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The model problem

Convection-diffusion-reaction equation

∂u
∂t

= Lu, (x, t) ∈ Ωd × Ωt,

Lu =

d∑
i,j=1

aij
∂2u
∂xi∂xj

+

d∑
i=1

ci
∂u
∂xi

+ bu,

Ωd × Ωt rectangular domain with suitable initial and boundary
data
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Spatial discretization

Semi discrete system of Ordinary Differential Equations

U′(t) = F(t)U(t), t ≥ 0,

with initial value U(0) = U0 ∈ Rm and discretization matrix
F(t) ∈ Rm×m with m ∈ R.
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Spatial Discretization
Standard finite differences
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Figure: 2nd order FD scheme for 2-d heat equation on the grid Ω(3,3).
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Spatial Discretization
Standard finite differences
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Figure: 4th order FD scheme for 2-d heat equation on the grid Ω(3,3)
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Spatial Discretization - High-Order-
Compact Finite Differences

Exploit the structure of the PDE to derive a fourth order
accurate discretization on the compact stencil
In financial engineering: [Düring et al., 2014,
Düring and Fournié, 2012, Düring and Heuer, 2015],
[Düring and Miles, 2017, Hendricks et al., 2017]

We decompose the discretization matrix

FU(t) = F0U(t) + F1U(t) + F2U(t) + . . .+ FdU(t)

F0 stems from all mixed derivatives
Fi stems from the contribution of the i-th coordinate direction
for i = 1, 2, . . . , d

BUW – Matthias Ehrhardt Toulouse – September 27, 2018 7



Spatial Discretization - High-Order-
Compact Finite Differences

Exploit the structure of the PDE to derive a fourth order
accurate discretization on the compact stencil
In financial engineering: [Düring et al., 2014,
Düring and Fournié, 2012, Düring and Heuer, 2015],
[Düring and Miles, 2017, Hendricks et al., 2017]

We decompose the discretization matrix

FU(t) = F0U(t) + F1U(t) + F2U(t) + . . .+ FdU(t)

F0 stems from all mixed derivatives
Fi stems from the contribution of the i-th coordinate direction
for i = 1, 2, . . . , d

BUW – Matthias Ehrhardt Toulouse – September 27, 2018 7



Spatial Discretization - High-Order-
Compact Finite Differences

We consider unidirectional contributions Fi for i = 1, 2, . . . , d

aii(xl,j)
∂2u
∂x2

i
(xl,j) + ci(xl,j)

∂u
∂xi

(xl,j) = g(xl,j)

for i = 1, ..., d and some arbitrary smooth right hand side g.
Inserting the finite difference operators we obtain

aiiδ
2
i u(xl,j)− aii

h2
i

12
∂4u
∂x4

i
(xl,j)− aii

h4
i

360
∂6u
∂x6

i
(xl,j)

+ ciδ
0
i u(xl,j)− ci

h2
i

6
∂3u
∂x3

i
(xl,j)− ci

h4
i

120
∂5u
∂x5

i
(xl,j) +O(h6

i ) = g(xl,j)
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Spatial Discretization - High-Order-
Compact Finite Differences

Observation: leading error term is of order two
⇒ fourth-order compact approximation if the third and fourth
derivative is approximated with second order accuracy on the
compact stencil.

∂3u
∂x3

i
=

1
aii

∂g
∂xi

−
(

1
aii

∂aii
∂xi

+
ci
aii

)
∂2u
∂x2

i
− 1

aii

∂ci
∂xi

∂u
∂xi

,

∂4u
∂x4

i
=

1
aii

∂2g
∂x2

i
−
(

ci
a2

ii
+

2
a2

ii

∂aii
∂xi

)
∂g
∂xi

+

(
c2

i
a2

ii
+

3ci
a2

ii

∂aii
∂xi

+
2
a2

ii

[
∂aii
∂xi

]2

− 2
aii

∂ci
∂xi

− 1
aii

∂2aii
∂x2

i

)
∂2u
∂x2

i

+

(
ci
a2

ii

∂ci
∂xi

+
2
a2

ii

∂aii
∂xi

∂ci
∂xi

− 1
aii

∂2ci
∂x2

i

)
∂u
∂xi
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Spatial Discretization - High-Order-
Compact Finite Differences

High-Order-Compact Finite Differences Approximation to
unidirectional convection-diffusion equation

(
aii +

h2
i

12
∂2aii
∂x2

i
− h2

i ci
12aii

∂aii
∂xi

− h2
i

6aii

[
∂aii
∂xi

]2
+

h2
i c2

i
12aii

+
h2

i
6
∂ci
∂xi

)
δ2

i u(xl,j)

+

(
ci −

h2
i

6aii

∂aii
∂xi

∂ci
∂xi

+
h2

i ci
12aii

∂ci
∂xi

+
h2

i
12
∂2ci
∂x2

i

)
δ0

i u(xl,j) +O(h4
i )

= g(xl,j) +
h2

i
12
δ2

i g(xl,j) +

(
h2

i ci
12aii

− h2
i

6aii

∂aii
∂xi

)
δ0

i g(xl,j)

or in matrix notation

AxiU = BxiG

BUW – Matthias Ehrhardt Toulouse – September 27, 2018 10



Spatial Discretization - High-Order-
Compact Finite Differences

Semi-discrete scheme can be written as

U′(t) = F0U + F1U + . . .+ FdU
= F0U + B−1

x1 Ax1U + ...+ B−1
xd

AxdU

+O(h4
1) + ...+O(h4

d) +
∑
i,j

O(h4
i h4

j )

Mixed derivatives can be approximated via standard fourth
order stencils and collected in the matrix F0.
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Spatial Discretization - Pseudo-Spectral
Methods

1 An interpolant of the data is computed.
2 The interpolant is differentiated once (twice) to obtain an

estimate of the first (second) derivative.
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Figure: Chebyshev spectral scheme for 2-d heat equation on the grid
Ω(3,3)
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Theorem [Battles and Trefethen, 2004]
Let u,u′, . . . , u(m−1) be absolutely continuous for some m ≥ 1, and
let u(m) be a function of bounded variation. Then

|u(x)− (PNu)(x)| = O(N−m)

as N → ∞ for all x ∈ [−1, 1].

Theorem [Battles and Trefethen, 2004]
If u is analytic and bounded in the Bernstein ellipse of foci ±1
with semimajor and semiminor axis lengths summing to r, then
the Chebyshev interpolant with N + 1 Chebyshev-Gauss-Lobatto
nodes fulfills

|u(x)− (PNu)(x)| = O(r−N)

as N → ∞ for all x ∈ [−1, 1].
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Spatial Discretization - The Curse of Di-
mensionality

In grid based methods the degrees of freedom grows with
O(h−d) = O(Nd).
Already for problems with a moderate number of spatial
dimensions this is a severe problem, e.g. Ω(6,6) has 4,225 grid
nodes, while Ω(6,6,6,6) has 17,850,625 grid nodes.
With sparse grids the growth of the degrees of freedoms can
be reduced to O(h−1 log2(h−1)d−1).
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Spatial Discretization - Sparse Grid
Combination Technique

The method is based on the error splitting structure of the
underlying numerical scheme.
We consider a two-dimensional problem on the unit square
Ω2 = [0, 1]2 and assume a numerical approximation ul on Ωl
with l = (l1, l2) ∈ N2

0, with mesh widths
h = (h1,h2) = (2−l1 , 2−l2)

Error splitting structure of the numerical scheme

u − ul = h2
1w1(h1) + h2

2w2(h2) + h2
1h2

2w1,2(h1,h2).
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Spatial Discretization - Sparse Grid
Combination Technique

This structure can now be exploited by combining them in such a
way that low order terms cancel out.

hierarchical surplus of the numerical solution
δ(ul) = ul − ul−e1 − ul−e2 + ul−e1−e2 ,

where e1 = (1, 0) and e2 = (0, 1).
Inserting the error splitting, we obtain
δ(u − ul) = h2

1w1(h1) + h2
2w2(h2) + h2

1h2
2w1,2(h1,h2)

− 4 h2
1w1(2h1)− h2

2w2(h2)− 4 h2
1h2

2w1,2(2h1,h2)

− h2
1w1(h1)− 4h2

2w2(2h2)− 4 h2
1h2

2w1,2(h1, 2h2)

+ 4 h2
1w1(2h1) + 4 h2

2w2(2h2) + 16 h2
1h2

2w1,2(2h1, 2h2)

= h2
1h2

2w1,2(h1,h2)− 4h2
1h2

2w1,2(2h1,h2)− 4h2
1h2

2w1,2(h1, 2h2)

+ 16h2
1h2

2w1,2(2h1, 2h2)

= O(h2
1h2

2) = O(2−2l12−2l2) = O(2−2|l|1)
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Spatial Discretization - Sparse Grid
Combination Technique

Combine all solutions with a high surplus (information gain).
Combined sparse grid solution is the sum of all surpluses with
|l|1 ≤ n for n ∈ N0

us
n =

∑
|l|1≤n

δul.

Upper error bound can be found by incorporating the
surpluses of all sub-solutions, which are not used to compute
us

n. We have

‖us
n − u‖ ≤

∑
|l|1>n

‖δul‖ =
∑
|l|1>n

O(2−2|l|1)

=
∑
i>n

O((i + 1)2−2i) = O(n2−2n).

Let h = 2−n, then error bound is ‖us
n − u‖ ≤ O(h2 log2(h−1)).
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Spatial Discretization - Sparse Grid
Combination Technique

The number of grid
points on each sub-grid
grows with O(2n).
At each level there are
n + 1 grids.
Thus we have O(n · 2n)
grid nodes in the
combined solution.
Let h = 2−n, we have
O(h−1 log2(h−1)) grid
points compared to
O(h−2) nodes in the full
grid.
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Spatial Discretization - Sparse Grid
Combination Technique

The same ideas can be carried over to the general d−dimensional
case for numerical schemes with algebraic order of accuracy m.

Definition: Sparse grid combination technique
The sparse grid combination formula at level n ∈ N is given by

us
n =

d−1∑
q=0

(
d − 1

q

) ∑
|l|1=n−q

ul.

‖u − us
n‖ ≤ O(nd−12−m·n) = O(h−m log2(h−1)d−1)

O(nd−12n) = O(h−1 log2(h−1)d−1) grid nodes
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Spatial Discretization - Error Splitting

Sparse grid combination technique relies on the error splitting
assumption

u − ul =

d∑
k=1

∑
{j1,...,jk}
⊆{1,...,d}

wj1,...jk(.;hj1 , ..., hjk)h
m
j1 · · · hm

jk .

Question: for which schemes does this error splitting hold?
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Spatial Discretization - Error Splitting

In the case of linear FD schemes the error splitting has been
analyzed by Reisinger [Reisinger, 2013].
Assumptions:

1 The scheme has a pointwise truncation error of the form

(L − Ll)u(xl,j) =

d∑
k=1

∑
{j1,...,jk}
⊆{1,...,d}

τj1,...jk(xl,j;hj1 , ..., hjk)h
m
j1 · · · hm

jk ,

for xl,j ∈ Ωl.
2 Stability of the discretization scheme.
3 Sufficiently smooth initial data and compatible boundary

data, such that the mixed derivatives of required order are
bounded.
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Spatial Discretization - Error Splitting

In the case of second-order accuracy the mixed derivatives of
fourth order have to be bounded

∂|α|1

∂xα1
1 . . . ∂xαd

d
with αi ∈ {0, 1, ..., 4},

see [Reisinger, 2013]
In the case of fourth-order accuracy the mixed derivatives of
sixth order have to be bounded

∂|α|1

∂xα1
1 . . . ∂xαd

d
with αi ∈ {0, 1, ..., 6},

see [Hendricks et al., 2017a].
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Spatial Discretization - Error Splitting

Besides these key properties also the error structure has to be
preserved by the interpolation technique used to combine the
sub-solutions.
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Figure: Convergence at the mid point and in the maximum norm.
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Spatial Discretization - Error Splitting

In the case of a fourth order accuracy a tensor-product based
cubic spline interpolant preserves the error structure.
Proof via separation of the errors into interpolation error (I)
and the interpolation of the error of the numerical solution
(II)

u(x)− (PNul)(x) = u(x)−
(
PNu

)
(x)︸ ︷︷ ︸

I

+
(
PN(u − ul)

)
(x)︸ ︷︷ ︸

II

.

The application of cubic spline interpolation results in higher
regularity requirements

∂|α|1

∂xα1
1 . . . ∂xαd

d
with αi ∈ {0, 1, ..., 10}.
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Spatial Discretization - Error Splitting

To our best knowledge the sparse grid combination technique
has not been used in the case of pseudo-spectral methods.
Shen and Yu [Shen and Yu, 2010, Shen and Yu, 2012]
construct a spectral sparse grid for elliptic problems based on
nested, spectrally accurate quadratures.
We consider the test problems given in [Shen and Yu, 2010]

−∆u = f for x ∈ Ωd = [−1, 1]d.
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Spatial Discretization - Error Splitting

−∆u = f for x ∈ Ωd = [−1, 1]d

with solutions

u1(x) =
d∏

i=1
sin(kπ xi+1

2 ), u2(x) =
d∑

i=1
φk(xi)

∏
i 6=j

sin(π xi+1
2 ),

u3(x) =
d∏

i=1
gk(xi), u4(x) =

d∏
i=1

(
hk(xi)− xi+1

2
)
,

where

φk(xi) = esin(kπ
xi+1

2 ) − 1
gk(xi) = (1 − x2

i )(1 + xi) log(1 + xi + 10−k)

hk(xi) =

{
0, xi ≤ 0
xk

i , xi > 0

and k ∈ N.
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Spatial Discretization - Error Splitting

We assume in the analytic case

u(x)− (PNul)(x) =

d∑
k=1

∑
{j1,j2,...,jk}
⊂{1,2,...,d}

r−Nj1 · ... · r−Njkγj1,j2,...,jk(x;Nj1 , ...,Njk)

with bounded functions γ.
We expect a hierarchical surplus of order

δul(x) = O(r−N1 · r−N2 · · · r−Nd) = O(r−
∑d

i=1 Ni) = O(r−
∑d

i=1 2li )

for all x ∈ Ωd.
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Spatial Discretization - Error Splitting

δu(3,3) = O(r−16), δu(2,4) = O(r−20) → splitting structure is
not appropriate for the combination technique.

l1, l2 1 2 3 4 5
1 0.05320007109 3.01091817426 0.67948036244 0.00090058675 0.00000425864
2 3.01091817426 5.81390129215 1.20139326430 0.02748897172 0.00101213360
3 0.67948036244 1.20139326430 0.06600992745 0.00176267546 0.00006409891
4 0.00090058675 0.02748897172 0.00176267546 0.00007605425 0.00000253873
5 0.00000425864 0.00101213360 0.00006409891 0.00000253873 0.00000017619

Table: Hierarchical surplus of the spectral method for case 3 with k = 3
and d = 2.

l1, l2 1 2 3 4 5
1 0 15.20688403880 3.15596490099 0.71863369303 0.17283592883
2 15.20688403880 4.89281826359 0.53018892670 0.10161973130 0.02346582984
3 3.15596490099 0.53018892670 0.16327550147 0.02257005970 0.00528871129
4 0.71863369303 0.10161973130 0.02257005970 0.00068325977 0.00010098876
5 0.17283592883 0.02346582984 0.00528871128 0.0001009887 0.00000821986

Table: Hierarchical surplus of the spectral method for case 4 with k = 3
and d = 2.
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Figure: Computation time versus accuracy of the full grid approach and
the sparse grid combination technique.
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Time Discretization -
Alternating Direction Implicit

Schemes
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Time Discretization - ADI Schemes

Semi discrete system of ODEs
U′(t) = F(t)U(t), t ≥ 0,

Discretization in time via ’standard’ techniques
Un+1 = Un + (1 − θ)∆tF(n∆t)Un + θF((n + 1)∆t)Un+1,

θ = 0 : explicit Euler, θ = 1: implicit Euler, θ = 0.5:
Crank-Nicolson.
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Time Discretization - ADI Schemes

The spatial discretization matrix is decomposed into

F(t) = F0(t) + F1(t) + . . .+ Fd(t),

where F0 stems from all mixed derivatives and Fi from each
unidirectional contribution of coordinate direction i = 1, ..., d.
With the help of ADI time stepping the equation system can
be solved as a sequence of one-dimensional problems.
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Time Discretization - ADI Schemes

[Douglas, 1962] Douglas scheme (DO):


Y0 = Un +∆tF(t)Un,

Yi = Yi−1 + θ∆t (Fi(t)Yi − Fi(t)Un) for i = 1, ..., d
Un+1 = Yd.

Order two in time if F0 = 0, order one otherwise.
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Time Discretization - ADI Schemes

[Craig and Sneyd, 1988] Craig-Sneyd scheme (CS):



Y0 = Un +∆tF(t)Un,

Yi = Yi−1 + θ∆t (Fi(t)Yi − Fi(t)Un) for i = 1, ..., d
Ỹ0 = Y0 +

1
2∆t (F0Yd − F0Un)

Ỹi = Ỹi−1 + θ∆t

(
Fi(t)Ỹi − Fi(t)Un

)
for i = 1, ..., d

Un+1 = Ỹd.

Order two in time iff θ = 0.5.
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Time Discretization - ADI Schemes

[in’t Hout and Welfert, 2009] Modified Craig-Sneyd scheme
(MCS):



Y0 = Un +∆tF(t)Un,

Yi = Yi−1 + θ∆t (Fi(t)Yi − Fi(t)Un) for i = 1, ..., d
Ŷ0 = Y0 + θ∆t (F0Yd − F0Un)

Ỹ0 = Ŷ0 + (1
2 − θ)∆t (F(t)Yd − F(t)Un)

Ỹi = Ỹi−1 + θ∆t

(
Fi(t)Ỹi − Fi(t)Un

)
for i = 1, ..., d

Un+1 = Ỹd.

Order two in time for any θ > 0.
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Time Discretization - ADI Schemes

[Hundsdorfer, 2002] Hundsdorfer-Verwer scheme (HV):



Y0 = Un +∆tF(t)Un,

Yi = Yi−1 + θ∆t (Fi(t)Yi − Fi(t)Un) for i = 1, ..., d
Ỹ0 = Y0 +

1
2∆t (F(t)Yd − F(t)Un)

Ỹi = Ỹi−1 + θ∆t

(
Fi(t)Ỹi − Fi(t)Yd

)
for i = 1, ..., d

Un+1 = Ỹd,

Order two in time for any θ > 0.

BUW – Matthias Ehrhardt Toulouse – September 27, 2018 37



Time Discretization - ADI Schemes

Stability analysis within the von Neumann framework
[in’t Hout and Mishra, 2011, in’t Hout and Mishra, 2013,
in’t Hout and Welfert, 2009, in’t Hout and Welfert, 2007,
Lanser et al., 2001, Mishra, 2016].
Convection-diffusion equation with constant coefficients

∂u
∂t

= div(A∇u) + c · ∇u

with symmetric and positive semi-definite matrix A = (aij),
and c = (c1, c2, ..., cd)

>.
Consider the FD scheme given in one step form

Un+1 = RUn,

where R denotes the iteration matrix.
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Theorem 1 in [Hendricks et al., 2016a]
Diffusion equation with periodic BCs in 2-d or 3-d

Symmetric positive semi-definite coefficient matrix A

HO-ADI schemes are unconditionally stable with lower bound on θ:

HO Douglas scheme

θ ≥ 1
2

if d = 2 θ ≥ 2
3

if d = 3

HO Craig-Sneyd scheme

θ ≥ 1
2

if d = 2, 3

HO modified Craig-Sneyd scheme

θ ≥ 1
3

if d = 2 θ ≥ 6
13

if d = 3

HO Hundsdorfer-Verwer scheme

θ ≥ 1
2 +

√
2

if d = 2 θ ≥ 3
4 + 2

√
3

if d = 3
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Theorem 2 in [Hendricks et al., 2016a]
Diffusion equation with periodic BCs with d ≥ 2
Symmetric positive semi-definite coefficient matrix A

HO-ADI schemes need to fulfill lower bound on θ for unconditional stability:

HO Douglas scheme

θ ≥ 1
2d(1 − 1

d )
d−1,

HO Craig-Sneyd scheme

θ ≥ max

{
1
2 ,

1
2d(1 − 1

d )
d
}
,

HO modified Craig-Sneyd scheme

θ ≥ 1
2

d
1 + ( d

d−1 )
d−1

,

HO Hundsdorfer-Verwer scheme

θ ≥ 1
2dak,

where ak is the unique solution a ∈
(
0, 1

2

)
of 2a

(
1 + 1−a

d−1

)d−1
− 1 = 0.
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Time Discretization - ADI Schemes

Both Theorems can be proven within the von Neumann
framework by considering the scalar stability functions

rDO(z0, z1, ..., zd) = 1 + z
p ,

rCS(z0, z1, ..., zd) = 1 + z
p + 1

2
z0 z
p2 ,

rMCS(z0, z1, ..., zd) = 1 + z
p + θ z0 z

p2 + (1
2 − θ) z2

p2 ,

rHV(z0, z1, ..., zd) = 1 + 2 z
p − z

p2 + 1
2

z2

p2 .

with p = (1 − θz1) · ... · (1 − θzd) and z = z0 + z1 + ...+ zd,
where the eigenvalue zi stems from Fi for i = 0, 1, ..., d.
And exploiting, that for the eigenvalues it holds zi ∈ R for all
i, zi ≤ 0 for i = 1, . . . , d, z0 + z1 + . . . zd ≤ 0 and
|z0| ≤

∑
i6=j

√zizj, see [Hendricks et al., 2016a].

BUW – Matthias Ehrhardt Toulouse – September 27, 2018 41



Time Discretization - ADI Schemes

Lemma 1 in [Hendricks et al., 2017]
Let d = 2 and the HO-ADI schemes be applied to the convection-diffusion
problem with symmetric positive semi-definite coefficient matrix A. Then it
holds for the eigenvalues

Re(z1) ≤ 0, Re(z2) ≤ 0 and |z0| ≤ 2
√

Re(z1) · Re(z2). (1)

Let (1) hold and further

Let z0, z1, z2 ∈ C and θ ≥ 1
2 , then |rDO| ≤ 1 and |rCS| ≤ 1.

— [in’t Hout and Welfert, 2007]

Suppose |rMCS(z0, z1, z2)| ≤ 1 for all z0 ∈ R and z1, z2 ∈ C holds, then θ ≥ 2
5 .

— [in’t Hout and Mishra, 2011]

Let z0 = 0, then |rHV| ≤ 1 for arbitrary z1, z2 ∈ C if and only if θ ≥ 1
2 + 1

6

√
3.

— [Lanser et al., 2001]
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Time Discretization - ADI Schemes

Lemma 1 in [Hendricks et al., 2017]
Let d = 2 and the HO-ADI schemes be applied to the convection-diffusion
problem with symmetric positive semi-definite coefficient matrix A. Then it
holds for the eigenvalues

Re(z1) ≤ 0, Re(z2) ≤ 0 and |z0| ≤ 2
√

Re(z1) · Re(z2). (1)

Let (1) hold and further

Let z0, z1, z2 ∈ C and θ ≥ 1
2 , then |rDO| ≤ 1 and |rCS| ≤ 1.

— [in’t Hout and Welfert, 2007]

Suppose |rMCS(z0, z1, z2)| ≤ 1 for all z0 ∈ R and z1, z2 ∈ C holds, then θ ≥ 2
5 .

— [in’t Hout and Mishra, 2011]

Let z0 = 0, then |rHV| ≤ 1 for arbitrary z1, z2 ∈ C if and only if θ ≥ 1
2 + 1

6

√
3.

— [Lanser et al., 2001]
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Time Discretization - ADI Schemes

Stability regions for HO ADI scheme coincide with the
stability regions of their second-order FD counterparts.
For convection-diffusion problems with more than two spatial
dimensions stability cannot be guaranteed. However, HO ADI
schemes show stable behavior for moderate convection in
numerical experiments, see [Hendricks et al., 2017].
Pseudo-spectral ADI methods show a stable behavior in
numerical experiments, see [Hendricks et al., 2018].
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Application to Option Pricing
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Numerical examples - Basket options

Multi-dimensional Black-Scholes PDE with d ∈ N assets

∂u
∂t

+
1
2

d∑
i,j=1

σiσjρi,jsisj
∂2u
∂si∂sj

+

d∑
i=1

rsi
∂u
∂si

− ru = 0,

u(s1, s2, . . . , sd,T) =

(
K −

d∑
i=1

si

)+

,

in the space-time cylinder Ωd × Ωt with Ωd = [0,∞)d,
Ωt = [0,T].
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Numerical examples - Basket options

Logarithmic transformation xi = log(si) for i = 1, ..., d,
τ = T − t, u = erτu yields

∂u
∂τ

− 1
2

d∑
i,j=1

ρijσiσj
∂2u
∂xi∂xj

−
d∑

i=1

(
r − 1

2σ
2
i
) ∂u
∂xi

= 0,

Payoff transforms to u(x1, ..., xd, 0) =
(

K −
∑d

i=1 exi
)+
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Numerical examples - Basket options

HO ADI scheme in a sparse grid setting
We obtain the following discretization matrices

Axi =

(
1/2σ2

i +
h2

i (r − 1/2σ2
i )

2

6σ2
i

)
· IN1 ⊗ ...⊗ INi−1 ⊗ D2

FDi ⊗ INi+1 ⊗ . . .⊗ INd

+

(
r − 1/2σ2

i

)
· IN1 ⊗ ...⊗ INi−1 ⊗ DFDi ⊗ INi+1 ⊗ . . .⊗ INd ,

Bxi =IN1·N2·...·Nd +
h2

i

12 · IN1 ⊗ ...⊗ INi−1 ⊗ D2
FDi ⊗ INi+1 ⊗ . . .⊗ INd

+

(
h2

i (r − 1/2σ2
i )

6σ2
i

)
· IN1 ⊗ ...⊗ INi−1 ⊗ DFDi ⊗ INi+1 ⊗ . . .⊗ INd .
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σ1 σ2 σ3 ρ12 ρ13 ρ23

A 0.6 0.6 0.6 0.2 0.2 0.2
B 0.4 0.4 0.4 0.2 0.2 0.2
C 0.6 0.6 0.6 -0.5 0.5 -0.25

Table: Parameter sets for numerical experiments
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4.988.64
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45.21
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ρ
12

(a) 332 grid nodes.
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215.55
σ1, σ2

(b) 652 grid nodes.

0.2 0.4 0.6

−0.5

0

0.5

12.15

22.84

33.5386.97

183.16

343.5

σ1, σ2

(c) 1292 grid nodes.

Figure: Maximum of the mixed fourth derivative for a decreasing mesh
width h in the 2-d case.

BUW – Matthias Ehrhardt Toulouse – September 27, 2018 48



10−210−110−10

10−5

100

h̃/gridlength

Er
ro

r
sparse grid err∞
sparse grid err2

full grid err∞
full grid err2

(a) Case A

10−210−110−10

10−4

102

h̃/gridlength

(b) Case B

10−210−110−10

10−5

100

h̃/gridlength

(c) Case C

102 10410−10

10−5

100

# grid nodes

Er
ro

r

(d) Case A

102 10410−10

10−5

100

# grid nodes

(e) Case B

102 10410−10

10−5

100

# grid nodes

(f) Case C

BUW – Matthias Ehrhardt Toulouse – September 27, 2018 49



10−310−210−1 10010−8

10−4

100

h̃/gridlength

Er
ro

r
sparse grid err∞
sparse grid err2

full grid err∞
full grid err2

(a) Case A

10−310−210−1 10010−8

10−4

100

h̃/gridlength

(b) Case B

10−310−210−1 10010−8

10−4

100

h̃/gridlength

(c) Case C

102 104 10610−8

10−4

100

# grid nodes

Er
ro

r

(d) Case A

102 104 10610−8

10−4

100

# grid nodes

(e) Case B

102 104 10610−8

10−4

100

# grid nodes

(f) Caset C

BUW – Matthias Ehrhardt Toulouse – September 27, 2018 50



Numerical examples - Stochastic volatil-
ity models

Heston-Hull-White PDE

∂u
∂t

=
1
2

s2v∂
2u
∂s2 +

1
2
σ2

1v∂
2u
∂v2 +

1
2
σ2

2
∂2u
∂r2

+ ρ12σ1sv ∂2u
∂s∂v

+ ρ13σ2s
√

v ∂
2u

∂s∂r
+ ρ23σ1σ2

√
v ∂2u
∂v∂r

+ rs∂u
∂s

+ κ(η − v)∂u
∂v

+ ar(br − r)∂u
∂r

− ru,

for inverse time t ∈ [0,T], asset s ∈ [0,∞), volatility
v ∈ [0,∞) and risk-free interest rate r ∈ (−∞,∞).
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Numerical examples - Stochastic volatil-
ity models

For plain-vanilla European options the first derivative of the
initial condition has a discontinuity at the strike price K.

0 50 100 150 200
0

20
40
60
80

100

(a) Call option

0 50 100 150 200
0

20
40
60
80

100

(b) Put option

But no discontinuity in direction of the volatility v and
interest rate r.
Exploit structure by Hybrid Finite
Difference/Pseudo-Spectral method:

Standard finite differences in s direction.
Pseudo-spectral scheme in v and r direction.
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Application to the Heston-Hull-White
PDE

Grid transformation in stock direction
[Tavella and Randall, 2000, in’t Hout and Foulon, 2010]

ψs(x) =
c1 + sinh−1(K−x

α )

c1 − c2

where

c1 = sinh−1( smin−K
α ),

c2 = sinh−1( smax−K
α ).

Transformation maps [smin, smax] to [0, 1] and clusters grid
points around the strike price K.
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Application to the Heston-Hull-White
PDE

Grid transformation in direction of the volatility and interest
rate to map the finite interval [a,b] to [−1, 1]

ψ1(x) =
2

b − a
x +

a + b
a − b

.

In a second step the clustering can be done.

ψ2(x) = e sinh

( 1
2
(x − 1)

(
sinh

−1
( 1 − d

e

)
+ sinh

−1
( d + 1

e

))
+ sinh

−1
( 1 − d

e

))
+ d,

where the parameter d ∈ [−1, 1] determines the region of
clustering and e > 0 the degree of non-uniformity of the grid
spacing.
Complete transformation is given by the composition

ψ = ψ2 ◦ ψ1.
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Application to the Heston-Hull-White
PDE

Heston-Hull-White

∂u
∂t

=
1
2

s2v
[
ψ′

s(s)2 ∂
2u
∂x2

1
+ ψ′′

s (s)
∂u
∂x1

]
+

1
2
σ2

1v
[
ψ′

v(v)2 ∂
2u
∂x2

2
+ ψ′′

v (v)
∂u
∂x2

]
+

1
2
σ2

2

[
ψ′

r(r)2 ∂
2u
∂x2

3
+ ψ′′

r (r)
∂u
∂x3

]
+ ρ12σ1svψ′

s(s)ψ′
v(v)

∂2u
∂x1∂x2

+ ρ13σ2s
√

vψ′
s(s)ψ′

r(r)
∂2u

∂x1∂x3

+ ρ23σ1σ2
√

vψ′
v(v)ψ′

r(r)
∂2u

∂x2∂x3

+ rsψ′
s(s)

∂u
∂x1

+ κ(η − v)ψ′
v(v)

∂u
∂x2

+ ar(br − r)ψ′
r(r)

∂u
∂x3

− ru,

where s = ψ−1
s (x1), v = ψ−1

v (x2) and r = ψ−1
r (x3) with

(x1, x2) ∈ Ω̃ = [0, 1]× [−1, 1] and (x1, x2, x3) ∈ Ω̃ = [0, 1]× [−1, 1]2.
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Numerical examples - Stochastic volatil-
ity models

Case 1 Case 2 Case 3 Case 4
K 100 100 100 100
T 1 1 3 0.5
σ1 0.3 0.04 0.2928 0.5
ρ12 -0.9 -0.6 -0.7571 -0.5
κ 1.5 3 0.6067 2
η 0.04 0.12 0.0707 0.02
r 0.025 0.04 0.03 0.01
ar 0.00883 0.2 0.05 0.15
br 0.025 0.05 0.055 0.101
σ2 0.00631 0.06 0.03 0.1
ρ13 0 (0.6) 0 (0.2) 0 (0.6) 0 (-0.3)
ρ23 0 (-0.7) 0 (0.4) 0 (-0.2) 0 (0.2)

Table: Scenarios for numerical tests
[in’t Hout and Foulon, 2010, Haentjens and in’t Hout, 2012].
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Convergence in volatility, interest rate
direction (HHW)
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Convergence in volatility, interest rate
direction (HHW)

100 102 104

10−3

10−1

101

comp. time [s]

er
r ∞

FD CPS

(a) Case 1

100 102 104

10−3

10−1

101

comp. time [s]

er
r ∞

(b) Case 2

102 104

10−3

10−1

101

comp. time [s]

er
r ∞

(c) Case 3

100 102 104

10−3

10−1

101

comp. time [s]

er
r ∞

(d) Case 4
BUW – Matthias Ehrhardt Toulouse – September 27, 2018 58



Conlusion

Derived and analyzed numerical schemes to price European
options in a multivariate Black-Scholes setting and under
stochastic volatility.
Applied High-order-compact and Pseudo-spectral
discretizations in space.
Proposed Hybrid schemes to efficiently exploit the regularity
in the certain coordinate directions.
ADI time stepping methods to reduce the computational
complexity.
Showed that the stability bounds of central second-order
finite difference ADI and HO ADI schemes coincide.
Sparse grid combination technique to reduce the number of
degrees of freedoms.
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