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Abstract

Exascale supercomputers are computing systems capable of performing 1018

floating point operations per second. The supercomputer named Frontier first broke
this barrier of one exaFLOPS and officially initiated the era of exascale computing
in 2022. The immense scale of systems like this imposes significant challenges in
developing codes that can fully exploit this computing power. Furthermore, the
increasingly heterogeneous hardware employed by today’s leading supercomputers
adds another layer of complexity. In the field of computational fluid dynamics, it is
therefore crucial to carefully consider every aspect of a numerical simulation, starting
with the design and selection of algorithms suited to such environments. For example,
algorithms like the lattice Boltzmann method are explicitly designed with massive
parallelism in mind, making them a notable alternative to other more established
methods. Nevertheless, a highly efficient implementation of this algorithm must be
tailored to the respective hardware for optimal usage of resources.

To address these challenges, this thesis explores the use of code generation
through an embedded domain-specific language. Code generation enables us to
target specific hardware architectures and apply precise optimisations that leverage
domain-specific knowledge. In this research, we extend and redesign the Python
package LBMPY to support state-of-the-art variants of the lattice Boltzmann method.
LBMPY represents the lattice Boltzmann method symbolically using a computer
algebra system, allowing the automatic derivation of discretised equations based on
user-defined specifications. To obtain equations with a minimal amount of floating-
point operations we fundamentally enhance the simplification capabilities of LBMPY

in this work. The discretised equations derived by LBMPY are provided to the Python
package PYSTENCILS which generates highly optimised architecture-specific com-
pute kernels in a lower-level language from these. We expand the range of supported
hardware platforms and overhaul crucial aspects of the code generation process,
such as the typing system, to improve performance and maintainability.

A sophisticated integration of these compute kernels into the massively parallel
multiphysics framework WALBERLA is also developed, with an in-depth discussion
of the key implementation components. One of the most significant advancements
in this integration is the generation of highly specialised interpolation kernels. These
kernels are essential for transferring information between cells of differing reso-
lutions within the simulation domain, ensuring the accuracy and consistency of
the data across varying grid sizes. This development has enabled us to perform the
largest simulation run to date using the lattice Boltzmann method on a nonuniform
domain, utilising more than 4000 AMD MI250X graphics processing units. The ability
to efficiently manage such a vast and heterogeneous computational environment
underscores the effectiveness of our approach in scaling complex simulations on
next-generation hardware platforms.

We verify and validate our approach by simulating turbulent single-phase flow
around a sphere using a nonuniform mesh configuration on graphics processing
units, successfully reproducing the drag crisis—a complex phenomenon that occurs
at Reynolds numbers above 200000. Additionally, we demonstrate the capabilities of
our method through slug flow simulations, offering new insights into the behaviour
of Taylor bubbles in complex annular pipe configurations. Finally, we analyse the tra-
jectories of droplets under the influence of a laser heat source in three-dimensional
thermocapillary flows. To evaluate the performance of our approach, we present
results from all these scenarios on the latest central processing unit and general
purpose graphics processing unit hardware. We provide single-node performance



data and offer valuable insights by contextualising the measured results with appro-
priate performance models. Lastly, we examine the scalability of our developments
by presenting both weak and strong scaling results on several of the world’s leading
supercomputers.
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Résumé

Les superordinateurs Exascale sont des systèmes informatiques capables de
réaliser 1018 opérations en virgule flottante par seconde, appellé un exaFLOPS. Le
superordinateur Frontier a franchi pour la première fois la barrière d’un exaFLOPS
et a officiellement ouvert l’ère du calcul exascale en 2022. L’immense échelle de
systèmes tels que celui-ci impose des défis importants dans le développement de
codes capables d’exploiter pleinement cette puissance de calcul. En outre, le matériel
de plus en plus hétérogène utilisé par les principaux superordinateurs d’aujourd’hui
ajoute une couche supplémentaire de complexité. Dans le domaine de la mécanique
des fluides numérique, il est donc crucial d’examiner soigneusement chaque aspect
d’une simulation numérique, en commençant par la conception et la sélection
d’algorithmes adaptés à de tels environnements. Par exemple, des algorithmes tels
que méthode de Boltzmann sont explicitement conçus avec un parallélisme massif
à l’esprit, ce qui en fait une alternative notable à d’autres méthodes plus établies.
Néanmoins, une mise en œuvre très efficace de cet algorithme doit être adaptée au
matériel respectif pour une utilisation optimale des ressources.

Pour relever ces défis, cette thèse explore l’utilisation de la génération de code
par le biais d’un langage intégré spécifique à un domaine. La génération de code
nous permet de cibler des architectures matérielles spécifiques et d’appliquer des op-
timisations précises qui exploitent les connaissances spécifiques au domaine. Dans
le cadre de cette recherche, nous étendons et remanions le paquet Python LBMPY

pour prendre en charge les variantes de pointe de la méthode de Boltzmann. LBMPY

représente la méthode de Boltzmann symboliquement en utilisant un système d’al-
gèbre informatique, permettant la dérivation automatique d’équations discrétisées
basées sur des spécifications définies par l’utilisateur. Pour obtenir des équations
avec un minimum d’opérations en virgule flottante, nous améliorons fondamen-
talement les capacités de simplification de LBMPY dans ce travail. Les équations
discrétisées dérivées par LBMPY sont fournies au paquet Python PYSTENCILS qui
génère des noyaux de calcul spécifiques à l’architecture hautement optimisés dans
un langage de niveau inférieur à partir de celles-ci. Nous élargissons la gamme des
plates-formes matérielles prises en charge et révisons des aspects cruciaux du pro-
cessus de génération de code, tels que le système de typage, afin d’améliorer les
performances et la maintenabilité.

Une intégration sophistiquée de ces noyaux de calcul dans le cadre multiphy-
sique massivement parallèle WALBERLA est également développée, avec une discus-
sion approfondie des composants clés de la mise en œuvre. L’une des avancées les
plus significatives de cette intégration est la génération de noyaux d’interpolation
hautement spécialisés. Ces noyaux sont essentiels pour le transfert d’informations
entre des cellules de résolutions différentes au sein du domaine de simulation, garan-
tissant la précision et la cohérence des données sur des grilles de tailles différentes.
Ce développement nous a permis d’effectuer la plus grande simulation à ce jour
en utilisant la méthode de Boltzmann sur un domaine non uniforme, en utilisant
plus de 4000 AMD MI250X processeur graphique. La capacité à gérer efficacement
un environnement de calcul aussi vaste et hétérogène souligne l’efficacité de notre
approche dans la mise à l’échelle de simulations complexes sur des plates-formes
matérielles de nouvelle génération.

Nous vérifions et validons notre approche en simulant un écoulement mono-
phasique turbulent autour d’une sphère à l’aide d’une configuration de maillage non
uniforme sur processeurs graphiques, reproduisant avec succès la crise de traînée
- un phénomène complexe qui se produit à des nombres de Reynolds supérieurs à
200000. En outre, nous démontrons les capacités de notre méthode par le biais de
simulations d’écoulements de boue, offrant de nouvelles perspectives sur le compor-
tement des bulles de Taylor dans des configurations de tuyaux annulaires complexes.



Enfin, nous analysons les trajectoires des gouttelettes sous l’influence d’une source
de chaleur laser dans des écoulements thermocapillaires tridimensionnels. Pour
évaluer les performances de notre approche, nous présentons les résultats de tous
ces scénarios sur les processeurs et processeurs graphiques les plus récent. Nous
fournissons des données de performance pour un seul nœud et offrons des infor-
mations précieuses en contextualisant les résultats mesurés avec des modèles de
performance appropriés. Enfin, nous examinons l’évolutivité de nos développements
en présentant des résultats d’évolutivité faibles et forts sur plusieurs des principaux
superordinateurs du monde.
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Zusammenfassung

Exascale-Supercomputer sind Computer, die mehr als 1018 floating point opera-
tions per second ausführen können. Der Supercomputer mit dem Namen Frontier
durchbrach erstmals diese Grenze von einem ExaFLOPS und leitete 2022 offiziell
die Ära der Exascale-Rechner ein. Die immense Größe solcher Systeme stellt die
Entwicklung von Computerprogrammen, die diese Rechenleistung voll ausschöp-
fen können, vor große Herausforderungen. Darüber hinaus sorgt die zunehmend
heterogene Hardware, die in den führenden Supercomputern von heute zum Ein-
satz kommt, für eine zusätzliche Komplexitätsebene. Im Bereich der numerischen
Strömungsmechanik ist es daher von entscheidender Bedeutung, jeden Aspekt einer
numerischen Simulation sorgfältig zu berücksichtigen, angefangen bei der Entwick-
lung und Auswahl von Algorithmen, die für solche Umgebungen geeignet sind. So
sind beispielsweise Algorithmen wie die Lattice-Boltzmann Methode (LBM) aus-
drücklich auf massive Parallelität ausgelegt, was sie zu einer attraktiven Alternative
zu anderen, etablierteren Methoden macht. Dennoch muss eine hocheffiziente Im-
plementierung dieses Algorithmus auf die jeweilige Hardware zugeschnitten sein,
um die Ressourcen optimal zu nutzen.

Um diese Herausforderungen zu bewältigen, wird in dieser Arbeit der Einsatz
von Codegenerierung durch eine eingebettete domänenspezifische Sprache unter-
sucht. Die Code-Generierung ermöglicht es uns, spezifische Hardware-Architekturen
anzuvisieren und präzise Optimierungen anzuwenden, die domänenspezifisches
Wissen über diese nutzen. In dieser Arbeit wird das Python-Paket LBMPY erweitert
und neu konzipiert, um moderne Varianten der LBM zu unterstützen. LBMPY stellt
die LBM symbolisch mit Hilfe eines Computeralgebrasystems dar und ermöglicht die
automatische Ableitung von diskretisierten Gleichungen auf der Grundlage von be-
nutzerdefinierten Spezifikationen. Um Gleichungen mit einer minimalen Anzahl von
Fließkommaoperationen zu erhalten, haben wir in dieser Arbeit die Vereinfachungs-
möglichkeiten von LBMPY grundlegend verbessert. Die von LBMPY abgeleiteten
diskretisierten Gleichungen werden dem Python-Paket PYSTENCILS zur Verfügung
gestellt, das daraus hochoptimierte, architekturspezifische Programmteile in einer
hardwarenahen Sprache erzeugt. Wir erweitern die unterstützten Hardwareplattfor-
men und überarbeiten entscheidende Aspekte des Codegenerierungsprozesses, wie
z.B. das Typisierungssystem, um die Leistung und Wartbarkeit zu verbessern.

Darüber hinaus wird eine ausgereift Integration dieser Programmteile in das
massiv-parallele Multiphysik-Programmpaket WALBERLA entwickelt, wobei die wich-
tigsten Implementierungskomponenten eingehend erörtert werden. Einer der wich-
tigsten Fortschritte bei dieser Integration ist die Generierung von hochspezialisierten
Programmteilen zur Interpolation. Diese Programmteile sind für die Übertragung
von Informationen zwischen Zellen mit unterschiedlichen Auflösungen innerhalb
des Simulationsbereichs zuständig und gewährleisten die Genauigkeit und Konsis-
tenz der Daten über verschiedene Auflösungen hinweg. Diese Entwicklung hat es
uns ermöglicht, den bisher größten Simulationslauf mit der LBM auf einem verfeiner-
ten Gebiet durchzuführen, bei dem mehr als 4000 AMD MI250X Grafikprozessoren
gleichzeitig genutzt wurden. Die Fähigkeit, einen so großen und heterogenen Rech-
ner effizient zu verwalten, unterstreicht die Effektivität unseres Ansatzes bei der
Skalierung komplexer Simulationen auf Hardware der nächsten Generation.

Wir verifizieren und validieren unseren Ansatz durch die Simulation einer turbu-
lenten einphasigen Strömung um eine Kugel unter Verwendung eines verfeinerten
Gitters auf Grafikprozessoren, wobei wir erfolgreich das Eiffel paradox reproduzieren
- ein komplexes Phänomen, das bei Reynoldszahlen über 200000 auftritt. Darüber
hinaus demonstrieren wir die Fähigkeiten unserer Methode anhand von Strömungs-
simulationen, die neue Einblicke in das Verhalten von Taylor-Blasen in komplexen
ringförmigen Rohrkonfigurationen bieten. Schließlich analysieren wir die Bahn von



Tröpfchen unter dem Einfluss einer Laserwärmequelle in dreidimensionalen Ther-
mokapillarströmungen. Um die Leistung unseres Ansatzes zu bewerten, präsentieren
wir Ergebnisse aus all diesen Szenarien auf der neuesten Prozessoren und Grafikpro-
zessoren. Wir liefern Benchmarks für einzelne Programmteile und bieten wertvolle
Einblicke, indem wir die gemessenen Ergebnisse mit geeigneten Modellen in Kon-
text bringen. Schließlich untersuchen wir die Skalierbarkeit unserer Entwicklungen,
indem wir sowohl schwache als auch starke Skalierungsergebnisse auf mehreren der
weltweit größten Supercomputern präsentieren.

xii
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1. INTRODUCTION

From a general motivation in Section 1.1 where we discuss the fundamental driving
points of this work, we derive the main research goals and put them in the perspective
of previous work in Section 1.2. Afterwards, we address the main research contributions
and the outline of the remaining thesis in Section 1.3 and Section 1.4. Finally, in
Section 1.5, we provide important guidance on how other researchers can reproduce
the results presented in this work.

1.1 Motivation

Computational systems able to perform at least 1018 floating point operations per second
(FLOPS) (one exaFLOPS) are called exascale systems. Such a system can perform one
floating-point operation every billionth of a billionth of a second, also known as Attosec-
ond (10−18 s). Coincidentally, this is the same timescale on which the rapid processes of
electrons that underlie all computing hardware can be observed. Recently, groundbreak-
ing research in this field was awarded the Nobel Prize in Physics. As Eva Olsson, chair of
the Nobel Committee for Physics, expressed it: “We can now open the door to the world
of electrons [12].” Similarly, electronics engineers open the doors to smaller and smaller
transistors. For example, IBM plans to produce a chip containing transistors of the size of
two nanometres (nm) by 2025. This is about five atoms in size, and their goal is to put 50
billion (50 ·109) transistors on a single chip [13].

This indeed is a tremendous achievement, however, it should not hide the fact that
the transistor size is slowly reaching its theoretical limitations. Likewise, the bandwidth
between the processor and the main memory is not growing at the same rate as the
chips advance. This phenomenon is often called the memory wall and poses one of the
toughest challenges for engineers in the exascale computing era [14, 15]. It is, therefore, not
surprising that these issues are urgently discussed in a task force report recently published
by the Society for Industrial and Applied Mathematics (SIAM) [16]. They conclude in their
report [16]:

High performance computing (HPC) is a key element of computational sci-
ence, but HPC itself is at an inflection point. Historical drivers for performance
improvement have run their course, with transistors now nearly as small as
they can get and supercomputer energy consumption at a practical maxi-
mum, making the energy-efficiency of future HPC platforms of paramount
concern. The only viable way to continue improving performance will involve
architectural specialization and heterogeneous supercomputers.

While significant research still needs to be done to fully utilise the potential of more
exotic architectures like quantum accelerators, it is already clear that heterogeneous
supercomputers dominate the market. Most prominently, at the time of writing, nine
of the top ten supercomputers in the Top 500 list1 use accelerators in the form of gen-
eral purpose graphics processing units (GPGPUs) to achieve their massive performance.
Unfortunately, these accelerators are produced by different hardware vendors, and no
unified interface exists to program them efficiently. Instead, as pointed out by Andreas
Herten [17], each vendor features native and derived programming models and not all
models are supported on all platforms. He identified nine different approaches to pro-
gramming GPGPUs from the three hardware vendors in his work. Remarkably, at this

1https://top500.org/lists/top500/list/2024/06/
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1.1. Motivation

point, the standard library2 of C++ supports offloading to some GPGPUs natively. However,
the standard library does not fully support for GPGPUs produced by AMD, which are the
accelerators used in the first exascale system, Frontier3, and the number one supercom-
puter in Europe named Lumi4. This example showcases that the landscape for computer
architectures and their respective programming interfaces is diverse and is especially
likely to become increasingly diverse. This fact is one of the main driving points for this
thesis, as the mentioned situation might lead to overly complex, repetitive and, finally,
hard-to-maintain software. This can be the case, especially when software is ported by
hand using the respective lower-level language to address the hardware. Hence, software
design for diverse heterogeneous architectures will be recurring during this work.

Among many other use cases, typical applications for large-scale supercomputers
come from the field of computational fluid dynamics (CFD) as complex industrial ap-
plications and natural flow phenomena usually require an extremely fine resolution to
predict the behaviour of the flow field correctly. In cases where experiments are either
too expensive, too dangerous or even impossible to perform, data from simulations is
needed. Classically, flow phenomena are predicted by solving the Navier-Stokes equa-
tions (NSEs) numerically. However, numerical schemes to solve the NSEs for complex,
real-world applications can be computationally prohibitive. One reason for this is that
the NSEs contain a nonlinear advection term, which typically leads to complex iterative
schemes that need to be resolved in every timestep [18].

Over the past three decades, the lattice Boltzmann method (LBM) has emerged as an
attractive alternative to traditional NSE solvers, especially for unsteady and multiphase
flow problems [19–21]. In the LBM, nonlinear expressions are confined in its collision
operator, which does not depend on information from neighbouring cells. On the other
hand, dependencies with neighbouring cells are solved in a streaming step, a simple linear
operator that does not rely on complex computations. Explicit time-stepping schemes are
oftentimes easier to parallelise on a large scale, as they do not involve the solution of a lin-
ear system. The most common variants of the LBM use an explicit time-stepping scheme,
making them well-suited for massively parallel architectures. Nevertheless, numerous
variants of the LBM exist with distinct advantages and disadvantages. For example, the
mentioned collision operator can be solved in various more or less complex fashions with
different accuracy and efficiency.

Consequently, a second main problem arises that we aim to address in this thesis. In
contrast to the portability problem given by the heterogeneous architecture landscape,
here the problem arises entirely from the algorithmic side. Ideally, different variants of
the LBM are formulated in a unified framework with minimal repetition. Previously, in
the multiphysics framework WALBERLA, this problem was addressed by heavily relying
on static polymorphism. This means that distinct parts of the LBM are separated into
building blocks that form a complete compute kernel at the compilation stage based on a
configuration by the user. However, static polymorphism strongly increases the frame-
work’s complexity; thus, only a few distinct building blocks exist, limiting the range of
possibilities. For example, the streaming step is fixed to one variant and is not changeable
if one wants to.

2https://en.cppreference.com/w/cpp/header/algorithm
3https://www.olcf.ornl.gov/frontier/
4https://www.lumi-supercomputer.eu/
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1. INTRODUCTION

This problem amplifies severely in conjunction with the first problem. In the past,
critical parts of these building blocks5 have been specialised to target specific central
processing unit (CPU) architectures. In this way, maximum reachable performance and
excellent scalability could be shown in several works [22–24]. However, supporting more
complex state-of-the-art variants of the LBM and accommodating a broader range of
architectures, such as GPGPUs, would significantly increase the complexity of WALBERLA.

To target both problems, it is crucial to develop methods to simplify the implementa-
tion and maintenance of highly optimised LBM codes without sacrificing efficiency. This
thesis explores innovative strategies and tools that can bridge the gap between ease of
use and high performance. An emerging technology that has the potential to mitigate the
outlined problems is using a domain-specific language (DSL) in conjunction with code
generation techniques. A DSL has the advantage that the problem can be described in
an abstract way perfectly tailored to the problem’s context. Then, architecture-specific
implementations can be generated from this description in an automated fashion. In this
way, scientists do not need to know details about the intrinsic complexity of specialised
optimisations, and these can be applied to all supported methods. Since DSLs are tailored
to specific problems, optimisations that combine the domain and architecture knowledge
can be introduced.

1.2 Background and Objectives

Initially, the WALBERLA multiphysics framework was designed as an HPC framework
in C++6. Due to the complexities of supporting various architectures and specialised
algorithms, code generation techniques have been introduced to WALBERLA recently [25].
While this approach showed promising results, it was only used on benchmark cases
so far. This thesis aims to extend the code generation approach used in the WALBERLA

framework for using the latest supercomputers in complex single and multiphase flow
applications.

To generate efficient compute kernels for the LBM, a modular approach is employed
in combination with the WALBERLA framework. In this setup, the Python package LBMPY

expresses the LBM symbolically and derives discretised equations from high-level de-
scriptions. These discretised equations are then transformed to architecture-specific
compute kernels in a lower-level programming language by the Python package PYS-
TENCILS. Finally, WALBERLA can integrate these compute kernels to extend the existing
framework.

At the start of this thesis, LBMPY supported standard moment-based collision op-
erators, the most important boundary conditions and force transformation schemes. A
detailed overview of its original functionality was published by Bauer et al. [26]. Further-
more, to simulate immiscible fluids with high-density contrasts under high Reynolds
numbers, a first implementation of the conservative Allen-Cahn model (CACM) was
realised in the author’s master’s thesis [27].

5mostly the collision model
6https://walberla.net/
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1.3. Main Contributions

On the other hand, PYSTENCILS supported optimisations like spatial blocking, loop
reordering and loop splitting. For the efficient usage of CPU architectures, support for
x86 single instruction, multiple data (SIMD) instruction sets was provided, and shared
memory usage was supported by OpenMP pragmas in the generated compute kernels.
The support for NVIDIA GPGPUs was realised by the compute unified device architec-
ture (CUDA) backend of PYSTENCILS. Bauer et al. provided more details on the original
functionality in [28].

Furthermore, Bauer et al. equipped WALBERLA with a basic integration of PYSTENCILS

and LBMPY to realise large-scale simulations [25, 26]. The core concept of this integration
is to provide template files within the WALBERLA framework into which generated com-
pute kernels are inserted. In this fashion, it is possible to use the resulting files directly
in the WALBERLA framework due to the consistent application programming interface
(API) used in the generated files. With this workflow, LBM simulations on uniform grids
could be executed on CPU and NVIDIA GPGPU architectures. The largest demonstrated
benchmark cases consisted of 4.4 ·1011 cells on the SuperMUC-NG 7 cluster and 3.4 ·1010

cells on the PizDaint 8 supercomputer [25, 26].

1.3 Main Contributions

From the motivation, the background and the main driving points of the thesis, the
following main research contributions have been realised:

• We significantly improved and extended the LBMPY package to support state-of-
the-art collision operators needed for highly turbulent flow regimes and multiphase
flows. We also implemented advanced boundary conditions to support outflow
boundaries without reflections and introduced interpolated no-slip boundary con-
ditions for increased accuracy on complex geometries.

• We extended the PYSTENCILS package to a wider range of architectures including
AMD GPGPUs. In the same effort, we strengthened the typing system to allow the
generation of more complex compute kernels.

• We extended the integration of the code generation pipeline with WALBERLA to
support grid transitions with different resolutions. We improved the static mesh
refinement algorithm in WALBERLA and ported it to GPGPUs architectures.

• To demonstrate the capabilities of these new developments, we successfully cap-
tured the drag crisis of a spherical object, showcasing our ability to simulate highly
turbulent flow problems with complex geometries using a nonuniform mesh con-
figuration.

• We validated and extended challenging industrial multiphase flow problems within
the slug flow regime. Our experiments reveal the influence of annulus pipe geome-
tries on the shape of Taylor bubbles.

• We validated and extended thermocapillary flow problems. Based on findings in the
literature on two-dimensional configurations, we show that full three-dimensional
simulations expose a much richer behaviour.

7https://doku.lrz.de/supermuc-ng-10745965.html
8https://www.cscs.ch/computers/piz-daint
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1. INTRODUCTION

• We carefully benchmarked all developments on single-node configurations to
demonstrate excellent base performance and conducted large-scale benchmark
cases on the latest pre-exascale supercomputers.

• We implemented all developements in the open-source frameworks LBMPY, PYS-
TENCILS and WALBERLA. This opens the door for future collaborations and acceler-
ates innovations in the community.

1.4 Outline and Thesis Structure

The structure of the thesis is tightly bound to the research objectives. In Chapter 2, we
introduce the numerical foundations of the thesis. This means a brief introduction to
the lattice Boltzmann method and the most important algorithmic building blocks used
in this thesis. From there, we give the necessary background and details in Chapter 3
to extend the LBM for the simulation multiphase flows. Since there are many different
models to realise multiphase flows, we also briefly compare the most common models in
the literature. The software stack that builds the core part of this thesis is introduced in
Chapter 4. In this chapter, we introduce the PYSTENCILS and LBMPY packages and show
their integration in the WALBERLA framework. Contributions realised as part of this thesis
are carefully explained and discussed in the context of previous developments. Afterwards,
Chapter 5 details the mesh refinement algorithm. We give a detailed comparison with
the previous developments from Florian Schornbaum [29] to highlight significant im-
provements realised in this work. To showcase the applicability of our new advancements,
we have analysed three distinct applications that vastly profit from the developments
introduced before. In the first application, we simulate highly turbulent flow to capture
the drag crisis of a sphere in a flow channel in Chapter 6. Due to the high resolution
needed for this problem, it is an ideal case to show the capabilities of the newly developed
mesh refinement approach on GPGPUs. This follows the simulation of slug flow problems
in Chapter 7, where our new developments capture the behaviour of Taylor bubbles in
previously published annulus pipe geometries. Afterwards, new regimes are explored
to build on the existing research. An extension of the phase-field multiphase model to
thermocapillary flows is presented in Chapter 8. The main contribution of this chapter
is to capture the behaviour of droplets in a Couette channel flow under the influence of
laser heat sources. Lastly, the performance of our code is benchmarked in Chapter 9 using
carefully crafted cases. The performance results are shown on single-node configurations
and large-scale weak- and strong-scaling scenarios. The thesis finished with a conclusion
presented in Chapter 10.

1.5 Reproducability

In scientific research, it is essential that others can reproduce the results of previous stud-
ies. However, reproducing simulation runs requires careful attention to many important
details. This process begins with ensuring the correct version of the source code and
continues with the build chain used to compile the code. In this work, the build chain
includes a Python environment for the code generator, which may also influence the
generated code. During code execution, the system configuration plays a pivotal role,
particularly in performance benchmarks.

6



1.5. Reproducability

To ensure reproducibility, several measures have been implemented. The first key
measure is that all source code used to produce the results in this thesis is open source.
It is important to note that the results were produced over several years of development.
During this time, all packages have undergone multiple software versions. However,
LBMPY, PYSTENCILS, and WALBERLA employ continuous integration within GitLab to
ensure that previous developments are preserved correctly. For all applications developed
in this thesis, unit tests, integration tests, and compilation tests have been provided to
the continuous integration system to ensure that future developments do not affect the
results. Additionally, within LBMPY and PYSTENCILS, the integration with WALBERLA is
tested, meaning that the compute kernels for all applications in this work are generated
and compiled when the code is updated on the respective repository.

The versions of LBMPY and PYSTENCILS used in this work are 1.3.6 for both pack-
ages. These versions are available on PyPi9,10. For WALBERLA, version 7.0 is the latest
version that contains all the simulation codes, and it can be downloaded from the GitLab
repository11.

A vital tool to increase reproducibility is MachineState, developed by the HPC group
at the University of Erlangen-Nürnberg [30]. This tool allows users to take a snapshot
of the system configuration, including compiler versions, CPU frequencies, and critical
information about the operating system. These snapshots can be compared with those
from later runs to ensure that the system configuration remains consistent. Any changes
are highlighted for the user. In this work, version 0.5.0 of MachineState12 was used for the
benchmark runs.

9https://pypi.org/project/pystencils/
10https://pypi.org/project/lbmpy/
11https://i10git.cs.fau.de/walberla/walberla
12https://pypi.org/project/MachineState/
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2. FUNDAMENTALS OF THE LATTICE BOLTZMANN METHOD

This chapter provides the numerical foundation of lattice Boltzmann method. A short
overview of its origins in the Boltzmann transport equation is shown in Section 2.1,
followed by a modern description of the lattice Boltzmann method using generating
functions in Section 2.2. This mathematical framework, forming the heart of the code
generator LBMPY, was previously published [1] in the scope of this thesis. Within this
mathematical framework, state-of-the-art moment-based collision models, along with
various streaming patterns, are introduced. Afterwards, a short overview of boundary
conditions and force models relevant to the scope of this work is given. The chapter
closes by explaining the full algorithm to simulate single-phase flow problems with
the lattice Boltzmann method in Section 2.3

2.1 The Boltzmann Equation

The foundation of the lattice Boltzmann method (LBM) goes back to the kinetic theory of
gases (KTG), which was developed mainly by the contributions of Maxwell and Boltzmann
[31, 32]. Their basic idea was that fluids, although consisting of individual particles, follow
well-defined rules. An explanation for this behaviour needs to find its roots in probability
theory and is summarised in the Boltzmann transport equation (BTE)

∂ f

∂t
+∑

α
ξα

∂ f

∂xα
+∑

α

Fα
ρ f

∂ f

∂ξα
=Ω(

f
)

. (2.1)

The BTE describes the transport of groups of particles f ≡ f (x ,ξ, t ) called particle distri-
bution functions (PDFs). It represents the density of particles with a given velocity ξ at
position x and time t . The gradient operators in the BTE correspond to the geometrical
and the velocity space in which the PDF is advected. The right-hand side defines the
redistribution of the particles due to local collision between particles. Thus, the collision
operator isΩ

(
f
)
. To link the motion of particles with the macroscopic description of flu-

ids, i.e., describing the fluid by macroscopic quantities like density or velocity, a statistical
observer is necessary [33]. The most common statistical observers are the moments of
the PDFs. The moments are integral quantities of the PDFs weighted with a function of
the mesoscopic velocity ξ. For example, the zeroth order moment reveals the fluid’s mass
density

ρ (x , t ) =
∫

f (x ,ξ, t )d 3ξ. (2.2)

Similarly, the fluid’s momentum density can be found in the first-order moments

ρ (x , t )u (x , t ) =
∫
ξ f (x ,ξ, t )d 3ξ, (2.3)

which can be understood as considering the particles’ contribution ξ f to the momentum
density.

Solving the BTE directly proposes severe difficulties due to the complexity of the
collision operator. This goes back to the work of Boltzmann himself [32]. The original idea
was to simplify the collision operator by binary particle collisions. However, considering
all possible outcomes of particle pairs leads to a complex double integral over the velocity
space, thus not providing the desired simplicity to solve the equation. For this reason,
the first simplified collision operator was proposed by the work of Bhatnagar, Gross, and
Krook [34]. Their work makes the assumption of dense fluids by introducing a relaxation
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2.2. The Lattice Boltzmann Equation

time τ to simplify the collision process drastically:

ΩBGK =−1

τ

(
f − f eq)

. (2.4)

With this collision model, all particles move towards an equilibrium state that is described
by the Maxwell-Boltzmann equilibrium

f eq
MB

(
ρ,u,ξ

)= ρ

(2πRT )
D
2

exp

[
− (ξ−u)2

2RT

]
, (2.5)

where D is the number of spatial dimensions, R is the gas constant, and T is the tempera-
ture.

2.2 The Lattice Boltzmann Equation

To obtain a numerical method for solving the BTE, a discretisation of the velocity space
is applied [19, 35]. Thus the velocity ξ of the PDF can only take discrete values ci =(
ci x ,ci y ,ci z

)
. Furthermore, the space is discretised on a Cartesian computational grid

called lattice with a grid spacing of ∆x, and the time t is discretised using a time step size
∆t . This leads to the lattice Boltzmann equation (LBE)

f (x +ci , t +∆t ) =Ω(
f (x , t )

)+ f F . (2.6)

Here, f F represents a source term that is further explained in Section 2.2.4. In computa-
tional fluid dynamics (CFD), the LBE plays a special role as it forms a promising alternative
to classical discretisation approaches for the Navier-Stokes equations (NSEs) based, e.g.,
on a finite-differences or finite-volume formulation [33, 36]. The NSEs for incompressible
Newtonian fluids can be stated as,

∇·u = 0, (2.7)

ρ

(
∂u

∂t
+ (u ·∇)u

)
=−∇p +µ∇2u +Fb , (2.8)

where Fb includes external forces, e.g., gravity as shown in Equation (2.34). However, the
LBE is not limited to simulating physical phenomena as expressed by the NSEs. In fact,
the LBE can be used to simulate first-order partial differential equations (PDEs) derived
from the linearised BTE [21]. Commonly, the velocity discretisation of the PDF is given in
DdQq notation where q defines the number of discrete velocities c and d represents the
number of spatial dimensions. The lattice stencils used in this work are the D3Q7, D3Q15,
D3Q19, and the D3Q27 stencil pictured in Figure 2.1.

Note that Equation (2.6) can be split into two parts

f ∗ =Ω(
f (x , t )

)+ f F (2.9)

f (x +ci , t +∆t ) = f ∗, (2.10)

where f ∗ marks the post-collision PDFs, and the left-hand side represents the linear
streaming step in which the discrete particles travel to neighbouring cells according to
the lattice stencil. The streaming step can be understood as the advection term. On the
other side, the right-hand side is the non-linear collision operator, which only needs cell
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Figure 2.1: Illustration of different lattice stencils for the LBM.

local information. Thus, the complex non-linear computations are local, and the more
straightforward linear streaming step is non-local. This key feature sets the foundation of
one of the greatest advantages of the LBM contrary to classical discretisations of the NSEs
where the advection is non-linear and non-local [21, 33]. Furthermore, it is important
to note that a minimal set of discrete velocities is required to recover specific physical
phenomena. For example, only the D3Q19 and the D3Q27 stencils are suited to recover the
NSEs while stencils like the D3Q7 and the D3Q15 are still enough to simulate advection-
diffusion systems as shown in Chapter 3 [33].

Owing to the discretisation of the velocity space, computing the macroscopic quanti-
ties results in discrete sums contrary to the integrals presented in Equations (2.2) and (2.3).
Hence, the sum over a cell’s population set forms the density, while the weighted sum
with respect to the discrete velocities forms the macroscopic velocity:

ρ (x , t ) :=
q−1∑
i=0

fi (x , t ) , u (x , t ) := 1

ρ

q−1∑
i=0

fi (x , t )ci . (2.11)

Here, it is important to note that the quantities obtained from the moments vary depend-
ing on the formulation of the LBE (see Chapter 3).

2.2.1 Streaming Patterns

Streaming the PDFs from one cell to another can be done in various ways. The most
common method is to use a so-called two-grid algorithm [37]. Common examples of this
kind of streaming pattern are the pull pattern shown in Figure 2.2a and the push pattern
shown in Figure 2.2b. For simplicity reasons, the streaming patterns discussed in this
section are shown in two dimensions. However, the extension to the three-dimensional
velocity set is trivial. The pull-pattern follows the idea that PDFs are pulled from the
neighbouring cells of a source grid. Then, in the centre cell, the collision operation is
performed, and the newly obtained PDFs are stored on a destination grid. In the push-
pattern, the collision operation is performed on the PDFs of the centre cell of a source grid.
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2.2. The Lattice Boltzmann Equation

Afterwards, the updated PDFs get pushed to the neighbouring cells on a destination grid.
Both of the streaming patterns share the property that they are not thread-safe. This means
that the neighbouring field access would overwrite data from potential neighbouring
threads in a parallel environment. Hence, a second set of PDFs must be allocated. This
second grid is used for writing the PDFs. After each time step, a pointer swap is performed,
and the algorithms start over.

c5 c1 c6

c4

c8c2c7

c3

c8 c2 c7

c3

c5c1c6

c4

(a) Pull streaming pattern

c5 c1 c6

c4

c8c2c7

c3

c5 c1 c6

c4

c8c2c7

c3

(b) Push streaming pattern

Figure 2.2: Illustration of the pull (a) and push (b) streaming pattern. The cell of reference is
coloured, and the cells are subdivided into nine boxes representing each cell’s nine PDFs. Blue
populations are read from memory, while red populations are written.

Making the streaming pattern thread-safe and thus inherently parallelisable is a de-
sired property because it allows the removal of the second set of populations and thus cuts
the memory requirements in half. This is especially important for execution on general
purpose graphics processing units (GPGPUs) where the memory capacity is typically
lower than the main memory units of the central processing unit (CPU) and massive
parallelism is a requirement. A category of streaming patterns that can achieve this goal is
called in-place streaming patterns. Their basic idea is to read and write populations in the
same cell. The so-called AA-pattern by Bailey et al. [38] fulfils this property by applying a
different memory access pattern for even- and odd-numbered time steps. As shown in
Figure 2.3a in even-numbered time steps, the collision operation is performed using only
cell local information for reading and storing. This is done by writing the updated PDFs
in the opposite orientation from their reading position. Contrary to that, the collision
operation uses only neighbouring information for reading and writing in odd-numbered
time steps, as shown in Figure 2.3b. Another in-place streaming pattern is the so-called

c5 c1 c6

c4

c8c2c7

c3

c8 c2 c7

c3

c5c1c6

c4

(a) AA-pattern even-numbered time steps

c5 c1 c6

c4

c8c2c7

c3

c8 c2 c6

c3

c5c1c6

c4

(b) AA-pattern odd-numbered time steps

Figure 2.3: The memory access scheme for the AA-pattern streaming algorithm. In even-numbered
time steps (a), populations are read locally according to their regular stencil indices. After perform-
ing a collision, they are written back to memory and correspond to their inverse stencil indices.
In odd-numbered time steps (b), populations are read according to their inverse stencil indices
on neighbouring cells. Then, a collision is performed, and the PDFs are stored according to their
regular stencil indices on the same neighbouring nodes.

Esoteric Twist of Geier and Schönherr [39]. Similar to the AA-pattern, populations are read
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2. FUNDAMENTALS OF THE LATTICE BOLTZMANN METHOD

and stored in the same location, making the streaming scheme inherently parallel and
thus removing the second set of populations. The idea is to write back PDFs in opposite
(twisted) order compared to the reading before the collision. Similarly to the AA-pattern,
the Esoteric Twist pattern uses different memory access patterns for even-numbered
(compare Figure 2.4a) and odd-numbered (compare Figure 2.4b) time steps. As shown
by the work of Geier et al. [39], this streaming pattern is especially optimal when indirect
addressing is used, i.e., when the memory location of the populations is stored in a sec-
ond array. The usage of indirect addressing is especially important when large parts of a
simulation domain are covered with non-fluid cells. In this case, using a dense continuous
array that is directly addressed by looping over it in all directions imposes a non-negligible
memory overhead [9].

c5c1 c6
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c8c2 c7
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c8c2 c7

c3

c5c1 c6

c4

(a) Esoteric Twist even-numbered time steps
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c8

c2c7

c3

c8 c2 c7

c3

c5

c1c6

c4

(b) Esoteric Twist odd-numbered time steps

Figure 2.4: Memory access scheme for the Esoteric Twist streaming pattern. The switching between
regular and inverse stencil indices is similar to the AA-pattern. However, a single collision and
a single streaming are performed in each time step. Systematically, the memory locations for
reading and writing are determined by looking at the direction each PDF points to. Truncating
every negative value in this direction gives their offset, respectively.

Recently, modifications of the Esoteric Twist streaming pattern were proposed by
Lehmann et al. [40], which are called the Esoteric Pull and the Esoteric Push algorithm.
These modifications aim to reduce the number of misaligned stores and improve the
performance of the streaming pattern. However, since the Esoteric Twist algorithm was
introduced specifically to be suited for indirect addressed lattice Boltzmann (LB) schemes,
it is questionable if the Esoteric Pull and the Esoteric Push algorithm keep this advantage.
Furthermore, the shift-swap-streaming by Kummerländer et al. [41] represents a modi-
fication of the AA-pattern by solving the streaming entirely with pointer switches. This
streaming pattern falls in the category of the so-called implicit streaming patterns. This
means the streaming is not solved directly by addressing the memory of neighbouring
cells in each iteration but implicitly by performing pointer manipulations after the colli-
sion. The compact streaming by Perepelkina et al. [42] involves 2D cells simultaneously
in one streaming cycle. Thus, the collision and streaming are executed on multiple cells
instead of one. While this streaming scheme was specifically developed for a temporal
blocking algorithm, it must be noted that it was only showcased on toy problems without
boundary conditions. Thus, its application to relevant problems is missing.

2.2.2 The Collision Operator

As shown in Section 2.1, the collision process of the PDFs proposes a highly complex part
when solving the LBE. The first successful attempts to model the collision were based on
the work of Chen et al. [19] and Qian et al. [35]. In their work, the populations were moved
towards a discrete equilibrium f eq

(
ρ,u

)
with a particular relaxation time τ. This follows

14



2.2. The Lattice Boltzmann Equation

the idea of the Bhatnagar-Gross-Krook (BGK) formulation as shown in Equation (2.4). The
main algorithmic parts are visually represented in Figure 2.5a. While this was a simple and
effective approach, it soon became clear that it severely struggles with highly turbulent
flow problems where the relaxation time τ becomes smaller and smaller. For this reason,
several improvements have been proposed. One category of these improved collision
models is based on shifting the collision processes to another function space [21, 33, 36].
The general idea is that the relaxation occurs in a collision space isomorphic to Rq . The
equilibrium state for this collision space is given by q eq, and the PDFs are transformed by
a bijective mapping T [1]. Thus, the collision operator can be formulated as:

q =T
(

f
)

(2.12)

f ∗ =T −1 (
q +S

(
q eq −q

)+q F)
, (2.13)

where f ∗ represents the post-collision populations, S = diag(ω0, . . . ,ωq ) the relaxation
matrix (with ωn = 1/τn) and q F a force term that represents external forces, e.g., caused by
gravitational acceleration on the PDFs. This source term especially plays an important
role when modelling other PDEs than the NSEs, as we will show in Chapter 3.

The first collision space proposed in the literature was based on shifting populations
to a basis formed by the moments of the PDFs [43, 44]. This collision space is often referred
to as moment space, and its first versions can be understood as a simple generalisation of
the BGK collision operator. This brings a main advantage: each moment can be relaxed
with a different relaxation time towards its equilibrium state. Hence, its name multiple-
relaxation-time (MRT) collision operator. In this fashion, it is possible to improve the
accuracy and stability of the method, and it becomes possible to separate shear and bulk
viscosity [45]. Generate functions are necessary to introduce and analyse moment-based
collision operators properly. For raw-moments, a moment-generating function M of the
PDF f is defined as

M (Ξ) =
∫

exp(ξΞ) f (ξ)dξ. (2.14)

Thus, the moment-generating functions represent a multidimensional Laplace transfor-
mation of the PDFs. To ensure that f is integrable, the Dirac delta function is applied
to the distribution as f (c) :=∑

i fiδ (c −ci ). Now, to derive the monomial raw moments
mαβγ of f , a mixed derivative is applied to the moment-generating function M . The mixed
derivative is then evaluated at zero:

mαβγ := ∂α1 ∂
β
2∂

γ
3 M (Ξ)

∣∣∣
Ξ=0

, (2.15)

where monomial quantities are defined by a monomial xαyβzγ as qαβγ. Thus, a specific
type of quantities defines the basis of the collision space, where the basis is a sequence(
pi

)
i=0,...,q−1 of linear independent polynomials. Through a linear combination of mono-

mial moments, it is possible to obtain polynomial moments as [1]

mαβγ =
∑

i
fi cαi ,x cβi ,y cγi ,z , mp =∑

i
fi p(ci ). (2.16)

The transformation to a moment space with basis
(
pi

)
i is typically represented by a linear

invertible matrix M , called moment matrix [33, 44]. In summary, the collision in the
moment space is done by transforming the populations to the moment space, applying
the collision in the moment space, transforming the populations back and applying
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2. FUNDAMENTALS OF THE LATTICE BOLTZMANN METHOD

the streaming step. This is shown in Figure 2.5b. It is important to note that the BGK
operator can be recovered by using the monomial moments as the basis and applying
the same relaxation rate to each moment. In this case, S becomes a scalar matrix with
the single relaxation rate ω on its diagonal. Since the same relaxation rate is used for all
moments, this method is also referred to as single-relaxation-time (SRT) collision operator.
Using a single relaxation time limits the number of free parameters. However, moments
represent physical quantities which might relax towards their equilibrium at different
speeds. Due to this fact, it is also desired that moments are statistically independent
to relax them independently of each other to their equilibrium state. Therefore, it is
common to choose the moments mutually orthogonal on the discrete velocity set ci with
a uniform weight function [44, 46]. This mutual orthogonality is commonly achieved by
applying a Gram–Schmidt process [47] to the raw moments. Unfortunately, this leads to
undesired coupling between the conserved quantities, i.e., flow density ρ and velocity u,
and some higher order moments that are not linked to hydrodynamics [48, 49]. These
undesired couplings can degenerate the collision operator’s stability and accuracy. A
non-uniform weight function is introduced to remove it, resulting in a so-called weighted
multiple-relaxation-time (WMRT) model [50].

Streaming

Distributions

Collision

(a) BGK

Streaming

Distributions

Moments

Collision

(b) MRT

Streaming

Distributions

Raw Moments

Central moments

Collision

(c) CMRT

Streaming

Distributions

Raw Moments

Central moments

Cumulants

Collision

(d) Cumulants

Figure 2.5: Overview of different moment-based collision models. Classically, the streaming step
is based on the PDFs while the collision step is executed using PDFs (a), moments (b), central-
moments (c) or cumulants (d). Several transformation steps must be performed depending on the
statistical quantity of choice.

Despite the moment-based collision operator’s increased stability, it was still impossi-
ble to reliably simulate highly turbulent flow phenomena [36]. Thus, shifting the collision
processes to the co-moving frame of reference was further suggested. This means that
the statistical observer moves with the macroscopic velocity of the flow field [36, 51, 52].
Additionally, shifting the frame of reference repairs violations of Galilean invariance [51].
This velocity shift is reflected in the Laplace frequency space with exp(−Ξ ·u). Thus, the
central moment-generating function can be defined as

K (Ξ) := exp(−Ξ ·u) M(Ξ). (2.17)

Similarly, the derivatives of the central moment-generating function give the monomial
central moments with respect to the velocity shift

καβγ =
∑

i
fi (ξi ,x −ux )α(ξi ,y −uy )β(ξi ,z −uz )γ, κp =∑

i
fi p(ξi −u). (2.18)
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2.2. The Lattice Boltzmann Equation

The transformation to the central moment space can be expressed with a linear trans-
formation matrix K . However, the matrix K is generally dense, and thus often, the shift
to the central moment-space is separated by a shift to the moment space with M fol-
lowed by a second transformation with the so-called shift-matrix N [52–54]. Thus, in
Figure 2.5c, the collision operator is pictured with two transformation steps. Formulating
the linear transformations as matrices forms an easy-to-understand algorithm; however,
more efficient methods have been introduced based on recursive formulations via tem-
poral quantities [1, 55]. A detailed description of these advanced methods is given in
Section 2.2.2. While central-moments improve the Galilean invariance, they are not statis-
tically independent quantities [49]. This was corrected by using cumulants as observers.
The cumulant-generating function is defined using the natural logarithm

C (Ξ) := log M(Ξ), cαβγ := ∂α1 ∂
β
2∂

γ
3C (Ξ)

∣∣∣
Ξ=0

, Cαβγ := ρcαβγ. (2.19)

The monomial cumulants can be obtained by an evaluation of the mixed derivatives of
the cumulant-generating function at the origin. For the rescaled cumulants, Cαβγ, i.e., the
polynomial cumulants, Geier et al. [49] is taken as a reference. The transformation to the
cumulant space is not linear and, thus, generally complex. Therefore, populations are first
shifted to the central-moment space to simplify this transformation. This is because some
central moments and cumulants are already equal; thus, shifting these central moments
is unnecessary. An overview of the transformation process is shown in Figure 2.5d.

Ever since the introduction of the MRT collision operator, the number of free param-
eters for the LBM strongly increased [44]. The simulation scenario often fixes only the
relaxation time corresponding to the fluid’s viscosity. In contrast, relaxation times for
higher-order moments can be chosen freely in the stability window as these are not physi-
cal but algorithmic parameters [33]. In the beginning, this was stated as a great advantage
because it allows tuning the stability and accuracy of the MRT model. However, numerical
analysis usually reveals that optimal choices of the higher order relaxation times only exist
for specific cases, and general values can’t be provided [2, 56]. This problem opened the
door for many modifications of the presented collision processes that should be discussed
briefly in the following:

Two-Relaxation-Time Model

Ginzburg et al. [57, 58] proposed a prominent approach for choosing the missing free
parameters. In their work, the idea was to divide the moments into even and odd moments.
Thus, only one free parameter remains because the even moments are relaxed by the
relaxation time derived from the fluid’s viscosity (ω+). The relaxation time for the odd
moments (ω−) is calculated from the relaxation time of the even moments using the
so-called magic parameter

Λ=
(

1

ω+∆t
− 1

2

)(
1

ω−∆t
− 1

2

)
. (2.20)

The magic parameter is not chosen arbitrarily, but mathematical analysis reveals optimal
parameters for stability and accuracy in specific cases. However, one of the weaknesses of
this approach is that the choice of the magic parameter is difficult in more complex cases.
Due to the usage of two relaxation times, this model is often called the two-relaxation-time
(TRT) collision operator.
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2. FUNDAMENTALS OF THE LATTICE BOLTZMANN METHOD

Parametrisation of Cumulants

Similar to the work of Ginzburg et al. [57, 58], Geier et al. [59, 60] looked for optimal
choices for the relaxation rates. In this case, however, the cumulants formed the basis of
the analysis. As stated before, cumulants are statistically independent quantities. Thus,
relaxation rates can be defined and analysed independently. Applying Taylor expansion
and asymptotic analysis, Geier et al. found:

ω3 =
8
(
2ω2

1 −3ω1 −2
)

7ω2
1 −14ω1 −8

(2.21)

ω4 = 8(ω1 −2)(4ω1 −7)

9ω2
1 −50ω1 +56

(2.22)

ω5 =
24

(
3ω3

1 −13ω2
1 +12ω1 +4

)
29ω3

1 −130ω2
1 +152ω1 +48

(2.23)

A = −3ω2
1 +2ω1 +4

5ω2
1 −7ω1 +2

(2.24)

B = 2
(−7ω2

1 +14ω1 +2
)

3
(
5ω2

1 −7ω1 +2
) . (2.25)

With this solution, relaxation rates for cumulants up to third order have been found.
Higher order relaxation rates are unnecessary because they do not influence the leading
error, and thus, they can be set to 1. Besides the relaxation rates, two additional values,
A and B , emerge, influencing third-order correction terms applied to the cumulants.
Importantly to note here is that Equations (2.21) to (2.25) are stated in the limit of ω2 = 1,
where ω2 influences the bulk viscosity. With these relations, it could be shown that the
resulting collision operator becomes fourth-order accurate with respect to the equivalent
diffusion term of the NSE [60, 61]. However, these optimisations on the accuracy come
with a degeneration of the stability of the model, which can be fixed by applying limiters
to the functions [55, 60, 61]. Similar to the literature, this method will be called the K17
cumulant method in the remainder of this thesis.

Regularisation

Another important idea to improve the stability of the collision operator is to filter out
non-hydrodynamic contributions by applying regularisations as originally shown by Latt
et al. [62]. Their original work applied the regularisation to the SRT collision operator.
However, later work shows that regularisation translates to setting non-hydrodynamic
relaxation rates to unity [36]. Thus, regularisation can be applied to all categories of
collision operators. In general, the goal is to increase the stability of a collision model.
Unfortunately, it could be shown that this can violate the model’s accuracy. In fact, Geier
et al. [60] showed that it was impossible to capture the drag crisis of a spherical object
using the regularised cumulant collision operator.

Further extensions of the original regularised collision model are done by applying
a recursive update rule based on Hermite polynomials [63]. This idea comes from the
realisation that the original regularisation process can not completely filter out non-
hydrodynamic contributions as Latt et al. had hoped. Applying a blending function to
the second-order Hermite polynomials leads to the hybrid recursive regularised collision
operator [64]. The blending function increases the stability while also controlling the

18



2.2. The Lattice Boltzmann Equation

dissipation of the model with an additional parameter. However, it comes with the down-
side that the blending function needs the velocity gradient, which needs to be calculated
from the macroscopic velocity field. Thus, it degenerates the collision operator’s locality.
Comparisons between the hybrid recursive regularised and the K17 collision models were
made by Spinelli et al. [65].

Entropic Stabilisation

Another possibility to improve the stability of the collision operator is to enforce the
validity of the H theorem after the discretisation of the Boltzmann equation [66, 67]. This
leads to a minimisation problem solved at each grid point at each time step. Initially,
this idea was applied to SRT collision operators. However, in this case, it inevitably leads
to a non-constant dynamic viscosity because the minimisation problem is applied to
the relaxation rate of the collision operator. While this was initially seen as problematic,
it was later shown that the method falls in the same category as large eddy simulation
(LES) turbulent models [68]. With the increasing importance of MRT based collision
methods, later versions of entropic stabilisation were also developed to modify higher-
order relaxation rates exclusively. These methods are often called KBC collision models
[69, 70].

2.2.3 Boundary Conditions

One of the biggest strengths of the LBM is that it’s typically applied to regular Cartesian
grids [33]. This removes a tedious meshing process and simplifies simulations involving
complex geometries, like flow through porous media. On top of that, standard boundary
conditions, e.g., to impose no-slip conditions, are especially simple to formulate in the
common halfway bounce-back rule [33]

f ī (xb , t +∆t ) = fi (xF, t )−2wiρw
ci ·uw

c2
s

. (2.26)

Here f ī refers to f for the direction ī such that cī = ci . Furthermore, wi describes the
lattice weights, and c2

s = ∆x/
p

3∆t is the lattice speed of sound. A no-slip boundary condi-
tion imposes that a viscous fluid attains zero bulk velocity at a solid boundary. For this
case uw = 0. However, it is also possible to simulate moving walls, also referred to as
velocity bounce-back (UBB) boundary conditions, by imposing a certain value for uw .
It is important to note that the density at the boundary ρw can not be prescribed by the
bounce-back scheme. Rather, it must be estimated. Commonly, this is done by simply
using the density from the first fluid node at the wall, but also other ideas have emerged
[33]. The halfway bounce-back boundary condition is illustrated in Figure 2.6.

For grid-aligned Poiseuille profiles, it could be shown that this boundary condition
can be made third-order accurate [71, 72]. However, when applied to complex geometries,
the solution generally degenerates to a stair-case approximation and thus falls back to
first-order accuracy [73, 74]. This poses a severe problem and reduces the general accuracy
of the simulation. Thus, the first claimed strength of simple boundary treatment quickly
becomes a disadvantage when not treated carefully. An attempt to solve this problem was
made by Bouzidi et al. [75]

f ī (xb , t +∆t ) =
{

1
2q fi (xF, t )+ 2q−1

2q f ī (xF, t ), if q ≥ 0.5

2q fi (xF, t )+ (1−2q) fi (xFF, t ), q > 0∧q < 0.5
. (2.27)
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xF

xb

t +∆t
c5

c1

c6

c6

c1

c5

Figure 2.6: Visual representation of the halfway bounce-back boundary condition. Blue nodes
mark fluid nodes, while red nodes show boundary nodes, i.e., nodes inside the boundary or outside
the domain. The boundary is visualised in green. After a time step, lattice directions pointing
towards the boundary end up in opposite directions to the wall.

The idea here is to use a second fluid node at xF F and use it to apply an interpolation
depending on the real distance to wall q . An illustration in a two-dimensional setup is
shown in Figure 2.7, where an arbitrarily complex boundary is drawn in green. Important
to note here is that the wall distance q is not uniform per cell but must be calculated
per lattice direction. In the shown illustration, e.g., both cases covered by Equation (2.27)
appear in the same cell for different lattice directions. While this boundary condition
shows an improvement by recovering the second-order convergence of the LBM, it comes
with the undesired side effect that a second fluid node is needed and, thus, with an
increased stencil.

q > 0.5

q = 0.5

q < 0.5

xb xb

xb

xF
xFF

xFF xFF

Figure 2.7: Interpolated bounce-back boundary condition depending on the wall distance q ∈ [0,1].
Fluid nodes are marked in blue, while red points represent solid boundary nodes. An arbitrary
boundary is pictured as the green line through the domain. Complex shapes generally need
interpolation to preserve the simulation’s second-order accuracy.

This problem was solved by the work of Geier et al. [49]. Using post-collision PDFs, a
cell local interpolation scheme is possible. In contrast to Bouzidi’s bounce-back boundary
condition, the interpolation is not performed using more information spatially but rather
extending information temporarily. Thus, besides the post-collision populations, pre-
collision populations are also involved. To avoid storing the missing pre-collision PDF, a
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back calculation based on the BGK rule can be performed:

f p

ī
(xF, t ) = f ī (xF, t )− fi (xF, t )

2
+

f ī (xF, t )+ fi (xF, t )−ω
(

f eq

ī

(
ρ,u

)+ f eq
i

(
ρ,u

))
2−2ω

(2.28)

f wall
ī

(xF, t ) = (1−q) f p

ī
(xF, t )+q f ī (xF , t ) (2.29)

f ī (xb , t +∆t ) = 1

q +1
f wall

ī
(xF, t )+ q

q +1
fi (xF, t ). (2.30)

It is important to note that Equation (2.27) and Equation (2.28) can be modified to impose
a velocity at the wall similarly to Equation (2.26). Furthermore, imposing high-order
boundary conditions is a vast field of research in the lattice Boltzmann community. Thus,
besides the boundary conditions here, many more complex interpolation schemes have
been developed over the past decades. A good overview can be found in the work of
Francesco Marson [76].

To impose the density at open boundaries, the anti-bounce-back boundary condition
can be used [77]

f ī (xb , t +∆t ) =− fi (xF, t )+2 f eq
i (ρw ,u). (2.31)

Since the access pattern of the populations remains similar to the UBB boundary condi-
tions, however, flipped in the sign, these boundary conditions are named anti-bounce-
back. For this family of boundary conditions, the equilibrium distribution is calculated
using the imposed density and a missing velocity u. The velocity at the first fluid node is
commonly used for the missing velocity. However, this leads to problems, especially for
simulations featuring high velocities. Furthermore, it is important to note that with the
state equation p = c2

s ρ, anti-bounce-back boundary conditions can prescribe a pressure
outlet at the domain [33].

Due to strong acoustic reflections caused by anti-bounce-back boundary conditions
Geier et al. [49] proposed an alternative outlet boundary

f ī (xb , t +∆t ) = f ī (xb +∆x, t −∆t ) (cs −u)
∆t

∆x
+

(
1− (cs −u)

∆t

∆x

)
f ī (xb +∆x, t −∆t ) .

(2.32)

The idea of this boundary condition is to copy populations from the location in space
and time where pressure waves are coming from. Hence, the boundary condition needs
information in the normal direction of the outlet.

The last family of boundary conditions important within this work are free-slip bound-
ary conditions. Unlike no-slip boundaries, free-slip conditions do not impose any re-
striction on the tangential velocity of the flow at the wall. Thus, they can be seen as the
opposite of the no-slip conditions, which impose a zero velocity at the wall. Free-slip
boundary conditions are also important because they can be used as symmetry condi-
tions. Thus, in special setups, it is possible to obtain all flow characteristics from just
half the simulation domain [33]. To apply free-slip conditions on the LBM populations
pointing towards the boundary, PDFs get reflected in their mirror direction:

f ī

(
xb +c j , t +∆t

)= fi (xF, t ) , (2.33)

where c j is the tangential discrete velocity [78]. An illustration of free-slip boundary
conditions can be found in Figure 2.8.
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Figure 2.8: Visual representation of free-slip boundary condition. Blue nodes mark fluid nodes,
while red nodes show boundary nodes, i.e., nodes inside the boundary or outside the domain.
The boundary is visualised in green. After a time step, the lattice directions pointing towards the
boundary end up in tangential directions opposite to the wall.

2.2.4 External Forces

Introducing force terms to the LBE is crucial in many applications. One of the most
prominent cases is to express a physical force density on the fluid, for example, in the
form of a gravitational acceleration α [33]:

Fg = ρα. (2.34)

However, force terms are also crucial in modelling additional physical phenomena to the
LBE or to correct truncation errors. An important example in this work is the modelling of
multiphase flows as shown in Chapter 3. When combining physical forces with the LBE,
the problem arises with mapping the D-dimensional force vector to the Q-dimensional
population space. A simple way to do so is by

q F
S =T

(
wi

c2
s

ci ·Fg

)
. (2.35)

In Equation (2.35), several important properties of the force vector q F are illustrated. The
first important property is that its contribution to the density is zero. Thus, this force
transformation scheme ensures that the force stays a momentum source, not a mass
source. Hence, the force should act with its full contribution to the momentum moments.
Lastly, it is important to note that generally, force terms are applied in the respective
collision space as indicated by the multiplication with the bijective mapping T . The last
point is not necessary. However, it was shown to give computational advantages, e.g., in
the thesis of Travis Mitchell [79].

Another important transformation model was proposed by the work of Guo et al. [80]:

q F
Guo =

(
I − 1

2
S
)
T

(
wi ·

(
ci −u

c2
s

+ (ci −u)ci

c4
s

)
·Fg

)
. (2.36)

The idea is to apply a symmetric forcing scheme to the collision process in the LBE. This
means applying half of the force term before and the other half after the collision. Thus,
the relaxation matrix S appears with the factor of a half. Therefore, the calculation of
macroscopic quantities also needs to be adapted. The adapted calculation of the velocity
reads:

u := 1

ρ

q−1∑
i=0

fi ci + ∆t

2
q F

i . (2.37)
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Contrary to Equation (2.35), Equation (2.36) possesses contributions to higher-order
moments. While there is a wide variety of different force transformations stated in the
literature, usually, these aim to filter special contributions in specific applications. A good
overview can be found in references [33, 81, 82].

2.3 Complete Lattice Boltzmann Algorithm

The complete algorithm to simulate single-phase flows with the LBM is given by Algo-
rithm 1. The algorithm begins by initialising the PDFs. A simple strategy to initialise the
PDFs is to assign them their equilibrium values

f (x , t = 0) = f eq (
ρ(x , t = 0),u(x , t = 0)

)
. (2.38)

This approach causes errors at the initialisation when gradients exist in the initial velocity
or density field [83]. In the cases here, however, the long-term behaviour of the simulations
is analysed. These cases are relatively insensitive to the initial condition [33]. Therefore,
it is assumed to be sufficient here. Furthermore, the simulations conducted in this work
generally start at rest.

Afterwards, boundary conditions from the domain boundaries or obstacles are mapped
to a flag field. This flag field is used to set up index lists to efficiently execute the boundary
conditions, while the main compute kernel can be executed without any branches. More
details are provided in Section 4.4.5. The main compute kernel is the combined stream-
collide method, which follows Equation (2.6). It is executed in the timestep loop along
with the boundary conditions and synchronisation kernels. The synchronisation here
refers to the data exchange between subdomains1 of the simulation region. A detailed
description of this data synchronisation is given in Section 4.4.4.

Algorithm 1: Single phase fluid simulation with the LBM

1 Initialise PDFs
2 Initialise flag field with bounding walls and obstacles (Section 4.4.5)
3 for each time step t do
4 Perform stream-collide in each cell (Sections 2.2.1 and 2.2.2)
5 Apply boundary conditions (Section 2.2.3)
6 Synchronise PDFs (Section 4.4.4)
7 end

1In WALBERLA these subdomains are the blocks in the block-structured grid
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3. EXTENSION TO MULTIPHASE FLOWS

After introducing the basic principles of the lattice Boltzmann method, an extension
to multiphase flow problems is shown in this chapter. This is done by first setting a
background for multiphase flow problems and various models developed for the lattice
Boltzmann method. Among these models, a recent approach is based on solving the
conservative Allen-Cahn equation and an incompressible lattice Boltzmann based
fluid solver. As this model forms a powerful tool for high Reynolds number multiphase
problems with high-density ratios, it will be introduced in detail, and later in this
thesis, the model forms the basis of thorough numerical studies. The chapter ends by
extending the conservative Allen-Cahn model to thermocapillary flow problems. In
these problems, the surface tension is temperature dependent; thus, a temperature
solver must be coupled. This opens the door for microfluidics problems that occur in
countless natural phenomena and industrial applications.

3.1 Background

Multiphase flows refer to computational fluid dynamics (CFD) problems with multiple
fluids of different physical characteristics. Most prominently, they differ in density and/or
viscosity. However, other quantities, like thermal conductivity, can also differ in multi-
phase flow problems. The most important distinction of multiphase flows is between
single and multicomponent flows. Single-component flow problems are characterised by
a mixture of one fluid in different states.

A typical example would be a mixture of liquid water and water vapour. Thus, the two
phases can convert to each other. For example, boiling liquid water will eventually convert
to water vapour. Conversely, miscible or immiscible multicomponent flows consist of
different non-convertible fluids like water and oil [33].

Similar to the large variety of different multiphase problems, many techniques exist
to capture their behaviour numerically. As the system consists of fluids with different
properties, one of the straightforward ideas would be to model each fluid with its own
solver for the Navier-Stokes equation (NSE). Such approaches are called sharp interface
approaches because each of these solvers evolves on its own numerical mesh, and thus,
the interface between the fluids is virtually non-existent. However, as a consequence, the
interface acts as a moving boundary condition on the solvers and, thus, can be difficult to
model [84–88]. On the other side, if one of the fluids in the system plays only a secondary
importance in the simulation analysis, it is possible only to model the moving boundary
and leave out the evolution of that fluid on the mesh entirely. This gives rise to the idea of
free-surface simulations [89].

On the other hand, diffuse interface models follow a different path. The idea is to
solve the entire simulation domain with one consistent model and distinguish between
different fluid phases by introducing a so-called order parameter

φ (x) =
{
φL if x ∈ fluid A

φH if x ∈ fluid B.
(3.1)

Near the interface between the fluids, a function I (x ,W ) is employed that provides a
smooth transition in the order parameter. In diffusive interface models, the interface
typically governs a certain thickness W that also influences the steepness of the smooth
function. Common formulations for it are based on higher order polynomials or trigono-
metric functions [90]. It is important to note that the fluids can be marked with arbitrary
values for the order parameter. In this section, the values 0 and 1 are chosen as an example.

26



3.2. The Lattice Boltzmann Method for Multiphase Flows

With the order parameter φ, it is then possible to determine the characteristic properties
of each fluid at each point in the domain exactly. For example the density ρ and the
kinematic viscosity ν can be recovered by,

ρ (x) = ρL +
(
ρH −ρL

)
φ (x) , (3.2)

ν (x) = νL + (νH −νL)φ (x) . (3.3)

Modelling the interface between the fluids with a certain thickness comes with the down-
side that it typically requires more memory than sharp interface approaches because the
problem must be resolved sufficiently to keep the interface sharp enough compared to the
bulk. However, the big advantage of this approach is that the whole simulation domain is
treated with the same update rule, and no distinction needs to be made. This typically
results in simpler algorithms because no complex re-meshing or algorithmic treatment of
special cases needs to be taken care of [3, 91].

3.2 The Lattice Boltzmann Method for Multiphase Flows

As shown in Section 2.2, the lattice Boltzmann method (LBM) offers many advantages
over conventional CFD solvers. Due to the explicit nature of the LBM, it forms a natural
candidate for unsteady problems, which is typical for multiphase flow problems. Further-
more, due to its origin directly from the Boltzmann transport equation (BTE) it allows the
method more control over molecular interactions [79]. Several models exist in the lattice
Boltzmann community to recover multiphase systems’ behaviour [92].

3.2.1 Colour Gradient

Among the most important multiphase models for the LBM and also the earliest one is
the so-called colour gradient method developed by Gunstensen et al. [93]. As the name
suggests, using different colours, the colour gradient method identifies the components
in a two-component flow with individual colours. It is important to note that the model is
restricted to two-component flows; thus, two-phase flows are inaccessible. The idea is
then to use three particle distribution function (PDF)s. One set of populations refers to
the so-called colourless population, while the others indicate the defined colours. The
three populations enter an extended collision phase

f ∗ = f +Ω+Ωp, (3.4)

whereΩ refers to a normal collision operator as shown in Section 2.2.2, whileΩp points
to a second term that is referred to as a perturbation term. The perturbation term allows
the introduction of surface tension and can be stated as,

Ω
p
i = A|C |cos(2θi ). (3.5)

The control over the surface tension is then given through the parameter A. Furthermore,
C is the so-called colour gradient and thus forms the basis of the method. The colour
gradient is described via an order parameter that comes from the density of the individual
fluids,

φ (x , t ) = ρr (x , t )−ρb (x , t ) (3.6)

C (x , t ) =
∑

i
ciφ (x +ci∆t , t ) . (3.7)
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The angle between the lattice populations and the colour gradient is defined by θ. The
perturbation term can be understood as re-orientating the flow parallel to the interface
between the individual fluids. However, a second step needs to be executed to allow a
separation of phases. This second step is called the "recolouring" operator and updates the
two population sets responsible for the colouring. Especially the nonphysical background
of the recolouring step caused problems at the early stages of the method. However, later
advancements extended the model’s applicability strongly [33, 92, 94–96].

3.2.2 Pseudo Potential

Another popular approach to simulate multiphase flows with the LBM was proposed
by Shan and Chen [97, 98]. Their idea falls in the category of so-called pseudo potential
models, where the ideal gas equation of state from the single phase LBM is replaced
by a non-ideal non-monotonic equation of state [92, 97]. This allows for the simulation
of both single- and multi-component problems. However, additional PDFs need to be
introduced for multi-component flows, while single-component flows can be simulated
using just a single set of PDFs. The thought behind the model is that repulsive forces must
act between the molecules of different phases in the fluid mixture. This inter-particle
force is commonly given by

Fp (x , t ) =−Ψ (x , t )
∑

i
Gwi ciΨ (x +ci∆t , t ) (3.8)

Fσ
p (x , t ) =−Ψσ (x , t )

∑
σ̃:=σ

Gσσ̃

∑
i

wi ciΨ
σ̃ (x +ci∆t , t ) (3.9)

for single- and multi-component problems, respectively. The core part of these force
functions is contained in the kernel function G , which controls the strength of the force
and the pseudopotentialΨ. It replaced the actual density ρ with an effective density. The
reasoning behind this is mostly of a numerical nature. Originally, the pseudopotential
was given as,

Ψ(ρ) = ρ0

(
1−exp

(−ρ
ρ0

))
. (3.10)

The beauty of the pseudopotential model lies in its simplicity. The only change to the
LBM is the additional forcing term, which can be added as shown in Section 2.2.4. Even
in the cases of multi-component flows, the individual components σ are just coupled
by a rather simple force sum over the components. Theoretically, this even allows the
simulations of infinitely many components in this simple fashion [33]. However, the
simplicity also comes with its drawbacks. One severe limitation of the model is that all
parameters are tightly coupled. In practice, this means that the interface width and the
surface tension force can not be controlled individually. Thus, applications requiring this
level of control are hard to access with the model. Improvements in this regard have been
made, for example, by Lycett-Brown et al. [99]. Furthermore, applying a Taylor expansion
to Equation (3.10) reveals an undesired inconsistency with thermodynamics encoded
within the model. The inconsistency can be explained by missing long-range particle
interactions occurring on the molecular basis, which the model arises from [33, 92, 100].
Due to its natural combination with the LBM it oftentimes forms a good entry to study
multiphase flows with the LBM [33, 92, 101].
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3.2.3 Free-Energy

To develop a thermodynamically consistent model, Swift et al. [102, 103] followed the
idea of a free-energy approach. As the name already indicates, the roots of this approach
directly lie in the thermodynamic laws underlining the motion of the fluid. Thus, by design,
thermodynamic inconsistencies can not occur in these kinds of models. To account for
multiphase flows, adaptions to the macroscopic equations have to be made,

ρ

(
∂u

∂t
+u ·∇u

)
=−∇p +∇· (µ[∇u + (∇u)T ])+FS +Fb . (3.11)

Compared to Equations (2.7) and (2.8) the momentum equation has to be adapted. In
homogeneous isotropic fluids, the pressure is equal in all directions. Consequently, the
pressure can be described as a scalar value. This no longer holds in multiphase systems,
which introduces the necessity to describe ∇p by a pressure tensor Pαβ. The surface
tension that arises at the interface of two fluids is introduced as a forcing term FS to
Equation (3.11). This is another key difference between Equation (3.11) and Equation (2.8).
Sometimes, the surface tension force term is incorporated within the pressure tensor.

The additional information needed now can be obtained from the free energy func-
tional. This functional can be freely chosen and commonly targets the fluids’ density
or order parameter in multi-component systems. A general form of such a free energy
functional could be given in this form

Ψ=
∫

V

[
Ψb (x , t )+Ψg (x , t )

]
dV +

∫
A
Ψs (x , t )d A, (3.12)

where the free energy at the bulk is given byΨb . Most importantly, this term must modify
the equation of state to allow phase separation. Furthermore,Ψg can be understood as a
penalty term for gradients in the order parameter. Thus, this term minimises the interface
surface area and is strongly related to the surface tension of the fluids. The last term
Ψs comes into play for solid interaction, thus it provides the necessary information to
impose specific wetting conditions [33, 92]. Free energy formulations based on the LBM
have initially struggled with wide adoption because the original model suffered from a
violation of the Galilean invariance. To tackle this problem, Holdych et al. [104] introduced
correction terms and extended the original model to a standard D2Q9 lattice. With the
work of Zheng et al. [105]; however, the model was significantly improved because it was
discovered that the free-energy approach could be used to recover the Cahn-Hilliard
equation [106]

∂φ

∂t
+∇∇∇· (φu) =∇∇∇· (M∇∇∇µφ

)
. (3.13)

The Cahn-Hilliard equation can be understood as an advection-diffusion equation for the
order parameter used for the interface tracking, where M is the mobility of the interface
and µφ describes the chemical potential. The big advantage of incorporating the Cahn-
Hilliard equation is the implicit conservation of mass of the phase-field model. However,
solving the Cahn-Hilliard equation also requires fourth-order spatial derivatives due to
the chemical potential containing the laplacian of the order parameter. To provide the
necessary order for the spatial derivative, information from an extended neighbourhood
needs to be incorporated, which worsens the locality of the method [107, 108]. This poses
a severe limitation, especially in large-scale systems.
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3.3 The Conservative Allen-Cahn Model

Another fundamental contribution to multiphase models with the LBM was made by
the work of He et al. [109, 110]. Their studies aimed to reformulate the LBM based on
a pressure formulation rather than a density formulation. The reasoning behind this is
that multiphase flows in the incompressible limits should not be targeted to fluctuations
in density. Along with the adapted LBM, another set of PDF was used for the interface
tracking between the fluid phases. The second set of PDFs can recover the Cahn-Hilliard
equation. Thus, their model shares intrinsic similarities with the free energy formulation
introduced in Section 3.2.3. While He et al. showed impressive results by simulating three
dimensional Rayleigh–Taylor instabilities, limitations also held back the model. Most
prominently, their model was limited to rather low-density ratios of O(10), and a lack of
mass conservation was observed. To overcome this limitation, Lee and Lin [111] modified
the original model by introducing directional derivatives.

At the same time, another idea was to incorporate the Allen-Cahn equation for inter-
face tracking directly. The Allen-Chan equation, however, was harder to incorporate due
to a lack of mass conservation. Finally, this problem was solved by the work of Chiu and
Lin [112] with a reformulation of the Allen-Cahn equation in conservative form,

∂φ

∂t
+∇∇∇· (φu

)=∇∇∇·M

(
∇∇∇φ− 1− (

φ−φ0
)

W
n

)
. (3.14)

which is called the conservative Allen-Cahn equation (CACE) with n = ∇∇∇φ/|∇∇∇φ| being the
unit vector normal to the liquid-gas interface. The major advantage of the CACE is that it
only requires a second-order spatial derivative. In combination with the LBM the CACE
was first solved in the work of Geier et al. [49]. Their work compared a formulation
based on the single-relaxation-time (SRT) collision model with a formulation based
on central moments. With the central moment formulation, it was possible to directly
calculate the interface curvature n from the cell’s local moments. While this improved
the locality of the algorithm, it was later shown to jeopardise the accuracy of the model
[113] On the other hand, Fakhari et al. [50] used an SRT formulation to solve the CACE
with isotropic finite differences [114] to compute the curvature of the phase field. This
idea showed great success in a large variety of academic and industrial cases with binary
multiphase problems consisting of fluids with high density ratios (O(1000)) and under high
Reynolds numbers [50, 54, 2, 115–118, 4]. The versatility of the model in both physical and
performance aspects motivated this thesis to take a closer look. In the following section,
we will show it in detail.

3.3.1 Phase Field Step

In Equation (3.14) phase indicator,φ, is used to keep track of the evolution of the interface
between the binary fluid mixture. In this work, the fluid with the lower density ρL is
indicated by φL = 0, while the fluid with higher density ρH is indicated by φH = 1. Thus,
the interface location is defined by φ0 = 0.5

(
φL +φH

)
. In the literature, different values for

φ can be used. For example, it was pointed out that a range between −0.5 and 0,5 leads
to better symmetry in the case of low-density ratios between the fluids [50]. However,
choosing φL = 0 eliminates error from the weakly compressibility of the LBM, which is
especially important for the light phase in the case of high-density ratios. At equilibrium,
the phase field profile in the direction normal to an interface located at x0 varies as per a
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3.3. The Conservative Allen-Cahn Model

hyperbolic tangent

φ(x) =φ0 ± φH −φL

2
tanh

( x −x0

W/2

)
. (3.15)

The discretisation with the LBM is done in a familiar way

qh =T (h) (3.16)

h∗ =T −1 (
qh +Sφ

(
q eq

h −qh
)+q F

h

)
. (3.17)

However, with the crucial difference that q F
h represents a source term leading to the CACE

from Equation (3.14). It can be stated in the form

Fh(x , t ) = 4φ(1−φ)

W
·n, (3.18)

which can be transformed to the collision space as shown in Section 2.2.4. This thesis uses
the transformation based on the work of Guo et al. [80] unless stated otherwise. Through
the usage of the source term, the zeroth order moment changes to recover the phase
indicator

φ (x , t ) =
∑
q

hq (x , t ) . (3.19)

Thus, the equilibrium of the phase field lattice Boltzmann (LB) step does not depend on
the density as usual but on the phase indicator. Furthermore, the first-order moments are
no longer conserved. This means the velocity can not be computed from this adapted LB
step, but the velocity is rather an input parameter coming from a coupling step. Through
the mobility of the CACE the relaxation time of the phase field LB step is calculated as

τφ = M

c2
s

. (3.20)

After recovering the phase indicator, the density of the whole system can be calculated
with a simple interpolation

ρ(x , t ) = ρ(φ) = ρL + (φ(x , t )−φL)(ρH −ρL). (3.21)

3.3.2 Hydrodynamic Step

An adapted pressure formulation of the LBM is used to recover the evolution of the
pressure and velocity field, which can be stated in a familiar form

qg =T
(
g
)

(3.22)

g∗ =T −1
(

qg +S
(
q eq

g −qg
)+q F

g

)
. (3.23)

However, the difference comes in by an adaption of the equilibrium,

f eq
g

(
p∗,u,ξ

)= f eq (
p∗−1,0,ξ

)+ f eq (1,u,ξ) . (3.24)

This continuous formulation of the equilibrium needs to be integrated with the respective
generating function as shown in Section 2.2.2. Since the density of the fluids is recov-
ered by the phase indicator, it is no longer calculated from the zeroth order moment of
the hydrodynamic LB step. The zeroth order moment herein is rather replaced by the
normalised pressure p∗ = p/ρc2

s , and reads

p∗(x , t ) =∑
i

gi (x , t ). (3.25)

31



3. EXTENSION TO MULTIPHASE FLOWS

To recover the incompressible NSE for multiphase flows, additional forcing terms must be
applied during the collision of the LBM. These forcing terms

F (x , t ) = Fs +Fp +Fµ+Fb , (3.26)

are the surface tension force Fs , the pressure force Fp and viscous force Fµ

Fs(x , t ) =µφ∇∇∇φ (3.27)

Fp (x , t ) =−p∗c2
s (ρH −ρL)∇∇∇φ, (3.28)

Fµ(x , t ) = ν(ρH −ρL)
[∇∇∇u + (∇∇∇u)T ] ·∇∇∇ρ. (3.29)

The surface tension force is calculated with the chemical potential for binary fluids

µφ = 4β
φ

(
φ−1

)(
2φ−1

)
2

−κ ∇

φ, (3.30)

where the coefficients β and κ are given as

β= 12σ

W
, κ= 3σW

2
, (3.31)

with σ being the surface tension. An important feature of the LBM is that the devia-
toric stress tensor can be computed using the non-equilibrium part of the second-order
moments. In this way, it is possible to compute the viscous force cell locally as,

Fµ(x , t ) =− ν

c2
s∆t

[∑
β

cβi cβ j ×
∑
α

Tβα

(
gα− g eq

α

)] ∂ρ

∂x j
. (3.32)

To further improve the locality of the model, no direct derivates of the density are com-
puted, but they are rather approximated using the phase field

∇∇∇ρ = (
ρH −ρL

)∇∇∇φ, (3.33)

where the spatial derivatives of the phase field are computed employing second-order
isotropic finite differences:

∇φ= c

c2
s (∆x)2

∑
i

ci wiφ (x +ci∆t , t ) , (3.34)

∇2φ= 2c2

c2
s (∆x)2

∑
i

wi
[
φ (x +ci∆t , t )−φ (x , t )

]
, (3.35)

with c = ∆x/∆t . The kinematic viscosity ν is computed with,

ν= c2
s

(
τ
∆t

2

)
, (3.36)

and the relaxation time τ is obtained from a linear interpolation with the phase indicator.
It takes the form of

τ(x , t ) = τ(φ) = τL + (φ(x , t )−φL)(τH −τL). (3.37)

where τH ≡ τH(x , t ) is the relaxation time of the heavy phase and τL ≡ τL(x , t ) is the relax-
ation time of the light phase. Notably, for the interpolation of the kinematic viscosity, dif-
ferent choices can be made; however, as pointed out by Fakhari et al. [50] Equation (3.37)
gives a reasonable balance between accuracy and stability.
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3.4 Three-Phase Contact Angle

Modelling wettability effects is one of the key points for multiphase simulations. This
is because fluid-solid interactions occur practically in every real-world application, in-
cluding flow through porous media, colloidal suspensions, or generally flow around solid
structures [119]. As shown in Section 3.2.3, sometimes the wettability effect is even en-
coded directly in the definition of a multiphase model. In the course of this work, however,
a contact angle is imposed rather in the style of an additional boundary condition acting
on the phase indicator. For the contact angle between the fluid phase and the solid wall,
the following definition is used [119],

n̂ ·∇φ|xw =−
√

2β

κ
φw

(
1−φw

)
cos(θ) , (3.38)

where φw is the unknown value of the phase field in the wall node that needs to be
determined to impose the desired contact behaviour. The outward-facing normal of the
solid wall n̂ depends on the geometry of the solid boundary. Typically, in the case of
non-moving geometries, it is reasonable to pre-calculate the normal direction during
an initialisation phase [120]. The static contact angle, θ, must be an input parameter to
impose a desired behaviour. For the unknown value of the phase field, φw , the following
relations are applied,

n̂ ·∇φ|xw = ∂φ

∂nw

∣∣∣∣
xw

= φ f −φs

2h
(3.39a)

φw = φ f +φs

2
. (3.39b)

With the geometrical normal direction n̂ the position of the corresponding fluid node
can be defined as x f = xs + n̂. Furthermore, the value of the phase field in the fluid
node is noted as φ f =φ(x f ), and at the solid node as φs =φ(xs). In addition to this, the
distance between the boundary cell and the fluid cell is 2h = ∣∣x f −xs

∣∣= |n̂|. By substituting
Equation (3.39a) into Equation (3.38), the unknown value for the phase field at the solid
node φs is,

φs = 1

a

(
1+a −

√
(1+a)2 −4aφ f

)
−φ f , (3.40)

where

a =−h

√
2β

κ
cosθ. (3.41)

Note that the contact angle θ = 90◦ is the trivial case in which φs = φ f . This case is not
defined by Equation (3.40) [2].

3.5 Extension to Thermocapillary Flows

Extending the binary fluid model to include temperature-driven motion allows for ob-
serving bubbles and droplets under the effect of so-called thermocapillary or Marangoni
convection. Thermocapillary motion is crucial in many natural processes and various
industrially relevant applications [121–124].
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Due to the capability of the LBM to simulate multiphase systems, numerous scientists
have extended it to capture thermocapillary effects [122, 124–128]. The extension of the
CACE for capturing thermocapillary effects is done in two steps. The first step is to extend
the surface tension force

Fs(x , t ) =µφ∇φ(x , t )+ 3

2
ξσT

(∣∣∇φ2
∣∣∇T (x , t )− (∇T (x , t ) ·∇φ)∇φ)

. (3.42)

Contrary to Equation (3.27), the influence of a temperature field T is now added. This also
adds a second spatial derivative that needs to be solved for the temperature field. In the
case of this thesis, Equation (3.34) is employed similarly to stay consistent with the spatial
derivative of the phase indicator. To impose an effect on the surface tension σT , a linear
interpolation in the form of

σ(T ) =σref +σT (T −Tref) , (3.43)

is used, where σref is the surface tension at the reference temperature, Tref, and σT = ∂σ
∂T is

the rate of change of the surface tension with respect to the temperature, T [128].
The second step includes the evolution of the temperature field T within the simula-

tion. This is done by solving the following heat equation

∂T

∂t
=−u ·∇T + 1

ρcp

(∇κ ·∇T +κ∇2T
)+qT. (3.44)

The formulation employed here leads to reasonable results when heat dissipation and
compression work done by the pressure are negligible [5]. The temperature equation is
defined with the thermal diffusivity κ and the heat capacity cp. For the multiphase system,
these can be recovered with the help of the phase indicator,

κ= κH +φ (κH −κL) (3.45)

cp = cp,H +φ(
cp,H − cp,L

)
. (3.46)

Furthermore, a heat source density can be introduced with qT.
Within the framework of thermocapillary LBM, there are numerous approaches to

introduce the thermal field and its evolution. These range from coupling to a finite-
difference-based Runge-Kutta integration scheme [128] to employing a thermal LBM on
a lattice stencil [127]. These methods show only minor differences in the accuracy and
computational efficiencies. In the scope of this thesis, we decided to use the LB based
solver. More details on a comparison between the different possibilities can be found [5].

The LBM based solver for the temperature equation can be formulated as

qf =T
(

f
)

(3.47)

f ∗ =T −1
(

qf +S f (
q eq

f −qf
))+∆t wi q T

f , (3.48)

where f denotes the thermal PDFs. The formulation of the LBM discretisation is similar to
Equation (3.17) with the difference that the order parameter for the thermal solver is not
the phase-field, φ, but the temperature, T . Thus, the temperature field can be recovered
using the zeroth-order moment of the thermal PDFs,

T (x , t ) =∑
i

fi (x , t ). (3.49)
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To recover the CACE, it was necessary to introduce a source term according to Equa-
tion (2.36). For the thermal LBM formulation, a source term is only necessary if a heat
source, qT, exists. This can be, for example, a laser source as it will be examined in Chap-
ter 8. The relaxation rate for the thermal LBM can be calculated as,

τT = 1
1
2 + c2

s ·κ
, (3.50)

and is related to thermal conductivity.

3.6 Complete Algorithm

The complete algorithm to simulate multiphase flows using the conservative Allen-Cahn
model (CACM) is given through Algorithm 2. The algorithm starts by initialising the phase-
field and hydrodynamic PDFs. As a next step, the domain and obstacle boundaries are
mapped to a flag field. With this, the main loop over the domain cells begins. In this loop,
the first step is communicating the hydrodynamic PDFs g using non-blocking message
passing interface (MPI) routines. While the data communication is performed, the LB
algorithm for the phase-field PDFs h can be executed (compare Section 2.3. Afterwards,
the phase-field PDFs h are communicated, while the LB algorithm for the hydrodynamic
PDFs g is performed.

During the update of the phase-field PDFs, h their zeroth-moment is directly evalu-
ated and written to a temporary phase-field array. A temporary array is necessary to avoid
a second pass over the PDFs. A pointer swap updates the phase-field array after the hy-
drodynamic LB step. With this, the velocity field u, updated during the hydrodynamic LB
step, and the phase-field φ are updated synchronously. The algorithm ends by calculating
the three-phase contact angle for the phase field and synchronising the phase field with
neighbouring subdomains. This is necessary because the phase field is accessed with a
finite difference stencil in both LB-steps.

Algorithm 2: Complete algorithm for the CACM.

1 Initialise PDFs h, g (Section 2.3)
2 Initialise flag field with bounding walls and obstacles (Section 4.4.5)
3 for each time step t do
4 Start synchronise hydrodynamic PDFs g (Section 4.4.4)
5 Apply boundary conditions for phase-field PDFs h (Section 2.2.3)
6 Perform stream-collide in each cell for phase-field PDFs h (Equation (3.17))
7 Wait for synchronise to finish

8 Start synchronise phase-field PDFs h (Section 4.4.4)
9 Apply boundary conditions for hydrodynamic PDFs g (Section 2.2.3)

10 Perform stream-collide in each cell for hydrodynamic PDFs g (Equation (3.23))
11 Swap pointers of phase-field φ source and destination array
12 Apply contact angle for phase-field φ (Section 3.4)
13 Wait for synchronise to finish
14 Synchronise phase-field φ (Section 4.4.4)
15 end
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The extension of Algorithm 2 for the simulation of thermocapillary flow problems is
given through Algorithm 3. Both algorithms show a similar structure. The main difference
is that a third LB step is executed in Algorithm 3 to solve the energy equation. It is impor-
tant to note that the third LB step does not rely on the phase-field φ. Hence, it is possible
to overlap the synchronisation of the phase field with updating the thermal PDFs. In this
way, all MPI communications can be hidden behind computations.

Algorithm 3: Thermocapillary algorithm using an LBM solver for the heat equation.

1 Initialise PDFs h, g and f (Section 2.3)
2 Initialise flag field with bounding walls and obstacles (Section 4.4.5)
3 for each time step t do
4 Start synchronise thermal PDFs f and temperature T (Section 4.4.4)
5 Apply boundary conditions for phase-field PDFs h (Section 2.2.3)
6 Perform stream-collide in each cell for phase-field PDFs h (Equation (3.17))
7 Wait for synchronise to finish

8 Start synchronise phase-field PDFs h (Section 4.4.4)
9 Apply boundary conditions for hydrodynamic PDFs g (Section 2.2.3)

10 Perform stream-collide in each cell for hydrodynamic PDFs g (Equation (3.23))
11 Swap pointers of phase-field φ source and destination array
12 Apply contact angle for phase-field φ (Section 3.4)
13 Wait for synchronise to finish

14 Start synchronise hydrodynamic PDFs g and phase-field φ (Section 4.4.4)
15 Apply boundary conditions for thermal PDFs f (Section 2.2.3)
16 Perform stream-collide in each cell for thermal PDFs f (Equation (3.48))
17 Wait for synchronise to finish
18 end
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4. SOFTWARE STACK

This chapter gives an overview of the software stack used and developed in this work.
After motivating the code generation approach in Section 4.1 employed here, the
Python package PYSTENCILS is introduced in detail in Section 4.2. Building on the
work of Bauer et al. [28] PYSTENCILS has been extended with an enhanced typing
system to allow for mixed-precision computations and support for AMD general pur-
pose graphics processing units. Following the introduction of PYSTENCILS, LBMPY is
shown in Section 4.3 as the building block that describes and derives state-of-the-art
variants of the lattice Boltzmann method. In the scope of this thesis, LBMPY has been
redesigned completely. This concerns the derivation of all collision models by introduc-
ing more modularity and allows the expression of most complex models, like the K17
cumulant collision model with a minimum amount of floating point operations. Fur-
thermore, all common streaming algorithms are now fully supported, and extended
boundary conditions have been implemented to account for complex geometries by
employing interpolation routines. Finally, phase-field models based on the conserva-
tive Allen-Cahn equation have been integrated. To realise large-scale simulations, an
integration of the code generation pipeline into the WALBERLA framework is realised.
This integration is explained in detail in Section 4.4.5 after introducing WALBERLA in
Section 4.4 and its most important modules. In the scope of this thesis, the interface be-
tween PYSTENCILS and WALBERLA has been extended to support complex simulation
setups with a refined grid structure on general purpose graphics processing units.

4.1 Code Generation

In the field of computer science, every tool that generates code in some programming
language can be referred to as a code generator. Prominent examples of such tools would
be compilers, e.g., the GNU Compiler Collection (GCC) 1 to generate assembly code
from a higher level language like C++. Over the past eight centuries, it has been proven
highly useful to express a problem in a higher abstraction and then use some software to
make it accessible to the computing architecture [129]. However, making the problem not
only accessible to a certain computing architecture but also producing fully optimised
machine code is an inherently complex task. The complexity of this task strongly increases
depending on the generality of these abstractions.

In the category of highly generalised abstractions fall, for example, general-purpose
languages like C++ that give developers great flexibility by allowing them to manipulate
memory manually if they desire to do so. On the other side, complex abstractive constructs
can be built using the full toolset offered by the object orientation of the language. If not
done carefully, such constructs might be impossible for a general-purpose compiler
to optimise, thus severely impacting the program’s performance. Therefore, applying
optimisations at compile time is often necessary to eliminate their impact at runtime. In
C++, however, other than by modifying the compiler, this is only possible in a limited way,
e.g., by using static polymorphism via templates.

Furthermore, increasing the generality of problems also results in an extended set of
parameters that will be provided at runtime rather than compile time. While this increases
the usability, it may impact the program performance negatively because it might be
harder for the compiler to remove branches or simplify terms. Eventually, this may lead to
a reduction in the prefetching and pipelining. Parameters must be provided as constants
in code files instead of comprehensively structured, custom configuration files to enable
compile-time optimisations.

1https://gcc.gnu.org/
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An alternative to solving these drawbacks is using a domain-specific language (DSL)
with a code generator. A DSL is a custom language tailored to express specific problems in
a formulation close to the problem itself. In this way, the DSL does not cover programming
details, allowing the user to work more abstractly than using a general-purpose language.
Since the DSL is limited to specific problems, it is possible to apply domain-specific opti-
misations and thus generate nearly optimal code for problems covered by the DSL. While
it is also possible to directly generate machine code from a DSL, we will generate code
for another language and then utilise existing compilers to get to the machine code [130].
This approach has the advantage that the output of the code generator is still readable
and that we can build upon the facilities of existing compilers to keep our generation tool
simple. Thus, the DSL serves as a platform to encapsulate the intricacies of our problem
domain in a concise and manageable way. Through the DSL, we can succinctly describe
the nuances of our scenario, facilitating rapid prototyping and experimentation. This
approach abstracts the complexities of specialised optimisations, allowing us to focus on
conceptualising the problem rather than its implementation details.

4.2 PYSTENCILS

The evolution of a physical system is often modelled using partial differential equations
(PDEs). Since the analytical solution of PDEs is rarely accessible for relevant real-world
problems, numerical tools must be used to approximate them. Some of the most im-
portant tools follow the approach of discretising the domain on which the problem is
defined into small pieces of space and time, and then the target equation is solved on
each of the pieces. These discretisation techniques can be broadly characterised into
two classes: the problem is discretised on a finite unstructured or structured mesh. A
significant advantage of unstructured approaches is that they fit the mesh well to complex
geometries. Thus, numerical errors at the boundary of the geometry can be minimised.
However, this flexibility also leads to the problem that the meshing process is a complex
task and that updating the mesh in a timestep process might be more costly because
the geometrical information needs to be loaded from memory for each element. Hence,
especially for large-scale problems, a structured grid is often beneficial. In structured grid
approaches, the underlying data can be updated using identical operations for each array
point. Using regular nested loops to cover the domain, each array point can be accessed
directly and consecutively.

This is the fundamental idea of the PYSTENCILS code generator. Employing the Python
programming language for our embedded DSL, a model developer can focus on the set
of operations that will be applied on each point. This is done in symbolic form using
the computer algebra system SymPy [131]. Subsequently, we transform this high-level
formulation into a lower-level representation closer to the target architecture. These
transformations bridge the gap between the abstract problem description and its eventual
implementation. By systematically converting the DSL-based formulation into a problem-
specific, highly optimised piece of code, we ensure that the complexity of specialised
optimisations is handled efficiently and effectively.
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Adopting this strategy, we streamline the implementation process and ensure that our
codebase remains maintainable over time. This is particularly crucial when dealing with
large-scale simulations and intricate problem domains where specialised optimisations
can quickly become unwieldy. Thus, by integrating the DSL approach, we balance com-
plexity and maintainability, ultimately enabling us to tackle challenging computational
problems confidently. In Section 4.2.2, details of the code generation process will be
shown.

4.2.1 Related Work

Before going into details of the software structure of PYSTENCILS, we show some packages
that share similar ideas to PYSTENCILS. This section is intended to review them and
provide an overview of the state of the art. Please note that it is by no means complete, as
it only focuses on the most relevant projects and publications.

Loo.py

Loo.py is a programming system based on Python. It defines a data model for array-style
computations and a library of transformation operating on this model [132]. Optimisa-
tions such as loop tiling, vectorisation, storage management, and unrolling or changing
data layout are supported. To understand the core idea of Loo.py, a small code snippet is
provided in listing 4.1. This snippet shows the main components of creating a Loo.py ker-
nel. The first component, called loop domain, is formulated with the help of the Integer Set
Library (isl) [133]. The second component is formed by the instructions. These are scalar
assignments with left and right-hand sides inside a loop domain. From this description,
Loo.py generates highly efficient code for central processing unit (CPU) and general pur-
pose graphics processing unit (GPGPU) platforms. The kernels can be executed directly
within Loo.py using PyOpenCL [134].

CODE LISTING 4.1: Illustration of the main components of a Loo.py kernel. Code snippet taken from [132].

knl = loopy.make_kernel(
"{ [i]: 0<=i<n }", # loop domain
"out[i] = 2*a[i]") # instructions

ExaStencils

The code generation framework ExaStencils uses whole program generation with a layer
design pattern to generate highly optimised and massively parallel geometric multigrid
solvers on (block-)structured grids [135]. The framework is written using the Scala pro-
gramming language. Multiple DSL layers allow users to define problems highly abstract
using a LATEX-like syntax on the top layer and give more and more precise control on
further levels. The resulting program can be generated with message passing interface
(MPI), OpenMP or CUDA to support NVIDIA GPGPUs. With the GHODDESS (Generation
of Higher-Order discretisations Deployed as ExaSlang Specifications) framework and
extension to ExaStencils exist [136]. It allows the use of SymPy for describing problems
with the discontinuous Galerkin method.
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SymForce

The SymForce package builds on SymPy to represent non-linear optimisation problems
for robotics applications [137]. The development speed and flexibility of the mathematical
environment are combined with highly optimised implementations in C++ using a code
generation approach. The key benefits of the framework are rapid prototyping, code
flattenings across function calls and automatic differentiation. Furthermore, the heavy
use of common subexpression elimination (CSE) allows generating low-level code with a
minimum of computational operations.

YASK

YASK (Yet Another Stencil Kit) is a software framework developed by Intel [138]. It provides
a DSL to describe stencil problems and comes with a compiler to create C++ source code.
The compiler applies highly advanced code optimisations such as multilevel loop inter-
changes, vector-folding or spatial- and temporal-blocking. Through OpenMP offloading,
GPGPUs are supported directly, and MPI allows the usage of multiple processes for solving
large problem sizes.

4.2.2 Abstraction Layers

The software design of PYSTENCILS employs multiple layers of abstractions, illustrated
in Figure 4.1. Building the framework with a layer concept enhances the modularity and
creates a separation of concerns in the framework. Thus, users working on mathematical
modelling do not need to know the intrinsics of DSL-specific optimisations. The top layer
of PYSTENCILS is formed by the PDE-layer. On this level, custom classes can describe PDEs
in their continuous form. The continuous form is close to the mathematical description
typically found in the literature. Discretising the continuous formulation of the PDE, e.g.,

PDE Layer ∂c
∂t = ∇

c

Stencil Layer cW−2cC+cE
d x2

PyStencils IR loop

assignassign

Backends CPU and GPU

Automatic Discretisation: FD, FVM ...
Index notation via PyStencils Field

Mathematical rewriting e.g. CSE
Switch to PyStencils IR

Architecture specific optimisations
SIMD, Loop Blocking, Register minimisation

Figure 4.1: Abstraction layers of the PYSTENCILS code generation package. On the top level, mathe-
matical problems can be described in their continuous form as PDE. The second layer represents
the discretised version of these, thus introducing the index notation to describe relative data ac-
cesses. From there, the symbolic representation gets transformed to the PYSTENCILS intermediate
representation (IR), which will be printed to low-level code.

by applying a finite differences scheme, leads to the stencil layer of PYSTENCILS. The
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stencil layer uses the Field class of PYSTENCILS to describe stencils in index notation.
At this point, the abstraction layers of PYSTENCILS are already useful because complex
stencils that the automatic discretisation facility might not support can be formulated
manually. This abstraction layer still fully utilises SymPy as a computer algebra system. In
fact, for each indexed variable, a different SymPy symbol is used. In this way, the full set of
mathematical rewriting is still accessible.

As a next step, the symbolic description of the stencil layer is transformed to the
PYSTENCILS intermediate representation (IR). This tree structure is much closer to lower-
level C code by introducing loop structures, control flow or abstract syntax tree (AST)
nodes for custom code injection. Furthermore, type information is added as needed by
the statically typed C language. Architecture-specific optimisations like single instruction,
multiple data (SIMD) vectorisation, loop blocking or register minimisation are executed
at this level. After applying architecture-specific optimisations and thus reaching the final
AST of the PYSTENCILS IR, it will be printed by a respective backend.

A standard example will be explored to highlight the details of the abstraction layers
of PYSTENCILS and showcase the general workflow. To do so, an advection-diffusion
equation (ADE) will be explored. The ADE defined as

∂c

∂t
=∇· (D∇c)−∇· (uc) , (4.1)

is a transport equation that describes the temporal evolution of the order parameter c
under the influence of advection and diffusion, where the diffusion process is controlled
by the diffusivity D and the convection process by the velocity u. The ADE is considered
here due to its strong relation to the Navier-Stokes equation (NSE) and thus to its great
importance in computational fluid dynamics (CFD). In fact, the NSE can be understood
as an ADE for the fluid momentum ρu [33]. The ADE has many important applications
as the order parameter can describe temperature for heat problems (see Section 3.5) or
a mass concentration, among many others. For example the spread of the SARS-CoV-2
virus has been analysed in a supervised bachelors thesis during this work [10], where the
virus was modelled with Equation (4.1)

PDE Layer

The PDE layer of PYSTENCILS accepts PDEs in their continuous form. A code example of
how this can be done is illustrated in listing 4.2. The ADE shown in Equation (4.1) consists
of two array quantities c and u, and one scalar value D. The scalar value D is directly
defined by using a SymPy Symbol, but also numerical values could be stated here to fix
the ADE to a specific diffusivity. For the array quantities, the Field class of PYSTENCILS

is used. The Field class represents a high-level description of a multidimensional array.
Thus, it contains information like the spatial dimensions, the shapes and strides in each
dimension, a C data type or the memory layout. The memory layout can either be row-
major or column-major order. Important to note here is that most information (like
the shapes and strides) can be defined either numerically for a specific size or using
symbolic variables. Another speciality is that the Field class contains a subclass that
describes an array-access relative to loop indices x, y, z. The three building blocks to
describe the ADE can be created with the defined variables. The transient term ∂c

∂t is
represented by the Transient class, the diffusive term ∇· (D∇c) by the Diffusion class
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and the advective term ∇· (uφ
)

by the Advection class. These classes inherit from the
Function class of SymPy. Therefore, it is possible to define the final PDE completely as a
symbolic expression as shown in listing 4.2, which allows the application of the full set of
mathematical manipulations offered by the computer algebra system.

CODE LISTING 4.2: Stating the ADE in the PDE layer of PYSTENCILS. The array quantities are declared using
the Field class, while the diffusivity D is declared as SymPy-Symbol.

import pystencils as ps
import sympy as sp

dim = 2
c, u = ps.fields(f"c, u({dim}): [{dim}d]")
D = sp.Symbol("D")

pde = ps.fd.transient(c) - ps.fd.diffusion(c, D) + ps.fd.advection(c, u)

Stencil Layer

At this point, it is already possible to fix model-specific parameters. For example, the
diffusivity D could be fixed to a problem-specific numerical value. On the other side, it is
possible to add additional terms easily using the described building blocks [26].

Applying a suitable discretisation scheme to the PDE defined above leads to the next
abstraction layer of PYSTENCILS. At the stencil layer, an update rule is formed using
index notation. This means a set of algebraic equations that contain an array of ele-
ments with their access information encoded. The access information is expressed by the
Field.Access class, which is a subclass of Field. The stencil layer again makes heavy
use of SymPy, offering a wide range of mathematical tools. Among others, these are mainly
manipulations like expansion, factorisation, and simplification, but also powerful tools
like the CSE, that can significantly reduce terms, which will eventually lead to a reduction
of floating point operations (FLOPs) later. For the ADE defined earlier, a discretisation
based on a finite difference approximation can be derived directly using high-level func-
tions of PYSTENCILS. The code snipped shown in listing 4.3 should illustrate how this can
be done. As a first step, a suitable discretisation class is chosen. A second-order finite

CODE LISTING 4.3: Using the finite differencing facility of PYSTENCILS to discretise Equation (4.1) automati-
cally with a second-order accurate approach.

dx, dt = sp.symbols("dx dt")
discretize = ps.fd.Discretization2ndOrder(dx, dt)
discretization = discretize(pde)

differencing scheme is applied using the Discretization2ndOrder class. This class gets
the spatial and temporal resolution as input parameters. Afterwards, the resulting object
can be called using the defined PDE. This leads to the following output:

cC +d t

(
−cEu0

E + cNu1
N − cSu1

S − cWu0
W

2d x
+ D (−4cC + cE + cN + cS + cW)

d x2

)
. (4.2)

The spatial access is expressed with the subscript, while the superscript of the symbolic
variables indicates the cell index. For example, u1

N represents an access on the second
component of u in the northern direction. The direction-on-compass notation shown
here translates to a numerical index. Fields can be annotated with their desired memory
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layout, i.e., linearisation order. However, arbitrary memory layouts, including the special
cases of structure of arrays (SoA) and array of structures (AoS) layouts, are supported. If
the memory layout is known, the code generator can arrange the loops iterating over the
array such that the array accesses are consecutive in memory. The field’s shape and strides
can be specified at runtime via kernel parameters or at code generation time. Providing
fixed shapes and strides can help the later compiler pass to produce more optimised and
tailored machine code.

Expressions leading to branching in the kernel are intentionally not part of the stencil
layer except for piecewise-defined functions. Piecewise-defined functions are an ordered
list of condition-value pairs together with a mandatory fallback value if none of the
conditions evaluates to true. They could either be represented by nested ternary if
operators, but the main advantage of this formulation is that in SIMD vectorised code,
these piecewise-defined functions can be efficiently mapped to masking and blending
instructions. The following sections will give an overview of the SIMD vectorisation facility.

PYSTENCILS IR

After deriving the discretisation for the ADE, the next stage is to transform it to the IR of
PYSTENCILS. An example code snipped to give the basic idea is shown in listing 4.4.

The transformation to the PYSTENCILS IR is executed by calling the create_kernel
function. It receives a list of assignments in static single-assignment (SSA) form. An
assignment is an AST node holding a left- and right-hand side. In the case of this example,
the right-hand side is the symbolic expression of the discretized ADE, while the left-hand
side is a symbolic field access for a temporary array that is used to store the updated
values in successive timestep updates. The assignments are depicted within a syntax
tree provided by the SymPy framework, wherein the leaf nodes comprise either symbols,
numeric values or field accesses. In Figure 4.2, an extraction of the AST representing the
diffusion part of the ADE is illustrated.

Several steps are needed to obtain the PYSTENCILS IR. The first step is to check the
consistency of the input list of assignments. The most important conditions that are
checked at this stage are the SSA form of the assignments and the independence of array
writes. Enforcing SSA form means that every symbol can only appear once on the left-
hand side of an assignment. Similarly, an array must only be written at one spatial location
per field index. Additionally, a thread safety check indicates if the assignments can be
parallelised using OpenMP or GPGPUs.

CODE LISTING 4.4: Creating a compute kernel from an assignment. As a first step, the assignment (which
can also be a list of assignments) is transformed to an AST with the PYSTENCILS IR. This is done using
a configuration class called CreateKernelConfig. It holds all the necessary information, like the target
architecture or the instruction set the output should use. Once the AST is formed, it can be directly compiled
within the Python environment.

cn = ps.fields(f"c_n: [{dim}d]")
assign = ps.Assignment(cn.center(), discretization)

simd = {'instruction_set': "avx512"}
config = ps.CreateKernelConfig(target=ps.Target.CPU, cpu_vectorize_info=simd)
ast = ps.create_kernel(assign, config=config)
kernel = ast.compile()
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After the consistency check, data types according to the C programming language
are introduced. By design, a PYSTENCILS Field must hold a data type, which is done
by employing the typing system of NumPy 2. Thus, the green nodes in Figure 4.2 have
known data types at the start. Consequently, data type information is only missing for
free symbols and numeric constants (marked in red and yellow). In these cases, the
following strategy is applied. The AST is traversed recursively, and each leaf returns its type
information if known. If the type information is not known, a default type is applied. The
default type is globally defined with the configuration class passed to the create_kernel
function. Once a node has the type information of all its children collected, type collation
is performed. It works by choosing the most general data type in a sequence of data types.
For example, a list of integer types containing a floating pointing type will collate with
the floating point type. When a common data type for a node is found, all its child nodes
are cast to the common data type. Casting works by utilising a special PYSTENCILS AST
node, which receives an expression and a data type to which the expression should be
cast to. Lastly, the left-hand side of each assignment is compared with the common data
type of the right-hand side. If the data types differ, a data cast is introduced. Utilising data
casts in this way ensures type correctness, while a later compiler stage removes casts and
optimises the resulting data types.

Next, the separate tree representations of all assignments are incorporated into a full
syntax tree. Assignments nodes are inserted as children of a Block node. A BlockNode
is an ordered collection of child nodes and comprises a scope. It is used as the only
descendant in more complex nodes like loops or conditionals. The C backend prints a
Block as a code section surrounded by curly braces. At this stage, the code generator
checks that all accessed fields have the same spatial shape. If the fields have fixed spatial
shapes, the test is executed right away, while for variable-sized fields, runtime checks
in the form of assertions are inserted in the resulting code. Since assertions generally
can be deactivated by compilers, inserting them at suitable places in the code to ensure
code correctness during testing with no overhead at production runs is good practice.
Next, loop nodes are created around the assignments. Optimal loop order is determined
depending on the memory layout of accessed fields, such that the innermost loop iterates
over the coordinate stored consecutively in memory to use the hardware prefetching
capabilities best. The spatial shapes of the fields and their field accesses make it possible
to determine correct loop bounds automatically and to avoid out-of-bounds memory
access. Thus, the code generator automatically determines the minimum amount of ghost
(halo) layers required at each field border. Communication or boundary routines must
fill these ghost layers every time the compute kernel is run. Again, the communication
routines can be created automatically by analysing the field accesses inside the original
list of assignments.

The only way to express conditional evaluations on the algebraic level is through
piecewise-defined functions. They must have a base case allowing efficient SIMD vec-
torization with blending instructions. However, a custom node is provided to express
conditionals at the AST level. This Conditional is most prominently used to check for
out-of-bounds access in GPGPU kernels. The array index is commonly calculated from a
pool of threads spawned on a virtual block grid in these cases. Each of the threads must be
checked for their validity. In general, branching is usually avoided due to the performance
impact it can cause when introduced in inner loop passes. Especially to apply boundary

2https://numpy.org/
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Figure 4.2: Example AST for the discretised diffusion part of Equation (4.1). The nodes of the AST
are formed either by PYSTENCILS or SymPy classes, and the leafs are either symbols (red), numeric
constants (yellow) or field access (green)

conditions PYSTENCILS offers the facility to create indexed kernels instead of a full domain
kernel. An indexed kernel contains only a single loop over an index array, which stores
coordinates and other information. In this way, the location of boundary cells can be
stored inside the index vector, and their update can be separated from the domain update
in a small and efficient kernel.

The last step to finish the AST in the PYSTENCILS IR is to resolve all field accesses.
In the higher layers of the software, these have been expressed with the Field.Access
class. At this stage, however, array accesses must be expressed by a linearised index, which
depends on the loop counters and the array strides. Thus, at this point, a special AST node
is introduced with a symbolic expression for the linearised index and a base symbol that
will translate to a C pointer. In this way, it is possible to introduce temporary pointers at
the outer loop levels to simplify the index calculation in the inner loop. In some cases,
this can lead to performance increases. However, in the scenarios analysed in this thesis,
the integer calculation of the linear index generally only plays a minor role; thus, in all
benchmarks, no temporary pointers are introduced.

Backends

After building the AST in the PYSTENCILS IR, it is passed to one of the backends. The
backends serve three purposes. The first purpose is to introduce architecture-specific
optimisations, the second is to print the final kernel code to be compiled on a target
architecture, and the last is to execute the resulting kernel.

In PYSTENCILS, different optimisations tailored to a specific hardware are imple-
mented. For example, many stencil kernels can profit from spatial loop blocking. Applying
loop blocking means subdividing the domain loops to keep certain variables longer in the
register [139]. Herein, the optimal size of the blocking loop depends on the cache size of
the target chip. Due to the code generation approach, different loop sizes can be tested
quickly.

Another important optimisation is the usage of SIMD instructions. These are spe-
cialised vector instructions designed to increase the throughput of a chip by applying a
certain instruction to a vector of data at once instead of a single datum. While general-
purpose compilers usually introduce these instructions automatically (when the highest
optimisation level is activated), they still fail to do so in complex cases. Thus, even in
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recent literature, to ensure optimal results, SIMD instructions are introduced manually in
the kernel code [140]. Within PYSTENCILS, a simple yet powerful strategy is employed to
directly introduce SIMD instructions in the resulting code. After creating the PYSTENCILS

IR, a second pass through the AST replaces scalar data types with vector types, AST nodes
with their scalar nodes with their SIMD counterparts and field access with vectorised load
and stores. The philosophy here is to not aim for general support of all possible SIMD
instructions but only support a subset important for stencil codes and extend on demand.
Like this, the SIMD instructions can be provided in a simple dictionary-like structure to
map scalar instructions to vector instructions. At the beginning of this thesis, PYSTENCILS

only supported the x86 instruction set. At this point, PYSTENCILS supports all relevant
instruction sets, including SSE, AVX, AVX512, Neon, SVE, SME, RISC-V, and VSX. Thus, the
latest Intel- AMD- and ARM-chips instruction sets are fully supported within PYSTENCILS

plus various less common ones.

Advantages of the AST structure of PYSTENCILS were already shown in previous sec-
tions. For example, by analysing read and write accesses, minimal halo layers and optimal
loop bounds can be determined. In Section 4.4, this information will also be used to auto-
matically generate MPI packing and unpacking routines for the WALBERLA framework
(more details are provided in Section 4.4.4). Similarly, analysing the AST opens the pos-
sibility of applying automatic performance modelling. Recently, this path was explored
for performance prediction on GPGPUs [6]. An overview of the idea is illustrated in Fig-
ure 4.3. The address expressions from the PYSTENCILS AST are combined with hardware
information and a suitable performance model. Finally, with this information, a perfor-
mance prediction can be made before the kernel is executed. This workflow gives several
major advantages. The most dominant advantages are the rapid analysis of different code
generation configurations without executing the final compute kernel and additional
insights to optimise performance bottlenecks. A detailed description of Warpspeed in
combination with PYSTENCILS can be found in reference [6].

PYSTENCILS
Address
expressions

Metric
estimator

Launch
Config

Hardware
metrics

Performance
model

Hardware
Data

Performance
estimate

Figure 4.3: Workflow for automatic performance prediction using Warpspeed and PYSTENCILS as
code generator. The figure is inspired by reference [6]

After applying hardware-specific optimisations, a code printer of the backend prints
the AST to a valid C code. At the time of writing, two code printers are supported. Both of
the code printers are close to the C language. One specialises in CPU architectures, and
the other in GPGPU architectures. Using only primitive C language features results in a
highly versatile output that can be combined with many other languages or frameworks
(see Section 4.4). The printed kernel code can be directly executed within the Python
environment. The CPU backend uses system calls to a compiler specified within a con-
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figuration file. Standard configuration files with standard compiler flags are provided for
the most widespread platforms (Linux, Mac OS and Windows). The standalone library
is created by embedding the printed AST in a template using the Python C application
programming interface (API) 3. The compiled library can be provided as a Python function,
which receives NumPy arrays and numerical values.

Using GPGPUs is made possible by employing CuPy 4. CuPy comes with its own
compiler detection and supports NVIDIA and AMD GPGPUs. The major advantage of
using CuPy here is that the package handles low-level device calls, for example, to transfer
data from host to device. This allows to manipulate memory on a very high level in Python.
Using NumPy and CuPy in conjunction with the generated compute kernels from the
PYSTENCILS AST results in an incredibly powerful and versatile framework because stencil
expressions can be realised within highly optimised compute kernels provided as Python
function, while general mathematical manipulations can be realised using NumPy or
CuPy directly on the data. Thus, even specific operations or evaluations can be done
within a high level of abstraction.

4.3 LBMPY

As shown in Section 2.2, a wide variety of different lattice Boltzmann methods (LBMs)
have been established in the last few decades. Oftentimes, they follow the same principle
but differ in adding additional steps like transforming the populations to a different colli-
sion space to increase the stability and accuracy of the method. Furthermore, many of
these methods have reached a level of complexity that a derivation by hand has become
unfeasible. Therefore, the LBMPY package provides a generic, purely symbolic develop-
ment environment for LBM. At its heart, the LBM employs a stencil structure; thus, it is an
ideal candidate for automatic code generation using the PYSTENCILS package. In fact, the
combination with PYSTENCILS makes LBMPY an incredibly versatile and powerful tool.
Similar to the finite difference example shown in Section 4.2, LBMPY derives the LBM
stencil update rules for PYSTENCILS.

4.3.1 Abstraction Layers

Much like the PYSTENCILS package, LBMPY adopts a layered approach as a key design
principle. However, unlike PYSTENCILS, the layered structure of LBMPY emerges inher-
ently from the LBM. An overview of the various software layers is provided in Figure 4.4.
The first layer involves the definition of the LBM. Depending on the chosen collision space,
basis polynomials, and lattice stencil, an appropriate discretisation of Equation (2.5) is
dynamically derived. Additional options, such as specifying the relaxation rates, allow
further refinement or extension of the resulting equations.

As a next step, a full collision operator is derived. If needed, the collision operator
adds transformations to other collision spaces and mathematical simplifications, e.g.,
to eliminate certain terms. At this layer, additional adaptions of the collision rule are
introduced. An example of such an adaption would be an large eddy simulation (LES)
model that takes the original equations and inserts additional expressions to update the
second-order relaxation rate locally depending on the LES model.

3https://docs.python.org/3/c-api/index.html
4https://cupy.dev/
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LB Method Definition

Stencil D2Q9 | D3Q19 | D3Q27 | ...
Zero-Centered Storage True | False

Collision Space PDFs | RAW_MOMENTS | CENTRAL_MOMENTS | CUMULANTS

Basis Polynomials
(
1, x, y, z, x2 − y2, x2 − z2, x2 + y2 + z2, . . .

)
Relaxation Rates

(
0, 0, 0, 0, ωs , ωs , ωb , . . .

)
Equilibrium Distribution GenericDiscrete | ContinuousHydrodynamic | ...

Conserved Quantities DensityVelocityComputation | ...

Force Transformation Simple | Guo | ShanChen | He | ...

Collision Operator

PDF transformation RAW_MOMENTS | CENTRAL_MOMENTS | CUMULANTS
Simplifications Pre Simplifications | Post Simplifications

Collision Adaptions FourthOrderCorrection | PSM

Relaxation Adaptions Entropic | LES models | Non-Newtonian models

Update Rule

Streaming pattern Pull | Push | AA-pattern | Esoteric Twist | ...

Figure 4.4: The different software layers of the LBMPY package. At the framework’s core is the
definition of the LBM. This is done by deriving a suitable discretisation of Equation (2.5) using the
base polynomials that the user can choose. After deriving the basic discretisation, adaptions and
optimisations can be applied to form a final collision rule. Adding a suitable streaming scheme
will lead to the final update rule passed to the PYSTENCILS code generator.

Until this point, only the cell-local collision step is defined. This means that LBMPY

functions entirely independently of PYSTENCILS to this stage. However, the streaming step
needs to be inserted as the next step to finalise the ingredients of the LBM. The streaming
step adds non-local information that can be introduced best using index notation via the
PYSTENCILS Field class. A detailed description of the individual layers will be given in
the following sections.

4.3.2 Method Definition

The core layer of LBMPY is an automatic procedure that takes an abstract LBM specifi-
cation and derives a sequence of symbolic equations implementing Equation (2.6). This
specification is formulated using a flexible Python API, which again makes heavy use of
the computer algebra system SymPy [131] to represent and manipulate all components of
an LBM in symbolic, mathematical form. The automatic derivation closely follows the
theory outlined in Section 2.2.

A part of the parameter space of LBMPY’s abstract method specification is shown in
the red boxes in Figure 4.4. The lattice structure is defined by selecting a stencil and a
storage format (absolute or zero-centered). In this context, the storage format refers to
how the particle distribution functions (PDFs) are stored. It comes from the realisation
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that Equation (2.5) can be decomposed

f eq (
ρ,u,ξ

)= f eq (
ρ0,u,ξ

)+ f eq (
δρ,0,ξ

)
, (4.3)

into a fixed part using the background density ρ0 = 1 and a fluctuating part with δρ =
ρ−ρ0. While the basic idea of this technique was first discovered in the work of Skordos
[141], it is applied in its most general form in LBMPY [1]. This is possible because the
decomposed form of the equilibrium is directly used to derive the discretised update
equations. Additionally, back transformations that are needed in special cases are inserted
automatically. For example, the cumulants are not defined for ρ = 0 due to the usage of
the logarithm. Thus, a back transformation must be applied before the collision step. Next,
the collision space is specified by choosing a type of statistical quantity and defining its
basis as a sequence of polynomials. Additionally, corresponding relaxation rates must
be specified. Each relaxation rate can be provided either as a fixed numerical value or
in symbolic form, allowing its value to remain undetermined until the runtime of the
generated code. Especially when regularisation is used (e.g. higher order relaxation rates
are set to unity), it is possible to simplify the resulting equations drastically. More details
will be given later.

The final three components of the definition require a significantly more elaborate
structure. To model equilibrium distributions, compute macroscopic quantities, and
define force models, LBMPY provides specific hierarchies of Python classes. Abstract
base classes define their respective interfaces. These components not only encapsulate
information about the method but also play an active role during the code generation
process.

For instance, the equilibrium object must produce an algebraic form (discrete or
continuous) of its distribution, distinguish between fixed and fluctuating forms, and
provide the background distribution in the latter case. Furthermore, it must provide
methods to compute its raw moments, central moments, and cumulants. These methods
are invoked during the symbolic derivation of the collision rule. The same applies to force
models and the computation of conserved quantities; both components will contribute
to the equations that make up the collision rule.

In addition to functional requirements, using classes offers significant advantages.
While the most common components, such as the Maxwellian equilibrium or the Guo
[80] force transformation, are already implemented in the current version of LBMPY, this
structure makes LBMPY flexible and extensible. Developers can use the interfaces of the
respective base classes to implement custom equilibrium distributions, force transforma-
tions, or procedures for computing macroscopic quantities.

4.3.3 Collision Rule

The next abstraction layer of LBMPY derives the equations of the collision rule from the
abstract definition. Depending on the combination of storage and equilibrium format,
an implementation for Equation (2.6) is derived in symbolic form. By manipulating the
collision equations at the mathematical level, it is possible to leverage all available infor-
mation about the method to simplify and optimise the equations. The derivation system
is modular, combining equations generated by several components. These components
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include the equilibrium and force model instances, which provide algebraic expressions
of their respective representations in the given collision space, and the conserved quantity
computation, which produces equations for density (or its analogues) and velocity (see
Equation (2.11)) [1].

The equations forming the collision space transformation T are provided by a set
of dedicated classes within LBMPY. The transformations to the moment- and central-
moment space are linear. Thus, they can be expressed as matrix-vector multiplications.
While this approach is simple, a more sophisticated idea is based on the so-called Chimera
transform [49]. Raw moments are first computed from pre-collision populations to obtain
monomial moments. Commonly, the moment space is spanned by polynomial expres-
sions. Thus, a recombination of the polynomial space is applied afterwards. The Chimera
transformation obtains its name from the fact that temporary quantities mx|βγ and mx y |γ
are created that are neither populations nor moments but a combination of both. The
final form implemented in LBMPY reads

fx y z :=
{

fi if ξi = (x, y, z)T is contained in stencil

0 otherwise

mx y |γ := ∑
z∈{−1,0,1}

fx y z · zγ

mx|βγ := ∑
y∈{−1,0,1}

mx y |γ · yβ

mαβγ := ∑
x∈{−1,0,1}

mx|βγ · xα.

(4.4)

The recursive nature of the Chimera transform minimises the number of arithmetic oper-
ations since each possible combination of populations and velocities is evaluated exactly
once. For the backward transformation, first raw moments are created by decompos-
ing the polynomial moments. Then a symbolic matrix-vector multiplication is applied
f ∗ = M−1m∗. Those equations can be simplified by splitting them into their symmetric
and antisymmetric part:

f ∗
i = f +

i + f −
i , f ∗

ī
= f +

i − f −
i . (4.5)

This split roughly cuts the number of arithmetic operations in half.

As shown in [1], monomial raw and central moments are bidirectionally related
through binomial expansions

κα,β,γ =
α,β,γ∑

a,b,c=0

(
α

a

)(
β

b

)(
γ

c

)
(−ux )α−a(−uy )β−b(−uz )γ−c mabc , (4.6a)

mα,β,γ =
α,β,γ∑

a,b,c=0

(
α

a

)(
β

b

)(
γ

c

)
uα−a

x uβ−b
y uγ−c

z κabc . (4.6b)
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This gives rise to a binomial Chimera transform that can transform raw moments into
central moments. The binomial Chimera transform takes the form

κab|γ :=
γ∑

c=0

(
γ

c

)
(−uz )γ−c mabc m∗

ab|γ :=
γ∑

c=0

(
γ

c

)
uγ−c

z κ∗abc

κa|βγ :=
β∑

b=0

(
β

b

)
(−uy )β−bκab|γ m∗

a|βγ :=
β∑

b=0

(
β

b

)
uβ−b

y m∗
ab|γ (4.7)

καβγ :=
α∑

a=0

(
α

a

)
(−ux )α−aκa|βγ m∗

αβγ :=
α∑

a=0

(
α

a

)
uα−a

x m∗
a|βγ

Since each combination of moments and velocities is evaluated exactly once, the resulting
expressions require minimal arithmetic operations. Polynomial central moments are
constructed from monomial quantities after the forward transform and are decomposed
before the backward transform.

As shown in Section 2.2, cumulants share a non-linear relationship with other statisti-
cal observers. This is because the logarithm is used in their expression. Cumulants are
derived from central raw moments in LBMPY using the following bidirectional relation

C (Ξ) = (Ξ ·u)+ logK (Ξ) ⇔ K (Ξ) = exp(C (Ξ)−Ξ ·u) . (4.8)

While this gives valid numerical equations, it also leads to the undesired situation in which
transcendental mathematical functions are encoded in these equations. Such complex
functions inside a compute kernel might lead to a severe performance decrease. Since
logarithmic expressions are only associated with zeroth-order cumulants, it is possible to
employ SymPy to eliminate them globally. This comes from lower-order central moments
and cumulants being the same. Such knowledge is directly contained in LBMPY to leverage
the simplification process.

To showcase the importance of the transformation process, a comparison of differ-
ent commonly used techniques is shown in Table 4.1. Herein, the number of FLOPs is
counted 5 for a set of populations shifted to the central moment space and back to the
populations. Thus, Table 4.1 does not include a collision step. As pointed out before,
the linear relationship between populations and central moments can be expressed in a
single matrix. However, this matrix is generally dense, resulting in a significant amount
of FLOPs. To overcome this problem, a common strategy is to split the transformation
into the raw and central moments in two matrices. The second matrix (often called shift
matrix) is lower triangular, and the first matrix is drastically sparser [53, 54, 142]. This
approach’s effectiveness can generally be confirmed by LBMPY. A fast central moment
transform was proposed in the work of Geier et al. [49] for the D3Q27 stencil. In the scope
of this thesis, the fast central moment transformation was generalised to arbitrary stencils.
Due to its design, however, the fast central moment transformation is most effective for
the D3Q27 stencil. Nevertheless, the newly developed binomial Chimera transformation
significantly outperforms all other approaches in every case shown in Table 4.1. This
result also strongly highlights that SymPy can not optimise arbitrary sets of equations.
Especially on a high number of operations, it eventually fails to simplify. Thus, theoretical
mathematical work is still required to use the computer algebra system effectively.

5Counting the operations is done on the symbolic equations within PYSTENCILS. A later compiler stage
might decrease the number of FLOPs. However, from the author’s experience, the compiler stage generally
does not change the overall picture.
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Table 4.1: Arithmetic operation counts in the symbolic representation of the central moment
transformation. The central moment transformation is done using a full matrix (Matrix), two split
matrices (Shift Matrix), the fast central moment transformation (Fast Transform) or the binomial
Chimera transformation (Binomial Chimera). For each stencil, the forward and the backward
transformation is shown separately, and the lowest number of FLOPs is marked using a bold font.

Stencil Transform
Operation Counts

Forward Backward

D2Q9

Matrix 626 659
Shift Matrix 127 99

Fast Transform 128 174
Binomial Chimera 88 87

D3Q19

Matrix 4121 1998
Shift Matrix 376 275

Fast Transform 430 613
Binomial Chimera 233 239

D3Q27

Matrix 12706 13111
Shift Matrix 911 774

Fast Transform 587 785
Binomial Chimera 402 409

The transformation process already shows the great potential of the modularity offered
by LBMPY. As a next step, the full collision operator is created. To do so, besides the
transformation, the collision itself needs to be added, as well as additional equations like
the calculation of the conserved quantities. After putting all ingredients together, LBMPY

offers a powerful set of simplifications to optimise the final equations. In the following,
the most important simplifications are listed briefly:

Conserved Quantity Rewriting Zeroth- and first-order raw moments are similar to the
conserved quantities. Thus, equations computing ρ, u, etc. from populations are
directly replaced by their raw moments.

Collapsing Conserved Central Moments Equations for zeroth- and first-order central
moments, e.g., obtaining, κ000 = ρ and κ100 = −Fx /2 are collapsed. The underly-
ing idea is that these equations can be removed completely because they are not
influenced by the collision. Hence, the pre-collision expression can be inserted
directly.

Propagation of Logarithms Cumulant collision models which still contain logarithmic
expressions are undesired. Therefore, logarithmic and exponential expressions are
propagated. This cancels both functions and leads to simplifications.

Common Subexpression Elimination SymPy offers a powerful CSE which was already
shown in the work of Bauer et al. [26].

Expression Propagation It has proven advantageous to propagate some expressions
directly where they are used. This includes assignments whose right-hand sides are
constant, single symbols, products of macroscopic quantities, or multiples of body
force components.
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All the simplifications used in LBMPY are especially effective because SymPy auto-
matically tries to simplify expressions whenever they are manipulated, for example, by
replacing symbols with other expressions. Thus, every propagation step also triggers a
simplification step, which eventually causes a collapse of overall mathematical terms. An
important flavour of the simplification routines is that variables invariant of the collision
process are directly propagated to the backward transformation step. To illustrate this, a
simple example should be given. Without the propagation step, the binomial Chimera
transform would include assignments similar to

κ000 = ρ
κ100 =−Fx

2
κ∗000 = κ000

κ∗100 = κ100 +Fx

m∗
10|0 = κ∗000ux +κ∗100.

(4.9)

The propagation steps described above will cause most of these assignments to be
dropped. The only remaining equation is

m∗
10|0 = ρux + Fx

2
. (4.10)

The most significant advantage that this toolchain, with its simplification, offers is
that every information provided by an end user is directly used in the derivation process.
An especially effective algebraic simplification occurs when relaxation rates are set to
unity. In this case, propagation eliminates large portions of the forward collision space
transformation and significantly simplifies the backward transformation. Substituting
ω= 1, a relaxation equation q∗

p = qp +ω(
qeq

p −qp
)

is immediately simplified to q∗
p = qeq

p .
In this case, the forward transformation is no longer required and can be eliminated
entirely. A collection of collision models with different optimisations and lattice stencils
is presented in Table 4.2. Their arithmetic operation is counted similarly to the previous
section. Besides the more simple single-relaxation-time (SRT) and two-relaxation-time
(TRT) methods, also multiple-relaxation-time (MRT), weighted multiple-relaxation-time
(WMRT), central-moment (C) and cumulant (K) based methods are shown. All methods
are also shown in a regularised version (see Section 2.2.2 indicated by the prefix ‘R-’.
Furthermore, the K17 cumulant method is added for the D3Q27 stencil (other stencils are
not formulated for this optimisation). In all cases, the employed simplification together
with SymPy’s CSE drastically reduces the overall FLOPs. This result is especially impressive
because some collision operators, which are considered more stable and accurate in
the literature, cause a lower computational footprint than simpler models. Especially
the regularised WMRT method can profit significantly from the simplification toolchain
provided by LBMPY. This method is designed so that higher-order equilibria are zero.
Regularising these equilibria and applying propagation steps to the resulting equations
causes a drastic reduction of FLOPs.
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Table 4.2: Arithmetic operation counts in the symbolic representation of compute kernels gener-
ated by LBMPY for several method definitions on the D2Q9, D3Q19 and D3Q27 stencils. Numbers
for kernels derived without simplification (N), standard simplification (S) and simplification plus
CSE (S+CSE) are listed.

D2Q9 D3Q19 D3Q27

Method N S S+CSE N S S+CSE N S S+CSE

SRT 448 113 92 1156 312 207 3842 428 287
TRT 437 191 118 1161 480 257 3847 668 361

O-MRT 196 142 121 554 397 314 928 596 485
R-MRT 196 105 87 554 290 222 928 407 320
WMRT 178 117 102 507 339 282 843 484 411

R-WMRT 178 87 74 507 244 194 843 316 261

C 236 156 132 638 415 347 1140 747 605
R-C 236 108 95 638 255 219 1140 417 347

K 676 167 142 1854 454 379 7623 1035 824
R-K 676 114 99 1854 272 234 7623 489 402
K17 - - - - - - 7836 1033 782

4.3.4 Update Rule

The collision rule derived in the previous section constitutes the relaxation process for a
single cell whose populations are represented purely symbolically. Up to this stage, LBMPY

depends entirely on SymPy and can be seen as a package for the symbolic derivation
of highly efficient LBM. As a final step, the substitution mechanisms of SymPy are used
to replace the q symbolic populations with representations using the Field.Access-
class of PYSTENCILS. As shown in Section 4.2, this allows the expression of neighbouring
information in the form of index notation. The final touch to increase the generality of
LBMPY is to support arbitrary streaming schemes for the LBM and PYSTENCILS fits this
role perfectly. Common streaming schemes like the pull or push pattern can be added by
creating a substitution dictionary mapping pre- and post-collision PDFs to the correct field
neighbour accesses. The creation of these dictionaries is encapsulated in specific Python
classes that use general mathematical rules to support arbitrary lattice stencils. Likewise,
more complex streaming patterns like the AA-pattern [38], the Esoteric Twist [39], and the
Esoteric Pull and Push scheme [40] are supported. Due to the generality of PYSTENCILS, it
is possible to support entirely different streaming mechanisms. For example, an indirect
streaming scheme was also implemented recently [9]. The big advantage of this approach
is that the full collision toolchain can be combined with any of the mentioned schemes.
After creating the full update rule, the code generation pipeline of PYSTENCILS is used to
create executable compute kernels.
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4.4 WALBERLA

As outlined in the previous sections, the code generation facility becomes especially
powerful in combination with an existing high performance computing (HPC) frame-
work. Herein, this thesis focuses on the WALBERLA framework. At its core, WALBERLA is a
framework to parallelise stencil codes on regular cartesian grids. As the name WALBERLA

(widely applicable Lattice Boltzmann from Erlangen) already indicates, it has a focus on
the LBM. The basic core design of WALBERLA consists of supporting massively parallel
applications. Thus, in general, no data structure exists that does not scale with the number
of involved processes. The careful performance-driven software design leads to excellent
scalability on recent supercomputers [22, 25, 26, 28, 4, 5]. The framework provides various
different communication strategies, including synchronous and asynchronous ghost layer
exchange via MPI.

WALBERLA is written in C++ which provides the necessary freedom to access memory
efficiently. Currently, WALBERLA supports C++ 17 and can be compiled with all modern
compilers without external dependencies. Even the almost necessary dependency to MPI
comes as optional, and other features like GPGPU support, complex meshes or enhanced
load balancing can be activated in the CMake 6 build system when optional dependencies
are provided [24]. In massively parallel simulation, the probability of failure increases
due to using several thousands of compute cores. For this reason, WALBERLA provides a
mechanism for fault tolerance [143].

As highlighted in the previous sections, PYSTENCILS and LBMPY follow a software de-
sign concept that can be expressed in different layers which build on each other. Similarly,
WALBERLA organises subsets of functionalities in so-called modules. Only the minimally
necessary dependencies between the modules exist to increase the maintainability of the
software. Simulations in WALBERLA are realised by writing apps which compose these
modules. In this fashion, apps can be lightweight when only a certain aspect of the WAL-
BERLA framework is needed. On the other side, users can extend modules inside their
applications if special features are missing from the core modules.

While WALBERLA offers great maintainability on the general software level, it also
needs to execute highly optimised compute kernels at the hotspot of numerical algo-
rithms. As highlighted in the previous sections, these compute kernels must be adapted
or rewritten to achieve the highest possible performance on specific hardware. Conse-
quently, the great level of maintainability fails on the compute kernel level when specific
optimisation techniques like SIMD vectorisation are introduced manually. It is exactly this
part where code generation techniques significantly leverage the WALBERLA framework.
WALBERLA already offers a high-level interface in the Python programming language for
setting up and configuring simulations [144]. Therefore, PYSTENCILS as a DSL embed-
ded in Python is an ideal candidate for kernel code generation without introducing new
dependencies.

The following sections show the most important data structures and concepts of
WALBERLA used in this thesis.

6https://cmake.org/

56

https://cmake.org/


4.4. WALBERLA

4.4.1 Related Work

Before going into details of the software structure of WALBERLA, we show some frameworks
that share similar ideas to WALBERLA. This section is intended to review them and provide
an overview of the state of the art. In the past decades, many frameworks have been
developed for the LBM. Many of these packages have been gathered in a list published on
GitHub 7. In the following we discuss the most relevant frameworks.

OpenLB

The OpenLB package is a flexible simulation framework with the LBM on uniform grids
[145, 146]. The code is written in C++ and parallel simulations are achieved using MPI.
For the usage of NVIDIA GPGPUs compute unified device architecture (CUDA) is used
directly. OpenLB implements the most common moment-based collision models and
provides optimised implementations for each. The streaming step is solved using shift-
swap-streaming by Kummerländer et al. [41] as detailed in Section 2.2.1. High-level op-
timisations are supported using a code generation pipeline that parses handwritten C++

code to Python, applies symbolic optimisations using SymPy, and parses the result back
to be compiled within OpenLB.

Palabos

The Palabos (Parallel Lattice Boltzmann Solver) software library evolved from the OpenLB
framework in an attempt to support more complex multiphysics applications [147]. There-
fore, they share similar philosophies but differ vastly in the code basis. For example,
Palabos supports mesh refinement and accelerators using the standard library of C++.
Palabos probably has the widest range of supported collision models from a unified
mathematical formulation that is provided as a code template within the software stack.

VirtualFluids

The VirtualFluids framework became available open-source recently [148]. The code
base is focused on the cumulant collision operator, which is implemented in optimised
versions using C++ and CUDA. Furthermore, mesh refinement is supported using the
compact interpolation by Geier et al. [149]. A specialised version of the Esoteric Twist is
used for indirect addressing for the streaming pattern. With pointer-chasing techniques,
the memory overhead, which normally arises in indirectly addressed formats, is kept low.

Musubi

Musubi is a multi-level parallel LBM solver that is part of the APES (Adaptable Poly-
Engineering Simulator) suite8. It was designed to handle complex simulations of in-
compressible fluid flows, particularly on a large scale, using an octree data structure to
represent sparse meshes. In this way, the framework supports mesh refinement using the
compact interpolation scheme [150]. The software stack is written in FORTRAN and does
not support accelerators like GPGPUs. Highly optimised implementations for the most
advanced collision operators are provided [65].

7https://github.com/sthavishtha/list-lattice-Boltzmann-codes
8https://geb.inf.tu-dresden.de/apes-suite/
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FluidX3D

The FluidX3D framework is a recently published open-source lattice Boltzmann (LB)
solver9. A notable feature of FluidX3D is its use of OpenCL 1.210, which ensures broad
compatibility across all architectures supported by OpenCL. Additionally, the framework
includes integrated in situ visualisation, enabling real-time observation of simulations.
The code is also meticulously optimised for low memory usage through the use of in-
place streaming patterns and single- or half-precision data types for storing the PDFs [40,
151]. However, at the time of writing, the framework has limited domain decomposition
capabilities for running simulations on large supercomputers and supports only SRT-
based collision operators. Moreover, mesh refinement is not yet supported.

TCLB

The TCLB framework is an actively developed open-source LB solver [152, 153]. It supports
a large variety of models including multiphase, electrokinetic or reaction models. The
idea behind TCLB is to describe the model in an abstract way using the R programming
language. From this description, all compute kernels are generated and compiled. TCLB
supports accelerators from NVIDIA and AMD using CUDA and HIP. With the usage of
MPI, TCLB achieves large-scale simulations on uniform simulation domains.

4.4.2 The Block Structured Octree

The basis of WALBERLA is formed by a forest of octrees distributed to several processes.
While the concept was shown in great detail in the work of Schornbaum et al. [23, 24], a
rough overview should be given here since it forms the basis for further developments
realised in this thesis. The creation of these octrees happens at the initialisation phase of
a simulation. An overview of the initialisation phase is given in Figure 4.5. It shows the
setup for a virtual wind tunnel containing a spherical object.

The first step of the initial phase is to create a domain axis-aligned bounding box
(AABB) subdivided into one or more blocks. These blocks are called root blocks, and they
form the basis of the simulation by creating the coarse grid. The most important concept
is that each of these blocks is represented by a lightweight class that does not yet contain
any heavy data. Instead, it only contains minimal information like its block AABB, an
identification number and a corresponding MPI rank. With this minimal information,
successive refinement steps are executed. A user-defined function is called in each re-
finement step, which evaluates if a block should or should not be refined. In the case
presented here, this user-defined function would compare each block’s AABB with the
spherical object 11. In case of an overlap, the block will be marked for refinement.

9https://github.com/ProjectPhysX/FluidX3D
10https://www.khronos.org/opencl/
11In the case of a simple shape, like in this example, a representation as a mathematical function is enough.

For more complex cases, WALBERLA supports the STL file format to read mesh information

58

https://github.com/ProjectPhysX/FluidX3D
https://www.khronos.org/opencl/


4.4. WALBERLA

Processes: P1 P2 P3

Figure 4.5: The domain partitioning process in WALBERLA for a virtual wind tunnel containing a
spherical object. First, the domain bounding box is subdivided into cuboidal subdomains. These
blocks can then be refined in a 2:1 ratio. If a block overlaps fully with a block, it is excluded from
the setup. Afterwards, each block is distributed to a process (here shown with three processes) in a
static load balancing step. The setup can be stored in a file to jump the initial phase and the load
balancing a production run, or the run can be started directly. In each case, the previously created
blocks are divided into a fixed number of cells on which further algorithms are executed.

Each of the marked blocks is subdivided into eight finer blocks. Like this, each root
block forms an octree, which results in a forest of octrees globally. Due to enforcing a 2:1
refinement ratio, consecutive passes over the octrees are executed to refine additional
blocks if needed. Increasing the number of refinements eventually results in whole blocks
overlapping with the object. Thus, in this thesis, the possibility is implemented to detect
these situations and exclude these blocks from the domain. In the work of Schornbaum et
al. [23, 24], this was only possible for root blocks.

Once the refinement step is completed, the blocks are distributed to processes in
the following load-balancing step. Specialised load-balancing strategies based on space-
filling curves are provided by WALBERLA, but also an interface to the ParMETIS 12 library
is offered for general load-balancing algorithms. As indicated in Figure 4.5, commonly,
a level-wise balancing is applied in the case of setups for the LBM. This is because the
most used algorithms for the LBM on non-uniform grids work with spatial and temporal
refinement [23]. This means that cells on a finer level are executed more frequently. Hence,
the workload on fine blocks is significantly higher, which needs to be respected by the
load balancer. More information will be given in Chapter 5. A more specialised workload
assignment is possible by providing callback functions that return the workload for each
block based on user-defined criteria.

12http://glaros.dtc.umn.edu/gkhome/views/metis/parmetis/
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At this point, each block is associated with a valid MPI rank and holds a link to every
neighbouring block. However, the whole domain decomposition is still physically located
in a single process. From this standpoint, the block decomposition can be stored in a file,
and later, the setup can be reloaded from it to jump the initialisation phase in a production
run. This is especially useful in extreme scale scenarios where the load balancing would
cause a significant overhead for the overall runtime.

As a next step, the forest of octrees is actually distributed to the target processes.
Each of the processes then allocates the heavy data. It results that from this point on, the
blocks are divided into a fixed number of cells, which are defined beforehand. Their usage
switches now to containers for arbitrary simulation data. Most importantly, arrays can
be created for each block, which stores the actual simulation data. More information on
WALBERLA’s array structures is presented in the following section.

The octree-based decomposition presented here holds a block in each leaf. Each of
these blocks eventually contains the actual simulation cells. As indicated in Figure 4.5, this
results in a certain overlap between the geometry and blocks at its surface. Alternatively,
each block could hold only a single cell instead of a group. In this case, only a single layer
of boundary cells would be created, which would be the minimal case. This approach is
often referred to as cell-based mesh refinement. While this approach is maximally flexible,
it comes with several drawbacks.

1. The resulting octree will be much larger. For example, when considering a block
with 4×4×4 cells (as shown in Figure 4.5), the octree size is almost two orders of
magnitude smaller in a three-dimensional setup. Thus, the whole setup phase, in-
cluding the load balancing, is significantly faster, which opens the door to dynamic
load balancing and thus adaptive mesh refinement (AMR) as shown by Florian
Schornbaum [29]. Also, strategies like storing the decomposed octree in a file would
be less effective.

2. Modern architectures favour consecutive memory access. Organising the data in
small chunks naturally causes chunks of consecutive memory, which can be ac-
cessed most efficiently.

3. In LBM simulations typically links to all nearest neighbours are needed. In the
case of a block-structured mesh, the neighbouring cells can be obtained from the
loop counters over the cells inside a block. Only at block borders neighbouring
information must be extracted from the octree. Cell-based mesh refinement might
introduce an overhead here because the neighbouring information must be ex-
tracted from the octree for every lattice cell.

Lastly, the natural question arises if a cell-based decomposition’s additional flexibility is
needed in complex applications. If this is true, the mentioned disadvantages must be ac-
cepted. However, looking at complex industrial applications shows that grid transitions of
a single cell are not feasible [154]. For example, a smooth interface is created by using four
cells between grid transitions in the thesis of Andrea Pasquali [155] for the aeroacoustic
simulation of organ pipes. Thus, it is favourable to encode this constraint in the software
design and use it advantageously.
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4.4.3 Fields and Sweeps

As outlined before, a WALBERLA block forms a container for arbitrary data. The most
prominent data structure of WALBERLA, which can be stored in a block container, is
the Field-class and its subclasses. Fields are cuboid d-dimensional data structures
stored as contiguous linearised arrays. An arbitrary number of datums can be stored for
each coordinate (x, y, z). Thus, in general, WALBERLA is designed to express problems
within this concept. With high-level methods, single values can be extracted by providing
their location with a 4-tuple: Field::get(x,y,z,i). For GPGPU simulations, the core
data structure is the GpuField, which is a C++ class used from CPU code that manages
pointers and indexing information of a GPGPU array holding the actual data. Only NVIDIA
GPGPUs were originally supported by WALBERLA. Due to the increasing importance of
AMD GPGPUs for HPC (at the time of writing, the number one supercomputer in the
TOP500 13 was based on AMD GPGPUs) a porting to this architecture was realised within
this thesis.

Since the data is encapsulated within WALBERLA’s Octree structure, a simple and
intuitive method is essential for formulating algorithms. To achieve this, WALBERLA uti-
lizes the concept of Sweeps. An example implementation is illustrated in listing 4.5 to
provide a clearer understanding, but a more comprehensive explanation can be found
here [156]. A Sweep is a callable C++ function that takes a Block pointer as its only input
parameter. Within the function, data is extracted from the Block using a BlockDataID,
which serves as an input to its getData method. The BlockDataID assigns a unique iden-
tification number to each data object on the block structure. Due to its design, additional
information is encoded in the BlockDataID, described in detail here [29]. Once the data
is accessed, various update rules can be applied to it. Subsequently, these Sweeps are
integrated into a time-stepping function that executes them across the BlockForest.

CODE LISTING 4.5: The Sweep concept in WALBERLA forms the basis to formulate algorithms. At its core, a
Sweep is a callable, receiving a pointer to a block. From the block, data is extracted, and an algorithm is
executed. In this example, the Sweep is realised as Functor class, but other implementations are possible.

class ExampleSweep {
ExampleSweep( BlockDataID fieldID ) : fieldID_( fieldID ) {}

void operator()( Block * block ) {
// get data pointer from block structure
auto field = block->getData< Field<double, 1> >( fieldID_ );

// implementation of some update rule
for( auto& iter : *field ) {

iter = ...;
}

}

BlockDataID fieldID_;
};

13https://top500.org/lists/top500/list/2024/06/
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4.4.4 The Communication Infrastructure

In the context of WALBERLA, communication refers to a data exchange between two blocks
inside the octree. These may or may not share the same MPI rank. So-called communi-
cation schemes are provided to manage the data exchange between the blocks. While
communication schemes differ in detail, they have in common that they all traverse the
Octree and identify regions for data exchange between each block pair. For each region,
functions are called to execute the data exchange. These functions are encapsulated us-
ing a common interface, which is referred to as pack info. The interface in a simplified
version is provided in listing 4.6 to give a better understanding. This workflow completely
separates the logic of which data needs to be exchanged from the actual execution that ex-
changes this data most efficiently. For intra-process communication (i.e. both blocks share
the same MPI rank), pointers to the data arrays serve as input parameters (these pointers
are extracted from the corresponding blocks), and the exchange can be performed in
place. On the other hand, to minimise costly calls to MPI communication routines, a
buffered communication system is employed in the case of inter-process communication.
Herein, the communication scheme manages two buffers (for each process pair), one for
sending and one for receiving data. By calling the corresponding functions from the pack
info, data is packed into the sending buffer on the source process and unpacked on the
destination process after the MPI communication.

CODE LISTING 4.6: Simplified interface for uniform pack info class. The subclasses must implement the
interface methods.

class PackInfo {
// pack data in buffer array
void packData( Block * sender, stencilDirection dir, SendBuffer & buffer );
// unpack data from buffer array after the MPI communication
void unpackData( Block * receiver, stencilDirection dir, RecvBuffer & buffer );
// communicate data between blocks on the same process
void communicateLocal( Block * sender, Block * receiver, stencilDirection dir );

};

The exemplary interface in listing 4.6 provides two functions for the data exchange
between two blocks on different MPI ranks and one function for blocks on the same MPI
rank. The packData-function receives a pointer to the sending block from which it ex-
tracts pointers to the actual data arrays. These pointers are handed to the communication
kernels, which copy data from them to the buffer array. Commonly in WALBERLA, data
exchange is performed direction-wise, which is realised through the stencil direction that
is an argument of the packData-function. Especially for the LBM this allows for impor-
tant optimisations. The data exchange between four blocks is illustrated in Figure 4.6
exemplary. In this two-dimensional example, the data that needs to be shared between
the blocks differs in each direction. As an alternative to this specialised direction-wise
treatment, the ghost layer of the receiving blocks could be filled entirely. This has two
disadvantages. First, it would cause an unnecessary communication overhead, and sec-
ond, this variant might not be compatible with a certain streaming pattern. Realising a
specialised direction-wise communication pattern can quickly become hard to maintain.
For this case, the code generation facility is ideal, as it allows the generation of specialised
communication kernels for each direction, which the pack info will execute.
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The counterpart of the packData-function is the unpackData-function. Both func-
tions share a similar interface, however, from the perspective of the receiving block. Hench,
a pointer to the receiving block is provided from which pointers to the actual data arrays
are extracted. This time, the compute kernels read data from the buffer array and store it
on the extracted data pointers.

The last function communicateLocal can be seen as a combination of the previous
function. It receives pointers to the sender and receiver block, which is possible because
they reside on the same MPI rank. From the block pointers, it extracts pointers to the
underlying data arrays and performs a data exchange between them with respect to the
lattice direction.

Figure 4.6: Data exchange between four blocks which have the same spatial resolution. The
example shows a two-dimensional grid that stores the PDF array of an LBM simulation. The
ghost layers around each array are marked in grey, and the data PDF directions that need to be
communicated are shown in red. For the sake of simplicity, only the communication to the block
in the lower left corner is shown, and the pull stream pattern is assumed.

4.4.5 Integration of the Code Generation

The code generation approach with PYSTENCILS forms a powerful tool for rapid devel-
opment due to its high flexibility, interactive development environment using IPython
14, comprehensive mathematical optimisations and architecture-specific low-level code
adaptations. However, the PYSTENCILS package lacks essential features for simulating rel-
evant real-world problems. The most prominent missing feature is the lack of inter-node
communication. While PYSTENCILS can use full processors using OpenMP directives,

14https://ipython.readthedocs.io/en/stable/
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it is limited to using a single process. Furthermore, it has no notion of grid hierarchies,
which makes any form of mesh refinement hard to realise in PYSTENCILS itself. Other
features building on these would be the ability to handle complex geometries (e.g. given
as triangular mesh files) or load balancing.

As PYSTENCILS generates low-level C-code and uses a clearly defined API based on C-
style pointers, it is by design possible to integrate it with existing C++ frameworks. However,
as the previous sections show, high-level classes are usually employed in large frameworks
to hide low-level complexity from end users. The WALBERLA framework is no exception
here. Thus, wrapper code is necessary to integrate generated code parts. As this wrapper
code needs to be flexible as well because it needs to be adapted to any generated code, a
simple but powerful template engine is used with the Jinja package 15. The Jinja package is
also used by Eibl et al. [157] to integrate the Modular and Extensible Software Architecture
for Particle Dynamics (MESA-PD) framework for particle dynamics in WALBERLA. Thus,
the workflow employed here shares similarities with already existing design decisions and
does not add any additional dependencies. An overview illustration of the combination of
PYSTENCILS and WALBERLA is given with Figure 4.7.
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Figure 4.7: Integration of code generation in WALBERLA. A Python script using PYSTENCILS gener-
ates compute kernels. These are printed in template files using the Jinja package. The generated
files can then be used as a new module within WALBERLA. The figure is inspired by the work of
Eibl et al. [157] as Jinja templates are also used to integrate MESA-PD into WALBERLA

The PYSTENCILS package can be used standalone to solve problems fitting for a sin-
gle process. Employing GPGPUs already gives enough computing power to run smaller
problems and especially to carry out proof of concepts for newly developed models. The
integration with WALBERLA picks up from this basis. Thus, the basic idea is to fully use the
existing code generation workflow without changes until the actual compute kernels are
generated. This is highlighted in listing 4.7, which shows a basic Python script to generate
all necessary ingredients to solve Equation (4.1). The first part of the code generation script
is exactly the same when just PYSTENCILS is used without integration into WALBERLA.
With pystencils_walberla, a collection of Python functions is provided by WALBERLA

for the integration, where the most important class CodeGeneration provides a context
to control the code generation process from PYSTENCILS. This context is tightly coupled

15https://jinja.palletsprojects.com/en/3.1.x/
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to the build system of WALBERLA and knows some important build information like using
accelerators or shared memory parallelism. In general, all information from the building
process could be extracted and provided to PYSTENCILS if needed. The generate_sweep
function generates the main compute kernel, fitting to the actual build information. How-
ever, the finished compute kernel will be provided to Jinja templates to be embedded in
a Sweep template class. Since Jinja is a Python package, this template can be enhanced
with Python functions to extract the necessary information from PYSTENCILS. This in-
formation mostly concerns the data type information which is needed to extract Field
pointers from WALBERLAs BlockForest. Shape and stride information is extracted from
the Fields and provided to the compute kernel at runtime.

CODE LISTING 4.7: Example Python script to generate a WALBERLA module for solving the ADE (see Equa-
tion (4.1)). The CodeGeneration forms a context tightly coupled with the build system of WALBERLA.
Therefore, information can be extracted to generate build-specific compute kernels.

import sympy as sp
import pystencils as ps
import pystencils_walberla as psw

dim = 2
c, c_tmp, u = ps.fields(f"c, c_tmp, u({dim}): [{dim}d]")
D, dx, dt = sp.symbols("D dx dt")

pde = ps.fd.transient(c) - ps.fd.diffusion(c, D) + ps.fd.advection(c, u)
discretize = ps.fd.Discretization2ndOrder(dx, dt)
assign = ps.Assignment(c_tmp.center(), discretize(pde))

dirichlet = ps.Dirichlet(sp.Symbol("concentration"))
neumann = ps.Neumann()

with psw.CodeGeneration() as ctx:
target = ps.Target.GPU if ctx.gpu else ps.Target.CPU
psw.generate_sweep(ctx, 'ADE', assign, field_swaps=[(c, c_tmp)], target=target)

psw.generate_boundary(ctx, 'Dirichlet', dirichlet, field=c, target=target)
psw.generate_boundary(ctx, 'Neumann', neumann, field=c, target=target)

psw.generate_pack_info_from_kernel(ctx, 'ADEPackInfo', assign, target=target)

Besides the actual compute kernel, boundary conditions are necessary to define any
problem fully. These boundary conditions are generated with the generate_boundary
function. It gets a boundary object provided by PYSTENCILS together with the field on
which the boundary condition is applied. Since boundary conditions are only applied
on parts of the domain, integrating them in HPC software can be inherently difficult. An
idea for applying boundary conditions is to use a flag field indicating which boundary
condition is used at each cell. Then, traversing this flag field, the boundary condition
is applied according to the boundary flag of the cell. Based on the thesis of Christian
Feichtinger [156], a boundary handling class has been developed in WALBERLA, which
receives boundary conditions as template arguments. Each boundary condition comes
from a defined interface which implements how the cell is manipulated when a boundary
condition is found. Using variadic templates allows for an arbitrary number of bound-
ary conditions at compile time, and costly function pointers at runtime can be avoided.
However, the resulting code is highly complex and hard for new developers to understand.
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Additionally, correctly initiating the boundary handling class with the template parame-
ters can be tedious and lead to only hardly readable error messages when done wrong.
Lastly, Christian Feichtinger had to provide a separate handling class to enable boundary
conditions on GPGPUs.

All the mentioned problems are avoided entirely with the code generation facility. The
reason is that boundary conditions are now tailored to the simulation setup. Thus, they
are generated with their own management structure (encoded in the Jinja template) to
integrate a globally defined flag field. From the flag field, the coordinates of boundary
cells are extracted in a setup step and stored into a simple standard vector. At runtime,
this vector is traversed. It removes indirections entirely and enables GPGPU support
seamlessly because the index vector can be copied to the device memory in the same setup
step, while the actual update rule of the boundary condition is generated architecture
specific by PYSTENCILS.

The last important ingredient for large-scale simulations is inter-process communica-
tion. In WALBERLA, this is realised by a separation of code and data using encapsulated
kernels inside a common interface called pack info. The idea is detailed in Section 4.4.4.
The pack info class can be generated directly using the function
generate_pack_info_from_kernel (compare listing 4.7). Here, the strength of PYS-
TENCILS lies in the fact that all array accesses are available in a high-level description
within the AST. Thus, routines to pack and unpack MPI buffers can be generated directly
from the Assignements of the compute kernel. This enables three big advantages:

1. The packing and unpacking kernels can be generated specifically for some target
hardware, which enables accelerator support seamlessly.

2. Several arrays can be packed and unpacked in the same kernel using the same
buffer. For example, in the case of the ADE, values for the concentration and the
velocity array have to be communicated (see Equation (4.2)). Normally, this would
be done in separate packing routines for the sake of readability and flexibility.

3. Ghost layers do not always need to be communicated fully. Instead, the only nec-
essary values per direction are communicated. This is important for arrays with
multiple values per cell where only specific values are read and written in each
direction. A prominent example would be LB streaming routines.

After generating the wrapper classes for WALBERLA, these are combined into a gener-
ated library and provided as additional modules to the WALBERLA software stack. In this
workflow, the original code base can be used to its full potential, and only flexible parts
or hotspot compute kernels that need a tremendous amount of optimisation are added
as needed. In the final application, the generated library is included in the same way as
any static module. Due to the full integration of WALBERLA’s build system, no separate
code generation step is needed. Instead, the code generation becomes part of the building
processes, and generated files are compiled on the fly after their generation.

4.4.6 Extensions for the LBM

The LBM has been a core part of WALBERLA since its creation. For this reason, sophisti-
cated infrastructure exists to express various complex collision models along with forcing
schemes, boundary conditions or turbulence models. Herein, the API is designed to create
a modular design but also to provide a simple interface that functions as a building block
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for any extension. Recently, this infrastructure has been used to realise particle flows
in a free surface river bed [158], which highlights its flexibility. In the following, a short
overview of the existing infrastructure is given, followed by an overview of the newly
developed lbm module.

Existing Approach

Many different choices exist to apply the LBM. The most significant differences lie in the
choice of the collision operator, but also other parts like the force transformation exist in
different versions as outlined in Section 2.2. On the other side, populations themselves
are physically meaningless, and information needs to be extracted using statistical quan-
tities like moments. Furthermore, architecture-specific optimisations must be applied
to hotspots like the stream-collide step to achieve maximum performance. A sophisti-
cated infrastructure has been built in WALBERLA using static polymorphism in the form
C++ templates to account for these requirements. An overview of the most important
classes is given in Figure 4.8. At the centre of the lbm module is the latticeModel. The
latticeModel forms an interface to define the basic ingredients of a LB simulation. This
concerns, e.g., the lattice stencil, the lattice weights or the collision and force model.

An important design choice is that the latticeModel forms a template parameter for
the basic data structure, which is called pdfField. Since the latticeModel has all the in-
formation that defines the used LBM, it can directly access macroscopic information like
velocity or density from its underlying populations. The Sweep for the stream-collide algo-
rithm is chosen from several specialised implementations based on the latticeModel.

LatticeModel

+ stencil : LBStencil
+ weights : float[]

config(b : block) : void

CM, FM

pdfField

using latticeModel = LM

setToEq(u : Vector3, rho : float) : void
getDensity (c : Cell) : float
getVelocity(c : Cell) : Vector3

LM

Field

+ values : T *
+ xSize : int
+ xStride : int

get(c : Cell) : T

T

Figure 4.8: The existing lbm module of WALBERLA relise on static polymorphism in the form
of C++ templates to provide a flexible implementation of different LBMs. The latticeModel
defines all needed ingredients and receives the collision model (CM) and force model (FM) as
template parameters. The pdfField forms the data structure to store the PDFs and receives the
latticeModel as a template parameter. With the latticeModel, suitable functions are chosen
to extract macroscopic parameters from the population array.
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This approach has proven extremely useful since it allows the compiler to resolve
all needed ingredients and provides the user with high flexibility because they are sepa-
rated. Furthermore, combining the data structure with algorithmic knowledge allows a
simple combination of other algorithms and, thus, opens the door for high-performant
multiphysics simulations. On the other hand, numerous disadvantages arise:

1. Many specialised collision model implementations must be developed and main-
tained.

2. Generally, data structures and algorithmic logic are fully separated in WALBERLA.
The advantage of this is that the data structure can easily be transferred to targeted
hardware, and specialised target implementations can be executed on it. How-
ever, the tight bond of the algorithmic logic formed by the latticeModel and the
pdfField violates this concept.

3. The pdfField relies on C++ cellwise operations to extract information from the
populations. Cellwise operations can cause performance issues on accelerators like
GPGPUs when these operations concern only a small number of cells.

4. The approach supports only the pull streaming pattern. Supporting other streaming
patterns would be hard to realise because specialised implementations must also
be provided.

The code generation integration from Section 4.4.5 can solve the first problem directly
by providing a Jinja template of a latticeModel. Since the LBMethod of LBMPY has
similar knowledge than WALBERLA’s latticeModel, it is possible to generate a specialised
highly optimised CollisionModel and extend it with method-specific accessor for the
macroscopic variables. This idea is rather simple and has the advantage that the existing
infrastructure of WALBERLA’s lbm module can still be used fully along with the enhanced
flexibility and optimisations provided by PYSTENCILS and LBMPY. However, the problem
of lacking accelerator support can’t be solved in this way. Therefore, in the scope of this
thesis, a new design has been developed to combine the advantages of the old lbm module
with the code generation facility.

New Approach

Building the old lbm module of WALBERLA, a new module has been created that fully
incorporates the code generation approach. An overview of the most important classes
is given with Figure 4.9. Like the latticeModel, the LatticeStorageSpecification
holds essential information about the used LBM. However, all of these are generated in
place from the symbolic description provided by LBMPY. This means that the
LatticeStorageSpecification serves a rather descriptive purpose. The idea is to
bind this class to the pdfField using static polymorphism. In this way, algorithm de-
velopers can use pdfField to correctly obtain needed information of the LBM. Addi-
tionally, the packing and unpacking kernels for the PDFs are incorporated with the
LatticeStorageSpecification. Hence, the data structure knows how to communicate
its datums with neighbouring processes. As a result, it is the only input for a pack info
class that uses the compute kernels to execute the packing and unpacking of data. Fur-
thermore, the LatticeStorageSpecification holds an Accessor struct, which gives
the pdfField knowledge about the employed streaming pattern and allows to access
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pre- and post-collision PDFs correctly. Since the data structure is lightweight, a simple
equivalent can be implemented for supporting GPGPUs. Alternatively, it would be possi-
ble to incorporate the device support directly in the pdfField using unified memory or
manually implementing synchronisation functions. Here, however, a second class is used
for explicitness.

SweepCollection

+ pdfID : BlockDataID

streamCollide(b : Block) : void
streamCollideCI(b : Block, ci : CellInterval) : void
stream(b : Block) : void
streamCI(b : Block, ci : CellInterval) : void
initialise(b : Block) : void
initialiseCI(b : Block, ci : CellInterval) : void

LatticeStorageSpecification

+ stencil : LBStencil
+ inplace : bool
+ weights : float[]
struct Accessor

pack(pdfs : Field, buffer: char) : void
unpack(pdfs : Field, buffer: char) : void

pdfField

using StorageSpec = LSS

get(c : Cell, f : int) : T

LSS

gpuPdfField

using StorageSpec = LSS

LSS

gpuField

+ values : T *
+ xSize : int
+ xStride : int

T

Field

+ values : T *
+ xSize : int
+ xStride : int

get(c : Cell ) : T

T

Figure 4.9: The newly developed lbm module of WALBERLA tightly incorporates the code
generation facility with the existing framework. In this way, in most cases, static polymor-
phism can be avoided and replaced by specialised classes generated at compile time. The
SweepCollection encapsulates all update sweeps that operate on WALBERLA’s block structure,
while the LatticeStorageSpecification functions as a description of the generated method.
A stronger separation of the algorithmic complexity with the data structure is realised, allowing for
simulations using accelerators.

The algorithmic part of the LBM is combined in a collection of Sweeps. In this way,
Sweeps to execute only the streaming or collision can be obtained when needed. Addi-
tionally, all Sweeps come with an overloaded version receiving a CellIntervall, which
allows the application of the operation only on parts of the data. Accessing macroscopic
variables or manipulating the populations based on them is possible with respective
Sweeps.
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5. MESH REFINEMENT

In this chapter, the mesh refinement algorithm of WALBERLA will be introduced.
At the start of this thesis, volumetric adaptive mesh refinement was implemented
in WALBERLA through the work of Schornbaum [29]. Here, however, we introduce a
new algorithm developed in the Bachelor thesis of Hennig [11] and supervised by the
author of this work. The new algorithm leverages the code generation facilities offered
by PYSTENCILS, providing enhanced flexibility on several levels. It is independent of
the streaming pattern, and the compute kernels can be generated optimised for certain
hardware, which allows the support of general purpose graphics processing units.
The chapter briefly introduces mesh refinement for the lattice Boltzmann method
from a general perspective in Section 5.1. Afterwards, the basic procedure of the new
algorithm is shown in Section 5.2. To realise this procedure, the data exchange structure
of WALBERLA needs strong modifications. These are shown in detail in Section 5.3.
With the grid transitions, the final algorithm for the mesh refinement is presented in
Section 5.4. Building on the work of Hennig [11], we implemented the new algorithm
in WALBERLA using the newly developed integration of the code generation, which has
been shown in Section 4.4.6. In this effort, the support for mesh refinement on general
purpose graphics processing units was first realised, and the key elements to achieve
this are shown in Section 5.5. Finally, we present a short discussion in Section 5.6 of
the new developments and put them in perspective of the previous developments by
Schornbaum [29].

5.1 Grid Refinement for the Lattice Boltzmann Method

A single simulation can encompass diverse flow regimes with varying local gradients,
such as laminar flow, interactions with curved boundaries, and unsteady or turbulent
regions. A high spatial and temporal grid resolution is necessary to capture these variations
accurately. However, in less complex regions, a coarser grid suffices. Maximising the overall
grid resolution is inefficient, as it wastes computational resources on uniform flow areas.
A solution to this problem is to increase the grid resolution only where needed, generally
known as local mesh refinement [29, 159].

5.1.1 Parameter Scaling

One of the first contributions to show a simulation based on the lattice Boltzmann method
(LBM) with one level of refinement goes back to Filippova and Hänel [159]. In their work,
a two-dimensional flow around a cylinder was analysed where the region around the
cylinder was resolved with a resolution ∆x f = ∆xc/nr and the resolution ∆xc was applied at
the remaining domain. Their work is over twenty years old; nevertheless, some of their
ideas can be considered standard nowadays in the lattice Boltzmann (LB) community. For
example, the refinement factor nr = 2 is commonly chosen for the LBM on refined grids
[29, 60, 150, 160]. This restriction will be applied in this thesis as well. Furthermore, the
refinement is not limited to the spatial resolution but extends to the temporal resolution.
Thus, fixing ∆x0 =∆t0 = 1 on the coarsest level for finer grid resolutions follows

∆xk =∆tk = 2−k ⇒ ck = ∆xk

∆tk
= 1, (5.1)

where k ∈ 0,1, . . . , N indicates the refinement level. Applying the refinement, both spatially
and temporally, keeps the speed of sound constant in the whole simulation domain.
Therefore, sound waves can travel freely between grid levels, and no reflections across
the grid transitions occur. However, certain parameters need to be scaled across grid
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5.1. Grid Refinement for the Lattice Boltzmann Method

levels to ensure the same hydrodynamic properties on all levels. Most importantly, this
concerns the relaxation rate ω = 1/τ, which accounts for the kinematic viscosity of the
fluid (compare Equation (3.36)). Since the kinematic viscosity must remain constant, the
relaxation rate on finer grid levels must be adapted as [29]

ωk = 2ω0

2k+1 +ω0
(
1−2k

) . (5.2)

5.1.2 Grid Transition Interface Layout

Numerical simulations using the LBM on nonuniform meshes can be categorised accord-
ing to their grid transition interface layout [161]. A categorisation based on the work of
Schukmann et al. [161] is presented in Section 5.1.2. In the following, these are introduced
briefly.

Cell-Vertex Grid Layout

When comparing grid-level transition techniques, it is important to consider the dif-
ferent conceptual locations of the particle distribution function (PDF) vector on the
computational grid. Due to its close link to finite difference (FD) schemes, populations
are traditionally located on the vertices of the cartesian grid. This view on the data is
illustrated in Figure 5.1a and referred to as cell-vertex grid layout in this work. As shown
in Figure 5.1a, it leads to certain consequences at the grid transitions. Most importantly,
with this grid layout, partially co-located fine nodes arise along the interface. Filippova
et al. [159] introduced transition techniques for this type of interface layout first. Later,
this technique was further developed by Lin et al. [162], Dupuis et al. [163] and Yu et al.
[164]. One of the more prominent deficiencies of this approach arises when data from the
fine grid is directly transferred to the coarse grid on co-located grid points. It is tempting
to naively copy the populations as the data is located in the same location. However, it
was shown that this violates the Nyquist–Shannon criterion [165] and is, therefore, not
suited for turbulent simulations as it introduces spurious noise. Thus, interpolation and
filtering approaches have been introduced by various authors to remove this deficiency
[166–168]. Astoul et al. [169] made the most recent advancements of this approach. Their
improvements allow for aeroacoustic simulations in the highly turbulent flow regime.

(a) Cell-vertex (b) Cell-centred (c) combined

Figure 5.1: Grid layouts for the transition between mesh levels. In the illustrations, white squares
account for regular coarse nodes, while white circles account for regular fine nodes. Similarly,
blue squares picture coarse interface nodes, while red circles picture fine interface nodes. Lastly,
hanging nodes that only appear in (a) are marked by a black cross. All figures are inspired by the
work of Schukmann et al. [161].
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Cell-Centred Grid Layout

An alternative approach for locating the PDFs on the computational grid has been pro-
posed by Rohde et al. [160]. The fundamental idea is to view the PDF array similar to a
finite-volume approach. This means that a set of populations occupies the volume of the
simulation cell. Hence, they are located at the cell’s centre as shown in Figure 5.1b. This
approach will be referred to as a cell-centre grid layout here. The major difference of this
variant is that coarse and fine nodes can not share the same location. Hence, the PDFs
must be interpolated in every grid direction. Additionally, the cell-vertex grid layout con-
tains fine nodes in the middle of two coarse nodes. These nodes are called hanging nodes
(marked with a black cross in Figure 5.1a). A correct treatment of these hanging nodes can
be cumbersome and, thus, it can be considered an advantage if they can be avoided, as
is the case in the cell-centre grid layout. Furthermore, the conservation of macroscopic
quantities such as density and velocity is ensured implicitly. This grid coupling technique
consists of two steps in its simplest form. The first step called explosion,

f ∗
k+1 (xk+1, t ) = f ∗

k (xk , t ) , (5.3)

transfers the PDFs from one coarse cell to 2D fine grid cells. Here, D refers to the number
of spatial dimensions, and k denotes the grid level. The explosion step is illustrated in
Figure 5.2 along with the second step, called coalescence,

f ∗
k (xk , t ) = 1

2D

2D∑
j=0

f ∗
j ,k+1 (xk+1, t ) . (5.4)

The coalescence step averages 2D fine cells and transfers the result to a single coarse
cell. It can be seen as an implicit filtering step, an important feature missing in early
implementations of cell-vertex transition algorithms. Filtering operations are based on
the idea that the fine grid resolution contains scales that the coarse grid can not resolve.
Hence, they must be eliminated [166]. Furthermore, Rohde et al. [160] assumed that
the non-equilibrium part of the PDFs is implicitly rescaled in this method. Unlike the
equilibrium part of the PDFs, the non-equilibrium part generally requires rescaling at
the grid transitions, which was first discussed by Filippova et al. [159]. Furthermore, it
must be noted that one explosion step produces two rows of valid fine cells (compare
Figure 5.2). Therefore, no temporal interpolation is needed during the so-called asyn-
chronous timestep. The asynchronous timestep refers to the second timestep executed
on the fine grid at every coarse timestep due to temporal refinement. Lastly, it must be
noted that the explosion algorithm in the cell-centre approach results in a lower-order
interpolation. This deficiency was tackled by introducing a so-called linear explosion by
Chen et al. [170]. Schornbaum also implemented the linear explosion in WALBERLA [29].

Combined Grid Layout

The last grid interface discussed in this thesis is a combination of the layouts above. Hence,
it is referred to as a combined layout. This approach was introduced by Geier et al. [149],
who called it compact interpolation. The idea is to locate the coarse grid nodes similar
to the cell-vertex approach and the fine nodes similar to the cell-center approach, as
illustrated in Figure 5.1c. The resulting algorithm uses an overlapping region of two coarse
cells. One of the most fundamental ideas of the combined grid layout is to analyse the
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explosion

coalescence

Figure 5.2: Grid transition for cell-centred grid layout in two dimensions. An overlapping region
of one coarse cell and two fine cells is used at the interface. An explosion step (compare Equa-
tion (5.3)) is performed to transfer the PDFs from the coarse to the fine grid points. In the other
direction, a coalescence on the fine grid nodes is performed (compare Equation (5.4)). In the
illustration, white squares account for regular coarse nodes, while white circles account for regular
fine nodes. Similarly, blue squares picture coarse interface nodes, while red circles picture fine
interface nodes.

macroscopic equation that the LBM should recover. In the case of the hydrodynamic
LBM, these are the Navier-Stokes equations (NSEs). Since the NSEs contain second-
order derivatives of the momentum field, the grid transition should also be second-order
accurate. In Geier’s approach, this is done by calculating the macroscopic density and
velocity. The velocity on the next finer grid nodes is then interpolated quadratically and
the density linearly (due to the first order pressure gradient in the NSEs). The newly
calculated macroscopic values are then used to calculate the equilibrium part of the PDFs
on the fine nodes. Lastly, the non-equilibrium part is rescaled using similar ideas, and
the PDFs can be recovered correctly [149, 171]. The naming compact interpolation comes
from the fact that the order of interpolation achieved by Geier et al. [149] is usually not
achievable using only a first neighbourhood. This is only possible by employing the local
information encoded in the moments of the PDFs. Hence, this can be seen as a clear
advantage of the method. Nevertheless, it must be emphasised that the overlapping region
is larger than in the cell-center approach.

5.2 Basic Procedure for Volumetric Grid Refinement

The refinement procedure covered in this thesis is based on volumetric grid refinement
and thus relies on the cell-centred grid layout, originally developed by Rohde et al. [160].
Later, the original algorithm was implemented in WALBERLA by Schornbaum [29], where
the focus was to adapt the algorithm for massively parallel environments. The algorithm
developed by Hennig [11] builds on the work of Schornbaum and introduces certain
modifications. The most significant modification is that Schornbaum partly separated the
stream-collide algorithm. This means only the streaming was executed at certain steps,
and likewise, only the collision on other steps. As this causes more passes through the
PDF array, it can lead to a performance overhead [172].
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The adapted procedure is illustrated in Figure 5.3. For the sake of simplicity, only
the stationary and two additional populations are shown. As mentioned before, most
refinement algorithms for the LBM rely on temporal refinement in addition to spatial
refinement. For this reason, an additional asynchronous timestep must be executed on
the fine grid. This is indicated by timestep t1/2 on the timeline in Figure 5.3. The procedure
begins at the pre-collision state of the PDFs. The pre-collision state is either set during the
initialisation phase of a simulation or reached at the end of one timestep on the coarsest
grid. At t0, the stream collide step can be executed on all grid levels, which yields the
post-collision state indicated as state A in Figure 5.3.

t0 t 1
2

t1

Stream &
Collide

Stream &
Collide

Stream &
Collide

Stream &
Collide

Stream & Collide/ GL
propagation

Explosion Coalescence

A B C D

Figure 5.3: Time stepping procedure for the LBM using two grid levels. For the sake of simplicity,
only the stationary and two additional populations are shown. The procedure relies on four steps,
labelled A, B, C and D. At the top, a timeline is shown as discrete timesteps. The steps of the
coarse grid are labelled in green, while the steps on the fine grid are labelled in yellow. One coarse
interface cell and four corresponding fine cells are shown for each state. The fine interface cells are
marked in grey. While the illustration is shown in a two-dimensional setting, it must be emphasised
that the procedure also works for common three-dimensional lattice stencils like the D3Q19 or
D3Q27 stencil.

At this stage, the information in the ghost layers is no longer valid. Therefore, a uni-
form redistribution (explosion) according to Equation (5.3) needs to be performed. Con-
sequently, the two ghost layers of the fine gird contain valid populations in state B. This
allows the execution of a stream-collide step on the fine cells, leading to state C. It is im-
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portant to note that the ghost layer populations also need to propagate. Thus, a streaming
step is executed between states B and C on the first ghost layer of the fine grid cells. This
is the only part of the adapted algorithm where a streaming step is executed without a
collision.

The post-collision populations on the fine grid that stream into the coarse grid are
now shifted to the respective coarse location according to Equation (5.4). This produces
state D, a pre-collision state for all PDFs on all gird levels. Therefore, the procedure is
completed, and the next timestep can start.

Besides the more complex time-stepping structure and the redistribution and coales-
cence step, all ingredients needed in the procedure shown in Figure 5.3 are also needed
for simulations on uniform domains. In the work of Schornbaum, these steps are directly
integrated into the communication routines of WALBERLA [29]. Similarly, this idea is
followed by Hennig and will be explained in the following sections.

5.3 Extension of the Data Exchange Structure

The communication infrastructure of WALBERLA was introduced in Section 4.4.4. In this
section, it is extended by the redistribution and coalescence routines. As detailed before,
the communication infrastructure can be divided into three logical parts, all of which must
be extended when the grid is non-uniform. The first part is the communication scheme.
The communication scheme can be viewed as the manager of the data exchange between
WALBERLA’s blocks. Thus, it traverses the octree data structure and checks each block for
data exchanges that need to be performed with its neighbouring blocks. In Section 4.4, the
data exchange concerned only blocks with the same spatial resolution. With non-uniform
grids, the communication scheme needs to consider the resolution of its neighbours to
call the correct procedures respectively. Due to the modular design of WALBERLA, the com-
munication scheme implemented by Schornbaum (called NonUniformBufferedScheme)
can be used directly with the modification shown in this thesis without changes.

On the other side, the pack info needs to call the compute kernels that perform the data
exchange. Since these compute kernels are fundamentally changed, the pack info needs
to be adapted. A simplified version of its interface is shown in listing 5.1. The interface
is still similar to the work of Schornbaum, which is important to keep it compatible
with the communication scheme. However, the implementation details differ strongly.
Like its uniform counterpart, the non-uniform pack info eventually performs calls to
specialised compute kernels generated by PYSTENCILS. These specialised compute kernels
are integrated into the generated LatticeStorageSpecification, specifically for a
particular platform, which allows their execution on general purpose graphics processing
units (GPGPUs) as well. Second, a specialised version of the various streaming patterns
for each lattice direction is generated.

In the following sections, the implementation details of the coarse-to-fine and the
fine-to-coarse communication will be presented.

5.3.1 Coarse-to-Fine Communication

The data exchange between a coarse block and its adjacent fine blocks follows well-
defined rules. For a coarse block, every population streaming out of a cell on the interface
layer must be packed into a communication buffer. These cells are redistributed to the
respective ghost layers on the adjacent fine blocks. Here, it must be noted that all cells
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CODE LISTING 5.1: Simplified interface for non-uniform pack info class. The subclasses must implement
the interface methods.

class NonUniformPackInfo {
/* Equal level communication */
void packDataEQ(Block * sender, stencilDirection dir, SendBuffer & buffer);
void unpackDataEQ(Block * receiver, stencilDirection dir, RecvBuffer & buffer);
void communicateLocalEQ(Block * sender, Block * receiver, stencilDirection dir);

/* Coarse to Fine communication */
void packDataCF(Block * sender, stencilDirection dir, SendBuffer & buffer);
void unpackDataCF(Block * receiver, stencilDirection dir, RecvBuffer & buffer);
void communicateLocalCF(Block * sender, Block * receiver, stencilDirection dir);

/* Fine to Coarse communication */
void packDataFC(Block * sender, stencilDirection dir, SendBuffer & buffer);
void unpackDataFC(Block * receiver, stencilDirection dir, RecvBuffer & buffer);
void communicateLocalFC(Block * sender, Block * receiver, stencilDirection dir);

};

Process A

Process B

B0 B1

B2 B3 B4

communicateLocalCF()
communicateLocalFC()

unpackDataFC()

packDataFC()

packDataCF()

unpackDataCF()

communicateLocalEQ()

unpackDataEQ()

packDataEQ()

Figure 5.4: The data exchange within WALBERLA’s block structure. The resolution of the blocks
indicates their size. Thus, block B0 occupies space on mesh level k, while all other blocks resemble
parts of the grid on level k +1. Red arrows show communications between blocks of the same
resolution, while blue arrows indicate communication passes between blocks of different resolu-
tions. The respective function call to the pack info (compare listing 5.1) is shown for some arrows.
Dashed lines highlight asymmetric links. For these links, data is only communicated from the fine
blocks to the coarse block.

are redistributed only on the first ghost layer. In contrast, only the missing populations
for the following ghost layer propagation are written on the second ghost layer. If all
blocks reside in the same process, this procedure is realised directly on the respective data
pointers. Thus, the communication buffer is not needed in these cases. In coarse-to-fine
communication, the packing of the data is relatively straightforward since the complete
population set must be packed on the corresponding coarse cells. However, unpacking
the data is more complicated as every coarse cell corresponds to several fine cells on
which only specific populations are written. Therefore, it will be explained in more detail
in the following sections.
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Unpacking and Redistribution

For the unpacking and redistribution routine, the first ghost layer of the PDF array of
the fine blocks is iterated with a step size of two. A set of 2D cells must be written in
each iteration pass. However, only specific populations must be updated in each of these
cells. This information is extracted from the lattice direction d , an input parameter of
the unpacking routine (compare listing 5.1). The lattice direction d defines the data’s
origin; therefore, the same rules can be applied depending on this direction. Similar to
the equal-level communication routines, a specialised compute kernel is generated with
PYSTENCILS for each direction. An illustration for three exemplary directions is pictured
in Figure 5.5.

d
s

r

r + s

(a) Northern slice

d
s

r + s

r

(b) Southern slice

d
s2

s1 + s2

s1

(c) South-western slice

Figure 5.5: Illustration of the first ghost layer root cell and the offset to the first and second ghost
layer. The code generator computes these offsets during the code compilation. An arrow on the
left indicates the direction of the coarse source block. The first ghost layer is highlighted in dark
grey, and a blue frame indicates the root cell. Principal orthogonal vectors are denoted as r , and
the principal subdirections are denoted as s.

First, in the code generation phase, a set of principal directions eα is computed,
i.e., canonical basis vectors of RD . The principal directions are orthogonal to d and the
oriented principal directions ±eα that are contained in d . These are denoted as principal
subdirections. The cell group fills a cubic volume within the ghost layers, and within the
cube, every cell is identified by an offset r ∈ {0,1}D . The root cell of each cell group is
identified by the smallest offset r . This makes it possible to identify for each cell if it lies in
the first or the second ghost layer.

The first ghost layer extends into all principal directions orthogonal to the commu-
nication direction. Hence, all of its cells in the group can be found by adding all linear
combinations (with coefficients ∈ {0,1}) of the orthogonal vectors to the root cell location.
The cells of the second ghost layer are reached by adding any linear combination of the
principal subdirections of d onto the first ghost layer vectors. In Figure 5.5, three exem-
plary cases show the cell offsets as a combination of the orthogonal and subdirections.
Finally, all cell offsets are identified, and the copy assignments can be generated by PYS-
TENCILS. It must be emphasised that while the described procedure seems complicated,
it is entirely resolved during the code generation phase. The generated compute kernels
then only contain a regular loop over the first ghost layer of the fine cells and the store
instructions for each loop iteration.

As shown in listing 5.1, all functions of the pack info have a very similar interface.
The packing and unpacking functions receive pointers to the sender and receiver blocks,
respectively, and a pointer to the buffer array and the stencil direction d . However, their
implementation differs vastly. The reason for this is illustrated in Figure 5.6. Data exchange
between blocks on the same grid level is more straightforward because the ghost layer
of one block only overlaps with one neighbouring block, and the amount of data that
needs to be sent to a neighbour is the same as the amount of data sent from this block.
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Thus, the communication is always symmetric. In the coarse-to-fine communication, this
is no longer the case. As one coarse block can be adjacent to multiple fine blocks at a
direction d , some cells overlap with multiple blocks. Hence, the pack info needs to extract
the corresponding pointers to the data arrays and the corresponding cell intervals that
need to be communicated. An example is an edge intersection as pictured in Figure 5.6.

B0

B1 B2

Figure 5.6: Illustration of the coarse to fine communication across a two-dimensional edge. The
coarse block B0 shadows cells on two fine blocks B1 and B2. Hence, different subsets of the
population vector must be unpacked at each fine block.

Since communication can be asymmetric, this needs to be respected in the packing
and unpacking routines. Through WALBERLA’s octree, the relative location of neighbouring
blocks can be inferred. This is possible through the strict setup of the block identifier, as
explained in detail by Schornbaum [29]. From the identifier, the orthogonal offset vector
r ∈ {−1,0,1}D can be constructed, with nonzero entries in every direction orthogonal to
the interface. A negative value denotes a fine block location at the low end of the coarse
block edge or face, while a positive value denotes a fine block location at the high end
of the coarse block edge or face. In this manner, the locations of block B1 and B2 with
respect to block B0 can be identified precisely. The correct cell intervals are extracted for
each of these blocks, and the correct unpack kernels can be called.

5.3.2 Fine-to-Coarse Communication

The fine-to-coarse communication propagates populations from one or more fine blocks
to a coarse block as described by Equation (5.4). Implementation-wise, the biggest chal-
lenge is that one coarse cell can be represented by a group of fine cells due to WALBERLA’s
data structure, which expresses overlapping regions exclusively via the ghost layers around
the blocks. This group of fine cells xk

j can be seen as instances of a virtual cell x j , repre-
senting the data exchange. The problem is that this cell group is not always synchronised
because there is no reason to force these cells to be synchronised. Hence, their global
state may differ. During the fine-to-coarse communication, only the latest version of each
population in each of these cell groups is allowed to participate in the coalescence step.
However, it is not trivial to find these populations a priori.
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The described problem leads to a reformulation of Equation (5.4) in a distributed
form. It reads

p i (xk , t ) =
∑
j∈J i

f ∗
j ,k+1 (xk+1, t ) , (5.5)

f ∗
k (xk , t ) = 1

2D

n∑
i=1

p i (xk , t ) , (5.6)

where p i describes a partial summation for each fine fine block Bi . The summation index
J i ⊆ {0, . . . ,2D −1} represents the subset of populations considered in the summation. The
partial summations are transferred to the coarse block, and the coalescence is completed.

Origin Cell Determination

Forming the partial summation in Equation (5.5) is a complex task as it requires deter-
mining which cells and populations must be included. It must be ensured that every
population (and its virtual versions) is only considered once. Furthermore, this infor-
mation must be inquired locally for each block to avoid jeopardising the simulation’s
performance. The populations of interest can be found by following the steps shown in
Figure 5.3 backwards to an origin cell o. For this cell, criteria must be established to select
the correct populations.

The definition of the origin cell o is simple. It must be the cell where a population
was modified most recently. From the perspective of a fine block, two possibilities arise.
Either a population that streams into the coalescence region was propagated before on
a ghost layer that shadows a coarse block or not. If the cell was altered during such a
propagation step, its distance is two lattice cells. Otherwise, it is a direct neighbour of the
cell in the coalescence region. Now that the originating cell is determined, the populations
considered for the partial sum must be checked. For this, the following cases exist.

Fine Grid Collision If the population streams into the coalescence region from the block’s
interior region, it must be included. If it streams into the coalescence region from
the ghost layer, it is shadowed by another fine block, and this fine block needs to be
taken into account.

Corner skipping For better understanding corner skipping is illustrated in Figure 5.7.
Essentially, this is the case at concave corners or edges where two coarse blocks
could communicate directly with each other (because they are neighbours). How-
ever, the communication must be performed in two steps via the finer block, which
is adjacent. The reason is that a population is split on the fine block during the
explosion step. Some of the split populations will enter the interior region of the
fine block, and some will enter the next coarse block. This case may include several
fine blocks, all holding synchronous populations. In this case, the block with the
smallest identifier is chosen.

Boundary handling If the origin cell is a boundary cell, the boundary handling will re-
place either the collision operation or the uniform redistribution on o. This happens
automatically by applying the boundary routines. Therefore, the population that
needs to be considered for coalescence can be determined using the same rules
described before.
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Explosion

Coalescence

t+0
t−1

Collision &
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Figure 5.7: Illustration of coarse-fine-coarse corner skipping. First, a population is redistributed
from a coarse block to a fine block. On the fine block, the population travels one cell during the
ghost layer propagation, and afterwards, it enters the coalescence step without participating in
any collision step. It looks like the population could be communicated directly between the coarse
blocks. However, this does not work since some of its redistributed versions do enter collision
steps on the fine block. Hence, the equal level of communication between the coarse blocks must
be skipped.

Realisation using Bit Masks

Now that the criteria for the populations have been defined to determine whether they
participate in the coalescence step, they need to be executed during the runtime. A naive
solution would be to introduce branches that check for these criteria for each population.
However, branches can lead to complex memory access patterns and eventually prohibit
essential optimisations in the compilation phase. This situation is worse on GPGPUs as
threads are organised in groups, and the threads of a group can only execute the same op-
eration. Thus, excessive branching in a compute kernel might lead to idle threads waiting
for other threads to execute their operation. This problem is called warp divergence.

An idea to avoid any branching is to use a bitmask. A bit mask is an additional data
array with an integer value for each cell. Here, a 32-bit integer is used, which is enough to
represent the 27 populations that reside in each cell on the largest lattice stencil supported
by WALBERLA. For each of the origin cells o determined through the strategy above, a bit is
set for each population considered in the coalescence step. Then, the partial summation
can be rewritten as:

p i (xk , t ) = 1

2D

2D∑
j=0

b j (xk+1, t ) f ∗
j ,k+1 (xk+1, t ) , (5.7)

where the bitmask is represented by b. This equation can be realised in the resulting
compute kernel as shown in listing 5.2, where the bit operation checks if a certain bit is set
on the i th location. If the bit is set, the operation returns 1, and the population is respected
in the summation. Otherwise, the operation returns 0, which excludes the population
in the summation. These bitwise operations can be generated with PYSTENCILS using
the function flag_cond. This function derives from SymPy’s abstract syntax tree (AST)
structure and can, thus, be integrated into the symbolic expressions that enter PYSTEN-
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CILS’s code generation. The function flag_cond hast three input arguments. The first
one represents the symbolic bit mask which will be used for the flag evaluation in the
generated kernel. The other two arguments are the bit location i of the bit that should be
evaluated, and the last argument is an expression that will be executed if a condition is
true. This expression is a Field.Access to the symbolic PDF array in the case discussed
here. Hence, listing 5.2 can be fully described symbolically using PYSTENCILS.

CODE LISTING 5.2: Exemplary implementation of bit-masked partial coalescence. The qualification multi-
plier is computed through bitwise operations on the bit mask. The listing shows the summation of a group
of four cells on a two-dimensional lattice.

p[i] = ((b[x , y , z] >> i) & 1) * f[x , y , z, i]
+ ((b[x+1, y , z] >> i) & 1) * f[x+1, y , z, i]
+ ((b[x , y+1, z] >> i) & 1) * f[x , y+1, z, i]
+ ((b[x+1, y+1, z] >> i) & 1) * f[x+1, y+1, z, i];

Implementation Remarks

The main ideas behind the coalescence are established now, and the final implementation
of the pack info is the last missing piece. In this section, some important remarks on
integration need to be made. First, the bitmask is handled inside the pack info and set
up during the initial phase. As long as the domain partition is constant, the bitmask
is constant, too. In the setup of the bitmask, every block with a neighbouring block of
higher resolution is iterated, and the criteria discussed before are encoded in the bitmask.
Hence, it requires only a single iteration through the local blocks of each process, and
it can be executed fully parallel. The bitmask must be reinitialised if the block structure
changes during a simulation run, e.g., during adaptive grid refinement. Another important
point concerns Equation (5.6). The partial sums p that need to be summed up to update
the corresponding populations on the coarse grid can come from different locations.
Hence, these are applied successively to the destination population, and it is necessary
to set them to zero to ensure correctness in a parallel environment. This is done using
the function zeroCoalescenceRegion before the summation is executed. The function
zeroCoalescenceRegion is also generated by PYSTENCILS and is executed before the
coarse-fine-communication.

5.4 Implementation of the Recursive Time Step

After a detailed view of the grid transition between blocks of different resolutions, all
that remains is to discuss the final time-stepping algorithm that arises, shown in Algo-
rithm 4. Since the mesh is refined spatially and temporally, creating a recursive function
that realises the descent to finer grids with binary recursion is natural. This results in
executing 2k timesteps on grid level k. The algorithm starts with the combined stream
collide function on every grid level. Afterwards, the data exchange between the blocks
happens. For this, the order must be followed strictly. First, coarse-to-fine communication
is executed, followed by equal-level communication, boundary handling, and fine-to-
coarse communication. The order is important because only certain populations are in
a valid state. For example, the coalescence is only correct after the boundary handling
updates the origin cells marked with a boundary flag.
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The subcycle, or asynchronous step, starts with the ghost layer propagation to ensure
the correct population in the first ghost layer of the fine grid. This allows the execution
of the combined stream collide algorithm followed by a sequence of communication
functions with the boundary handling. Again, the order is important here.

Algorithm 4: The recursive time stepping scheme. The current grid level is indicated k
and N represents the globally finest grid level. Every function takes the grid level as an
argument to indicate on which blocks their respective operations are executed.

1 function recursiveTimestep(k, N):
2 streamCollide(k)
3 if k < N then
4 recursiveTimestep(k +1, N)
5 end
6 if k ̸= 0 then
7 coarseToFineCommunication(k −1)
8 end
9 equalLevelCommunication(k)

10 boundaryHandling(k)
11 if k ̸= N then
12 fineToCoarseCommunication(k +1)
13 end
14 if k == 0 then
15 return
16 end
17

18 ghostLayerPropagation(k)
19 streamCollide(k)
20 if k ̸= N then
21 recursiveTimestep(k +1, N)
22 end
23 equalLevelCommunication(k)
24 boundaryHandling(k)
25 if k ̸= N then
26 fineToCoarseCommunication(k +1)
27 end
28 end

5.5 Extension for GPGPU Architectures

In contrast to the work of Schornbaum [29], the compute kernels of the refinement
algorithm developed by Hennig are automatically generated by PYSTENCILS. Therefore,
they can be explicitly generated for every target hardware supported by PYSTENCILS.
This includes accelerators like GPGPUs. At the start of this thesis, WALBERLA had no
support for accelerators on refined grids. Hence, no infrastructure existed to support
these scenarios. In the following, the most important extensions of WALBERLA will be
explained, which have been realised through this thesis to include the generated compute
kernels for accelerators.
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5.6. Discussion

For the central processing unit (CPU) version of the refinement algorithm, the commu-
nication scheme was already provided by Schornbaum, as mentioned before. Since this
work was built upon the same application programming interface (API), it was possible to
use his communication scheme directly. To support GPGPUs the first task was to provide
such a communication scheme. The newly developed NonUniformGPUScheme has the
same role as its counterpart for CPUs. Essentially, it traverses the octree of WALBERLA

and calls the respective communication function of the pack info class to realise the data
exchange between blocks.

A significant difference, among others, is that the communication buffers now point
to device memory. Hence, an additional structure needs to be realised to manage these.
Unlike their CPU counterparts, it is unclear if these buffers can be communicated directly
between message passing interface (MPI) ranks. This depends on the MPI library used. If
pointers to device memory are not understood by the MPI library, the buffers must be
synchronised to the host memory and communicated from there. On the receiving rank,
they need to be synchronised to the respective device and unpacked from the buffer array.

Furthermore, the non-uniform pack info class is also ported for GPGPU support,
where the essential difference is that the class needs to extract data pointers from the
gpuPdfField. Additionally, the bit mask used in the coalescence must be synchronised
to the device memory.

5.6 Discussion

The method presented for volumetric mesh refinement for the LBM in WALBERLA shows
several significant advantages over the previous developments by Schornbaum [29]. The
most important advantage is the lowered memory footprint. As shown in the previous
sections, the overlapping regions through the ghost layers around the blocks impose
high complexities on the implementation side. Schornbaum solved this problem with
four ghost layers around each block. Even though not all ghost layers are involved in
communication steps, they still leave a higher memory footprint on the simulation overall.
Especially when the individual blocks are small, the ghost layers quickly impose a signifi-
cant overhead. On top of that, the implementation by Schornbaum was strictly tailored
to the pull streaming pattern, which means it relied on two PDF arrays. To illustrate this
problem more clearly, Figure 5.8 shows the memory consumption of cubic blocks com-
pared between Schornbaum’s implementation and the one presented here. This means
we divide the memory consumption of the implementation shown here by the one of
Schornbaum. The memory consumption M f is computed by

M f = (n +ngl)
3nb, (5.8)

where n represents the side length of a block in lattice cells, and ngl is the number of ghost
layers around the block. Furthermore, the number of bytes per cell nb is calculated by
multiplying the number of values per cell by eight (for double precision). In the case of
a D3Q19 stencil, the number of values per cell is 19 for in-place streaming patterns and
38 for two field approaches. As shown in Figure 5.8, the overhead is especially large for
smaller block sizes. In the cases of 83 blocks, the new developments need only about one-
fifth of the memory compared to the old approach. The saving becomes less significant
for larger blocks, but due to the in-place streaming pattern, it will always be less than half.

85



5. MESH REFINEMENT

0 20 40 60 80 100 120
20

30

40

50

block size (n ×n ×n)

re
la

ti
ve

m
em

o
ry

co
n

su
m

p
ti

o
n

in
%

Figure 5.8: Relative memory consumption per cubic block size. Comparison between present
work and Schornbaum [29]. Due to the usage of only two ghost layers and in-place streaming, the
present approach only needs between 21 % and 46 % of the memory compared to Schornbaum.

Besides the advancements that have been realised throughout the scope of this thesis,
some remaining problems should be discussed here.

Further memory reduction The memory reduction that was realised through this thesis
is significant. Nevertheless, especially when smaller block sizes are used (≤ 163) the
ghost layers around the blocks are still a dominating factor in the overall memory
consumption. The problem is that the ghost layers are always fixed around every
block. However, two ghost layers are only needed at grid transitions, and blocks
of equal size on the same process would not need any ghost layers at all. Further-
more, buffer arrays could be used directly to replace the ghost layers. As shown in
Figure 4.6 most of the values in the ghost layers are not needed at all.

Overlapping region At the time of writing, overlapping regions in WALBERLA are ex-
clusively realised through the ghost layers. The emerging grid transition is rather
complex because cells can be shadowed in multiple locations. This problem could
be solved by changing the topology of the block structure and allowing for actual
overlapping regions.

Interpolation accuracy The interpolation algorithm realised in this work is of a lower
order and multiple times, it was shown that at least a fourth-order interpolation
method would be desirable at the grid transition for turbulent flows [169, 171].
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6. TURBULENT SINGLE-PHASE FLOWS

In this section, we demonstrate the capabilities of WALBERLA to predict the drag crisis
of a spherical object. This phenomenon is intrinsically complex because it occurs in
a highly turbulent flow regime. Therefore, it requires a capable flow solver, suitable
boundary conditions, and extremely fine mesh resolution. Static mesh refinement is
used around the sphere to provide the needed mesh resolution while keeping the com-
putational cost acceptable. First, we briefly introduce this phenomenon in Section 6.1.
Afterwards, we introduce the simulation setup in detail in Section 6.2, followed by
the numerical results in Section 6.3. Finally, we present our concluding thoughts in
Section 6.4.

6.1 Brief Introduction

A pivoting parameter in computational fluid dynamics (CFD) is the drag coefficient cD. It
quantifies the flow resistance of an object in the flow field [18]. Hence, it is unsurprising
that this parameter was carefully investigated as soon as engineers started conducting
wind tunnel experiments. One of the earliest rigorous studies of flow phenomena in wind
tunnels goes back to the work of Gustav Eiffel [173] at the beginning of the 20th century.
After constructing the world’s first tower with a height of more than 300 meters, he built a
wind tunnel at the foot of this tower [174]. In this wind tunnel, he carefully measured the
drag coefficient of different bodies. To his surprise, he realised that the drag coefficient of
a spherical body shows a sudden drop at Reynolds numbers around Re = 250000. This
sudden drop in the drag coefficient is now known as the drag crisis, and due to one of its
first investigators, it is sometimes referred to as the Eiffel paradox.

Water tunnel experiments of the flow around a spherical object have been conducted
in the past by Office national d’études et de recherches aérospatiales (ONERA) 1. The
resulting flow field is shown Figure 6.1 [174]. It clearly shows the different flow behaviour
when increasing the Reynolds number from Re = 200000 to Re = 300000. At high Reynolds
numbers, the flow field shows less perturbations.

(a) Re = 200000 (b) Re = 300000

Figure 6.1: Experimental investigation of the drag crisis in a water tunnel by ONERA. The experi-
ment shows the flow field in (a) at the sub-critical region at a Reynolds number of Re = 200000
and in (b) at the super-critical region at a Reynolds number of Re = 300000. The images are taken
from [174].

1https://www.onera.fr/en
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6.2. Simulation Setup

More than a hundred years after Eiffel’s experiments, many wind tunnels have been
transferred to the digital world, and computers predict the flow field by solving numerical
equations. While this is an enormous development, engineers nowadays must ensure that
their numerical experiments can capture complex phenomena like the drag crisis precisely.
At the drag crisis, dissipation drops by around 80 % [175]. This drop in energy dissipation
caused by the smaller eddies influences engineering design decisions significantly and
thus must be reproduced correctly. As explained in the work of Geier et al., a numerical
method shows a misprediction of the dissipation by around 400 % if it fails to reproduce
the drag crisis [60]. Thus, it must be considered qualitatively wrong.

This thesis chapter investigates the flow around a sphere under highly turbulent
conditions. On the one hand, these simulations aim to validate the implemented mesh
refinement approach. So far, the mesh refinement capabilities of WALBERLA have been
studied exclusively on central processing units (CPUs) [29, 176, 177]. On the other hand,
the simulations also prove the suitability of LBMPY’s collision operators and boundary
conditions. In this chapter, all experiments are conducted on LUMI-G 2 and these are the
first simulations of non-uniform meshes on general purpose graphics processing units
(GPGPUs) with WALBERLA. As shown in Chapter 5, the algorithm for refined grids has
been entirely re-implemented by Hennig [11] and implemented in WALBERLA as part of
this thesis. While validations in standard academic test cases have been performed as
part of this effort, complex flow phenomena under turbulent conditions have not been
investigated yet. Besides the ability to refine the computational grid at regions of interest,
this flow problem additionally asks for a suitable collision model for the lattice Boltzmann
method (LBM) and boundary conditions to match the geometry [60].

6.2 Simulation Setup

The setup for simulating the flow around a spherical object in a wind tunnel appears in
Figure 6.2. The simulation domain consists of a cubic channel sized 2D ×D ×D, where
D = 20d and d represents the sphere’s diameter. The sphere’s centre is placed 12d from
the western side of the box. At x = 0, velocity bounce-back (UBB) boundary conditions
introduce an inlet velocity of u0 = 0.05∆x0/∆t0. To manage the outflow at the eastern side, a
sponge layer of length 4d combines with an anti-bounce-back boundary condition. This
sponge layer smoothly reduces the coarse grid’s relaxation rate ω to 1.9 at the outlet by
applying a hyperbolic tangent, ensuring stability in the outflow boundary condition and
minimising pressure reflections. Free slip boundary conditions are applied to all other
sides, while the sphere uses interpolated bounce-back boundary conditions according to
Equation (2.28). The coarsest grid level has a resolution of ∆x0 = 1/16, which translates to
∆x6 = 1/512 at the finest level. Thus, the sphere’s diameter is resolved with 512 lattice cells.
The coarsest grid level has a timestep size of∆t0 = 1/320, and the simulation runs for 60000
coarse timesteps, leading to nearly two million timesteps on the finest grid level. The setup
uses 3726 blocks, each containing 643 cells, resulting in a total of 9.76 ·108 simulation cells
across all levels. The simulations shown here have been performed in under ten hours
using 32 AMD MI250X GPGPUs. The K17 cumulant collision operator, with a limiter of
0.01, handles the collision step of the LBM. In this experiment, the Reynolds number is

2https://docs.lumi-supercomputer.eu/hardware/lumig/
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6. TURBULENT SINGLE-PHASE FLOWS

defined using the sphere’s diameter as the reference length scale,

Re = u0d

ν0
. (6.1)

x

y z

D
d

x

y z

D
d

Figure 6.2: Simulation domain to investigate the flow field of a spherical object in a wind tunnel.
The setup shows the x y-plane at the centre of the sphere. Six layers of exponentially refined grids
have been used to resolve the sphere’s diameter with 512 grid cells. The domain size is 2D ×D ×D
with D = 20d and d is the sphere’s diameter.

6.3 Simulation Results

The drag coefficient cD for a spherical body is defined as:

cD = 8FD

ρu0πd 2 , (6.2)

where ρ refers to the mean density of the fluid. This work considers the density fluctua-
tions negligible; thus, the mean density is assumed to be unity. Hence, the only missing
parameter in Equation (6.2) is the force on the sphere FD. A standard way to calculate the
fluid’s force on a body is to apply the momentum exchange method [178]. The momentum
exchange between two opposing directions of neighbouring cells is

ci fi (t , x)−cī f ī (t , x +ci∆x) . (6.3)

With this equation, the momentum exchange for each boundary cell xb can be calculated
by a sum over all fluid neighbours∑

ci
[

fi (t , xb)+cī f ī (t , xb +ci∆x)
]

, (6.4)

where xb +ci∆x is the location of a fluid cell. Then, the total force on the boundary can be
calculated by summing up all contributions of each boundary cell xb

F =∑
xb

∑
ci

[
fi (t , xb)+cī f ī (t , xb +ci∆x)

]
. (6.5)
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6.4. Conclusion

It must be emphasised that the implementation of Equation (6.5) depends on the applied
streaming pattern. The access pattern for the boundary conditions changes according to
the streaming pattern, which must be correctly accounted for. Furthermore, Equation (6.5)
requires a reduction on the finest level for the particle distribution functions (PDFs). This
can potentially involve many simulation cells. Thus, calculating the total force can quickly
become a main bottleneck if not implemented carefully. In this work, we use the code
generation pipeline and extend the boundary kernels with the functionality to directly
calculate the momentum exchange after the boundary PDFs has been updated inside
the same compute kernel. The compute kernels can now be generated with and without
computing the momentum exchange. The advantage of this idea is that the streaming
pattern is automatically accounted for correctly, and the momentum exchange method
is calculated on data that has just been loaded from main memory and is, therefore,
still in a register. Due to this idea, it is possible to evaluate the drag coefficient in every
fine timestep with an overhead of less than 10%. As shown by Geier et al. [60], the drag
coefficient undergoes high fluctuations, especially in the transition regions from the sub-,
to the super-critical region. For this reason, it can be difficult to find a suitable evaluation
frequency beforehand that does not alter the results when the final drag coefficient is
calculated as the mean value of the instantaneous drag coefficient. The implementation
presented here allows us to evaluate the simulation using the highest possible resolution.

The x y-plane of the instantaneous flow field is pictured in Figure 6.5. This result
is obtained after 60000 coarse timesteps and with various Reynolds numbers. As the
Reynolds numbers increase, the wake after the round body becomes steeper and steeper,
similar to the experimental results pictured in Figure 6.1.

The average drag coefficient is illustrated in Figure 6.3 as a next step. The value for
the average drag coefficient is calculated by taking the average of the measured drag
coefficient for the last 500000 fine timesteps. The results are compared to experimental
data by Achenbach [175] and Prandtl [179] and two regression functions that Morrison
[180] and Almedeij [181] have introduced. Furthermore, our findings are compared to
the simulations of Geier et al. [60]. Their work was the first to recover the drag crisis of a
sphere with the cumulant LBM. While there are many differences between the work of
Geier et al. due to the different code structures of VirtualFluids [148] and WALBERLA, the
major difference is the interpolation order between grids of different resolutions. In their
work, a compact interpolation method applies a fourth-order interpolation for the grid
transition [149]. In contrast, a simpler explosion method is implemented in WALBERLA.
Nevertheless, Figure 6.3 reveals that our simulation setup can also predict the drag crisis.

The average drag coefficient in Figure 6.3 is calculated on the instantaneous drag
coefficient, shown in Figure 6.4. It reveals that the drag coefficient shows high fluctuations.
This phenomenon has also been reported in the work of Geier et al.. However, it seems
that the fluctuations presented here are higher. Nevertheless, the drag coefficient shows
fluctuations in a lower flow regime for higher Reynolds numbers.

6.4 Conclusion

This summarises the developments of LBMPY and WALBERLA in the efforts of this thesis.
It can be shown that complex phenomena like the drag crisis can be predicted numerically
using statically refined grids on GPGPUs. Here, we have employed a relatively simple grid
transition technique. However, the results are in good agreement with the literature. This
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Figure 6.3: Average drag coefficient plotted against the Reynolds number Re. The average drag
coefficient is calculated by averaging the drag coefficient of the last 5 ·105 fine timesteps.
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Figure 6.4: Temporal evolution of the measured drag coefficient cD for Reynolds numbers
Re ∈ {1 ·104,1 ·105,2 ·105,4 ·105,1.14 ·106}. The instantaneous drag coefficient shows strong fluctu-
ations, which causes an uncertainty in the average drag coefficient shown in Figure 6.3. A similar
phenomenon has been reported in the findings of Geier et al. [60]. However, it must be noted that
the fluctuations in Geier’s work seem smaller than ours.

goes along with recent findings of Astoul et al. [169, 182]. Their studies showed that the
non-hydrodynamic modes cross the grid interface and introduce spurious contributions
to the vorticity. It was concluded that these non-hydrodynamics occur independently of
the details of the grid transfer algorithm. Hence, the suggestion is to use an appropriate
collision method to account for the non-hydrodynamic contributions. Recent studies
assume that the cumulant collision operator might be a good candidate in this matter
[183].
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Figure 6.5: Instantaneous velocity field of the simulation of a sphere under various Reynolds
numbers. The simulation is shown at a cut through the x y-plane after 60000 timesteps on the
coarsest mesh. Increasing the Reynolds number shows a decreasing flow separation angle after
the spherical body.
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7. DISPERSED FLOW DYNAMICS

In this chapter, the numerical results for dispersed flows are presented. After a brief
introduction in Section 7.1, an analysis of Taylor bubbles, which occur in the slug flow
regime, is performed in Section 7.2. At first, the work in this thesis aims to reproduce
existing literature to validate the implementation of the conservative Allen-Cahn
model in WALBERLA. This base case presents the dynamics of a Taylor bubble in an
annular pipe configuration. Afterwards, the pipe geometry is changed in subsequent
simulations. Here, two specific changes are made. First, the inner tube of the pipe is
moved in its position in Section 7.2.2, and second, it is changed in size in Section 7.2.3.
Finally, we present a conclusion in Section 7.3. The results presented here follow the
author’s contribution to the published article [2], which was published as part of the
thesis.

7.1 Brief Introduction

Numerical prediction of fluid flow in confined systems plays a crucial role in the natural
gas industry. The reason is that pipelines are the primary transport method for fluids
and must be designed for efficiency and safety. A challenging aspect arises from the fact
that fluid flow in these systems manifests in numerous characteristic patterns known as
flow regimes. These regimes depend on the geometry of the pipe system, the physical
properties and the flow rates of the fluids [184]. The four most important flow regimes
are illustrated in Figure 7.1. The bubble flow regime shown in Figure 7.1a is observed for
relatively low gas velocities and gas-liquid ratios. As these increase, bubble coalescence is
enhanced, and a slug flow regime is generated in which liquid slugs separate a train of
elongated gas bubbles. The slug flow regime is pictured in Figure 7.1b. The instability of the
elongated or Taylor bubbles leads to the churn flow regime (compare Figure 7.1c), and a
further increase in gas velocity results in the annular flow regime (compare Figure 7.1d)[2,
184]

(a) Bubble flow (b) Slug Flow (c) Churn Flow (d) Annular Flow

Figure 7.1: Illustration of the four main flow regimes in a pipe flow with liquid in gas phases.
Illustration recreated from [184]
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7.2. Taylor Bubble Dynamics

The focus of this section lies on the investigation of pipe flows in the slug flow regime.
The elongated bubbles which occur in this regime are often referred to as Taylor bubbles.
They are bullet-shaped bubbles that occupy almost the entire cross-section of a pipe [185].
There are numerous applications in which Taylor bubbles occur. Prominent examples are
geothermal energy production, chemical plants, emergency events within nuclear reactors
or cardiovascular systems [185–187]. Due to its prominence in natural, medical and
industrial applications, the description of Taylor bubble dynamics has received significant
attention in the literature from theoretical [188], experimental [189–191] and numerical
points of view [187, 192, 193]. Various numerical approaches have been used to analyse
the flow dynamics of Taylor bubbles. Among these, one of the most popular methods is
the volume-of-fluid method (VoF), which has been applied in various studies [194–196].
Within the commercial code TransAT© 1 Taylor bubbles have been simulated using the
level-set method [192]. Furthermore, the conservative Allen-Cahn model (CACM) has
been employed by Mitchell et al. [117] to analyse Taylor bubbles both in tubular and
annular pipe configurations.

In the scope of this thesis also, a comparative study between a free surface approach
and the CACM has been conducted [3]. Within this study, both methods have been used
to simulate Taylor bubbles in a cylindrical setup. It was shown that both methods can
capture the flow dynamics in the slug flow regime correctly in a simplified setup. Herein,
a single-forming Taylor bubble’s shape and the rise velocity were analysed and compared
with the literature. While the free surface method could deliver stable results for lower
resolutions, similar resolutions were needed for satisfactory accuracy for both methods.
In the free surface approach, only the liquid phase is simulated. In contrast, the gas phase
is neglected, and missing information at the interface is reconstructed with free surface
boundary conditions [88]. This reduces the memory and computational requirements due
to the smaller region which is simulated. On top of that, only a single set of populations is
used since no second partial differential equation (PDE) needs to be solved. However, the
free surface boundary conditions increase the algorithmic complexity. In particular, phe-
nomena like bubble splitting or merging require a complex bubble model that considers
these scenarios. Such a model is hard to apply in highly parallel environments [197]. Since
Taylor bubble simulations in annular pipe configurations require highly resolved grids
and a particular focus lies on the dynamics of the gas phase, it was plausible to choose
the CACM for the simulations in this thesis.

7.2 Taylor Bubble Dynamics

The implementation of the CACM follows the equations presented in Chapter 3. As a first
step, the CACM implemented in WALBERLA using the code generation facility is validated.
This is done based on the work presented by Mitchell et al. [118]. As part of the numerical
validation, additional insights are gathered by a small parameter study on the mobility
parameter M . Since the mobility is directly linked to the relaxation rate of the Allen-Cahn
solver (compare Equation (3.20)), it is a value of high interest because it poses implications
on the stability of the solver. Building on the validation case, extended setups are analysed
in Sections 7.2.2 and 7.2.3. Herein, the effect of pipe eccentricity and diameter ratio was

1https://transat-cfd.com/
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7. DISPERSED FLOW DYNAMICS

analysed, and the impact on the rise velocity and shape of Taylor bubbles was reported.
The mesh refinement capabilities of WALBERLA are not yet compatible with the CACM.
Hence, we produced the results of this chapter and Chapter 8 using a uniform domain.
The extension of the refinement algorithm with the CACM will be future work.

7.2.1 Experimental Validation

Three annular pipe setups have been introduced in the work of Das et al. [188]. In this
section, setup C (compare table 2 from reference [188]) is analysed. This problem was
also studied by Mitchell et al. [118]. In this setup, the diameter of the inner tube is dinner =
0.0127 m and the diameter of the pipe is douter = 0.0254 m. The fluid properties with their
respective dimensionless numbers are shown in Table 7.1. Notably, the Cahn number Cn,
which defines the interface width of the phase field model, is fixed here. It was thus added
to the table. The reference time

t∗ =
√

dh

g
(7.1)

and the velocity scale

U0 =
√

g (dinner +douter) (7.2)

are introduced to compare the physical experiments with the numerical results gathered
in this section. From the reference time and the timestep t , the normalised time t∗b = t/t∗

is calculated. Herein, dh is the hydraulic diameter for an annular pipe, and g is the
gravitational acceleration. With the velocity scale, the results of this study will be presented
in the form of the Froude number,

Fr = urise

U0
, (7.3)

which defines the ratio of the rise velocity urise to the velocity scale U0 which gives a
measure of the external force field. The other important dimensionless parameters here
are the Eötvös number Eo, which relates gravitational to capillary forces, and the Morton
number Mo, which is the ratio of viscous to surface tension forces.

Table 7.1: Fluid properties including density, ρ, viscosity, µ, and surface tension, σ, as well as the
dimensionless parameters defined as the Eötvös, Eo, Morton, Mo, Cahn Cn, and inverse viscosity,
N f , number. Note that dh is the hydraulic diameter for an annular pipe.

Parameter Liquid Gas Units
ρ 998 1.2047 kgs−3

µ 1.002 ·10−3 1.8205 ·10−5 kgm−1 s−1

σ 0.07286 kgs−2

Formulation Value
Eo (ρH −ρL)g d 2

h/σ 21.6468 [ - ]
Mo µ4

H(ρH −ρL)g /(ρ2
Hσ

3) 20.5587 ·10−11 [ - ]
Cn W /D 0.039 [ - ]
N f (Eo3/Mo)0.25 4462 [ - ]
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7.2. Taylor Bubble Dynamics

The total domain is formed by a rectangular prism of size (nx×ny×nz ) = (D×15D×D),
where D is the number of lattice units to resolve the diameter of the pipe douter. The pipe
containing an inner tube to form the annulus is placed inside the prism. For this study, a
specific initialisation of the bubble was used, which takes the form

xint(y, z) = d f

√
r 2

1 −
(
r2 −

√
(y − yc )2 + (z − zc )2

)
, (7.4)

where d f is the dilation factor, r1 is the radius of the inner tube, and r2 is the distance
from the annular pipe axis to the centre of the inner tube. The subscript, c, was used to
designate the central location of the annular pipe. The top section of this is modified with
a sinusoidal function. This setup is shown in Figure 7.2a. It is replicated from the studies
of Mitchell et al. [198]. Further, it must be noted that the initialisation plays an important
role in the stability of the setup. A simple torus shape for the initialisation would result in
strong dynamics at the beginning, eventually crashing the simulation. Different strategies
exist to prescribe a smooth transition between the phases after initialising the bubble
with a sharp interface. For example, Mitchell used a fixed number of timesteps in which
he only executed the Allen-Cahn solver in his thesis [79]. In this work, a Gaussian filter is
employed, similar to the work of Li et al. [199].

A lattice resolution of D = 128 lattice cells and a reference time of t∗ = 16·103 was spec-
ified for the validation case. The numerical viscosity was kept constant when analysing
higher resolution scenarios, resulting in increased dimensionless time. The resolutions
examined here were D = {128,160,192,224,256,288} with t∗ = {16,25,36,49,64,81} ·103,
respectively. The reference time and dimensionless parameters are sufficient to define the
physical system properties for each simulation. However, the mobility parameter remains
undefined and can be chosen freely.

The temporal evolution of the bubble as it propagates through a stagnant fluid is
shown in Figure 7.2. Here, the development of the liquid bridge and the turbulent wake
region can be observed. In the dynamics of the liquid bridge, smaller satellite bubbles
form, as typical for slug flows. It emphasises the rich dynamics which occur in these flow
scenarios. Besides that, the figure provides a view of the region of influence that the Taylor
bubble has in the tube, with a long wake region developing and the initially stagnant fluid
near the bubble nose draining towards the liquid film and bridge. During each simulation,
the Taylor bubble’s centre of mass, x∗, was tracked. In addition to this, the integral velocity
was also determined during the simulation through,

U∗ =
∑
Γ(1−φ(x))u∑
Γ(1−φ(x))

, (7.5)

where Γ represents the set of lattice nodes within the Taylor bubble.
This data was tracked with a high frequency during simulations, and as such, smooth-

ing is necessary to remove noise and fluctuations. Thus, a Savitzky-Golay filter was applied,
which locally mapped polynomials to smooth the positional data [200]. Calculating the
first- and second-order derivatives from the bubble position results in the velocity and
acceleration as shown in Figure 7.3. Here, an example is given for the centre of mass,
which was captured along the axis of the annular pipe. The Froude number Fr is also given
in Figure 7.3b. As pictured, the initialisation results in high Froude number oscillations.
Afterwards, the bubble progresses, and a smooth, steady state is reached. The positional
data indicates a simulation run time of 15t∗, whereas only t∗ to 14t∗ are indicated on the
velocity plot. This is a result of averaging and smoothing conducted on the position data.
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7. DISPERSED FLOW DYNAMICS

(a) t∗b = 0

(b) t∗b = 5

(c) t∗b = 10

(d) t∗b = 15

Figure 7.2: Evolution of a Taylor bubble through a concentric pipe with a mobility of M = 0.05.
The initialisation of the bubble is shown in (a). In (b) at t∗b = 5, the bubble forms a liquid bridge
which lets liquid directly pass when the bubble is rising. The vorticity of the liquid is shown in
blue colour. After forming the liquid bridge, the rising speed of the bubble increases and in (c)
at t∗b = 10, the bubble has already reached the final velocity (compare Figure 7.3). In (d), the last
simulation step is shown at t∗b = 15.

The steady-state velocity for various lattice resolutions is presented in Figure 7.4.
The mobility parameter range was tested with M ∈ {0.02, . . . ,0.1}. Notably, the mobility
parameter significantly influences the simulations’ stability. The reason is the inverse
relation with the relaxation rate ωφ of the Allen-Cahn solver as given by Equation (3.20).
In our simulations, mobility parameters below 0.05 lead to instabilities. However, the
steady-state solution of the velocity shows no significant influence by the mobility. In
Figure 7.4, the results were all in the same range by a variation with 1 %. Hence, it can be
concluded that the mobility parameter influences the stability of the simulations much
greater than the accuracy in the cases analysed here. As a result, the following sections are
investigated using a mobility of M = 0.05.

To find closure relationships for the dynamics of Taylor bubbles in annular configura-
tions, analytic equations were developed in the work of Mitchell and Leonardi [118] to
estimate the rise velocity based on the dimensionless numbers. In particular a relationship
based on Eo and N f was identified by,

Fr(Eo, N f ) =
0.383

[1+(1.4078/Eo)0.6442]1.5381(
1+

[
N f

3.6321(1+(−1.5753/Eo))2.7688

]−1.1635
) = 0.299 (7.6)

The results shown in Figure 7.4 underpredict the rise velocity calculated by Equation (7.6)
if the mean velocity of all simulations is taken. However, it still shows a close alignment of
the numerical results in comparison to the closure relationship developed by Mitchell
and Leonardi [118]. This highlights the effectiveness of the simulations conducted in
the scope of this thesis. Nevertheless, it must also be noted that experimental results
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(a) Taylor bubble centre of mass tracked during simulation.
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(b) Froude number derived from centre of mass.

Figure 7.3: A Savitzky-Golay filter applied to the bubble position in (a) to obtain the bubble velocity
in (b) for a simulation constructed with an outer diameter of 192 cells and a mobility value of
M = 0.05.
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Figure 7.4: Convergence analysis of the dimensionless rise velocity of an annular Taylor bubble. A
range from 0.02 to 0.1 was investigated for the mobility parameter. Note the scale of the y-axis,
indicating limited impact on macroscopic bubble velocity but reduced stability for lower values of
M .

obtained by Das et al. [188] predict a Froude number of 0.28. In comparison to this, the
simulations had an error of approximately 6 % similar to the estimation predicted by
Equation (7.6). Therefore, the analysis still validates the modelling approach because it
was possible to closely capture the evolution of the Taylor bubble compared to Mitchell
and Leonardi [118]. Additionally, the effect of the mobility parameter was analysed, which
made valuable contributions to accuracy and stability under varying parameters.
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7. DISPERSED FLOW DYNAMICS

Another important aspect when analysing Taylor bubbles in an annulus setup is the
wrap angle θ of the bubble about the inner tube. Thus, Figure 7.5 provides the steady-state
wrap angle of the Taylor bubble about the inner pipe. It was determined by creating a
contour of φ0 in the plane perpendicular to the pipe axis at the bubble’s centre of mass.
Then, the wrap angle can be obtained from the discrete data using a simple iterative
method. To better understand how the wrap angle is defined in this work, an illustration
is provided with Figure 7.6. In the illustration, an example contour is shown, with tangent
lines drawn to indicate the wrap angle of the Taylor bubble.
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Figure 7.5: Convergence analysis of the shape of a Taylor bubble. The shape of the Taylor bubble is
analysed through the angle of wrap 2θ. A range from 0.02 to 0.1 was investigated for the mobility
parameter.

The results in this section show that the tested resolutions consistently validate the
simulations. Furthermore, the diameter of the pipe is resolved using 192 lattice cells,
which leads to a spatial resolution of ∆x = 1.323 ·10−4. This gives a reasonable balance
between computational requirements for the increased complexity which arises from the
variability of the inner tube configuration.
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Figure 7.6: Example interface contour of a Taylor bubble at its centre of mass. The angle of the
wrap about the pipe is measured with the contour. It is defined as indicated by the green circle arc.
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7.2. Taylor Bubble Dynamics

7.2.2 Variable Inner Pipe Eccentricity

In this section, the impact of the inner tube location on the flow dynamics of the Taylor
bubble is analysed. The shape of the inner tube is not changed, and the eccentricity pa-
rameter states the variation in its location. A schematic illustration is given with Figure 7.7
to provide a better understanding of how the eccentricity is measured. With the notation
used in this figure, the degree of eccentricity can be defined as

ε= ci − co

router − rinner
. (7.7)

Using this, the eccentricity values investigated in this section consist of ε ∈ {0.1,0.2, . . . ,0.9}.
The bubble rise velocity and the angle of wrap about the inner pipe are recorded for each
scenario.

router

co ci

rinnerr

Figure 7.7: Schematic cross-section of an eccentric annular pipe in which the central tube is offset
by a distance r .

The simulation’s initialisation is done the same way as in the previous section. Because
of varying eccentricity parameters, finding suitable initial bubble shapes is hard. From our
experience, a naive initialisation of the Taylor bubble usually leads to initial instabilities.
Therefore, the simulations are not conducted using the changed inner tube position at
the initial position of the Taylor bubble. Instead, the inner tube has an eccentricity ε= 0 at
the initial position. Then, the Taylor bubble enters a transition region of length 4D where
the inner tube location changes to its target eccentricity. The pipe bend was incorporated
with a half-period of a cosine function, which allows for a smooth transition. A visual
representation of the simulation setup is given in Figure 7.8. In this figure, an eccentricity
ε= 0.5 is used. The transition region is highlighted to better understand how it is applied.
For all simulations, the run-time was increased to 20t∗. This is necessary to observe a
stable Taylor bubble after the transition region.

Transition zone

Figure 7.8: Geometry of the inner tube in the simulation domain for eccentricity value of ε= 0.5
with the transition region indicated. Note that gravity is applied along the pipe axis so that the
case is representative of a vertical pipe configuration.
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7. DISPERSED FLOW DYNAMICS

The Taylor bubble dynamics moving from a concentric to an eccentric pipe configura-
tion is illustrated in Figure 7.9. It can be observed that the bubble smoothly progresses
through the transition zone until it reaches its final terminal velocity and shape. Due to
the relatively high velocity at the boundary of the liquid bridge, the formation of small
satellite bubbles can be observed. Building on the results of the previous section, both the
rise velocity and the angle of wrap are measured similarly. Like this, it is possible to assess
the impact of eccentricity quantitatively. Understanding the impact eccentricity has on
Taylor bubble dynamics can be used to reduce the uncertainty of pipe network designs
for numerous applications.

(a) t∗b = 0

(b) t∗b = 5

(c) t∗b = 10

(d) t∗b = 15

(e) t∗b = 20

(f) t∗b = 20 (rotated by 90°)

Figure 7.9: Evolution of a Taylor bubble through a pipe that transitions from concentric to an
eccentricity value of 0.5. The initialisation of the bubble is shown in (a). In (b) at t∗b = 5, the bubble
forms a liquid bridge which lets liquid directly pass when the bubble is rising. The vorticity of
the liquid is shown in blue colour. In (c) at t∗b = 10, the Taylor bubble propagates through the
transition region of the pipe. Hence, the shape of the bubble is changing through this section. In
(d) at t∗b = 15, the Taylor bubble has just passed the transition region and reaches its final shape. In
(e) and (f), the final shape of the bubble is shown at t∗b = 20.

The steady-state rise velocity obtained for various eccentricity values is given in
Figure 7.10a. Clearly, the rise velocity of the Taylor bubble is not strongly influenced by the
changed geometry. The most significant divergence in comparison to the rise velocity of
the base geometry can be observed for eccentricity values of 0.2 and 0.3. At these points,
the bubble Froude number is increased by approximately 3 %. As the eccentricity values
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7.2. Taylor Bubble Dynamics

increase, the bubble rise velocity reaches values similar to those in the base case. The
differences here are approximately 1 % for ε = 0.9. This magnitude of variation in rise
velocity may be acceptable for certain circumstances. However, understanding it allows
for a reduction in uncertainty when looking to predict pipe system characteristics such as
pressure drop.

Additionally, the angle of wrap was analysed and is illustrated in Figure 7.10b. A
smooth decrease can be observed as the inner tube is shifted more and more towards
the outer wall. As the inner tube moved into close proximity to the outer pipe wall, the
bubble rise velocity reduced to a value below that of the concentric configuration (see
Figure 7.10a). It is expected that this correlates with a widening of the Taylor bubble nose
in the larger cavity available at higher levels of eccentricity. This would lead to an increase
in viscous drag as the shape of the bubble nose progresses away from the elliptic shape
commonly referenced for annular Taylor bubbles to the spherical shape assumed in the
analysis of the tubular analogue [188]. The work conducted here is the first instance in
which the dependence of Taylor bubble rise velocity on various levels of eccentricity has
been shown in vertical annular systems.
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Figure 7.10: The effect of pipe eccentricity on the propagation of an annular Taylor bubble in a
water-filled, annular conduit. The rise velocity is given in (a) and the angle of wrap in (b).

Finally, the Taylor bubble shape progression for various eccentricity values is shown
in Figure 7.11. The angle of wrap is included in each subfigure to indicate how it is
determined. Here, the increased width of the bubble section opposite the liquid bridge
for high eccentricity is clear, and the evident increase in viscous drag was observed in a
decreasing rise in velocity. From these results, it can be concluded that a minor shift in
the inner pipe away from the central axis of the outer pipe causes a rise in bubble velocity.
However, after reaching a maximum, the viscous drag caused by the increased width of
the bubble dominates and slows its velocity.
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(b) ε= 0.4
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(d) ε= 0.8

Figure 7.11: Steady-state wrap angle, 2θ, for an annular Taylor bubble at eccentricity values of (a)
0.2, (b) 0.4, (c) 0.6, (d) 0.8.

7.2.3 Variable Pipe Diameter Ratio

The impact of the diameter of the inner tube on the dynamics of the Taylor bubble is
analysed in this section. The steady-state bubble rise velocity and the final shape (by
evaluating the angle of wrap) are investigated. Early correlations of bubble rise velocity
indicated dependence on the inner pipe size, with non-dimensional velocities often
formulated as

Fr = U√
g (dinner +douter)

. (7.8)

This has previously been used to state a Froude number applicable to water-air flow for
various pipe diameter ratios. Here, we further test its applicability. A graphical illustration
of how the pipe ratio is quantified in this work is given in Figure 7.12. Following the
notation of the figure, the pipe ratio can be defined by

d∗ = rinner

router
. (7.9)

This means the base case can be recovered by using d∗ = 0.5. In the analysis here,
various pipe ratios have been tested in the range of d∗ ∈ {0.0,0.05, . . . ,0.6}. Building on the
investigations conducted in the previous section, the same fluid parameters were applied.
Therefore, a mobility of M = 0.05 is also used. A schematic cross-section of the pipe with
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7.2. Taylor Bubble Dynamics

a reduced inner tube diameter is given in Figure 7.12. In this illustration, a diameter of
dinner = 0.00635 m is applied for the inner tube. Using a resolution of ∆x = 1.323 ·10−4

leads to a diameter of 48 lattice cells of the inner tube in the simulation. The illustrated
pipe ratio is d∗ = 0.25.

router

co ,ci

rinner

Figure 7.12: Schematic cross-section of an annular pipe in which the radius of the central tube,
rinner, was the dimension varied to obtain the pipe diameter ratios analysed. In this schematic
cross-section, a pipe ratio of d∗ = 0.25 is visualised.

Like the eccentricity simulations shown in Section 7.2.2, the Taylor bubble is initialised
at a region with a pipe ratio of d∗ = 0.5. Then the Taylor bubble finds a transition region
with the length of 4D. In this region, the pipe configuration changes to its target pipe ratio.
An example of the setup is shown in Figure 7.13 for a pipe ratio of d∗ = 0.25. The transition
zone is marked in the figure for better understanding.

Transition zone

Figure 7.13: Geometry of the inner tube in the simulation domain for a pipe ratio of d∗ = 0.25 with
the transition region indicated. Note that gravity is applied along the pipe axis so that the case is
representative of a vertical pipe configuration.

The temporal evolution of the Taylor bubble in an annular pipe configuration with a
pipe ratio d∗ = 0.25 is shown in Figure 7.14. It highlights the adaption of the angle of wrap
that the Taylor bubble undergoes. During the transition to the reduced pipe ratio, the
wrap angle increases smoothly, leading to a Taylor bubble that almost wraps around the
whole inner tube. Thus, a very small liquid bridge remains. Furthermore, the simulation
shows an increased generation of satellite bubbles into the wake region. Additionally, the
length of the Taylor bubble shrinks.

In Figure 7.15a, the variation of the Froude number with changing pip ratio is given.
Furthermore, Equation (7.6) is used to predict the Froude number analytically. It is possi-
ble to apply Equation (7.6) by incorporating the pipe ratio d∗ through the Eötvös number.
In this manner, a close agreement can be found between the simulation results and the
predicted Froude numbers. The work of Mitchell and Leonardi [118] only validated the
closure relation with a pipe ratio of d∗ = 0.5. Thus, the insights gathered in this thesis’s
scope validate their approach’s robustness and indicate a good agreement in the range of
d∗ ∈ {0.0,0.05, . . . ,0.6}. In Figure 7.15a, a smooth evolution of the steady-state rise veloc-
ity can be observed between d∗ ∈ {0.15,0.2, . . . ,0.6}. Values lower than d∗ = 0.15 show a
particular jump in predicting the Froude number. This can be explained by the fact that
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(a) t∗ = 0

(b) t∗ = 5

(c) t∗ = 10

(d) t∗ = 15

(e) t∗ = 20

Figure 7.14: Evolution of a Taylor bubble through a pipe that transitions from a pipe ratio of
d∗ = 0.5 to a pipe ratio of d∗ = 0.25. The initialisation of the bubble is shown in (a). In (b) at
t∗b = 5, the bubble forms a liquid bridge which lets liquid directly pass when the bubble is rising.
The vorticity of the liquid is shown in blue colour. In (c) at t∗b = 10, the Taylor bubble propagates
through the transition region of the pipe. Hence, the shape of the bubble is changing through this
section. In (d) at t∗b = 15, the Taylor bubble has just passed the transition region and reaches its
final shape. In (e), the final shape of the bubble is shown at t∗b = 20.

the liquid bridge can no longer be observed in these cases. Instead, the Taylor bubble
encloses the inner tube entirely. The missing ability to observe a liquid bridge might
come from shortcomings of the diffusive interface model. However, further investigations
are necessary to give clear insight into the evolution of Taylor bubbles in annular pipe
configuration with decreasing inner tube diameter. Nevertheless, close agreement to
Equation (7.6) can be observed also for these cases. Finally, it is important to note that
cases of d∗ > 0.6 were excluded due to numerical instabilities. Also, future work needs to
be done for these cases to gain reliable numerical simulations.

In Figure 7.15b, the variation of the wrap angle with changing pip ratio is given. It
illustrates again that no liquid bridge is present in cases of d∗ ≤ 0.1. In the figure, a wrap
angle of 360◦ indicates a total wrap of the Taylor bubble around the inner tube. This
means that the two sides of the bubble merge. The velocity trend’s observed variation
was shaped by this factor, highlighting a constraint in the model’s applicability within
practical computational limits.

Finally, a visual representation of the variation in the cross-sectional shape of the
Taylor bubbles for varying annular pipe diameter ratios is given in Figure 7.16. The liquid
bridge between the Taylor bubble and the outer wall can be observed clearly. For lower
diameter ratios, the liquid bridge vanishes. In contrast, for higher diameter ratios, the
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Figure 7.15: The effect of pipe ratio on the propagation of an annular Taylor bubble in a water-filled,
annular conduit. The rise velocity is given in (a) and the angle of wrap in (b).

liquid film represents a significant portion of liquid drainage from above to below the
Taylor bubble. The liquid film can be analysed under changing pipe ratios and varying
fluid properties like viscosity or surface tension in future work. In this manner, valuable
insight could be gathered to find closure relations between the diameter ratio and the size
of the liquid bridge.

7.3 Conclusion

In this chapter, we analysed the behaviour of annular Taylor bubbles in annular pipe
configurations. First, we performed a sensitivity analysis of the mobility parameter in the
phase field formulation. It was found that the mobility parameter had a negligible impact
(≤ 1%) on the consistency of results for this case. However, values closer to 0.1 provided
better stability. This case directly reproduces the results of previous work presented by
Mitchell [79], in which a mobility parameter of M = 0.05 was used.

Following this, we examined the effect of pipe geometry by introducing eccentricity,
which, to the best of the authors’ knowledge, is not currently accounted for in velocity
closure relations found in the literature. For the water/air-like case examined, only a
small variation in velocity was observed. However, the angle of wrap of the Taylor bubble
around the inner pipe changed significantly. Lastly, different sizes of the inner pipe were
investigated to assess the impact of the pipe ratio on the rise of an annular Taylor bubble.
These results were compared with the closure relation presented by Mitchell and Leonardi
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(d) d∗ = 0.60

Figure 7.16: Steady-state wrap angle, 2θ, for an annular Taylor bubble at a pipe ratio of (a) d∗ = 0.15,
(b) d∗ = 0.30, (c) d∗ = 0.45, (d) d∗ = 0.60.

[118], formulated from a numerical study focusing on a pipe ratio of d∗ = 0.5. The sizing
of the inner pipe affects the dimensionless numbers on which this closure model depends,
and it was found that this was sufficient to predict the rise velocities obtained in our
simulations accurately.
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8. THERMOCAPILLARY FLOWS

In this chapter the conservative Allen-Cahn model is extended to simulate thermo-
capillary systems. After briefly introducing the thermocapillary systems analysed in
this thesis in Section 8.1, we present a two-dimensional test scenario in Section 8.2.
The goal is to verify the solution method and show its accuracy compared to existing
literature. Building upon these results leads to the target simulations of this work,
namely the analysis of droplets in a laser-heated microchannel. Numerical results
for this scenario are first conducted in a two-dimensional setup in Section 8.3. From
there, we extend the existing literature by conducting three-dimensional simulations
in various setups. The simulations conducted in this work show that two-dimensional
results have only limited meaning when extending to real three-dimensional setups.
We present our conclusion in Section 8.5. The results shown here follow the author’s
contribution to the published article [5], published as part of the thesis.

8.1 Brief Introduction

The surrounding temperature influences the surface tension between the fluids in thermo-
capillary systems. This dynamic surface tension plays a driving role in microfluidic devices
or reduced gravity environments. Thus, the temperature-dependent surface tension needs
to be modelled carefully in these systems. From the application side, it becomes crucial
to quantify the forces and to be able to control the motion of droplets and bubbles in
the mentioned scenarios. In most cases, the dynamic surface tensions impose a shear
force along the interface of the fluids, which leads to an inverse relation between the
temperature. This inverse relation lets fluid migrate from hot regions to colder ones due to
minimising the total surface tension [121, 201]. Furthermore, the effective manipulations
of droplets have contributed to developing droplet-based microfluidic devices capable
of rendering programmable and re-configurable operations [202, 203]. While droplets in
microchannels can be controlled in numerous ways, e.g., using radiation pressure forces,
it has been shown that the control with temperature manipulation is especially effective
[121, 202, 204].

8.2 Planar Heated Channel

To simulate thermocapillary systems with the lattice Boltzmann method (LBM), necessary
equations have been presented in Section 3.5. In this thesis, the model was implemented
in WALBERLA and using LBMPY to provide an exceptionally flexible implementation.
Our implementation is independent of the lattice stencil and compatible with single-
relaxation-time (SRT), multiple-relaxation-time (MRT) or central-moment-based colli-
sion operators. In this chapter central-moment-based collision operators are used for all
lattice Boltzmann (LB) steps and a D3Q19 lattice stencil for the phase field and hydro-
dynamic LB step (D2Q9 in two dimensions). For the thermal LB step, the choice of the
lattice stencil is investigated, which is presented in the following.

This section validates the thermocapillary extension of the conservative Allen-Cahn
model (CACM). This is done using the thermocapillary-driven motion of fluid in a heated
microchannel. The test case is chosen for two reasons. First, it is possible to find an ana-
lytical solution for it, which is oftentimes impossible for thermocapillary flow problems,
and second, it is a well-studied case by numerous authors [127, 128, 201].
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8.2. Planar Heated Channel

The simulation setup is illustrated with Figure 8.1. Further, the domain is formed by a
channel of length L and height H . Hence, the setup and its analytical solution given in
Appendix A is two-dimensional. Nevertheless, Mitchell et al. [128] have used a pseudo-
two-dimensional setup to validate their three-dimensional LB solver. This is done by
extending the width of the channel by three lattice cells and applying periodic boundary
conditions on the additional dimension. Due to the code generation approach our solver
can be generated for two- or three-dimensional setups likewise. Thus, both variants are
tested in this section. The initial phase field splits the domain into two sections of φL = 0
and φH = 1, corresponding to two fluids with their density ρL and ρH , respectively. At the
western and eastern sides of the domain, periodic boundary conditions are used for all
solvers. At the northern and southern sides of the domain, no-slip boundary conditions
are used for the hydrodynamic and Allen-Cahn LB solver. For the temperature solver, on
the other hand, Dirichlet boundary conditions are applied

T (x,−H/2) = Th +T0 cos

(
2π

Lc
x

)
, (8.1)

T (x, H/2) = Tc , (8.2)

where the temperatures are specified as T0 = 4, Tc = 10, Th = 20, and Lc is the character-
istic length. The Dirichlet boundary conditions are realised with Equation (2.31) for LB
temperature solver.

L

H x

y
ρH,µH,κH

ρL,µL,κL

Figure 8.1: Schematic illustration of the two-dimensional heated microchannel used for validating
the thermocapillary model.

To carry out the numerical simulation for the heated microchannel a characteristic
length of Lc = 80 lattice cells is defined. The characteristic length is equal to the height of
the channel, and thus, the problem size is 160×80 cells. The fluid properties of both fluids
are stated in Table 8.1. They result in the density ratio ρ∗ = 1, the viscosity ratio µ∗ = 1,
and the heat capacity ratio of c∗p = 1. For the ratio of the thermal diffusivity, two test cases
are constructed by choosing κL = 0.2, and κL = 0.04 corresponding to thermal diffusion
ratios of κ∗ = 1 and κ∗ = 1/5, respectively. The resulting dimensionless parameters Ma, Re,
and Ca are small (≪ 1), which means that the convective transport of momentum and
energy can be neglected. As such, the interface in the simulation remains planar and is
initialised as

φ=φ0 +φ0 tanh
( y

W/2

)
, −H

2
< y < H

2
. (8.3)
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An analytic solution is provided for the simulation setup in Appendix A. With the analytic
solution at hand, an error norm can be defined to measure the accuracy of the solver. In
the scope of this thesis a L2-norm is defined as,

L2
norm =

√√√√√∑
i , j (|ψnum

i , j |− |ψA
i , j |)2∑

i , j |ψA
i , j |2

, (8.4)

where ψ is a placeholder for temperature or velocity, respectively.

Table 8.1: Fluid properties including density, ρ, viscosity, µ, heat capacity, cp, thermal diffusion,
κ, reference surface tension, σref, change of surface tension, σT , mobility, M , and the interface
width, W , as well as the dimensionless parameters defined as the Marangoni, Ma, Reynolds, Re,
and the Capillary, Ca number.

Parameter Fluid H Fluid L
ρ 1 1
µ 0.2 0.2
cp 1 1
κ 0.2 0.2 (0.04)
σT −5 ·10−4

σref 2.5 ·10−2

M 5 ·10−2

W 4
Formulation Value

Uc |σT |/2µH 0.00125
Ma ρH cp,H LcU /kH 0.1
Re ρHU Lc/µH 0.5
Ca UµH /σr e f 0.01

A visual comparison of the analytical and the numerical solution of the temperature
field is given in Figure 8.2 where the temperature contour lines are shown in Figure 8.2a.
Dashed lines represent the analytical solution, while solid lines show the numerical
solution. Furthermore, streamlines of the analytical (Figure 8.2b) and the numerical
(Figure 8.2c) velocity field are illustrated in a side-by-side comparison. The error calculated
with Equation (8.4) is stated in Table 8.2. The results of previous studies are added for
comparison [126, 128, 205]. The study presented here applies different lattice stencils
for the temperature LB solver. For the two-dimensional case, a D2Q9 stencil is used for
all solvers. The pseudo-two-dimensional case on the other side is solved using a D3Q7,
D3Q15, D3Q19, and a D3Q27 lattice stencil for the temperature solver and a D3Q19 stencil
for the remaining solvers.

Our results are in good agreement with the literature. It can be seen that both the
two-dimensional and pseudo-two-dimensional recover consistent agreement with the
literature. The error of the temperature field is about one order of magnitude higher in
the second configuration where κ∗ = 1/5. Liu et al. [126] has given a possible explanation
for this. The finite interface thickness of the phase-field model can not perfectly resolve
the jump of the thermal diffusivity across the interface. It is important to note here that
Liu et al. has used the Cahn-Hilliard equation for the interface tracking. Nevertheless,
their conclusion also seems to be applicable for the CACM. Especially, the contour lines
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Figure 8.2: Temperature contour lines (a) for thermocapillary driven layered flow with a thermal
diffusivity ratio of κ∗ = 1. Dashed contour lines indicate the analytical solution compared to the
solid lines obtained through the presented simulation method. Also, the velocity streamlines of
the analytical solution (b) and the numerically obtained velocity field (c) are shown.

Table 8.2: Comparison of errors for the temperature and the velocity field after 4 ·105 timestep

L2
norm κ∗ = 1 κ∗ = 1/5

Model setup Temperature Velocity Temperature Velocity
Present (D2Q9) 1.98 ·10−4 13.27 ·10−2 - -
Present (D3Q7) 1.92 ·10−4 14.42 ·10−2 5.25 ·10−3 17.51 ·10−2

Present (D3Q15) 1.93 ·10−4 14.42 ·10−2 5.25 ·10−3 17.51 ·10−2

Present (D3Q19) 1.93 ·10−4 14.42 ·10−2 5.25 ·10−3 17.51 ·10−2

Present (D3Q27) 1.93 ·10−4 14.42 ·10−2 5.25 ·10−3 17.51 ·10−2

Mitchell et al. [2] 8.27 ·10−4 11.83 ·10−2 7.65 ·10−3 14.18 ·10−2

Liu et al. [126] 2.25 ·10−4 5.71 ·10−2 5.23 ·10−3 8.41 ·10−2

Majidi et al. [205] 5.47 ·10−4 5.61 ·10−2 4.98 ·10−3 8.37 ·10−2

of the temperature field given in Figure 8.3a show great consistency with their theory. At
a low thermal diffusivity ratio, the isotherms become denser in the upper fluid, and the
isotherms approaching the lower fluid tend to be normal at the interface. This indicates a
heat transfer close to zero in the y-direction between the lower fluid and the interface.
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Figure 8.3: Temperature contour lines (a) for thermocapillary driven layered flow with a thermal
diffusivity ratio of κ∗ = 1/5. Dashed contour lines indicate the analytical solution compared to the
solid lines obtained through the presented simulation method. Also, the velocity streamlines of
the analytical solution (b) and the numerically obtained velocity field (c) are shown.

For the pseudo-two-dimensional case, it is noticeable that no difference between
the stencils was obtained. While this does not yet show the feasibility of complex real
three-dimensional flow dynamics, it can already function as a guideline. Thus, using the
D3Q7 stencil seems to be promising for simple thermocapillary flows, allowing minimal
computational cost without significant impact on simulation results.

8.3 Droplet Motion with Local Laser Heating in 2D

Building on the results of the previous section, here, the model is applied to simulate the
dynamics of a two-dimensional droplet in a laser-heated channel setup. This setup was
previously analysed in the studies of Liu et al. [127]. Similarly to the work here, they used a
phase-field LBM to study the development of the multiphase system, however, they have
used the Cahn-Hillard equation to track the interface in contrast to our work which builds
on the CACM. To approximate a laser-heat source in the channel, a simple Gaussian-like
description is used,

qT =
{

Qs exp
(
−2 (x−xs )2

w 2
s

)
, if

[
(x −xs )2

]≤ d 2
s

0, otherwise
, (8.5)
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where Qs signifies the maximum heat flux generated by the laser, while xs denotes the
precise laser position. The z-component of the position vectors x and xs was neglected in
the two-dimensional setup. The remaining parameters of Equation (8.5) are defined as
the heat dispersion ds and the heat flux profile controlled by ws . The simulation parame-
ters of the whole setup, including the laser-heated source, are given in Table 8.3, and a
schematic illustration of the setup is shown in Figure 8.4. Importantly, the parameters are
chosen similarly to the study of Liu et al. [127], which allows a comparison between the
simulations. The setup contains a semicircular droplet with radius R = 32 lattice cells in
a rectangular channel with a size of Lx ×Ly = 8R ×2R. Initially, the droplet is located at
xc = (2R +1,0) with no initial velocity defined. To induce motion in the channel, a velocity
of uw is applied to the upper wall, while the lower wall remains stationary, resulting in a
constant shear rate of γ= uw/Ly .

Table 8.3: Fluid properties including density, ρ, viscosity, µ, heat capacity, cp, thermal diffusion,
κ, reference surface tension, σref, change of surface tension, σT , mobility, M , and the interface
width, W , as well as the dimensionless parameters defined as the Marangoni, Ma, Reynolds, Re,
and the Capillary, Ca number.

Parameter Fluid H Fluid L
ρ 1 1
µ 0.2 0.2
cp 1 1
κ 0.2 0.2
σT 2 ·10−4

σref 5 ·10−3

M 2 ·10−3

W 4
Qs 0.2
ds 8
ws 6

Formulation Value
Ma ρH cp,H LU /kH 0.08
Re ρHU L/µH 0.16
Ca UµH /σr e f 0.01

The velocity is imposed to the hydrodynamic particle distribution function (PDF)s
according to Equation (2.26), and no-slip boundary conditions are used for the stationary
lower wall. For the phase-field LB step, no-slip boundary conditions are used for the upper
and lower walls. In addition, temperature boundary conditions are set to zero (Tref = 0)
for both the bottom and top walls. Periodic boundary conditions are used on the left and
right walls for all three LB steps. Notably, the temperature of the fluid is solely influenced
by a laser located at xs = (181,21).

The evolution of the two-dimensional droplet is investigated using various contact
angles to the lower wall. The contact angle is imposed as explained in Section 3.4. The
setup captures the droplet dynamics as it approaches the heated source, which creates
an imbalance of surface tension forces. The droplet’s hotter side exhibits lower surface
tension. This imbalance of forces creates a shear force that opposes the droplet motion
back towards the cooler region of the domain. With progressively lower three-phase
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Figure 8.4: Schematic of the test domain used to simulate the thermocapillary-driven motion of a
droplet in a channel.

contact angles, the droplet’s equilibrium height is reduced, and the generated force is less
aligned with the flow direction. As such, it is expected that the droplet will pass through a
heated source for low contact angles that would otherwise trap a droplet with a higher
contact angle.

The results of the numerical investigation are illustrated in Figure 8.5. Here, the
temporal evolution of the x-component of the droplet’s centre of mass is shown. The
droplet dynamics are investigated for contact angles of α ∈ {30◦45◦60◦90◦120◦135◦}. Our
simulations are compared with the results of Liu et al. [127]. Simulations with a contact
angle of α ∈ {60◦90◦120◦135◦} match very well with the results reported by Liu et al.. For
higher contact angles, the shear flow acts stronger on the droplet, which increases its
velocity. However, reaching the laser point blocks the droplet, and thus, it remains at rest.
In the study of Liu et al., droplets with a contact angle of α = 45◦ can bypass the laser
point while these droplets are blocked in our simulation. In our studies, a contact angle
of α = 30◦ is needed for the droplets to bypass the laser point. There could be various
reasons for this, including the fact that the prior study used a Cahn-Hilliard approach to
track the interface between the fluids, while here, the conservative Allen-Cahn equation
(CACE) is employed. This also changes how the contact angle is enforced. To the author’s
knowledge, there is no additional literature available that studies this exact setup. Thus,
future studies of this setup are necessary to obtain more insights into how the solution
methodology influences the droplet motion. Nevertheless, the results presented here
agree qualitatively with the results of Liu et al. [127]. This means droplets with higher
contact angles are faster and can not bypass the laser point, while droplets with lower
contact angles move slower and bypass the laser point when a certain contact angle α is
applied.

8.4 Droplet Motion with Local Laser Heating in 3D

This section analyses the droplet motion in a three-dimensional laser-heated channel.
This analysis expands the results of the previous section and the literature. The additional
degree of freedom allows us to see motion perpendicular to the primary shear direction
and increases complexity in the droplet-heated spot interaction. For this analysis, the
same parameters as shown in Table 8.3 are used. The domain size was specified as Lx ×
Ly ×Lz = 16R ×2R ×8R to avoid boundary effects. A droplet was placed in the domain at
rest at xc = (2R +1,0,4R), and the droplet’s radius was prescribed as R = 32 lattice cells.
The location of the laser point is at xs = (181,21,4R).
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Figure 8.5: Droplet migration in 2D for different contact angles. The plots show the temporal
evolution of the x-component of the droplet’s centre of mass. When possible, a comparison was
done with the results of Liu et al. [127]. The introduced heat source completely blocks droplets
with a higher contact angle to the wall.

A three-dimensional view of the initial setup is shown in Figure 8.6a. At the start
of the simulation, the temperature field is already evolved by applying t∗ timesteps to
the temperature LB solver exclusively. This is enough to obtain an evolved laser source
as shown in Figure 8.6a. At this point, the velocity field, as well as the phase-field are
still at rest. For better understanding, a schematic x y- and a xz-plane are presented in
Figure 8.6c and Figure 8.6b.

Similar to Section 8.3, different contact angles are used to simulate the motion of
the three-dimensional droplet. These contact angles were varied from 45◦ to 135◦. The
numerical simulation results are shown in Figure 8.7. Here, an exemplary temporal evo-
lution of a droplet with α= 90◦ is shown in Figure 8.7a. Furthermore, Figure 8.7b shows
the displacement in the x-plane of various droplets with different contact angles, while
the x-component of their velocity is shown in Figure 8.7c. Unlike the two-dimensional
simulation, all droplets can pass the laser point, and none can be stopped. Here, the
two-dimensional planar analogue does not replicate the impact of a spherical heat source
on the semi-spherical droplet in a three-dimensional domain. The velocity profile of the
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Figure 8.6: Configuration of the test domain for the three-dimensional extension of the simulation
of a thermocapillary droplet, showing (a) the initial setup of the droplet in a shear flow channel,
(b) an elevation of the domain in the x y-plane, and (c) a plan view of the domain in the xz-plane.
A single heat source is introduced to the thermal solver, similar to the analysis in Section 8.3.

droplets also confirms this behaviour. At first, all droplets are accelerated due to the shear
flow (this acceleration is higher for droplets with higher contact angles). When they reach
the proximity of the laser point, the velocity decreases. However, the laser point in this
simulation is not strong enough to block the droplets. Instead, they bypass the laser point,
which results in an acceleration once the laser point is behind the droplets. Once the
droplets are far enough from the laser source, their velocity reaches a steady state similar
to that of the initial phase.

The test case was modified as a next step by increasing the heat flux by a factor
of five to Qs = 1. This was done to investigate if it is possible to block droplets just by
increasing the strength of the laser source. The results of the second simulation are
shown in Figure 8.8. An exemplary temporal evolution of a droplet with α= 90◦ is shown
in Figure 8.8a. Furthermore, Figure 8.8b illustrates the displacement in the x-plane of
various droplets with different contact angles, while their respective z-plane is given
in Figure 8.8c. It can be observed that the droplets move towards the laser point until
≈ t∗ = 10. All droplets seem to stop at this time, which looks similar to the blocking
behaviour shown in Section 8.3. However, a displacement on the respective z-plane of the
droplets can be observed at the same point. This indicates that the droplets now move
in the additional direction available in the three-dimensional simulation. The described
situation is pictured clearly in Figure 8.8c, where the z-coordinate of the centroid of
the droplets is plotted as a function of the dimensionless time t∗. Interestingly, this
was the case for all droplets. However, it was found that droplets with lower contact
angles needed more time and tended to move around in a lower range than droplets with
higher contact angles. To obtain more insight, a small parameter study with heat fluxes
Qs ∈ {0.2,0.4,0.6,0.8,1.0} is shown in Figure 8.10. This indicates configurations in which
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(a) Temporal motion of a droplet with contact angle α = 90◦ in a three-
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Figure 8.7: Droplet migration in a three-dimensional channel flow with various contact angles,
showing (a) the evolution of a droplet with 90◦ contact angle where each droplet in the figure
represents the movement during a period of t∗ = 10 and (b) the x-coordinate of the centroid of
droplets with various contact angles as a function of the dimensionless time on the left and its
respective velocity on the right (c). A maximal heat flux of Qs = 0.2 was applied for the laser point.

droplets with lower contact angles can pass through the heat source without displacement
in the z-direction, while droplets with higher contact angles move around the heat source
in the z plane. Most prominently, this situation can be observed for Qs = 0.6. In this
configuration, some droplets can bypass the laser point directly while other droplets
(α> 60◦) bypass the laser point in the z-direction.

Finally, a flow configuration with two laser points was studied. The two heat sources
were shifted by ±1/2R in the z-direction in this setup. This means the laser points are lo-
cated at xs,1 = (181,21,3.5R) and xs,2 = (181,21,4.5R) respectively. The three-dimensional
evolution of a droplet with contact angle α= 90◦ can be seen in Figure 8.9a. The trajec-
tory of the droplets in the x- and z-directions are shown in Figure 8.9b and Figure 8.9c,
respectively. In this case, the blocking of the droplets can be observed for a longer time.
However, with the applied heat flux magnitude, the droplets with high contact angles
migrate transversely and pass both laser points. Furthermore, the droplet with contact
angle α= 45◦ passes through the two heat sources. It thus shows very similar behaviour
to that observed in the two-dimensional case, where droplets with low contact angle
could slip underneath the laser point. These test cases provide an understanding of the
migratory behaviour of a droplet in shear and showcase how the introduced modelling
capability can be applied to design effective droplet capture and or manipulation devices.
It is clearly shown that a three-dimensional setup shows a larger spectrum of behaviours.
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Figure 8.8: Droplet migration in a three-dimensional channel flow with various contact angles
showing (a) the evolution of a droplet with 90◦ contact angle where each droplet in the figure
represents the movement during a period of t∗ = 10 and (b) displacement of the droplets in the x-
and (c) z-directions with various contact angles. A maximal heat flux of Qs = 1 was used for the
laser point.

The impact of increasing the heat flux Qs is shown in Figure 8.10. Droplets with contact
angles of α ∈ {45◦,60◦,90◦,120◦,135◦} move in a channel with a single heat source. At a
heat flux of Qs = 0.2, the droplets pass through the laser-heated point without blockage.
However, with increasing heat flux, it remains impossible to show droplet blocking for
a different reason. This can be best understood by looking at the z-component of the
centroid of the droplets zd , which is pictured in the figures of the second column. As
the heat flux Qs increases, droplets move around the heat source in the z-direction. The
transition can be observed best at Qs = 0.6 where droplets with high contact angle move
around the heat source while droplets with low contact angle pass underneath it. In
the hope of observing droplet blockage, additional experiments have been conducted
using two laser points. In these experiments, the laser points were shifted by ±1/2R and
±2/3R in the z-direction respectively. The first results of the first experiment where (xs,1 =
(181,21,3.5R) and xs,2 = (181,21,4.5R)) are shown in Figure 8.11. In this case, it is possible
to show droplet blockage for simulations with higher heat flux (Qs ≥ 0.6). However, a
secondary effect can be noticed. The heat sources are rather close to each other, and
thus, droplets with higher contact angles are still able to pass by on the z-direction. This
can be seen especially well for Qs = 1 where droplets with contact angle α > 90◦ pass
rather quickly, while droplets with lower contact angle stay blocked for a while until they
slowly move in the z-direction. In the last experiment, the heat sources are shifted further
apart by ±2/3R. This means the laser points are located at xs,1 = (181,21,(4−2/3)R) and
xs,2 = (181,21,(4+ 2/3)R) respectively. The results for this experiment are pictured in
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Figure 8.9: Droplet migration in a three-dimensional channel flow with various contact angles
showing (a) the evolution of a droplet with 90◦ contact angle where each droplet in the figure
represents the movement during a period of t∗ = 10 and (b) displacement of the droplets in the x-
and (c) z-directions with various contact angles. Two laser sources are shifted by ±1/2R . Their heat
flux is Qs = 0.6.

Figure 8.12. Again, with lower heat flux (Qs ≤ 0.6), all droplets slip through the laser points.
However, in none of the configurations, droplets move around the heat sources in the
z-direction. With Qs = 1, all the analysed droplets show blocking throughout the complete
simulation time.

8.5 Conclusion

In this chapter, we presented results obtained using a newly implemented thermocapillary
model in WALBERLA. The energy equation in this model was solved using a third LB solver.
After comparing various lattice stencils in an academic test case, we concluded that the
D3Q7 stencil is sufficiently accurate for solving the energy equation.

This model and its implementation were applied to study the potential of local heat-
ing (e.g. a source analogous to laser tweezers) to stop the shear migration of droplets. It
was found that a two-dimensional representation of this inherently three-dimensional sce-
nario was inadequate for determining when capture would occur. In the three-dimensional
test case, using only a single heated source showed that droplets circumnavigated the hot
spot, allowing migration to continue. However, when two heated sources were applied,
the droplet could be stopped, though the placement of the heat sources and the droplet’s
contact angle had a significant influence on the outcome. The model and implementation
presented here are expected to enable future research into the design of microfluidic
devices that rely on droplet manipulation and control.
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Figure 8.10: Droplet migration in a three-dimensional channel flow with various contact angles
with a single laser point. The figures on the left column show the displacement of the droplets in
the x y-plane, while the right column shows the displacement in the xz-plane. The respective heat
flux is given on the right of each row.
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Figure 8.11: Droplet migration in a three-dimensional channel flow with various contact angles
and two single laser point. The two laser points are shifted by ±1/2R in the z-position. The figures
on the left column show the displacement of the droplets in the x y-plane, while the right column
shows the displacement in the xz-plane. The respective heat flux is given on the right of each row.
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Figure 8.12: Droplet migration in a three-dimensional channel flow with various contact angles
and two single laser point. The two laser points are shifted by ±3/3R in the z-position. The figures
on the left column show the displacement of the droplets in the x y-plane, while the right column
shows the displacement in the xz-plane. The respective heat flux is given on the right of each row.
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In this chapter, we present the performance of the resulting compute kernels for the
lattice Boltzmann method. This performance analysis is done on several state-of-the-
art computing systems detailed in Section 9.1. To properly report benchmark results,
metrics need to be defined to ensure the results’ comparability. We introduce the most
relevant metrics in Section 9.2. Afterwards, we explain the benchmark setups for the
different evaluations in detail. Before we look at large-scale benchmarks, we present
single-node analysis in various architectures in Section 9.4. This is done to highlight
the generality of the code generation approach and to have a basis for further scaling
benchmarks. Finally, we present large-scale performance benchmarks and discuss
uniform (see Section 9.5) and non-uniform mesh configurations (see Section 9.6). We
finish the chapter by analysing further performance increases in Section 9.7, that can
be achieved when lower precision data formats are used.

9.1 Computing Systems

The performance analysis for this thesis is done on three supercomputing systems. These
are the SuperMUC-NG 1, the JUWELS Booster 2, and the LUMI 3 computing system. At the
time of writing, these systems hold place 50, 21 and 5 of the TOP500 list 4 (effective June
2024). In the following sections, we give details on their respective hardware, followed by
details about the software stack we used on the respective systems.

9.1.1 Hardware Configuration

The hardware configuration of the SuperMUC-NG supercomputer is summarised in Ta-
ble 9.1. The x86-based Intel processor provides all computing capacity. This processor
supports 512-bit Advanced Vector Extensions (AVX512) single instruction, multiple data
(SIMD) instructions, which can be generated by PYSTENCILS. The SuperMUC-NG super-
computer consists of 6336 so-called thin nodes, which are relevant to our analysis and
constitute the largest part of the cluster. In total, the system can achieve a peak perfor-
mance of 26.3 ·1015 floating point operations per second (FLOPS) using its 304128 central
processing unit (CPU) cores. For this thesis, we had access to 3072 compute nodes, which
is approximately half the cluster size. At this scale, we were required to utilise at least four
islands. An island is an organisational unit consisting of 792 compute nodes, with faster
network connections within each island.

The hardware configuration of the JUWELS Booster system is summarised in Table 9.2,
with a technical overview provided by Kesselheim et al. [206]. The computing power is
primarily based on the NVIDIA A100 general purpose graphics processing unit (GPGPU),
and four of them are implemented per compute node. This thesis focuses exclusively
on the accelerator component of the JUWELS Booster system; therefore, the CPU of the
compute nodes is not discussed. The JUWELS Booster system comprises a total of 936
nodes, resulting in nearly 4000 NVIDIA A100 GPGPUs. With this setup, a total performance
of 78.98 ·1015 FLOPS can be achieved. For the purposes of this work, we had access to 256
compute nodes, which provided 1024 GPGPUs.

1https://doku.lrz.de/hardware-of-supermuc-ng-phase-1-11482553.html
2https://apps.fz-juelich.de/jsc/hps/juwels/booster-overview.html
3https://docs.lumi-supercomputer.eu/hardware/lumig/
4https://www.top500.org/lists/top500/list/2024/06/
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Table 9.1: Hardware configuration of the thin nodes of the SuperMUC-NG supercomputer

processor Intel Skylake Xeon Platinum 8174
sockets per node 2
cores per processor 24
processor base frequency 3.1 GHz
memory per node 96 GB
nodes per island 792
number of islands 8
total number of nodes 6336
total number of cores 304128
total memory 608 TB
interconnect OmniPath network with 100 Gbits−1

network within island fat tree
connection between islands pruned 1:4
theoretical peak performance 26.3 ·1015 FLOPS

A detailed overview of the hardware configuration of the LUMI-G partition of the LUMI
supercomputer is provided in Table 9.2. The LUMI-G partition derives its computing
power primarily from the accelerators installed in each node. Each compute node is
equipped with four AMD MI250X GPGPUs, each of which contains two Graphics Compute
Dies (GCDs), effectively dividing the accelerator into two separate units. Since the GCDs
have their own memory and computing chip, two message passing interface (MPI) ranks
are required to utilise a single GPGPU. The two GCDs are connected via the in-package
Infinity Fabric interface, with a theoretical bidirectional bandwidth of up to 400 GBs−1. In
this work, only complete GPGPUs are compared; that is, an AMD MI250X GPGPU is always
utilised using two MPI ranks. The LUMI-G partition consists of 2978 compute nodes,
providing almost 12000 AMD MI250X GPGPUs, which delivers a total peak performance
of 531.51 ·1015 FLOPS. As a result, the system surpasses half an exaFLOP and is considered
one of the largest pre-exascale systems. For this thesis, we had access to 1024 compute
nodes, equating to 4096 AMD MI250X GPGPUs.

Table 9.2: Hardware configuration of the JUWELS Booster supercomputer and the GPGPU-
partition of the LUMI supercomputer

JUWELS Booster LUMI-G

accelerator NVIDIA A100 AMD MI250X
GCDs - 2
accelerator per node 4 4
accelerator memory per node 160 GB 512 GB
total number of nodes 936 2978
total number of accelerators 3744 11912
network topology dragonfly dragonfly
nodes per group 48 124
groups 20 24
theoretical peak performance 78.98 ·1015 FLOPS 531.51 ·1015 FLOPS
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Figure 9.1: Hardware overview of NVIDIA Grace Hopper superchip [208].

Lastly, the performance of the NVIDIA Grace Hopper superchip, which is installed in
the Calypso cluster of CERFACS5, is analysed. This chip will form the basis of Europe’s
first exascale supercomputer called Jupiter [207]. Thus, the accelerator will play a crucial
role in future applications. An overview image of the GH200 chip is shown in Figure 9.1.
In contrast to previous generations of accelerators, the chip also hosts an ARM-based
CPU, connected with NVLINK C2C to the H100 GPGPU. The Grace CPU supports vector
instructions in the form of the Neon 6 and the Scalable Vector Extension (SVE) 7 instruction
set. Neon intrinsics are for 128 bit-wide registers. On the other hand, the SVE instruction
set is a vector extension of the A64 instruction set of the Armv8-A architecture. The
significant difference between the SVE and the Neon instruction set is that the size of the
registers is not static but ranges from a minimum of 128 bits up to a maximum of 2048 in
128-bit wide units. In the following performance analysis, both the CPU and GPGPU will
be analysed.

9.1.2 Software Stack

To compile WALBERLA on SuperMUC-NG, the Intel oneAPI compiler with version 2021.4.0
is used with the highest optimisations (i.e., -O3 and -xhost but without fast math). This
means the compiler is motivated to introduce SIMD instructions automatically if not
already done by the code generator. Intel-MPI 2019 is used for inter-node communication.
All simulations shown in this work are executed without using the energy-aware runtime
of the SuperMUC-NG cluster by setting –ear=off. This benchmark setting is recom-
mended, ensuring a constant CPU clock frequency. As shown in Table 9.1 792, compute
nodes form a single island, and inter-island communication is slower than intra-island
communication. For this reason, the option switches is used to force the jobs to use
the lowest number of islands possible. Again, this setting is recommended to ensure the
reproducibility of the benchmarks.

On the JUWELS Booster system, the software stack of Stage 2024 is used. Software
stages are logical bundles that provide software versions that are compatible with each
other. Within this software stage, compute unified device architecture (CUDA) version 12.2
and GCC-compiler version 12.3 are used to compile the code. Again, the highest compiler

5https://cerfacs.fr/en/cerfacs-computer-resources/
6https://developer.arm.com/Architectures/Neon
7https://developer.arm.com/documentation/102476/latest/
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optimisations are used without fast math for every benchmark. For inter-node communi-
cation, OpenMPI version 4.1.5 is linked against WALBERLA. Importantly, the MPI package
used here is build CUDA-aware. This means that pointers to device memory are directly
understood by MPI; thus, copies to host memory are unnecessary within WALBERLA.
Furthermore, fast direct connections between GPGPUs can reduce the communication
overhead during runtime. The four GPGPUs within a single node are connected with
NVLink3 8 which can provide a databridge with a speed of about 600 GBs−1 between the
GPGPUs.

The software on the LUMI supercomputer is organised into software stacks. Similar
to the stages on the JUWELS Booster system, these form a logical purpose of providing
compatible software versions within a stack. In this work, the LUMI/23.09 stage is used
together with the LUMI-G partition module and the lumi-CPEtools/1.1-cpeCray-23.09
module. This module provides a Clang compiler 9 with version 14.0.0 is provided. The
Clang version on the LUMI-G partition utilises the HIPCC 10 compiler driver utility, which
is a wrapper around the Clang compiler to enable target compilation of AMD GPGPU
code which uses the HIP language. Furthermore, the Cray software stack provides an MPI
library with MPI standard 3.1, which is linked to the AMD ROCm framework to enable
direct communication between connected GPGPUs. Thus, the MPI library understands
device pointers directly, and a manual copy to the host memory is obsolete. The GCDs on
different AMD MI250X accelerators are directly connected with either a single or double
Infinity Fabric link, which can provide a peak bidirectional bandwidth of 100 GBs−1 and
200 GBs−1, respectively.

9.2 Performance Modelling and Metrics

A simple metric to report a simulation’s performance is the time-to-solution. A big advan-
tage of this metric is that it is simple to measure. However, it hides certain crucial aspects
when comparing the performance of different simulation runs. Most importantly, this
concerns the used resources. For example, a simulation that took only half of the time as
another simulation but used four times the hardware resources should not be considered
as more performant. Thus, a suitable performance metric should take the resource usage
and the simulation time into account. A common metric used for the lattice Boltzmann
method (LBM) is lattice updates per second (LUPS), which is defined as

LUPS = total number of simulation steps∗ total number of cells

total simulation time
. (9.1)

Essentially, LUPS reports how many cells can be updated in a certain amount of time.
While this metric considers the number of cells, it does not consider the hardware re-
sources. Therefore, this chapter will report LUPS per hardware unit. Defining a suitable
hardware unit can be complex as well. In this work, a hardware unit is defined as a full chip.
This means that a single node of SuperMUC-NG should be defined with two hardware
units as two Intel chips are used, while a single node of JUWELS Booster or LUMI-G

8https://www.nvidia.com/en-us/data-center/nvlink/
9https://clang.llvm.org/get_started.html

10https://rocm.docs.amd.com/projects/HIPCC/en/latest/
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should be defined as four hardware units due to its four NVIDIA A100 or AMD MI250X
GPGPUs respectively. Modern CPU and GPGPU systems can typically update more than
109 lattice cells per second. Therefore, all performance results will be reported in giga
lattice updates per second (GLUPS).

Due to the intensive memory consumption of the LBM, it is commonly reported that
the stream-collide compute kernel is limited by the memory bandwidth [26]. Therefore,
the theoretical peak performance can be estimated by a roofline analysis as

Pmax = bs

nb
(9.2)

where bs describes the maximum available memory bandwidth and nb the number of
bytes that need to be transferred per lattice cell. The roofline model sets an upper bound to
the performance of a programme [209]. The underlying assumption is that data transfers
through the memory hierarchy overlap with code execution on the cores. While the
roofline model can not describe complex phenomena inside the chip’s memory hierarchy,
it is typically enough for the stream-collide compute kernel, which typically only accesses
direct neighbour cells. More complex cases are covered, e.g., by the Execution-Cache-
Memory (ECM) model, which considers the full memory hierarchy [210].

To determine the maximal memory bandwidth bs,max of the Intel Xeon Platinum 8174
installed on SuperMUC-NG and the Grace CPU, the LIKWID performance tools are used
[211]. In particular, LIKWID provides bandwidth benchmarks with the tool likwid-bench.
On both CPUs, the benchmark update is executed on the full chip, i.e., using all 24 cores
of the Intel Xeon Platinum 8174 and 72 cores of the Grace CPU respectively. The update
benchmark loops through a single array and updates each element with itself (A[i ] =
A[i ]). Therefore, it has a load/store ratio of one. This benchmark is chosen because
it best resembles the behaviour of highly optimised lattice Boltzmann (LB) compute
kernels using in-place streaming patterns as shown by Wittmann et al. [172]. The resulting
maximal memory bandwidth can be found in Table 9.3.

Table 9.3: Maximum memory bandwidth of all architectures analysed in this work. The maximum
bandwidth bs,max on the CPUs is determined using the update benchmark of likwid-bench,
while a handwritten update kernel was used on GPGPUs.

Architecture bs,max

Intel Xeon Platinum 8174, 3.1 GHz, 24 cores 94 GBs−1

NVIDIA A100 (40 GB) 1376 GBs−1

AMD MI250X (128 GB) 2476 GBs−1

NVIDIA H100 (96 GB) 3666 GBs−1

Grace CPU, 3.1 GHz, 72 cores 272 GBs−1

Since GPGPUs are not covered by the benchmarks contained in likwid-bench, a
handwritten update kernel is executed. The resulting maximum bandwidth bs,max is
reported in Table 9.3.
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9.3 Benchmark Setups

The following sections systematically analyse the performance of the generated LB ker-
nels. This is done in three steps: The first step analyses the single-chip performance
(see Section 9.4). A good single-chip performance is crucial for several reasons. Since
the performance of a single chip sets the starting point for any large-scale problems, it
is a critical first target for optimisations. Starting with a suboptimal single-chip perfor-
mance can lead to wrong conclusions from scaling experiments since the communication
overhead in large problems is more hidden by the longer time it takes to execute the
suboptimal compute kernel. Therefore, it can lead to an over-optimistic scaling result.
Furthermore, the optimised single-chip performance forms a good baseline for efforts to
decrease the energy consumption of the programme by decreasing the frequency of any
underused component of a chip [212]. Lastly, analysing the single-chip performance will
give a baseline performance that can be used to put large-scale runs into perspective.

A synthetic benchmark is used to evaluate the performance of the parallel LBM al-
gorithm on uniform and nonuniform grids. This synthetic benchmark aims to solve the
lid-driven cavity problem. The problem is defined on a unit boxΩ= [0,1]× [0,1]× [0,1]
with velocity bounce back boundary conditions at y = 1 and resting walls in every other
direction. An overview of the simulation setup is shown in Figure 9.2.

(a) x y-plane (b) Uniform setup (c) Non-Uniform setup

Figure 9.2: Setup of the lid-driven cavity performance benchmark. In (a), the x y-plane of the
developed flow is shown. The simulation consists of moving wall on the top, while resting walls
are used for every other wall. High velocities are coloured in red, while low velocities are shown in
blue. In (b), the uniform domain decomposition is shown using one block per process and in (c),
the non-uniform domain decomposition is shown where the top corners are refined. Blocks on
the coarsest level are shown in blue, and the finest blocks are shown in red.

One block per process is allocated to resolve the problem on a uniform domain (see
Figure 9.2b). This setup is analysed in two common scaling scenarios. The first one aims to
analyse the weak scalability. Here, the scalability where the problem size is increased with
the number of MPI ranks. In this way, every MPI rank always keeps the same workload.
This setup is achieved by distributing more blocks according to the number of ranks and,
thus, increasing the resolution of the problem accordingly. The second scaling analysis
aims to analyse the strong scalability. This means the problem size is kept constant, and
only the number of MPI ranks is increased. In this thesis, this is achieved by defining a
total domain size and increasing the number of blocks while decreasing their size, e.g.,
using fewer cells per block.
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Analysing the parallel performance on a uniform domain forms the basis for analysing
the performance on a non-uniform domain. The setup to resolve the lid-driven cavity on
a non-uniform grid is shown in Figure 9.2c. For this case, four mesh levels are used, and
the edges on the top of the domain are resolved with the finest mesh size. This setup is
identical to the work of Florian Schornbaum [29]. This means the weak scaling setup is
distributed from 16 MPI ranks onwards to have between 6 and 7 blocks on each MPI rank.
Thus, every rank holds four blocks of the finest resolution, one or two blocks of level two,
one or no block of level one and one or no block of level zero. The properties of this setup
are given in Table 9.4. To increase the problem size with the number of MPI ranks, the
domain is elongated in the z-direction.

On the other hand, the domain size is fixed for the analysis of the strong scalability,
and every MPI rank holds exactly one fine block and either one or no block from the
other levels. In this way, each MPI rank ends up with one or two blocks. With more MPI
ranks, the blocks will hold fewer and fewer cells, which results in more blocks overall while
keeping the domain size constant.

Table 9.4: Memory requirements and workload of the lid-driven cavity problem setup shown in
Figure 9.2c. Since cells of finer resolution are updated more frequently, the workload strongly
increases on finer mesh levels. In this setup, more than 80% of the workload is on the finest mesh
level, which only covers about 1.4% of the total domain.

L = 0 L = 1 L = 2 L = 3

domain coverage ratio 77.78% 16.67% 4.17% 1.39%
workload share 1.10% 3.76% 15.05% 80.13%
memory share 6.54% 11.22% 22.43% 59.81%

The total performance is reported in GLUPS for the single-chip benchmarks. The
performance is divided by the number of chips used for all scaling benchmarks on the
other side. This means for the CPU runs on SuperMUC-NG the performance is given
per Intel Xeon Platinum 8174 processor, while on JUWELS Booster and LUMI-G the
performance is given per NVIDIA A100 and AMD MI250X GPGPU respectively.

9.4 Single Node Performance

To analyse the single chip performance on the Intel Xeon Platinum 8174 processor and
the Grace CPU, only the collide kernel of the LBM is executed. We chose these chips to
analyse one x86 and an ARM-based architecture. This means boundary conditions and the
data exchange between WALBERLA’s blocks are neglected. All benchmarks are performed
MPI-only with a single block of 1283 cells per MPI rank. On both architectures, first, the
simplest collision model is selected, i.e., the single-relaxation-time (SRT) collision model
with a D3Q19 lattice stencil. The resulting compute kernel is generated with all streaming
patterns that are supported by LBMPY. These are the pull and the push streaming pattern,
which use two particle distribution function (PDF) arrays, and the AA-pattern, the Esoteric
Twist, the Esoteric Pull and the Esoteric Push streaming pattern, which operate on a single
PDF array. The idea of this benchmark is to analyse the behaviour of the different memory
access patterns first. Afterwards, the complexity of the compute kernel is changed by
switching from a D3Q19 stencil to a D3Q27 stencil and analysing various collision models.
These are the SRT, multiple-relaxation-time (MRT), regularised central moment (R-C),
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regularised cumulant (R-K) and the cumulant (K17) collision operator. The idea of the
second benchmark is to analyse the performance under an increasing computational
intensity as the collision models introduce more and more operations. The arithmetic
operations of each kernel are shown in Table 4.2.

In Figure 9.3, the resulting single-chip performance on the Intel Xeon Platinum 8174
processor is shown for different streaming patterns. In Figure 9.3a, the in-place streaming
patterns saturate the memory bandwidth at about 14 CPU cores and reach the maximum
achievable performance of 0.31 GLUPS. A dashed grey line indicates the theoretical peak
performance, calculated using the measured maximum bandwidth in Table 9.3. Both
two-field streaming patterns can not saturate the memory bandwidth and lose about 40
% of performance.
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Figure 9.3: Comparision of different streaming patterns on a single Intel Xeon Platinum 8174
processor on SuperMUC-NG. The kernels are generated using (a) no SIMD instructions and (b)
using AVX512 SIMD instructions. All kernels are compiled with the highest compiler optimisations.
This means in (a) the compiler is motivated to introduce vector instructions automatically. The
dashed grey line indicates the maximum performance.

Using AVX512 SIMD instructions changes the picture, as shown in Figure 9.3b. Now,
the pull streaming pattern can also saturate the memory bandwidth. The reason for this
is the usage of non-temporal stores. This means the stored values on the temporary PDF
vector are not automatically reloaded to the processor cache but only stored in the main
memory. PYSTENCILS can generate SIMD instructions which enforce this behaviour. How-
ever, non-temporal store instructions can only be applied to an aligned memory address.
In the code generation process, PYSTENCILS analyses the abstract syntax tree (AST) and is
able to introduce temporary pointer locations on the outer loops in a way that only aligned
memory addresses occur in the inner-most loop. Since the pull streaming pattern stores
all values cell local for every store operation, a non-temporal AVX512 intrinsic can be used.
The push streaming pattern writes to neighbours and performs unaligned stores, which
non-temporal store instructions can not enhance on x86 architectures. Therefore, the
resulting compute kernel cannot use the available memory bandwidth equally efficiently.
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For the in-place streaming patterns, non-temporal store operations play no role since
the PDF array is updated in place. Nevertheless, enhancing the compute kernels with
AVX512 instructions results in an earlier saturation, which means that the kernels can
utilise the full memory bandwidth already with ten CPU cores. It is thus a non-negligible
optimisation, which can save energy. Furthermore, the results presented here reveal that
all inplace streaming patterns show very similar behaviour on the Intel Xeon Platinum
8174 processor.

As a next step, compute kernels are generated with a D3Q27 stencil, the Esoteric
Twist streaming pattern, SIMD instructions and various collision models. The resulting
performance is shown in Figure 9.4. Due to the extended memory consumption of the
D3Q27 stencil, the maximum performance (indicated as a grey dashed line) is decreased.
Nevertheless, every collision model can saturate the maximum bandwidth at around 11
CPU cores. Except for the K17 model which needs a slightly higher core count for the
saturation. Nevertheless, this is an important insight as it shows that most complex colli-
sion models, like the cumulant K17 model, can be used without causing any performance
overhead compared to other collision models using the same discrete velocity set.
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Figure 9.4: Comparision of different collision models on a single Intel Xeon Platinum 8174 pro-
cessor on SuperMUC-NG. The kernels are generated using the D3Q27 velocity set, AVX512 SIMD
instructions and the Esoteric Twist streaming pattern. All kernels are compiled with the highest
compiler optimisations, and the grey dashed line indicates the theoretical peak performance.

Following the results of the x86 architecture, the same performance analysis is per-
formed on the Grace CPU. As a first step, the influence of the streaming step is investigated
by using an SRT collision model with the D3Q19 velocity set. The results of this inves-
tigation are shown in Figure 9.5, where the generated compute kernels use no SIMD
instruction in Figure 9.5a and SVE instructions in Figure 9.5b. Similar to the results on the
Intel Xeon Platinum 8174 processor, it is possible to saturate the maximum memory band-
width within a single chip. This is possible by using an in-place streaming pattern. The
pull or push streaming pattern can not saturate the memory bandwidth and eventually
misses about 25 % of the maximum performance.

To improve this situation, non-temporal stores within the SVE instruction set are
generated in the compute kernels of Figure 9.5b. However, this shows no noticeable
effect, and the resulting picture is similar. It must be noted that PYSTENCILS supports all
SIMD instruction sets that can be executed on the Grace CPU. Therefore, Neon SIMD
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instructions were also benchmarked, which showed no noticeable difference. This is
expected since the Grace CPU operates on 128-bit wide registers, which means that
in this case, there is no difference between SVE and Neon. SVE offers more specific
SIMD instructions like scatter and gather operations. However, these play no role in the
experiment here.
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Figure 9.5: Comparision of different streaming patterns on a single Grace CPU. The kernels are
generated using (a) no SIMD instructions and (b) using SVE SIMD instructions. All kernels are
compiled with the highest compiler optimisations. Hence, the compiler is motivated to introduce
intrinsics automatically in (a). The dashed grey line indicates the maximum performance.

Analysing the effect of the collision model is shown in Figure 9.6. Again, all collision
models can saturate the memory bandwidth of the CPU. On the Grace CPU, the minimal
needed cores to saturate the bandwidth varies more, which manifests in almost 40 cores
needed to saturate the K17 collision model. Nevertheless, even the most complex collision
model shows a comparable single node performance on 72 cores as the simplest collision
model.
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Figure 9.6: Comparision of different collision models on a single Grace CPU. The kernels are
generated using the D3Q27 velocity set and the Esoteric Twist streaming pattern. SIMD instructions
are not utilised since they seem to show no noticeable difference in the generated compute kernels
in Figure 9.5. All kernels are compiled with the highest compiler optimisations, and the grey
dashed line indicates the theoretical peak performance.
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The analysis of different chip architectures is extended to GPGPUs as a next step. Here,
the same systematic analysis is performed by first looking at the streaming pattern shown
in Figure 9.7. The stream-collide compute kernel is executed on a square domain with
3203 cells per GPGPU. Comparing the different streaming patterns on the NVIDIA A100,
H100, and the AMD MI250X shows that the pull streaming pattern generally delivers
the best absolute performance. This is because the pull streaming pattern uses only
aligned writes by writing all Q PDF values at the centre of the cell. The opposite of the
pull streaming pattern is the push streaming pattern, which writes all Q −1 PDFs to the
neighbouring cell. It can be seen that this streaming pattern generally shows the worst
performance. All in-place streaming patterns analysed in the scope of this thesis show a
performance close to the pull streaming pattern since they employ a mixture of aligned
and unaligned writes. Lehmann previously reported a similar result [40]. Furthermore, in
his study, he emphasised the advantage of streaming patterns from the Esoteric family
since they implicitly perform a noslip boundary condition. However, it must be noted
that it only works for the simple noslip boundary condition without interpolation.
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Figure 9.7: Comparision of different streaming patterns on an NVIDIA A100, AMD MI250X and an
NVIDIA H100 GPGPU.

The results of using the Esoteric Twist streaming pattern with various collision models
are shown in Figure 9.8. Besides the reduced performance due to the extended velocity
set, it can be shown clearly that all collision models show similar absolute performance.
Therefore, it can be concluded that the sophisticated mathematical optimisation within
the PYSTENCILS framework pays off fully. Even the most complex K17 cumulant kernel
can be optimised to stay memory-bound.

9.5 Scaling Behaviour on Uniform Mesh Configurations

Building upon the insights gained from the single-chip performance benchmarks, the
scaling behaviour of the lid-driven cavity is analysed using a uniform grid resolution.
Unlike the previous analysis, this investigation incorporates boundary conditions and
data exchange within WALBERLA’s block-structured framework. Each process is assigned
a single block in all scenarios, meaning that data exchanges occur only via non-blocking
MPI routines. The benchmarks focus on the scaling performance of the SRT collision
model using a D3Q19 lattice stencil, with the Esoteric Twist streaming pattern applied
across all compute kernels.
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Figure 9.8: Comparision of different collision models on an NVIDIA A100, AMD MI250X and an
NVIDIA H100 GPGPU.

As previously discussed, the choice of collision model often has minimal impact on
runtime performance, as the LBM is often bound by the hardware’s bandwidth. Never-
theless, for the sake of completeness, an extension to the benchmarks is provided in
Appendix B. There, we include results for the regularised cumulant collision operator with
a D3Q19 stencil and the K17 model with its D3Q27 stencil alongside the SRT model pre-
sented here. These models were selected due to their increased computational complexity
compared to the simple SRT model.

9.5.1 SuperMUC-NG

The weak and strong scaling results on the SuperMUC-NG supercomputer are presented
in Figure 9.9. For the weak scaling benchmark (compare Figure 9.9a), 4.2 ·106 cells are
allocated per core, and the simulation is scaled from a single node to 3072 compute nodes,
comprising 147456 CPU cores. This benchmark demonstrates near-perfect scalability
from 48 to 147456 cores. At the maximum scale, 147456 cores are used to simulate a
domain containing 6.18·1011 cells, achieving a total performance of nearly 1.6·103 GLUPS.

It is worth noting that the performance shows a slight decline from 1024 nodes on-
wards. This decrease coincides with using more than one island of SuperMUC-NG, re-
sulting in increased communication overhead due to the slower inter-island connection.
Despite this, the overhead is almost entirely mitigated, allowing the benchmark to main-
tain good scalability even at the largest scales.

The strong scaling benchmark (compare Figure 9.9b) was conducted using a total
domain size of 147.1 ·106 cells. As the number of MPI ranks increases, the subdomains
become progressively smaller, leading to a reduction in performance per core. At 1024
nodes, the strong scalability drops below 50 %, which is anticipated due to the increased
communication overhead caused by the slower network connection between two islands
of SuperMUC-NG. Despite this, 2464 timesteps per second can still be achieved on 3072
compute nodes. At this scale, each core processes fewer than 1000 lattice cells.

139



9. PERFORMANCE RESULTS

20 21 22 23 24 25 26 27 28 29 210211

0

0.1

0.2

0.3

Nodes (2×24 Intel Skylake 8174)

G
LU

P
S

/
C

P
U

(a) Weak scaling

20 21 22 23 24 25 26 27 28 29 210211

0

0.1

0.2

0.3

Nodes (2×24 Intel Skylake 8174)

G
LU

P
S

/
C

P
U

(b) Strong scaling

Figure 9.9: Weak (a) and strong (b) scaling behaviour of the lid-driven cavity problem on
SuperMUC-NG using a uniform mesh resolution.

9.5.2 JUWELS Booster

To analyse the weak scaling behaviour on JUWELS Booster, a domain size of 134 ·106

cells is allocated to each GPGPU. As the number of GPGPUs increases, the domain is
scaled proportionally, resulting in a total domain size of 1.4·1011 cells for the biggest setup.
Similar to the results on SuperMUC-NG, near-perfect scalability is achieved. On 1024
NVIDIA GPGPUs, a total performance of 3.9 ·103 GLUPS is demonstrated. The results of
the weak scaling analysis are illustrated in Figure 9.10a.
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Figure 9.10: Weak (a) and strong (b) scaling behaviour of the lid-driven cavity problem on JUWELS
Booster using a uniform mesh resolution.

To analyse the strong scaling behaviour of the simulation, a total domain size of
536.9 ·106 cells is used. This problem size is scaled across four to 1024 GPGPUs. As the
number of available hardware resources increases, the performance per GPGPU decreases.
Strong scalability eventually falls below 50% at 256 GPGPUs as shown in Figure 9.10b.
However, using 1024 GPGPUs, nearly 700 timesteps per second can be processed.
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9.5.3 LUMI-G

On the LUMI-G supercomputer, qualitatively similar behaviour is observed as on JUWELS
Booster. For the weak scaling benchmark, the same domain size per GPGPU is used, with
134 ·106 cells allocated per GPGPU. In contrast to JUWELS Booster, LUMI-G has a larger
number of GPGPUs, allowing the problem to scale from four to 4096 GPGPUs. At this scale,
it is possible to run a simulation with a total domain size of 5.5 ·1011 cells and achieve a
total performance of 23.5 ·103 GLUPS, see Figure 9.11a.

For context, some of the largest LBM simulations to date were performed by Liu et
al. [213]. Their work on the Sunway TaihuLight supercomputer [214] used a uniform
grid of 5.6 ·1012 lattice cells, achieving a total performance of 11.2 ·103 GLUPS. Although
the maximum domain size in the present study is approximately ten times smaller, the
simulations are nearly twice as fast, making them, to the author’s best knowledge, the
fastest LBM runs performed to date in terms of total GLUPS.
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Figure 9.11: Weak (a) and strong (b) scaling behaviour of the lid-driven cavity problem on LUMI-G
using a uniform mesh resolution.

A total domain size of 1.07·106 cells is allocated to analyse the strong scaling behaviour.
This domain is scaled from four to 4096 GPGPUs. As the number of GPGPUs increases,
the performance per unit decreases. When more than 256 GPGPUs are used for this
problem, the strong scalability falls below 50%, which mirrors the behaviour observed on
the JUWELS Booster system. The results are illustrated in Figure 9.11b.

9.6 Scaling Behaviour on Non-uniform Mesh Configurations

Building on the scaling behaviour on a uniform domain, the scaling behaviour of the
lid-driven cavity problem is analysed using four mesh levels in the domain. Hence, the
interpolations between gird transitions need to be taken into account, and the time-
stepping algorithm becomes recursive to realise the temporal refinement as well. This
section presents the behaviour of the SRT collision model with a D3Q19 stencil using an
Esoteric Twist streaming pattern. Additional benchmarks are gathered Appendix B for
more advanced collision models and extended lattice stencils.
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9.6.1 SuperMUC-NG

The first setup analysis is the weak scalability on SuperMUC-NG. In this setup, each CPU
core manages 3.5 ·106 lattice cells. The simulation is scaled from 48 cores to 98304 cores,
resulting in a total domain size of 3.44 ·1011 lattice cells for the largest setup. As shown in
Figure 9.12a, near-perfect weak scaling is achieved. At 98304 cores, the simulation reaches
a total performance of 0.91 ·103 GLUPS. Compared to the uniform setup, the non-uniform
setup exhibits approximately 16% lower absolute performance due to increased data
exchange between the blocks.

This result shows a clear improvement over the previous findings of Schornbaum
[29], who reported that the refinement algorithm causes a performance loss of a factor
between 2 and 2.5 compared to uniform mesh resolution. However, the results presented
here demonstrate a significantly smaller overhead.
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Figure 9.12: Scaling behaviour of the lid-driven cavity problem on SuperMUC-NG using simulation
setup with four different mesh levels. The weak scalability is pictured in (a), while (b) shows the
strong scaling capabilities.

For the strong scaling analysis in Figure 9.12b), a total domain size of 3.6 ·108 lattice
cells is distributed across four compute nodes. This domain is scaled up to 512 nodes,
resulting in a total of 24.576 CPU cores. Despite a performance drop when scaling from
four to eight nodes, the simulation demonstrates relatively good strong scalability overall.
At 24.576 cores, executing approximately 192 coarse timesteps per second is possible. This
is equivalent to 1536 timesteps on the finest mesh level. Unfortunately, runs on higher
core counts have shown system errors, and it was possible to repeat the measurements
due to time restrictions.

9.6.2 JUWELS Booster

For the weak scaling analysis on JUWELS Booster, each GPGPU holds 112.2·106 lattice cells
for the largest setup. The problem is scaled from 16 GPGPUs up to 1024 GPGPUs, leading
to a total simulation domain size of 1.1 ·1011 lattice cells. At this scale, the simulation
achieves a performance of 2.5 ·103 GLUPS. Similar to the results observed on SuperMUC-
NG, near-perfect scalability is realised in this configuration. However, it is notable that the
refinement algorithm employed on JUWELS Booster achieves only approximately 64%
of the performance compared to the uniform grid setup. This reduction in performance
comes from the small compute kernels responsible for the mesh transition. Small compute
kernels are inherently bad on GPGPUs and lead to the situation that the hardware can not
be saturated. The results are illustrated in Figure 9.13a.
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Figure 9.13: Weak (a) and strong (b) scaling behaviour of the lid-driven cavity problem on JUWELS
Booster using simulation setup with four different mesh levels.

A total domain of 3.6 ·109 lattice cells is used to analyse the strong scaling behaviour.
As the number of GPGPUs increases, performance per unit decreases. From 512 GPGPUs,
strong scalability drops below 50 %. In this configuration, executing approximately 75
timesteps per second on the coarsest mesh is possible, which translates to about 600
timesteps per second on the finest mesh level. The results are illustrated in Figure 9.13b

Compared to the weak scaling benchmark, this strong scaling benchmark achieves
only around 40% of the performance at 64 GPGPUs. This performance discrepancy arises
from the benchmark’s design and is consistent with the behaviour observed in the strong
scaling analysis on SuperMUC-NG. Schornbaum’s scaling analysis also reports similar
findings [29]. The issue stems from the fact that each process handles between one and
four blocks, leading to an inherently unbalanced block structure that cannot be efficiently
balanced across all mesh levels. In fact, this setup is only balanced on the finest mesh
level, while all other mesh levels remain highly unbalanced.

9.6.3 LUMI-G

Finally, the scaling analysis on non-uniform meshes is extended to LUMI-G. For the
weak scaling analysis in Figure 9.14a, 219 ·106 lattice cells are allocated per GPGPU. The
benchmark is conducted starting from 8 GPGPUs. Apart from a drop in performance at
1024 GPGPUs, consistent performance is maintained across the range of configurations
tested. We could not find a possible explanation for the performance drop at 1024 GPGPUs.
However, due to the large scale of this experiment, we also did not repeat the experiment.
Overall, a weak scalability of 90% is achieved. At the maximum scale of 4096 GPGPUs,
the total simulation domain consists of 1.8 ·1012 fluid cells, delivering a performance of
19.8 ·103 GLUPS, which is illustrated in Figure 9.14a.

This achievement makes the simulation performed as part of this thesis the largest
LBM simulation on non-uniform grids in terms of lattice cells and the fastest in terms of
absolute performance that has ever been reported in the literature [23, 24]. Compared to
the results of Schornbaum, this work demonstrates a benchmark with more than twice
the domain size and over 20 times the performance [29].
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Figure 9.14: Scaling behaviour of the lid-driven cavity problem on LUMI-G using simulation setup
with four different mesh levels. The weak scalability is pictured in (a), while (b) shows the strong
scaling capabilities.

For the strong scaling analysis on LUMI-G, a total domain size of 7.2 ·109 lattice cells
is used. The benchmark is conducted across a range from 32 GPGPUs to 4096 GPGPUs.
As shown in Figure 9.14b, the performance per GPGPU decreases progressively as more
hardware is employed. Notably, at 512 GPGPUs, strong scalability drops slightly below
50%. Despite this decline, the benchmark achieves a maximum of 211 timesteps per
second on the coarsest mesh, which corresponds to 1688 timesteps per second on the
finest mesh level.

9.7 Impact of Numerical Precision

An approach to enhance the runtime performance of a simulation is to reduce the pre-
cision of the data arrays and the computations. This reduces the memory footprint and
can improve performance for memory-bound compute kernels, such as the LBM. How-
ever, it may also result in unacceptable inaccuracies in the simulation results. Therefore,
a thorough accuracy analysis is essential before assessing performance. The literature
discusses two main approaches for utilising data types of lower numerical precision in
the context of the LBM [151]. The first approach is to apply reduced precision generally,
meaning that all calculations are performed with reduced precision, and all arrays are
stored using a data type with the same numerical precision [60, 215, 216]. The second
approach involves storing the PDF array with reduced precision and promoting the array
to a higher precision when loading from memory. Then, the collision step is executed,
and afterwards, the results are downcasted before storing the PDF array again.

Under this background, we can identify four possibilities which we analyse in this
thesis:

DP The PDF array is stored using a 64-bit wide format (double precision), and the colli-
sion is executed in the same precision.

DPSP The PDF array is stored using a 32-bit wide format (single precision), and the
collision is executed using double precision. Hence, data casts are inserted when
loading and storing the PDF array.

SP The PDF array is stored using a 32-bit wide format, and the collision is executed with
the same precision.
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SPHP The PDF array is stored using a 16-bit wide format (half precision), and the collision
is executed using single precision. Hence, data casts are inserted when loading and
storing the PDF array.

While many possibilities exist to represent floating point number formats, we will only
focus on IEEE-754 formats here [217]. Custom formats for the LBM with 16-bit wide
floating point have been recently introduced by Lehmann et al. [151]. Hence, the interested
reader is referred to their work for more information.

In order to assess the impact of the used floating point precision on the numerical
accuracy, we replicate a test case recently published in [151] involving the Taylor-Green
vortex flow. In this work, however, we use a three-dimensional version of the Taylor-Green
vortex problem. This is achieved by extending the two-dimensional problem of Lehmann
et al. [151] in the z-direction with a zero velocity in the third dimension. The Taylor-
Green vortex setup consists of a periodic box of vortices and is initialised with a velocity
magnitude of u0. The transient decay of the vortices is simulated and compared to the
known analytic solution. The analytic solution, which also specifies the initial flow field,
reads

ux (x , t = 0) = u0 cos(κx) sin
(
κ y

)
exp

(−2νκ2t
)

,

uy (x , t = 0) =−u0 sin(κx) cos
(
κ y

)
exp

(−2νκ2t
)

,

uz (x , t = 0) = 0,

ρ (x , t = 0) = 1− 3u2
0

4

(
cos(2κx)+cos

(
2κ y

))
exp

(−4νκ2t
)

.

(9.3)

The system is initialised at t = 0 with u0 = 0.25. We set the kinematic shear viscosity to
ν= 1

6 , which results in the viscosity-governing relaxation rate ω= 1. Furthermore, κ= 2π
L

and L = 128 is the side length of the squared domain. The initialisation of the benchmark
is pictured in Figure 9.15.
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Figure 9.15: Initialisation of the Taylor-Green vortex benchmark with u0 = 0.25, ν= 1
6 ,ω= 1, κ= 2π

L
and L = 128. The figure shows the Q-criterion of the velocity at the initial timestep.
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When using reduced precision, it is essential to reduce the round-off errors which
occur in the calculation of the collision step of the LBM. One of the most important
optimisations in this regard has been introduced by Skordos [141]. His work aimed to
identify a background density ρ0 that can be subtracted from the PDFs. In the scope of
this thesis, we have introduced this optimisation in LBMPY for all collision models [1]. In
the remainder of this section, only optimised compute kernels are shown. This means
compute kernels, where the PDFs fluctuate around zero.

In Figure 9.16, the analytical solution for the kinetic energy (compare Equation (9.3))
is compared with the simulated results. Due to viscous friction, the vortex velocity and,
consequently, the kinetic energy is expected to decay exponentially. The simulation accu-
rately reflects this behaviour until, at a certain point, the simulated energy levels off onto
a plateau. This phenomenon arises because lower velocities can no longer be accurately
represented, owing to truncation errors introduced by the floating-point number format.
For the IEEE-754 double precision format [217], the truncation error is ϵ = 2.2 · 10−16.
Given the squared calculation of the kinetic energy, the plateau is expected to occur at
approximately ϵ2. Here, the kinetic energy is calculated as

E (t ) =
∫ L

0

∫ L

0

∫ L

0

ρ

2

(
u2

x +u2
y +u2

z

)
d x d y d z = u2

0π
2 exp

(−4νκ2t
)

, (9.4)

and we denote the initial kinetic energy as E0 = E (0). Several important results can
be taken from Figure 9.16. First, using double precision for the collision step and the
storage of the PDF array achieves the lowest plateau and, hence, the highest accuracy.
Second, using a mixed format (DPSP) achieves almost similar accuracy, while a pure
single precision compute kernel (SP) leads to much lower accuracy. Using single-precision
computations and storing the PDF array in half-precision (SPHP) does not lead to the same
improvement as the single-, double-precision counterpart (DPSP). Hence, it indicates that
half-precision truncates the PDF array too severely. Lastly, an important insight is that
both the SRT and cumulant collision model achieve similar accuracy in all benchmarks.
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Figure 9.16: Relative energy E (t )/E0 for various numerical precisions (DP, DPSP, SP, and SPHP) and
collision models.
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After analysing the accuracy of the compute kernels, we analyse their performance
on an NVIDIA H100 GPGPU. This is shown in Figure 9.17. All compute kernels use a
D3Q19 lattice stencil and the pull streaming pattern. Due to the memory-bound nature
of the LBM, it can be seen that both SP and DPSP can achieve double the performance
of a pure double precision kernel (DP). In this version, only half of the memory needs
to be transferred from the main memory, which explains the speedup. Furthermore, the
mixed half-precision kernel can achieve another speedup. However, the speedup is less
significant than the jump from double to single precision.
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Figure 9.17: Comparision of the performance of generated compute kernels for the SRT and the
cumulant collision model using a D3Q19 lattice stencil and the pull streaming pattern on an
NVIDIA H100 GPGPU. The compute kernels use different numerical precision to compute the
collision step and store the PDF array.

The performance improvements shown in Figure 9.17 make using a lower data format
an attractive option. However, it must be emphasised that numerous remaining questions
still need to be answered in this direction. First of all, we have only analysed a simple
benchmark case here. Hence, the influence on complex single-phase or multiphase flows
still needs to be shown. One important aspect is that the optimisation by Skordos [141] is
designed explicitly for hydrodynamic LBMs. This means LBMs that recovers the Navier-
Stokes equations (NSEs). For other equations (e.g., the Allen-Cahn equation (ACE)) it
might be less effective because the background density undergoes higher fluctuations.
Furthermore, we have not analysed the accuracy of highly turbulent flows on refined
meshes. However, the drag-crisis, as shown in Chapter 6, was first recovered by Geier et
al. using only single precision [60]. This indicates that pure single-precision calculations
might be enough even for these cases.

147





C
H

A
P

T
E

R

10
CONCLUSIONS & PERSPECTIVES

10.1 Results Summary

The exascale computing era is driven by specialised hardware, continuing the trend
of advancing Moore’s Law. While heterogeneous supercomputers have surpassed the
exaFLOP threshold, efficiently utilising these resources presents a significant challenge for
application developers. Code generation techniques offer promising solutions to address
that issue. In this research, we have explored these techniques to enable large-scale
simulations using the lattice Boltzmann method (LBM). The toolchain we have developed
here is structured at distinct levels and serves a clear, distinct purpose.

While the hardware landscape becomes increasingly complex, numerical solvers are
naturally complicated. The LBM is no exception. Over the past decades, increasingly
sophisticated collision models have been proposed to extend the LBM, e.g., for highly
turbulent or multiphase flow conditions. In this thesis, we have significantly enhanced
LBMPY to describe and generate these advanced models. This involved utterly restruc-
turing the software to modularise the description and derivation of LBMs. The resulting
state-of-the-art compute kernels demonstrate an especially low number of floating point
operations per second (FLOPS). Additionally, we have optimised and extended the col-
lision models to support multiphase and thermocapillary flows. Furthermore, we have
added recently formulated boundary conditions, which show greater accuracy around
complex geometries. These developments make LBMPY an increasingly useful tool for
computer science, physics and research.

The resulting symbolic description of the LBM can be transformed into highly opti-
mised, hardware-specific compute kernels using the PYSTENCILS package. For this code
generation package, we have made essential advancements. We have extended it to sup-
port a broader range of hardware. On the central processing unit (CPU) side, this includes
expanding support for single instruction, multiple data (SIMD) instruction sets, such
as those used by ARM CPUs. On the accelerator side, we have added support for AMD
general purpose graphics processing units (GPGPUs), which are extensively utilised in the
world’s largest supercomputers at the time of writing.
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Finally, the extensions to the code generator toolchain have resulted in highly opti-
mised compute kernels that have been integrated into the WALBERLA framework. The
closer integration of the code generator with WALBERLA that we have developed has
enabled complex enhancements that significantly boost WALBERLA’s capabilities. This
includes a complete overhaul of the mesh refinement algorithm, now based on the code
generator. By leveraging PYSTENCILS and LBMPY to produce optimised compute kernels
at the grid interface, a new algorithm has been developed that is independent of the LBM
streaming pattern and requires fewer ghost layers around WALBERLA’s block structures.
In this research, we have implemented the new refinement algorithm in WALBERLA. This
implementation is compatible with CPU and GPGPU architectures.

The enhanced capabilities of the code generation toolchain, combined with WAL-
BERLA, have been demonstrated in this thesis through numerous complex applications.
We have used the new refinement algorithm to replicate the drag crisis of a spherical
object in a simulation setup using GPGPUs. The drag crisis occurs under highly turbulent
flow conditions, which can only be simulated through the extension of LBMPY with state-
of-the-art collision models and boundary treatments. This achievement underscores
the synergy between the code generation framework and the domain decomposition
capabilities of WALBERLA.

Additionally, we have analysed multiphase slug flow problems in a complex annulus
pipe configuration. These simulations demand a high level of detail, necessitating a super-
computer. The results are consistent with the existing literature for base cases and extend
the literature to more complex setups. Building on the newly integrated multiphase capa-
bilities, we have examined thermocapillary flows in a three-dimensional configuration.
The simulation results indicate that two-dimensional simulations are inadequate for engi-
neering design decisions, highlighting the necessity of three-dimensional simulations,
which again require highly optimised compute kernels.

We have conducted a comprehensive benchmark analysis to assess the computa-
tional performance and efficiency of the developments achieved in this thesis. We could
demonstrate consistent performance across various CPU and GPGPU platforms, starting
from a single chip. Our analysis includes the latest hardware used in the most powerful
supercomputers at the time of writing. Additionally we have compared the measured
performance results to a suitable performance model in order to be able to classify them.
For uniform and non-uniform mesh configurations, we investigated scaling from this
baseline. These results provide valuable insights into various aspects, allowing researchers
to estimate computational overhead arising from factors such as the streaming pattern,
collision model, hardware, or mesh configuration. To the author’s knowledge, the scaling
runs represent some of the largest simulations performed with the LBM on uniform mesh
configurations and the largest on non-uniform configurations to date. This clearly shows
that WALBERLA is ready for the exascale era.

We have added all concepts and algorithms which have been presented in this thesis
to PYSTENCILS, LBMPY and WALBERLA. The benchmark cases for the uniform and the
non-uniform setup and all application codes are available and can be downloaded freely.
Hence, all work presented here is available under an open-source licence because all
individual frameworks are open-source.
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10.2 Future Work

The research we have presented here opens the door for numerous future developments.
In this work, we have extended WALBERLA for AMD GPGPUs. However, at this point, Intel
also started to release new types of GPGPUs. In fact the second largest supercomputer
(according to the Top500 of June 20241), Aurora2 is powered by Intel GPGPUs. Remarkably,
the Aurora system also breaks the exaFLOPS barrier, which shows the importance of
supporting Intel GPGPUs in the future.

To support this architecture, PYSTENCILS might need a new backend, which introduces
relevant optimisations. However, WALBERLA needs to be extended to integrate the new
architecture into the framework. This could be realised by employing recent developments
of the C++ standard library or using a library like SYCL3.

Either way, a stronger integration of accelerator hardware in WALBERLA would be
desirable in general. Due to the developments in the code generation pipeline, the inte-
gration of accelerators was generally kept thin. This was favourable because it resulted in
a relatively simple framework structure. However, it prohibits more complex algorithms
like adaptive mesh refinement. In these scenarios, the mesh structure changes during the
simulation. Thus, ideally, the octree structure is available for accelerators to some extent.
Similarly, this would open the door to removing data exchanges for blocks on the same
processor. If the octree structure is known on the accelerator, data of neighbouring blocks
could be fetched directly instead of using additional data passes within the pack info.

In this work, we have shown that we can successfully recover the drag crisis of a
spherical object. Here, we used a rather simple scheme to transport data between grid
levels. An interesting future work would be to use more complex schemes like the compact
interpolation of [149].

The multiphase simulations we have conducted in this thesis show interesting insights
into the behaviour of Taylor bubbles in complex pipe configurations. However, it was not
possible to study the interaction of Taylor bubbles with each other due to stability issues
in these simulations. This opens the door for future improvements. One idea might be to
use a pressure-based cumulant formulation for the hydrodynamic solver, as shown by
Sitompul and Aoki [218]. However, their work also used filtering techniques on the density
and velocity field. It would be interesting to analyse how such techniques influence the
accuracy of the Taylor bubble simulations. Another idea might be using adaptive mesh
refinement, which goes along with the earlier points. A starting point for adaptive mesh
refinement with the conservative Allen-Cahn model (CACM) is given by Fakhari et al. [50].

The thermocapillary studies we have shown in this thesis are proof that our develop-
ments enable us to recover the correct behaviour of thermocapillary systems. However, so
far, we have only looked at the general behaviour and did not compare our simulations
with three-dimensional experimental data. A recent article that delivers experimental data
for interesting thermocapillary systems was published by Won et al. [204]. Following their
work, the thermocapillary algorithm of WALBERLA could be validated with experimental
data.

1https://top500.org/lists/top500/2024/06/
2https://www.anl.gov/aurora
3https://www.khronos.org/sycl/
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Another interesting aspect would be the analysis of the energy consumption of the
generated compute kernels. For handwritten kernels, Wittmann et al. [212] argues that a
low computational intensity can lead to energy savings because it can allow lowering the
clock speed of a CPU without sacrificing much performance. While efforts in this direc-
tion have been started in this thesis [7], it would be interesting to perform a systematic
analysis of the various collision models that LBMPY supports and to show the effect of
the sophisticated mathematical optimisations that are applied. Furthermore, this work
could be performed on different state-of-the-art architectures to showcase the impact in
various scenarios.

152



A
P

P
E

N
D

I
X

A
ANALYTIC SOLUTION OF PLANAR HEATED CHANNEL

The analytical solution for thermocapillary-driven convection of superimposed fluids
was derived in the work of Pendse et al. [201]. In this chapter, we present the result for
the temperature and the velocity field along with the necessary assumptions for the
solution to hold. First, it is important to define the flow regime which is analysed here.
Typical applications that lay the foundation of the analytical analysis of Pendse et al. are
in the size of L = 100 ·10−6 m and H = 50 ·10−6 m for the length and the height of the
channel respectively. Furthermore, they considered temperature gradients in the range
of |∇T | = 1 ·10−2 Km−1, surface tension gradients in the range of σT =−1 ·10−4 Nm−1 K,
a surface tension in the range of σref = 0.3Nm−1, a kinematic viscosity in the range of
ν= 1 ·10−5 m2 s−1, and a thermal diffusivity in the range of κ= 1 ·10−5 m2 s−1. These length
scales and fluid properties lead to typical dimensionless numbers of Re ≪ 1, Ma ≪ 1, and
Ca ≪ 1, respectively.

The analytical solution is then derived from the governing equations. These are the
conservation of mass and momentum and the balance of thermal energy at the steady
state. Since the considered fluids are incompressible, immiscible, and Newtonian, and
the dimensionless numbers are small, it is possible to ignore the convective transport
of momentum and energy. Furthermore, through Ca ≪ 1 it can be concluded that the
interface remains flat, which further simplifies the problem. The resulting simplified
governing equations are

∇u = 0, (A.1)

−∇p +µ∇2u = 0, (A.2)

∇2T = 0. (A.3)

Notably, the LBM allows for small fluctuations of the density and, thus, the incompressibil-
ity condition can not be fulfilled perfectly. This is generally problematic for the CACM and
improvements are made by the pressure formulation of the hydrodynamic solver as shown
in Section 3.3.2. Furthermore, the equations are coupled together with jump conditions
which are not exactly represented by the smooth interface that appears in phase-field
models like the CACM. Building on these assumptions, the boundary conditions (see
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Equations (8.1) and (8.2)), and the assumptions that the temperature and the heat flux
must be continuous at the interface, it is possible to derive an analytic solution for the
temperature field. It reads,

T (x, y) = T (x, y)′+ �T (y), (A.4)

where

�T (y) =


κH(Tc −Th)y +κLTc b +κHTh a

aκH +κLb
, y > 0,

κL(Tc −Th)y +κLTc b +κHTh a

aκH +κLb
, y ≤ 0,

(A.5)

is the linear temperature field and

T (x, y)′ =
{

T0 f (ar ,br ,κ∗)sinh
(
ar −ωy

)
cos(ωx), y > 0,

T0 f (ar ,br ,κ∗)
[
sinh(ar )cosh

(
ωy

)−κ∗ sinh
(
ωy

)
cosh(ar )

]
cos(ωx), y ≤ 0,

(A.6)
is the perturbation temperature field and a = b = H/21. Furthermore, the unknown
parameters are defined as

ar = aω, br = bω, (A.7)

f (ar ,br ,κ∗) = 1

κ∗ sinh(br )cosh(ar )+ sinh(ar )cosh(br )
. (A.8)

Similarly, Pendse et al. [201] found a solution for the velocity field which reads,

u(x, y) =Um{[C1 +ω(C2 +C3 y)]cosh
(
ωy

)+ (C3 +ωC1 y)sinh
(
ωy

)
}sin(ωx), (A.9)

v(x, y) =−ωUm[C1 y cosh
(
ωy

)+ (C2 +C3 y)sinh
(
ωy

)
]×cos(ωx), (A.10)

where the x- and y-components of velocity are given by u and v , respectively. The addi-
tional parameters in the previous equations are expressed as,

C1 =


sinh2(ar )

sinh2(ar )−ar
2

y > 0,

sinh2(br )

sinh2(br )−br
2 y ≤ 0

C2 =


−aar

sinh2(ar )−ar
2

y > 0,

C2
b = −bbr

sinh2(br )−br
2 y ≤ 0

(A.11)

C3 =


2ar − sinh(2ar )

2[sinh2(ar )−ar
2]

y > 0,

−2br + sinh(2br )

2[sinh2(br )−br
2]

y ≤ 0
(A.12)

Um =−
(

T0σT

µh
sinh ar f (ar ,br ,κ∗)h(ar ,br ,µ∗)

)
, (A.13)

h(ar ,br ,µ∗) =
(
sinh2(ar )−ar

2
)(

sinh2(br )−br
2)

µ∗ (
sinh2(br )−br

2) (sinh(2ar )−2ar )+ (
sinh2(ar )−ar

2
)

(sinh(2br )−2br )
. (A.14)

1The values for a and b need to be adapted respectively if the interface of the fluids is not exactly dividing
the channel in half
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EXTENDED SCALING ANALYSIS

Extended scaling results are presented in this section. The benchmarks shown here share
the same configuration as reported in Section 9.5 and Section 9.6. However, additional
collision models are added to show their scaling behaviour in comparison to the single-
relaxation-time (SRT) collision model. The first collision setup is the regularised cumulant
collision operator (R-K) using a D3Q19 lattice stencil, and the second model is the K17
collision operator, which uses a D3Q27 lattice stencil. The two collision models are chosen
because these are the most complex models for the respective lattice stencil. This means
they show the most FLOPSs.
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(d) Strong scaling JUWELS Booster
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Figure B.1: Weak and strong scaling benchmarks of various collision models on SuperMUC-NG (a)
and (b), JUWELS Booster (c) and (d), and LUMI-G (e) and (f). All benchmarks use a uniform mesh
resolution.
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(d) Strong scaling JUWELS Booster
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Figure B.2: Weak and strong scaling benchmarks of various collision models on SuperMUC-NG (a)
and (b), JUWELS Booster (c) and (d), and LUMI-G (e) and (f). All benchmarks use a non-uniform
mesh resolution.
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