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Abstract

Particle-laden flows are of great interest since they occur in a variety of industrial
applications, such as chemical reactors or internal combustion engines in which either
solid or liquid particles are injected in a gas flow. These two-phase flows are characterized
by a high level of dynamic coupling, heat and mass transfer between the phases. Other
complex phenomena of these flows are linked to the size of the particles, depending on
the formation process, heterogeneous chemical reactions, coalescence and break-up.
Commonly used Lagrangian particle tracking techniques are able to handle most of these
complex physical processes. However they are also known to be numerically expensive,
as they require a high particle number density to reach a minimum level of accuracy. For
unsteady simulations of practical applications of turbulent industrial flows in complex
geometries, Lagrangian methods can not be efficiently used today.
As an alternative a three dimensional unsteady Eulerian-Eulerian approach is proposed
to simulate dispersed two-phase flows. In this approach the dispersed phase is treated as
the continuous gas phase, through an averaging operator that leads to a system of con-
servation equations very similar to the ones for the gas. The main advantage is therefore
that the gas phase algorithm may be used on the dispersed phase with the same numer-
ical accuracy and computational efficiency. However this averaging operation introduces
unclosed terms [15] in the equations that need to be modeled. These terms are the non-
linear term in the transport operator and other terms related to the unresolved part of
the particle velocities.
The Eulerian-Eulerian approach has already been successfully applied to Reynolds-Averaged
Simulation (RANS) of turbulent flows. The objective of the present work is to extend
this approach to unsteady three dimensional simulations of complex flows. Long term
objective is to extend this method to an approach comparable to Large Eddy Simulation
(LES) as being used in aerodynamics or recently in reactive flows. LES has become a
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very attractive tool and has proven to be very efficient on inert turbulent flows. Its use
for reactive flows is quite recent and its extension to two phase flow needs specific devel-
opments.
In the present paper a model for the unclosed non-linear terms of the dispersed phase
equations is proposed. This term has a direct impact on the particles transport and con-
centration and is crucial in order to capture dynamics and dispersion. It controls the
segregation effects, that in turn control many other physical processes like mass and heat
transfer or particle-particle interactions.
The proposed model is based on an additional stress term in the dispersed phase momen-
tum equation, as described in the first section of the paper. Two different approaches
to calculate this stress term may be used. One is tested in the case of homogeneous
isotropic decaying turbulence, computed in a quasi Direct Numerical Simulation (DNS)
mode, and compared to an Eulerian-Lagrangian (DNS) reference solution. In this case it
is possible to derive analytical relations for several integral quantities that are very usefull
to cross-check the Eulerian and Lagrangian approaches.

1 The Eulerian model

Eulerian equations for the dispersed phase may be derived by several means. A popular
simple way consists of volume filtering of the the separate, local, instantaneous phase equa-
tions accounting for the inter-facial jump conditions [3]. Such an averaging approach is very
restrictive, because particle sizes and particle distances have to be smaller than the smallest
length scale of the turbulence.

A different, not totally equivalent way is the statistical approach in the framework of ki-
netic theory. In analogy to the derivation of the Navier-Stokes equations by non-equilibrium

statistics [1], a point probability density function (pdf) f
(1)
p (cp;xp, t) may be defined. This

gives the local instantaneous probable number of particles with the given translation velocity
up = cp. This function obeys a Boltzmann-type kinetic equation, which accounts for momen-
tum exchange with the carrier fluid and for the influence of external forces such as gravity and
inter-particle collisions. Reynolds-averaged transport equations of the first moments (such as
particle concentration, mean velocity and particle kinetic stress) may be derived directly by
averaging from the pdf kinetic equation [13].

For the sake of simplicity in this feasibility study, interaction forces are limited to drag,
considering non-evaporating particles in absence of gravity. The extension to evaporating
flows, gravity force, turbulence corrections in the drag force and other interaction forces is
not in conflict with the presented derivation of the Eulerian field equations. In the presented
approach the gas is presumed undisturbed by the dispersed phase. Therefore passage from
one-way to two-way coupling is more delicate.

1.1 Conservation Equations for particle properties

To derive local instantaneous Eulerian equations in dilute flows (without turbulence mod-
ification by the particles), Février et al. [5], [6], [15] propose to use an averaging over all
dispersed-phase realizations conditioned by one carrier-phase realization. Such an averaging
procedure leads to a conditional velocity pdf for the dispersed phase,

f̃ (1)
p (cp;x, t,Hf ) =

〈

W (1)
p (cp;x, t) |Hf

〉

. (1)

W
(1)
p are the realizations of position and velocity in time of any given particle [11] and Hf

is the unique carrier flow realization. With this definition one may define a local instanta-
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neous particulate velocity field, which is here named “mesoscopic Eulerian particle velocity
field”. This field is obtained by averaging the conditioned velocity pdf over all particle-flow
realizations.

ũp (x, t,Hf ) =
1

ñp

∫

cpf̃
(1)
p (cp;x, t,Hf ) dcp. (2)

Here

ñp =

∫

f̃ (1)
p (cp;x, t,Hf ) dcp (3)

is the “mesoscopic” particle-number density and

〈Φ̃〉p =
1

ñ
(1)
p

∫

f̃ (1)
p Φdcp (4)

stands for any ensemble averaged quantity.
For simplicity, the dependence of the above variables on Hf is not shown explicitly. Appli-
cation of the conditional-averaging procedure to the kinetic equation governing the particle
pdf leads directly to the transport equations for the first moments of number density and
mesoscopic Eulerian velocity,

∂

∂t
ñp +

∂

∂xi
ñpũp,i = 0 (5)

ñp
∂

∂t
ũp,i + ñpũp,j

∂

∂xj
ũp,i = −

ñp

τp
[ũp,i − ui] −

∂

∂xj
ñpδσ̃p,ij (6)

Here δσ̃p,ij is the mesoscopic kinetic stress tensor of the particle Quasi-Brownian velocity
distribution discussed in section 1.2. One of the current objectives is to show that this term
is non-negligible for inertial particles in turbulent flow. Due to the very small droplet Reynolds
number value measured in the simulation, the particle relaxation time τp is defined as the
relaxation time for Stokes drag.

τp =
ρpd

2

18µ
(7)

1.2 The stress tensor of Quasi-Brownian Motion (QBM)

The stress term in eq. 6 arises from an ensemble average of the nonlinear term in the transport
equation for particle momentum,

ñpδσ̃p,ij =

∫

(cp,i − ũp,i) (cp,j − ũp,j) f̃ (1)
p (cp;x, t,Hf ) dcp (8)

= ñp〈δup,iδup,j〉p. (9)

When the Euler or Navier-Stokes equations are derived from kinetic gas theory the trace of
〈δup,iδup,j〉p is interpreted as temperature (ignoring the Boltzmann constant and molecular
mass) and related to pressure by an equation of state. In the case of the Euler or Navier-
Stokes equations temperature is defined as the uncorrelated part of the kinetic energy. Here
the uncorrelated part of the particulate kinetic energy is defined as

δθ̃p =
1

2
〈δup,iδup,i〉p. (10)

In analogy to the Euler or Navier-Stokes equations a Quasi-Brownian Pressure (QBP) may
be defined by the product of uncorrelated kinetic energy and particle number density, as

P̃QB = ñp
2

3
δθ̃p (11)
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When the particle number distribution becomes nonuniform, as in the case of a compressible
gas, this pressure term tends to homogenize particle number density.

The non-diagonal elements of the stress tensor can be identified, in analogy to the Navier-
Stokes equations, as a viscous terms due to shear. The diagonal part of the stress tensor is
then proportional to one third of the trace of the tensor and an eventual deviation such that
(ñpδσ̃p,ij = PQBδij − δτ̃p,ij). The momentum-transport equation (6) becomes

ñp
∂

∂t
ũp,i + ñpũp,j

∂

∂xj
ũp,i = −

ñp

τp
[ũp,i − ũf,i] −

∂

∂xi
P̃QB +

∂

∂xj
δτ̃p,ij (12)

In analogy to the derivation of the Navier-Stokes equations from kinetic gas theory the stress
term can be related to the gradients of the first moments based on the Onsager relations [7].
Making some assumptions on symmetry and isotropy the stress term can be modeled as
detailed below:

ñp〈δup,jδup,i〉p = PQBδij − ξQB
∂ũp,k

∂xk
δij − µQB

(

∂ũp,i

∂xj
+

∂ũp,j

∂xi
−

2

3

∂ũp,k

∂xk
δij

)

(13)

The dynamic viscosity related to Quasi Brownian Motion can be estimated by µQB =
1/3ñpτpδθ̃p [15] where τp is the relaxation time related to Stokes drag. This expression can
be obtained using the transport equation for the complete stresses 〈δup,iδup,j〉 and supposing
isotropic behavior in shear flow [1]. In incompressible flow it is common use to ignore the vol-
ume viscosity and to use the Stokes relation. In the present simulations the volume viscosity
has been retained following the approach of Truesdell of a “Stokesian” fluid [17] in which the
volume viscosity is function of the divergence itself. Since compressibility effects increase with
the Stokes number the volume viscosity is modeled heuristically as ξQB = ñpBτp |∂ũp,k/∂xk|.
Here B is a constant with the units of an ordinary viscosity. In the present simulation it
was chosen as five times the gaseous viscosity (B = 6ν). The present model requires the
knowledge of δθ̃p which is developed in the next section.

1.3 The equation for quasi brownian energy (QBE)

To calculate the QBE, two approaches are presented; the first one assumes a quasi isentropic
behavior of the dispersed phase leading to an algebraic expression for δθ̃p.

δθ̃p = Añ2/3
p (14)

A is the residual mean kinetic energy of the particles averaged over the computational domain
pondered by moments of the particle distribution. In order to define A it is necessary to
introduce some definitions. Spatial averages (over the computational domain) are defined by
〈φ〉V = 1/V

∫

V φdV . Particle pondered averages are defined by 〈φ〉p = 〈ñpφ〉V /〈ñp〉V . This

allows to define A = 〈ñp〉V δq2
p/〈ñ

5/3
p 〉V . The mean residual particle kinetic energy is defined

as δq2
p = 〈δθ̃p〉p. The expression in eq. 14 relates therefore the local residual particle kinetic

energy to the mean residual particle kinetic energy. It can be obtained using the conservation
equation for number density (eq. 5) and the lowest order conservation equation for quasi
brownian energy (QBE) in the Chapman-Enskog expansion [1]:

∂

∂t
ñpδθ̃p +

∂

∂xj
ñpũp,jδθ̃p = −

2

3
ñpδθ̃p

∂ũp,j

∂xj
(15)
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It is then sufficient to multiply eq. 5 by − 2
3 ñ

−5/3
p δθ̃p and to add the resulting expression

to eq. 15 times ñ
−2/3
p to achieve a transport equation for ñ

−2/3
p δθ̃p with a zero right hand

side. Lagrangian simulations performed by P. Février [6] in stationary homogeneous isotropic
turbulence suggest that the mean residual kinetic energy δq2

p depends on the resolved dispersed
phase kinetic energy q̃2

p = 1/2〈ũp,kũp,k〉p, the fluid-particle correlation qfp = 〈ũp,kuk〉p where
uk is the carrier phase velocity, and the carrier phase kinetic energy pondered by the particle
presence q2

f@p = 1/2〈ukuk〉p. This expression is given by

δq2
p = q̃2

p






1 −

(

q2
fp

)2

4q̃2
pq

2
f@p






(16)

The second approach uses the full transport equation for quasi brownian energy [15]

∂

∂t
ñpδθ̃p +

∂

∂xj
ñpũp,jδθ̃p = −2

ñp

τp
δθ̃p (17)

−

[

PQBδij − ξQB
∂ũp,k

∂xk
δij − µQB

(

∂ũp,i

∂xj
+

∂ũp,j

∂xi
−

2

3

∂ũp,k

∂xk
δij

)]

∂ũp,i

∂xj

+
∂

∂xj

[

kQB
∂

∂xj
δθ̃p

]

in which the third order correlation is modeled as a diffusive flux like thermal diffusion in
the Navier-Stokes equations. The diffusivity constant for quasi brownian energy is estimated
by kQB = 5/3ñpτpδθ̃p. This is the equivalent of the Fick’s law for the heat flux in the
Navier-Stokes equations.

2 Numerical implementation

The Eulerian equations for the dispersed phase have been implemented into the Navier-Stokes
Solver AVBP [12]. It is based on a 2D/3D finite Volume/ finite Element method for unstruc-
tured, structured and hybrid meshes. The carrier phase conservation equations for density,
mass fractions, velocities and total energy (kinetic + internal) (w = (ρ, ρYk, ρu, ρv, ρw, ρE))
are presented in the compact form

∂

∂t
wi +

∂

∂xj
Fij = Si (18)

where Si are source terms in the case of reactive flow and two way coupling. The fluxes Fij

are then divided into a non viscous part, the Euler fluxes F I
ij , and a viscous part F V

ij . The
inviscid fluxes are defined as

F I
ij =



















ρu ρv ρw
ρYku ρYkv ρYkw

ρu2 + P ρuv ρuw
ρuv ρv2 + P ρvw
ρuw ρvw ρw2 + P

(ρE + P )u (ρE + P )v (ρE + P )w



















(19)
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where P is the thermodynamic pressure given by the ideal gas law P = ρrT and E is the
total (kinetic + internal) energy. The viscous fluxes are defined as

F V
ij =



















0 0 0
Jx,k Jy,k Jz,k

−τxx −τxy −τxz

−τyx −τyy −τyz

−τzx −τzy −τzz

−(uτxx + vτxy + wτxz) + qx −(uτyx + vτyy + wτzx) + qy −(uτzx + vτzy + wτzz) + qz



















(20)
where Jj,k are the species fluxes due to species diffusion, τij is the stress tensor and qj are
the fluxes due to thermal diffusion. The stress tensor for the carrier phase is modeled as the
trace free tensor of the velocity gradients with the dynamic viscosity µ.

τij = µ

(

∂ui

∂xj
+

∂uj

∂xi
−

2

3

∂uk

∂xk
δij

)

(21)

The transported moments of the dispersed phase are number density, mesoscopic particle

velocity fields, and quasi brownian energy (QBE). wp,i =
(

ñp, ñpũp, ñpṽp, ñpw̃p, ñpδθ̃p

)

. The

conservations equations are then as in the case of the Navier-Stokes equations

∂

∂t
wp,i +

∂

∂xj
Fp,ij = Sp,i (22)

where Sp,i are source terms as drag force and production of quasi brownian energy (QBE).
Again the fluxes Fp,ij are then divided into the non viscous part, the Euler fluxes F I

p,ij, and

the viscous part F V
p,ij. The inviscid fluxes are defined as

F I
p,ij =















ñpũp ñpṽp ñpw̃p

ñpũ
2
p + PQB ñpũpṽp ñpũpw̃p

ñpũpṽp ñpṽ
2
p + PQB ñpṽpw̃p

ñpũpw̃p ñpṽpw̃p ñpw̃
2
p + PQB

ñpδθ̃pũp ñpδθ̃pṽp ñpδθ̃pw̃p















(23)

The viscous fluxes for the dispersed phase are defined as

F V
p,ij =















0 0 0
−τ̃p,xx −τ̃p,xy −τ̃p,xz

−τ̃p,yx −τ̃p,yy −τ̃p,yz

−τ̃p,zx −τ̃p,zy −τ̃p,zz

+qp,x +qp,y +qp,z















(24)

where qp,i are the fluxes of QBE by diffusion.
The source term Sp,i includes drag and production of QBE by mean gradients.

Sp,i =



















0
ñp

τp
(ui − ũp,i)

ñp

τp
(vi − ṽp,i)

ñp

τp
(wi − w̃p,i)

(

−PQBδijξQB
∂ũp,k

xk
δij + µQB

(

∂ũp,i

xj
+

∂ũp,j

xi
− 2

3
∂ũp,k

xk
δij

))

∂ũp,i

xj
−

2ñp

τp
δθ̃p



















(25)
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The conservative variables w are then advanced using a standard finite Volume cell-vertex
Lax-Wendroff approach [12]. The code AVBP is parallel and based on the COUPL library
using MPI for communication. Simulations have been performed on COMPAQ α machines
(CEA,CERFACS) using up to 16 processors and excellent speed-up was obtained 1.

3 Description of the numerical test case

Homogeneous isotropic turbulence is one of the classical cases where dynamics and dispersion
of particle laden flows can be studied. This has been done extensively using the Lagrangian
formalism and encouraging results and insight are obtained by such methods. Comparison
of Lagrangian particle tracking in decreasing homogeneous isotropic turbulence [4] with ex-
perimental measurements of particle dispersion in grid generated turbulence [16] show that
essential features of the particle dynamics can be captured. Preliminary computations with
a simplified Eulerian formalism of this test case gave encouraging results [8]. In the case of
tracer particles (small Stokes number limit) Eulerian methods are well suited to describe the
dynamics [3]. With increasing Stokes number the particle velocities become decorrelated from
the gaseous carrier phase velocity. Inertia effects become important and segregation occurs for
Stokes numbers about unity. The subject of the study is therefore not only the development
of an adequate numerical tool but the validity of the Eulerian approach for Stokes numbers
from the tracer limit (St → 0) to unity.

3.1 Initialization of the test case: The gaseous velocity field

The gaseous carrier phase is initialized with a divergence free velocity field obeying a Passot-
Pouquet spectrum for the kinetic energy:

E(k) = C

(

k

ke

)

e−2(k/ke)2 (26)

Here k is the wave length and ke corresponds to the most energetic wave length. The initial
gaseous solution is then numerically advanced over a characteristic time scale of the turbulence
in order to establish a physical spectrum and velocity field that is solution of the Navier-Stokes
equations.

The Reynolds number Re = u′l/ν based on the integral length scale l and u′ is Re = 18.
The spatial resolution of the Eulerian simulations are 643 and 1283 equidistant nodes. After
a non dimensional time of t = 4.23 the Reynolds number of the carrier phase is Re = 14.
This flow field is taken as the initial flow field for the carrier phase for all test cases.

3.2 Initialization of the test case: The dispersed phase velocity field

Several options exist to initialize the dispersed phase although there does not exist a nat-
ural way. Here particles are considered equally distributed throughout the computational
domain when computation of the dispersed phase is started. Special attention is taken for
the initialization of the dispersed phase velocity. Three principal possibilities exist:

1. Dispersed phase velocity equals carrier phase velocity: In the case of relaxation
times small compared to the characteristic time scales of the carrier phase, the particles
have a velocity field close to the carrier phase velocity field. In this case it is physical

1
see http://www.cerfacs.fr
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to initialize the dispersed phase velocity field with the gaseous velocity field and to
initialize the quasi brownian energy field with a value close to zero. The QBE field can
not be initialized with zero since shear viscosity and QBE flux coefficients are directly
linear in QBE.

2. Dispersed phase velocity equals zero: When relaxation times are large compared
to the characteristic time scales of the carrier phase, there is much more QBE than
kinetic energy in the mesoscopic particle velocity field. In this case it might be more
physical to initialize the dispersed phase velocity field with zero and to initialize the
quasi brownian energy field with some fraction of the gaseous kinetic energy.

3. Dispersed phase velocity is partially correlated to the carrier velocity: In
the intermediate case the most physical approach is to initialize the dispersed phase
velocity field with a fraction of the carrier phase velocity field and the quasi brownian
energy field with the complement of the carrier phase kinetic energy.

Here the two extreme positions, 1 and 2 , are considered. Furthermore simulations are placed
in the unfavorable case of a Stokes number (St = τp/Tf ) close to unity leading to maximal
segregation effects. Tf = λ/u′ is the turnover time and λ is the integral length scale of the
carrier phase.

4 Computation of the Lagrangian reference solution

The Lagrangian particle tracking method is a well understood tool for the numerical inves-
tigation of particle laden turbulence. In the case of Stokes drag the particle coordinate and
velocities are advanced in time with the following set of differential equations.

∂

∂t
X

(k)
i = V

(k)
i (27)

∂

∂t
V

(k)
i =

1

τp

(

ui(X
(k)
i , t) − V

(k)
i

)

(28)

In realistic applications particle numbers are so large that it is not possible to track all particles
individually and particles are advanced as “numerical” particles that are supposed to represent
a large number of “physical” particles. In order not to bias the result by such a procedure here
all particles are computed individually. Special care is taken to evaluate the gaseous velocity
ui at the particle location for the drag force by using high order interpolation methods [18].
The spatial resolution of the gaseous phase is 643 and an average of 40 particles are computed
per gaseous node. This corresponds to a total of 10.48 million individual particles. This high
particle number ensures convergence when averaged fields are computed from the discrete
particle distribution. The averaged fields are sensitive to the numerical procedure used. With
the high number of particles used the error can be shown to be smaller then 3%. Initially, as
for the Eulerian simulation, particle velocities are either initialized with the gaseous velocities
or zero.
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5 Dynamics of dispersed two phase flows in homogeneous isotropic

turbulence

Integral properties of decaying homogeneous isotropic turbulence can be summarized to a
simple set of ordinary differential equations of the integral kinetic energy,

q2
f =

1

V

1

2

∫

ukukdV (29)

and the dissipation of kinetic energy

ε =
1

V

ν

2

∫

∂ui

∂xj

∂ui

∂xj
dV (30)

where ν is the kinematic viscosity.

∂

∂t
q2
f = −ε (31)

∂

∂t
ε = −C2

ε2

q2
f

(32)

Those equations can be obtained from the Navier-Stokes equations with some assumptions
on the properties of the flow [2] satisfied in incompressible decaying homogeneous turbulence.
Using the Lagrangian equations of particle transport with Stokes drag (eqs. 27,28) a corre-
sponding set of ordinary differential equations for the fluid particle correlation,

qfp =
1

V

1

N

N
∑

k=1

∫

uiV
k
i dV (33)

and the particle kinetic energy,

q2
p =

1

V

1

N

N
∑

k=1

∫

V k
i V k

i dV (34)

can be obtained for the dispersed phase [9]:

∂

∂t
qfp = −

qfp

τ t
fp

−
1

τp

[

qfp − 2q2
f@p

]

(35)

∂

∂t
q2
p = −

1

τp

[

2q2
p − qfp

]

(36)

Here τ t
fp corresponds to the turbulence time scale that governs the dissipation of fluid particle

correlation. Eq. 35 can then be used to calculate this dissipative time scale a posteriori.

τ t
fp = −

qfp

∂
∂tqfp + 1

τp

[

qfp − 2q2
f@p

] (37)

The time scale for the dissipation of the carrier phase τ + = q2
f/ε and the relaxation time of

the particles τp can then be compared to the dissipative time scale of fluid particle correlation.
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6 Measurement of particle dispersion

Particle dispersion is usually measured in Lagrangian simulations by tracking individual par-
ticle path and calculating the variance of the relative displacement

〈

X2(t)
〉

=
1

N

N
∑

j=1

[

Xj(t) − Xj(t0)
]2

. (38)

Particle dispersion can then be related to the time derivative of this quantity (see [10]),

DL
p (t) =

1

2

d

dt

〈

X2(t)
〉

. (39)

In Eulerian simulations individual particle paths are not available. Particle dispersion can
still be measured by a semi-empirical method [10]. Defining a subset of particles called
colored particles, a transport equation is written for the ratio of these colored particles to
total particles (c̃ = ñc/ñp). This transport equation is similar to the transport equation for
particle number density (eq. 5):

∂

∂t
c̃ñp +

∂

∂xi
c̃ñpũp,i =

∂

∂xi
c̃ñp

(

ũp,i − ũc
p,i

)

(40)

Here, ũc
p,i is the mesoscopic velocity of colored particles. Since only the velocity of the total

droplet number is resolved, a supplementary term arises on the right-hand side of (eq.40). This
term takes into account the slip velocity between colored particles and the mesoscopic velocity
of the particle ensemble. Comparing the above equation to the Navier-Stokes equations, this
term is the equivalent of molecular diffusion in a species equation. Since the slip velocity
can arise only from uncorrelated movement of the particles, this term can be modeled as a
diffusion related to the quasi-Brownian motion.

If the ensemble-averaged mean number-density fraction of colored particles 〈ñp〉 C =
〈ñpc̃〉, such that (c̃ = C + c′) is uniformly stratified, say in the k-direction, and fluctuations
are assumed periodic with respect to the computational domain, the fluctuating number
density of colored particles c′ñp can be extracted from the total colored number density and
a transport equation for the fluctuations of colored-particle concentration is obtained:

∂

∂t
c′ñp +

∂

∂xi
c′ñpũp,i = −ñpũp,k

∂

∂xk
C +

∂

∂xi
c̃ñp(ũp,i − ũc

p,i) (41)

Averaging the colored number-density equation ( eq. (40)) one obtains a Reynolds-averaged
transport equation,

∂

∂t
〈ñp〉 C +

∂

∂xi
〈ñp〉 C 〈ũp,i〉p = −

∂

∂xi

〈

ñpc
′up,i

〉

+
∂

∂xi

〈

c̃ñp

(

ũp,i − ũc
p,i

)〉

. (42)

Eq. 41 has been solved neglecting the quasi Brownian motion term. This is equivalent to
neglecting species diffusion due to molecular exchange in a transport equation for species.

Particle dispersion can be derived by making a gradient assumption: (〈c′ñpũp,k〉 =
〈ñp〉Dt

p,k
∂

∂xk
C) A semi-empirical diffusion coefficient is defined by:

Dt
p,k =

〈ñpc
′up,k〉

〈ñp〉
∂

∂xk
C

(43)
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This dispersion coefficient is comparable to the Lagrangian dispersion coefficient (39) in
the long-time limit of stationary turbulence. Nevertheless simulations neglecting the quasi-
Brownian motion are likely to underestimate the Lagrangian dispersion. This is due to the
fact that only turbulent dispersion of the resolved velocity field is taken into account in the
Eulerian framework. This can be compared to the molecular and turbulent diffusion of species.

7 Numerical results

Numerical computations are performed using the initialization procedure described in sec-
tion 3. Numerical results are presented for the two extreme initialization procedures (1 and
2).
The temporal development of the integral values for kinetic energies and fluid particle cor-
relation are presented for the first initialization procedure in fig. 1 The numerical results of
the Eulerian computation (lines) are compared to the numerical results of the Lagrangian
reference computation (symbols). In the Eulerian computation the total kinetic energy of the
particles q2

p is obtained from the sum of the resolved kinetic energy q̃2
p and the QBE δq2

p. The
open triangles give the QBE estimated with the values with the equilibrium formula (eq. 16).
This shows that the Eulerian simulation is able to capture the dynamics of the dispersed
phase. In fig. 4 the time scales from the Eulerian simulations are compared. Initially the
relaxation time of the particles (line) is about half the dissipative time scale of the carrier
phase (dashed line). This corresponds to as Stokes number of about 0.5. In the decreasing
homogeneous isotropic turbulence the dissipative time scale increases slowly and thus leads
to a decreasing Stokes number (about 0.3 at the end of the Eulerian computation). The
dissipative time scale of the fluid particle correlation is initially close to the dissipative time
scale of the carrier phase and decreases in time such as to reach a level where it is about
half the dissipative time scale of the carrier phase. This matches results from theoretical
considerations [14].

Numerical results for the second initialization procedure are presented in fig. 3. The
Eulerian result is compared to the Lagrangian equivalent. The Eulerian simulations tends to
underestimate fluid-particle correlation and to underestimate the correlated dispersed phase
kinetic energy since the QBE is comparable. The open triangles give the QBE estimated
by the equilibrium formula 16. In fig. 4 the dissipative times scales are again compared
to the relaxation time of the particles. Here the dissipative time scale of the fluid-particle
correlation is initially zero since the fluid particle correlation is initially zero. After about one
particle relaxation time the time it shows qualitatively the same behavior as with the other
initialization procedure.

Results of the dispersion measurement are given in fig.5. The turbulent carrier phase
dispersion is given as a reference by the continuous line with crosses. The value of measured
dispersion coefficient depends on the initialization procedure: When the dispersed phase has
initially the velocity field of the carrier phase, dispersion is bigger as found by Lagrangian
computations. When particle velocities are initially zero turbulent mixing is not as important
and the dispersion coefficient is significantly smaller.

Fig. 6 shows the temporal development of the particle segregation in the Eulerian sim-
ulation with the two initialization procedures (lines) and the Lagrangian reference solution
for the up,i = ui initialization (triangles). The measurement of the Eulerian segregation is
smaller than the corresponding Lagrangian segregation. Furthermore segregation is smaller
when particles are initially at rest since the carrier phase needs to accelerate the dispersed
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Figure 1: Comparison of Lagrangian results (symbols) to Eulerian results (lines). For
Eulerian-Eulerian approach the total particle kinetic energy q2

p computed as the sum of the
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p and the quasi brownian energy δq2
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phase before compression and dilatation can occur.
We have experienced that the Eulerian simulations are very sensible to spatial resolution.

This sensibility is contributed to the segregation effects. The heuristically introduced volume
viscosity tends to render the spatial particle number distribution more uniform. Without
this volume viscosity calculations can currently not be carried out: particle segregation and
enstrophy become too big. An important remaining question is therefore whether the vol-
ume viscosity has a physical justification due to the non-equilibrium of the particle velocity
distribution, or is a “numerical trick” needed to render the computation stable or to account
for subgrid effects. In the first case, this viscosity should be independent of the numerical
scheme and of the mesh size and should be related to the local particulate phase properties.
This point is under current investigation.

8 Conclusion

The presented study shows the capacity of Eulerian formalism to capture the dynamics of
particles even in the vicinity of unity Stokes numbers. Simulations were performed at very
small Reynolds numbers since simulations with higher Reynolds numbers of the carrier phase
showed deficiencies in the spatial resolutions of the dispersed phase. Therefore tests have to be
extended to higher Reynolds numbers and it would be interesting to develop a subgrid model
for the dispersed phase. This would lead to Large Eddy Simulations in an Eulerian framework
which are very interesting for the unsteady computations of industrial applications with a
high number of particles or droplets. Concerning dispersion measurements it is interesting
to extend the simulations by taking gravity into account and to test whether the crossing
trajectory effect is captured in such an Eulerian framework.

Numerical computation of the Eulerian simulations were performed on the COMPAQ
supercomputers of CEA and CERFACS . The Lagrangian reference solution was obtained with
numerical simulations performed at computing center IDRIS using the Eulerian-Lagrangian
version of NTMIX.
Financial support for this work was received from the European Community via the STOPP
research training network.
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