-based models, a com-
mon strategy is error modelling. Here, an ML model learns to
predict the errors (also called residuals) made by the physics-
based model (Forssell and Lindskog, 1997). This approach
leverages learned biases to correct predictions (see Fig. 1).

A more general approach that does not deal only with er-
rors is to create hybrid models merging physics-based mod-
els and ML models. For example, in scenarios where the dy-
namics of physics are fully defined, the output of a physics-
based model can be used as input to an ML model. This ap-
proach has demonstrated enhanced predictions in tasks such
as lake temperature modelling (Daw et al., 2021). However,
in cases where a physical model contains unknown elements
requiring coupling with an ML model for joint resolution,
a viable strategy involves substituting a segment of a com-
prehensive physics-based model with a neural network. An

Geosci. Model Dev., 17, 6657–6681, 2024 https://doi.org/10.5194/gmd-17-6657-2024

R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting 6659

illustrative example is found in sea surface temperature pre-
diction, where de Bezenac et al. (2018) employed a neural
network to estimate the motion field. In alignment with this
strategy, our study proposes leveraging physical knowledge
based on the advection equation to address the cloud cover
nowcasting task. This results in simulating the advection of
clouds by winds while using a neural network to estimate un-
known variables, such as the two components of the velocity
field.

Moreover, our study introduces an additional requirement,
cloud type classification. Specifically, our dataset contains
cloud cover observations with pre-existing categorical clas-
sifications based on cloud types (e.g. very low clouds, low
clouds). This necessitates adopting a probabilistic approach
in our hybrid architecture, which, to the best of our knowl-
edge, has not been explored in geophysics. Indeed, adopting
a probabilistic approach with probability maps allows us to
account for the inherent variability and uncertainties associ-
ated with the model’s predictions. This also provides a more
natural framework for such a classification problem for fur-
ther extensions of the modelling beyond the advection.

Rather than using the theoretical solution of the equa-
tion as proposed in de Bezenac et al. (2018), our hybrid
approach solves a system of partial differential equations
(PDEs) within a neural network, which makes the architec-
ture more flexible. However, it poses some implementation
challenges, as explained in Appendix B. This paper is or-
ganised as follows. Section 2 introduces the hybrid architec-
ture. Section 3 is dedicated to presenting results and perfor-
mance analysis compared to state-of-the-art models. Finally,
in Sect. 4, we draw conclusions based on our findings.

2 Methodology

In this work, we address applications involving dynamics
with unknown variables that require estimation. For example,
the cloud motion field is one of the unknown variables in the
application considered. In such cases, as discussed in Sect. 1,
a joint resolution approach is more appropriate. Here, the
physical model utilises the neural network outputs to com-
pute predictions, integrating the two models as follows:

y = φ ◦ fθ (x) ,

where x is the input, fθ represents the neural network, φ de-
notes the physical model, and y is the output. In this setup,
φ implicitly imposes a hard constraint on the outputs, po-
tentially accelerating the convergence of the neural network
during training.

This method raises some trainability challenges as the
physics-based model is involved in the training process, and
it should be differentiable, in the sense of automatic differ-
entiation, in order to allow the back-propagation of gradi-
ents (refer to Appendix B). We show in Appendix B how
spatial derivatives of PDEs can be approximated within a

neural network in a differentiable way using convolution
operations. This allows us to compute gradients and back-
propagate them during the training process. This fundamen-
tal knowledge serves as a foundation for our investigation
of novel hybrid physics–AI architectures. With these estab-
lished principles, we present in this section the proposed hy-
brid architecture, which is applied to cloud cover nowcasting.

In this section, we introduce our hybrid physics–AI archi-
tecture, detailed in Sect. 2.1. Section 2.2 explains the differ-
ent physical modelling approaches investigated in this study.
Following that, Sect. 2.3, 2.4, and 2.5 present the training
procedure, evaluation metrics, and benchmarking procedure,
respectively.

2.1 The HyPhAICC architecture

The proposed hybrid architecture is a dual-component sys-
tem (see Fig. 2). The first component is composed of one
or more classical deep-learning models. These models pro-
cess the most recent observations, yielding predictions for
the physical unknowns of interest. The second block takes
as inputs the physical variables, whether known or predicted
by the neural networks, along with initial conditions. This
second component time integrates one or multiple PDEs to
generate the subsequent state of the system. The fourth-order
Runge–Kutta (RK4) method is used for time integration.
These PDEs encode essential physical knowledge. As dis-
cussed in the Appendix B4, the spatial derivatives are ap-
proximated using convolutional layers.

The parameters of the first component are trainable; they
are optimised during training to estimate the unknown vari-
ables. However, we froze the parameters of the second block,
as it represents already-known operations. This ensures that
the second block maintains its fixed structure, representing
the known physical knowledge encoded in the equations,
while the trainable block focusses on learning and predicting
the unknown aspects of the system. This architecture com-
bines the physical knowledge encoded in the equations with
the pattern extraction capabilities of neural networks.

In the following, we employ this architecture for cloud
cover nowcasting, with different models being implemented,
each using a different physical modelling approach.

2.2 Physical modelling

Before delving into the details of the proposed models, let us
first establish the essential characteristics of the data at hand.
In this work, we investigate cloud cover nowcasting over
France using cloud cover satellite images captured by the
Meteosat Second Generation (MSG) satellite at 0° longitude.
The spatial resolution of the data over France is≈ 4.5 km and
the time step is 15 min, and each image is of size 256× 256.
These images have been processed by EUMETSAT (García-
Pereda et al., 2019), classifying each pixel into 16 distinct

https://doi.org/10.5194/gmd-17-6657-2024 Geosci. Model Dev., 17, 6657–6681, 2024

6660 R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting

Figure 2. HYPHAICC-1. The proposed hybrid model consists of a U-Net Xception-style model to estimate the velocity field from the last
observations; the estimated velocity field is smoothed using a Gaussian filter. The equation is numerically integrated using the fourth-order
Runge–Kutta method over multiple time steps. The initial condition (f0) is updated after each time step to the current state, allowing the
computation of the next state.

Figure 3. HYPHAICC-2. The second version of the proposed hybrid model. It consists of a U-Net Xception-style model to estimate the
velocity field and a second U-Net model to estimate the source term from the last observations. We highlighted the additional parts compared
to Fig. 2 and faded the unchanged ones.

categories. We only considered cloud-related categories, 12
in total.

In what follows, we introduce two models: HYPHAICC-
1 which uses an advection equation to capture the motion of
clouds, and HYPHAICC-2 which extends this by incorporat-
ing a simple source term in the advection equation.

2.2.1 Advection equation: HyPhAICC-1

To easily model the advection of these maps with different
cloud types, we adopt a probabilistic approach; i.e. rather
than representing a single map showing assigned labels, we
use 12 maps, each representing the likelihood or probabil-
ity of a specific cloud type being present at a given location.
These maps must satisfy the following properties.

1. Non-negativity. P(x, t)≥ 0 for all x and t , with x=
(x,y), which ensures that the probabilities remain non-
negative.

2. Bound preservation. P(x, t)≤ 1 for all x and t , which
ensures that no probability exceeds 1.

3. Probability conservation.
∑C
i=1P

i
X(x, t)= 1 for all x

and t , with C = 12 being the total number of cloud
types. This property guarantees that the sum of all prob-
abilities is equal to 1.

This approach, known as “one-hot encoding”, is more natural
to address classification tasks. It involves using 12 distinct
advection equations, each corresponding to a specific cloud

Geosci. Model Dev., 17, 6657–6681, 2024 https://doi.org/10.5194/gmd-17-6657-2024

R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting 6661

type, as described below:

∂tPj +V ·∇Pj = 0 ∀j ∈ {1,2, . . .,C} , (1)

where Pj (x) represents the classification probability of the
j th cloud type and V (x) is the velocity field, which has two
components, i.e. u(x) and v(x). Finally, ∇ denotes the gradi-
ent operator.

Although one might initially perceive similarities between
this modelling and a Fokker–Planck equation (Fokker, 1914;
Pavliotis and Stuart, 2008, Chap. 6), the modelling approach
presented here deviates significantly from the Fokker–Planck
equation. In contrast, the Fokker–Planck equation is typi-
cally employed to depict the evolution of probability distri-
butions for time-continuous Markov processes over continu-
ous states, e.g. Brownian motion. On the other hand, Eq. (1)
characterises the probability advection for each finite state.

Nevertheless, by employing equations in the following
form:

∂tPj +L
(
Pj
)
= 0 ∀j ∈ {1,2, . . .,C} , (2)

where L represents a differential operator with non-zero
positive derivative orders, we demonstrate in Appendix D
that the probability conservation property is maintained over
time. This assertion holds even in scenarios where the dis-
cretisation scheme introduces some diffusion or dispersion
effects during the resolution process (see Appendix D2 and
Appendix E). However, the non-negativity and bound preser-
vation properties are compromised when a discretisation
scheme with dispersion effects is used, unlike the diffusive
schemes. Consequently, we opt for the first-order upwind
diffusive discretisation scheme (see Appendix E2 for details
about the equivalent equation) along with the RK4 for time
integration. During the time integration process, we perform
the integration by subdividing the time step 1t = 1 (rep-
resenting 15 min) into smaller steps δt = 0.1 to satisfy the
Courant–Friedrichs–Lewy (CFL) condition (Courant et al.,
1928); this condition ensures the stability of the numerical
solution.

In the first hybrid model, denoted as HYPHAICC-1, we
use a U-Net Xception-style model (Tamvakis et al., 2022)
inspired by the Xception architecture (Chollet, 2017). It takes
the last four observations stacked on the channel axis and
estimates the velocity field (see Fig. 2). This model will be
guided during training by the advection equation to learn the
cloud motion patterns.

2.2.2 Advection with source term: HyPhAICC-2

As the advection alone does not take into account other phys-
ical processes, especially class change, appearance, and dis-
appearance of clouds, we propose adding a trainable source
term to capture them. In this first attempt, we use a simple
source term:

∂tPj = tanh(Sj) ∀j ∈ {1,2, . . .,C} , (3)

where Sj is a 2D map. The hyperbolic tangent activation
function (tanh) is used to keep the values of the source term
in a range of [−1,1], preventing it from exploding.

The second version of the hybrid model, denoted as
HYPHAICC-2, adds this source term to the advection. This
modelling is described in the following equation:

∂tPj +V ·∇Pj = tanh(Sj) ∀j ∈ {1,2, . . .,C} , (4)

where Sj is estimated using a second U-Net model (see
Fig. 3).

While the previous modelling describes the missing phys-
ical process in the advection, it does not satisfy the probabil-
ity conservation property. Thus, this modelling does not con-
serve the probabilistic nature of P over time. To ensure the
appropriate dynamics of probability, a robust framework is
provided by continuous-time Markov processes across finite
states (Pavliotis and Stuart, 2008, Chap. 5). In this frame-
work, the probability trend is controlled by linear dynamics,
ensuring the bound preservation, positivity, and probability
conservation. Two other models based on this framework,
named HyPhAICC-3 and HyPhAICC-4, are presented in Ap-
pendix A1 and Appendix A2, respectively. However, these
models did not show any performance improvement com-
pared to the simpler HyPhAICC-1.

Indeed, beyond the performance aspect, this hybridisation
framework is flexible, is not limited to the advection, and can
be extended to other physical processes.

2.3 Training procedure

The training was carried out on a dataset containing about 3
years of data from 2017 to 2019, with a total of 105 120 im-
ages. The images with zero cloud cover were removed, then
we assembled all the sequences with 12 consecutive images.
After this cleaning step, we randomly split the dataset, 8224
sequences were used for training, and 432 for validation. The
test set was performed on a separate dataset from the same
region but from 2021.

To improve the diversity of the training set and take into
account a possible overfitting on the typical movements of
clouds in the western Europe region, we randomly applied
simple transformations to the images. More precisely, we
applied rotations of 90, 180, and 270°, which increased the
dataset size and improved the model’s ability to learn various
cloud motion patterns.

PyTorch framework is used to implement the models, and
the cross-entropy loss function is employed for training. This
function is given by

l(Y,p)=−
1
N

N∑
i=1

C∑
j=1

Yi,j log(pi,j), (5)

where N represents the total number of pixels, C denotes the
number of classes, pi,j is the predicted probability of the ith
pixel belonging to the j th class, and Yi corresponds to the

https://doi.org/10.5194/gmd-17-6657-2024 Geosci. Model Dev., 17, 6657–6681, 2024

6662 R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting

one-hot encoded ground truth at the ith pixel, i.e. Yi,j = 0,
except for the correspondent cloud type, where Yi,j = 1.

The training of the model parameters is achieved through
gradient-based methods. Here, an Adam optimiser (Kingma
and Ba, 2017) is used with a learning rate of 10−3 and a batch
size of 4 with 16 accumulation steps, allowing us to simulate
a batch size of 64. The training was performed using a single
Nvidia A100 GPU for 30 epochs.

You can find the source code for our project on
GitHub at https://github.com/relmonta/hyphai (last access:
7 June 2024).

2.4 Performance metrics

To evaluate the performance of competing models in this
study, we employed various metrics. Firstly, standard clas-
sification metrics are used to evaluate the statistical aspect,
then the Hausdorff distance is introduced to evaluate the
qualitative aspect of the results.

2.4.1 Classic classification metrics

The selected metrics include accuracy, precision, recall, F1
score, and critical success index (CSI, Gilbert, 1884), also
called intersection over union (IoU) or Jaccard index. These
metrics offer multiple insights into different aspects of model
performance. Accuracy measures the proportion of correct
predictions, while precision quantifies the proportion of cor-
rect positive predictions relative to the total number of pos-
itive predictions. Recall evaluates the proportion of correct
positive predictions relative to the total number of positive
cases. The F1 score provides a balance between precision
and recall. The CSI measures the overlap between prediction
and ground truth, providing a measure of similarity.

To compute these metrics for the j th class, we use the fol-
lowing formulas:

Accuracyj =
TPj +TNj

TPj +TNj +FPj +FNj
,

Recallj =
TPj

TPj +FNj
,

Precisionj =
TPj

TPj +FPj
,

F1j =
2×Precisionj ×Recallj

Precisionj +Recallj
,

CSIj =
TPj

TPj +FPj +FNj
.

These metrics are calculated separately for each class, where
TP denotes instances correctly identified as positive cases,
TN refers to instances correctly identified as negative cases,
FP represents cases misclassified as positives, and FN is the
number of positive cases that are classified as negative.

To obtain an overall performance evaluation of the accu-
racy, we use the following formula:

Accuracy=

∑
jTPj

Total number of cases
.

For the remaining metrics, we can calculate two types of av-
erage: the macro-average and the micro-average. The macro-
average is the arithmetic mean of the metric scores computed
for each class, while the micro-average considers all classes
as a single entity (Takahashi et al., 2022). Given the highly
imbalanced distribution of labels in our dataset, we adopted
the macro-average to evaluate the models’ performance (Fer-
nandes et al., 2020; Wang et al., 2021). The macro-averaged
F1 is defined as in Sokolova and Lapalme (2009) as follows:

F1macro =
2×Precisionmacro×Recallmacro

Precisionmacro+Recallmacro
,

where the macro-averaged precision and recall are defined as
follows:

Precisionmacro =
1
C

C∑
j=1

Precisionj .

Recallmacro =
1
C

C∑
j=1

Recallj .

We define the macro-averaged CSI following the same
method as follows:

CSImacro =
1
C

C∑
j=1

CSIj .

These pixel-wise metrics are commonly used for evaluat-
ing image segmentation tasks or more generally classifica-
tion tasks, but it is important to note the limitations of these
metrics and evaluation approaches. Although selected met-
rics provide valuable insights, they do not capture all aspects
of model performance, for instance, because they do not take
into account the spatial correspondence between predicted
and ground-truth cloud structures. This means that a model
can statistically perform well using pixel-wise metrics but
still have poor performance in identifying the correct cloud
structures or miss a significant amount of detail. As a result,
evaluating cloud cover forecasting models based solely on
pixel-wise metrics may not be sufficient to ensure their ef-
fectiveness in real-world applications.

2.4.2 Hausdorff distance

The Hausdorff distance is a widely used metric for medical
image segmentation (e.g. Karimi and Salcudean, 2019; Ay-
din et al., 2021). This metric measures the similarity between
the predicted region and the ground-truth region by compar-
ing structures rather than just individual pixels. It can be ex-
pressed using either Eq. (6) or Eq. (7), which are described

Geosci. Model Dev., 17, 6657–6681, 2024 https://doi.org/10.5194/gmd-17-6657-2024

R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting 6663

Figure 4. Illustration of the minp∈Ad(p,q1) and minq∈Bd(p1,q)
quantities used to compute the Hausdorff distance; for each point,
we look for the closest point in the other region.

as follows:

h1(A,B)=
1
|A|

∑
p∈A

min
q∈B

d(p,q), (6)

h2(A,B)=max
p∈A

min
q∈B

d(p,q), (7)

where d(p,q) is the Euclidean distance between p and q.
The former computes the mean distance between each point
A and the closest point in B, providing an overall measure
of similarity. The latter measures the maximum distance be-
tween a point in A and the closest point in B (Fig. 4), this
formulation is a more conservative measure that focuses on
the largest discrepancies between the sets. Both formulations
exhibit sensitivity to the loss of small structures. Specifically,
when small regions in the ground truth are non-empty while
their corresponding regions in the prediction are empty, the
search area expands, which increases the overall distance.
We opt to limit this search region to the maximum distance
traversable by a cloud. Consequently, we introduce the re-
stricted Hausdorff distance (rHD), which is defined as fol-
lows:

h3(A,B)=
1
|A|

∑
p∈A

min
q∈Br (p)

d(p,q), (8)

where Br(p) is the ball of radius r centred at p. In our ex-
periments, we set r to 10 pixels, which corresponds to a ra-
dius of approximately 45–50 km, corresponding to the max-
imum distance crossed by clouds in one time step, consider-
ing 200 km h−1 as the cloud’s maximum speed. This means
that for each pixel in the first set, we compute the distance
to the closest pixel in the second set, but we only do this if
it is within a radius of 10 pixels. This allows us to reduce
the impact of small regions in the ground truth that are not

Figure 5. The U-Net architecture considered in the comparison. U-
Net is iteratively used to predict the next state given the previous
ones.

present in the prediction, while still rewarding the model if it
correctly predicts them.

The Hausdorff distance is a directed metric,
i.e. hp(A,B) 6= hp(B,A); thus, we consider the maxi-
mum of the two directed distances as follows:

H(S, Ŝ)=max
(
h3(S, Ŝ),h3(Ŝ,S)

)
, (9)

where S and Ŝ are the coordinates of positive pixels in the
ground truth and prediction, respectively.

2.5 Benchmarking procedure

To assess the performance of the proposed models, we con-
sider established benchmarks. In the comparative evalua-
tion, we included the well-known U-Net (Ronneberger et al.,
2015). This classical U-Net is different from the one used to
estimate the velocity in the proposed hybrid models (refer to
Figs. 2 and 3). The choice of this classical U-Net for com-
parison is justified by the fact that it is the most widely used
in the literature for the same task (e.g. Ayzel et al., 2020;
Berthomier et al., 2020; Trebing et al., 2021). U-Net archi-
tecture is structured with a contracting path and an expansive
path connected by a bottleneck layer. The contracting path
comprises four levels of convolutional layers, each followed
by a max pooling layer. The number of filters we used in
these convolutional layers progressively increases from 32
to 64, 128, and finally 256. On the other hand, the expan-
sive path consists of four sets of convolutional layers, each
followed by an upsampling layer. These layers help in the re-
construction and expansion of the feature maps to match the
original input size. We iterate over U-Net, as illustrated in
Fig. 5, to generate predictions for multiple future time steps.

In addition to U-Net, we consider in our comparison
a product called EXIM (for extrapolated imagery), devel-

https://doi.org/10.5194/gmd-17-6657-2024 Geosci. Model Dev., 17, 6657–6681, 2024

6664 R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting

Figure 6. Performance comparison between our HyPhAICC-1, U-Net, EXIM, and the persistence baseline using five metrics: averaged F1
score (%), precision (%), recall (%), accuracy (%), CSI (%), and Hausdorff distance (defined in Eq. 9). These scores were computed over
1000 random samples covering France in 2021. See Fig. A3 for confidence intervals.

oped by EUMETSAT as part of their NWCSAF/GEO prod-
ucts (García-Pereda et al., 2019). This product involves ap-
plying the atmospheric motion vector field multiple times to
a current image to produce forecasts. Each pixel’s new lo-
cation is calculated using the motion vector, and this pro-
cess is repeated assuming a constant displacement field. For
continuous variables like brightness temperature, the method
uses weighted contributions to forecast pixel values, ensur-
ing that there are no gaps by interpolating values from ad-
jacent pixels if necessary. For categorical variables such as
cloud type, the pixel value is directly assigned to the new lo-
cation, and conflicts are resolved by overwriting. If a pixel
is not touched by any trajectory, the value is determined by
the majority class of its nearest neighbours (García-Pereda
et al., 2019) (https://www.nwcsaf.org/exim_description, last
access: 4 July 2024). This approach is also called kinematic
extrapolation.

We also included a commonly used meteorological base-
line method known as “persistence”. This method predicts
future time steps by simply using the last observation, a
relevant approach in nowcasting since weather changes oc-
cur slowly, making the last observation a strong prediction,
which makes the persistence baseline challenging to outper-
form.

We tested the competing models using 1000 satellite im-
ages samples captured over France from January 2021 to Oc-
tober 2021.

3 Experiments and results

We trained the hybrid models, in addition to the U-Net model
used for comparison, on 3 years of data. The models were
designed to predict a 2 h forecast at 15 min intervals.

3.1 Quantitative analysis

Diving into the numerical evaluations, here we present a
comparative analysis based on standard metrics used in im-
age classification tasks. Figure 6 shows a score comparison
using different metrics over multiple lead times up to 2 h.
The confidence intervals, indicating statistical significance,
are computed using a resampling method called bootstrap,
which is a statistical technique that involves repeatedly sam-
pling from a single dataset to generate numerous simulated
samples (Efron, 1979). Through this method, standard er-
rors, confidence intervals, and hypothesis testing can be com-
puted. Table 1 and Fig. 6 show that HyPhAICC-2 is slightly
better in terms of precision and accuracy than the model us-
ing advection equation without source term (HyPhAICC-1),

Geosci. Model Dev., 17, 6657–6681, 2024 https://doi.org/10.5194/gmd-17-6657-2024

R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting 6665

Table 1. Score comparison at the 120 min lead time (↑: higher is better; ↓: lower is better). The best scores are indicated in bold font.

Model ↑ F1 score ↑ precision ↑ recall ↑ accuracy ↑ CSI ↓ Hausdorff distance (H)

HYPHAICC-1 26.6 % 27.5 % 25.9 % 55.4 % 17.2 % 6.23
HYPHAICC-2 26.5 % 27.6 % 25.7 % 57.3 % 17.1 % 6.54
U-Net 24.9 % 25.6 % 24.5 % 56.0 % 16.1 % 6.90
EXIM 23.5 % 23.5 % 23.6 % 49.4 % 14.9 % 5.08
Persistence 21.8 % 21.9 % 21.8 % 47.9 % 13.8 % 5.53

Figure 7. Case study of different models’ forecasts. The left column shows ground truth at different time steps. The middle columns show,
from left to right, HyPhAICC-1, HyPhAICC-2, and the U-Net predictions, respectively. The right column shows EXIM’s predictions. The
light beige colour corresponds to the land areas, and the “ST” abbreviation in the legend stands for “semi-transparent”.

and both of these hybrid models significantly outperform the
U-Net model in terms of F1 score, precision, and CSI and
perform similarly in terms of accuracy and recall. This is be-
cause the U-Net model tends to give more weight to the dom-
inant classes at the expense of the other classes, resulting in
a higher false positive rate.

Although quantitative performance metrics offer a numer-
ical assessment of a model’s ability to predict weather states,
providing crucial insights into the reliability and precision
of forecasts, they are not sufficient on their own. Qualita-
tive aspects also play a significant role, including the visual
interpretation of model predictions and an assessment of its
capability to capture complex atmospheric patterns and phe-
nomena.

3.2 Qualitative analysis

Figure 7 presents a case study involving multiple mod-
els, highlighting that HyPhAICC-1 produces more realis-
tic and less blurry forecasts compared to the U-Net model.
To substantiate this claim, we used the restricted Hausdorff
distance (rHD), described in Eq. (8), to assess the sharp-
ness of predicted cloud boundaries. Both HyPhAICC-1 and
HyPhAICC-2 models outperformed the U-Net model in this
metric, as shown in Fig. 6. EXIM and the persistence baseline
exhibit superior results in terms of the Hausdorff metric, and
the gap between them and the other models increases with
the lead time, which is visually expected. The reason behind
this result is that the hybrid models, especially HyPhAICC-

https://doi.org/10.5194/gmd-17-6657-2024 Geosci. Model Dev., 17, 6657–6681, 2024

6666 R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting

Figure 8. Estimated velocity field by the U-Net Xception-style ar-
chitecture used in the HyPhAICC-1 model.

1, preserve more details compared to the U-Net model. The
lost details in HyPhAICC-1’s predictions are only due to the
numerical scheme. In ideal conditions, HyPhAICC-1 should
preserve the same details during the advection process, and
there is no other trainable part in between that can smooth
the predictions; however, the upwind discretisation used a
scheme that adds a numerical diffusion and crushing the
small cloud cells (refer to Appendix E for more details).
In contrast, U-Net focuses more on dominant structures and
labels, which are more likely to persist over time, which
is statistically relevant. Nevertheless, EXIM and the persis-
tence baseline still outperform the other models in this re-
gard. This observation aligns with the fact that the persis-
tence uses the last observation as its predictions, and EXIM
is advecting the last observation using the kinematic extrap-
olation, which keeps the same level of details without diffu-
sion effects (García-Pereda et al., 2019). However, EXIM is
slightly more accurate, compared to persistence, in terms of
predicted cloud positions.

In Fig. 8, we present the estimated velocity field generated
by the HyPhAICC-1 model, illustrated in Fig. 2. This field
exhibits a high level of coherence with the observed cloud
cover displacements, with exceptions in cloud-free areas, as
expected. It is important to emphasise that this velocity field
is derived exclusively from cloud cover images, without re-
lying on external wind data or similar sources. This aspect
adds a layer of interest, especially in the context of other ap-
plications beyond the cloud cover nowcasting.

3.3 Time efficiency

In what follows, we focus only on the HyPhAICC-1 model.
By including physical constraints into these hybrid models,
we expect a decrease in training time compared to that of
the U-Net model. Indeed, Fig. 9 illustrates the evolution of
the validation F1 score for both the U-Net and HyPhAICC-

1 models across epochs. HyPhAICC-1 converges faster than
U-Net. Its convergence does indeed occur after just about 10–
15 epochs. Each epoch of the HyPhAICC-1 training takes ap-
proximately 55 min using a single Nvidia A100 GPU, while
the entire training over 30 epochs takes 27 h. On the other
hand, U-Net necessitates up to 200 epochs for achieving sim-
ilar performance, with each epoch taking around 23 min us-
ing the same hardware, which corresponds to about 3 d of
training. This difference implies that training U-Net is sig-
nificantly more expensive compared to HyPhAICC-1.

In inference mode, the hybrid models and U-Net generate
predictions within a few seconds, while EXIM’s predictions
are produced within 20 min (Berthomier et al., 2020), which
is one of the main drawbacks of this product.

3.4 Data efficiency

To delve deeper into the efficiency of the proposed
HyPhAICC-1 model, we conducted various experiments us-
ing different training data sizes. In each experiment, both
HyPhAICC-1 and U-Net were trained with 70 %, 50 %,
30 %, and 10 % of the available training data (Figs. 9, 10).
Notably, we observed a more significant performance drop
for U-Net compared to HyPhAICC-1. Interestingly, the hy-
brid model exhibited a similar performance using only 30 %
of the training data to it when it used the entire dataset
(Fig. 9). This finding indicates that this hybrid model is re-
markably data efficient, capable of delivering satisfactory
performance even with limited training data, which has been
highlighted by other studies (Schweidtmann et al., 2024;
Cheng et al., 2023). This quality is very important, partic-
ularly for tasks with insufficient provided data.

3.5 Application to Earth’s full disc

To check HyPhAICC-1’s capabilities on broader scales after
training it on a small region, we tested it on a much larger
domain, an entire hemisphere of the Earth – also called a
full disc – centred at 0° longitude. The satellite observations
of this expansive full-disc domain are of size 3712× 3712,
which is 210.25 times larger than the size of the training ones.
It has diverse meteorological conditions and includes pro-
jection deformations when mapped onto a two-dimensional
plane, while the extreme deformations at the edge of the disc
make this data less useful for operation purposes, it still pro-
vides an interesting testing ground for HyPhAICC-1’s gen-
eralisation ability. In this analysis, we focus only on visual
aspects. Despite the significant differences between the train-
ing domain and the full disc, we observed good qualita-
tive forecasts of the HyPhAICC-1 model on this new do-
main without any specific training on it (see Figs. 11 and
A4). The cloud motion estimation on the full disc was found
to be visually consistent (a Video Supplement is provided
at https://doi.org/10.5281/zenodo.10375284, El Montassir et
al., 2023b).

Geosci. Model Dev., 17, 6657–6681, 2024 https://doi.org/10.5194/gmd-17-6657-2024

R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting 6667

Figure 9. Per epoch validation F1 score comparison between HyPhAICC-1 and U-Net. Scores were calculated from 100 random samples
covering France (averaged over all lead times).

Figure 10. Total training time and maximum validation F1 scores
over the last five epochs for U-Net and HyPhAICC-1 using different
training data sizes (averaged over all lead times).

This successful transferability of the model highlights its
potential robustness and suggests that the underlying princi-
ples of cloud motion captured during training are applicable
across different domain sizes and different projections (see
Appendix C for a formal explanation). Note that the model
requires a data size divisible by 2d , where d is the number
of the encoder blocks within the U-Net-Xception model. In-
deed, the possibility of running a model using different data
sizes is one of the advantages of fully convolutional networks
(FCNs) as the convolution operation is independent of the in-
put size.

Overall, HyPhAICC-1 offers an effective and cheaper ap-
proach compared to EXIM, with higher efficiency, requiring
fewer data compared to U-Net, with the potential to outper-

form existing models and enable more accurate and efficient
weather forecasting. The ability of HyPhAICC-1 to adapt
and perform well on the full-disc data, despite being trained
on a smaller domain, demonstrates the generalisation capa-
bilities of this hybrid model. This is an important property
for weather forecasting models, as it is not always possible
to train a model on full-disc data due to the high computa-
tional cost.

4 Conclusions

In this study, we introduced a hybrid physics–AI framework
that combines the insights from partial differential equations,
representing physical knowledge, with the pattern extraction
capabilities of neural networks. Our primary focus was on
applying this hybrid approach to the task of cloud cover now-
casting, also involving cloud type classification. To lever-
age continuous physical advection phenomena for this dis-
crete classification task, we proposed a probabilistic mod-
elling strategy based on the advection of probability maps.
This flexible approach was easy to adapt to include the pre-
diction of source terms, demonstrating its versatility.

The first model, HyPhAICC-1, leverages the advection
equation and slightly outperforms the widely used U-Net
model in the quantitative metrics, while showing a signifi-
cantly better performance in the qualitative aspect. This hy-
brid model requires a significantly lower amount of data and
converges faster, cutting down the training time, which is ex-
pected as the physical modelling implicitly imposes a con-
straint on the trainable component. Notably, the estimated
velocity field demonstrated high accuracy compared to ac-
tual cloud displacements. This accuracy suggests that this ar-
chitecture could find utility in diverse tasks, such as wind

https://doi.org/10.5194/gmd-17-6657-2024 Geosci. Model Dev., 17, 6657–6681, 2024

6668 R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting

Figure 11. Full-disc cloud cover nowcasting predictions. Zoomed-in views of the 120 min observation and prediction.

speed estimation using only satellite observations. The sec-
ond version, HyPhAICC-2, adds a source term to the advec-
tion equation. This model impaired the visual rendering but
displayed the best performance in terms of accuracy.

The HyPhAICC architecture demonstrated an effective
path towards uniting the strengths of a continuous physics-
informed phenomenon with a data-driven approach in the
context of a discrete classification task.

Despite these successes, the models still exhibit some dif-
fusiveness. However, in the case of HyPhAICC-1, it is only
attributed to the use of the first-order upwind discretisation
scheme. Exploring less diffusive schemes could potentially
mitigate this effect, especially in inference mode, where there
is no differentiability constraint.

The CFL condition is designed to guarantee stability by
imposing a restriction on the time step size relative to the
maximum velocity in the system. However, in our scenario,
where the maximum velocity of the cloud is unknown, set-
ting the time step becomes challenging. This uncertainty may
lead to stability issues if the time step is not small enough,
particularly if the predicted velocity turns out to be unex-
pectedly high, highlighting the importance of carefully con-
sidering and addressing potential instability concerns in such
cases.

While HyPhAICC-3 (see Appendix A1) and HyPhAICC-
4 (see Appendix A2) presented interesting modelling varia-
tions, the study acknowledges limitations in not obtaining the
desired variables. We suggest that modifying the approach
to estimate these variables may lead to improved results,
e.g. penalising the dominant classes.

As we move forward, the integration of green computing
principles into AI research becomes crucial. The success of

the HyPhAICC models in achieving these results with low
data requirement and rapid convergence encourages further
exploration of energy-efficient AI models and methodolo-
gies. This emphasises the importance of balancing computa-
tional power with environmental responsibility in the pursuit
of scientific advancements.

Appendix A: Additional resources

A1 Advection with source term: HyPhAICC-3

We introduced another version of the HYPHAICC models
using a source term based on Markov inter-class transitions.
This preserves the probabilistic properties as discussed in
Sect. 2.2.2. This dynamics is expressed using the following
equations:

∂tPj =

C∑
i=1

3j,iPi ∀j ∈ {1,2, . . .,C} ,

where

3(x)=
5(x)ᵀ− I

1t
,

with 5(x) being a stochastic matrix, i.e. a non-negative
square matrix where the sum of each row is equal to one.
This constraint ensures that the probabilistic properties are
maintained over time.

Physically, 3j,i(x) represents the transition rate from
cloud type i to cloud type j at grid point x, 1t represents
the time step, and I (x) denotes the identity matrix.

Geosci. Model Dev., 17, 6657–6681, 2024 https://doi.org/10.5194/gmd-17-6657-2024

R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting 6669

Figure A1. HYPHAICC-3. The third version of the proposed hy-
brid model. It consists of a U-Net Xception-style model to estimate
the velocity field and a second U-Net model to estimate the per-
pixel transition matrices from the last observations.

The third version of the hybrid model (see Fig. A1), de-
noted as HYPHAICC-3, uses this source term combined
with the advection as shown in the following equations:

∂tPj +V ·∇Pj =

C∑
i=1

3j,iPi ∀j ∈ {1,2, . . .,C} , (A1)

where the stochastic property of 5 is ensured by construction
using the Softmax function as follows:

5i,k = Softmax(Mi)k =
eMi,k∑C
j=1e

Mi,j
,

where the matrix M is generated using a U-Net model.
This representation of cloud cover dynamics offers a com-

prehensive description of cloud formation and dissipation.
However, it increases the output dimension size of U-Net,
as a C×C transition matrix is generated for each pixel. This
makes the U-Net model poorly constrained. Furthermore, in
our experiments, we noticed an increased memory usage dur-
ing the training.

A2 Advection with source term: HyPhAICC-4

To reduce the number of values output by U-Net, we assume
a limited number of transition regimes, each representing one
of the most frequent transitions. For instance, in the case of
two regimes, the source term is described as follows:

∂tPj = α
1
·

C∑
i=1

31
j,iP

i
+α2
·

C∑
i=1

32
j,iP

i,

where 31 and 32 are the transition matrices and α1 and α2

are positive factors. These factors determine which regime to
consider at each pixel, with the constraint that α1

+α2
≤ 1.

The fourth version of the hybrid model, denoted as
HYPHAICC-4, uses this source term in addition to the ad-
vection as described in the following equations:

∂tPj +V ·∇P j = α
1
·

C∑
i=1

31
j,iP

i
+α2
·

C∑
i=1

32
j,iP

i, (A2)

Figure A2. HYPHAICC-4. The fourth version of the proposed hy-
brid model. It consists of a U-Net Xception-style model to estimate
the velocity field and a second U-Net model to estimate the α factors
from the last observations. These factors are used to choose which
transition regime to consider for each pixel.

where α1 and α2 are estimated using U-Net and 31 and 32

are learned as model parameters (see Fig. A2).
HyPhAICC-3 and HyPhAICC-3 are trained using the

same dataset and training procedure as for HyPhAICC-1 and
HyPhAICC-2. However, during training the 3 matrices in
Eqs. (A1) and (A2) are consistently estimated as zeros. In
other words, no inter-class transitions were captured.

A3 Scores

Figure A3 represents the score comparison shown in Fig. 6
but with additional confidence intervals. These confidence
intervals were estimated using bootstrapping with a thresh-
old of 99 %.

A4 Full-disc predictions

Figure A4 shows predictions of the HyPhAICC-1 model on
the Earth’s full disc centred at 0° longitude.

https://doi.org/10.5194/gmd-17-6657-2024 Geosci. Model Dev., 17, 6657–6681, 2024

6670 R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting

Figure A3. Performance comparison between HyPhAICC-1, U-Net, EXIM, and the persistence baseline using five metrics, including aver-
aged F1 score (%), precision (%), recall (%), accuracy (%), CSI (%), and Hausdorff distance (defined in Eq. 9). These scores were computed
over 1000 random samples covering France in 2021. The confidence intervals were estimated using bootstrapping with a threshold of 99 %.

Figure A4. Full-disc cloud cover nowcasting predictions. The predictions were generated by our model without any specific training on the
full disc data (of size 3712× 3712).

Geosci. Model Dev., 17, 6657–6681, 2024 https://doi.org/10.5194/gmd-17-6657-2024

R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting 6671

Appendix B: Bridging neural networks and numerical
modelling

In this section, we present fundamental components for im-
plementing the proposed hybrid architecture. In Sect. B1 we
explore the integration of physics within a neural network.
We then explain the trainability challenges associated with
this architecture in Sect. B2. Following this, in Sect. B3 we
provide a brief introduction to numerical methods for solv-
ing PDEs. Finally, in Sect. B4 and B5, we present the method
used to approximate derivatives and perform time integration
within a neural network.

B1 Combining neural networks and physics

An artificial neural network is a function fθ parameterised
by a set of parameters θ . It results from the composition of
a sequence of elementary non-linear parameterised functions
called layers that process and transform input data x into out-
put predictions y as follows:

y = fθ (x) . (B1)

Physics-based models aim to represent the underlying phys-
ical processes or equations that govern the behaviour of a
system. To incorporate physics into the neural network, one
possible approach involves feeding the output of the physics-
based model as an input to the neural network as follows:

y = fθ
(
x,φ

(
xPhy

))
, (B2)

where xPhy are the inputs of the physics-based model φ. This
method could be effective when the physics-based model
is self-contained and its components are explicitly known.
However, it becomes impractical in scenarios where the
physics-based model presents unknown variables that need
to be estimated. This is the case in the application considered
in this work, where the cloud motion field is unknown. In
such instances, a more suitable approach is to pursue a joint
resolution. Here, the physical model takes the outputs of the
neural network and computes the predictions, resulting in a
composition of fθ and φ as follows:

y = φ ◦ fθ
(
x,xPhy

)
. (B3)

In this approach, φ implicitly applies a hard constraint on
these outputs. This might contribute to accelerate the conver-
gence of the neural network during the training process.

Unlike the first method (Eq. B2), where the physics-based
model φ is passive and not involved in the training proce-
dure, the second method raises some challenges concerning
the trainability of the architecture.

B2 Training a neural network

Neural networks learn to minimise a loss function Lθ by ad-
justing its set of parameters θ using data. The loss function

measures the error between the predicted outcomes ŷ and the
ground truth y. It is expressed as

Lθ =
1
N

N∑
k=1

l(yk,fθ (xk)), (B4)

where N is the sample size and l is a measure of the discrep-
ancy between the ground truth yi and the model’s production
associated with the input xi , i.e. fθ ◦φ (xi). For instance, us-
ing l(a,b)=‖ a− b‖2 is the measure used to calibrate a re-
gression model, and Lθ is then the so-called mean-squared
error (MSE).

During this training process, an algorithm called back-
propagation is used to optimise model parameters. Backprop-
agation involves computing the gradient of the loss func-
tion with respect to the network’s parameters. It indicates
how much each weight contributed to the error. This gradi-
ent is then used to update the parameters in the direction that
minimises Lθ , following a sequential optimisation algorithm
such as gradient descent, as described below:

θupdated = θold− γ∇Lθold , (B5)

where γ is the magnitude of the descent. In order to perform
the backpropagation, we assume that the gradient of the loss
function with respect to the model’s parameters could be cal-
culated using the chain rule. This assumption is called differ-
entiability. Indeed, neural networks rely on activation func-
tions and operations that are differentiable, allowing the gra-
dients to be propagated backward through the network layers.

In this proposed hybrid approach, PDEs are solved to pro-
duce model predictions. If the PDE solver includes non-
differentiable steps, the chain rule breaks down, making it
impossible to compute gradients within the standard deep-
learning frameworks. In what follows, we describe our strat-
egy for modelling and solving PDEs using basic differen-
tiable operations commonly employed in neural networks.

B3 Numerical methods for partial differential
equations

Numerical weather prediction involves addressing equations
of the form

∂tf = F
(
f,∂xf,∂

2
xf, . . .

)
, (B6)

governing the evolution of a univariate or multivariate field f
over time. Computers cannot directly solve symbolic PDEs,
and a common approach involves a two-stage process to
transform the PDE into a mathematical formulation more
suitable for computational handling. This process begins by
discretising the partial derivatives with respect to spatial co-
ordinates, resulting in an ordinary differential equation. Sub-
sequently, a temporal integration describes the evolution of
the system over time.

Spatial discretisation can be performed using several
methods, e.g. finite volumes, finite elements, or spectral

https://doi.org/10.5194/gmd-17-6657-2024 Geosci. Model Dev., 17, 6657–6681, 2024

6672 R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting

methods. However, the simplest one, the finite-difference
method, consists of replacing spatial derivatives of f with
quantities that depend on the values of f on a grid. For ex-
ample, on a 1D periodic domain [0,L] of coordinate x, dis-
cretised inN grid points (xi)[0,n−1] (xn = x0), the central dif-
ference method of the first-order spatial derivative reads

∂xf (t,xi)≈
f (t,xi+1)− f (t,xi−1)

2δx
, (B7)

where δx = xi+1− xi represents the grid resolution. Follow-
ing spatial discretisation, Eq. (B6) can be written as an ordi-
nary differential equation as follows:

df
dt
= F̂ (f), (B8)

where f(t) is the discretised form of f over the spatial do-
main, i.e. the vector of grid-point values of f at time t , giving
f(t)= (f (t,xi))i in the 1D domain mentioned above.

For the time integration, various methods can also be em-
ployed, e.g. Euler’s method or a fourth-order Runge–Kutta
method (RK4) (Runge, 1895; Kutta, 1901). These methods
differ in their accuracy, stability, and computational cost. An
explicit Euler time integration of Eq. (B8) reads

fq+1 = fq + δtF̂ (fq), (B9)

where fq = f(tq) and tq = qδt is the discretised time of time
step δt .

For the sake of illustration, we consider the advection over
the above-mentioned 1D periodic domain, given by the fol-
lowing equation:

∂tf + u∂xf = 0, (B10)

where u is a velocity field, whose values on the grid are de-
noted as (ui)i∈[0,n−1]. Applying central difference and an Eu-
ler scheme discretisation yields the following sequential evo-
lution:

fq+1,i = fq,i −
δt

2δx
ui (fi+1− fi−1) . (B11)

This example illustrates the integration of the advection
equation over time using a simple explicit method. However,
depending on the problem characteristics and requirements,
other time integration schemes may be more suitable.

In this study, we propose to model and solve PDEs within
a neural network, e.g. equations of the form Eq. (B6). This is
achieved by describing the equivalent of spatial and temporal
discretisation in the frame of neural network layers, i.e. how
it can be implemented in a deep-learning (DL) framework as
TensorFlow (Abadi et al., 2016) or PyTorch (Paszke et al.,
2019).

B4 Finite-difference methods and convolutional layers

To implement a finite-difference discretisation, one viable
approach is to employ the convolution operation. For in-
stance, the 1D convolution associated with Eq. (B7) can be

Figure B1. In order to calculate the numerical derivative of f , a
kernel K1 is used to slide across an input vector, which is a dis-
cretised version of f with N elements, multiplying values element-
wise within its window and summing the results to approximate the
derivative at each position. The result is a new vector of size N − 2
containing the numerical derivative of f (padding at the bounds
with zeros or duplicated values in the input vector can be applied to
produce an output vector of size N). This is equivalent to a convo-
lution between K1 and f and can be reproduced using a 1D convo-
lutional layer with K1 as a kernel.

mathematically written as follows:

(K1
· f) [i]=

M−1∑
m=0

K1 [i]f [m+ i] , (B12)

where K1 is the kernel or filter used for the convolution and
expressed as

K1
=
[
−1
2δx 0 1

2δx

]
,

and f represents the input data. The variable M corresponds
to the size of the kernel. It is the number of finite-difference
coefficients, also called stencil size. In this case, a three-point
stencil is considered (M = 3). Finally, ∗ is the convolution
operator.

This leads to an interesting interaction with DL frame-
works. Indeed, convolutional neural networks (CNNs) rely
on the operation

ConvLayer(f) [i]= σ

(
M−1∑
m=0

K [m]f [m+ i]+ b

)
,

where σ is called activation function and b is a parameter
representing the bias. Observing that using data where sigma
is equal to identity and b is equal to 0 leads to the same oper-
ation as in Eq. (B12), one can leverage deep-learning frame-
works to approximate derivatives, which enables derivative-
based operations in neural networks, as shown in Fig. B1.
The same principle applies to higher derivative orders. For
any positive integer α, we can write the approximation of the

Geosci. Model Dev., 17, 6657–6681, 2024 https://doi.org/10.5194/gmd-17-6657-2024

R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting 6673

Figure B2. Illustration of a residual block.

αth derivative of f as

∂αf ≈Kα
∗f, (B13)

where Kα are the finite-difference coefficients for the αth
derivative.

Finally, using convolutions is a straightforward method to
model the spatial term of a PDE, also called the trend, as
follows

F̂ (f)=N (f). (B14)

This results in a neural network that can be used for time
integration.

B5 Temporal schemes and residual networks

The time integration expressed in Eq. (B9) can be written
using the neural network implementation N of the trend as

fn+1 = fn+1tN (fn). (B15)

Interestingly, this formulation is very similar to that of a
building block commonly used in deep neural networks
called a residual block (see Fig. B2), proposed in the ResNet
architecture (He et al., 2016). It is formulated as follows:

y = x+F(x), (B16)

where x is the input to the block, y is the output, and F is
called a residual function and is made up of multiple neu-
ral layers. These layers represent the difference between the
input and output. This function aims to capture the addi-
tional information or adjustments needed to transform the
input into the desired output. This similarity between resid-
ual blocks and time schemes, also observed in Ruthotto
and Haber (2020), Chen et al. (2018), and Fablet et al.
(2017), suggests that the time integration step can be done
inside a neural network. All we need is the residual func-
tion, which can be modelled using convolutional layers, as
shown previously. Pannekoucke and Fablet (2020) proposed
a general framework (called PDE-NetGen (https://github.
com/opannekoucke/pdenetgen, last access: 7 June 2024) to
model a PDE in a neural network form using this method.
Residual blocks were originally designed to address vanish-
ing gradient issues in image classification tasks. Intriguingly,

these blocks proved to function similarly to time schemes,
where they introduce small changes over incremental time
steps. This challenges the traditional black box perception of
neural networks, although full interpretability remains a dis-
tant goal.

Appendix C: Robustness of hybrid formulation to
changes in coordinates

In a given coordinate system x = (xi), the advection of a pas-
sive scalar c(t,x) by a velocity field u= (ui) reads as fol-
lows:

∂tc+ ui∂xi c = 0. (C1)

A change in coordinate system from the coordinate system
x to the coordinate system y = (yj) related by x = x(y)

changes this to the following equation:

∂tC+ vj∂yjC = 0, (C2)

where C(t,y)= c(t,x(y)) and the velocity v = (vj) is de-
duced from the chain rule

vj = ui∂xiyj , (C3)

(using Einstein’s summation convention).
Since HyPhAICC architecture estimates a velocity field

from the data that is either u or v depending on the choice
of the coordinate system, it implicitly accounts for the chain
rule Eq. (C3). As a result, the HyPhAICC architecture is not
sensitive to the coordinate system and can apply to regional
domain and global projections. However, numerical effects
due to the finite spatio-temporal resolution associated with
the discretisation can lead to abnormal distortion of signals
after several time steps of integration; e.g. the disc result-
ing from an orthographic projection of the Earth may be de-
formed by the advection near its boundaries unless the veloc-
ity field is close to zero, meaning that the apparent displace-
ment is small.

Note that this relative invariance of HyPhAICC to the
choice of coordinate is because it only concerns the advec-
tion of a scalar field. Covariant transport of vector or ten-
sor fields would imply additional terms (Christoffel symbols,
e.g. Nakahara, 2003) that would break the invariance of Hy-
PhAICC as it is formulated here.

https://doi.org/10.5194/gmd-17-6657-2024 Geosci. Model Dev., 17, 6657–6681, 2024

6674 R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting

Figure C1. Estimated velocity field from the U-Net Xception-style
architecture used in the HyPhAICC-1 model.

Appendix D: Probability advection

Here, we are considering a three-class problem where we
have a discrete random variable X with values in the set
1,2,3, and we denote X(t,x) using the value of X at time
t and space x, with t ∈ [0,T] and x ∈ [0,L]. We are inter-
ested in studying the evolution of the state probabilities of X
with respect to t and x. For this purpose, we define a vector
P as

P =

 P 1
X

P 2
X

P 3
X

 .
Here, P cX(t,x) represents the probability of the cth class:

P cX(t,x)= P(X(t,x)= c).

For the sake of simplicity, a 1D problem is considered, but
the same analysis applies to the 2D case and for N -class
problems with N ≥ 2. Let us consider the following partial
differential equation governing the evolution of P(x, t):
∂tP(x, t)+L(P(x, t))= 0, (D1)

where L is a differential operator. This equation can be writ-
ten component-wise as follows:
∂tP

1
X(x, t)+L

(
P 1
X(x, t)

)
= 0

∂tP
2
X(x, t)+L

(
P 2
X(x, t)

)
= 0

∂tP
3
X(x, t)+L

(
P 3
X(x, t)

)
= 0

. (D2)

As already discussed in Sect. 2.2.1, three properties should
be checked in order to ensure the probabilistic nature of P .

1. Non-negativity. P(x, t)≥ 0 for all values of x and t ,
with x= (x,y), which ensures that the probabilities re-
main non-negative.

2. Bound preservation. P(x, t)≤ 1 for all values of x and
t , which ensures that no probability exceeds 1.

3. Probability conservation.
∑C
i=1P

i
X(x, t)= 1 for all val-

ues of x and t , with C = 12 being the total number of
cloud types. This property guarantees that the sum of
all probabilities is equal to 1.

D1 Probability conservation

Property. The probability conservation property is ensured
if L is a linear differential operator with non-zero positive
spatial derivative orders.

Proof. Let us sum the three equations in Eq. (D2) for the
specific case where L is a linear differential operator with
non-zero positive spatial derivative orders.

3∑
i=1

∂tP
i
X(x, t)+L

(
P iX(x, t)

)
= 0

∂t

3∑
i=1

P iX(x, t)=−

3∑
i

L
(
P iX(x, t)

)
.

Assuming
∑3
i=1P

i
X(x, t0)= 1, the linearity property of L al-

lows us to interchange the summation and the operator, re-
sulting in the following equation:

3∑
i

L
(
P iX(x, t0)

)
=−L

(
3∑
i=1

P iX(x, t0)

)
=−L(1)
= 0.

L(1)= 0 as L only has derivatives with positive non-zero
orders.

Applying and summing the first-order Taylor expansion at
t0 on each of the time derivatives of Eq. (D2) gives

3∑
i

Pi(x, t0+ δt)−Pi(x, t0)

δt
+O(1)=−

3∑
i

L
(
P iX(x, t)

)
= 0

3∑
i

Pi(x, t0+ δt)=

3∑
i

Pi(x, t0)+O(δt),

when δt is small enough,
∑3
i Pi(x, t0+ δt)= 1.

Iteratively, starting from t0, ∀t

3∑
i

Pi(x, t)=

3∑
i

Pi(x, t0)= 1.

Geosci. Model Dev., 17, 6657–6681, 2024 https://doi.org/10.5194/gmd-17-6657-2024

R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting 6675

Figure D1. Here it can be seen that the advection of probabilities using central finite-difference discretisation presents a dispersion effect.

Figure D2. Here the probability conservation property is main-
tained even in presence of dispersion effects.

In this study, we consider the advection equation using the
same velocity field for all probability maps, where the oper-
ator L is written as follows:

L(Pi)= u · ∂xPi, i ∈ {1,2, ·,12}.

This differential operator is linear and has a non-zero positive
derivative order. Therefore, the sum of probabilities is con-
served over time and remains equal to the initial value. This
property is illustrated numerically in Figs. D2 and D4, and it
is maintained independently of the discretisation scheme.

D2 Non-negativity and bound preservation

In order to check the two other properties, we need to study
the discretisation schemes.

Out of the four numerical schemes studied (central finite
differences, semi-Lagrangian, and first- and second-order up-
wind), only the semi-Lagrangian and the first-order upwind
discretisation satisfy the first and second properties. The re-
maining two schemes exhibit some form of dispersion.

Details about central finite difference and first-order up-
wind scheme are given in Sect. E.

https://doi.org/10.5194/gmd-17-6657-2024 Geosci. Model Dev., 17, 6657–6681, 2024

6676 R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting

Figure D3. Here the advection of probabilities using first-order upwind discretisation presents a diffusion effect.

Figure D4. Here the probability conservation property is main-
tained even in presence of diffusion effects.

Geosci. Model Dev., 17, 6657–6681, 2024 https://doi.org/10.5194/gmd-17-6657-2024

R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting 6677

Appendix E: Discretisation schemes

Here, we will derive the equivalent equation of central differ-
ences and upwind scheme applied to the following advection
equation:

∂F (x, t)

∂t
+ u

∂F(x, t)

∂x
= 0. (E1)

E1 Central differences: equivalent equation

We consider the second-order central discretisation in space
and a first-order explicit forward difference in time applied
to the advection equation.

F n+1
i −F ni

1t
+ ui

Fi+1−Fi−1

21x
= 0 (E2)

Using the Taylor formulas in Eq. (E2), we get

∂tF +
1t

2
∂2
t F +O(1t2)

=−u

(
∂xF −

1x2

6
∂3
xF +O(1x2)

)
. (E3)

However, when we only require a first-order expansion in
time, we can replace the second-order time derivative with
another term coming from a Taylor first-order expansion of
Eq. (E2) :

∂t (∂tF)+O(1t)=−∂t (u∂xF)+O(1x), (E4)

which leads to

∂2
t F =−∂tu∂xF − u∂

2
xtF +O(1t,1x).

Using the same approach as in Eq. (E4), the derivative ∂2
xtF

can be computed as follows:

∂x(∂tF)=−∂xu∂xF − u∂
2
xF +O(1t,1x).

We replace the derivative ∂2
xtF in the last equation as follows:

∂2
t F =−∂tu∂xF − u

(
−∂xu∂xF − u∂

2
xF
)

+O(1t,1x) . (E5)

Finally, we replace the second-order derivative in Eq. (E3)
with the expression in Eq. (E5):

∂tF +
1t

2

(
−∂tu∂xF − u

(
−∂xu∂xF − u∂

2
xF
))

=−u

(
∂xF −

1x2

6
∂3
xF

)
+O

(
1t2,1x2

)
.

Hence,

∂tF + ũ∂xF =−
1t

2
u2∂2

xF +
1x2

6
u∂3
xF

+O
(
1t2,1x2

)
, (E6)

where ũ= u− 1t
2 ∂tu+

1t
2 u∂xu.

E2 First-order upwind scheme: equivalent equation

Now let us consider the first-order upwind discretisation of
the spatial term given by F n+1

i −F ni
1t

+ u
Fi−Fi−1
1x

= 0 if u≥ 0
F n+1
i −F ni
1t

+ u
Fi+1−Fi
1x

= 0 if u < 0
.

These two equations can be written as follows:

F n+1
i −F ni

1t
+

(
u+i
Fi −Fi−1

1x
+ u−i

Fi+1−Fi

1x

)
= 0, (E7)

where u+i =max(ui,0) and u−i =min(ui,0).
Considering the case of u≥ 0 of Eq. (E7), using the Taylor

formulas, we get:

∂tF +
1t

2
∂2
t F +O

(
1t2

)
=−u

(
∂xF −

1x

2
∂2
xF +O

(
1x2

))
. (E8)

As in the case of the central differences, we replace the
second-order derivative ∂2

t F in Eq. (E8) with the expression
in Eq. (E5).

∂tF +
1t

2

(
−∂tu∂xF − u

(
−∂xu∂xF − u∂

2
xF
))

=−u

(
∂xF −

1x

2
∂2
xF

)
+O

(
1t2,1x2

)
Hence,

∂tF + ũ∂xF = vnum∂
2
xF +O

(
1t2,1x2

)
, (E9)

where ũ= u− 1t
2 ∂tu+

1t
2 u∂xu and vnum = u

2 (1x− u1t).
The equivalent equation of the second case of Eq. (E7)

(case u≤ 0) is written as follows:

∂tF + ũ∂xF = vnum∂
2
xF +O

(
1t2,1x2

)
, (E10)

where vnum =
u
2 (−1x− u1t)

From Eqs. (E9) and (E10) we can write the equivalent
equation as follows:

∂tF + ũ∂xF = vnum∂
2
xF +O

(
1t2,1x2

)
, (E11)

where ũ= u− 1t
2 ∂tu+

1t
2 u∂xu and vnum =

u
2 (sign(u)1x− u1t)..

E3 Conclusion

It should be noted that the finite central difference scheme ex-
hibits instability due to the presence of negative diffusion in
the second term in Eq. (E6). However, when using a temporal
scheme of higher order than two, the negative diffusion term

https://doi.org/10.5194/gmd-17-6657-2024 Geosci. Model Dev., 17, 6657–6681, 2024

6678 R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting

in 1t can be eliminated, rendering the scheme stable. Nev-
ertheless, the scheme becomes dispersive due to the third-
order spatial derivative term, resulting in oscillations during
the propagation of sharp signals, such as a front or Heaviside
function.

Alternatively, the first-order upwind scheme offers stabil-
ity but introduces numerical diffusion, affecting the accu-
racy of the solution, this diffusion is due to the second-order
derivative term in Eq. (E11).

Finally, the choice of numerical scheme depends on the
specific requirements of the problem, such as the desired ac-
curacy and stability of the solution. To respect the properties
described above, we use the first-order upwind scheme, as
it does not introduce oscillations in the solution. The first-
order upwind scheme is also easy to implement in a differ-
entiable mode. Despite the limitation on the time step linked
to the CFL condition, we consider it to be a more appro-
priate scheme to integrate probability advection in a neural
network.

Code and data availability. The code used in this study is available
at https://github.com/relmonta/hyphai (last access: 7 June 2024) and
at https://doi.org/10.5281/zenodo.11518540 (El Montassir, 2024).
The weights of the pre-trained HyPhAICC-1, HyPhAICC-2, and
U-Net are available at https://doi.org/10.5281/zenodo.10393415 (El
Montassir et al., 2023a). The training data are not provided as
they are proprietary data from EUMETSAT. However, data can
be obtained from EUMETSAT for research purposes. A sample
of the test data used in this study is available on the GitHub
repository, and a sample of the training data is available at
https://doi.org/10.5281/zenodo.10642094 (European Organisation
for the Exploitation of Meteorological Satellites, 2024).

Interactive computing environment. Three Jupyter notebooks are
provided at https://github.com/relmonta/hyphai/tree/main/examples
(last access: 7 June 2024) or at https://github.com/relmonta/
hyphai/tree/main/examples (last access: 7 June 2024) and at
https://doi.org/10.5281/zenodo.11518540 (El Montassir, 2024).
Each notebook corresponds to an example of the use of HyPhAICC-
1, HyPhAICC-2, and the baseline U-Net model.

Video supplement. A video supplement of a 2 h forecast is avail-
able at https://doi.org/10.5281/zenodo.10375284 (El Montassir et
al., 2023b).

Author contributions. REM implemented the code, performed the
experiments, and wrote the first draft of the manuscript. CL and OP
supervised the work. All authors collaborated on the design of the
models and contributed to the manuscript’s writing.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We extend our gratitude to CERFACS for
funding this work and providing computing resources and to EU-
METSAT and Météo France for providing essential data. We ex-
press our sincere thanks to Luciano Drozda, Léa Berthomier, Bruno
Pradel, and Pierre Lepetit for providing constructive discussions
and feedback and to Isabelle d’Ast for technical support. We also
thank the editor, Travis O’Brien, and the two reviewers, Alban
Farchi and the anonymous reviewer, for their valuable comments
and suggestions.

Financial support. This research has been supported by CERFACS
(Centre Européen de Recherche et de Formation Avancée en Calcul
Scientifique).

Review statement. This paper was edited by Travis O’Brien and re-
viewed by Alban Farchi and one anonymous referee.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Lev-
enberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B.,
Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and
Zheng, X.: TensorFlow: a system for large-scale machine learn-
ing, in: Proceedings of the 12th USENIX conference on Operat-
ing Systems Design and Implementation, OSDI’16, pp. 265–283,
USENIX Association, USA, ISBN 978-1-931971-33-1, 2016.

Aydin, O. U., Taha, A. A., Hilbert, A., Khalil, A. A., Galinovic, I.,
Fiebach, J. B., Frey, D., and Madai, V. I.: On the usage of average
Hausdorff distance for segmentation performance assessment:
hidden error when used for ranking, European Radiology Experi-
mental, 5, 4, https://doi.org/10.1186/s41747-020-00200-2, 2021.

Ayzel, G., Scheffer, T., and Heistermann, M.: RainNet v1.0:
a convolutional neural network for radar-based precipi-
tation nowcasting, Geosci. Model Dev., 13, 2631–2644,
https://doi.org/10.5194/gmd-13-2631-2020, 2020.

Ballard, S. P., Li, Z., Simonin, D., and Caron, J.-F.: Performance
of 4D-Var NWP-based nowcasting of precipitation at the Met
Office for summer 2012, Q. J. Roy. Meteor. Soc., 142, 472–487,
https://doi.org/10.1002/qj.2665, 2016.

Bechini, R. and Chandrasekar, V.: An Enhanced Optical
Flow Technique for Radar Nowcasting of Precipita-
tion and Winds, J. Atmos. Ocean. Tech., 34, 2637–2658,
https://doi.org/10.1175/JTECH-D-17-0110.1, 2017.

Berthomier, L., Pradel, B., and Perez, L.: Cloud Cover Nowcasting
with Deep Learning, in: 2020 Tenth International Conference on
Image Processing Theory, Tools and Applications (IPTA), 1–6,
https://doi.org/10.1109/IPTA50016.2020.9286606, 2020.

Geosci. Model Dev., 17, 6657–6681, 2024 https://doi.org/10.5194/gmd-17-6657-2024

R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting 6679

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K.:
Neural Ordinary Differential Equations, in: Advances in Neu-
ral Information Processing Systems, vol. 31, Curran Associates,
Inc., https://doi.org/10.48550/arXiv.1806.07366, 2018.

Cheng, S., Quilodrán-Casas, C., Ouala, S., Farchi, A., Liu, C.,
Tandeo, P., Fablet, R., Lucor, D., Iooss, B., Brajard, J., Xiao,
D., Janjic, T., Ding, W., Guo, Y., Carrassi, A., Bocquet, M.,
and Arcucci, R.: Machine Learning With Data Assimilation
and Uncertainty Quantification for Dynamical Systems: A Re-
view, IEEE/CAA Journal of Automatica Sinica, 10, 1361–1387,
https://doi.org/10.1109/JAS.2023.123537, 2023.

Chollet, F.: Xception: Deep Learning with Depthwise Separable
Convolutions, IEEE Computer Society, ISBN 978-1-5386-0457-
1, https://doi.org/10.1109/CVPR.2017.195, 2017.

Courant, R., Friedrichs, K., and Lewy, H.: Über die partiellen Dif-
ferenzengleichungen der mathematischen Physik, Mathematis-
che Annalen, 100, 32–74, https://doi.org/10.1007/BF01448839,
1928.

Daw, A., Karpatne, A., Watkins, W., Read, J., and Ku-
mar, V.: Physics-guided Neural Networks (PGNN): An
Application in Lake Temperature Modeling, in: Knowl-
edge Guided Machine Learning, Chapman and Hall/CRC,
https://doi.org/10.1201/9781003143376-15, 2021.

de Bezenac, E., Pajot, A., and Gallinari, P.: Deep Learning
for Physical Processes: Incorporating Prior Scientific Knowl-
edge, J. Stat, Mech., 2019, 124009, https://doi.org/10.1088/1742-
5468/ab3195, 2018.

Efron, B.: Bootstrap Methods: Another Look at the Jackknife, Ann.
Stat., 7, 1–26, https://doi.org/10.1214/aos/1176344552, 1979.

El Montassir, R.: relmonta/hyphai: Update pa-
per information (v1.1.1), Zenodo [code],
https://doi.org/10.5281/zenodo.11518540, 2024.

El Montassir, R., Pannekoucke, O., and Lapeyre, C.: Pre-trained
HyPhAICCast-1, HyPhAICCast-2 and U-Net’s weights, Zenodo
[code], https://doi.org/10.5281/zenodo.10393415, 2023a.

El Montassir, R., Pannekoucke, O., and Lapeyre, C.: HyPhAICCast-
1 2-hour forecast on 01/01/2021 at 12:00 p.m., Zenodo [video],
https://doi.org/10.5281/zenodo.10375284, 2023b.

Espeholt, L., Agrawal, S., Sønderby, C., Kumar, M., Heek,
J., Bromberg, C., Gazen, C., Carver, R., Andrychowicz, M.,
Hickey, J., Bell, A., and Kalchbrenner, N.: Deep learning for
twelve hour precipitation forecasts, Nat. Commun., 13, 5145,
https://doi.org/10.1038/s41467-022-32483-x, 2022.

European Organisation for the Exploitation of Meteorological
Satellites: A sample of the training data used in the paper “A
Hybrid Physics-AI (HyPhAI) approach for probability fields ad-
vection: Application to cloud cover nowcasting”, Zenodo [data
set], https://doi.org/10.5281/zenodo.10642094, 2024.

Fablet, R., Ouala, S., and Herzet, C.: Bilinear residual Neu-
ral Network for the identification and forecasting of dy-
namical systems, 26th European Signal Processing Con-
ference (EUSIPCO), Rome, Italy, 2018, pp. 1477–1481,
https://doi.org/10.23919/EUSIPCO.2018.8553492, 2017.

Fernandes, B., González-Briones, A., Novais, P., Calafate, M.,
Analide, C., and Neves, J.: An Adjective Selection Personality
Assessment Method Using Gradient Boosting Machine Learn-
ing, Processes, 8, 618, https://doi.org/10.3390/pr8050618, 2020.

Fokker, A. D.: Die mittlere Energie rotierender elektrischer
Dipole im Strahlungsfeld, Annalen der Physik, 348, 810–820,
https://doi.org/10.1002/andp.19143480507, 1914.

Forssell, U. and Lindskog, P.: Combining Semi-Physical and Neu-
ral Network Modeling: An Example ofIts Usefulness, IFAC Pro-
ceedings Volumes, 30, 767–770, https://doi.org/10.1016/S1474-
6670(17)42938-7, 1997.

García-Pereda, J., Fernandez-Serdan, J. M., Alonso, O., Sanz,
A., Guerra, R., Ariza, C., Santos, I., and Fernández,
L.: NWCSAF High Resolution Winds (NWC/GEO-HRW)
Stand-Alone Software for Calculation of Atmospheric Mo-
tion Vectors and Trajectories, Remote Sens., 11, 2032,
https://doi.org/10.3390/rs11172032, 2019.

Gilbert, G. K.: Finley’s tornado predictions, Am. Meteorol. J., 1,
166–172, 1884.

He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learn-
ing for Image Recognition, in: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 770–778,
https://doi.org/10.1109/CVPR.2016.90, iSSN: 1063-6919, 2016.

Hochreiter, S. and Schmidhuber, J.: Long Short-
term Memory, Neural computation, 9, 1735–80,
https://doi.org/10.1162/neco.1997.9.8.1735, 1997.

Jia, X., Willard, J., Karpatne, A., Read, J., Zwart, J., Stein-
bach, M., and Kumar, V.: Physics Guided RNNs for Mod-
eling Dynamical Systems: A Case Study in Simulating Lake
Temperature Profiles, in: Proceedings of the 2019 SIAM In-
ternational Conference on Data Mining (SDM), Proceedings,
558–566, Society for Industrial and Applied Mathematics,
https://doi.org/10.1137/1.9781611975673.63, 2019.

Jia, X., Willard, J., Karpatne, A., Read, J. S., Zwart, J. A., Stein-
bach, M., and Kumar, V.: Physics-Guided Machine Learning for
Scientific Discovery: An Application in Simulating Lake Tem-
perature Profiles, ACM/IMS Transactions on Data Science, 2,
20:1–20:26, https://doi.org/10.1145/3447814, 2021.

Joe, P., Sun, J., Yussouf, N., Goodman, S., Riemer, M., Gouda,
K. C., Golding, B., Rogers, R., Isaac, G., Wilson, J., Li, P.
W. P., Wulfmeyer, V., Elmore, K., Onvlee, J., Chong, P., and
Ladue, J.: Predicting the Weather: A Partnership of Obser-
vation Scientists and Forecasters, in: Towards the “Perfect”
Weather Warning: Bridging Disciplinary Gaps through Part-
nership and Communication, edited by: Golding, B., 201–
254, Springer International Publishing, Cham, ISBN 978-3-030-
98989-7, https://doi.org/10.1007/978-3-030-98989-7_7, 2022.

Karimi, D. and Salcudean, S. E.: Reducing the Hausdorff Distance
in Medical Image Segmentation with Convolutional Neural Net-
works, in: IEEE Transactions on Medical Imaging, 39, 499–513,
https://doi.org/10.1109/TMI.2019.2930068, 2019.

Karpatne, A., Atluri, G., Faghmous, J., Steinbach, M., Banerjee,
A., Ganguly, A., Shekhar, S., Samatova, N., and Kumar, V.:
Theory-guided Data Science: A New Paradigm for Scientific
Discovery from Data, IEEE T. Knowl. Data En., 29, 2318–2331,
https://doi.org/10.1109/TKDE.2017.2720168, 2017.

Kingma, D. P. and Ba, J.: Adam: A Method for Stochas-
tic Optimization, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, 7–9
May 2015, Conference Track Proceedings, ArXiv [preprint],
https://doi.org/10.48550/arXiv.1412.6980, 2017.

https://doi.org/10.5194/gmd-17-6657-2024 Geosci. Model Dev., 17, 6657–6681, 2024

6680 R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting

Kutta, W.: Beitrag zur näherungsweisen Integration totaler Differ-
entialgleichungen, Zeitschrift für Mathematik und Physik, 46,
435–453, 1901.

Lin, C., Vasić, S., Kilambi, A., Turner, B., and Zawadzki, I.:
Precipitation forecast skill of numerical weather prediction
models and radar nowcasts, Geophys. Res. Lett., 32, 14,
https://doi.org/10.1029/2005GL023451, 2005.

Matte, D., Christensen, J. H., Feddersen, H., Vedel, H., Nielsen,
N. W., Pedersen, R. A., and Zeitzen, R. M. K.: On
the Potentials and Limitations of Attributing a Small-Scale
Climate Event, Geophys. Res. Lett., 49, e2022GL099481,
https://doi.org/10.1029/2022GL099481, 2022.

Nakahara, M.: Geometry, Topology and Physics (Second Edition),
Taylor & Francis, ISBN 0-7503-0606-8, 2003.

Pannekoucke, O. and Fablet, R.: PDE-NetGen 1.0: from symbolic
partial differential equation (PDE) representations of physical
processes to trainable neural network representations, Geosci.
Model Dev., 13, 3373–3382, https://doi.org/10.5194/gmd-13-
3373-2020, 2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,
A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chil-
amkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.: Py-
Torch: an imperative style, high-performance deep learning li-
brary, in: Proceedings of the 33rd International Conference on
Neural Information Processing Systems, pp. 8026–8037, Curran
Associates Inc., Red Hook, NY, USA, 2019.

Pavliotis, G. and Stuart, A.: Multiscale Methods: Averaging and
Homogenization, vol. 53, Springer, New York, NY, ISBN 978-0-
387-73828-4, https://doi.org/10.1007/978-0-387-73829-1, 2008.

Raissi, M., Wang, Z., Triantafyllou, M. S., and Karniadakis, G. E.:
Deep Learning of Vortex Induced Vibrations, J. Fluid Mech.,
861, 119–137, https://doi.org/10.1017/jfm.2018.872, 2019.

Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski,
P., Fitzsimons, M., Athanassiadou, M., Kashem, S., Madge,
S., Prudden, R., Mandhane, A., Clark, A., Brock, A., Si-
monyan, K., Hadsell, R., Robinson, N., Clancy, E., Arribas,
A., and Mohamed, S.: Skilful precipitation nowcasting us-
ing deep generative models of radar, Nature, 597, 672–677,
https://doi.org/10.1038/s41586-021-03854-z, 2021.

Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional
Networks for Biomedical Image Segmentation, in: Medical Im-
age Computing and Computer-Assisted Intervention – MICCAI
2015, Lecture Notes in Computer Science, edited by: Navab, N.,
Hornegger, J., Wells, W. M., and Frangi, A. F., vol. 9351, 234–
241, Springer International Publishing, Cham, ISBN 978-3-319-
24573-7 978-3-319-24574-4, https://doi.org/10.1007/978-3-319-
24574-4_28, 2015.

Runge, C.: Ueber die numerische Auflösung von Differen-
tialgleichungen, Mathematische Annalen, 46, 167–178,
https://doi.org/10.1007/BF01446807, 1895.

Ruthotto, L. and Haber, E.: Deep Neural Networks Motivated by
Partial Differential Equations, J. Math. Imaging Vis., 62, 352–
364, https://doi.org/10.1007/s10851-019-00903-1, 2020.

Schultz, M. G., Betancourt, C., Gong, B., Kleinert, F., Langguth,
M., Leufen, L. H., Mozaffari, A., and Stadtler, S.: Can deep
learning beat numerical weather prediction?, Philos. T. A, 379,
20200097, https://doi.org/10.1098/rsta.2020.0097, 2021.

Schweidtmann, A. M., Zhang, D., and von Stosch, M.: A
review and perspective on hybrid modeling method-
ologies, Digital Chemical Engineering, 10, 100 136,
https://doi.org/10.1016/j.dche.2023.100136, 2024.

Shah, S., Dey, D., Lovett, C., and Kapoor, A.: AirSim: High-Fidelity
Visual and Physical Simulation for Autonomous Vehicles, in:
Field and Service Robotics. Springer Proceedings in Advanced
Robotics, edited by: Hutter, M. and Siegwart, R., vol 5, Springer,
Cham, https://doi.org/10.1007/978-3-319-67361-5_40, 2017.

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-k., and
Woo, W.-c.: Convolutional LSTM Network: A Machine Learn-
ing Approach for Precipitation Nowcasting, in: Advances
in Neural Information Processing Systems, vol. 28, Cur-
ran Associates, Inc., https://proceedings.neurips.cc/paper/2015/
hash/07563a3fe3bbe7e3ba84431ad9d055af-Abstract.html (last
access: 7 June 2024), 2015.

Sokolova, M. and Lapalme, G.: A systematic analysis of perfor-
mance measures for classification tasks, Inform. Process. Man-
age., 45, 427–437, https://doi.org/10.1016/j.ipm.2009.03.002,
2009.

Sultan, M. M., Wayment-Steele, H. K., and Pande, V. S.: Trans-
ferable Neural Networks for Enhanced Sampling of Pro-
tein Dynamics, J. Chem. Theor. Comput., 14, 1887–1894,
https://doi.org/10.1021/acs.jctc.8b00025, 2018.

Sun, J., Xue, M., Wilson, J. W., Zawadzki, I., Ballard, S. P., Onvlee-
Hooimeyer, J., Joe, P., Barker, D. M., Li, P.-W., Golding, B.,
Xu, M., and Pinto, J.: Use of NWP for Nowcasting Convec-
tive Precipitation: Recent Progress and Challenges, B. Am. Me-
teorol. Soc., 95, 409–426, https://doi.org/10.1175/BAMS-D-11-
00263.1, 2014.

Takahashi, K., Yamamoto, K., Kuchiba, A., and Koyama,
T.: Confidence interval for micro-averaged F1 and macro-
averaged F1 scores, Applied Intelligence, 52, 4961–4972,
https://doi.org/10.1007/s10489-021-02635-5, 2022.

Tamvakis, P. N., Kiourt, C., Solomou, A. D., Ioannakis, G., and
Tsirliganis, N. C.: Semantic Image Segmentation with Deep
Learning for Vine Leaf Phenotyping, IFAC-PapersOnLine, 55,
83–88, https://doi.org/10.1016/j.ifacol.2022.11.119, 2022.

Trebing, K., Stanczyk, T., and Mehrkanoon, S.: SmaAt-
UNet: Precipitation nowcasting using a small attention-
UNet architecture, Pattern Recogn. Lett., 145, 178–186,
https://doi.org/10.1016/j.patrec.2021.01.036, 2021.

Wang, S.-H., Nayak, D. R., Guttery, D. S., Zhang, X.,
and Zhang, Y.-D.: COVID-19 classification by CCSHNet
with deep fusion using transfer learning and discrimi-
nant correlation analysis, Information Fusion, 68, 131–148,
https://doi.org/10.1016/j.inffus.2020.11.005, 2021.

Wang, Y., Gao, Z., Long, M., Jianmin Wang, Wang, J., Yu, P. S., and
Philip S. Yu: PredRNN++: Towards A Resolution of the Deep-
in-Time Dilemma in Spatiotemporal Predictive Learning, ICML,
pp. 5110–5119, aRXIV_ID: 1804.06300 MAG ID: 2963326684
S2ID: d718941506d2adabc4792cb13d49e6336957e52e, 2018.

Wang, Y., Zhang, J., Zhu, H., Long, M., Wang, J., and Yu, P. S.:
Memory in Memory: A Predictive Neural Network for Learning
Higher-Order Non-Stationarity From Spatiotemporal Dynamics,
2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 9146–
9154, https://doi.org/10.1109/CVPR.2019.00937, 2019.

Geosci. Model Dev., 17, 6657–6681, 2024 https://doi.org/10.5194/gmd-17-6657-2024

R. El Montassir et al.: Hybrid physics–AI architecture for cloud cover nowcasting 6681

Willard, J., Jia, X., Xu, S., Steinbach, M., and Kumar, V.: Integrat-
ing Scientific Knowledge with Machine Learning for Engineer-
ing and Environmental Systems, ACM Computing Surveys, 55,
1–37, https://doi.org/10.1145/3514228, 2022.

Wood-Bradley, P., Zapata, J., and Pye, J.: Cloud tracking with opti-
cal flow for short-term solar forecasting, in: Proceedings of 50th
Annual AuSES Conference (Solar 2012), Australian Solar En-
ergy Society, https://openresearch-repository.anu.edu.au/handle/
1885/28800 (last access: 17 November 2022), 2012.

https://doi.org/10.5194/gmd-17-6657-2024 Geosci. Model Dev., 17, 6657–6681, 2024

C
ha

pt
er 10 Bibliography

164

Bibliography

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irv-

ing, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,

P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: a sys-

tem for large-scale machine learning. In Proceedings of the 12th USENIX conference

on Operating Systems Design and Implementation, OSDI’16, pages 265–283, USA,

Nov. 2016. USENIX Association. ISBN 978-1-931971-33-1. 41, 71

O. U. Aydin, A. A. Taha, A. Hilbert, A. A. Khalil, I. Galinovic, J. B. Fiebach, D. Frey,

and V. I. Madai. On the usage of average Hausdorff distance for segmenta-

tion performance assessment: hidden error when used for ranking. European

Radiology Experimental, 5(1):4, Jan. 2021. ISSN 2509-9280. doi: 10.1186/

s41747-020-00200-2. URL https://doi.org/10.1186/s41747-020-00200-2. 104

G. Ayzel, T. Scheffer, and M. Heistermann. RainNet v1.0: a convolutional neural net-

work for radar-based precipitation nowcasting. Geoscientific Model Development,

13(6):2631–2644, June 2020. ISSN 1991-959X. doi: 10.5194/gmd-13-2631-2020.

URL https://gmd.copernicus.org/articles/13/2631/2020/. Publisher: Coperni-

cus GmbH. 50, 78, 80, 93

J. Baño-Medina, R. Manzanas, and J. M. Gutiérrez. On the suitability of deep convo-

lutional neural networks for continental-wide downscaling of climate change projec-

tions. Climate Dynamics, 57(11):2941–2951, Dec. 2021. ISSN 1432-0894. doi: 10.

1007/s00382-021-05847-0. URL https://doi.org/10.1007/s00382-021-05847-0.

78

L. Berthomier, B. Pradel, and L. Perez. Cloud Cover Nowcasting with Deep Learn-

ing. In 2020 Tenth International Conference on Image Processing Theory, Tools and

Applications (IPTA), pages 1–6, Nov. 2020. doi: 10.1109/IPTA50016.2020.9286606.

URL http://arxiv.org/abs/2009.11577. arXiv:2009.11577 [cs]. 25, 50, 78, 93, 98

C. Besombes, O. Pannekoucke, C. Lapeyre, B. Sanderson, and O. Thual. Producing

realistic climate data with generative adversarial networks. Nonlinear Processes

in Geophysics, 28(3):347–370, July 2021. ISSN 1023-5809. doi: 10.5194/

165

https://doi.org/10.1186/s41747-020-00200-2
https://gmd.copernicus.org/articles/13/2631/2020/
https://doi.org/10.1007/s00382-021-05847-0
http://arxiv.org/abs/2009.11577

BIBLIOGRAPHY 166

npg-28-347-2021. URL https://npg.copernicus.org/articles/28/347/2021/.

Publisher: Copernicus GmbH. 78

T. Beucler, S. Rasp, M. Pritchard, and P. Gentine. Achieving Conservation of Energy in

Neural Network Emulators for Climate Modeling, June 2019. URL http://arxiv.
org/abs/1906.06622. arXiv:1906.06622 [physics]. 80, 82

K. Bi, L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian. Pangu-Weather: A 3D High-

Resolution Model for Fast and Accurate Global Weather Forecast, Nov. 2022. URL

http://arxiv.org/abs/2211.02556. arXiv:2211.02556 [physics]. 79, 80, 81

C. M. Bishop and H. Bishop. Transformers. In Deep Learning: Foundations and

Concepts, pages 357–406. Springer International Publishing, Cham, 2024. ISBN 978-

3-031-45468-4. doi: 10.1007/978-3-031-45468-4_12. URL https://doi.org/10.
1007/978-3-031-45468-4_12. 126, 130

M. Blondel and V. Roulet. The Elements of Differentiable Programming, Mar. 2024. URL

http://arxiv.org/abs/2403.14606. arXiv:2403.14606 [cs]. 70

M. Bode, M. Gauding, Z. Lian, D. Denker, M. Davidovic, K. Kleinheinz, J. Jitsev, and

H. Pitsch. Using Physics-Informed Super-Resolution Generative Adversarial Networks

for Subgrid Modeling in Turbulent Reactive Flows, Nov. 2019. URL http://arxiv.
org/abs/1911.11380. arXiv:1911.11380 [physics, stat]. 66

C. Bodnar, W. P. Bruinsma, A. Lucic, M. Stanley, J. Brandstetter, P. Garvan, M. Riechert,

J. Weyn, H. Dong, A. Vaughan, J. K. Gupta, K. Tambiratnam, A. Archibald, E. Heider,

M. Welling, R. E. Turner, and P. Perdikaris. Aurora: A Foundation Model of the At-

mosphere, May 2024. URL http://arxiv.org/abs/2405.13063. arXiv:2405.13063

[physics]. 79, 126, 130

M. Bonavita. On some limitations of data-driven weather forecasting models, Nov. 2023.

URL http://arxiv.org/abs/2309.08473. arXiv:2309.08473 [physics, stat]. 126,

130

J. Boyd. Chebyshev and Fourier Spectral Methods, volume 49 of Lecture Notes in

Engineering. Springer Berlin, Sept. 1989. ISBN 978-3-540-51487-9. URL https:
//link.springer.com/book/9783540514879. 61

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,

P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,

R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,

M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,

https://npg.copernicus.org/articles/28/347/2021/
http://arxiv.org/abs/1906.06622
http://arxiv.org/abs/1906.06622
http://arxiv.org/abs/2211.02556
https://doi.org/10.1007/978-3-031-45468-4_12
https://doi.org/10.1007/978-3-031-45468-4_12
http://arxiv.org/abs/2403.14606
http://arxiv.org/abs/1911.11380
http://arxiv.org/abs/1911.11380
http://arxiv.org/abs/2405.13063
http://arxiv.org/abs/2309.08473
https://link.springer.com/book/9783540514879
https://link.springer.com/book/9783540514879

BIBLIOGRAPHY 167

I. Sutskever, and D. Amodei. Language Models are Few-Shot Learners, July 2020.

URL http://arxiv.org/abs/2005.14165. arXiv:2005.14165 [cs]. 31

R. Cang, H. Li, H. Yao, Y. Jiao, and Y. Ren. Improving Direct Physical Properties

Prediction of Heterogeneous Materials from Imaging Data via Convolutional Neu-

ral Network and a Morphology-Aware Generative Model, Dec. 2017. URL http:
//arxiv.org/abs/1712.03811. arXiv:1712.03811 [cond-mat, physics:physics]. 66

A.-L. Cauchy. Méthode générale pour la résolution des systèmes d’équations simul-

tanées. In Œuvres complètes, volume 10, pages 399–402. Gauthier-Villars, 1847.

URL https://gallica.bnf.fr/ark:/12148/bpt6k90190w. 35

J. G. Charney, R. Fjörtoft, and J. v. Neumann. Numerical Integration of the Barotropic

Vorticity Equation. Tellus A: Dynamic Meteorology and Oceanography, 2(4),

Jan. 1950. ISSN 1600-0870. doi: 10.3402/tellusa.v2i4.8607. URL https://a.
tellusjournals.se/articles/10.3402/tellusa.v2i4.8607. 17, 23

K. Chen, T. Han, J. Gong, L. Bai, F. Ling, J.-J. Luo, X. Chen, L. Ma, T. Zhang, R. Su,

Y. Ci, B. Li, X. Yang, and W. Ouyang. FengWu: Pushing the Skillful Global Medium-

range Weather Forecast beyond 10 Days Lead, Apr. 2023. URL http://arxiv.org/
abs/2304.02948. arXiv:2304.02948 [physics]. 79, 80

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural Or-

dinary Differential Equations. In Advances in Neural Information Processing

Systems, volume 31. Curran Associates, Inc., 2018. doi: 10.48550/arXiv.1806.

07366. URL https://proceedings.neurips.cc/paper_files/paper/2018/hash/
69386f6bb1dfed68692a24c8686939b9-Abstract.html. 73

S. Cheng, C. Quilodrán-Casas, S. Ouala, A. Farchi, C. Liu, P. Tandeo, R. Fablet,

D. Lucor, B. Iooss, J. Brajard, D. Xiao, T. Janjic, W. Ding, Y. Guo, A. Car-

rassi, M. Bocquet, and R. Arcucci. Machine Learning With Data Assimilation

and Uncertainty Quantification for Dynamical Systems: A Review. IEEE/CAA

Journal of Automatica Sinica, 10(6):1361–1387, 2023. ISSN 2329-9266. doi:

10.1109/JAS.2023.123537. URL https://www.ieee-jas.net/en/article/doi/10.
1109/JAS.2023.123537. Publisher: IEEE/CAA Journal of Automatica Sinica. 100

K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and

Y. Bengio. Learning Phrase Representations using RNN Encoder-Decoder for Sta-

tistical Machine Translation, Sept. 2014. URL http://arxiv.org/abs/1406.1078.

arXiv:1406.1078 [cs, stat]. 51

F. Chollet. Xception: Deep Learning with Depthwise Separable Convolutions. In 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1800–

http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1712.03811
http://arxiv.org/abs/1712.03811
https://gallica.bnf.fr/ark:/12148/bpt6k90190w
https://a.tellusjournals.se/articles/10.3402/tellusa.v2i4.8607
https://a.tellusjournals.se/articles/10.3402/tellusa.v2i4.8607
http://arxiv.org/abs/2304.02948
http://arxiv.org/abs/2304.02948
https://proceedings.neurips.cc/paper_files/paper/2018/hash/69386f6bb1dfed68692a24c8686939b9-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/69386f6bb1dfed68692a24c8686939b9-Abstract.html
https://www.ieee-jas.net/en/article/doi/10.1109/JAS.2023.123537
https://www.ieee-jas.net/en/article/doi/10.1109/JAS.2023.123537
http://arxiv.org/abs/1406.1078

BIBLIOGRAPHY 168

1807. IEEE Computer Society, July 2017. ISBN 978-1-5386-0457-1. doi: 10.1109/

CVPR.2017.195. URL https://www.computer.org/csdl/proceedings-article/
cvpr/2017/0457b800/12OmNqFJhzG. ISSN: 1063-6919. 86

R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen Differenzengleichungen

der mathematischen Physik. Mathematische Annalen, 100(1):32–74, Dec. 1928.

ISSN 1432-1807. doi: 10.1007/BF01448839. URL https://doi.org/10.1007/
BF01448839. 63

A. Daw, R. Q. Thomas, C. C. Carey, J. S. Read, A. P. Appling, and A. Karpatne. Physics-

Guided Architecture (PGA) of Neural Networks for Quantifying Uncertainty in Lake

Temperature Modeling. Technical Report arXiv:1911.02682, arXiv, Nov. 2019. URL

http://arxiv.org/abs/1911.02682. arXiv:1911.02682 [physics, stat] type: article.

82

A. Daw, A. Karpatne, W. Watkins, J. Read, and V. Kumar. Physics-guided neural net-

works (PGNN): An application in lake temperature modeling. In Knowledge Guided

Machine Learning, volume 1, pages 353–372. Taylor & Francis, 1 edition, 2022. ISBN

978-1-00-314337-6. URL https://pubs.usgs.gov/publication/70237341. 66, 68

E. de Bézenac, A. Pajot, and P. Gallinari. Deep learning for physical processes: in-

corporating prior scientific knowledge. Journal of statistical mechanics, 2019(12):

124009–, 2019. ISSN 1742-5468. doi: 10.1088/1742-5468/ab3195. 69, 82

R. Dechter. Learning while searching in constraint-satisfaction-problems. In Proceedings

of the Fifth AAAI National Conference on Artificial Intelligence, AAAI’86, pages 178–

183, Philadelphia, Pennsylvania, Aug. 1986. AAAI Press. 33

B. Després. Neural Networks and Numerical Analysis. De Gruyter, Aug. 2022. ISBN

978-3-11-078318-6. doi: 10.1515/9783110783186. URL https://www.degruyter.
com/document/doi/10.1515/9783110783186/html. 72

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. In J. Burstein, C. Do-

ran, and T. Solorio, editors, Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,

Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/

N19-1423. URL https://aclanthology.org/N19-1423. 31

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-

hghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An Image is

https://www.computer.org/csdl/proceedings-article/cvpr/2017/0457b800/12OmNqFJhzG
https://www.computer.org/csdl/proceedings-article/cvpr/2017/0457b800/12OmNqFJhzG
https://doi.org/10.1007/BF01448839
https://doi.org/10.1007/BF01448839
http://arxiv.org/abs/1911.02682
https://pubs.usgs.gov/publication/70237341
https://www.degruyter.com/document/doi/10.1515/9783110783186/html
https://www.degruyter.com/document/doi/10.1515/9783110783186/html
https://aclanthology.org/N19-1423

BIBLIOGRAPHY 169

Worth 16x16 Words: Transformers for Image Recognition at Scale, June 2021. URL

http://arxiv.org/abs/2010.11929. arXiv:2010.11929 [cs]. 53

J. Duchi, E. Hazan, and Y. Singer. Adaptive Subgradient Methods for Online Learning

and Stochastic Optimization. The Journal of Machine Learning Research, 12:2121–

2159, 2011. doi: 10.5555/1953048.2021068. 37

F. Dupuy, Olivier Mestre, Olivier Mestre, O. Mestre, M. Serrurier, Mathieu Serrurier,

M. C. Bakkay, V. K. Burdá, N. C. Cabrera-Gutiérrez, J.-C. Jouhaud, M.-A. Mader,

G. Oller, and M. Zamo. ARPEGE Cloud Cover Forecast Postprocessing with Con-

volutional Neural Network. Weather and forecasting, 36(2):567–586, 2020. doi:

10.1175/waf-d-20-0093.1. 25

Y. El Mghouchi, E. Chham, E. M. Zemmouri, and A. El Bouardi. Assessment of dif-

ferent combinations of meteorological parameters for predicting daily global solar

radiation using artificial neural networks. Building and Environment, 149:607–

622, Feb. 2019. ISSN 0360-1323. doi: 10.1016/j.buildenv.2018.12.055. URL

https://www.sciencedirect.com/science/article/pii/S0360132318308138. 78

R. El Montassir, O. Pannekoucke, and C. Lapeyre. HyPhAICC v1.0: a hybrid physics–AI

approach for probability fields advection shown through an application to cloud cover

nowcasting. Geoscientific Model Development, 17(17):6657–6681, Sept. 2024. ISSN

1991-959X. doi: 10.5194/gmd-17-6657-2024. URL https://gmd.copernicus.org/
articles/17/6657/2024/. Publisher: Copernicus GmbH. 126, 130

L. Espeholt, S. Agrawal, C. Sønderby, M. Kumar, J. Heek, C. Bromberg, C. Gazen,

R. Carver, M. Andrychowicz, J. Hickey, A. Bell, and N. Kalchbrenner. Deep learn-

ing for twelve hour precipitation forecasts. Nature Communications, 13(1):5145,

Sept. 2022. ISSN 2041-1723. doi: 10.1038/s41467-022-32483-x. URL https:
//www.nature.com/articles/s41467-022-32483-x. Number: 1 Publisher: Nature

Publishing Group. 78

R. Fablet, S. Ouala, and C. Herzet. Bilinear residual Neural Network for the iden-

tification and forecasting of dynamical systems. In 2018 26th European Signal

Processing Conference (EUSIPCO), pages 1477–1481. IEEE, Sept. 2018. doi: 10.

23919/EUSIPCO.2018.8553492. URL https://hal.science/hal-01686766. 73

B. Fernandes, A. González-Briones, P. Novais, M. Calafate, C. Analide, and J. Neves.

An Adjective Selection Personality Assessment Method Using Gradient Boosting Ma-

chine Learning. Processes, 8(5):618, May 2020. ISSN 2227-9717. doi: 10.3390/

pr8050618. URL https://www.mdpi.com/2227-9717/8/5/618. Number: 5 Publisher:

Multidisciplinary Digital Publishing Institute. 95

http://arxiv.org/abs/2010.11929
https://www.sciencedirect.com/science/article/pii/S0360132318308138
https://gmd.copernicus.org/articles/17/6657/2024/
https://gmd.copernicus.org/articles/17/6657/2024/
https://www.nature.com/articles/s41467-022-32483-x
https://www.nature.com/articles/s41467-022-32483-x
https://hal.science/hal-01686766
https://www.mdpi.com/2227-9717/8/5/618

BIBLIOGRAPHY 170

U. Forssell and P. Lindskog. Combining Semi-Physical and Neural Network Model-

ing: An Example ofIts Usefulness. IFAC Proceedings Volumes, 30(11):767–770,

July 1997. ISSN 1474-6670. doi: 10.1016/S1474-6670(17)42938-7. URL https:
//www.sciencedirect.com/science/article/pii/S1474667017429387. 9, 67, 68

R. Frostig, M. J. Johnson, and C. Leary. Compiling machine learning programs via high-

level tracing. Systems for Machine Learning, 4(9), 2018. URL https://mlsys.org/
Conferences/doc/2018/146.pdf. Publisher: SysML. 41

J. García-Pereda, J. M. Fernandez-Serdan, O. Alonso, A. Sanz, R. Guerra, C. Ariza,

I. Santos, and L. Fernández. NWCSAF High Resolution Winds (NWC/GEO-HRW)

Stand-Alone Software for Calculation of Atmospheric Motion Vectors and Trajecto-

ries. Remote Sensing, 11(17):2032, Jan. 2019. ISSN 2072-4292. doi: 10.3390/

rs11172032. URL https://www.mdpi.com/2072-4292/11/17/2032. Number: 17

Publisher: Multidisciplinary Digital Publishing Institute. 84, 93

G. K. Gilbert. Finley’s tornado predictions. American Meteorological Journal, 1:166–

172, Sept. 1884. 94

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative Adversarial Networks, June 2014. URL

http://arxiv.org/abs/1406.2661. arXiv:1406.2661 [cs, stat]. 31

J. M. Han, Y. Q. Ang, A. Malkawi, and H. W. Samuelson. Using recurrent neu-

ral networks for localized weather prediction with combined use of public air-

port data and on-site measurements. Building and Environment, 192:107601, Apr.

2021. ISSN 0360-1323. doi: 10.1016/j.buildenv.2021.107601. URL https://www.
sciencedirect.com/science/article/pii/S0360132321000160. 78

H. A. Hazen. The Origin and Value of Weather Lore. The Journal of American Folklore,

13(50):191–198, 1900. ISSN 0021-8715. doi: 10.2307/533883. URL https://www.
jstor.org/stable/533883. Publisher: University of Illinois Press. 16, 22

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition.

In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

770–778, June 2016. doi: 10.1109/CVPR.2016.90. URL https://ieeexplore.ieee.
org/document/7780459. ISSN: 1063-6919. 52

M. Herde, B. Raonić, T. Rohner, R. Käppeli, R. Molinaro, E. de Bézenac, and S. Mishra.

Poseidon: Efficient Foundation Models for PDEs, May 2024. URL http://arxiv.org/
abs/2405.19101. arXiv:2405.19101 [cs]. 127, 131

https://www.sciencedirect.com/science/article/pii/S1474667017429387
https://www.sciencedirect.com/science/article/pii/S1474667017429387
https://mlsys.org/Conferences/doc/2018/146.pdf
https://mlsys.org/Conferences/doc/2018/146.pdf
https://www.mdpi.com/2072-4292/11/17/2032
http://arxiv.org/abs/1406.2661
https://www.sciencedirect.com/science/article/pii/S0360132321000160
https://www.sciencedirect.com/science/article/pii/S0360132321000160
https://www.jstor.org/stable/533883
https://www.jstor.org/stable/533883
https://ieeexplore.ieee.org/document/7780459
https://ieeexplore.ieee.org/document/7780459
http://arxiv.org/abs/2405.19101
http://arxiv.org/abs/2405.19101

BIBLIOGRAPHY 171

C. Hirsch. Numerical computation of internal and external flows. Volume 2 :

Computational methods for inviscid and viscous flows. John Wiley & Sons, Chich-

ester, 1990. ISBN 978-0-471-92452-4. 57

C. Hirsch. Numerical computation of internal and external flows: fundamentals of

computational fluid dynamics. Elsevier/Butterworth-Heinemann, Oxford ; Burling-

ton, MA, 2nd ed edition, 2007. ISBN 978-0-7506-6594-0. OCLC: ocn148277909.

61

C. W. Hirt. Heuristic stability theory for finite-difference equations. Journal of

Computational Physics, 2(4):339–355, June 1968. ISSN 0021-9991. doi: 10.1016/

0021-9991(68)90041-7. URL https://www.sciencedirect.com/science/article/
pii/0021999168900417. 61

S. Hochreiter and J. Schmidhuber. Long Short-term Memory. Neural computation, 9:

1735–80, Dec. 1997. doi: 10.1162/neco.1997.9.8.1735. 30, 51

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are univer-

sal approximators. Neural Networks, 2(5):359–366, Jan. 1989. ISSN 0893-6080. doi:

10.1016/0893-6080(89)90020-8. URL https://www.sciencedirect.com/science/
article/pii/0893608089900208. 42

X. Jia, J. Willard, A. Karpatne, J. Read, J. Zwart, M. Steinbach, and V. Kumar. Physics

Guided RNNs for Modeling Dynamical Systems: A Case Study in Simulating Lake

Temperature Profiles. In Proceedings of the 2019 SIAM International Conference on

Data Mining (SDM), Proceedings, pages 558–566. Society for Industrial and Applied

Mathematics, May 2019. doi: 10.1137/1.9781611975673.63. URL https://epubs.
siam.org/doi/10.1137/1.9781611975673.63. 66, 67, 82

X. Jia, J. Willard, A. Karpatne, J. S. Read, J. A. Zwart, M. Steinbach, and V. Ku-

mar. Physics-Guided Machine Learning for Scientific Discovery: An Application in

Simulating Lake Temperature Profiles. ACM/IMS Transactions on Data Science,

2(3):20:1–20:26, May 2021. ISSN 2691-1922. doi: 10.1145/3447814. URL

https://dl.acm.org/doi/10.1145/3447814. 67, 82

P. Joe, J. Sun, N. Yussouf, S. Goodman, M. Riemer, K. C. Gouda, B. Golding, R. Rogers,

G. Isaac, J. Wilson, P. W. P. Li, V. Wulfmeyer, K. Elmore, J. Onvlee, P. Chong, and

J. Ladue. Predicting the Weather: A Partnership of Observation Scientists and Fore-

casters. In B. Golding, editor, Towards the “Perfect” Weather Warning: Bridging

Disciplinary Gaps through Partnership and Communication, pages 201–254. Springer

International Publishing, Cham, 2022. ISBN 978-3-030-98989-7. doi: 10.1007/

https://www.sciencedirect.com/science/article/pii/0021999168900417
https://www.sciencedirect.com/science/article/pii/0021999168900417
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://epubs.siam.org/doi/10.1137/1.9781611975673.63
https://epubs.siam.org/doi/10.1137/1.9781611975673.63
https://dl.acm.org/doi/10.1145/3447814

BIBLIOGRAPHY 172

978-3-030-98989-7_7. URL https://doi.org/10.1007/978-3-030-98989-7_7. 17,

23

D. Karimi and S. E. Salcudean. Reducing the Hausdorff Distance in Medical Image

Segmentation With Convolutional Neural Networks. IEEE Trans. Medical Imaging,

39(2):499–513, 2020. doi: 10.1109/TMI.2019.2930068. 104

A. Karpatne, G. Atluri, J. Faghmous, M. Steinbach, A. Banerjee, A. Ganguly, S. Shekhar,

N. Samatova, and V. Kumar. Theory-guided Data Science: A New Paradigm for Scien-

tific Discovery from Data. IEEE Transactions on Knowledge and Data Engineering, 29

(10):2318–2331, Oct. 2017. ISSN 1041-4347. doi: 10.1109/TKDE.2017.2720168.

URL http://arxiv.org/abs/1612.08544. arXiv:1612.08544 [cs, stat]. 65, 66

P. Kidger and T. Lyons. Universal Approximation with Deep Narrow Networks. In

Proceedings of Thirty Third Conference on Learning Theory, pages 2306–2327.

PMLR, July 2020. URL https://proceedings.mlr.press/v125/kidger20a.html.

ISSN: 2640-3498. 42, 43

B.-Y. Kim, J. W. Cha, and Y. H. Lee. Estimation of twenty-four-hour continuous cloud

cover using ground-based imager with convolutional neural network. Atmospheric

Measurement Techniques Discussions, pages 1–19, July 2023. doi: 10.5194/

amt-2023-131. URL https://amt.copernicus.org/preprints/amt-2023-131/.

Publisher: Copernicus GmbH. 78

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In Y. Bengio and

Y. LeCun, editors, 3rd International Conference on Learning Representations, ICLR

2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL

http://arxiv.org/abs/1412.6980. 38, 93

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep Con-

volutional Neural Networks. In Advances in Neural Information Processing Systems,

volume 25. Curran Associates, Inc., 2012. URL https://proceedings.neurips.cc/
paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.
html. 30

R. J. Kuligowski and A. P. Barros. Localized Precipitation Forecasts from a Nu-

merical Weather Prediction Model Using Artificial Neural Networks. Weather

and Forecasting, 13(4):1194–1204, Dec. 1998. ISSN 1520-0434, 0882-

8156. doi: 10.1175/1520-0434(1998)013<1194:LPFFAN>2.0.CO;2. URL

https://journals.ametsoc.org/view/journals/wefo/13/4/1520-0434_1998_
013_1194_lpffan_2_0_co_2.xml. Publisher: American Meteorological Society

Section: Weather and Forecasting. 78

https://doi.org/10.1007/978-3-030-98989-7_7
http://arxiv.org/abs/1612.08544
https://proceedings.mlr.press/v125/kidger20a.html
https://amt.copernicus.org/preprints/amt-2023-131/
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://journals.ametsoc.org/view/journals/wefo/13/4/1520-0434_1998_013_1194_lpffan_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/wefo/13/4/1520-0434_1998_013_1194_lpffan_2_0_co_2.xml

BIBLIOGRAPHY 173

W. Kutta. Beitrag zur näherungsweisen Integration totaler Differentialgleichungen.

Zeitschrift für Mathematik und Physik, 46:435–453, 1901. 58

R. Lam, A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato, A. Pritzel,

S. Ravuri, T. Ewalds, F. Alet, Z. Eaton-Rosen, W. Hu, A. Merose, S. Hoyer, G. Hol-

land, J. Stott, O. Vinyals, S. Mohamed, and P. Battaglia. GraphCast: Learning skillful

medium-range global weather forecasting, Dec. 2022. URL http://arxiv.org/abs/
2212.12794. arXiv:2212.12794 [physics]. 79, 80

S. Lang, M. Alexe, M. Chantry, J. Dramsch, F. Pinault, B. Raoult, M. C. A. Clare, C. Lessig,

M. Maier-Gerber, L. Magnusson, Z. B. Bouallègue, A. P. Nemesio, P. D. Dueben,

A. Brown, F. Pappenberger, and F. Rabier. AIFS – ECMWF’s data-driven forecast-

ing system, Aug. 2024. URL http://arxiv.org/abs/2406.01465. arXiv:2406.01465

[physics]. 79

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, May

2015. ISSN 1476-4687. doi: 10.1038/nature14539. URL https://www.nature.com/
articles/nature14539. Number: 7553 Publisher: Nature Publishing Group. 30

G. W. F. v. Leibniz. The Early Mathematical Manuscripts of Leibniz: Translated from the

Latin Texts Published by Carl Immanuel Gerhardt with Critical and Historical Notes.

Open court publishing Company, 1920. ISBN 978-0-598-81846-1. Google-Books-ID:

bOIGAAAAYAAJ. 40

X.-D. Liu, S. Osher, and T. Chan. Weighted Essentially Non-oscillatory Schemes.

Journal of Computational Physics, 115(1):200–212, Nov. 1994. ISSN 0021-9991.

doi: 10.1006/jcph.1994.1187. URL https://www.sciencedirect.com/science/
article/pii/S0021999184711879. 57

Y. Liu, Y. Gao, and W. Yin. An Improved Analysis of Stochastic Gradient Descent with

Momentum. In Advances in Neural Information Processing Systems, volume 33,

pages 18261–18271. Curran Associates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/hash/d3f5d4de09ea19461dab00590df91e4f-Abstract.
html. 37

E. N. Lorenz. Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences,

20(2):130–141, Mar. 1963. ISSN 0022-4928, 1520-0469. doi: 10.1175/

1520-0469(1963)020<0130:DNF>2.0.CO;2. URL https://journals.ametsoc.
org/view/journals/atsc/20/2/1520-0469_1963_020_0130_dnf_2_0_co_2.xml.

Publisher: American Meteorological Society Section: Journal of the Atmospheric

Sciences. 77

http://arxiv.org/abs/2212.12794
http://arxiv.org/abs/2212.12794
http://arxiv.org/abs/2406.01465
https://www.nature.com/articles/nature14539
https://www.nature.com/articles/nature14539
https://www.sciencedirect.com/science/article/pii/S0021999184711879
https://www.sciencedirect.com/science/article/pii/S0021999184711879
https://proceedings.neurips.cc/paper/2020/hash/d3f5d4de09ea19461dab00590df91e4f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d3f5d4de09ea19461dab00590df91e4f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d3f5d4de09ea19461dab00590df91e4f-Abstract.html
https://journals.ametsoc.org/view/journals/atsc/20/2/1520-0469_1963_020_0130_dnf_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/atsc/20/2/1520-0469_1963_020_0130_dnf_2_0_co_2.xml

BIBLIOGRAPHY 174

D. Matte, J. H. Christensen, H. Feddersen, H. Vedel, N. W. Nielsen, R. A.

Pedersen, and R. M. K. Zeitzen. On the Potentials and Limitations of At-

tributing a Small-Scale Climate Event. Geophysical Research Letters, 49(16):

e2022GL099481, 2022. ISSN 1944-8007. doi: 10.1029/2022GL099481.

URL https://onlinelibrary.wiley.com/doi/abs/10.1029/2022GL099481. _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2022GL099481. 17, 23

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activ-

ity. The bulletin of mathematical biophysics, 5(4):115–133, Dec. 1943. ISSN 1522-

9602. doi: 10.1007/BF02478259. URL https://doi.org/10.1007/BF02478259. 29

M. Minsky and S. Papert. Perceptrons; an Introduction to Computational Geometry.

MIT Press, 1969. ISBN 978-0-262-13043-1. Google-Books-ID: Ow1OAQAAIAAJ. 30

M. Nakahara. Geometry, Topology and Physics (Second Edition). Taylor & Francis,

2003. ISBN 0-7503-0606-8. 138

Y. E. Nesterov. A method of solving a convex programming problem with convergence

rate O(1/k^2). Proceedings of the USSR Academy of Sciences, 269(3):543–547,

1983. 37

T. Nguyen, J. Brandstetter, A. Kapoor, J. K. Gupta, and A. Grover. ClimaX: A foundation

model for weather and climate, Feb. 2023. URL http://arxiv.org/abs/2301.10343.

arXiv:2301.10343 [cs]. 54, 79, 126, 130

M. Ossendrijver. Weather Prediction in Babylonia. Journal of Ancient Near

Eastern History, 8(1-2):223–258, June 2021. ISSN 2328-9562. doi: 10.

1515/janeh-2020-0009. URL https://www.degruyter.com/document/doi/10.
1515/janeh-2020-0009/html. Publisher: De Gruyter. 16, 22

S. J. Pan and Q. Yang. A Survey on Transfer Learning. IEEE Transactions on Knowledge

and Data Engineering, 22(10):1345–1359, Oct. 2010. ISSN 1558-2191. doi:

10.1109/TKDE.2009.191. URL https://ieeexplore.ieee.org/document/5288526.

Conference Name: IEEE Transactions on Knowledge and Data Engineering. 31

O. Pannekoucke and R. Fablet. PDE-NetGen 1.0: from symbolic partial differential equa-

tion (PDE) representations of physical processes to trainable neural network repre-

sentations. Geoscientific Model Development, 13(7):3373–3382, July 2020. ISSN

1991-959X. doi: 10.5194/gmd-13-3373-2020. URL https://gmd.copernicus.org/
articles/13/3373/2020/. Publisher: Copernicus GmbH. 74, 127, 131

R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural net-

works. Proceedings of the 30th International Conference on International Conference

https://onlinelibrary.wiley.com/doi/abs/10.1029/2022GL099481
https://doi.org/10.1007/BF02478259
http://arxiv.org/abs/2301.10343
https://www.degruyter.com/document/doi/10.1515/janeh-2020-0009/html
https://www.degruyter.com/document/doi/10.1515/janeh-2020-0009/html
https://ieeexplore.ieee.org/document/5288526
https://gmd.copernicus.org/articles/13/3373/2020/
https://gmd.copernicus.org/articles/13/3373/2020/

BIBLIOGRAPHY 175

on Machine Learning, 28:1310–1318, 2013. URL https://proceedings.mlr.press/
v28/pascanu13.pdf. 30

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,

A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: an

imperative style, high-performance deep learning library. In Proceedings of the 33rd

International Conference on Neural Information Processing Systems, pages 8026–

8037, Red Hook, NY, USA, Dec. 2019. Curran Associates Inc. 41, 71

A. Pinkus. Approximation theory of the MLP model in neural net-

works. Acta Numerica, 8:143–195, Jan. 1999. ISSN 1474-

0508, 0962-4929. doi: 10.1017/S0962492900002919. URL

https://www.cambridge.org/core/journals/acta-numerica/article/
abs/approximation-theory-of-the-mlp-model-in-neural-networks/
18072C558C8410C4F92A82BCC8FC8CF9. Publisher: Cambridge University Press.

42, 43

B. T. Polyak. Some methods of speeding up the convergence of iteration meth-

ods. USSR Computational Mathematics and Mathematical Physics, 4(5):1–17, Jan.

1964. ISSN 0041-5553. doi: 10.1016/0041-5553(64)90137-5. URL https://www.
sciencedirect.com/science/article/pii/0041555364901375. 36

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics Informed Deep Learning (Part

I): Data-driven Solutions of Nonlinear Partial Differential Equations, Nov. 2017. URL

http://arxiv.org/abs/1711.10561. arXiv:1711.10561 [cs, math, stat]. 46

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks:

A deep learning framework for solving forward and inverse problems involving

nonlinear partial differential equations. Journal of Computational Physics, 378:

686–707, Feb. 2019a. ISSN 0021-9991. doi: 10.1016/j.jcp.2018.10.045. URL

https://www.sciencedirect.com/science/article/pii/S0021999118307125. 66,

127, 131

M. Raissi, Z. Wang, M. S. Triantafyllou, and G. E. Karniadakis. Deep Learning of Vortex

Induced Vibrations. Journal of Fluid Mechanics, 861:119–137, Feb. 2019b. ISSN

0022-1120, 1469-7645. doi: 10.1017/jfm.2018.872. URL http://arxiv.org/abs/
1808.08952. arXiv:1808.08952 [physics, stat]. 66

S. Ravuri, K. Lenc, M. Willson, D. Kangin, R. Lam, P. Mirowski, M. Fitzsi-

mons, M. Athanassiadou, S. Kashem, S. Madge, R. Prudden, A. Mandhane,

https://proceedings.mlr.press/v28/pascanu13.pdf
https://proceedings.mlr.press/v28/pascanu13.pdf
https://www.cambridge.org/core/journals/acta-numerica/article/abs/approximation-theory-of-the-mlp-model-in-neural-networks/18072C558C8410C4F92A82BCC8FC8CF9
https://www.cambridge.org/core/journals/acta-numerica/article/abs/approximation-theory-of-the-mlp-model-in-neural-networks/18072C558C8410C4F92A82BCC8FC8CF9
https://www.cambridge.org/core/journals/acta-numerica/article/abs/approximation-theory-of-the-mlp-model-in-neural-networks/18072C558C8410C4F92A82BCC8FC8CF9
https://www.sciencedirect.com/science/article/pii/0041555364901375
https://www.sciencedirect.com/science/article/pii/0041555364901375
http://arxiv.org/abs/1711.10561
https://www.sciencedirect.com/science/article/pii/S0021999118307125
http://arxiv.org/abs/1808.08952
http://arxiv.org/abs/1808.08952

BIBLIOGRAPHY 176

A. Clark, A. Brock, K. Simonyan, R. Hadsell, N. Robinson, E. Clancy, A. Ar-

ribas, and S. Mohamed. Skilful precipitation nowcasting using deep generative

models of radar. Nature, 597(7878):672–677, Sept. 2021. ISSN 1476-4687.

doi: 10.1038/s41586-021-03854-z. URL https://www.nature.com/articles/
s41586-021-03854-z. Number: 7878 Publisher: Nature Publishing Group. 78, 80,

81

M. Reyniers. Quantitative Precipitation Forecasts based on radar observations: princi-

ples, algorithms and operational systems. RMI Publication, Mar. 2016. URL https://
orfeo.belnet.be/handle/internal/8780. Accepted: 2016-03-07T16:16:58Z Pub-

lisher: IRM. 19, 25

O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks for Biomedical

Image Segmentation. In N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, edi-

tors, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015,

volume 9351, pages 234–241. Springer International Publishing, Cham, 2015. ISBN

978-3-319-24573-7 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4_28. URL

http://link.springer.com/10.1007/978-3-319-24574-4_28. Series Title: Lecture

Notes in Computer Science. 50, 93

F. Rosenblatt. The perceptron: A probabilistic model for information storage and orga-

nization in the brain. Psychological Review, 65(6):386–408, 1958. ISSN 1939-1471.

doi: 10.1037/h0042519. Place: US Publisher: American Psychological Association.

30, 31

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-

propagating errors. Nature, 323(6088):533–536, Oct. 1986. ISSN 1476-4687. doi:

10.1038/323533a0. URL https://www.nature.com/articles/323533a0. Number:

6088 Publisher: Nature Publishing Group. 30, 39

C. Runge. Ueber die numerische Auflösung von Differentialgleichungen. Mathematische

Annalen, 46(2):167–178, June 1895. ISSN 1432-1807. doi: 10.1007/BF01446807.

URL https://doi.org/10.1007/BF01446807. 58

L. Ruthotto and E. Haber. Deep Neural Networks Motivated by Partial Differential Equa-

tions. Journal of Mathematical Imaging and Vision, 62(3):352–364, Apr. 2020. ISSN

1573-7683. doi: 10.1007/s10851-019-00903-1. URL https://doi.org/10.1007/
s10851-019-00903-1. 73

O. San and R. Maulik. Machine learning closures for model order reduction of

thermal fluids. Applied Mathematical Modelling, 60:681–710, Aug. 2018a. ISSN

https://www.nature.com/articles/s41586-021-03854-z
https://www.nature.com/articles/s41586-021-03854-z
https://orfeo.belnet.be/handle/internal/8780
https://orfeo.belnet.be/handle/internal/8780
http://link.springer.com/10.1007/978-3-319-24574-4_28
https://www.nature.com/articles/323533a0
https://doi.org/10.1007/BF01446807
https://doi.org/10.1007/s10851-019-00903-1
https://doi.org/10.1007/s10851-019-00903-1

BIBLIOGRAPHY 177

0307904X. doi: 10.1016/j.apm.2018.03.037. URL https://linkinghub.elsevier.
com/retrieve/pii/S0307904X18301616. 67

O. San and R. Maulik. Neural network closures for nonlinear model order reduc-

tion. Advances in Computational Mathematics, 44(6):1717–1750, Dec. 2018b. ISSN

1572-9044. doi: 10.1007/s10444-018-9590-z. URL https://doi.org/10.1007/
s10444-018-9590-z. 67

M. G. Schultz, C. Betancourt, B. Gong, F. Kleinert, M. Langguth, L. H. Leufen,

A. Mozaffari, and S. Stadtler. Can deep learning beat numerical weather predic-

tion? Philosophical transactions. Series A, Mathematical, physical, and engineering

sciences, 379(2194):20200097, Apr. 2021. ISSN 1364-503X. doi: 10.1098/rsta.

2020.0097. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898133/. 17,

23

A. M. Schweidtmann, D. Zhang, and M. von Stosch. A review and perspective on hybrid

modeling methodologies. Digital Chemical Engineering, 10:100136, Mar. 2024. ISSN

2772-5081. doi: 10.1016/j.dche.2023.100136. URL https://www.sciencedirect.
com/science/article/pii/S2772508123000546. 100

Y. Seity, P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, and

V. Masson. The AROME-France Convective-Scale Operational Model. Monthly

Weather Review, 139(3):976–991, Mar. 2011. ISSN 1520-0493, 0027-0644. doi:

10.1175/2010MWR3425.1. URL https://journals.ametsoc.org/view/journals/
mwre/139/3/2010mwr3425.1.xml. Publisher: American Meteorological Society Sec-

tion: Monthly Weather Review. 77

T. Selz and G. C. Craig. Can Artificial Intelligence-Based Weather Prediction

Models Simulate the Butterfly Effect? Geophysical Research Letters, 50

(20):e2023GL105747, 2023. ISSN 1944-8007. doi: 10.1029/2023GL105747.

URL https://onlinelibrary.wiley.com/doi/abs/10.1029/2023GL105747. _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2023GL105747. 81

S. Shah, D. Dey, C. Lovett, and A. Kapoor. AirSim: High-Fidelity Visual and

Physical Simulation for Autonomous Vehicles. In M. Hutter and R. Siegwart,

editors, Field and Service Robotics, volume 5, pages 621–635. Springer Inter-

national Publishing, Cham, 2018. ISBN 978-3-319-67360-8 978-3-319-67361-5.

doi: 10.1007/978-3-319-67361-5_40. URL http://link.springer.com/10.1007/
978-3-319-67361-5_40. Series Title: Springer Proceedings in Advanced Robotics.

67

https://linkinghub.elsevier.com/retrieve/pii/S0307904X18301616
https://linkinghub.elsevier.com/retrieve/pii/S0307904X18301616
https://doi.org/10.1007/s10444-018-9590-z
https://doi.org/10.1007/s10444-018-9590-z
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898133/
https://www.sciencedirect.com/science/article/pii/S2772508123000546
https://www.sciencedirect.com/science/article/pii/S2772508123000546
https://journals.ametsoc.org/view/journals/mwre/139/3/2010mwr3425.1.xml
https://journals.ametsoc.org/view/journals/mwre/139/3/2010mwr3425.1.xml
https://onlinelibrary.wiley.com/doi/abs/10.1029/2023GL105747
http://link.springer.com/10.1007/978-3-319-67361-5_40
http://link.springer.com/10.1007/978-3-319-67361-5_40

BIBLIOGRAPHY 178

X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. Woo. Convolu-

tional LSTM Network: A Machine Learning Approach for Precipitation Nowcast-

ing. In Advances in Neural Information Processing Systems, volume 28. Curran

Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/hash/
07563a3fe3bbe7e3ba84431ad9d055af-Abstract.html. 17, 23, 78

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-

bert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den

Driessche, T. Graepel, and D. Hassabis. Mastering the game of Go without human

knowledge. Nature, 550(7676):354–359, Oct. 2017. ISSN 1476-4687. doi: 10.

1038/nature24270. URL https://www.nature.com/articles/nature24270. Num-

ber: 7676 Publisher: Nature Publishing Group. 31

M. M. Sultan, H. K. Wayment-Steele, and V. S. Pande. Transferable Neural Net-

works for Enhanced Sampling of Protein Dynamics. Journal of Chemical Theory and

Computation, 14(4):1887–1894, Apr. 2018. ISSN 1549-9618. doi: 10.1021/acs.jctc.

8b00025. URL https://doi.org/10.1021/acs.jctc.8b00025. Publisher: American

Chemical Society. 67

I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and

momentum in deep learning. In Proceedings of the 30th International Conference on

Machine Learning, pages 1139–1147. PMLR, May 2013. URL https://proceedings.
mlr.press/v28/sutskever13.html. ISSN: 1938-7228. 37

C. K. Sønderby, L. Espeholt, J. Heek, M. Dehghani, A. Oliver, T. Salimans, S. Agrawal,

J. Hickey, and N. Kalchbrenner. MetNet: A Neural Weather Model for Precipitation

Forecasting, Mar. 2020. URL http://arxiv.org/abs/2003.12140. arXiv:2003.12140

[physics, stat]. 81

P. N. Tamvakis, C. Kiourt, A. D. Solomou, G. Ioannakis, and N. C. Tsirliganis.

Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping.

IFAC-PapersOnLine, 55(32):83–88, Jan. 2022. ISSN 2405-8963. doi: 10.1016/j.

ifacol.2022.11.119. URL https://www.sciencedirect.com/science/article/pii/
S2405896322027525. 86

L. Torrey and J. Shavlik. Transfer Learning: Handbook of Research on Ma-

chine Learning Applications and Trends: Algorithms, Methods, and Techniques.

In E. S. Olivas, J. D. M. Guerrero, M. Martinez-Sober, J. R. Magdalena-

Benedito, and A. J. Serrano López, editors, Handbook of Research on Machine

Learning Applications and Trends, pages 242–264. IGI Global, 2010. ISBN

978-1-60566-766-9 978-1-60566-767-6. doi: 10.4018/978-1-60566-766-9.ch011.

https://proceedings.neurips.cc/paper/2015/hash/07563a3fe3bbe7e3ba84431ad9d055af-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/07563a3fe3bbe7e3ba84431ad9d055af-Abstract.html
https://www.nature.com/articles/nature24270
https://doi.org/10.1021/acs.jctc.8b00025
https://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.mlr.press/v28/sutskever13.html
http://arxiv.org/abs/2003.12140
https://www.sciencedirect.com/science/article/pii/S2405896322027525
https://www.sciencedirect.com/science/article/pii/S2405896322027525

BIBLIOGRAPHY 179

URL http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/
978-1-60566-766-9.ch011. 67

Q.-K. Tran and S.-k. Song. Computer Vision in Precipitation Nowcasting: Applying Im-

age Quality Assessment Metrics for Training Deep Neural Networks. Atmosphere,

10(5):244, May 2019. ISSN 2073-4433. doi: 10.3390/atmos10050244. URL

https://www.mdpi.com/2073-4433/10/5/244. Number: 5 Publisher: Multidisci-

plinary Digital Publishing Institute. 80

K. Trebing, T. Stanczyk, and S. Mehrkanoon. SmaAt-UNet: Precipitation nowcasting

using a small attention-UNet architecture. Pattern Recognition Letters, 145:178–186,

May 2021. ISSN 0167-8655. doi: 10.1016/j.patrec.2021.01.036. URL https://www.
sciencedirect.com/science/article/pii/S0167865521000556. 78, 93

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, and I. Polosukhin. Attention is All you Need. In Advances in

Neural Information Processing Systems, volume 30. Curran Associates, Inc.,

2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html. 9, 31, 52, 55

P. R. Vlachas, W. Byeon, Z. Y. Wan, T. P. Sapsis, and P. Koumoutsakos. Data-

Driven Forecasting of High-Dimensional Chaotic Systems with Long Short-Term Mem-

ory Networks. Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 474(2213):20170844, May 2018. ISSN 1364-5021, 1471-

2946. doi: 10.1098/rspa.2017.0844. URL http://arxiv.org/abs/1802.07486.

arXiv:1802.07486 [nlin, physics:physics]. 69

Z. Y. Wan, P. Vlachas, P. Koumoutsakos, and T. Sapsis. Data-assisted reduced-order mod-

eling of extreme events in complex dynamical systems. PloS One, 13(5):e0197704,

2018. ISSN 1932-6203. doi: 10.1371/journal.pone.0197704. 67

S.-H. Wang, D. R. Nayak, D. S. Guttery, X. Zhang, and Y.-D. Zhang. COVID-19 clas-

sification by CCSHNet with deep fusion using transfer learning and discriminant

correlation analysis. Information Fusion, 68:131–148, Apr. 2021. ISSN 1566-

2535. doi: 10.1016/j.inffus.2020.11.005. URL https://www.sciencedirect.com/
science/article/pii/S1566253520304073. 95

J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar. Integrating Scientific Knowledge

with Machine Learning for Engineering and Environmental Systems. ACM Comput.

Surv., 55(4):66:1–66:37, Nov. 2022. ISSN 0360-0300. doi: 10.1145/3514228. URL

https://dl.acm.org/doi/10.1145/3514228. 65

http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-60566-766-9.ch011
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-60566-766-9.ch011
https://www.mdpi.com/2073-4433/10/5/244
https://www.sciencedirect.com/science/article/pii/S0167865521000556
https://www.sciencedirect.com/science/article/pii/S0167865521000556
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://arxiv.org/abs/1802.07486
https://www.sciencedirect.com/science/article/pii/S1566253520304073
https://www.sciencedirect.com/science/article/pii/S1566253520304073
https://dl.acm.org/doi/10.1145/3514228

BIBLIOGRAPHY 180

J. W. Wilson, N. A. Crook, C. K. Mueller, J. Sun, and M. Dixon. Now-

casting Thunderstorms: A Status Report. Bulletin of the American

Meteorological Society, 79(10):2079–2100, Oct. 1998. ISSN 0003-0007, 1520-

0477. doi: 10.1175/1520-0477(1998)079<2079:NTASR>2.0.CO;2. URL

https://journals.ametsoc.org/view/journals/bams/79/10/1520-0477_1998_
079_2079_ntasr_2_0_co_2.xml. Publisher: American Meteorological Society

Section: Bulletin of the American Meteorological Society. 19, 25

J.-L. Wu, K. Kashinath, A. Albert, D. Chirila, Prabhat, and H. Xiao. Enforcing statistical

constraints in generative adversarial networks for modeling chaotic dynamical sys-

tems. Journal of Computational Physics, 406:109209, Apr. 2020. ISSN 0021-9991.

doi: 10.1016/j.jcp.2019.109209. URL https://www.sciencedirect.com/science/
article/pii/S0021999119309143. 66

R. Yang, J. Hu, Z. Li, J. Mu, T. Yu, J. Xia, X. Li, A. Dasgupta, and H. Xiong. Interpretable

Machine Learning for Weather and Climate Prediction: A Survey, Mar. 2024. URL

http://arxiv.org/abs/2403.18864. arXiv:2403.18864 [physics]. 81

Z. Yang, J.-L. Wu, and H. Xiao. Enforcing Deterministic Constraints on Genera-

tive Adversarial Networks for Emulating Physical Systems, Nov. 2020. URL http:
//arxiv.org/abs/1911.06671. arXiv:1911.06671 [physics, stat]. 66

D. Yarotsky. Error bounds for approximations with deep ReLU networks. Neural

Networks, 94:103–114, Oct. 2017. ISSN 0893-6080. doi: 10.1016/j.

neunet.2017.07.002. URL https://www.sciencedirect.com/science/article/
pii/S0893608017301545. 42

B. Øksendal. Stochastic Differential Equations: An Introduction with Applications.

Springer Science & Business Media, 6 edition, Nov. 2010. ISBN 978-3-642-14394-

6. URL https://link.springer.com/book/10.1007/978-3-642-14394-6. 117, 118,

119

https://journals.ametsoc.org/view/journals/bams/79/10/1520-0477_1998_079_2079_ntasr_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/bams/79/10/1520-0477_1998_079_2079_ntasr_2_0_co_2.xml
https://www.sciencedirect.com/science/article/pii/S0021999119309143
https://www.sciencedirect.com/science/article/pii/S0021999119309143
http://arxiv.org/abs/2403.18864
http://arxiv.org/abs/1911.06671
http://arxiv.org/abs/1911.06671
https://www.sciencedirect.com/science/article/pii/S0893608017301545
https://www.sciencedirect.com/science/article/pii/S0893608017301545
https://link.springer.com/book/10.1007/978-3-642-14394-6

Titre : Approche hybride basée sur la physique et l'IA pour l'advection des champs de probabilités. Application à la prévision immédiate de la
couverture nuageuse
Mots clés : Apprentissage profond, Modélisation hybride, Couverture nuageuse, Advection de probabilités, Apprentissage machine informé par
la physique
Résumé : Au cours des dernières décennies, le réchauffement climatique s'est accéléré, tout comme la fréquence des événements
météorologiques extrêmes, affectant considérablement les sociétés et les économies. Ces événements soulignent le besoin croissant de
prévisions météorologiques précises. Les modèles traditionnels de prévision numérique du temps, bien qu'efficaces, restent coûteux en termes
de calcul et peinent à prédire les phénomènes à petite échelle tels que les orages. Parallèlement, les modèles d'apprentissage profond se sont
révélés prometteurs dans les prévisions météorologiques, mais manquent souvent de cohérence physique et de capacités de généralisation.

Cette thèse aborde les limites des méthodes traditionnelles d'apprentissage profond dans la production de résultats réalistes et physiquement
cohérents qui peuvent se généraliser à des données non vues. Dans cette thèse, nous explorons des méthodes hybrides qui cherchent à
concilier la précision des méthodes de premier principe avec la puissance d'exploitation des données des techniques d'apprentissage, avec une
application à la prévision immédiate de la couverture nuageuse. Les données de couverture nuageuse utilisées sont des images satellites avec
classification des types de nuages, et l'objectif est de prédire la position de la couverture nuageuse au cours des deux prochaines heures tout en
préservant la classification des types de nuages.

L'approche proposée, nommée HyPhAICC, impose un comportement physique basé sur l'advection probabiliste. Dans le premier modèle,
dénommé HyPhAICC-1, des dynamiques d'advection multi-niveaux sont utilisées pour guider l'apprentissage d'un modèle U-Net. Cela est
réalisé en résolvant l'équation d'advection pour plusieurs champs de probabilité, chacun correspondant à un type de nuage différent, tout en
apprenant simultanément le champ de vitesse inconnu.

Nos expériences montrent que la formulation hybride surpasse non seulement le modèle d'imagerie extrapolée d'EUMETSAT (EXIM), mais
également le modèle U-Net en termes de métriques standard telles que le score F1, l'indice de succès critique (CSI) et l'accuracy. Nous
démontrons également que le modèle HyPhAICC-1 préserve plus de détails et produit des résultats plus réalistes par rapport au modèle U-Net.
Pour mesurer quantitativement cet aspect, nous utilisons une version modifiée de la distance de Hausdorf qui est, à notre connaissance, la
première fois que cette métrique est utilisée à cette fin dans la littérature. Cette première version montre aussi une convergence
remarquablement rapide. Elle a également affiché de meilleures performances par rapport au U-Net lorsqu'elle a été entraînée sur des
ensembles de données plus petits, soulignant l'efficacité computationnelle de l'approche proposée.

Un autre modèle, dénommé HyPhAICC-2, ajoute un terme source à l'équation d'advection. Bien que cela ait dégradé le rendu visuel, il a affiché
les meilleures performances en termes d'accuracy. Ces résultats suggèrent que l'architecture hybride physique-IA proposée constitue une
solution prometteuse pour surmonter les limitations des méthodes d'IA traditionnelles. Cela pourrait motiver des recherches supplémentaires
pour combiner les connaissances physiques avec les modèles d'apprentissage profond afin d'améliorer la précision et l'efficacité des prévisions
météorologiques.

Title: Hybrid physics- and AI-based approach to probability field advection. Application to cloud cover nowcasting
Key words: Deep Learning, Hybrid modelling, Cloud cover, Probability advection, Physics-informed machine learning
Abstract: During the last decades, as the global warming has accelerated, so has the frequency of extreme weather events, significantly affecting
societies and the economies. These events highlight the growing need for accurate weather forecasting. Traditional numerical weather
prediction models, while effective, remain computationally expensive and struggle to predict small-scale phenomena such as thunderstorms.
Meanwhile, deep learning models have shown promise in weather forecasting but often lack physical consistency and generalisation
capabilities.

This thesis addresses the limitations of traditional deep learning methods in producing realistic and physically consistent results that can
generalise to unseen data. In this thesis, we explore hybrid methods that seek to reconcile the accuracy of first-principle methods with the data-
leveraging power of learning techniques, with an application to cloud cover nowcasting. The cloud cover data used are satellite images with
cloud type classification, and the goal is to predict the cloud cover position over the next two hours while preserving the classification of the
cloud types.

The proposed approach, named HyPhAICC, enforces physical behaviour based on probability advection. In the first model, denoted HyPhAICC-
1, multi-level advection dynamics are used to guide the learning of a U-Net model. This is achieved by solving the advection equation for
multiple probability fields, each corresponding to a different cloud type, while simultaneously learning the unknown velocity field.

Our experiments show that the hybrid formulation outperforms not only the EUMETSAT Extrapolated Imagery model (EXIM) but also the U-
Net model in terms of standard metrics such as F1 score, Critical Success Index (CSI), and accuracy. We also demonstrate that the HyPhAICC-1
model preserves more details and produces more realistic results compared to the U-Net model. To quantitatively measure this aspect, we use a
modified version of the Hausdorff distance which is, to the best of our knowledge, the first time this metric is used for this purpose in the
literature. This first version shows also a significant faster convergence. It also performed significantly better compared to the U-Net when
trained on smaller datasets, highlighting the computational efficiency of the proposed approach.

Another model, denoted HyPhAICC-2, adds a source term to the advection equation. While this impaired the visual rendering, it displayed the
best performance in terms of accuracy.

These results suggest that the proposed hybrid Physics-AI architecture provides a promising solution to overcome the limitations of traditional
AI methods. This could motivate further research to combine physical knowledge with deep learning models for more accurate and efficient
weather forecasting.

	Introduction
	Fundamentals of deep learning
	A brief history of deep learning (DL)
	Artificial neural networks
	Multi-layer perceptron (MLP)
	Loss functions
	Gradient descent optimisation methods
	Gradient descent
	Stochastic gradient descent (SGD)
	SGD with momentum
	Nesterov accelerated gradient
	AdaGrad
	RMSprop
	Adam

	Back-propagation
	Universal approximation theorem
	Regularisation
	Classification and regression
	Classical architectures
	Convolutional neural networks
	Recurrent neural networks (RNN)
	Residual networks
	Transformers

	Conclusion

	Numerical resolution of partial differential equations
	Introduction
	Spatial discretisation using finite differences
	Time integration
	Example: advection equation
	Numerical errors
	Central finite differences
	First-order upwind scheme

	Physics-informed machine learning
	Introduction
	Physical constraints in the loss
	Physics-guided initialisation
	Residual modelling
	Hybrid physics-ML models
	Implementing and solving PDEs using neural layers
	Automatic differentiability
	Approximating derivatives and time integration in neural networks
	Finite-difference methods and convolutional layers
	Temporal schemes and residual networks

	Methods for weather forecasting
	Numerical weather prediction (NWP)
	Limitations of numerical weather prediction
	Deep learning for weather and climate forecasting
	Challenges and limitations of deep learning in weather forecasting
	Hybrid models

	Proposed hybrid architecture
	The principle of the proposed hybrid architecture
	Cloud cover data
	Advection of cloud cover: HyPhAICC-1
	Which discretisation scheme to use?
	Mass conservation
	Non-negativity and bound preservation

	Training
	Experimental setup
	Standard classification metrics
	HyPhAICC-1: results
	Visual impressions
	Quantitative evaluation

	Time efficiency
	Data efficiency
	Application on Earth's full disk
	Visual quality assessment
	Hausdorff distance
	Results

	Discussion

	Extending the physical modelling
	Heuristic-based source term: HyPhAICC-2
	HyPhAICC-2: results
	Markov-based modelling of the source term
	Fundamentals of Markov chains
	Markov-based source term: HyPhAICC-3
	It is not Fokker-Planck equation!
	Reducing the training time: which convolution to use?
	Using 2D convolutions
	Using 3D convolutional layers
	Using depthwise 2D convolutions

	Limited regimes-based source term: HyPhAICC-4

	Conclusion
	Conclusion
	Discussion and perspectives
	Conclusion
	Discussion et perspectives

	Appendix
	Confidence intervals
	Bootstrapping
	Scores with confidence intervals

	Stochastic differential equations: Fokker-Planck equation
	Brownian motion
	Additional details
	Adjoint operator

	Additional ressources
	Robustness to change of coordinates

	Journal article

	Bibliography

