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 A B S T R A C T

This contribution presents a Variational Data Assimilation approach for the integration of water surface velocity 
fields into a 2D shallow water hydraulic model and the inference of distributed bathymetry and inflows. It 
describes the addition of flow velocity observations into an existing assimilation framework. A regularizing 
effect is introduced in the form of a simple bathymetry model. Synthetic experiments are designed to study the 
identifiability of the sought parameters from velocity observations and show that the assimilation method can 
leverage the informational content of synthetic observations in a twin experiment setup. The method notably 
allows good inferences of distributed upstream inflows from observations of their mixed velocity signatures at 
a downstream confluence. The method is then applied to a real river reach where fair inferences of the local 
cross-section are obtained. This combination of the ANDROMEDE and DassFlow platforms could enable fast, 
automated, physically-based estimations of distributed bathymetry and inflows from unintrusive measurements.
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1. Introduction

The joint use of field data and models is a rapidly developing area 
of research in the fields of water resource management, risk prevention 
and environmental impact. Enhancing our understanding of the global 
water cycle and the complex multiscale phenomenons within it is 
essential for addressing crucial socio-economic issues, improving flood 
and drought prediction tools, managing rivers and water resources, 
and preserving fish habitats. Assimilating heterogeneous data enables 
the improvement of river network hydraulic–hydrological models by 
reducing the uncertainty associated with model parameters, such as 
the bathymetry-friction couple. This progress is essential for enhancing 
hydrological science and refining numerical models.

Recent advances in observation techniques (Le Coz et al., 2014; 
Cassan et al., 2024) have enabled the image or video-based estimation 
of river flow surface velocity, offering a promising avenue for improved 
visibility of river flow hydraulic signatures at a section-reach. Further-
more, Water Surface Velocity (WSV) observations are becoming more 
accessible (e.g. through tools such as RIVeR (Patalano et al., 2017), 
Fudaa-LSPIV (Jodeau et al., 2019), ANDROMEDE (Cassan et al., 2024) 
and others).
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WSV represents a valuable source of information for directly esti-
mating river discharge using a local flow law, which can then be used 
to calibrate a hydrological model (see e.g. Westerberg et al. (2022)). It 
has been used in several studies (e.g. Negrel et al. (2010), Corato et al. 
(2011)) to estimate discharge at a section, with accuracy depending in 
part on the uncertainty in bathymetry (or cross-sectional area) and the 
representativeness of surface velocity relative to the actual 3D velocity 
field. Although they are tinted with uncertainties linked to the video 
treatment (Bodart et al., 2024), surface velocimetry techniques offer the 
potential to perform discharge estimates in extreme conditions, such as 
fast and highly turbulent flows, and high flows (see e.g. Bodart (2023)). 
Moreover, surface velocimetry sensing can be performed safely and 
conveniently from a bridge or bank, in urban areas, as well as using 
videos (even crowdsourced) from phone cameras or drones. This opens 
up the possibility of more extensive measurements of surface velocity 
at the floodplain and river network scale.

The informational content that can be extracted from surface data is 
notably dependent on the observed flow dynamics and is more success-
ful when exploiting velocities representative of low flows. Indeed, the 
flow has a filtering effect on basal bathymetry (or friction) influence 
that can make distributed parameter identifiability more difficult at 
high flows, i.e. when a strong filtering is applied to model param-
eters impact on observable surface signals. On the other hand, low 
flows are more likely to carry useful information on local bathymetry 
influence. Moreover, the use of adequate observation operators, e.g. co-
efficients linking observed surface velocity to depth-averaged flow 
velocity simulated with a 2D shallow water model, is needed to exploit 
the informational content of such surface observations with simplified 
flow models (see recent works on the estimation of conversion coeffi-
cients for algebraic discharge laws in Hauet et al. (2018), Stepenuck 
et al. (2024), Pumo et al. (2025)).

Information derived from image series analysis has notably been 
exploited for the calibration of near-shore models. Observations de-
rived from UAV videos of waves have been used to infer bathymetry 
by inverting linear wave theory relations (Matsuba and Sato, 2018; 
Bergsma et al., 2019; Ghorbanidehno et al., 2019), and more recently 
with the addition of machine learning to extract useful information 
from image series (Collins et al., 2020). In Collins et al. (2020), a 
spatial regularization of the inverse problem is necessary and provided 
by the assumption that near-shore bathymetry is composed of homo-
geneous slope plus local sandbars. Physics-based approaches modeling 
coastal hydrodynamics have also been used to infer bathymetry from 
actual wave speeds and heights (Moghimi et al., 2016; Holman et al., 
2017). In a more recent work, observed velocity fields were used to 
infer bathymetry in an estuary using an ensemble-based assimilation 
method, in a model solving energy-based equations with sediment 
transport (Ardağ and Wilson, 2022).

WSV is a surface signature that can also be used for inferring pa-
rameters of a hydraulic model which simulates the evolution of estuary 
or river flow states (level and discharge). Using a 1D or 2D hydraulic 
model to assimilate water surface signatures enables the estimation of 
physically meaningful parameters, such as discharge, bathymetry, and 
friction, depending on the uncertainties involved and of data informa-
tive content and density (e.g. Honnorat et al. (2009), Lai and Monnier 
(2009), Hostache et al. (2010), Pujol et al. (2024) in 2D and Larnier 
et al. (2021), Pujol et al. (2020) in 1D). Given the filtering effect of flow 
on parameter signatures and the uncertainty linked with velocity field 
estimations from videos, care must be taken with regard to the expected 
informative content of such observations. This is why there is a need for 
the integration of appropriate regularization into assimilation methods 
and why cross-section scale models, able to represent fine hydraulic 
phenomenons and at-a-section discharge, remain an interesting target 
for WSV assimilation experiments.

The pioneering work of Honnorat et al. (2009) in assimilating 
Lagrangian surface tracers, closely linked to surface velocities, showed 
that effective bathymetry in a 2D hydraulic model with weakly coupled 
2 
transport model can indeed be inferred from such observations using 
variational methods. Indeed, variational data assimilation is well suited 
for combining hydrodynamic models with heterogeneous observations 
(see Monnier et al. (2016a), Pujol et al. (2024), Larnier et al. (2024) and 
references therein). In the context of spatially and temporally varied 
flows, such as river confluences, its capability to infer high-dimensional 
parameter control vectors is of particular interest for the potentially 
high number of parameter needed to model such flows. For example, 
Variational Data Assimilation (VDA) was recently used in Pujol et al. 
(2024) to infer distributed friction coefficients at a street intersection 
in an urban flash flood model by assimilating WSV (DassFlow 2D full 
Shallow Water model with automatic adjoint derivation (Monnier et al., 
2016b)).

The inference of hydraulic model parameters from surface obser-
vations often consists in challenging ill-posed inverse problems for 
which some regularizations are required, as discussed in a satellite 
altimetry context in Larnier et al. (2021), Garambois et al. (2020), 
Pujol et al. (2020) and references therein. Regularizations for hy-
draulic inverse problems can take the form of penalty term in cost 
functions (Monnier et al., 2016a), control variable change using co-
variance matrices (e.g. Larnier et al. (2021)), or even strong constrains 
directly into the flow model such as linear bathymetry model between 
sparser water level observations (Garambois et al., 2020). Indeed, 
the estimation of uncertain hydraulic model parameters from gener-
ally sparser and partially informative observations can be challenging 
because of (1) local structural equifinality since the sought param-
eters (discharge-bathymetry-friction) are embedded in friction laws 
(e.g. Manning-Strickler), (2) spatial equifinality with different param-
eters spatial distributions that can lead to similar fit to the available 
observations. The spatial density of WSV fields has a determining 
effect on the methods’ capability to capture fine scale variations, which 
motivates imposing spatial constraints on the sought parameters.

Our work aims to adapt VDA methods for the assimilation of Water 
Surface Velocity (WSV) fields. It is applicable to dynamic flow condi-
tions (so called ‘‘4D-Var’’ in meteorological applications with 3D spatial 
dimensions, instead with a 2D hydraulic model here). The goal is to 
retrieve channel geometry and inflow discharge from data derived from 
video footage captured by aerial drones. It is important to note that 
the VDA algorithm can retrieve spatio-temporal parameters of Shallow 
Water models (such as inflows, boundary conditions, bathymetry, and 
friction) in various modeling contexts (e.g., Larnier et al. (2024), Pujol 
et al. (2024)), depending on the available data and the uncertainty 
associated with these parameters.

The automated toolchain ANDROMEDE-DassFlow, presented here, 
aims to facilitate the integration of velocity data time series into larger-
scale hydraulic models. This integration enables the exploitation of 
data from video sensors (in situ cameras, river-scale drone surveys) in 
conjunction with other existing observation sources (such as satellite 
data and in situ stations).

The chaining of ANDROMEDE and DassFlow allows the generation 
of a complete hydraulic model over the area of interest for inverse 
modeling - i.e. data assimilation. ANDROMEDE outputs provide surface 
velocity observations that can be combined with multi-source field data 
(water depth observations here). Automatic mesh generation, definition 
of boundary conditions (BC) and integration of a priori parameters 
and their bounds allow the definition of interesting inverse problems. 
This work focuses on the assimilation of observation snapshots to 
infer spatial parameters, but the framework is similarly capable of 
assimilating observations time series and of seeking time-dependent 
parameters.

A sensitivity analysis is conducted to evaluate the impact of initial 
parameter values, such as geometric parameters and upstream inflow, 
on the results of the iterative assimilation process. This analysis ensures 
that the proposed methodology remains effective even when non-expert 
users, such as watershed managers or regulatory institutions, provide 
highly uncertain initial parameter estimates. This standardization is 
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Fig. 1. Toolchain flowchart. Green: in situ measurements. Orange: information that can be derived from databases. Blue: inputs for direct model. White: inputs for inverse model. 
Black: toolchain results.
crucial for broadening the use of this approach in various hydraulic 
contexts (Anderson et al., 2019).

The article is structured as follows: first, it presents the assimilation 
method and the specific assumptions relevant to our study. Then, the 
method is validated using academic cases, demonstrating its capabil-
ity to reconstruct 2D bathymetries and flows from surface velocities. 
Finally, the method is applied to a real river case, utilizing a Water 
Surface Velocity (WSV) field collected by an Unmanned Aerial Vehicle 
(UAV).

2. Numerical tools and models

This section describes the ANDROMEDE and DassFlow tools, which 
are used sequentially to generate a velocity field and a hydraulic model 
over the same grid. The observed velocities are then assimilated into 
the hydraulic model (see Fig.  1). The adaptation of the VDA method 
for reach-scale assimilation of surface velocity involves a bathymetry 
model. This model parameterizes local lateral geometric variabilities.

2.1. ANDROMEDE: PTV data extraction toolchain

ANDROMEDE1 is an open source software that allows the com-
bination of image treatment and analysis methods to derive velocity 
estimations from video footage. It is capable of both Particle Imagery 
Velocimetry (PIV) and Particle Tracking Velocimetry (PTV), which 
makes it a flexible tool. PTV methods are used in this article.

The video analysis is carried out on a projection of the footage 
onto the WS plane. On this plane, a regular grid 𝛺 is defined. Cell 
size is given by the user. Individual velocity estimates, each linked to 
an identified particle, contained in a cell are filtered, then averaged 

1 https://andromede.readthedocs.io/
3 
over the total video time (see Cassan et al. (2024) for more details). 
This produces a snapshot of estimated averaged surface velocity field 
𝑈s = (𝑢s(𝑥, 𝑦), 𝑣𝑠(𝑥, 𝑦)),∀(𝑥, 𝑦) ∈ 𝛺.

2.2. DassFlow2D: hydraulic model with variational data assimilation algo-
rithm

The DassFlow2D2 modeling platform is used to solve the 2D Shallow 
Water equations on the velocity field snapshot grid. It is a free software3 
that is part of the DassHydro hydraulic–hydrological direct-inverse 
framework. DassFlow2D is a well-established software, with a validated 
classical solver and automatic time step adjustment to ensure stability.

2.2.1. 2D shallow water model
The 2D river domain mesh is 𝛺 and 𝑥, 𝑦 denote the spatial coordi-

nates while 𝑡 > 0 is the time. 𝛺 is the output grid of the ANDROMEDE 
generated velocity field. The surface velocity field 𝑈s is used as an 
observation in the VDA process.

The 2D shallow water (SW) equations in their conservative form 
write as follows, with a Manning-Strickler friction source term (Eq. (1)): 

𝜕
𝜕𝑡𝐔 + 𝜕

𝜕𝑥𝐅 (𝐔) + 𝜕
𝜕𝑦𝐆 (𝐔) = 𝐒𝑔 (𝐔) + 𝐒𝑓 (𝐔)

𝐔 =
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⎥
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⎥
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⎡
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⎢

⎣
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(1)

2 https://www.math.univ-toulouse.fr/DassFlow/
3
 https://github.com/DassHydro/dassflow2d
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with the water depth ℎ [m] and the depth-averaged velocity 𝑈 = (𝑢, 𝑣) 𝑇
[

m∕s
] being the flow state variables. The flow model parameters are the 

gravity magnitude 𝑔 [

m∕s2
]

, the bed elevation 𝑏 [m], and the Manning-
Strickler friction coefficient 𝑛 [

s∕m1∕3]. 𝐅 (𝐔) is the flux of the variable 
𝐔, 𝐒𝑔 (𝐔) is the gravitational source term, 𝐒𝑓 (𝐔) is the mass and friction 
source term.

Initial flow states ([ℎ, 𝑢, 𝑣] (𝑡 = 0,∀𝑥 ∈ 𝛺)) and boundary conditions 
adapted to the studied cases are chosen (see Monnier et al. (2016b, 
2019)). In this study, initial WS elevation is constant over the hydraulic 
grid. The downstream BC is a fixed WS elevation and the upstream BCs 
are inflow hydrographs.

2.2.2. Numerical scheme
The governing equations of 2D shallow water model can be dis-

cretized using a Godunov-type finite volume method. First-order
scheme is adopted for the interface variable reconstruction and the 
time-marching to the next step. Each successive time step is computed 
with CFL-like condition to ensure stability. A classical Euler explicit 
discretization is used based on Eq. (1), and the flux at cell interface are 
computed based on the HLLC Riemann solver (Eq. (2)): 
𝑼 𝑗+1

𝑖 = 𝑼 𝑗
𝑖 −

▵ 𝑡
𝐴𝑖

∑

𝑘∈𝑁(𝑖)
𝑷 𝑘𝐅

𝑗
𝑘𝑤𝑘+ ▵ 𝑡

[

𝑺𝑔

(

𝐔𝑗
𝑖

)

+ 𝑺𝑓

(

𝐔𝑗
𝑖

)]

(2)

where 𝑗 is the time step, 𝑁(𝑖) represents all the interfaces of cell 𝑖, 𝐴𝑖
the area of cell 𝑖 and 𝑤𝑘 the length of edge 𝑘. The matrix 𝑷 𝑘 is the 
rotation from the global coordinate system to the local one attached to 
the interface.

A first-order well-balanced scheme is used so that the source term 
can exactly balance the fluxes in the discrete form and the ‘‘lake at rest’’ 
condition can be preserved. The friction term is discretized using a fully 
implicit scheme to avoid the stiff term when very shallow water depth 
is encountered.

2.2.3. Bathymetry model
This section describes a bathymetry parameterization, or

bathymetry model, that helps to constrain spatial variations of bed 
elevation for inverse problems using sparse water surface observations. 
It is part of the direct model, which is why it is presented before the 
inverse method.

The variational data assimilation method described below allows for 
the inference of any parameter of the 2D Shallow Water (SW) model 
(bathymetry, friction, distributed inflows, etc.). We focus here on the 
inference of bathymetry and discharge.

The actual capability of the method to identify parameters depends 
on the informative content carried by the assimilated observations, 
which is linked to their nature and spatio-temporal distribution. Indeed, 
depending on available observations, one may not be able to infer a 
fully parameterized bathymetry.

Depending on the objectives of the study, available observations 
and parameter uncertainty, the bathymetry model can be more or less 
complex. For example, to obtain a flow rate, an approximation of 
the shape of the cross-section, considered invariant in the direction 
of flow, may be sufficient. On the other hand, the identification of 
bottom elevation variations linked to local hydraulic controls requires a 
bathymetry parameter that varies independently in the three directions 
of space.

For the purpose of providing adequate model parameterization 
for these cases and constraints for the inverse problems studied, the 
following bathymetry model is implemented (Eq. (3)): 
𝑏 (𝑥, 𝑦) = 𝑏0 (𝑋) + 𝑆 (𝑋, 𝑌 ) + 𝛿𝑏 (𝑥, 𝑦) (3)

where 𝑏0 (𝑋) [m] is here a simple linear bottom elevation varying 
along the flow axis with 𝑋 defining large scale longitudinal coordinate 
(patches), 𝑆 (𝑋, 𝑌 ) [m] is a differentiable shape function defining the 
lateral bathymetry variation and 𝛿𝑏 (𝑥, 𝑦) [m] is a full bathymetry varia-
tion term at fine scale (numerical model mesh scale) around the shape 
imposed by 𝑏  and 𝑆 at larger scale of patches.
0

4 
In this study, the bathymetry model is used with 𝑌  the cross-section 
axis locally perpendicular to the longitudinal axis 𝑋. Furthermore, 
𝑆 (𝑌 ) is defined as the combination of two power functions as follows 
(omitting dependency to 𝑋 of (𝐻m, 𝑦c, 𝑠

)

) (Eq. (4)): 

if 𝑌 < 𝑦c, then 𝑆(𝑌 ) = −𝐻m

(

1 −
(

𝑌 − 𝑦c
𝑦c

))𝑠

if 𝑌 ≥ 𝑦c, then 𝑆(𝑌 ) = −𝐻m

(

1 −
(

𝑌 − 𝑦c
𝑊 − 𝑦c

))𝑠 (4)

where 𝐻m [m] is the max depth located at 𝑦c, 𝑊 [m] is the total width 
of the channel and 𝑠 [−] is a shape coefficient. In this work focused on 
small scale hydraulic models (40 m long reach), these parameters are 
considered independent of the longitudinal axis 𝑋.

This formula is similar to that used in Dingman and Afshari (2018), 
with the added potential for asymmetry. Any combination of the slope 
involving 𝑏0, parameters of 𝑆 and 𝛿𝑏 (𝑥, 𝑦) can be sought through 
VDA. The introduction of this bathymetry model effectively allows 
user knowledge of the expected bathymetry shape to be built into the 
hydraulic model, therefore simplifying the considered inverse prob-
lems to fit inference and modeling requirements. Be aware that the 
informational content of observations, especially of surface velocity 
observations, is dependent on local flow conditions as explained in 
Section 1.

This decomposition makes it possible to better constrain the assim-
ilation process depending on of the sought parameters and on the type 
and number of data available. The bathymetry model is sufficiently 
complex to match the known bathymetry at the local-scale real case in 
Section 3.3 while remaining simple enough that its parameters could 
be estimated from existing channel geometry databases (e.g. Neal et al. 
(2015)) for river network scale uses.

Note that other geometrical constraints, adapted to both the physi-
cal complexity of a case and to the informative content carried by flow 
observations, could easily be implemented and taylored to other cases. 
Also note that the inverse approach enables to infer fully distributed 
bathymetry if sufficient data is available.

2.3. Data assimilation algorithm

Data assimilation methods aim to reduce misfit between observa-
tions and modeled quantities through the calibration of chosen model 
parameters. The VDA method is well suited to infer high-dimensional 
multi-variate parameter sets, such as geometric channel parameters and 
inflows of a hydraulic model from heterogeneous observations. Given 
the potentially high spatial density of observations such as WSV fields, 
it is of particular interest for calibrating densely varied parameters such 
as local bathymetry.

2.3.1. Parameter control vector
In this study, we seek small scale fully distributed bathymetry 

𝛿𝑏 (𝑥, 𝑦) of the 2D model directly, in a synthetic twin experiment using 
dense observations, as well as two upstream inflows 𝑸in =

(

𝑄1, 𝑄2
)

. 
The maximum considered control vector is (Eq. (5)): 

𝜽 =
(

𝛿𝑏 (𝑥, 𝑦) ,𝑸in
)

(5)

In a real experiment, we seek the parameters of the bathymetry 
model introduced above, in the context of sparser observations of the 
flow as encountered in real cases. The parameters (𝐻m, 𝑦c, 𝑠

) of the 
cross-section shape function defined above (Eq. (4)) and the upstream 
discharge hydrograph 𝑄1 are inferred simultaneously. The maximum 
considered control vector is (Eq. (6)): 

𝜽 =
(

𝐻m, 𝑦c, 𝑠, 𝑄1
)

(6)
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2.3.2. Optimization problem
Given modeled depth-averaged velocities 𝑈 (𝜽, 𝑡) and observed sur-

face velocities 𝑈s at every (𝑥, 𝑦) ∈ 𝛺𝑁 , we define the objective function 
as (Eq. (7)): 
𝐽 (𝜽) = 𝐽obs(𝜽) + 𝑎𝐽reg(𝜽) (7)

The observation cost function writes (Eq. (8)): 
𝐽obs = 𝛼‖𝑈 −(𝑈s)‖22 + 𝛽‖ℎ − ℎobs‖

2
2 (8)

where  is an observation operator that translates surface velocity into 
depth-averaged velocity and 𝛼, 𝛽 are coefficients.  Multiplicative coeffi-
cients are used as observation operators for comparing surface velocity 
observations to depth averaged simulated flow velocity. This is a simple 
and classical hypothesis without knowledge of real vertical velocity 
distribution — which is the case in many applications. For the real 
case described in this article, the observation operator is (𝑈s) = 𝛾𝑈s
with a constant coefficient of 𝛾 = 0.85 (this value is close to the mean 
coefficient value estimated in Hauet et al. (2018)). This is a reasonable 
and classical hypothesis to relate surface and depth-averaged velocity 
(see e.g. Cassan et al. (2024), Jodeau et al. (2019) and references 
therein). For synthetic cases, we observe modeled variables directly so 
𝛾 = 1.

In order to constrain the bathymetry 𝑏 (𝑥, 𝑦), we use a regularization 
term that writes (Eq. (9)): 
𝐽reg (𝜽) = ‖∇𝑏 (𝑥, 𝑦) ‖22 (9)

This term is an effective way of preventing sharp variations of 
𝑏 (𝑥, 𝑦).

The optimization problem then writes as follows (Eq. (10)): 
𝜽̂ = argmin

𝜽
𝐽 (𝜽) (10)

It is solved using a first order gradient-based algorithm, the classical 
bounded L-BFGS-B quasi-Newton algorithm (Zhu et al., 1997). The 
assimilation process is stopped when the algorithm fails to reduce cost 
after 25 line search steps. The gradient ∇𝜃𝐽 is computed with the help 
of the adjoint model of the 2D SW numerical model DassFlow. The 
latter is obtained by automatic differentiation, using Tapenade (Hascoet 
and Pascual, 2013).

3. Experiments design

Our method aims to provide simultaneous estimates of discharge 
and bathymetry of a 2D shallow water model of river reaches, with 
the intent to provide an unintrusive and faster alternative to existing 
intrusive data collection methods (e.g. ADCP measurements).

In these initial uses of our measurement methodology, the zone of 
interest is limited to the area covered by data obtainable from a camera, 
whether positioned on the banks or mounted on a stationary UAV.

3.1. Sought parameters

WSV can carry information on discharge. Its estimation from surface 
velocity exclusively within the presented toolchain would allow im-
mediate, straightforward operational uses of ANDROMEDE-DassFlow. 
Furthermore, the inference of discharge by VDA with a well known 
bathymetry corresponds to using the hydraulic model as a physical 
filter of all velocity measurements in order to integrate the depth 
averaged velocity field. The standalone ANDROMEDE software already 
allows discharge estimates based on an inversion of the Manning-
Strickler formula. Parameters exhibit varying degrees of sensitivity. To 
illustrate this physically, consider commonly observed values in river 
dynamics. Excluding flood events, the average velocity at the center of 
a river’s flow typically ranges between 0.5 and 1 m/s. However, flow 
rates can fluctuate by a factor of 10 between low flow and average 
discharge conditions. This substantial variation is primarily attributable 
5 
to changes in water level. Consequently, water level data can provide 
valuable insights for estimating discharge, due to its high information 
content. However, WSV fields can also carry information on lateral flow 
variability, which may be linked to local channel geometry. This is es-
pecially likely in low flow regimes. The estimation of local bathymetry 
from fields observations could allow a reduction in the uncertainty of 
this hard-to-observe parameter.

This is why, in the below experiments, we target the challenging 
issue of simultaneous inference of geometric parameters and discharge. 
In Section 4, we successively seek:

1. Distributed bathymetry and two constant inflows upstream of a 
confluence, by assimilating observations gathered at that conflu-
ence (synthetic twin experiment) 
𝜽 =

(

𝛿𝑏 (𝑥, 𝑦) , 𝑄1, 𝑄2
)

(11)

2. Geometric cross-section parameters from the bathymetry model 
on a straight channel (synthetic twin experiment) 
𝜽 =

(

𝐻m, 𝑦c, 𝑠
)

(12)

3. Bathymetry model parameters and upstream inflow on a model 
of a real case, at the scale of the WSV field 
𝜽 =

(

𝐻m, 𝑦c, 𝑠, 𝑄1
)

(13)

Note that, at the field scale, the bottom slope seems difficult to 
estimate from WSV data as captured longitudinal variations are likely 
within the expected error range, see Appendix  A. Still, such important 
information on hydraulic controls in rivers may be accessible from 
WSV at a larger scale than considered here. Also note that the con-
sidered problem is friction-bound, and we chose to assume a known 
homogeneous friction in all experiments.

3.2. Prior values

The prior values of sought model parameters can have an impact on 
inferred parameters.

Prior values for discharge can be estimated through the
ANDROMEDE software or by using historical data from local databases 
or rating curves. A simple way of obtaining a prior value for flow 
is to consider a rectangular or triangular section, combined with an 
averaged velocity profile from observed WSV. Another possibility is 
to consider a constant energy slope over a transect and a local depth 
estimate, which ANDROMEDE is able to translate to a flow estimate 
based on the Manning-Strickler equation.

Prior values for the bathymetry can be derived from available in situ 
measurements – although this approach intends to reduce the need for 
such intrusive measurements –, from global databases — e.g. estimates 
of the shape coefficient 𝑠 in Dingman and Afshari (2018), Morel et al. 
(2020)) - or possibly from rough unintrusive in situ estimates, which 
may provide a sufficiently accurate starting point for the inference of 
𝜽 =

(

𝐻m, 𝑦c, 𝑠
) in some cases. To estimate a priori the position of the 

depth maximum 𝑦c, we can use the position of the velocity maximum, 
which is likely to be correlated if we neglect secondary currents and 
the heterogeneity of bottom roughness.

3.3. Real case: Ariège river at Crampagna

3.3.1. In situ data
The selected study site for real case is located on the Ariège river in 

France. It is a by-pass river reach at a hydroelectric plant downstream, 
where the flow remains constant over periods long enough for mea-
surement (around 1 min for a velocity snapshot). In order to validate 
the proposed method, we carried out intrusive flow and bathymetry 
measurements (ADCP and manual bottom elevation), as well as video 
from a static aerial drone. These two techniques are described in detail 
below.
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Fig. 2. Crampagna observations: measured water depth from ADCP (dense points, middle line) and ruler (sparse points) and estimated surface velocities from ANDROMEDE. Cyan 
cross is the location of the single water depth observation used in assimilations. Background image is a still from analyzed video.
Intrusive data collection. A bathymetric survey is carried out using a 
Leika tacheometer. Elevation measurements are relative to the position 
of the instrument. For comparison with drone data, a manual re-
alignment is then made for cross-sections of interest. Three transects 
were surveyed with a point-to-point spacing of around 2 meters until 
the water depth no longer allowed manual measurement.

Discharge measurement on one cross-section was also performed 
with acoustic Doppler velocimeter (StreamFlow). Four consecutive 
measurements were made to reduce uncertainty, and the average of the 
four was used for comparison with optical measurements (see below). 
The measurement points are shown in Fig.  2, along with the velocity 
field obtained by ANDROMEDE analysis.
Data collection by UAV. For drone observations, the river is manually 
seeded with floating particles (3 cm long, 1 cm diameter cylinders) 
upstream of the study area. The movement of the particles was filmed 
from a drone (DJI phantom IV) at an altitude of around 60 m. With a 
focal length of 8 mm, the average pixel size is 2.5 cm. Four red targets 
were placed at the edge of the WS on either side of the river and their 
positions measured using a tacheometer. The data are expressed in a 
relative coordinate system. The acquisition time is 68 s. The video is 
analyzed using the ANDROMEDE software and the averaging method 
described above. Instantaneous velocities are determined using the KLT 
optical flow method (Cassan et al., 2024). The averaged velocity field 
to be assimilated is shown in Fig.  2.

The velocity field is asymmetrical, with a low-speed range on the 
left bank. The shadows in the video imply some no data zones, but 
they do not hinder speed estimation over most of the area of interest. 
A relative invariance in the longitudinal direction seems to exist, which 
justifies considering only one cross-section at first step.
6 
4. Results and discussion

This section describes a series of experiments designed to demon-
strate the capabilities of the ANDROMEDE-DassFlow chain. The VDA 
method is evaluated through 3 test cases. They aim to demonstrate 
the capability of the VDA method to ingest velocity observations and 
provide relevant estimates of model parameters from accessible prior 
values, in anticipation of the availability of velocity measurements on 
larger modeled areas like river networks.

The two first experiments are numerical twin experiments, where a 
reference model is used to generated observations that are then used 
to infer the reference bathymetry from an erroneous first guess. They 
correspond to realistic cases in terms of complexity and size. The third 
experiment corresponds to the real case described in Section 3.3.

The first case aims to reproduce a classic river confluence based 
on (Pujol, 2022). A complex velocity field is generated and observed 
at the confluence due to upstream flows mixing and spatially varied 
bathymetry. Distributed bathymetry and/or upstream inflows 𝜽 =
(

𝛿𝑏 (𝑥, 𝑦) , 𝑄1, 𝑄2
) are inferred by assimilating modeled velocities. The 

presented results show that it is possible to identify bottom disturbance 
if the velocity field is sufficiently well described.

The second case is inspired by the Golfech case described in Cassan 
et al. (2024). Its mesh and the distribution of velocity observations 
are that of a real ANDROMEDE case. A synthetic velocity field is used 
to infer parameters from the bathymetry model 𝜽 =

(

𝐻m, 𝑦c, 𝑠
) in a 

prismatic channel.
In the last experiment, the method is applied to a real case, showcas-

ing the ANDROMEDE-DassFlow tool chain and using real UAV-based 
measurements of flow velocity to simultaneously infer bathymetry 
parameters and an upstream inflow 𝜽 =

(

𝐻 , 𝑦 , 𝑠,𝑄
)

.
m c
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Fig. 3. Assimilation of depth averaged velocity for inferring model bathymetry in twin experiment context over the confluence case from (Pujol, 2022). Top: reference bathymetry 
of the model. Bottom: inferred bathymetry distributions from velocity field assimilation, starting from a flat bathymetry prior. The cost function is 𝐽 = ‖𝑈sim −𝑈obs‖

2
2 +5‖∇𝑏 (𝑥, 𝑦) ‖22.
4.1. Inference of distributed bathymetry and multiple inflows

The first test case was chosen to underline the capability of the 
method to ability handle 2D WSV fields linked to both upstream inflows 
and local bathymetry. Here, we seek to infer distributed bathymetry 
from a complex surface velocity field in a twin experiment setup.

The synthetic experiment models a flow at the confluence of 2 river 
reaches (15m-wide). Two symmetrical upstream reaches (100 m long, 
15 m wide) meet at a complex bathymetry area followed by a straight 
downstream reach (100 m long, 30 m wide). The number of cells is 
15k and the average cell edge is 1 m. The model has two upstream 
inflow boundary conditions and, downstream, a prescribed water depth 
is 1.5 m. Outside the confluence, the slope is constant at 2.10−3 m/m.

A reference simulation is performed, using the target values from 
Table  1 and the reference bathymetry featured in Fig.  3(a). Simulations 
are carried out for 1000s in physical time. Observations of flow velocity 
are generated, within the green area in Fig.  3(a) at an observation time 
step of 50 s. The complexity of the 2D velocity field at the confluence 
comes from (i) local gradually varied bathymetry and (ii) the two 
distinct upstream inflows.

The domain dimension and observation time step were chosen to 
roughly correspond to what could be expected from local scale static 
UAV measurements.
7 
Four different data assimilation experiments were designed. For 
each of them, the control vector and prior values differ. The cost 
function reads 𝐽 = ‖𝑈sim − 𝑈obs‖

2
2 when seeking inflows only, or 

𝐽 = ‖𝑈sim − 𝑈obs‖
2
2 + 5‖∇𝑏 (𝑥, 𝑦) ‖22 when also seeking bathymetry. The 

regularization term – a bathymetry elevation spatial derivative norm 
which penalizes high frequency variations – carries the information 
that the inferred bathymetry should vary smoothly, which is a known 
property of the target bathymetry. The weights of the cost function 
terms were adjusted manually. The 4 designs are described below:

• 𝑄𝑎: We seek to infer 𝜽 =
(

𝑄1, 𝑄2
)

. We fully know the bathymetry. 
The prior inflow values correspond to switching the values of the 
reference inflows: (𝑄1 = 5 m3∕s, 𝑄2 = 8.5 m3∕s

)

.
• 𝑄𝑏: We seek to infer 𝜽 =

(

𝑄1, 𝑄2
) without knowledge of the target 

bathymetry. The prior inflow values are the same as in 𝑄𝑎. The 
prior bathymetry is flat, with a constant slope of 2.10−3 m/m.

• 𝐵only: We seek to infer 𝜽 = (𝑏(𝑥, 𝑦)) the distributed bathymetry 
at the confluence, given known inflows, from a flat bathymetry 
prior with a constant slope of 2.10−3 m/m.

• 𝐵𝑄: We seek to infer both the distributed bathymetry and up-
stream inflows 𝜽 =

(

𝑏(𝑥, 𝑦), 𝑄1, 𝑄2
) given the same prior on 

inflows as 𝑄  and the same prior bathymetry as 𝐵 .
𝑎∕𝑏 only
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Table 1
Parameter values for the confluence inversion experiments. Sought parameters for each setup in bold.
 𝑄1 [m3/s] 𝑄2 [m3/s] Bathymetry  
 Target 8.5 5 –  
 𝑄𝑎 prior (inferred) 𝟓 (𝟖.𝟓𝟎) 𝟖.𝟓 (𝟓.𝟎𝟎) perfectly known: max. 1.4 m, min. −1 m  
 𝑄𝑏 prior (inferred) 𝟓 (𝟖.𝟑𝟎) 𝟖.𝟓 (𝟒.𝟗𝟓) assumed flat  
 𝐵only prior known known flat (max. 1.1 m, min. −0.46 m, Fig.  3(b))  
 𝐵𝑄 prior (inferred) 𝟓 (𝟗.𝟒𝟐) 𝟖.𝟓 (𝟔.𝟐𝟒) flat (max. 0.88 m, min. −0.27 m, Fig.  3(c)) 
Both 𝑄𝑎 and 𝑄𝑏 lead to accurate estimations of upstream inflows. 
This indicates that, in this setup, we can infer inflows from complex 
observed fields without information on local bathymetry variations, 
even though they contribute to the complexity of said field.

𝐵only leads to a good bathymetry inferences, with very good es-
timates of its spatial pattern - starting from an unbiased flat prior 
- and fair inferences of bathymetry peaks. Maximum bathymetry is 
underestimated at 1.1 m compared to the target value of 1.4 m. This can 
be explained by an equilibrium being reached between the influence on 
the velocity field of the local bathymetry top and the cross-sectional 
bathymetry pattern around it. Remember that prior bathymetry is 
flat and that such an equilibrium is likely to be reached through an 
underestimation of bathymetry peaks. Inferred bathymetry at target 
bottoms is further from the target at −0.46 m with a target at −1m, 
which can be expected given their lesser impact on observed quantities 
compared to peaks.

𝐵𝑄 leads to a 16% overestimation of the total inflow (10.2% 
overestimation of 𝑄1 and 24.8% overestimation of 𝑄2). This error on 
discharge is felt in the inferred bathymetry through less correction of 
the flat prior value, yet with a spatial pattern consistent with 𝐵only. 
Given the strong error on inflow priors (the values of the two upstream 
inflows were switched) and the restricted area of observation, centered 
on a complex flow area, these results are fairly satisfying.

These inference examples showcase the capacity of our DA method 
to infer high dimensional control vectors containing both multiple 
inflows and finely distributed bathymetry from velocity information 
only. It is interesting to note that inflows were accurately inferred even 
without accounting for the complex bathymetry of the confluence.

4.2. Inference of cross-section shape on a straight parabolic channel

In this second twin experiment, we seek to extract information 
on the lateral variability of bathymetry from synthetic observations 
of surface velocity. The considered control vector 𝜽 =

(

𝐻m, 𝑦c, 𝑠
)

contains parameters from the bathymetry model, which describe local 
cross-section.

A target parameter set and 3 prior value sets are defined (see 
Table  2). Each parameter set is meant to represent a reasonable yet 
significant estimation error on the prior values of sought parameters, 
e.g. stemming from a rough estimation through non-intrusive methods.

The target parameter set is used to generated synthetic observations 
of modeled velocities. The spatial pattern and resolution of observa-
tions is that of observations obtained from a UAV video on the Golfech 
case, in Cassan et al. (2024), a case that shares dimensions with the 
current synthetic case. They cover most of the channel but stop a few 
meters from the banks.

Then, for each prior set, the 3 parameters of are sought simulta-
neously from velocity observations only. Each set leads to very good 
inferences (see Fig.  4).

This setup serves to validate our capability to infer parameters 
from the newly implemented bathymetry model and to illustrate the 
potentially informative content of lateral variations in velocity observa-
tions. Here, we use observations of modeled velocity – and not surface 
velocity – in order to focus on tool chain capability. Note that, for the 
8 
Table 2
Target and prior and inferred values of bathymetry model parameters. See Fig.  4 for 
the resulting cross-section shapes. Inferred values in parenthesis.
 𝑠 [–] 𝐻m [m] 𝑦c [m]  
 Target 8 3 50  
 Prior (Inferred) 1 4 (8.52) 3 (2.98) 30 (53.3) 
 Prior (Inferred) 2 3 (8.64) 4 (2.97) 40 (54.1) 
 Prior (Inferred) 3 6 (9.24) 2.5 (2.96) 50 (57.3) 

Fig. 4. Inference of bathymetry model parameters by assimilating modeled velocity 
observations and starting from erroneous priors. Parameter values in Table  2. Cross-
sectional area is close to identical for all inferred sets. Inferred bathymetries overlap 
the target bathymetry. The cost function is 𝐽 = ‖𝑈sim − 𝑈obs‖

2
2..

specific goal of inferring local cross-section shape as done here for a 
Low Froude flow, implementing an observation operator translating 
surface velocity to model velocity is not a technical roadblock (see 
e.g. Hauet et al. (2018), Biggs et al. (2023)).

4.3. Application of the tool chain to a real case

For the real case described above (Crampagna, Ariège river), simul-
taneous inferences of (𝐻m, 𝑦c, 𝑠

) and 𝑄1 were performed using real 
surface flow velocities and limited water depth measurements 𝜽 =
(

𝐻m, 𝑦c, 𝑠, 𝑄1
)

. The two concurrent practical objectives are:

1. Estimating the cross-section shape from observed velocity, know-
ing a good prior of discharge and reasonable priors on the 
shape itself. This could be used to generate approximation 
of bathymetry from LiDAR surveys (WS elevation/slopes) and 
reach-scale drone footage (surface velocity fields). Similarly, this 



L. Pujol et al. Environmental Modelling and Software 193 (2025) 106589 
Table 3
Bathymetry model parameter and inflow ranges for Crampagna case. Target values are estimated from the ADCP measurement. 
Prior values are used in inference setups in Section 4.3. Bounds are used in the bounded minimization algorithm (see results 
e.g. in Figs.  5 and 6) and the same values are used to delimit the sampled parameter space (see Figs.  9 and 10).
 Ranges for 𝐻m [m] 𝑠 [–] 𝑦c [m] 𝑄1 [m3/s]  
 Target values (from ADCP) 2.2 to 2.5 0.6 to 0.9 27 to 33 8.5  
 Prior values 2 to 3 1 to 2 24 to 36 8 to 9  
 Bounds 1.5 to 3.5 0.1 to 3 20 to 40 7.65 to 9.35 
could serve to update model bathymetry after a morphogenic 
event, starting from previously calibrated/well-known
bathymetry.

2. Estimating discharge from limited intrusive in-situ measure-
ments. This could serve at local sites, e.g. to allow fast estimation 
of discharge for dam management including gate control based 
on fixed camera feedback. Additionally, it could reduce the need 
for intrusive methods (e.g. ADCP) and therefore the time spent 
on a given site during surveys by reducing useful minimal data.

Using the method explained in Appendix  A, the prior value of 𝑄 can 
be deduced from a single velocity measurement and an estimation of 
water depth at the same point. By assuming 𝑠 = 1 (triangular shape of 
the XS), with 𝐻m = 2 m, 𝑦c = 10 m and 𝑉m = 0.6 m/s the maximum 
observed velocity, we reach a discharge of 𝑄 = 9 m3/s, which is 
very consistent with the ADCP measurement of 8.51m3/s. This good 
agreement comes from the fact that the real cross-section is almost 
triangular and that the flow is very close to verifying the assumption 
for the calculation. The maximum water depth 𝐻m is estimated from 
the bathymetric survey. The value of 𝑦c is obtained with Fig.  2 by 
measuring distance between right banks (where the flow is higher) and 
the location of maximum velocity 𝑉m.

In all following experiments, the cost function reads 𝐽 = ‖𝑈sim −
0.85𝑈obs‖

2
2, or 𝐽 = ‖𝑈sim − 0.85𝑈obs‖

2
2 + +100‖ℎ − ℎobs‖22 when includ-

ing a water depth observation. The weighing coefficient were chosen 
to correspond roughly to equal contributions of surface velocity and 
water depth observations to the cost function at the first step of the 
assimilation process.

Simulations are carried out on a laptop with an Intel i9-13950HX 
CPU. Real simulated event time is 18 min, to ensure a permanent 
hydraulic state is reached by the model for any prior value set before 
comparing observed surface flow velocities to simulated depth-average 
velocities. Direct simulation time is around 25 s. Computation time for 
the inverse model is around 3–4 min per iteration, i.e. at most 32 min 
of total assimilation time for the below experiments.

4.3.1. Inference of bathymetry model parameters
The first objective is studied here through a series of inferences 

of 𝜽 =
(

𝐻m, 𝑦c, 𝑠
)

. Fig.  5 presents a representative subset of these 
experiments. Appendix  C shows full results of the set of experiments 
with Fig.  12 (only with flow velocity observations) and Fig.  13 (with a 
single additional water depth observation).

A set of prior values for 𝜽 was chosen based on in situ mea-
surements, with added error. These values aim to represent a rough 
estimate obtained in the field, without intrusive measurements.

The resulting inferred bathymetry model parameters correspond 
to a cross-section that is close to that measured by ADCP and other 
measurements. As seen in Fig.  5 by comparing the top and bottom rows 
and in Fig.  15, adding a single water depth observation to the observed 
velocity field slightly improves results for parameters 𝐻𝑚 and 𝑦𝑐 , thanks 
to the added constraint on bathymetry elevation at the measurement 
location. Overall, starting from erroneous priors, either far from the 
estimated target or quite close, the presented method allows improving 
the fit to observations. Given known discharge, the method is able 
9 
to reach decent estimates of cross-section shape starting from a large 
range of erroneous prior values.

The method is likely to obtain a better fit to measured bathymetry 
where the modeled water depth is lower, i.e. where the influence of 
the cross-section shape on flow WSV is likely to be higher. This creates 
a potential issue, since the less significant part of the flow in terms of 
discharge may be more sensitive to the global signature carried by the 
WSV field. Improvements in observation ponderation and observation 
operators may help mitigate this.

In Fig.  5, starting from an erroneous estimation of 𝑦c (channel center 
displaced to the right, left column), inferred bathymetry shape seems 
to match that of the downstream observations (purple dots) and the 
assimilation process does not manage to drive 𝑦c toward its estimated 
value. Starting from a better estimate of 𝑦c (right column), inferred 
cross-section shape tends to match the ADCP water depth measurement 
better (taken in the middle of the modeled reach). This is especially 
true when a single water depth observation, located around the ADCP 
measurement transect (red dots), is added (bottom right).

4.3.2. Inference of inflow and bathymetry model parameters
The second objective – discharge estimation in a context of un-

certain bathymetry – is studied here through a series of inferences of 
𝜽 =

(

𝐻m, 𝑦c, 𝑠, 𝑄1
)

. Fig.  6 contains a representative subset of these 
experiments. Appendix  C shows the full results of the set of experiments 
with Fig.  11 (only with flow velocity observations) and Fig.  14 (with a 
single additional water depth observation).

As before, the presented method allows for the minimization of 
misfit to observations in all cases. It appears that the prior of 𝑄1 has 
limited influence on the inferred XS shape (see Fig.  6, also Fig.  15). 
However, as could be expected, the higher the inferred 𝑄1, the higher 
the inferred flow section and generally the higher 𝐻m parameters. 
Starting from the correct inflow prior (8.5m3/s) leads to less variability 
in inferred inflows, while other prior values can lead to both over- and 
underestimation of the target flow. Interestingly, higher prior values 
for inflows do not tend to lead to higher final inferred values, which 
testifies to an extent to the limited influence of that first guess value as 
long as it remains in the range of ‘‘reasonable’’ estimates - which is a 
good point for the presented method - but also to the complexity of the 
variations of cost within the parameter space - which may indicate that 
the method reaches its limits in terms of extraction of the informative 
content of available WSV observations. In fact, erroneous discharge 
prior values seem to broaden the range of modeled flow regimes seen 
throughout the iterative assimilation process, increasing sensitivity of 
bathymetry model parameters in some cases as a side effect.

Overall, given the limited amount of data used to solve this complex 
inverse problem, inferred values for bathymetry model parameter and 
inflows are fairly good. The method could be used to reduce uncertainty 
in those parameters, especially with more observations, for example 
with WSV for a few more flow regimes.

4.3.3. Parameter space analysis
To better understand the informative content of the considered 

observations and the capacity of the presented VDA method to improve 
fit to observations, a uniform sampling of the cost within the expectable 
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Fig. 5. Sample inference results. Control vector is 𝜽 =
(

𝐻m , 𝑦c , 𝑠
)

. Top: assimilated observations are velocity field only, 𝐽 = ‖𝑈 − 0.85𝑈s‖
2
2. Bottom: assimilated observations are 

velocity field and one water depth, 𝐽 = ‖𝑈 − 0.85𝑈s‖
2
2 + 100‖ℎ − ℎobs‖

2
2. Final inferred bathymetry projected in the model grid in black. Intermediate inferences in blue: first guess 

cross-section is in light blue, latter inferences are darker. Scatter plot is measured bathymetry (orange for downstream, cyan for upstream and red for ADCP).
Fig. 6. Sample inference results. Control vector is 𝜽 =
(

𝐻m , 𝑦c , 𝑠, 𝑄1
)

. Assimilated 
observations are velocity field and one water depth, 𝐽 = ‖𝑈 −0.85𝑈s‖

2
2 +100‖ℎ−ℎobs‖

2
2. 

Final inferred bathymetry projected in the model grid in black. Intermediate inferences 
in blue: first guess cross-section is in light blue, latter inferences are darker. Scatter 
plot is measured bathymetry (orange for downstream, cyan for upstream and red for 
ADCP).
10 
parameter space was carried out (see Fig.  7 and also parameter space 
bounds in Table  3). See also Appendix  B for additional figures.

Fig.  7 shows that the pattern of the cost function in the parame-
ter space is mostly independent from inflow. This is consistent with 
inference results obtained in Section 4.3.2, but also Section 4.1 in 
experiment 𝑄𝑏 where fair inflow inferences were obtained even when 
distributed bathymetry was not accurately modeled.

This parameter space sampling (Fig.  7) illustrates the correlated 
sensitivities of the bathymetry model parameters and the potential for 
equifinality when inferring bathymetry model parameters. It shows, 
for example, how the range of good values for 𝐻m grows for higher 
values of 𝑠 (middle row), as the influence of 𝐻m on low water depth 
areas diminished due to the change in cross-section shape. Comparing 
Fig.  9 and Fig.  10 shows how the introduction of a single water depth 
observation redefines the area of lowest costs (bottom row).

A single global minimum appears in Fig.  7, indicating our determin-
istic gradient-based approach is pertinent to solve this inverse problem, 
since there is a unique low cost area toward which cost gradients 
point. Furthermore, using the ADCP measured inflow (middle row) that 
minimum corresponds to the parameter set (𝐻m = 2.12 m, 𝑠 = 0.9, 𝑦c =
30.34 m), which is very close to the value obtained through a priori 
analysis of the velocity field and would be a good estimate for our pur-
poses. This indicates agreement between our model and the observed 
surface velocity field.

Reducing equifinality would require acquiring more data – as shown 
possible more water depth measurement, also more flow regimes at a 
given river section – and estimating better priors and value ranges for 
the sought parameters.

Even if the parameter space remains complex, as many parameter 
sets can lead to relatively low cost values (see Table  4 for the spread 
of parameter within the 0.5% lowest costs), our VDA method is an 
efficient tool for parameter calibration. It allows for the search of a local 
minimum, which is shown by this parameter space analysis to be in the 
close vicinity of a global minimum that corresponds to good estimates 
of our parameters of interest. We demonstrated the capabilities of VDA 
for the fast inference of satisfying bathymetry model parameter and 
discharges in a manner that allows extracting interesting informational 
content from a single, real WSV field snapshot.
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Fig. 7. Sampled cost function (using velocity field and single water depth observations) within considered parameter space bounds. Top: Lowest 50% cost values. Middle: Lowest 
10% cost values. Bottom: Lowest 0.5% cost value (zoomed). Right column: histogram of log (cost) repartition for plotted parameter space samples (blue: 𝑄 = 7.7 m3/s, orange: 
𝑄 = 8.5 m3/s, green: 𝑄 = 9.3 m3/s). Cost value ‘‘spatial’’ repartitions show gradient-based approaches such as ours should allow for the reduction of the cost function using 
reasonable prior parameter estimates. Parameter ranges within the 0.5% sample are given in Table  4.
Table 4
Bathymetry model parameter (𝐻m , 𝑦c , 𝑠

) values for the lowest 0.5% cost subset when 
using both velocity field and single water depth observations (see Fig.  7, bottom).
 𝑄1 = 7.7 m3∕s 𝑄1 = 8.5 m3∕s 𝑄1 = 9.3 m3∕s  
 Maximum values (3.5, 1, 35.17) (3.15, 1.4, 32.41) (3.5, 1.1, 33.79)  
 Lowest cost set (3.22, 0.6, 32.41) (2.12, 0.9, 30.34) (2.67, 0.7, 31.03) 
 Minimum values (2.32, 0.5, 30.34) (1.71, 0.5, 28.28) (2.05, 0.5, 28.97) 

5. Conclusion

In this article, we presented the chaining of the ANDROMEDE and 
DassFlow platforms, which allows the treatment of field data to gener-
ate surface velocity fields and its integration in a 2D hydraulic model 
to infer geometric parameters. This toolchain serves 2 purposes: i) to 
limit the need for intrusive data collection during discharge surveys, 
and (ii) to allow integrating surface velocity observations into larger 
scale hydraulic river network models.

We presented a method for the assimilation of velocity observations 
for the inference of hydraulic parameters in a full SW 2D model. We 
showed that the informative content carried by surface velocity fields 
can be used to infer reasonable estimates of geometric parameters and 
inflows, given sufficient a priori information on the acceptable inverse 
problem solutions and adapted spatial constraints in the form of a 
bathymetry model. Importantly, a single WSV snapshot acquired by 
drone and treated through ANDROMEDE was shown to carry valuable 
informative content on the parameters of a 2D Shallow Water hydraulic 
model through our inverse modeling approach. Note that the VDA 
11 
framework used is capable of high-dimensional parameter inference 
and that the results, obtained at the reach scale in this study, could 
be obtained at the river network scale given larger scale WSV observa-
tions. Furthermore, the VDA method is able to integrate multi-source 
observations and was previously used to assimilate a number of non-
WSV observations and infer distributed model parameters and inflows 
in large scale models. Therefore, our method makes it possible to add 
WSV to existing observations sets, increasing the informational content 
of the combined data, in particular with knowledge of lateral channel 
flow variabilities.

This work introduced an elemental tool for integrating surface 
velocity observations into hydraulic models. Further applications could 
include the inference of fine scale bathymetry at the reach scale, for 
example from LSPIV drone measurements, which could provide lateral 
and longitudinal variations observations. It could also be used to exploit 
flow velocity time series generated by in situ fixed cameras and provide 
fine discharge estimation depending on the uncertainty on bathymetry 
and friction. To reduce computational costs for large river networks, 
a 1Dlike approach (Pujol et al., 2022) could be used and allows 2D 
high-resolution zooms with the same solver. This would require limited 
adaptation of the current bathymetry model for the modeling of subgrid 
variabilities. Furthermore, fast, local scale discharge estimations based 
on a hydraulic model at well-known river sections could also be used to 
guide dam controls or raise alerts linked to river surveillance. Finally, 
updating the bathymetry of a well-known model, for example after a 
morphogenic event, could be a very interesting experiment given the 
right dataset.

Further works should focus on facilitating the use of WSV obser-
vations through the addition of more complex observation operators, 
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especially for uses in low turbulence contexts. Integrating field or a 
priori knowledge of vertical velocity profiles in observation operators 
could improve estimation of discharge given known local bathymetry. 
In parallel, the integration of further a priori knowledge in the assimila-
tion process, such as spatial correlation patterns for bathymetry model 
parameters, could also be needed to infer more complex bathymetry 
structures. In high turbulence context like urban floods, capturing fine 
scale hydraulic phenomenons in hydraulic models (e.g. head losses laws 
due to urban singularities) may be key to unlock the full informational 
content of water surface velocity observations. Deep learning methods 
can be used as observation operators to unravel the complex filtering 
effect of flow on basal signatures linked to the bathymetry-friction 
couple (see Ohara et al. (2024)). The development of hybrid methods 
using VDA and Neural Networks could be an interesting venue for 
the refinement of our physical model-based approach with numerical 
differentiability, which can be combined with NN in learnable hydro-
logical modeling (Huynh et al., 2024) (strong constraints compared to 
PINNS).
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Appendix A. Estimation of distributed prior bathymetry from lim-
ited observations

Under steady 1D hydraulic conditions and under ‘‘low Froude’’ 
hypotheses (see Garambois and Monnier (2015)) the following momen-
tum equation is valid: 𝑄 = 𝐾𝐴𝑅2∕3

ℎ 𝑆1∕2 with 𝑄 the river discharge, 𝐾
the Strickler friction coefficient, 𝐴 the wetted area, 𝑅ℎ the hydraulic 
radius, and 𝑆 the free surface slope.

If we consider a generic cross-section in uniform flow (𝑥-invariant 
and steady), the longitudinal velocity field can allow defining lines 
which are orthogonal to isovel (Cassan et al., 2020). If we add the 
assumption that the isovel are horizontal, which can be almost true for 
wide rivers, the momentum balance implies that the Manning equation 
can link water depth to averaged velocity for subdomain 𝑖 in the 
transversal direction (Fig.  8). Then, the knowledge of one averaged 
12 
Fig. 8. Description of the cross-section subdomain decomposition.

velocity and one water depth allows computing friction slope and then 
a water depth for each subdomain knowing the velocity (Eq. (14)). 

𝑆1∕2 = 𝛾
𝑉𝑖𝑃

2∕3
𝑖

𝐾𝑖𝐴
2∕3
𝑖

= 𝛾
𝑉0𝑃

2∕3
0

𝐾0𝐴
2∕3
0

(14)

with 𝛾 the ratio between surface velocity and depth-averaged velocity, 
usually taken constant and equal to 0.85. Considering ℎ𝑖 = 𝐴𝑖∕𝑑𝑦 where 
𝑑𝑦 is the width of a subdomain, the water depth ℎ𝑖 is obtained for a 
given value of 𝑉𝑖, 𝑉0 and ℎ0 if Strickler coefficient 𝐾𝑖 is constant in the 
cross-section.

This method, implemented in ANDROMEDE, relies on several as-
sumptions but can provide prior value for 𝑄. First 𝑆 is obtained with 
the reference point 0 assuming 𝑃0 = 𝑃𝑖 = 𝑑𝑦. Knowing 𝑉𝑖, we get ℎ𝑖
and finally the total discharge is recomputed by summing 𝑉𝑖 ∗ ℎ𝑖 ∗ 𝑑𝑦.

An analytical formula can be obtained for triangular and symmetri-
cal cross-section (Eq. (15)). 

𝑄 = 2∫

𝑦c

0
𝑉 (𝑦)ℎ(𝑦)𝑑𝑦 = 2∫

𝑦c

0

𝑉0
ℎ2∕30

(

𝐻m
𝑦c

𝑦
)5∕3

𝑑𝑦 (15)

If the reference point is the maximum considered at the middle of 
the section, we get 𝑄 = 3

4𝑉m𝐻m𝑦c.

Appendix B. Cost sampling within parameter space on the Cram-
pagna case

This appendix contains additional results of the inference experi-
ments carried out on the Crampagna real case (Figs.  9 and 10).

Appendix C. Prior sensitivity analysis of the VDA method on the 
Crampagna case

This appendix contains additional results of cost sampling within 
the expected parameter space, on the model of the real Crampagna case 
(Figs.  11–14).

Data availability

Data will be made available on request.
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Fig. 9. Parameter space sampling of cost within expectable bounds. From top to bottom: 100, 50, 10 and 1 percent lowest sampled costs 𝐽 = ‖𝑈 − 0.85𝑈s‖
2
2. Right column: 

histogram of log (cost) repartition for plotted parameter space samples (blue: 𝑄 = 7.7 m3/s, orange: 𝑄 = 8.5 m3/s, green: 𝑄 = 9.3 m3/s).
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Fig. 10. Parameter space sampling of cost within expectable bounds. From top to bottom: 100, 50, 10 and 1 percent lowest sampled costs 𝐽 = ‖𝑈 − 0.85𝑈s‖
2
2 + 100‖ℎ − (ℎobs)‖22. 

Right column: histogram of log (cost) repartition for plotted parameter space samples (blue: 𝑄 = 7.7 m3/s, orange: 𝑄 = 8.5 m3/s, green: 𝑄 = 9.3 m3/s).
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Fig. 11. Analysis of inference results sensitivity to prior values. Assimilation of surface velocity field only. 𝜽 =
(

𝐻m , 𝑦c , 𝑠, 𝑄1
)

. Final inferred bathymetry projected in the model 
grid in black. Intermediate inferences in blue, latter inferences are less transparent. Scatter plot is measured bathymetry (orange=downstream, cyan=upstream, red=ADCP).
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Fig. 12. Analysis of inference results sensitivity to prior values. Assimilation of surface velocity field only. 𝜽 =
(

𝐻m , 𝑦c , 𝑠
)

. Final inferred bathymetry projected in the model grid 
in black. Intermediate inferences in blue, latter inferences are less transparent. Scatter plot is measured bathymetry (orange=downstream, cyan=upstream, red=ADCP).

Fig. 13. Analysis of inference results sensitivity to prior values. Assimilation of surface velocity field and depth observation. 𝜽 =
(

𝐻m , 𝑦c , 𝑠
)

. Final inferred bathymetry projected 
in the model grid in black. Intermediate inferences in blue, latter inferences are less transparent. Scatter plot is measured bathymetry (orange=downstream, cyan=upstream, 
red=ADCP).
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Fig. 14. Analysis of inference results sensitivity to prior values. Assimilation of surface velocity field and depth observation. 𝜽 =
(

𝐻m , 𝑦c , 𝑠, 𝑄1
)

. Final inferred bathymetry projected 
in the model grid in black. Intermediate inferences in blue, latter inferences are less transparent. Scatter plot is measured bathymetry (orange=downstream, cyan=upstream, 
red=ADCP).
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Fig. 15. Sensitivity of inferred bathymetry model parameters and discharge to prior values for all experiments on the real case. Values are normalized between the bounds given 
in Table  3. Horizontal dashed lines mark the target value ranges from Table  3, based on ADCP measured cross-section. Prior value of the parameter is denoted by marker type. 
Cases with single water depth observation added lead to better estimates of 𝑦𝑐 and 𝐻𝑚 on average, with slightly worse estimates of 𝑠 and 𝑄..
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