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Abstract In Europe, temperature variations are mainly driven by the North Atlantic atmospheric
circulation. Here, with data from the MIROC6 large ensemble, we investigate a convolutional neural network (a
UNET) for reconstructing daily temperature anomalies in Europe from Sea Level Pressure (SLP) as a proxy of
the atmospheric circulation, and we compare the results with a traditional analogs approach. We show an
excellent ability of the UNET to estimate temperature variations given information from SLP only. This novel
method outperforms the analogs method, at both daily and inter‐annual time scales. Our study also shows that
during the training, the UNET learns information such as the seasonal cycle of the relationship between sea‐
level pressure and temperature anomalies, which could explain part of its excellent scores. This exploratory
work opens up promising prospects for estimating the contribution of atmospheric variability to observed
temperature variations.

Plain Language Summary Day‐to‐day variations in European temperatures are strongly linked to
fluctuations in the large‐scale atmospheric circulation over the North Atlantic basin. Europe is one of the fastest
warming regions in the world, and it is essential to understand the contribution of atmospheric circulation to
these recent temperature trends. This requires a proper quantification of the relationship between a given
atmospheric circulation (e.g., a SLP map) and the associated temperature anomaly over Europe. Here we present
a novel approach to address this issue, based on artificial intelligence techniques. In an idealized framework
(i.e., numerical simulations of a climate model), we show that this approach has excellent results and
outperforms the traditional analogs circulation method. We show that the neural network used in this study is
able to learn a lot of information from a single pressure map, such as the season, and even the day of the year
with only a small error. Our results are very promising for further research on the contribution of atmospheric
variability to temperature variations.

1. Introduction
Inter‐annual to multidecadal variations in European temperatures are mainly linked to the variability of the North
Atlantic dynamics on top of anthropogenically forced trends. The North Atlantic Oscillation (NAO) is the most
prominent atmospheric pattern explaining a significant fraction of climate variability, especially during boreal
winter (Deser et al., 2016). Featuring changes in position and intensity of the Azores High and the Iceland Low,
the NAO influences mean wind speed and direction over the entire North Atlantic basin due to the related lat-
itudinal shift of the stormtrack and modulation of the trade winds. NAO‐altered heat and moisture transports have
a direct impact on temperatures over Europe (Hurrell et al., 2003). Europe is currently warming particularly
rapidly with respect to other regions (https://climate.copernicus.eu/climate‐indicators/temperature), especially in
summer (Schumacher et al., 2024; Vautard et al., 2023). Estimating the contribution of the North Atlantic at-
mospheric dynamics (e.g., the NAO) to these recent trends is essential, as it can provide insights to disentangle the
forced and internal components of the European warming. It requires a precise quantification of the relationship
between a given atmospheric circulation and the associated temperature on a daily basis across all seasons.

Various methods have been proposed for this purpose, such as the circulation analogs method introduced by
Lorenz (1969). This method consists in estimating the temperature of a given day on the basis of temperatures
observed during days in the past with the most similar atmospheric circulations (analog days). This method named
“nearest neighbors” has already been used by Cattiaux et al. (2010, 2012), Vautard and Yiou (2009) to study the
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dynamical contribution to long‐term trends and extreme events in European temperatures. A known limitation is
that the nearest neighbors or closest analogs always differ, even slightly, from the situation studied, so that
temperature reconstructions are imperfect. Variations of the analogs method have been developed to address this
issue, such as the reconstructed analogs approach which consists of forming a pool of idealized analogs con-
structed from the nearest neighbors themselves. Deser et al. (2016) perform a so‐called dynamical adjustment on
winter temperature trends over North America by linearly combining these analogs, in order to quantify the
atmospheric dynamics contribution treated as internal‐driven variability and better assess anthropogenically
forced long‐term signals. This study, carried out on a monthly basis, was then adapted by Terray (2021) at daily
timescales to study extreme events in Europe, such as the 2009–2010 cold European winter and the 2010 Russian
heat wave. Sippel et al. (2019) propose an improvement of this dynamical adjustment by linear regression be-
tween Sea Level Pressure (SLP) and temperature or precipitation, using the regularization linear model which
makes the statistical model more robust to noise.

A novel alternative, motivated by the rapid advances in the field of artificial intelligence (AI), is to quantify the
circulation‐temperature relationship using a neural network. The large amount of data available in climate and
weather numerical models makes deep learning a promising candidate for this purpose. Choices between different
types of neural networks are specific to the targeted problems (Reichstein et al., 2019). Convolutional neural
networks (CNNs) are proven to be effective to recognize objects and patterns in images (maps in this study). They
are used for example, to predict ENSO events in the field of seasonal forecast (Ham et al., 2019), to differentiate
internal and forced climate variability from air surface temperature observations (Bône et al., 2024) or to perform
climate downscaling (Doury et al., 2023). They have also been used to predict North America regional average
daily maximum temperature, using several atmospheric variables including SLP, soil moisture and geopotential
height from general circulation models (Trok et al., 2024). This last study shows very effective skill with an
average R2 of 0.96 with CNNs trained on CanESM5 and tested on ERA5. However, CNNs have never been used
to determine the contribution of atmospheric circulation, from SLP only to European temperature variations.

In this paper, our objective is to explore an AI approach based on neural networks to reconstruct daily temperature
anomalies in Europe based on the knowledge of the North‐Atlantic atmospheric circulation only, and to compare
the performance of this reconstruction with the analogs approach traditionally used in the literature. Our analysis
is performed in a so‐called perfect model framework, using a large ensemble of simulations to have a large set of
circulation and temperature data for training algorithms. We characterize the circulation with daily SLP maps, and
we chose the UNET, a fully CNN introduced by Ronneberger et al. (2015) for biomedical image segmentation.
Methods and data are detailed in Section 2. The results of the comparison between UNET and analogs are
presented in Section 3, followed by sensitivity tests to further explore the robustness of results obtained with
UNET. Finally, Section 4 provides conclusions and discusses the perspectives of our study.

2. Data and Methods
2.1. Data

We use daily SLP and surface air temperature maps from the large ensemble MIROC6 (Shiogama et al., 2023;
Tatebe et al., 2019), containing 50 ensemble members between 1880 and 2100, with historical forcings until 2014,
followed by SSP5‐8.5 scenario ones (O’Neill et al., 2016). We divide the large ensemble into 40 members to form
the learning sample on which we train the UNET or in which we search for the circulation analogs and the rest,
that is, 10 members used as test sample to be reconstructed over 1950–2022, that is, typically the period where
observations are available. Data are given on a 1.4° × 1.4° grid and temperature anomalies are reconstructed at
each grid point over a domain whose geographical boundaries are 28°N–72 N and 11°W–32°E to include all of
Europe. The SLP domain covers a large portion of the North Atlantic, from the North America eastern coast to
Europe included and from the subtropics to polar regions (28°N–72°N and 87°W− 32°E) (see Figure S1 in
Supporting Information S1). Using such a large domain is common practice in analogs‐based methods as it
captures the main centers of action of the large‐scale atmospheric dynamics. In Section 3.2 we also consider
smaller SLP domains for our AI‐based approach.

2.2. Computation of Temperature Anomalies

To obtain daily temperature anomalies, we remove an estimate of the daily climatological normal from the raw
temperature value. Climate normals are non‐stationary to account for anthropogenically forced warming over the
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period of interest (1880–2100) (Rigal et al., 2019). More specifically, the anomalous temperature, Ta, of a given
day (d) and a given year (y) can be written as

Ta(d,y) = T(d,y) − ( f (d) + g(y) × h(d)) (1)

with the second term representing the so‐called non‐stationary normal. f(d) stands for the daily seasonal cycle
estimated without climate change and g(y) h(d) describes the effects of climate change (g represents the yearly
forced response and h the distortion of the annual cycle). First, we estimate g from the 50‐member ensemble mean
of annual mean modeled temperature. Then, f and h are estimated by linear regression and periodic smoothing
(details in Rigal et al. (2019)). We have tested different degrees of freedom for smoothing and arbitrarily chosen
12 for g (), 20 for f () and 24 for h (), to capture the amplitude of seasonal variations and reduce the high frequency
noise. We verify that our results do not strongly depend on these choices.

2.3. Analogs Method

The analogs method consists of reconstructing a temperature anomaly from a raw SLP field. For a given day (d) of
a given testing member, the temperature anomaly Ta(d) is reconstructed by averaging the temperature anomalies
of the 20 days whose SLP pattern is the closest to SLP(d) based on Euclidean distance as similarity criterion. This
methodology thus accounts for the amplitude of the spatial patterns and gradients of the SLP field, which are
important from a synoptic perspective. Analogs are searched among the 40 training members in a calendar
neighborhood to account for the seasonality of the relationship between circulation and temperature anomalies
(Cassou & Cattiaux, 2016) and we here use a 31 day window centered on d. As a result, for a given day, analog
days are searched in a 274,040 day collection (31 days × 221 years × 40 members).

2.4. UNET

We use a UNET, a CNN (Ronneberger et al., 2015), to estimate the transfer function F between daily temperature
anomaly and SLP map

Ta = F(SLP) (2)

The name UNET comes from its U shape (See Figure S2 in Supporting Information S1). The descending part of
the U corresponds to the encoder. It consists of convolution, activation and max‐pooling operations which reduce
the spatial dimension of the input image (here a daily map of SLP) and increase the pixel depth. The ascending
part of the U corresponds to the decoder. It uses transposed convolutions, concatenations and convolutions to
decode the encoded information and reconstruct the image (here a daily map of temperature anomaly). Con-
nections are established between the encoder and the decoder to preserve the spatial information that can be lost
during the encoding process. UNET has been documented to be well suited to deal with spatial and instantaneous
fields as detailed in Murphy (2022). In this study we adapt the code developed by (Doury et al., 2023) for
downscaling purposes for the construction of our UNET to link temperature and pressure fields.

To train the UNET, we randomly select 80% of the data (hereafter training sample) from the 40 training members.
The other 20% (validation sample) is used to monitor the performance of the model on unseen data during
training, allowing parameter (learning rate, number of epochs) adjustments to prevent overfitting. The network
optimizes its parameters by learning the relationship between a normalized SLP map and the associated tem-
perature anomaly image. Similarly to the analogs, the network learns the relationship between a raw SLP map and
the associated temperature anomaly. But for computational reasons, the first step of the UNET is to normalize the
input data, as it facilitates convergence in the optimization process. Here, to normalize the pressure maps, we
calculate at each grid point the mean and standard deviation of the daily time series concatenated across all time
steps and all 40 training members. For the training process we choose a batch size of 1,000 and the optimization
process uses the Adam optimizer (Murphy, 2022) with a learning rate of 0.001. The number of epochs is set to
100, but using the Early Stopping criterion (stop training after 10 epochs with no improvement in validation loss),
training stops once the model's performance on the validation dataset stops improving. The loss used for the
training is the Mean Squared Error (MSE).
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Once the UNET has been trained, we test its skill to reconstruct temperature anomalies based on the daily SLP
(also normalized with the mean and standard deviation maps previously calculated on the training members) from
1950 to 2022 of each of the 10 testing members.

2.5. Evaluation Metrics

To intercompare the reconstruction of the daily fields of temperature anomalies for the 10 ensemble members
given by the analogs and UNET methods described above, we use the Root Mean Squared Error (RMSE), the
Pearson correlation (r) and the variance ratio (v) as evaluation metrics. The variance ratio corresponds to the
variance of the predicted series divided by the variance of the true series. In this paper, the scores are shown either
at each grid point or at one specific grid point located in the South West of France (44.12°N–1.406°E) corre-
sponding to the city of Toulouse in order to illustrate the quality of reconstructions on a local scale.

3. Results
3.1. Skill of UNET Versus Analogs

UNET provides excellent performances in reconstructing daily temperature anomalies from SLP maps only
(Figure 1). Over the whole Europe, there are no points with correlation between original and reconstructed fields
lower than 0.9, reaching over 0.95 in many areas such as France, Iberia, Scandinavia and the Balkans. Over a large

Figure 1. (a) and (b) Correlations (c) and (d) Root Mean Squared Error (RMSE), (e) and (f) variance ratio for reconstructions of daily temperature anomalies based on
UNET (top) and analogs (bottom) over 1950–2022. White crosses correspond to correlations higher than 0.95. The average of scores of all grid points over the domain
are shown in the top left corner of each figure, and (g) temperature anomalies reconstructed by the UNET (in orange), by the analogs (in green) and the true series (in
blue) for 1 year of one member, on the black point represented on the maps. Scores calculated for these series are: r = 0.96, RMSE = 0.8, v = 0.95 for the UNET and
r = 0.63, RMSE = 2.23, v = 0.35 for the Analogs.
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part of the continent, variance ratios are around 0.9. Despite overall loss of variance in the reconstruction process
(variance ratios are below 1 everywhere), the overall high values for the variance ratios suggest that the UNET can
reproduce a large spectrum of the temperature temporal variability, including the daily extremes. For instance, at
the grid point of Toulouse, we find that the UNET's RMSEs computed respectively on the subset of the 10%
hottest anomalies in summer (JJA), and the subset of the 10% coldest anomalies in winter (DJF) are 0.92°C and
0.95°C, compared with 0.80°C when all days are considered. Note that there is a slight deterioration of the scores
toward the East of the domain in all evaluation metrics, especially in RMSE, with errors close to 1.7°C as opposed
to 0.8°C along the Atlantic coast of Western Europe.

There is no guarantee that a correct reconstruction of daily anomalies leads to good skill on a seasonal to
interannual timescale. If the daily errors are correlated one another, that is, if warm or cold biases persist over
several months, then they will not average out to zero when aggregating over the season or the year, and so the
seasonal mean can exhibit errors relatively large compared to its own variability. Variance ratios only peaks
around 0.6 when computed from annual mean. This decrease in scores compared to daily series is also observed
for seasonal averages (winter and summer). At continental scale, the variance is better captured by the UNET in
winter (DJF) than in summer (JJA) (Figures 2d and 2e, 2g, 2h). Regionally per season, the errors gradually in-
crease from west to east in winter, while in summer the highest RMSE values are found mainly over southern
Europe (Figure S3 in Supporting Information S1). This spatial distribution of the skill can be related to the relative
weight between influences from atmospheric dynamics and influences from other processes contributing to
temperature variability, which are independent of SLP and are not taken into account by the UNET by con-
struction. It is well established that winter variability is more controlled by heat and moisture transport by

Figure 2. (a) Yearly mean of daily reconstructions of one member on the black point (city of Toulouse), with the variance ratio (v = ) and the correlation (r = ) with the
target time series indicated, (b) and (c) variance ratio for yearly mean of the daily series from 10 test members reconstructed by the UNET and the analogs. (d) JJA means
the daily reconstructions of one member on the black point, (e) and (f) variance ratio for JJA means of the daily series from the 10 test members reconstructed by the
UNET and the analogs, and (g), (h), (i) same as (d), (e), (f) for DJF.
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circulation than summer variability where local processes play a greater role (Hurrell et al., 2003). Similarly, the
western flank of Europe is more dynamically driven by the fluctuation of the mean westerlies than in Eastern
Europe where surface feedbacks tend to dominate (soil moisture, snow cover). Sea surface temperature anomalies
are also expected to play a role along the coast and in the Mediterranean basin. We have also ignored the at-
mospheric circulation of the previous days which can introduce some persistence, each day being considered
independent in our reconstruction chain.

Evidence is provided for much lower skill using analogs versus UNET (Figure 1). Best daily reconstructions are
obtained in western Europe, with maximum correlations reaching 0.70 versus 0.97 with UNET. Errors range from
1.5°C on the West up to 4.2°C over the Easternmost part of the domain, namely doubled on average compared to
UNET. Best variance ratios are also located in western Europe but only reach 0.4 at most. Averaging the 20
analogs results expectedly in a smoothing of the variance, hence a misrepresentation of the actual daily tem-
perature variability, despite the large training sample size used in this study. Interestingly, similar spatial dis-
tribution of skill found in UNET for seasonal and interannual reconstructions are also obtained with the analogs,
but with considerably lower scores (Figure 2). Variance is not well represented by the analogs, especially in JJA
(0.07 for the spatial mean of the variance ratio) despite correlations reaching 0.8 in western/north‐western Europe
(Figure S3 in Supporting Information S1).

It is noticeable that we do not give UNET any information about the time of year. The only input is the daily SLP
field, and since the SLP‐temperature relationship is season‐dependent (Cassou & Cattiaux, 2016), the perfor-
mance of the UNET suggests that it may learn other information, such as the calendar day, enabling it to account
for the seasonality of temperature changes to similar daily atmospheric circulation across the year. In the
following, we carry out different tests on the UNET to better understand the information (a) used in the learning
process, and (b) learned by the network. First, we work on the sensitivity of the reconstruction skill to the choice
of spatial SLP domains as input for UNET. Then we investigate the capacity of the UNET to predict other in-
dicators, such as the belonging to a given season and the calendar day or the year.

3.2. UNET Sensitivity to Input Domain

To assess the sensitivity of the UNET skill to the spatial extension of SLP data, we use the same structure of the
UNET as above, but trained with different SLP domains as input, keeping unchanged the output domain for
temperature reconstruction. CTL is the control experiment described above, EUR has the same input SLP
domain as the output temperature domain (28°N–72°N and 11°W–32°E), that is, Europe only. In NATL, the
input SLP domain is fully disjoint from the output temperature domain and corresponds to the North Atlantic
only (28°N–72°N and 54°W–11°W). Split domains are represented in Figure S1 in Supporting Information S1.

The correlations, RMSEs and variance ratios show that the UNET only needs local information to reconstruct
temperatures. The scores for EUR are very close to CTL (spatial average of RMSE= 1.15°C for CTL and 1.18°C
for EUR). This suggests that the network does not need to learn the information from the SLP over the Atlantic to
robustly reconstruct temperatures in Europe. This is confirmed by NATL: when the input domain does not include
the output domain, scores are significantly lower (but still better than the analogs approach). Table S1 in Sup-
porting Information S1 shows the average scores (RMSE, correlation and variance ratio) of all the grid points and
the scores at the specific grid point 44.12°N–1.406°E (Figure S4 in Supporting Information S1). Note though that
skills from UNET are always greater than those obtained from the analogs whatever the selection of spatial
domain in inputs.

Usually, a large North Atlantic domain is studied to take into account the large‐scale atmospheric circulation
captured by the modes of variability (NAO, blocking, etc.) and their remote influence over Europe. Our results
suggest that the information of the atmospheric circulation outside the restricted European domain selected for
reconstruction is not necessary for the neural network. Collocated SLP and temperature fields seems to be enough.
This is a typical feature of UNET structures, which tend to prioritize the local information contained in the input
data when predicting the output at a given location (González‐Abad et al., 2023). In this case, it may be surprising
that the UNET performs well even without direct information on the position and intensity of the centers of the
North Atlantic circulation, but (a) this information may be partially contained in the pressure maps restricted to
Europe, and (b) this could indicate that the temperature variations at a grid point depend mainly on the local
pressure gradients around that point, especially when working with instantaneous maps, without any lag. Note
that the spatial distribution of skill remains the same in all sensitivity experiments.
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3.3. UNET Interpretability: Seasonal Cycle and Timeline

The influence of the SLP variability on European temperature anomalies depends on the seasons (Cassou &
Cattiaux, 2016). The high scores from the UNET obtained with all‐calendar days concatenated, suggest that the
network is able to learn the seasonality information during the training.

To document this skill, we take the encoder from the UNET already trained to predict the temperature anomaly
from the SLP (Section 1.4.) and add one trainable dense layer and a softmax activation function to its con-
volutional and max pooling layers. In machine learning, the softmax function is used for classification problems,
and transforms values into probabilities. We have then built an alternative network designed to predict the
probabilities of a day to belong to a season based on the sole knowledge of the SLP daily field map of that day
used for training UNET. In other words, the parameters of the pre‐trained encoder are thus frozen and only those
of the last dense layer are trainable. This new model is trained with only one member chosen randomly among the
40 available training ones: the SLP map as input and the probability vector for the associated season as output. We
checked the sensitivity of the results to the training member and the results were again very similar and did not
change the conclusion of this study. For example, if the input map corresponds to a winter (DJF) day, the output
vector will be (1, 0, 0, 0), if it is a spring (MAM) day the vector will be (0, 1, 0, 0), etc. In this problem the loss
function is a categorical cross entropy. By testing this model on the test members, the results show that the season
is predicted with remarkable accuracy (Figure 3a): more than 90% good outcome is obtained for the four seasons.
Note that the UNET never confuses winter with summer seasons in the daily attribution.

A further step is to predict the day of the year. To do so, the encoder part remains unchanged and, two real periodic
numbers are now predicted ( cos ( 2πd365), sin ( 2πd365)) with d ranging from 1 to 365. The last activation function is
linear and the loss function is the MSE. The calendar days are strikingly well predicted on the test members
(Figure 3b). On average over all days and members, the error between the actual day and the predicted day,
computed as the absolute difference between them, is about 8 days. Note that errors in attribution are even smaller
in the MAM and SON seasons that can be understood as transition seasons between wintertime and summertime
dynamics.

Finally, we examine the skill in predicting the year of the calendar day to be reconstructed, that is, the ability of the
UNET to predict the year associated with a daily SLP map. We use the same structure as the classification model
that is used to predict the season, but the size of the output vector is 221 over 1880–2100. The neural network fails
to clearly identify the years of the days until the middle of the 21st century (Figure 3c) as opposed to the end of the
period. This is consistent with the fact that long‐term anthropogenically forced trends in the North Atlantic SLP
are not detectable over the historical period (including the period we are reconstructing, shown in red in Figure 3),
that is, is hardly distinguishable from internal variability (IPCC AR6 WG1 Chapter 3) (Simpson et al., 2018). This
supports the decision not to detrend the SLP, assuming that the forced signal in the SLP is rather small over the
historical period. The change in performance of the UNET from the mid‐century is indicative that the neural
network detects a change in the pressure/temperature relationship. This could be related to the emergence of a

Figure 3. (a) Contingency table for the prediction of the seasons for test members, (b) predicted days versus true days, and (c) density of predicted years in relation to
actual years. The intensity of the colors indicates the number of predictions in each bin. Red lines represent the period we are reconstructing. For the three graphs,
predictions are made over the period 1880–2100.
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climate change signature in the mean SLP and/or variability at high warming levels in the MIROC6 ensemble
(e.g., shift of the storm tracks, etc.). Further analyses would be needed to disentangle the processes at the origin of
the change in UNET skill in year prediction, however this does not affect the reconstruction of temperatures over
the period 1950–2022.

4. Conclusion and Discussion
We here provide evidence for an excellent ability of AI to reconstruct temperature variations over Europe at all
timescales from the knowledge of the sole daily atmospheric circulation, in a perfect model framework. Our novel
method outperforms the traditionally used analogs framework impaired by mismatch between selected analogs
and targeted situations, even with the large dataset used in this study, and by the loss of variance in the recon-
structed temperature anomalies. Results are best at daily timescale and degraded at seasonal and interannual
timescale, possibly due to slow physical processes and variables with memory or inertia that also contribute to
drive temperature variations beyond synoptic time scales and that are not captured by UNET by construction. We
further find that the UNET primarily uses local SLP information to predict the temperature anomaly, and that it is
able to retrieve information about the season, and even the day of the year, during its learning process. This all
together contributes to explain the good scores obtained by the UNET and to build confidence in the overall
reconstruction framework.

This work should be interpreted as a first attempt to use AI to isolate the contribution of atmospheric circulation to
daily and yearly temperature variations in Europe. Our network seems to perform better than traditional methods
at reconstructing a daily temperature anomaly from the SLP map but note that we didn't compare the results with
recent reconstructed analogs methods (like Deser et al. (2016) or Terray (2021)). Note also that we have used a
UNET architecture adapted from a similar application (Doury et al., 2023), which has not been specifically
optimized, nor tuned to address the present question. Based on these sensitivity tests, we finally chose an ar-
chitecture that worked well and gave good results for our initial problem. There is certainly room for
improvement, but an exhaustive sensitivity analysis to further tune our UNET is beyond the scope of this paper.

Our finding opens up a wide range of possible applications to understand past observed trends or future expected
climate over Europe. For instance, the question of the role of the atmospheric circulation in the particularly rapid
warming observed in Europe over the last two decades could be tackled through our framework. One challenge
will be that there is much less data in the observed time series than in our perfect model framework (basically one
74‐year realization from 1950 to 2024 instead of fifty 221‐year ones). The scores will certainly be affected by this
large reduction in sample size: the non‐stationary normal of the temperature used to derive the anomalies will also
be more difficult to accurately estimate, and it will be harder to train and test the UNET on a single member when
reasoning in ensemblist approach. An alternative option would be to train a UNET on a large collection of
simulations (from one or several models) and apply it to the observed data, similarly to Bodnar et al. (2024) for
daily forecasts.

Further prospects include the application of this technique to isolate the contribution of various atmospheric
modes of variability to surface temperature variations and trends in other areas of the globe, or at the global scale.
This requires the identification of the relevant predictors (variables and spatial domains). Here we have arbitrarily
chosen the SLP and the North Atlantic basin, but this is clearly another area for improvement. Incorporating a
more systematic use of interpretability methods, such as proposed by González‐Abad et al. (2023), in the UNET
construction process, could help for this purpose.

Data Availability Statement
Python scripts for computing the analogues, for training and testing the CNNs and for visualising the results are
available on GitHub: https://github.com/carioue/UNET‐vs‐Analogues. The notebook used to visualise the figures
has been adapted to plot the results of only one reconstruction (rather than 10 as described in the paper) and the
data required are available on the Zenodo archive https://zenodo.org/uploads/14046994 (Cariou, 2024).
Non‐stationary normals are computed using routines from https://gitlab.com/ribesaurelien/france_study.
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