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Abstract 

By 2050, two-thirds of the world’s population will live in urban areas under climate change, 

exacerbating the environmental and public health risks associated with poor air quality and urban 

heat island effects. Assessing these risks requires the development of microscale meteorological 

models that quickly and accurately predict wind velocity and pollutant concentration with high 

resolution, as the heterogeneity of urban environments leads to complex wind patterns and strong 

pollutant concentration gradients. Computational Fluid Dynamics (CFD) has emerged as a powerful 

tool to address this challenge by providing obstacle-resolved flow and dispersion predictions. 

However, CFD models are very expensive and require intensive computing resources, which can 

hinder their systematic use in practical engineering applications. They are also subject to significant 

uncertainties, particularly those arising from the mesoscale meteorological forcing and the internal 

variability of the atmospheric boundary layer, some of which are aleatory and thereby irreducible. 

Given these issues, the construction of CFD datasets that account for uncertainty would be an 

interesting avenue of research for microscale atmospheric science. 

In this context, we present the PPMLES (Perturbed-Parameter ensemble of MUST Large-Eddy 

Simulations) dataset, which consists of 200 large-eddy simulations (LES) characterizing the complex 

interactions between the turbulent airflow, the tracer dispersion, and an idealized urban 

environment. These simulations reproduce the canonical MUST dispersion field campaign while 

perturbing the model’s mesoscale meteorological forcing parameters. PPMLES includes time series at 

human height within the built environment to track wind velocity and pollutant release and 

dispersion over time. PPMLES also includes complete 3-D fields of first- and second-order temporal 

statistics of the wind velocity and pollutant concentration, with a sub-metric resolution. The 

uncertainty of the fields induced by the internal variability of the atmospheric boundary layer is also 

provided. The computation of PPMLES required significant resources, consuming 6 million CPU core 

hours, equivalent to the emission of approximately 10 tCO2eq of greenhouse gases. This significant 

computational effort and associated carbon footprint motivates the sharing of the data generated. 

                  



The added value of the PPMLES dataset is twofold. First, the perturbed-parameter ensemble of 

LES enables to quantify and understand the effects of the mesoscale meteorological forcing and the 

internal variability of the atmospheric boundary layer, which has been identified as a major challenge 

in predicting atmospheric flow and pollutant dispersion in urban environments. Secondly, PPMLES 

reference data can be used to benchmark models of different levels of complexity, and to extract key 

information about the physical processes involved to inform more operational modeling approaches, 

for example through learning surrogate models. 

 

SPECIFICATIONS TABLE 
 

Subject Atmospheric Science 

Specific subject 

area 

Large-eddy simulations of microscale wind flow and pollutant concentration in an 

idealized urban environment and for varying mesoscale meteorological forcing 

 

Type of data Dataset (HDF5), Table (CSV), 

Raw and processed simulation results. 

Data collection The data were obtained by running an ensemble of 200 large-eddy simulations 

reproducing the MUST field trial #2681829 thanks to the AVBP1 solver. The 

simulations were run on four different supercomputers:  CERFACS’ Nemo (Intel 

Haswell) and Kraken (Intel Skylake), Météo-France's Belenos (AMD Rome), and 

TTGC’s Joliot-Curie (Intel Skylake/AMD Rome). No simulation was excluded, and 

the raw results were post-processed to provide temporal statistics and 

uncertainty estimates.  

Data source 

location 

CECI, Université de Toulouse, CNRS, CERFACS 

Data accessibility Repository name: PPMLES – Perturbed-Parameter ensemble of MUST Large-Eddy 

Simulations 

Data identification number: 10.5281/zenodo.11394347  

Direct URL to data: https://zenodo.org/records/11394347 

 

Related research 

article 

None. 

 

 

                                                           
1
 AVBP LES code [7], see https://www.cerfacs.fr/avbp7x/ (Accessed 2025-01-02). 

                  



VALUE OF THE DATA 
 These data are useful for understanding the complex interactions between the atmospheric 

boundary layer and the dispersion of pollutants in urban environments, through the example 

of the canonical MUST field experiment, which corresponds to an idealized urban 

environment made of regularly-spaced shipping containers. 

 The dataset consists of a perturbed-parameter ensemble of 200 high-fidelity large-eddy 

simulations, with each simulation sample corresponding to a different mesoscale 

meteorological forcing to provide an indication of the envelope of possible microscale urban 

flow and pollutant concentration scenarios. 

 The dataset includes time series at human height to track the pollutant release and 

dispersion over time as well as complete 3-D fields of time-averaged statistics of the steady-

state wind velocity and pollutant concentration at a high spatial resolution (sub-meter), 

together with the associated uncertainties. 

 These data can be used as learning data to train surrogate models, allowing researchers to 

experiment with new machine learning architectures to accelerate the prediction of 

microscale atmospheric processes. 

 Researchers can use and potentially extend this dataset for multi-model comparisons to 

assess the structural uncertainty in large-eddy simulations. 

 

 

 

BACKGROUND 
The PPMLES (Perturbed-Parameter ensemble of MUST Large-Eddy Simulations) dataset was 

originally computed in [1] to better understand the near-field dispersion of air pollutants in an 

idealized urban environment and at a very high resolution (i.e., sub-meter scale), and  to gain insight 

into its sensitivity to mesoscale meteorological forcing.  

Although several datasets of wind tunnel measurements of pollutant concentrations in idealized 

urban environments are available (e.g. CEDVAL2), they cannot represent the full range of 

atmosphere-urban interactions. Field-scale experiments are more representative but they are costly, 

their mesoscale conditions cannot be controlled, and they provide data that are spatially scarce. This 

has motivated the construction of an LES dataset with high spatio-temporal resolution and for a wide 

range of mesoscale meteorological forcing. The selected case, the MUST campaign [2][3], has been 

used for a multi-model intercomparison [4], but access to the simulation data has not been 

maintained.  

The PPMLES dataset was a used to train a surrogate model that emulates the response surface of 

the LES model [1][5]. This surrogate, which makes instantaneous predictions, was then used in a data 

assimilation framework to reduce the uncertainty in pollutant concentration predictions using local 

measurements.  
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 CEDVAL datasets, see https://www.mi.uni-hamburg.de/en/arbeitsgruppen/windkanallabor/data-sets.html (Accessed: 

2024-09-23). 

                  



DATA DESCRIPTION 
The PPMLES dataset is a perturbed-parameter ensemble of 200 large-eddy simulations (LES) of 

wind flow and pollutant dispersion in the canonical MUST idealized urban environment 

corresponding to an array of regularly-spaced shipping containers [2][3]. Each LES replicates the 

MUST field experiment for a different mesoscale meteorological forcing, which is parameterized with 

two uncertain input parameters: i) the inlet wind direction 𝛼𝑖𝑛𝑙𝑒𝑡, which is assumed uniform and 

homogeneous, and ii) the friction velocity 𝑢∗, which scales the logarithmic inlet wind profile 

representing a fully developed neutral atmospheric surface layer.  

An overview of the dataset files is given in Table 1. Except for the probe network definition (in 

CSV), all data is stored in HDF53 files. This format provides efficient storage, fast access, and 

hierarchical data organization. Figure 1 gives a comprehensive description of the structure of the 

HDF5 files in PPMLES. 

Table 1: General description, size and type of each file in the dataset. 

Filename Description Size Type 

input_parameters.h5 List the 200 meteorological forcing input parameters (wind 
direction and friction velocity). 

6.8 ko HDF5 

ave_fields.h5 List of the main time-averaged wind velocity and tracer 
concentration fields predicted for each input parameter 
sample. 

17.1 Go HDF5 

uncertainty_ave_fields.h5 List of the uncertainty of each time-averaged field as standard 
deviation and for each input parameter sample. 

15.9 Go HDF5 

mesh.h5 Contains the definition of the mesh on which the fields are 
discretized. 

387 Mo HDF5 

time_series.h5 List of the main wind and tracer concentration time series 
predicted by LES for each input parameter sample at 93 probe 
locations. 

3.1 Go HDF5 

probe_network.csv Contains the coordinates of each probe on which time series 
are saved. 

2.9 ko CSV 

                                                           
3
 HDF5 format, see https://www.hdfgroup.org/solutions/hdf5/ (Accessed: 2024-09-19).  

                  



 

Figure 1: Organization of HDF5 files, represented as purple cylinders and listed in Table 1. Each file consists of groups and/or 
datasets represented by yellow folders and blue files. The name of each dataset is shown along with its shape in 
parentheses. 

For each sample, the predicted time-series of tracer concentration c (in ppmv) and wind velocity 

components u, v, w (in m.s-1) at 93 probe locations within the array of containers are stored in 

time_series.h5. The probe locations are defined in probe_network.csv. The coordinate system 

used is the same as in [3], so that the x-y axis system is aligned with the containers array. Examples 

of the wind velocity magnitude and tracer concentration time series for three different samples are 

shown in Figure 2. Note that the simulation spin-up time is included in each time series and is 

adapted to the friction velocity, which implies that the time series duration (n_temporals) is 

different for each sample.  

                  



 
Figure 2: Time series of the wind speed magnitude 𝑈 (a, b, c) and propylene concentration 𝑐 (d, e, f) predicted by LES at 
tower B at z = 2m within the array of containers (see Figure 5b). Results are shown for the first three samples of the 
perturbed-parameter ensemble. Shaded gray areas correspond to the spin-up time used for each simulation.  

 The time-averaged fields of wind velocity and tracer concentration statistics are reported in the 

file ave_fields.h5. These 3-D fields are discretized over a mesh of 𝑁𝑛𝑜𝑑𝑒𝑠 = 1,878,585 nodes, with a 

resolution of 30 cm between the containers, allowing to have at least 8 cells over the height of each 

container. The coordinates and dual volume of each node are reported in the file mesh.h5. The 3-D 

fields are given as arrays of dimensions (𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑁𝑛𝑜𝑑𝑒𝑠), where 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 200 is the number of 

LES simulations. The dataset includes the fields of the following statistics of interest: 

i. first-order statistics: the time-averaged tracer concentration c (ppmv) and wind velocity 

components u, v, w (m.s-1), 

ii. second-order statistics:  

o the concentration root mean square fluctuations crms = √𝑐′2̅̅ ̅̅ = √(𝑐 − 𝑐̅)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  (ppmv), 

where the upper bar denotes time-averaged quantities, 

o the turbulent kinetic energy of the wind tke = 
1

2
(𝑢′2̅̅ ̅̅ + 𝑣′2̅̅ ̅̅ + 𝑤′2̅̅ ̅̅ ̅) (m2.s-2), 

o the tracer turbulent transport components uprim_cprim, vprim_cprim, and 

wprim_cprim (ppm.m.s-1), defined as 𝑢′𝑐′̅̅ ̅̅ ̅, 𝑢′𝑐′̅̅ ̅̅ ̅, and 𝑤′𝑐′̅̅ ̅̅ ̅̅ . 

Time averages are collected over a 200-s analysis period, which is the standard duration for the 

MUST case study [3][4]. Examples of these statistic fields are given as horizontal cuts in Figure 3 

(columns 1 and 2) and vertical cuts in Figure 4 for two samples of the ensemble. 

 

                  



 

Figure 3: Horizontal cuts at  z =1.6 m of the time-averaged wind speed magnitude �̅� (a, b), turbulent kinetic energy 𝑘 (e, f), 
concentration 𝑐̅ (i, j) and concentration fluctuation 𝑐𝑅𝑀𝑆 (m, n) fields, along with their associated uncertainty as relative 

standard deviation (c, d, g, h, k, l, o, p). Results are shown for the sample #001 with (𝛼𝑖𝑛𝑙𝑒𝑡
(1)

, 𝑢∗
(1)

) = (−30°, 0.3 𝑚/𝑠) on the 

first and third  columns (corresponding to the time series in Figure 2a,d), and for the sample #101 (𝛼𝑖𝑛𝑙𝑒𝑡
(101)

, 𝑢∗
(101)

) =

(9°, 0.7 𝑚/𝑠)  on the second and last columns. White rectangles represent containers from the MUST field campaign.  

 Calculating the temporal statistics over a limited analysis period (i.e. 200 s in the MUST 

experiment) introduces a significant uncertainty due to the internal variability of the atmospheric 

boundary layer [4],[6]. The file uncertainty_ave_fields.h5 provides an estimate of this aleatory 

uncertainty for each field in ave_fields.h5, as a standard deviation field discretized over the same 

3-D mesh as the physical fields. The uncertainty is estimated during the simulation post-processing 

using a bootstrap approach (Section 4.1). The bootstrap parameters, i.e. the number of replicates 

n_replicates and the length of the block block_length used for each field, are specified in the 

Bootstrap_params group of the uncertainty_ave_fields.h5 file. Examples of the aleatory 

uncertainty, as relative standard deviation, are given in Figure 3 (columns 3 and 4) for two samples of 

the ensemble. 

                  



 

Figure 4: Vertical cuts crossing the tracer source location (represented by the red star) of the time-averaged turbulent tracer 

transport components 𝑢′𝑐′̅̅ ̅̅ ̅ (a, b), 𝑣′𝑐′̅̅ ̅̅ ̅ (c, d), 𝑤′𝑐′̅̅ ̅̅ ̅̅  (e, f) fields. Results are shown for the sample #001 with (𝛼𝑖𝑛𝑙𝑒𝑡
(1)

, 𝑢∗
(1)

) =

(−30°, 0.3 𝑚/𝑠) on the left column (corresponding to the time series in Figure 2a, d and to the horizontal fields in Figure 3, 

columns 1 and 3), and for the sample #101 (𝛼𝑖𝑛𝑙𝑒𝑡
(101)

, 𝑢∗
(101)

) = (9°, 0.7 𝑚/𝑠) on the right column (corresponding to the 

horizontal fields in Figure 3, columns 2 and 4). White rectangles represent containers from the MUST field campaign.  

 

 

 

EXPERIMENTAL DESIGN, MATERIALS AND METHODS 
In this section, we provide a comprehensive description of the design and methods used to 

acquire the PPMLES dataset. We first introduce the case study and the large-eddy simulation (LES) 

model used to generate the PPMLES dataset. We then explain the design of the perturbed-

parameter ensemble and how the model was modified to simulate the ensemble of wind and 

pollutant dispersion scenarios. Finally, we retrace all the post-processing applied to the raw 

simulation results to obtain the data available in the PPMLES dataset and we give an estimate of its 

carbon footprint. 

1. Large-eddy simulation model of the MUST field trial 2681829 

1.1. The MUST field campaign 

MUST is a field experimental campaign conducted in September 2001 at the US Army Dugway 

Proving Ground test site in the Utah desert, USA (Figure 5a). Its goal was to collect comprehensive 

measurements within an idealized urban canopy to support the development and validation of urban 

dispersion models [2][3]. During the experiments, a non-reactive gas tracer (propylene) was released 

within an idealized urban canopy consisting of an array of 10×12 regularly-spaced shipping 

                  



containers covering an area of approximately 200×200 m2 (Figure 5b). The containers are 12.2-m 

long, 2.42-m wide, and 2.54-m high. Figure 5 shows the location of the towers and masts carrying 

the wind velocity and tracer concentration sensors used during the campaign. For a full description 

of the instruments used, the reader is referred to [2]. 

 

Figure 5: (a) Satellite image of the Dugway Proving Ground test site where the MUST field campaign was conducted. The 
red crosshair indicates the location of the simplified urban canopy area made of containers. The location of the SAMS 
meteorological #8 and towers S, T, N are indicated by the yellow, blue, red and green markers, respectively. (b) Close-up 
schematic view showing the location of each sensor for which time series are stored. The location of the propylene emission 
source for the MUST trial 2681829 is shown as a red star.  

MUST is a canonical field-scale dispersion experiment that has been used to validate a large 

number of CFD dispersion models and for the COST Action 732 CFD model intercomparison [4]. For 

the construction of the PPMLES dataset, we focus on the trial 2681829, which corresponds to neutral 

atmospheric conditions and to the tracer source location shown in Figure 5b. 

1.2. The microscale obstacle-resolving flow modeling approach 

To build the PPMLES dataset, we use as a reference the LES model of the MUST trial 2681829 

validated in [6]. This model uses AVBP1 to solve the LES-filtered Navier-Stokes and tracer advection-

diffusion equations, with a second-order Lax-Wendroff finite-volume centered numerical scheme [7]. 

Subgrid-scale turbulence is modeled using the Wall-Adaptative Local Eddy-Viscosity model [8] for 

subgrid momentum transport, and a gradient-diffusion hypothesis for subgrid tracer transport (with 

a turbulent Schmidt number of 0.6). We also use a pressure gradient scaling (PGS) for low Mach 

number flows to reduce computational cost [9]. 

The computational domain of the reference LES model is a rectangular parallelepiped oriented along 

the mean streamwise wind direction, with dimensions of 420×420×50 m3 (represented by the red 

square in Figure 8). The domain was discretized using the CENTAUR4 mesh generator resulting in an 

unstructured and boundary-fitted mesh of 91 million tetrahedra. In the region of interest, which 

corresponds to a 246×266×3.6 m3 box containing all the containers, the mesh is uniform with a 

resolution of 0.3 m. This resolution ensures that there are 8 cells over the height of each container, a 

minimal requirement to accurately predict their effect on the flow. In the rest of the domain, the 

mesh is gradually stretched to reach a resolution of 5 m at the top boundary, with a maximum 

stretching ratio of 1.7, to further save computational time. 
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 CENTAUR software, see https://home.centaursoft.com/ (Accessed 2024-10-09). 

                  



Boundary conditions. At the inlet, a logarithmic vertical wind profile is imposed so that the mean 

inlet wind velocity vector 𝐮𝑖𝑛𝑙𝑒𝑡̅̅ ̅̅ ̅̅ ̅ reads 

                                  𝐮𝑖𝑛𝑙𝑒𝑡̅̅ ̅̅ ̅̅ ̅ = (
𝑢𝑖𝑛𝑙𝑒𝑡̅̅ ̅̅ ̅̅ ̅ cos(𝛼𝑖𝑛𝑙𝑒𝑡)

𝑢𝑖𝑛𝑙𝑒𝑡̅̅ ̅̅ ̅̅ ̅ sin(𝛼𝑖𝑛𝑙𝑒𝑡)
0

) , with 𝑢𝑖𝑛𝑙𝑒𝑡̅̅ ̅̅ ̅̅ ̅(𝑧) =
𝑢∗

𝜅
ln (

𝑧+𝑧0

𝑧0
),                                 (1) 

where 𝑢∗ is the friction velocity, 𝜅 is the von Kármán constant equal to 0.4, and 𝑧0 is the 

aerodynamic roughness length, which was estimated to be 0.045±0.005 m for the MUST field terrain 

[3]. In addition, a synthetic turbulence injection method [10] is used to impose upstream wind 

fluctuations, which are calibrated using a precursor simulation (with periodic boundary conditions 

and no obstacles) [6]. Free slip boundary conditions are used at the lateral boundaries. Static 

pressure is imposed at the outlet and top boundaries. A smooth law of the wall is used to impose the 

shear stress at the obstacle boundaries, while at the ground boundaries the shear stress is imposed 

according to the Monin-Obhukov similarity theory in neutral conditions to match the experimentally 

estimated aerodynamic roughness length 𝑧0. The tracer source is modeled by a source term in the 

advection-diffusion equation that matches the experimental volumetric flow rate. A full description 

of the boundary conditions is given in [1]. 

Initial conditions. The LES simulation is initialized with a homogeneous flow field in the horizontal 

direction equal to the prescribed inlet mean field (Eq. 1). To ensure that first- and second-order 

statistics of the flow and the tracer reach a stationary state, we use a spin-up of 1.5 times the 

convective time scale, which is about 17 times the LES turnover time H/𝑢∗ with H the height of the 

containers, before collecting the statistics. 

The reference simulation is defined by setting the mesoscale meteorological forcing parameters 

thanks to the field campaign upstream wind velocity measurements at tower S and ASU probe 

(Figure 5b). It yields 𝛼𝑖𝑛𝑙𝑒𝑡
(𝑟𝑒𝑓)

 = −41° and 𝑢∗
(𝑟𝑒𝑓)

 = 0.73 m.s-1. Concerning the temporal resolution, the 

time step imposed by the numerical scheme is equal to 7.9×10-4 s when using PGS. At the probe 

locations (Figure 5b), the outputs are stored with a resolution of 0.05 s. For the full 3-D fields, 

instantaneous fields were not saved to limit the amount of data stored (apart from those needed to 

restart simulations), and sliding time-averaged fields over a 10-s period are saved for uncertainty 

estimation. Note that thresholding is not applied to physical quantities that may be negative due to 

numerical errors, such as the tracer concentration, to ensure conservation. The final LES predictions 

of wind velocity and tracer concentration statistics are defined over a 200-s analysis window as in 

[3],[4], so that they can be compared with field measurements. Note that this limited acquisition 

time introduces a significant aleatory uncertainty in the LES predictions (Section 4.1).  

 

                  



2. Perturbed-parameter ensemble design 

2.1. Definition of the input parameter space 

To explore the sensitivity of the wind velocity and pollutant concentration statistics to the 

mesoscale meteorological forcing, we design an ensemble of LES by perturbing the boundary 

condition parameters that have the most influence on the predictions under neutral thermal 

stratification conditions [1]: the inlet wind direction 𝛼𝑖𝑛𝑙𝑒𝑡 and the friction velocity 𝑢∗. These 

parameters determine the vertical profile imposed at the inlet boundary condition (Eq. 1). Note that 

the level of turbulence imposed at the inlet has a negligible effect on the LES predictions as the 

turbulence spectrum quickly returns to an equilibrium state with the rough ground [1]. 

 We then define a plausible range of variation for these two input parameters (𝛼𝑖𝑛𝑙𝑒𝑡 , 𝑢∗) thanks 

to a microclimatology using available measurement data from the nearest meteorological station, i.e. 

the SAMS station #8 located approximately one kilometer from the MUST field campaign site (Figure 

5a). This represents a total of 2,391 15-minute averaged wind measurements at 10m above ground 

level. Figure 6 shows that all wind directions are likely to occur and that more than 99% of the 

horizontal wind speed measurements are below 12 m.s-1, corresponding to a friction velocity of 

0.89m.s-1. For the ensemble generation, we thereby limit the maximum friction velocity to 0.89 m s-1 

and we also limit the minimum friction velocity to 0.07 m.s-1, which corresponds to a wind speed of 

about 1 m.s-1 at 10 m height to focus on windy conditions. The range of variation for the inlet wind 

direction α_inlet is also narrowed so that the pollutant plume always remains mostly in the canopy 

and therefore at the level of existing sensors in the LES simulations. The input parameter space thus 

reads: 

                                   (𝛼𝑖𝑛𝑙𝑒𝑡 , 𝑢∗) ∈ Ω = [−90°, 30°] × [0.07 m s−1, 0.89 m s−1].                                   (2) 

 

Figure 6: Distributions of the horizontal wind velocity (a) and wind direction (b) based on 15-minute averaged wind 
measurements at the SAMS meteorological station #8 (Figure 5a) at z = 10m over 12 days during the MUST field campaign. 

2.2. Sampling of the input parameter space 

The next step is to sample the input parameter space Ω and run one LES per sample to generate 

the PPMLES dataset. Given the very large computational cost of the LES model, our computational 

budget was 200 simulations. To get the most out of this budget, we use the Halton's sequence [11] to 

sample the input parameter space as uniformly as possible. Indeed, as a low-discrepancy sequence, 

it covers the input parameter space more efficiently than a purely random sequence by avoiding 

sampling the same region multiple times. For practical reasons, the input parameter ensemble was 

generated in two parts: the first 100 samples corresponding to angles between -60° and 0°, and the 

next 100 samples corresponding to angles in [−90°, −60°[∪]0°, 30°]. Figure 7 shows the resulting 

perturbed-parameter ensemble colored by sample index. 

                  



 

Figure 7: Input parameter space sampling obtained with Halton’s sequence. Each point is a pair of parameters for which we 
perform an LES prediction. 

3. Model adaptation for perturbed-parameter ensemble generation 

In this section, we detail the modifications made in the LES model to predict the fields of interest 

for every input parameter sample in the perturbed-parameter ensemble (Figure 7).  

3.1. Computational domain adaptation to the wind direction 

In the reference LES model, if the mean flow direction deviates too much from the reference 

wind direction value, it induces lateral confinement and numerical instabilities due to the free slip 

boundary conditions at the domain sides. This problem is solved by rotating the computational 

domain so that the sides always remain parallel to the mean flow direction. To efficiently implement 

this feature, the domain is split into two subdomains as shown in Figure 8: the peripheral domain D2, 

which is rotated to align with 𝛼𝑖𝑛𝑙𝑒𝑡, and the inner domain D1, which is fixed.  

The Navier-Stokes equations are solved on each domain by parallel AVBP instances [12], coupled 

using CWIPI5. The interpolation between the two domains is computed over an overlapping region 

(hatched area in Figure 8). This region should contain at least 10 cells between the subdomain 

boundaries in each direction, resulting in a 13% increase in the number of cells in the computational 

mesh. 

This domain decomposition facilitates the generation of a large ensemble of simulations because 

it does not require the generation of a new mesh for each new wind direction. In addition, having a 

static internal domain shared by all LES simulations avoids the use of interpolation to compare LES 

predictions obtained with different wind conditions. 
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 CWIPI software, see https://w3.onera.fr/cwipi (Accessed: 2024-08-19, in French). 

                  



 

Figure 8: Horizontal schematic view of the computational domain at the level of the containers. The domain is divided into 
two subdomains: the fixed domain D1 in blue and the rotating peripheral domain D2 in red. The interpolation overlap area 
between D1 and D2 used for the coupling with the CWIPI library is hatched. The coordinate system shown is the one defined 
by [3] and is attached to the fixed domain D1. The location of the tracer source in the MUST trial 2681829 is indicated by the 
red star. The blue (resp. orange) triangle symbol represents the tower S (resp. T). 

3.2. Turbulence injection rescaling 

In the reference LES model, a precursor simulation without obstacles is performed to estimate 

the Reynolds stress tensor and inject realistic wind fluctuations at the inlet [6]. To avoid running a 

precursor simulation for each pair of input parameters (𝛼𝑖𝑛𝑙𝑒𝑡 , 𝑢∗) in the Halton’s sequence, the 

parameter-dependent Reynolds stress tensor 𝐑(𝛼𝑖𝑛𝑙𝑒𝑡, 𝑢∗) is obtained by rotating and then rescaling 

the reference Reynolds stress tensor 𝐑(𝑟𝑒𝑓): 

𝐑(𝛼𝑖𝑛𝑙𝑒𝑡, 𝑢∗) = (
𝑢∗

(𝑟𝑒𝑓)

𝑢∗
)

2

× 𝐌(𝛼𝑖𝑛𝑙𝑒𝑡)𝐑(𝑟𝑒𝑓)𝐌(𝛼𝑖𝑛𝑙𝑒𝑡)𝑇 , 

with 𝐌(𝛼𝑖𝑛𝑙𝑒𝑡) = (
cos(𝛼𝑖𝑛𝑙𝑒𝑡) − sin(𝛼𝑖𝑛𝑙𝑒𝑡) 0

sin(𝛼𝑖𝑛𝑙𝑒𝑡) cos(𝛼𝑖𝑛𝑙𝑒𝑡) 0
0 0 1

). 

3.3. Adaptation of the spin-up time 

The spin-up time of the LES model has to be adjusted for each sample since the time required to 

reach a steady state depends on the friction velocity 𝑢∗, since the longer the convective timescale, 

the longer the time required for the injected eddies to cross the domain. The spin-up time of each 

simulation 𝑡𝑠𝑝𝑖𝑛−𝑢𝑝(𝛼𝑖𝑛𝑙𝑒𝑡 , 𝑢∗) is therefore set by rescaling the reference spin-up time 𝑡𝑠𝑝𝑖𝑛−𝑢𝑝
(𝑟𝑒𝑓)

 by 

the friction velocity as follows: 

                  



𝑡𝑠𝑝𝑖𝑛−𝑢𝑝(𝛼𝑖𝑛𝑙𝑒𝑡, 𝑢∗) = 𝑡𝑠𝑝𝑖𝑛−𝑢𝑝
(𝑟𝑒𝑓)

× (
𝑢∗

(𝑟𝑒𝑓)

𝑢∗
). 

Given the variation range of the friction velocity considered 𝑢∗ (Eq. 2), the spin-up time of the 

simulations within the PPMLES dataset simulation varies between 60 and 550 s, as shown in Figure 2. 

4. Perturbed-parameter ensemble post-processing 

In this section, we describe the post-processing performed on the raw LES results, in order to 

i) estimate their uncertainty, and ii) to reduce the volume of data to store.  

4.1. Estimation of the uncertainty of the time-averaged fields 

Due to the limited analysis period of 200 s, the time-averaged fields predicted by LES are subject 

to an aleatory uncertainty induced by the internal variability of the atmospheric boundary layer. This 

irreducible form of uncertainty is significant in the context of the MUST field campaign [4]. To obtain 

realistic uncertainty estimates for each LES time-averaged field, we use the statistical method 

designed and validated by [6], which relies on resampling of the sub-averages of the physical fields 

using the stationary bootstrap algorithm of [13]. 

 We use 1,000 bootstrap replicates and the bootstrap block length is set independently for each 

simulation sample and for each variable to be equal to the spatially averaged correlation time of the 

variable. For the composite variables 𝑢′𝑐′̅̅ ̅̅ ̅, 𝑣′𝑐′̅̅ ̅̅ ̅, and 𝑤′𝑐′̅̅ ̅̅ ̅̅ , we use the largest correlation time among 

the correlation times of each variable, in order to avoid uncertainty underestimation. The block 

length used for each sample and each variable is reported in the Bootstrap_params group of the 

uncertainty_ave_fields.h5 file. Using this approach, we provide, at each grid node of the 

domain, an estimate of the aleatory uncertainty associated with each time-averaged field in the 

PPMLES dataset. This aleatory uncertainty is shown in Figure 3 for two samples. 

 

4.2. Data volume reduction 

All the fields in the PPMLES dataset are interpolated onto an analysis mesh with a resolution 

twice as coarse as the LES mesh. In addition, we restrict the analysis to the circular inner domain D1 

(domain with blue boundary in Figure 8) and below a height of 20 m, since most of the pollutant is 

located in this area. The corresponding analysis mesh is composed of 1.88 × 106 nodes, thus 

reducing the number of nodes by a factor of 10. The characteristic cell sizes of the analysis mesh vary 

from 0.6 m to 4 m, limiting the loss of information as these resolutions are smaller than the scales of 

variation of the fields of interest. 

To further reduce the volume of data storage volume, we use a scale-offset lossy compression6, 

which trades precision for storage space by retaining only 16 digits after the decimal point for each 

floating point in the discretized time-average and uncertainty fields. This reduces the volume of the 

3,600 time-average and uncertainty field samples from 52.8 Go to 32.1 Go.  

These two steps have allowed us to significantly reduce the volume of the dataset, allowing it to 

be shared and reducing the computational burden associated with its use. 

5. Carbon footprint of the perturbed-parameter ensemble 

The computation of the PPMLES dataset was performed on several supercomputers:  CERFACS’ 

Nemo and Kraken, Météo-France's Belenos, and TTGC’s Joliot-Curie. The technical characteristics of 

                                                           
6
 HDF5 scale-offset lossy compression, see: https://docs.h5py.org/en/stable/high/dataset.html#scale-offset-filter 

(Accessed: 2024-08-19). 

                  



these supercomputers are summarized in Table 2. The scaling of the LES model was tested for each 

cluster, resulting in different optimal numbers of cores. In total, the 200 simulations of the 

perturbed-parameter ensemble have consumed 5.7 milion of core hours. 

Table 2: Main statistics of the perturbed-parameter ensemble computation and the associated carbon footprint for each 
supercomputer used. 𝑁𝑐𝑝𝑢 is the number of cores on which the LES computations were parallelized, 𝑁𝐿𝐸𝑆 is the number of 

LES run on each supercomputer, 𝑀ℎ𝐶𝑃𝑈 is the total computational time in million of core hours, and 𝑡𝐶𝑂2𝑒𝑞 is the 
associated greenhouse gas emissions in tons of carbon dioxide equivalent. 

Supercomputer Partition Processors 𝑁𝐶𝑃𝑈 𝑁𝐿𝐸𝑆 𝑀ℎ𝐶𝑃𝑈 𝑡𝐶𝑂2𝑒𝑞 

Nemo Haswell Intel E5-2680v3 600 – 900 25 0.70 1,4 

Kraken Skylake Intel 6140 540 – 900 15 0.34 0,6 

Joliot-Curie Skylake Intel 8168 1344 49 1.57 2,6 

Joliot-Curie Rome AMD Epyc7H12 1024 42 1.15 1,9 

Belenos Rome AMD Epyc7742 1536 69 1.95 3,2 

 

Given the amount of computing resources from high performance computing centers that 

consume considerable amounts of energy, the PPMLES dataset is thought to be responsible for a 

substantial amount of greenhouse gas emissions. To raise awareness of this issue, we estimate the 

carbon footprint of the PPMLES dataset below. 

For the simulations performed in CERFACS (20% of the total), we first estimate the average 

energy consumption emission factor (i.e. how much greenhouse gas is emitted per core hour of 

computation). This is obtained by dividing the total greenhouse gas emissions induced by the 

electricity and cooling consumption of the supercomputers over the year, given the electricity mix of 

France, by the total number of computing hours performed over the year. In addition, the emissions 

related to the life cycle of the supercomputers (i.e. manufacturing, transportation and recycling) are 

known to be of the same order of magnitude, based on two carbon footprint studies: one for a 

modestly sized supercomputer [14], and one for a partition of a French national computing center 

(private communication). We therefore estimate the total emission factor of computing in CERFACS 

to be 2gCO2eq.hCPU
-1 in 2022, from which we derive the greenhouse gas emissions of the LES carried 

out at CERFACS (Table 2).  

For the simulations performed on the TTGC’s supercomputers (46% of the total), we use the 

GES1point57 carbon footprint estimation tool available for French research laboratories. For the 

computations performed on Météo-France’s supercomputer (34% of the total), we use the same 

emission factor as for the Joliot-Curie Rome partition, since they have a similar architecture.   

In the end, computing the PPMLES dataset was responsible for the emission of about 9.7 tCO2eq, 

which can be compared to the target of 2 tCO2eq/capita to limit global warming to +1.5°C by 2050. It 

is worth noting that this estimate is only an order-of-magnitude given the significant uncertainties at 

involved. It does not include the emissions related to data storage and transfer, which are negligible 

compared to the computational emissions. The carbon footprint estimate of the PPMLES dataset 

highlights the substantial environmental impact running large ensemble of high-resolution LES 

simulations. Strengthening best computing practices is a must to limit this footprint; building 

community datasets of LES simulations is a further step and allows the pooling of efforts, similar to 

what has been done for climate simulations [15]. The PPMLES dataset is a contribution to encourage 

the community to move in this direction. 
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 GES1point5 tool, see https://apps.labos1point5.org/ges-1point5 (Accessed: 2024-08-19). 

                  



LIMITATIONS 
Due to storage limitations, we could not include some fields (e.g. the Reynolds stress tensor 

components or the concentration maximum) in the PPMLES dataset. However, these fields were 

stored during the simulations and could be provided by the authors upon request.   

More fundamentally, the PPMLES dataset is limited in terms of atmospheric and dispersion 

conditions compared to what is possible in reality. Only neutral atmospheric conditions have been 

considered in what can be considered as a first step. It would be interesting to include stable and 

unstable atmospheric conditions to cover the full range of possible thermal stratification conditions. 

Furthermore, all LES simulations use the same experimental setup (i.e. the same urban layout and 

source location). Extending the PPMLES dataset by perturbing more diverse parameters, and thus 

including a wider range of atmospheric and dispersion conditions, is a direct prospect of this work. It 

would also be interesting to simulate the same case study using different LES solvers (here only the 

AVBP LES solver is used). Each LES solver has its own bias, and a variety of LES solvers would 

introduce structural modeling uncertainties into the dataset, thereby enriching the scientific 

questions that can be addressed with the dataset.  
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