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 A B S T R A C T

Flood inundation mapping for gauged and ungauged basins relies on chained hydrologic-hydrodynamic models, 
combined with multi-source remote sensing (RS) datasets and in-situ gauge measurements when available. In 
this work, a large-scale hydrologic model provides forcing data to a high-fidelity local hydrodynamic model. 
The latter acts as an advanced interpolator, bridging the gap in both space and time between the high-frequency 
yet sparse in-situ measurements and the large-coverage but less frequent satellite data gathered from various 
Earth Observation (EO) missions. These data are combined with physics-based equations using data assimilation 
(DA) algorithms. This study presents a novel use of nadir and off-nadir altimetry data from the Sentinel-6 
(S6) mission, processed with Fully-focused SAR (FFSAR) algorithms, alongside Sentinel-1 (S1) SAR-derived 
flood extents, for DA over the Garonne River. Using a dual state-parameter Ensemble Kalman Filter (EnKF), 
it is shown that assimilating S6 altimetry data brings significant improvements along the riverbed, as well as 
addressing gaps left by other remote sensing datasets. It was demonstrated that DA allows for the combination 
of various EO datasets, overcoming the limitations of spatial RS low-revisit frequency and improving the 
representation of the flood dynamics in the riverbed and the floodplains.
1. Introduction

Major devastating floods have been occurring around the world, 
with an increased intensity in the last decade, exacerbated by global 
climate change (Masson-Delmotte et al., 2021a,b). For instance, Wasko 
et al. (2021) found that extreme rainfall has become more frequent, 
with shorter storm events and reduced frequent flood peaks, but an 
increase in rarer flood peaks due to shifts in soil moisture. On the 
other hand, Boulange et al. (2021) emphasize the important role of 
dams in mitigating global flood risk under climate changes. Flooding 
alone is responsible for approximately 40% of all natural disasters 
globally (Shah et al., 2018; United Nations Office for Disaster Risk 
Reduction, 2020, 2022); Up to 1.47 billion people are directly at risk 
of flooding (Rentschler and Salhab, 2020). Flood damages have indeed 
increased in recent years, driven by climate-related changes and rising 
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asset values in flood-prone areas (Blöschl et al., 2019). Hence, mon-
itoring and predicting floods holds paramount importance, operating 
in both hindcast and forecast modes (Jamali et al., 2018; Pinter et al., 
2017; Begg, 2018).

1.1. Role of Earth Observation data in flood monitoring and forecasting

Early flood warning and emergency management systems rely on 
the synergy between high-fidelity numerical models and dense, reliable 
observing networks. Due to the global decline of in-situ gauge data (The 
Ad Hoc Group et al., 2001), the role of remote sensing (RS) data is 
becoming increasingly important. Indeed, flood management has been 
assisted by an increasing amount of data from satellite Earth Obser-
vation (EO) missions, providing heterogeneous and relevant satellite 
data, namely altimetry, optical and synthetic aperture radar (SAR). The 
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integration of RS observations into hydrodynamic models significantly 
improves the flood reanalysis and forecasting capabilities. These in-
clude Digital Elevation Model (DEM), river dimensions, WLs, flow rates, 
and flood extents. In addition, EO data not only provides insights into 
the physical aspects of floods, i.e. their extent and surface elevation, 
but also offers highly impactful socioeconomic data (Annis and Nardi, 
2019). This added dimension improves our understanding of vulnera-
bility and facilitates damage assessment, ultimately strengthening our 
capacity to mitigate risks (Adeel et al., 2020).

Satellite radar altimetry stands out as a valuable technology for 
monitoring water surface elevations (WSEs) and river discharge from 
space. Schumann et al. (2023) provided a comprehensive review and 
discussed the great potential for enhanced mapping and monitoring of 
floods using RS data, including satellite radar altimetry. Its significance 
extends to hydrology studies, particularly those associated with remote 
or poorly-gauged catchments (Jarihani et al., 2013; Domeneghetti, 
2016), thanks to global scale and high spatial coverage. This en-
compasses both nadir and large-swath radar altimeters. Research into 
satellite altimetry for river monitoring spans a spectrum of climates, 
namely in Arctic, temperate and/or tropical climates (Da Silva et al., 
2010; Biancamaria et al., 2017), as well as extending across various 
rivers and river basins, such as the Amazon (Da Silva et al., 2010) 
and the Mekong (Chang et al., 2019; Boergens et al., 2017), as well 
as relatively small ones (Sulistioadi et al., 2015; Bogning et al., 2018). 
More technical details on satellite radar altimetry can be found in 
Appendix  A.

Jiang et al. (2019) carried out a simultaneous calibration of hy-
drodynamic models, focusing on Strickler’s friction coefficients and 
river datum, using various altimetry data. Their findings suggested that 
for calibrating parameters in large-scale river hydrodynamic models, 
spatial resolution holds greater significance than temporal resolution 
and observation accuracy. Notably, CryoSat-2 demonstrated superior 
performance compared to other altimeters such as SARAL, Jason-1, and 
Jason-2 in identifying said parameters. Similarly, Brêda et al. (2019) 
conducted an estimation of river bathymetry by assimilating various 
satellite altimetry missions, analyzing real data from ENVISAT, ICESat, 
and Jason-2, along with synthetic altimetry data from ICESat-2, Jason-
3, SARAL, and SWOT. As such, they asserted that the bathymetry 
estimation performance depends strongly on the satellite inter-track 
distance, since a greater number of observation sites leads to better 
estimates.

The large-swath Surface Water and Ocean Topography (SWOT) al-
timeter was launched in 2022. Equipped with a Ka-band Radar Interfer-
ometer (KaRIn), it aims to provide sea surface heights and continental 
WSE maps globally with a 21-day revisit frequency, covering a 120-
km wide swath (with an approximately 20-km gap at the nadir track). 
The merits of SWOT-derived river products for the estimation of dis-
charge were recently demonstrated in Wongchuig-Correa et al. (2020), 
Durand et al. (2023). Nevertheless, the major drawback of altimetry 
data in hydrology is still the low temporal resolution, especially in 
the context of flood monitoring and forecasting. Recent advancements 
have addressed this challenge by combining multiple satellite altimetry 
missions (Boergens et al., 2017; Tourian et al., 2016; Zakharova et al., 
2020). In this paper, we combine flood observations from multiple EO 
data sources, including in-situ data, Sentinel-1 (S1) SAR flood extent 
and Sentinel-6 (S6) WSE measurements processed with Fully-focused 
SAR (FFSAR) (Egido and Smith, 2016).

Water bodies and flooded areas typically show low backscatter 
on SAR images, as radar pulses are mostly reflected away from the 
sensor when they hit smooth water surfaces (Martinis et al., 2015). 
S1 is equipped with a C-band SAR system operating at a frequency of 
5.405 GHz (Torres et al., 2012), making it well-suited for such appli-
cations. Two polar-orbiting identical satellites work as a constellation 
allowing a six-day repeat cycle. They were launched respectively on 
2014-04-03 and 2016-04-26. However, since 2021-12-23, S-1B became 
defective due to a technical anomaly, this led to a lack of global SAR 
2 
imagery, which had been typically useful for flood monitoring. The 
need for other RS datasets thus becomes all the more necessary in 
order to monitor floods from space. In this work, we investigate how 
altimetry data from the S6 mission, including off-nadir observations, 
with FFSAR processing (Egido and Smith, 2016) can participate in this 
effort.

The FFSAR (Egido and Smith, 2016) processing technique allows 
to achieve high resolution and accuracy of nadir altimetry data, by 
performing fully-focused coherent processing of pulse echoes from 
a nadir-looking pulse-limited radar altimeter. Kleinherenbrink et al. 
(2018) presented an application of FFSAR on the CryoSat-2 altimetry 
in the Wadden Sea, discussing its potential utility in monitoring water 
surface dynamics in this coastal environment, whereas Molina Burgués 
et al. (2023) investigated the merits of extracting WSEs measurements 
using S6 FFSAR, with a focus on inland targets including relatively 
small reservoirs and lakes, compared to in-situ data. Gómez Olivé 
et al. (2023) studied water extent measurements using S6 FFSAR data, 
aiming to assess its effectiveness in delineating water bodies against 
optical (Sentinel-2) measurements and in-situ observations.

1.2. Improving flood prediction with data assimilation

A recent review by Jafarzadegan et al. (2023) provides a compre-
hensive flood forecasting framework and recommendations to improve 
forecasting systems. It advocates for the development of an integrated 
modeling platform with data assimilation (DA), which articulates the 
interaction among all of the Earth components, taking into account 
the chain of uncertainties with an ensemble-based approach in or-
der to provide flood inundation mapping capabilities. Hydrologic and 
hydrodynamic numerical models play a central role in representing 
and predicting flood discharge and water levels (WLs) in the river 
mainstream as well as in the floodplain. As such, coupling hydrologic 
and hydrodynamic models is commonly employed in flood forecasting 
systems. This approach is crucial for ensuring precise predictions of 
flood extents and water depths across expansive catchments, essential 
for effective flood management (Grimaldi et al., 2016). Nevertheless, 
their effectiveness is hampered by the inherent uncertainties present in 
their input data. In this regard, DA has been demonstrated to be highly 
efficient in hydrology studies to reduce such uncertainties. It combines 
numerical models with observations from in-situ stream gauges and 
from satellite EO (Mason et al., 2012; Hostache et al., 2018).

The assimilation of RS-derived WSE is advantageous as it directly 
uses a key diagnostic variable of the model (Giustarini et al., 2011; 
Annis et al., 2022). Revilla-Romero et al. (2016) assimilated the Global 
Flood Detection System’s daily surface water extents with an Ensemble 
Kalman Filter (EnKF) to improve streamflow forecasts in Africa and 
South America. Despite the coarse spatial resolution of their results 
(i.e. 0.1◦ × 0.1◦), the EnKF updated simulated groundwater levels us-
ing innovations in streamflow volumes, significantly enhancing flood 
peak predictions in ungauged catchments. Other studies on DA into 
hydraulic models or forecasting systems integrate synthetic, in situ or 
RS-derived WLs, such as Annis et al. (2022) with EnKF, and García-
Pintado et al. (2013, 2015), Andreadis and Schumann (2014) with 
Ensemble Transform Kalman Filters (ETKF). Lai et al. (2014) imple-
mented a 4D-Var DA scheme, integrating MODIS-derived flood extents 
into a 2D Shallow Water model to improve roughness parameter esti-
mates in floodplains. Using SAR images, flood probability maps have 
been estimated (Giustarini et al., 2016) and assimilated into a Particle 
Filter (PF) framework (Hostache et al., 2018; Dasgupta et al., 2021; 
Di Mauro et al., 2021) built on top of a cascade hydrologic–hydraulic 
model (i.e. SUPERFLEX (Fenicia et al., 2011) and LISFLOOD-FP (Bates 
and De Roo, 2000)), where particles were weighted by their fit with 
the SAR observations. Di Mauro et al. (2021) introduced a tempering 
coefficient to reduce PF degeneracy and enhance forecasts.
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1.3. Objective and outline

This study focuses on reducing uncertainties in hydrodynamic model
parameters, forcing data, and hydraulic state variables to improve the 
overall flood prediction in hindcast mode. This is achieved through 
the joint assimilation of the S1-derived flood observations and the 
high-spatial density altimetry data from S6. It builds upon previous 
work by Nguyen et al. (2022b, 2023b), Ricci et al. (2023), using 
the TELEMAC-2D1 (T2D) hydrodynamic model over the Garonne Mar-
mandaise catchment in southwestern France. While Nguyen et al. 
(2022b) proposed the assimilation of wet surface ratios (WSR) derived 
from S1 observed flood extent maps using a dual state-parameter EnKF 
scheme Moradkhani et al. (2005), andNguyen et al. (2023b) later ex-
tended this by addressing the non-Gaussian nature of these observations 
through anamorphosis, both studies were limited to uncertainties in 
observed inflow discharges. Similarly, preliminary work (Ricci et al., 
2023) was carried out to validate 1D and 2D hydraulic MASCARET-
TELEMAC models using S6-derived data. In contrast, the current work 
further assimilates S6 FFSAR-processed data and deals with highly 
uncertain discharges produced by the large-scale hydrological model 
ISBA-CTRIP. The WSR computes the ratio of wet pixels detected on 
SAR S1-derived flood extent maps over the total number of pixels 
within each subdomain of the floodplain. In the present work, S6 
altimetry data have been processed with FFSAR (Egido and Smith, 
2016; Boy et al., 2023) to provide a spatially dense profile of WSE every 
10 m along the river centerline at each overpass time. T2D is forced 
by the ISBA-CTRIP hydrologic model (Decharme et al., 2019; Munier 
and Decharme, 2022) to allow for ungauged catchment study and 
increased forecast lead times beyond the transfer time of the hydraulic 
network (Nguyen et al., 2023a; Nguyen et al., 2024).

The remainder of the article is organized as follows. Section 2 
presents the hydrologic and hydrodynamic models, whereas Section 3 
describes the EO data and the processing algorithms. The DA strategy 
and experimental settings are detailed in Section 4. Section 5 discusses 
the merits of the multi-source DA with comprehensive assessments in 
the control space and the observation space. Finally, conclusions and 
perspectives are summarized in Section 6.

2. Chained hydrologic-hydrodynamic models

2.1. The Garonne Marmandaise hydrodynamic model

The study area involves a reach of the Garonne River between Ton-
neins and La Réole (southwest of France) focusing on an overflowing 
event that occurred between December 2021 and February 2022. In 
the 19th century, this section of the valley was fortified with flood 
protection infrastructure following the devastating 1875 Garonne flood. 
A network of dykes and weirs was gradually developed to safeguard 
the floodplains, manage submersion areas, and enhance flood retention, 
protecting local residents from future flooding events. This presents an 
opportunity for DA to correct the uncertainties related to the hydro-
dynamic model’s parameters and inputs. In addition, the catchment 
is large enough to be modeled by the large-scale hydrologic model 
ISBA-CTRIP. The Garonne River is also one of the sites that are reg-
ularly observed by multiple satellite missions. Over this reach depicted 
in Fig.  1, a T2D hydrodynamic numerical model (Hervouet, 2007) 
was developed and calibrated by Laboratoire National d’Hydraulique 
et Environnement (LNHE, EDF R&D) (Besnard and Goutal, 2011). It 
was constructed on a mesh of over 40,000 nodes based on exist-
ing bathymetric cross-sectional surveys and topographic data (Besnard 
and Goutal, 2011). Given a forcing inflow discharge at Tonneins and 
a downstream rating curve at La Réole, the T2D model simulates 
the water level and velocity at every node of the mesh. Previous 

1 www.opentelemac.org
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Table 1
Statistics for the PDF of friction parameters, corrective coefficient to the 
upstream discharge and WL correction in floodplain subdomains, assuming 
Gaussian laws.
 Parameter Calibrated/ Standard 95% confidence 
 default values 𝐱0 deviation 𝜎𝐱 interval  
 𝐾𝑠0 17 [m1∕3 s−1] 0.85 17 ± 1.67  
 𝐾𝑠1 45 [m1∕3 s−1] 2.25 45 ± 4.41  
 𝐾𝑠2 , 𝐾𝑠3 38 [m1∕3 s−1] 1.9 38 ± 3.72  
 𝐾𝑠4 , 𝐾𝑠5 , 𝐾𝑠6 40 [m1∕3 s−1] 2.0 40 ± 3.92  
 𝜇 1 [−] 0.06 1 ± 0.118  
 𝛾 0 [s] 900 0 ± 1763.97  
 𝛿𝐻𝑘 (𝑘 ∈ [1, 5]) 0 [m] 0.25 0 ± 0.49  

works (Nguyen et al., 2022b,a) have described in detail the T2D hydro-
dynamic model set up to simulate the dynamics of the flow, as well as 
two major flood cases in 2019 and 2021. In this catchment, three in-situ 
observing stations are traditionally operated by the VigiCrue2 network 
at Tonneins, Marmande, and La Réole, and two others at Couthures-
sur-Garonne (installed on 2021-02-18) and Mas d’Agenais (installed on 
2022-11-26) managed by Vortex-io.3 They are represented by the black 
solid circles in Fig.  1. The studied flood event from December 2021 
to February 2022 peaked at a discharge of 4,800 m1∕3 s−1 on January 
12, 2022, nearly reaching the 5-year flood return period at Tonneins 
(i.e. 4,860 m1∕3 s−1).

The main sources of uncertainties are inherent in the friction co-
efficients of the riverbed and floodplain, prior hydrologic forcing con-
ditions, and the hydraulic state within subdomains of the floodplain. 
Friction coefficients include one Strickler coefficient in the floodplain 
(𝐾𝑠0 ) and six others in the riverbed (𝐾𝑠1  to 𝐾𝑠6 ). Upstream forcing 𝑄(𝑡)
undergoes correction via a multiplicative factor 𝜇 and a time shift 𝛾, 
so that 𝑄𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝑡) = 𝜇 × 𝑄𝑝𝑟𝑖𝑜𝑟(𝑡 − 𝛾). El Garroussi et al. (2022, 2019) 
carried out several sensitivity analyses over this catchment using the 
same hydrodynamic model. It is shown that the inflow discharge is 
responsible for 80% of the WL variances over the whole domain, while 
the Strickler coefficients are important to the WL in the riverbed. Lastly, 
the hydraulic state within five floodplain subdomains is adjusted with 
WL additive increments across the subdomains (denoted by 𝛿𝐻1 to 
𝛿𝐻5), as depicted by hatched regions in Fig.  1. Such correction accounts 
for the lack of representation of evapotranspiration and ground infiltra-
tion processes in the hydrodynamic model. The prior values for these 
random variables are summarized by Table  1. They follow Gaussian 
distributions and are used for the ensemble generation. The calibrated 
values of friction coefficients (𝐾𝑠0  to 𝐾𝑠6 ) were obtained from the 
initial calibration (Besnard and Goutal, 2011). They are used for the 
generation of the ensemble at the first cycle. The floodplain roughness 
has typically low sensitivity, as its dynamics is mainly controlled by hy-
draulic structures (i.e. dykes, culvert passage, secondary hydrographic 
network) and here it is corrected by the DA with 𝛿𝐻 . The study is 
carried out over a lengthy period of 78 days between 2021-11-30 and 
2022-02-15.

2.2. Large-scale ISBA-CTRIP model

The large-scale hydrologic model ISBA-CTRIP integrates the ISBA 
(Interaction Sol-Biosphère-Atmosphère) land surface model (Noilhan 
and Planton, 1989) and the CNRM-modified version of the TRIP (Total 
Runoff Integrating Pathways) river routing model (RRM) (Oki and 
Sud, 1998). While ISBA simulates heat and water balance exchanges 
at the soil-atmosphere-vegetation interfaces and handles hydrological 
processes such as surface and deep runoff, CTRIP focuses on the lateral 
transfer of freshwater down towards the continent-ocean interface. 

2 https://www.vigicrues.gouv.fr/
3 https://www.vortex-io.fr/
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Fig. 1. T2D model on the Garonne at Marmande. Black solid dots represent in-situ observing stations. Friction zones in the riverbed are colored. Five subdomains of 
the floodplain are delineated and represented by hatched regions. The inset (bottom left) shows Marmande urban area. (Map data: © Google, Maxar Technologies.). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
ISBA operates on a global scale with a 0.5◦ × 0.5◦ regular grid. The 
energy and water budget over continental surfaces are formulated on 
such a grid, incorporating a three-layer soil structure. ISBA provides a 
diagnosis of the surface runoff and the gravitational drainage (i.e., wa-
ter percolating to the deep layers of the soil). They are subsequently 
used as forcing inputs for CTRIP. On the other hand, CTRIP is defined 
on a regular latitude-longitude grid at 1∕12◦ resolution (Decharme 
et al., 2019, 2012; Munier and Decharme, 2022). It facilitates water 
transfer (laterally from one cell to another) along a river network 
down to the interface with the ocean, generating spatially distributed 
discharge maps. Uncertainties in the simulated discharges mainly stem 
from uncertainties in the land surface model inputs (i.e., precipita-
tion), RRM parameters and catchment descriptions. The ISBA-CTRIP 
discharge time-series used as forcing for the T2D model has an hourly 
timestep.

Fig.  2 displays the discharge times-series at Tonneins (the prior 
upstream BC 𝑄𝑝𝑟𝑖𝑜𝑟(𝑡)) simulated by ISBA-CTRIP (blue), in comparison 
to the observed discharge (orange) at the VigiCrue in-situ station. 
Performance metrics indicate a Nash–Sutcliffe Efficiency (NSE) of 0.65 
and a root mean square error (RMSE) of 597.2 m3 s−1, reflecting a 
significant underestimation of discharge by ISBA-CTRIP, compared to 
the observed discharge. S6 (respectively, S-1A/1-B) overpass times are 
indicated with cyan (respectively, yellow/gray) vertical lines. It appears 
that ISBA-CTRIP mostly underestimates the discharge, especially near 
the peaks, with shortened high-flow periods. It should also be noted 
that the simulated discharge also slightly overestimates low flows 
between 2022-01-02 and 2022-01-09, and after 2022-02-01.

3. Data and Data processing algorithms

3.1. In-situ data

Observing in-situ stations operated by the VigiCrue network, pro-
viding WL time-series, are available at Tonneins, Marmande, and La 
Réole (black solid circles in Fig.  1). Following a major flooding event 
in early 2021, another station was installed by Vortex-io at Couthures-
sur-Garonne (referred to as Couthures). The present study focuses on 
a flood event that occurred in December 2021–February 2022. The 
in-situ WL measurements available every 15 min during this flood 
event at Tonneins (blue line), Marmande (orange line), and La Réole 
(green line), and at Couthures (cyan line), are displayed in Fig.  3. 
4 
S6 (respectively, S-1A/-1B) overpass times are indicated with cyan 
(respectively, green/gray) vertical dashed and dotted lines. Here, it can 
be seen that S-1B became unavailable midway through the flood event. 
In this work, the in-situ WL time-series from the VigiCrue network, 
at Tonneins, Marmande, and La Réole, are used as assimilated data, 
whereas the WL time-series at the Couthures station are utilized solely 
as independent validation data.

3.2. Remote sensing data

SAR data, especially from the S1 constellation, offers significant 
advantages in flood studies due to its capability for all-day global map-
ping of continental water bodies and flooded areas almost regardless of 
weather conditions. In this study, the Interferometric Wide mode of S1 
SAR is employed, featuring a ground resolution of 20 × 22 m with a 
250-km swath. The data is then processed by resampling, reprojecting 
and distributing at 10 × 10 m for the Ground Range Detected at High 
resolution (GRDH) products. These S1 products are utilized to generate 
binary water maps using a Random Forest classification (Pal, 2005), 
developed within the FloodML4 software (Huang et al., 2020; Kettig 
et al., 2021). Additional details are available in Nguyen et al. (2021, 
2022a).

During the studied event of 78 days, a total of 26 S1 overpasses 
occurred across three orbits (ascending 30, ascending 132, and de-
scending 8). Out of these, 21 images were captured by S-1A, while S-1B 
acquired five images. However, it should be noted that none of these 
images could have observed an overflowing in the floodplain. At the 
S1 overpass times, the WLs at Tonneins and Marmande were at most 
10.40 m and 6.89 m, respectively—both below the reference overflow 
WLs of 11.07 m and 7.60 m, which correspond to the orange/amber 
risk threshold at these stations. However, in reality, on 2022-01-12, 
the peak in-situ WLs during the event reached 12.08 m at Tonneins 
and 8.78 m at Marmande, indicating overflow that was not detected 
by remote sensing data.

S6 is a Copernicus mission dedicated to monitoring Earth’s oceans 
with unparalleled precision (Donlon et al., 2021). Through state-of-the-
art radar altimeter technology, S6 delivers vital data on sea level rise, 
ocean circulation, and climate variability, crucial for understanding and 

4 https://github.com/CNES/floodml

https://github.com/CNES/floodml


T.H. Nguyen et al. Journal of Hydrology 663 (2025) 134013 
Fig. 2. Forcing data at Tonneins provided by ISBA-CTRIP discharge (blue), compared to observed discharge from VigiCrue station (orange). Vertical dash-dotted 
lines indicate S-1A (yellow) and S-1B (gray) overpass times whereas cyan dotted lines represent S6 overpass times. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Water level (𝐻) time-series at Tonneins, Marmande, La Réole and Couthures, for the 2021–2022 flood event, in blue, orange, green and cyan respectively. 
Vertical dash-dotted lines show S-1A (yellow) and S-1B (gray) overpass times. Cyan dotted lines show S6 overpass times. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)
mitigating the impacts of climate change. Beyond this main mission ob-
jective, S6 also provides very high-quality observations in continental 
hydrology. Launched on 2020-11-21, the S6 Michael Freilich satellite 
carries onboard a Ku/C-band nadir-pointing SAR altimeter, Poseidon-4, 
as well as a multi-frequency Advanced Microwave Radiometer for Cli-
mate (AMR-C) including an experimental High-Resolution Microwave 
Radiometer (HRMR). It aims to provide high accuracy altimetry mea-
surements, namely Sea Surface Height from the range measurements, 
as well as wind speed and Significant Wave Height derived from 
normalized radar cross section. Using FFSAR processing applied on the 
S6 nadir data, the water surface elevation (WSE) over a segment of the 
Garonne River can be reconstructed (cyan dotted lines in Figs.  2 and
3) with a high along-track resolution (10 m). The S6 track over the 
Garonne River is represented by the red arrow in Fig.  1.

3.3. Algorithm for S6-derived WSE observations

The Poseidon-4 is the first radar altimeter to integrate a High-
Resolution mode with an interleaved chronogram (Dinardo et al., 
2024). Applied to these measurements, the FFSAR processing tech-
nique (Egido and Smith, 2016) delivers unprecedented precision in 
nadir altimetry for height measurements over rivers and lakes. Fig. 
4 illustrates the radargram of the Poseidon-4 altimeter above the 
Garonne River in the Marmande sector (highlighted within the yellow 
rectangle), processed in FFSAR mode to achieve a metric resolution 
with a posting rate of the same order of magnitude.

The robust signal-to-noise-ratio (SNR) exceeding 20 dB enables clear 
identification of the river profile and geometry within the radar echoes, 
as shown in Fig.  4. Here, the Garonne River flows along the satellite 
track (as shown in Fig.  1), and although the water body is not always 
located under the nadir of the radar, CNES has developed an innovative 
processing technique to exploit both nadir and off-nadir signals in order 
to estimate a longitudinal profile of water heights (Boy et al., 2023). 
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Such an approach by Boy et al. (2023) is not universally applicable, 
with several constraints limiting its effectiveness. Notably, the river’s 
deviation from the satellite track should not exceed 2 km (in along-
track distance) to avoid significant degradation in off-nadir observation 
errors. Nevertheless, in the studied sector of Garonne Marmandaise, this 
technique proves applicable and delivers exceptional performance (see 
Fig.  6).

The algorithm first involves isolating the echoes resulting from the 
reflection of the radar microwave signals by the river. To accomplish 
this, a centerline of the river was used, which facilitates the identifica-
tion of the river’s geometry within the radargram. Once these signals 
are identified and isolated, similar processing techniques employed in 
the operational ground segment are applied to the radar echoes in order 
to derive water heights. However, it is crucial to apply an additional 
correction known as the slant range correction to account for oblique 
sighting when the river is observed at a slight angle off-nadir. Fig. 
5 illustrates the processing principle with the radargram obtained on 
2022-02-09, and the WSE longitudinal profile obtained on the Garonne 
over 18-km length with a 10-m posting rate (i.e. ground spacing in the 
data). A similar method has been proposed by Ehlers et al. (2024, 2025) 
which is highly comparable to the WSE estimation algorithm (Boy et al., 
2023) performed in this paper. It could serve as a suitable alternative, 
offering similar performance under comparable conditions.

This processing was validated by comparing the derived WSE es-
timates to several heterogeneous datasets. Firstly, the longitudinal 
profiles were compared to the VigiCrue station measurements located 
in Marmande, and to the Vortex-io station measurements in Mas d’Age-
nais. The measurement point closest to the Marmande station is approx-
imately 700 m off-nadir. The agreement between the WSEs resulting 
from the algorithm and those observed by the in-situ station is ex-
cellent. This is evidenced by a Root Mean Square Error (RMSE) of 
3.8 cm and 5.5 cm for Marmande and Mas d’Agenais, respectively, as 
summarized in Table  2 over the observation period spanning multiple 
months.
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Fig. 4. S6 FFSAR radargram (track 070) observed over the Garonne River. Yellow rectangle shows the studied sector in this paper, between latitude 44.4◦ and 
44.5◦. (Background image from © Google Maps.). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 5. (a) S6 FFSAR radargram (on 2022-02-09) with river signal isolation (yellow rectangle). (b) Estimated longitudinal river profile over 18-km-long river 
segment. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Comparison between S6-derived WSEs in blue and in-situ WSEs in black.
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Table 2
Validation of S6-derived WSEs with respect to in-situ measurements at Mar-
mande (VigiCrue) and Mas d’Agenais (Vortex-io).
 Stations First date Last date Number of S6 RMSE 
 overpasses [cm]  
 Marmande 2021–02–27 2023-08-28 44 3.8  
 Mas d’Agenais 2022–12–04 2023-08-28 29 5.5  

Fig. 7. S6-derived WSE (w.r.t. WGS84) in black over the Garonne River com-
pared to the drone observed profiles in blue on 2022-06-28. (For interpretation 
of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

In addition to the in-situ validations, an airborne acquisition cam-
paign was conducted in collaboration with Vortex-io to assess the 
overall quality of the WSE profile along the observed river segment. A 
drone equipped with lightweight LiDAR equipment (Vortex-io), offer-
ing precise elevations with centimetric accuracy, was deployed for this 
purpose, in synchronization with the S6 mission overflight on 2022-
06-28. Longitudinal WSE profiles obtained from both datasets (from S6 
and Vortex-io drone) on 2022-06-28 were compared. S6-derived WSE 
profile is plotted in black and the drone observed WSE profile is plotted 
in blue in Fig.  7. With S6 measurements averaging at 100 m showing 
a precision of 5 cm, an overall bias of merely 5.7 cm was observed 
between the S6-derived WSE profiles and Vortex-io drone profiles, ex-
cept at a significant riffle of over one meter (highlighted in red circle). 
The slight bias can stem from the movement of the river WL during the 
drone deployment (approximately 2 h) compared to the instantaneous 
capture by S6. Nonetheless, these assessments collectively underscore 
the exceptional quality of this processing approach. It is also worth 
noting that accurate river centerline detection is critical for isolating 
altimeter signals from the river and the surrounding area (Boy et al., 
2023). During high flows, when the water rises and the extents change 
significantly, the algorithm may misdetect other water surfaces as the 
river and struggle to obtain precise measurements. Future improve-
ments of this approach can integrate surface water mapping products 
derived from S1 and S2 images (Peña-Luque et al., 2021).

4. Data assimilation algorithm

4.1. Workflow for the DA algorithm and experimental setup

The general workflow for this study is presented in Fig.  8. The 
top left boxes describe the hydrometeorological model and hydrologic 
model providing the upstream forcing 𝑄(𝑡) by ISBA-CTRIP (blue box). 
The purple box at the center of the schematic represents the T2D model 
with Ensemble DA involving 𝑁𝑒 = 75 members. Four experiments were 
carried out, one in open-loop (OL) mode and three in DA mode. The 
OL deterministic run is carried out without assimilation, using default 
parameters and forcing. The first DA experiment involves only in-situ 
7 
Fig. 8. General workflow for chained modeling and DA.

data assimilation (IDA) as in conventional research works, whereas 
the second DA experiment assimilates only RS observations (RSDA), 
and the final DA experiment fully assimilates all available observations 
(FDA). While IDA benefits from high temporal resolution of in-situ data, 
enabling the estimation of riverbed parameters that best reflect the dy-
namics of inflow discharge, RSDA is valuable in ungauged catchments. 
It helps correct model errors in floodplain areas, where most assets 
are located. On the other hand, FDA, which assimilates both types 
of observations, allows for the evaluation of their contributions and 
complementarity, as well as any potential conflicts in the information 
provided by each data source. In Fig.  8, the left boxes represent the 
assimilated data for each experiment: in-situ only (IDA, in green), RS 
data only from S1 and S6 (RSDA, in red), and all data (FDA, in purple). 
All four experiments are forced with the upstream BC 𝑄(𝑡) provided 
by the ISBA-CTRIP discharge (blue line in Fig.  2). In this work, the 
observed discharge (from the VigiCrue network, orange line in Fig.  2) 
was not used as forcing data for the experiments; it only serves as 
a reference to assess the ISBA-CTRIP simulated discharge. The high 
longitudinal spatial posting rate of S6 data (i.e. a measurement every 
10 m along the riverbed) would allow the correction of the riverbed’s 
friction coefficients that could have become necessary in the absence of 
in-situ data. On the other hand, the large spatial coverage of S1 (with a 
relatively high revisit frequency, compared to other RS platforms) over 
the floodplain allows the 𝛿𝐻 corrections over these regions, thus better 
representing the floodplain dynamics.

Configurations for all four experiments are gathered in Table  3. 
The control vector, denoted by 𝐱, for the sequential DA experiments 
accounts, at most, for errors in friction coefficients in the riverbed and 
the floodplain 𝐾𝑠𝑘  (with 𝑘 ∈ [0, 6]), in the upstream forcing through 
the multiplicative 𝜇 and the time shift 𝛾 correction to 𝑄𝑝𝑟𝑖𝑜𝑟(𝑡), and the 
additive term 𝛿𝐻𝑘 (with 𝑘 ∈ [1, 5]) to the WL simulated in subdomains 
of the floodplain. As such, the EnKF DA algorithm involves a control 
vector 𝐱 of dimension up to 𝑛 = 14. IDA only allows for a correction 
on friction and prior inflow discharge, whereas both RSDA and FDA 
also correct WL in the floodplain. A cycled EnKF with 18-hour sliding 
assimilation windows, with 6-hour overlap between two consecutive 
windows, was implemented for the DA experiments.

The DA is sequentially implemented over each cycle 𝑐, during which 
𝑛𝑜𝑏𝑠,𝑐 observations are assimilated. Throughout a single cycle, the fric-
tion coefficients (𝐾𝑠𝑘  with 𝑘 ∈ [0, 6]), the discharge multiplicative and 
time shift coefficients (𝜇 and 𝛾, respectively) remain constant, yet they 
vary between different DA cycles. In contrast, the water level correc-
tions 𝛿𝐻𝑘 (with 𝑘 ∈ [1, 5]) are applied over each floodplain subdomain 
with Incremental Analysis Updating scheme (Bloom et al., 1996) to 
smooth out temporal discontinuities. The observation errors associated 
with the in-situ WL and S6 WSE observations are set proportional to 
their values (i.e. 15%), whereas the observation error associated with 
the WSR observations is prescribed as a fixed scalar value. The standard 
deviation of the S1-derived WSR observations for each window 𝑐 is set 
between 0.1 and 0.2, depending on the timing of the S1 observation 
within each assimilation window. A more detailed description of the 
cycling is given in Nguyen et al. (2023b).
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Table 3
Experimental settings.
 Name of the Assimilated Ensemble Control Control vector 
 experiment observations size 𝑁𝑒 vector 𝐱 size 𝑛  
 OL No assimilation 1 – 0  
 IDA In-situ WL 75 𝐾𝑠[0∶6] , 𝜇, 𝛾 9  
 RSDA S1 WSR, and S6 WSE 75 𝐾𝑠[0∶6] , 𝜇, 𝛾, 𝛿𝐻[1∶5] 14  
 FDA In-situ WL, S1 WSR, and S6 WSE 75 𝐾𝑠[0∶6] , 𝜇, 𝛾, 𝛿𝐻[1∶5] 14  
4.2. Description of the EnKF algorithm

The vectors 𝐱𝑓,𝑖𝑐  and 𝐱𝑎,𝑖𝑐  stand for the forecast and analysis control 
vectors over a DA cycle 𝑐, respectively, for 𝑖th member with 𝑖 ∈ [1, 𝑁𝑒]
within an ensemble of size 𝑁𝑒. The forecast step of the EnKF consists 
in the propagation of 𝑁𝑒 control and model state vectors, i.e. 𝐱𝑓,𝑖𝑐  and 
𝐬𝑓,𝑖𝑐  in time. The analysis step of the EnKF updates the control 𝐱𝑎,𝑖𝑐  and 
the associated model state vector 𝐬𝑎,𝑖𝑐 .

In the forecast step, the background hydraulic state for each member 
𝐬𝑓,𝑖𝑐  results from the integration of the hydrodynamic model 𝑐 : R𝑛 →
R𝑚 from the control space (of dimension 𝑛) to the model state (of 
dimension 𝑚) over cycle 𝑐: 
𝐬𝑓,𝑖𝑐 = 𝑐

(

𝐬𝑎,𝑖𝑐−1, 𝐱
𝑓,𝑖
𝑐

)

, (1)

where 𝐬𝑎,𝑖𝑐−1 is the hydraulic state resulting from the analysis at previous 
cycle 𝑐−1. In addition, a three-hour spin-up is integrated preceding each 
cycle 𝑐, to equilibrate the model’s hydraulic state with the analyzed set 
of parameters at the beginning of 𝑐.

The observation vector 𝐲𝑜𝑐 for cycle 𝑐 gathers all in-situ WL, S6 WSE 
and S1-derived WSR observations. To implement a stochastic EnKF 
algorithm (Asch et al., 2016), a perturbation 𝝐𝑐 is added on 𝐲𝑜𝑐 to 
generate an ensemble of 𝑁𝑒 observations 𝐲𝑜,𝑖𝑐  for each cycle 𝑐. The 
observation error 𝝐𝑐 ∼  (𝟎,𝐑𝑐 ), where 𝐑𝑐 = 𝜎2𝑜𝑏𝑠𝐈𝑛𝑜𝑏𝑠  is the observation 
error covariance matrix. Given the observation errors are assumed to be 
uncorrelated Gaussians, 𝐑𝑐 is thus diagonal and of standard deviation 
𝜎𝑜𝑏𝑠. The model equivalent in the observation space, denoted by 𝐲𝑓,𝑖𝑐
with 𝑖 ∈ 𝑁𝑒, is computed from the background hydraulic state 𝐬𝑓,𝑖𝑐
using the observation operator 𝑐 : R𝑚 → R𝑛𝑜𝑏𝑠  from the model state 
space (of dimension 𝑚) to the observation space (of dimension 𝑛𝑜𝑏𝑠). 
𝑐 extracts/interpolates model outputs at times and locations of the 
observation vector 𝐲𝑜𝑐 : 

𝐲𝑓,𝑖𝑐 = 𝑐
(

𝐬𝑓,𝑖𝑐
)

. (2)

Next, the EnKF analysis step updates the control 𝐱𝑎,𝑖𝑐  and the associ-
ated model state vector 𝐬𝑎,𝑖𝑐  in an anamorphosed space (Nguyen et al., 
2023b,c) using the transformed observation operator ̃𝑐 , thanks to the 
Kalman gain 𝐊𝑐 and the innovation vector (between the perturbed 
observation vector and its model equivalent) over cycle 𝑐: 
𝐱𝑎,𝑖𝑐 = 𝐱𝑓,𝑖𝑐 +𝐊𝑐

(

𝐲̃𝑜,𝑖𝑐 − 𝐲̃𝑓,𝑖𝑐
)

. (3)

𝐊𝑐 is computed from covariance matrices that are stochastically es-
timated within the ensemble, considering anamorphosed observation 
vectors 𝐲̃𝑓,𝑖: 

𝐊𝑐 = 𝐏𝐱,𝐲̃
𝑐

[

𝐏𝐲̃,𝐲̃
𝑐 + 𝐑𝑐

]−1
. (4)

The covariance matrix between the error in the control vector 𝐱𝑓𝑐  and 
the error in 𝐲̃𝑓𝑐  is denoted by 𝐏𝐱,𝐲̃

𝑐 , whereas the covariance matrix of the 
error in the background state equivalent in the transformed observation 
space 𝐲̃𝑓𝑐  is 𝐏𝐲̃,𝐲̃

𝑐 .
Similar to Eq.  (1), the hydraulic state 𝐬𝑎,𝑖𝑐 , associated with each 

analyzed control vector 𝐱𝑎,𝑖𝑐 , results from the integration of the hydro-
dynamic model 𝑐 with the updated parameters: 
𝐬𝑎,𝑖𝑐 = 𝑐

(

𝐬𝑎,𝑖𝑐−1, 𝐱
𝑎,𝑖
𝑐
)

, (5)

where 𝐱𝑎,𝑖𝑐  gathers (𝐾𝑠𝑘 )
𝑎,𝑖
𝑐  with 𝑘 ∈ [0, 6], 𝜇𝑎,𝑖

𝑐 , 𝛾𝑎,𝑖𝑐 , and 𝛿𝐻𝑎,𝑖
𝑘  with 

𝑘 ∈ [1, 5] over cycle 𝑐. It should be noted that the ensemble mean 𝛿𝐻𝑎
𝑘

is used in place of 𝛿𝐻𝑎,𝑖 in order to guarantee a smooth WL field.
𝑘
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5. Experimental results

The simulation results were comprehensively assessed with 1D and 
2D metrics with respect to the observations. Section 5.1 shows the 
results of the DA experiments in the control space, whereas those in 
the observation space are described in Section 5.2. Throughout the 
following plots, the in-situ observations are plotted in dashed black 
lines, OL is plotted in blue, IDA is in green, RSDA in red, and FDA 
in purple. The 1D assessment metrics include the RMSEs computed 
with respect to in-situ WL time-series at the observing stations, as well 
as with respect to the S6 WSE time-series along the river centerline. 
The 2D assessment metric is the Critical Success Index (CSI) computed 
over the 2D domain with respect to S1-derived flood extent maps. The 
CSI varies from 0 %, i.e. when there is no common area between the 
simulated and the observed flood extents, to 100 %, i.e. when the 
simulated flood extent perfectly fits the observed flood extent.

5.1. Results in the control space

The analyzed parameters from the three DA experiments (IDA, 
RSDA, and FDA) are shown over time in Fig.  9. The black horizontal 
dashed lines represent the default values (Table  1) which are used in 
the OL experiment, whereas the orange, green, and purple curves show 
the evolution of the controlled parameters over time in IDA, RSDA, and 
FDA, respectively. For the friction coefficients and the multiplicative 
factor 𝜇, the background and analysis standard deviations are also 
displayed around the mean analyzed values. It is worth noting that the 
standard deviations are not shown for the water level corrections in the 
floodplain subdomains, for the sake of simplicity. Vertical lines repre-
sent the overpass times of the S1 (green/gray vertical dashed–dotted 
lines) and S6 (cyan dotted lines).

The panels on the left column in Fig.  9 depict the friction coeffi-
cients in the floodplain 𝐾𝑠0  and in the riverbed 𝐾𝑠𝑘  with 𝑘 ∈ [1, 6]. 
These are corrected over every DA cycle for IDA and FDA. However, the 
correction occurs at a reduced frequency for RSDA that only assimilates 
RS data. Indeed, in cases where no observations are available, the 
control vector would remain unchanged and retain its last analyzed 
values. On the other hand, the assimilation of in-situ data (in IDA and 
FDA) leads to significant variability of 𝐾𝑠𝑘  (with 𝑘 ∈ [0, 6]) from the 
default values with a large variance between [20, 75] m1∕3 s−1. This large 
variability could be explained by equifinality. In order to reduce this 
equifinality, we could consider only one stickler zone between two in-
situ observations. It appears that friction only affects the water volume 
in the floodplain during bank overflowing and that the impact of the 
friction coefficients in the riverbed on flood extent is limited. It is 
thus difficult to infer a consistent friction value in the riverbed from 
RS-derived flood extent images.

The first to fifth panels on the right column in Fig.  9 reveal the 
hydraulic state corrections 𝛿𝐻𝑘 with 𝑘 ∈ [1, 5]. They are mostly 
negative in all five floodplain subdomains. This is attributed to the 
fact that the event under study is only experiencing mild overflow, 
except at the flood peak on 2022-01-12. Indeed, the observed flood 
extent maps derived from the S1 images reveal minimal to no water 
detected in the floodplain. Therefore, as the model tends to overes-
timate the flood, DA responds by yielding negative 𝛿𝐻 in order to 
empty the floodplain. This also partly reflects the limitations of the 
hydraulic model, which is currently being improved through the use of 
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Fig. 9. Evolution over time of the controlled parameters: friction coefficients, water level correction in the floodplain, multiplicative and time shift correction to 
the inflow, as well as reconstructed inflow, for IDA (green), RSDA (red), FDA (purple). The default parameter values are indicated as black dashed lines. The S6 
(respectively, S-1A/-1B) overpass times are indicated in cyan (respectively, green/gray) vertical lines. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)
a higher-quality DEM and calibration with additional in-situ gauging 
stations (Sadki et al., 2024). The sixth and seventh panels on the right 
column show the multiplicative factor 𝜇 [dimensionless] and time shift 
correction 𝛾 [seconds] obtained from the analyses. In IDA and FDA, 𝜇
and 𝛾 fluctuate considerably due to a potential equifinality issue with 
the large correction in the friction coefficients. In RSDA, where the 
corrections in friction are smaller, 𝜇 remains slightly greater than one 
and 𝛾 is close to zero. In all three DA experiments, 𝜇 is greater than 
one during the high-flow periods, to account for the underestimation 
in the ISBA-TRIP forcing.

The last panel in Fig.  9 shows the reconstructed upstream inflow 
discharge with DA, i.e., the ISBA-CTRIP discharge multiplied by the 
analyzed factor 𝜇 and shifted by 𝛾 (in seconds) resulting from each of 
the three DA experiments, and compared with the observed discharge 
(black-dashed line). The reconstructed upstream inflow discharges by 
each member of the ensembles, using 𝜇𝑓,𝑖 and 𝛾𝑓,𝑖 (within background 
𝑐 𝑐
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control vector 𝐱𝑓,𝑖𝑐 ), are shown in gray. Zoomed-in plots are shown in 
Fig.  B.14 which can be found in Appendix  B. The assimilation of either 
in-situ data (IDA) or S6-derived WSE along the river centerline (RSDA), 
or both (FDA) leads to the improvement of simulated flood peaks. The 
analyzed forcing reaches the observed maximum, yet a slight phase 
delay remains, especially for the third peak. It should be noted that the 
evaluation of the DA experiments in the control space, for a real event, 
does not provide a quantitative assessment of the DA performance, 
because the true values of the control vector are unknown.

5.2. Results in the observation space

5.2.1. Assessment against WLs at observing stations
Table  4 summarizes the root-mean-square errors (RMSE) between 

the WLs simulated for the studied 2021–2022 flood event by the 
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Fig. 10. WLs at Tonneins, Marmande, La Réole (analysis, top panels and bottom-left panel), and Couthures (validation, bottom-right panel). OL is plotted in blue, 
IDA in green, RSDA in red and FDA in purple. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)
Table 4
Root-mean-square errors [m] of simulated WL with respect to in-situ measure-
ments at observing stations.
 RMSE [m] Tonneins Marmande La Réole Couthures 
 OL 1.168 0.946 0.945 0.686  
 IDA 0.188 0.135 0.138 0.168  
 RSDA 0.959 0.838 1.014 0.800  
 FDA 0.199 0.144 0.155 0.196  

experiments OL, IDA, RSDA, and FDA with respect to the observed WLs 
at observing stations.

Fig.  10 illustrates the WLs simulated for all four experiments, at 
Tonneins (Fig.  10(a)), Marmande (Fig.  10(b)), La Réole (Fig.  10(c)) 
where observations are assimilated in the DA experiments, as well as at 
Couthures (Fig.  10(d)) where observations are used for validation only. 
The observed WLs time-series are plotted with black-dashed lines. The 
color codes for OL and DA experiments are similar to those previously 
described. At all four stations, the WLs simulated by IDA (green) are 
almost visually identical to those by FDA (purple). In particular, Fig. 
10(b) shows the WLs observed by S6 in cyan over the location close to 
Marmande at S6 overpass times. It should be noted that the S6-derived 
WSEs are in good agreement with in-situ WSEs at Marmande over the 
eight overpass time; as indicated in Table  2, the RMSE between in-situ 
and S6-derived WSE at Marmande over two years is less than 4 cm.

These results demonstrate that the assimilation of the frequent 
(i.e., of high temporal sampling) in-situ WLs significantly improves the 
hydraulic state at the observing stations in IDA and FDA. The RMSE for 
WL at Marmande (computed with respect to in-situ measurements) is 
improved from 94.6 cm for OL to 13.7 cm for IDA (similar result for 
FDA, i.e. 15 cm). Similar improvements are observed at Tonneins and 
La Réole with a reduction in RMSE, from nearly 1 m for OL to less than 
20 cm for IDA and FDA. Additionally, the WLs in IDA and FDA show 
improvements at Couthures, where the in-situ Vortex.io measurements 
are used for validation only. Although the improvement at Couthures 
is less significant compared to those at Marmande, IDA and FDA 
outperform OL, indicating that assimilating VigiCrue observations at 
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Tonneins, Marmande and La Réole allows for coherent WLs with respect 
to Vortex.io observations at Couthures. The low RSMEs resulting from 
the DA analysis at Couthures for IDA is likely attributed to its location 
in the same friction zone as Marmande, thereby benefiting from the 
correction in the friction coefficient 𝐾𝑠4 .

For RSDA, with the contribution of RS data, the overall RMSEs are 
shown to be noticeable primarily at Tonneins (by 25 % compared to 
OL), and to a lesser extent at Marmande and Couthures (by 12.3% 
and 18 %, respectively). These reductions are notably less pronounced 
compared to those achieved with IDA or FDA. Indeed, the improvement 
mostly occurs at high-flow periods when S6 data are available. This 
limited improvement stems from a number of reasons. First, it is worth 
noting that the S1-derived flood extent maps offer limited knowledge 
on the flow dynamics in the floodplain since they only observed the 
flood event at relatively mild flow days. The information in RS observa-
tions thus mostly comes from the S6 data. Second, after the assimilation 
of data from an S6 pass, the analyzed controlled parameters are kept 
constant over the following cycles, as no RS data are available (or infor-
mative) in between. It is thus possible for a correction of WL (typically 
positive in the case where DA aims at accounting for an underestimated 
peak in OL based on S6 observations) to remain mistakenly too high 
until another S6 pass, leading to artificial large correction over time. 
This advocates for a higher density RS observing network, especially 
beyond the S6 revisit time of 10 days. It is expected that, for more 
significant flood events, S1 observations would provide meaningful 
information, thus densifying the relevant observing network as shown 
in Nguyen et al. (2022b, 2023c). This also advocates for more frequent 
and shorter cycling of the DA with a relaxation to default values in 
between cycles where no observations are available.

5.2.2. Assessment against S6-derived WSEs along the river centerline
Fig.  11 illustrates WSE profiles along the river centerline at all S6 

overpass times during the simulated period, over the river segment 
that was observed by the satellite. The curvilinear abscissa of the plots 
aligns with the flow direction, meaning that smaller abscissa values are 
found upstream of greater ones. Its zero point is located at Tonneins. 
High flow conditions were observed on 2021-12-12 (first peak), 2021-
12-31 (slightly after the second peak) and 2022-01-10 (slightly before 
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Fig. 11. WSE profile along river centerline between S6-derived observations (black-dashed line) and from the experiments. The curvilinear abscissa’s zero point 
is located at Tonneins. OL is plotted in blue, IDA in green, RSDA in red and FDA in purple. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)
Table 5
RMSE [m] of simulated WSE along the river centerline with respect to S6 WSE measurements. High-flow dates are marked with †.
 RMSE [m] 2021–12–02 2021-12-12 2021–12–21 2021-12-31 2022-01-10 2022–01–20 2022-01-30 2022–02–09 Avg.  
 03:54:03 01:52:35† 23:51:07 21:49:39† 19:48:10† 17:46:42 15:45:13 13:43:44  
 OL 0.336 2.810 0.391 0.771 1.667 0.316 0.432 0.399 0.890 
 IDA 0.678 0.751 0.806 0.799 0.829 0.875 0.805 0.732 0.784 
 RSDA 0.177 0.146 0.143 0.095 0.120 0.124 0.163 0.154 0.140 
 FDA 0.244 0.167 0.142 0.186 0.129 0.127 0.182 0.175 0.169 
the third peak). The S6-derived WSE profiles are represented by black-
dashed lines, while the OL-, IDA-, RSDA-, and FDA-simulated WSE 
profiles are respectively plotted in blue, orange, green, and purple lines. 
The WSE values of the in-situ observation at Marmande are indicated in 
orange. The different riverbed friction zones are represented as shaded 
areas in the plot background for 𝐾𝑠𝑘  with 𝑘 ∈ [1, 4]. They follow 
the same color codes as in Fig.  1. The RMSEs computed between the 
simulated WSEs and S6 observations are provided in Table  5, with high-
flow dates are found in column 3, 5, and 6. Another version of Fig.  11 
including the ensemble members for the DA experiments can be found 
in Appendix  B.

The spatial density of S6 observations with FFSAR processing allows 
for a spatial correction of the hydraulic state along the river. First, 
it should be noted that S6-derived WSEs are in good agreement with 
the in-situ WSEs at Marmande (orange numbers showing in-situ WSE 
along vertical, orange-dotted line), as previously observed in Fig.  10(b). 
However, the absence of additional in-situ data upstream of Marmande 
during the event limits the broader validation of S6-derived observa-
tions across this region and timeframe, especially given that the Mas 
d’Agenais station data (Vortex-io) became available only at the end of 
2022.
11 
At low flows, OL (blue lines) tends to slightly overestimate the 
S6-derived WSEs in the upstream part of the observed river segment 
(between the curvilinear abscissa 7,500 and 12,500 m), but slightly 
underestimates the WSEs beyond the middle of the segment. This 
heterogeneity may be related to the calibration of the friction zones 
that is only constrained by in-situ observations. At high flows, OL 
significantly underestimates S6-derived WSE over the entire segment. 
This underestimation reaches up to 2.81 m at the first high-flow date 
on 2021-12-12, and 1.67 m on 2021-01-10.

Because the S6-derived observations closely match the in-situ data 
at Marmande, assimilating the in-situ observations in IDA helps align 
the simulated WSEs more closely with the S6-derived WSEs at Mar-
mande and surrounding regions (i.e. between the curvilinear abscissa 
22,500 and 25,000 m) at all S6 overpass times. Yet, IDA struggles 
to replicate this for the WSEs in the areas upstream of Marmande 
(i.e. before the curvilinear abscissa 22,500 m). Table  5 shows that the 
RMSEs computed between IDA-simulated WSEs and S6-derived WSEs 
are smaller than those of OL only at two high-flow dates 2021-12-12 
and 2022-01-10. Yet, at the other time steps, RMSEs of IDA are larger 
than those of OL. It is likely that the equifinality in the correction 
of friction coefficients 𝐾 , 𝐾  and 𝐾  in IDA, leads to unrealistic 
𝑠1 𝑠2 𝑠3
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WSEs upstream of Marmande, thus inconsistent with S6 measurements. 
Indeed, Fig.  11 shows that the WSEs of IDA (green lines) are typically 
overestimated, compared to the S6 observations (black-dashed lines) in 
the 𝐾𝑠2  zone, but underestimated in the 𝐾𝑠3  zone by more than 1 m. 
In the absence of independent in-situ data in this upstream part of the 
river and given that S6 data were previously validated with respect to 
drone data (Section 3.3), it appears reasonable to qualify the simulated 
WSE profile by IDA as unrealistic, prompting caution regarding IDA’s 
dynamics both in the riverbed and across the floodplain.

In both RSDA (red lines) and FDA experiments (purple lines), the 
simulated WSEs along the river are quite consistent with S6-derived 
data at all S6 observation times, as opposed to IDA. Therefore, the RM-
SEs computed with respect to S6 measurements are greatly reduced in 
RSDA and FDA, with RSDA providing the best results. When comparing 
IDA and FDA, the spatial density of S6 observations proved crucial. 
FDA was able to simulate more accurate WSEs by refining local friction 
coefficients 𝐾𝑠1 , 𝐾𝑠2  and 𝐾𝑠3 . In contrast, IDA, relying only on in-situ 
data from Marmande (within the observed river segment), could not 
achieve the same accuracy. FDA presents a compromise between in-situ 
data and S6 data, and the analysis is brought closer to both sources of 
data as shown in Fig.  11, and previously in Fig.  10. This demonstrates 
that the DA strategy succeeds in retrieving controlled parameters and 
improving the dynamics of the flow thanks to S6 data only over the 
observed river reach. It is also capable of combining S6 data with in-situ 
data through the analysis.

It is important to note that such improvement is only possible at S6 
observation times (every 10 days) and that the benefits of assimilating 
S6 data only do not persist over time, as shown by the overestimated 
WLs at observing stations by RSDA in between two S6 observation 
times in Fig.  10. An intermediate conclusion is that keeping the latest 
controlled parameters as background values for the following cycles 
(over which no RS data are available) leads to poor quality results in 
RSDA and that this strategy should be revisited for further works.

5.2.3. Assessment against WSRs in the floodplain
Fig.  12 displays the observed WSR (black lines) derived from S1 

images and the WSR computed for OL (blue lines), IDA (green lines), 
RSDA (red lines), and FDA (purple lines) experiments at S1 overpass 
times within the five floodplain subdomains.

First, it is worth noting that the flood extent maps derived from S1 
SAR images depict minimal water surfaces within the floodplain, due 
to S1’s reduced revisit frequency after December 2021 and the missed 
flood peak. Indeed, the timing of S1 image acquisition coincided with 
periods of relatively low flow, compounded by the malfunction of one 
of the two S1 satellites (S-1B, shown by gray dash-dotted vertical line 
in Fig.  3) became defective just prior to the third peak. This reduced the 
S1 observation capacity by a half after mid-December 2021. Therefore, 
the observed WSRs shown in Fig.  12 (black lines) are almost zeros 
throughout the flood event. As OL tends to underestimate the flood due 
to the weak forcing discharge from ISBA-CTRIP, WSRs simulated by OL 
are nearly zero, closely resembling the observed WSRs.

The assimilation of in-situ data only in IDA presents much larger 
WSRs than the observed ones, meaning that IDA leads to overflooding. 
This confirms the limitation in IDA which was also found in our 
previous works (Nguyen et al., 2022b, 2023b) and the doubts men-
tioned above regarding IDA’s dynamics: while it succeeds in retrieving 
WLs that approach the in-situ observations at observing stations, the 
assimilation of in-situ data only, leads to an overestimation of the 
flooding. The overflow occurs at the beginning of the simulation period 
over the fourth and fifth subdomains; it appears after the flood peak and 
maintains during the recess for the first and third subdomains.

The assimilation of the RS data by RSDA and FDA yields WSRs 
that are more coherent with the flood extents derived from S1 images, 
especially in the third and fifth subdomains. The simulated WSRs 
within the fourth subdomain remain overestimated over the entire 
event in spite of the state correction. Over the fifth subdomain, FDA 
12 
Fig. 12. Simulated and observed WSR values in the five floodplain zones. 
OL is plotted in blue, IDA in green, RSDA in red and FDA in purple. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

must accommodate in-situ data that leads to overflooding (as in IDA). 
This demands more effort from FDA, and thus larger 𝛿𝐻5 corrections 
compared to those by RSDA, to remove water in this area as shown in 
Fig.  9.

5.2.4. 2D validation with contingency maps and CSI scores
Fig.  13 displays the contingency maps for all experiments, com-

puted with respect to the observed S1-derived flood extent maps (first 
column). Two specific regions are omitted from the 2D assessments; 
first in the first meander due to numerical flooding imposed by the 
upstream boundary condition in the hydrodynamic model; second near 
La Réole where the model topography is known to be uncertain. They 
are shown in red-hatched regions in Fig.  13. The contingency maps 
show one out of four outcomes for each pixel. When the model and 
observation are in agreement, the pixel is indicated in blue: light blue 
when non-flooded and dark blue for flooded pixels. Observed wet pixels 
incorrectly predicted as non-flooded (i.e. underprediction) are repre-
sented in yellow, whereas observed dry pixels incorrectly predicted as 
flooded (i.e. overprediction) are shown in red. The contingency maps 
are shown at the first high-flow date (2021-12-11 19:00 and 2021-12-
12 19:00), before the flood peak (2022-01-10 19:00), and during the 
recess (2022-01-21 07:00). It is worth noting that S6 observation on 
2021-12-12 01:52:35 occurred in between the two S1 observations of 
the first peak.

Because of the satellite overpass times, S1 fails to observe flooding 
for the studied event. Consequently, OL, which underestimates the dy-
namics of whole flood event due to weak ISBA-CTRIP inflow discharge, 
yields a high agreement with the observed flood extent maps. As such, 
OL (second column) outperforms all the DA experiments in terms of 2D 
assessments. Yet, this does not imply that OL is the best experiment, 
as previously shown. The third column shows the contingency maps 
for IDA, which shows overprediction areas (red pixels) at all four 
dates within the first, fourth and fifth subdomains (i.e. 𝛿𝐻1, 𝛿𝐻4, and 
𝛿𝐻5, respectively), and underprediction areas (yellow pixels) within the 
third subdomain 𝛿𝐻 .
3
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Fig. 13. Contingency maps of OL, IDA, RSDA, and FDA with respect to S1-derived flood extents. 
The assimilation of S1-derived WSR allows RSDA (fourth column) 
to reduce the overprediction areas and improve the overall CSI on all 
four dates, compared to IDA. It should be noted that the assimilation 
of the S6 observation on 2021-12-12 01:52:35 significantly decreases 
the overprediction between the two S1 images at 2021-12-11 19:00 
and 2021-12-12 19:00. This stems from the reduction of friction in the 
riverbed (𝐾𝑠1  to 𝐾𝑠4 ), as shown in Fig.  9 by the RSDA (red line).

6. Conclusion and perspectives

This paper presents the merits of assimilating Sentinel-6-Michael 
Freilich altimetry data, and 2D flood extent observations derived from 
Sentinel-1 SAR images, in hindcast mode. The DA was performed with 
an Ensemble Kalman Filter implemented upon a local hydrodynamic 
TELEMAC-2D model, forced by the large-scale hydrologic ISBA-CTRIP 
model. Previous works (Nguyen et al., 2022b, 2023b) have shown that 
the assimilation of heterogeneous data from in-situ and RS observations 
allows an effective correction of errors in observed forcing, friction 
and model. These findings remain valid when the local hydrodynamic 
model is forced with discharge simulated by a large-scale hydrologic 
13 
model. The use of in-situ data is essential as the characteristics of the 
in-situ network (dense in time but sparse in space) complement that of 
the remote-sensing observations (sparse in time and dense in space). 
Flood extent information from S1 SAR images is expressed in terms 
of Wet Surface Ratio computed over selected floodplain subdomains, 
whereas the altimetry data from S6 nadir and off-nadir observations 
are processed with FFSAR, to provide dense WSE measurements, every 
10 m, along the river centerline every 10 days. This study represents an 
innovative study to utilize S6 altimetry data in river and fluvial flood 
hydrodynamics. It focused on the Garonne Marmandaise catchment, 
particularly on the flood event from December 2021 to February 2022, 
during which both types of satellite observations were available. The 
S6 observations covered the upstream half of the studied Garonne River 
reach. Four experiments were conducted: one in open-loop (OL) mode 
and three others in DA mode assimilating, in-situ observations only 
(IDA), remote-sensing observations only (RSDA) or both (FDA), using 
a dual state-parameter EnKF (Nguyen et al., 2022b). The control vec-
tor included friction and hydrological forcing corrections, augmented 
with corrections of the hydraulic state in floodplain subdomains. DA 
was applied sequentially over an 18-hour sliding window with 6-
hour overlap. The results were comprehensively assessed with 1D and 
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2D metrics with respect to assimilated data and independent data 
whenever available.

It has been demonstrated that the OL simulation significantly un-
derestimates the WL in the riverbed and the extent of flooding, due 
to the significant underestimation of upstream discharge provided by 
ISBA-CTRIP, especially during high flow periods. In IDA and FDA, 
the assimilation of in-situ WLs data notably enhances the flow dy-
namics in the riverbed compared to OL, thereby reducing errors in 
the ISBA-CTRIP forcing. However, the assimilation of remote-sensing 
observations alone in RSDA improves WLs at observing stations, com-
pared to OL, at RS observation times (as shown in Fig.  10); yet the 
results deteriorate in periods between RS observations. This suggests 
that without in-situ data, it is nearly impossible to compensate for large 
errors in the discharge, given the low revisit frequency of the satellites. 
Alternative EnKF cycling strategies should be investigated, for instance, 
by relaxing the analysis values back to the default values (i.e. Table  1) 
to avoid over-corrections between cycles when only a few observations 
are available.

The poor coherence of the longitudinal WSE profile in IDA when 
compared to S6 observations (considered as independent references 
for IDA), is conjectured to originate from equifinality issues associated 
with corrections made to friction coefficients and forcing data. It was 
also shown that IDA overestimates the flooding and yields large WSR 
misfits, as the in-situ WL observations measured by the river do not 
provide any relevant information on the dynamics in the floodplain. 
The assimilation of both in-situ and RS observations in FDA alleviates 
the equifinality and provides significant enhancements in WLs both at 
observing stations and along the observed river segment, particularly 
when high spatial resolution S6-derived WSE measurements are avail-
able. The merits and limitations of assimilating RS observations were 
also assessed with 2D metrics computed with respect to S1-derived 
flood extents. Despite poorly informative S1-derived flood extent maps, 
regarding high-flow periods, the dynamics of RSDA and FDA in the 
floodplain are better than that of IDA.

This article demonstrates the added value from S6 altimetry data 
for river hydrodynamics. However, it is important to acknowledge 
that the used technique, employing FFSAR, is only applicable under 
specific conditions. While effective in certain situations like that of 
the Garonne Marmandaise, it has inherent limitations. The accuracy 
of the river centerline is crucial for isolating altimeter signals from 
rivers. During flood events, when the riverbed and water extent un-
dergo substantial changes, the algorithm may struggle to extract precise 
measurements, potentially leading to significant errors. Further investi-
gation and validation with independent data, both during low and high 
flow conditions, are necessary to address this issue. S6 provides a dense 
WSE profile along the river center line, allowing for the description of 
water surface elevation away from in-situ observing stations. Such a 
beneficial feature is also expected for the large-swath altimetry satellite 
SWOT, which provides WSEs in both the river and floodplain. However, 
a limitation lies in the temporal coverage of the satellite, which may 
be insufficient to capture the dynamics of medium-sized rivers like the 
Garonne adequately. Nevertheless, this research lays the groundwork 
for future utilization of data from the constellation of altimeters, such 
as the upcoming SMASH mission (Blumstein et al., 2019). Since the 
present research work focused on the multi-source DA strategy in the 
hindcast mode, its forecast capability is limited to the next DA cycle. 
To fully understand the influence of DA corrections, it is important to 
assess their performance in a full forecasting mode, exploring different 
lead times that extend beyond the hydraulic network’s propagation 
time.

This study highlights the significance of enhancing the temporal 
and spatial density of the observing network using RS data to improve 
the representation of flow dynamics in floodplains through numerical 
models employing advanced DA strategies. Furthermore, it emphasizes 
the critical role of in-situ data, particularly in addressing high levels of 
uncertainty in forcing data provided by large-scale hydrologic models. 
14 
Ultimately, this research work advocates for a multi-source DA strategy 
implemented on a chained hydrologic-hydrodynamic model, effectively 
leveraging diverse Earth Observation data. Such a combination of mod-
els and observations, aimed at developing new observing strategies, 
paves the way for a Digital Twin framework in hydrology.
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Appendix A. Radar altimeters

Radar altimeters operate in several different spectral bands with 
respect to their mission objectives, as well as having different spatial 
resolution (i.e., along-track sampling and inter-track distances) and 
temporal resolution depending on the satellite orbit (Łyszkowicz and 
Bernatowicz, 2017), as summarized by Table  A.6.

Table A.6
Summary of radar altimetry satellites characteristics.
 Altimetry Spectral Years in Revisit Cross-track 
 satellite band operation frequency separation  
 ERS-1 Ku 1991–2000 35 days 80 km  
 ERS-2 Ku 1995–2011 35 days 80 km  
 ENVISAT S/Ku 2002–2012 35 days 80 km  
 SARAL/ALtiKa Ka 2013– 35 days 80 km  
 TOPEX/Poseidon C/Ku 1992–2005 10 days 315 km  
 Jason-1 C/Ku 2001–2013 10 days 315 km  
 Jason-2/OSTM C/Ku 2008–2019 10 days 315 km  
 Jason-3 C/Ku 2016– 10 days 315 km  
 Sentinel-6MF C/Ku 2020- 10 days 315 km  
 CryoSat-2 Ku 2010– 369 days 7 km  
 Sentinel-3A/B C/Ku 2016/2018- 27 days 52 km  
 SWOT Ka 2022– 21 days 137.26 km 



T.H. Nguyen et al. Journal of Hydrology 663 (2025) 134013 
Fig. B.14. Evolution over time of the reconstructed inflow, for IDA (green), RSDA (red), FDA (purple), between 2022-01-01 and 2022-01-20. The S6 (respectively, 
S-1A/-1B) overpass times are indicated in cyan (respectively, green/gray) vertical lines. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)
Fig. B.15. WSE profile along river centerline between S6-derived observations (black-dashed line) and from the experiments. The curvilinear abscissa’s zero point 
is located at Tonneins. OL is plotted in blue, IDA in green, RSDA in red and FDA in purple. Member WSEs are shown in gray. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)
Appendix B. Additional figures

See Figs.  B.14 and B.15.
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Appendix C. Data and software resource

See Table  C.7.
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Table C.7
Data and software resource.
 Tools/Data Access link  
 TELEMAC-2D Homepage (https://www.opentelemac.org/)  
 ISBA-CTRIP Homepage (https://www.umr-cnrm.fr/spip.php?article1092&lang=en)  
 VigiCrue in-situ data HydroPortail (https://hydro.eaufrance.fr/)  
 Sentinel-1 data Alaska Satellite Facility Vertex (https://search.asf.alaska.edu/)  
 Copernicus Data Space Ecosystem (https://browser.dataspace.copernicus.eu/)  
 Flood extent mapping FloodML (https://github.com/CNES/floodml)  
 Sentinel-6 data NASA Earthdata Search (https://search.earthdata.nasa.gov)  
 EUMETSAT User Portal (https://user.eumetsat.int/catalogue)  
 FFSAR SMAP (https://github.com/cls-obsnadir-dev/SMAP-FFSAR) for Sentinel-3. An 

alternative algorithm similar to the one used in this study can be found in Ehlers 
et al. (2025).
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