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Abstract

The prediction and the control of combustion instabilities require the identification
of the combustion chamber response. This identification is usually performed by
forcing the combustor (for example modulating its inlet velocity) and measuring
its response. Two methods may be found in the literature to analyze this response:
identification of transfer matrices (ITM) and flame transfer functions (FTF). In ITM
approaches, the burner is considered as a ”black box” and a two-ports formulation
(based on acoustic pressure and velocity perturbations) is used to construct a trans-
fer matrix linking acoustic fluctuations on both sides of the burner. A drawback of
this method is that in experiments, the measurement of unsteady pressure and ve-
locity in burnt gases can be a difficult and noisy task. In FTF approaches, pressure
measurements are replaced by a global heat release measurement (usually based on
optical methods). The heat release fluctuations are then related to the flow velocity
modulations at a reference point (usually the combustor inlet) through a transfer
function. Both ITM and FTF methods can be used experimentally or numerically
but a numerical simulation allows a verification of both concepts: this paper uses
a compressible numerical simulation of a forced laminar Bunsen flame to analyze
both methods. Results show that FTF approaches lead to an ill-defined problem as
soon as the reference point is not close enough to the chamber. This ”compactness”
limit is quantified here in terms of distance between the reference point and the
local chamber. The source of the problem is that FTF approaches correlate heat
release fluctuations to velocity oscillations only: extended FTF models are then
proposed using the local unsteady pressure as well as the velocity upstream of the
flame to predict the heat release oscillations. These models are tested numerically
and provides consistent values when the reference point location changes or when
upstream and downstream conditions are varied. These extended models are also
fully compatible with ITM approaches and provide exactly the same matrices as
ITM techniques. These results lead to simple recommendations for experimentalists
performing system identification.
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1 Introduction and configuration

To predict and avoid the instabilities which are sometimes encountered dur-
ing the design phases of modern combustion chambers [1− 4], a well-known
method is the identification of the combustion chamber response: acoustic
waves are introduced in the combustor using loudspeakers or rotating valves
and the combustor response is measured.

Two theoretical frameworks are generally used to characterize this response:

• the identification of transfer matrices (ITM) [5− 9],
• the flame transfer function (FTF) [4, 10− 15].

In ITM approaches each element of the burner is characterized by a transfer
matrix linking the velocity and pressure perturbations at the inlet (index 1)
and outlet (index 2) of the element (Fig. 1):
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where the four coefficients ofM are complex numbers. The element containing
the flame is treated like all others so that the flame effect is included in the
matrix of this element.

FTF models also describe the acoustic propagation upstream and downstream
of the burner with transfer matrices like in the transfer matrix but the treat-
ment of the flame element is different: the FTF views the flame as a thin
interface separating two elements of the burner (Fig. 2). For this interface the
transfer function F is defined as the ratio of the oscillating heat release Ω̇′T
and the unsteady inlet velocity u′:

F (ω) =
Ω̇′T (ω)

u′(a, ω)
(2)

where ω is the pulsation. Many forms of FTF models can be found: the simplest
one is the n−τ model [15− 17] for which the transfer function is approximated
by F (ω) = neiωτ . The time τ and the interaction index n characterize respec-
tively the delay and the response intensity between inlet velocity fluctuations
u′(a, t) and total unsteady heat release Ω̇′T :

γ − 1

ρ1c21
Ω̇′T (t) = S1nu

′(a, t− τ) (3)
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Note that the velocity oscillations are measured at a point a (usually in the
fresh gases upstream of the flame: see Fig. 2) while the heat release fluctuations
are integrated over the total combustor volume. The parameters n and τ
depend on the pulsation frequency and are building blocks for acoustic codes
which predict the overall stability of burners [4, 18, 19].

The whole procedure is limited to low-frequency longitudinal modes.

Both ITM and FTF approaches are used in the literature to process experi-
mental data. ITM approaches require measurements of unsteady pressure in
the burnt gases which can be difficult and costly. FTF approaches use mea-
surements of velocity (which are easy using hot wire anemometry) and of
unsteady heat release (using for instance CH chemiluminescence signal). Both
ITM and FTF can also be used numerically. The objective of this paper is not
to discuss the practical aspects of both methods but their theoretical validity.
More precisely, the following questions will be addressed:

• A0 - The link between both approaches will be demonstrated to show that
both methods are theoretically equivalent.

• A1 - To use FTF methods, an additional condition must be met: the distance
Laf between the reference point a (Fig. 2) and the center of the flame
must be small. The validity of this ”compactness” assumption is usually
investigated by computing the Helmholtz number H = ωLaf/c which must
remain small.H is also equal to 2πLaf/λ where λ is the acoustic wavelength.
In experiments, the reference point is usually not directly placed at the
chamber inlet for obvious practical reasons. Moreover the flame itself is
often not compact. Therefore an interesting question is to know how large
H can be before results lose their accuracy.

• A2 - To perform measurements with larger H values, i.e. for points which
are away from the chamber inlet plane, can FTF methods be modified?

The reasons motivating these questions are that performing system identifi-
cation using FTF models should lead to a result which is weakly dependent
on the reference point a and totally independent of the acoustic conditions
upstream and downstream of the chamber 1 . The flame transfer function is
supposed to characterize a combustion response which does not depend on
the details of the acoustic field but only of the fluctuating inlet velocity. If
this is not the case the whole procedure provides a transfer function which
does not depend only of the combustor but also of all feeding and exhaust
lines so that the results are useless: a transfer function measured in a given
laboratory for example will not match the transfer function measured in an-
other laboratory for the same burner and combustion chamber (or in the real

1 This condition is satisfied by ITM methods. If properly measured, the matrixM

of Eq. 1 must depend only on mechanisms occurring within the dashed box (Fig. 1)
and not on upstream or downstream conditions.
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turbine) if the feeding and exhaust lines differ.

Section 2 first describes the construction of the matrices and the link between
both methods (question A0). To be able to answer questions A1 and A2, a
prototype configuration is then considered and a full numerical simulation of
the compressible reactive flow in this combustor is used to measured all quan-
tities (p′r, u

′
r, p

′
l, u

′
l, u

′(a) and Ω̇′T ) needed to apply ITM or FTF approaches.
This prototype corresponds to a simple premixed laminar flame to eliminate
sources of uncertainty due to turbulent fluctuations. Its flame response was
measured experimentally by Le Helley [20] and numerically by Kaufmann et
al. [21] using a specific FTF model which is the n − τ model. The present
work uses a numerical simulation in which both the reference point (a) and
the acoustic conditions on both sides of the chamber can be modified. The
n− τ parameters are measured for each case and compared. Section 3 briefly
describes the numerical method and the technique used for boundary condi-
tions. Section 4 presents the results obtained with the standard n − τ model
for different positions of the reference point a and demonstrates that only very
low values of Laf allow consistent FTF results. Section 5 shows how FTF mod-
els can be extended to provide results which do not depend on the acoustic
conditions upstream and downstream of the burner (question A3) and finally
section 6 demonstrates that these extended FTF methods are fully equivalent
to ITM techniques.

2 Methods for system identification

2.1 Acoustics in reacting flows

Since acoustics are an essential mechanism controlling combustion instabili-
ties, a brief outline of the derivation of wave equations in reacting flows is
first given. A detailed description and discussion of its limits is provided in
[3, 4, 22, 23]. For reacting flows at low Mach number the wave equations are
derived from the main conservation equations: continuity and momentum.
Neglecting viscous and volume forces the starting equations are:

∂

∂t
ρ+

∂

∂xi

ρui = 0 (4)

ρ
∂

∂t
ui = −

∂

∂xi

p (5)
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where ρ is the density, ui (i = 1, 2, 3) are the velocity components and p is the
pressure. The energy equation is also required:

ρCp

∂

∂t
T = ω̇T +

∂

∂t
p− (ρCpui)

∂

∂xi

T (6)

where Cp is the specific heat at constant pressure, T is the temperature and
ω̇T is the heat release rate. Eqs. (4) and (6) may be combined using the ideal
gas equation p = ρrT . For longitudinal one-dimensional waves, the previous
equations may be linearized assuming small acoustic fluctuations (ρ′, p′, u′)
compared to the mean flow (ρ0, p0, u0):

p(x, t) ≈ p0 + p′(x, t) ρ(x, t) = ρ0(x) + ρ′(x, t) u(x, t) = u0(x) + u′(x, t)(7)

The integration across a duct of variable cross section (see Fig. 3) leads to the
following acoustic model:

ρ
∂

∂t
u′ = −

1

ρ0

∂

∂x
p′ (8)

1

γp0

∂

∂t
p′ +

1

S

∂

∂x
(Su′) =

γ − 1

γp0
ω̇′T (9)

where γ is the ratio of specific heats, ω̇′T is the fluctuating heat release and
S(x) is the cross section.

2.2 Flame transfer function formulations (FTF)

2.2.1 Acoustic jump conditions for thin flames

The investigation is limited to piecewise constant duct cross sections with
constant mean temperature. If the flame is compact and located in one section
(x = xl in Fig. 3), all duct elements upstream and downstream of the flame
can be merged into one single duct on the left (called ”l” here) and one duct
on the right (called ”r”). The jump conditions at the flame may be formulated
by integration of Eqs. (8) and (9) (see Fig. 3) from x = x−l to x = x+l and
taking the limit where x−l and x+l go to xl:

p′(x+l ) = p′(x−l ) (10)

S(x+l )u
′(x+l )− S(x−l )u

′(x−l ) =
γ − 1

γp0
Ω̇′T (11)
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where Ω̇′T =
∫ x+

l

x−
l

Sω̇′Tdx is the total unsteady heat release in the combustor.

These equations show that a compact flame front does not introduce an un-
steady pressure jump but a source of volume flow rates. Assuming harmonic
variations for any variable f (f ′ = f̂ e−iωt), the acoustic pressure and velocity
amplitudes are written in duct l:

p̂(x ≤ xl) = A+l e
ikl(x−x0) + A−l e

−ikl(x−x0) (12)

û(x ≤ xl) =
A+l
ρlcl

eikl(x−x0) −
A−l
ρlcl

e−ikl(x−x0) (13)

and in duct r:

p̂(x ≥ xl) = A+r e
ikr(x−xl) + A−r e

−ikr(x−xl) (14)

û(x ≥ xl) =
A+r
ρrcr

eikr(x−xl) −
A−r
ρrcr

e−ikr(x−xl) (15)

where cl, kl = ω/cl, ρl, cr, kr = ω/cr and ρr are the sound speeds, the wave
numbers and the mean density in sections l and r respectively. The unsteady
heat release is also supposed to be harmonic:

Ω̇′T (t) = Ω̂e
−iωt (16)

2.2.2 Transfer matrix for wave amplitudes

A transfer matrix between the wave amplitudes in ducts l and r can be derived
for Fig. 3 by replacing Eqs. (12) to (16) into the generalized jump conditions
(10) and (11):

A+r + A−r = A+l e
ikll + A−l e

−ikll (17)

Sr

ρrcr

(

A+r − A−r
)

=
Sl

ρlcl

(

A+l e
ikll − A−l e

−ikll
)

+
γ − 1

ρlc2l
Ω̂ (18)

Defining Γl =
Slρrcr

Srρlcl
leads to a matrix Tl linking wave amplitudes:






A+r

A−r




 = Tl






A+l

A−l




+Ol (19)
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where the transfer matrix Tl and the source term due to combustion Ol are
respectively defined as:

Tl =
1

2






eikll(1 + Γl)

eikll(1− Γl)

e−ikll(1− Γl)

e−ikll(1 + Γl)




 (20)

and

Ol =
1

2

ρrcr
Sr

γ − 1

ρlc2l
Ω̂






1

−1




 (21)

Using the reflection coefficients at boundaries with Eq. (19):

Rl =
A+l
A−l

and Rr =
A+r
A−r

e2ikrr (22)

leads to a linear system that is closed if the source term Ol (i.e. the unsteady
heat release Ω̂) is known.

2.2.3 Flame transfer function closures

Many mechanisms are responsible for heat release fluctuations: large scale
coherent structures, fluctuations of the equivalence ratio, fluctuations in the
strain rate, flame / walls interactions. Therefore, constructing a model for the
unsteady heat release Ω̂ is complex and simplifications are required. Standard
FTF approaches do not attempt to account for all these phenomena; they
simply assume that the oscillatory combustion is controlled by one mechanism
only: the flow velocity modulations at the combustion inlet:

Ω̂

Ω̇T,0

= F (ω).
û(xa)

cl
(23)
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where Ω̇T,0 =
∫

ω̇TdV is the mean integrated heat release.
2 The simplest FTF

model (n− τ) was first introduced by Crocco [10, 11]:

Ω̂ = Sl

ρlc
2
l

γ − 1
neiωτ û(xa) (25)

Eq. (25) states that the time delay between unsteady velocity at a point a and
unsteady heat release is τ . The Slρlc

2
l /(γ − 1) term is a normalization factor

and n measures the intensity of the response. In practice, n and τ can be
measured experimentally [15, 20] or computed [21, 24, 25]. In the low frequency
limit, many analytical flame transfer functions can be found in the literature.
Most of them are based on a thin flame assumption. The transfer function
is often approximated as a first-order system [26]. An analysis of the flame
transfer function is realized by Fleifil et al. [27] in the case of axisymmetric
configuration and uniform perturbations. Extensions of Ref.[27] to laminar
conical flames are investigated by Matsui [28], Ducruix et al. [29] and Schuller
et al. [24]. Application of Ref.[27] to V-flames stabilised on a central body are
provided by Dowling [30] and Schuller et al. [24]. In complex geometries, Large
Eddy Simulations or experiments must replace analytical methods to evaluate
the transfer function. Using Eq. (25), Eq. (19) with boundary conditions (22)
can then be solved to provide the eigenfrequencies and the growth rates of
unstable modes [4].

2.3 Identification of transfer matrices (ITM)

ITM approaches link the acoustic perturbations at the inlet (left) and outlet
(right) sections of the combustor (Fig. 3) by:






p̂r

ûr




 =M






p̂l

ûl




 with M =






M11 M12

M21 M22




 (26)

To close the ITM model, boundary conditions are expressed in terms of prim-
itive variables, typically impedances in sections l and r (Fig. 3). Eq. (26) with
these boundary conditions is then a linear system providing the eigenfrequen-
cies and growth rates of all modes.

2 Assuming that all the fuel is burnt Ω̇T,0 may be estimated using the fuel mass
flow rate ṁF and the heat of reaction Q:

Ω̇T,0 = QṁF (24)
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The identification (i.e. the determination of theMij coefficients) for ITMmeth-
ods is done as follows. For convenience the notations p̂l, ûl, p̂r and ûr stand
in for p̂l(0), ûl(0), p̂r(l + r) and ûr(l + r) respectively (Fig. 3). Eq. (26) con-
tains four complex unknowns (the coefficients of the matrixM) and only two
equations. A second state must be created to have two more equations. This
state must be independent of the first one. Calling these two states (1) and
(2), the following system is obtained:













p̂(1)r

û(1)r

p̂(2)r

û(2)r

























M11 M12 0 0

M21 M22 0 0

0 0 M11 M12

0 0 M21 M22

























p̂
(1)
l

û
(1)
l

p̂
(2)
l

û
(2)
l













(27)

A criterion to obtain two independent states is that the ratio of the waves going
up and downstream of the burner must be different. Two standard methods
are used in experiments to do this:

• the so-called two-load method [5, 31, 32] consists in modulating the inlet flow
for states (1) and (2) and changing the outlet impedance to go from state
(1) to state (2), for example by changing the length of the exhaust section
downstream of section Sr (Fig. 3) or varying its impedance while keeping
the same geometry,

• the two source-location method [5, 31− 34] consists in modulating the inlet
flow for state (1) and the outlet flow for state (2). Usually, state (1) is
obtained by forcing the velocity and state (2) by modulating the outlet
pressure.

Complete descriptions and analysis of these methods may be found in [5, 31, 35− 38].
Comparison of boths methods in [32] shows that when determining transfer
matrices for a range of frequencies (with transient or random excitations), the
’two-source location’ provides better results.

2.4 The link between FTF and ITM methods

For 1D acoustic waves, it is possible to show that FTF approaches can be
formulated as a special ITM method, i.e. that a matrix linking states l and
r can be derived from Eqs. (17) to (21). Such a demonstration has been first
detailed by Chu [39], using conservation and kinematical conditions across a
flame considered as a discontinuity. Relations linking the acoustic field down-
and upstream of the thin flame are also given in [17, 18]. Explicit relations
linking the transfer matrix to the n − τ model in a Rijke tube are given in
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[6, 40] or for a combustion model developed by Keller [41] in a burner with
changing area in [17]. A brief demonstration is provided here for a reference
point located at the inlet of the right duct (xa = xl). Starting from FTF
formulations (23) linking the unsteady heat release to the velocity fluctuations
measured at xa = xl leads to:

Ω̂

Ω̇T,0

= F (ω)
ûl(xl)

cl
(28)

Using Eq. (13) for x = xl:

Ω̂

Ω̇T,0

=
F (ω)

ρlc2l

(

A+l e
ikll − A−j e

−ikll
)

(29)

Using Eq. (21) and replacing Ω̂ by expression (29) gives:

Ol =
1

2
ΓlKF (ω)






A+l e
ikll − A−l e

−ikll

−A+l e
ikll + A−l e

−ikll




 (30)

Finally combining Eq. (30) with the jump conditions (19) leads to a matrix
relation between wave amplitudes in both sections:






A+r

A−r




 = H






A+l

A−l




 (31)

with

H =
1

2






eikll[1 + Γl(1 +KF (ω))]

eikl[1− Γl(1 +KF (ω))]

e−ikl[1− Γl(1 +KF (ω))]

e−ikl[1 + Γl(1 +KF (ω))]




 (32)

Eqs. (12) to (15) and Eq. (31) can be combined to obtain the matrixM linking
the pressure and velocity perturbations at x = x0 and x = xr:






p̂r

ûr




 =






eikrr

eikrr

ρrcr

e−ikrr

− e−ikrr

ρrcr




H






1

1
ρlcl

1

− 1
ρlcl






−1

︸ ︷︷ ︸

M






p̂l

ûl




 (33)

Developing Eq. (33) provides an expression for the coefficients of the transfer
matrix M which depend on the geometry of the burner and on the flame
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transfer form F (ω) (Table 1). A global transfer matrixM can be formulated
in a series of N connected ducts (j = 1, N) with one or many flames. Transfer
matrices Tj and source terms Oj can be estimated in each duct section leading
to a global matrix H given in [4]. This result shows that using a flame transfer
formulation is formally equivalent to using a matrixM similar to the transfer
matrices. It does not mean however that the FTF automatically satisfies crite-
rion A2 listed in the introduction, like ITM methods do. This will be checked
in the next sections by using a specific example.

3 System identification for a laminar burner

3.1 Numerical tool and boundary conditions

The numerical tool used for the simulations solves the complete compressible
Navier-Stokes equations including chemistry in two and three space dimensions
[21, 42, 43]. The data structure corresponds to hybrid grids where structured
and unstructured meshes can be used.

• High-order schemes are used to minimize errors in the computations of
transfer functions. The TTGC scheme implemented here offers third-order
in space on hybrid meshes [42].

• Accurate unsteady boundary conditions are required to control the waves
reflections and avoid the propagation of non-physical modes. The NSCBC
method [44, 45] is used to reach this goal here. The boundary conditions are
formulated in terms of characteristic wave variations and allow to control
the reflection coefficient R at the boundary.

• The forcing technique used for the unsteady case is the IWM (Inlet Wave
Modulation) method [21]. This technique consists in modulating the acous-
tic wave entering the domain while letting the wave leaving the domain
propagate without reflection.

3.2 Computation of a laminar Bunsen-type flame

The experimental configuration considered for the present investigation con-
sists of a ducted premixed propane / air flame [20]. The conical flame is an-
chored on the rim of the burner: the flame stabilisation is produced by a
perforated plate with 1880 holes of 0.125 mm in diameter each (Fig. 4). In the
main longitudinal pipe, honeycomb stitches are placed to ensure laminar flow.
The flame is excited by a loudspeaker located in the fresh gases (point A in
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Fig. 5). This burner is a proper prototype for studying the flame response to
acoustic perturbations:

• It is acoustically compact: the combustion chamber is small compared to
the acoustic wave length.

• The geometry is quasi one-dimensional: the whole system including acoustic
and combustion can be modelled.

• The flow is laminar so that the flame response can be studied in the absence
of uncertainties related to turbulent combustion models.

The computational domain given in Fig. 5 is reduced to a half burner including
one hole of the perforated plate (Fig. 4). The axisymmetrical computational
mesh allows the flame to be properly resolved on this mesh (10515 nodes).
The laminar flame thickness is 0.3 mm while the typical mesh size is 0.043
mm. The chemical scheme used for this study takes into account five species
(C3H8, O2, CO2, H2O and N2) and a single step reaction modeled using an
Arrhenius law:

q = A

(

ρYC3H8

WC3H8

)nF
(

ρYO2

WO2

)nO

exp
(

−
Ea

RT

)

(34)

where q is the rate of the single reaction, YC3H8
, YO2

, WC3H8
and WO2

are
respectively the mass fractions and the molecular weights of propane and
oxygen. The pre-exponential constant is A = 3 1010 cgs , the mass fraction
exponents are nF = 0.85 and nO = 0.50 and the activation energy is Ea =
31100 cal.mol−1. These parameters are fitted to produce correct flame speeds
in the range of equivalence ratios of Le Helley’s experiment. The acoustic
modulation at the inlet is kept to 10% of the mean velocity (4 m.s−1) and
remains within the linear acoustic domain. Fig. 6 shows four snapshots of the
flame during one cycle at 500 Hz. The flame position changes from 1.8 mm
to 2.2 mm. The relative variations of the heat release rate are 12% while the
relative inlet velocity changes are 10%.

4 Results using a specific FTF model: the n− τ approach

The regime investigated both numerically and experimentally corresponds to
a flow rate of 10.86 g.s−1 (for the whole burner) and an equivalence ratio of 1.2.
The inlet temperature is 300 K and the pressure is 1 bar. In the experiment
of Le Helley, a hot wire is placed 2.9 cm (point C in Fig. 4) upstream of the
flameholder to measure the velocity u’(t). Integral heat release fluctuations are
measured by a photo multiplier. In the calculation temporal signals of inte-
grated heat release Ω̇′T and velocity u′(a, t) are stored. The n and τ parameters
can then be obtained using Eq. 25 and the Fourier transform of these temporal
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signals. Calculations were performed for different reflection coefficients at the
outlet (point E in Fig. 5) at a forcing frequency of 500 Hz.

Fig. 7 shows the mode structure measured in the simulation inside the up-
stream duct (x < 0 mm). Simply observing the shapes of the modes in Fig. 7
demonstrates that choosing the location for the reference point is critical:
obviously u′(a, t) will change significantly when xa varies between −600 and
0 mm and the transfer function parameters n and τ will also vary. Various
outlet reflection coefficients RE have been tested at x = 8 mm (point E) from
almost non reflecting (RE = 0.05) to fully reflecting (RE = 1 or p

′(xE) = 0).

Three reference points were tested to evaluate the velocity fluctuations (Fig. 5):

• point D is at the chamber inlet plane,
• point C is 2.9 cm upstream of the chamber inlet. This is the point used for
measurements,

• point B is 30 cm upstream of the chamber inlet. This point is chosen so as
to avoid singularities, like pressure or velocity extrema as seen in Fig. 7.

The Helmholtz number H can be estimated at each point (B, C or D) using
the distance Laf (Fig. 2) between the reference point (xB, xC or xD) and the
center of the flame (located at xf ≈ xtf/2 = 1 mm on Fig. 5). The value for
H (given on Fig. 5) is 9.0 10−3 at point D and 2.7 at point B. The values
for the transfer function parameters are given in Fig. 8. The transfer function
parameters calculated using point D seem to be independent of the reflection
coefficient. On the contrary, the values of n and τ obtained using points B or
C present a strong dependance with RE. n varies non linearly within a factor
1.8 for point B and 1.4 for point C when the outlet reflection coefficient RE

varies while a maximum deviation of 36 % for point B and 16% for point C
are observed for τ . When the reference point is C like in the experiment and
the outlet reflection coefficient is zero like in the experiment, the computation
recovers both the values of n (4.3) and τ (0.47 ms). However, as soon as the
outlet reflection changes, results for n and τ change for reference points B
or C showing that criteria A2 is not satisfied: changing the reference point
from B to C or D changes both n and τ . The only situation which provides
results which are independent of the boundary conditions is to use point D
(the closest point to the chamber inlet) as a reference point. In this case
results are independent of the outlet reflection coefficient RE. These results
show that the n−τ model is not well adapted when the point used to measure
velocity oscillations is too far from the flame. In that situation, the reference
velocity oscillations u′(a, t) are disturbed by the reflecting waves imposed by
the geometry. This conclusion is not surprising since the initial Crocco model
assumed the flame to be compact, i.e. that the distance between reference
point and flame must be small compared to the acoustic wavelength. The
calculation of the Helmholtz number shows that very small values (H ∝ 10−3)
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are required to obtain values of phase and gain of the flame response which
are independent of the outlet reflection coefficient. The present results help
to quantify this constraint: for points B and C with H values of 2.7 and
0.27 respectively, the ”compact” assumption is obviously not valid. However
at point D which is close to the flame (H = 9 10−3), the standard n − τ
model seems to perform reasonably. This is however a significant difficulty for
experimental studies where the reference point is rarely very close to the flame
for practical reasons.

5 Extended FTF models

The essential drawback of the n− τ model evidenced in the previous sections
comes from the fact that it tries to correlate heat release perturbations to
velocity perturbations only. In this section extended FTF models are proposed
to build a consistent formulation which can be used for any location of the
reference point. These models are formulated using the local unsteady pressure
and velocity measured upstream of the flame:

Ω̂

Ω̇T,0

= Fu(ω)
ûl(xa)

cl
+ Fp(ω)

p̂l(xa)

pl
eiωτp (35)

In the specific case of the n − τ model Fu(ω) = Aue
iωτu and Fp(ω) = Ape

iωτp

so that:

Ω̂

Ω̇T,0

= Au

ûl(xa)

cl
eiωτu + Ap

p̂l(xa)

pl
eiωτp (36)

where the unsteady velocity, pressure and heat release are scaled respectively
by the sound speed cl, the mean pressure pl and Eq. (36) contains four un-
knowns Au, Ap, τu and τp which depend on the point where velocity and pres-
sure fluctuations are measured. These parameters may be determined by using
two sets of independent measurements like for ITM methods. 3 As explained
in Section 2.3 different techniques may be used to obtain two independent
states. Here states (1) correspond to simulations with minimum reflection at
boundaries (Table 2). States (2) are obtained by modifying the location of the

3 If the transfer matrixMaD between the reference point (a) and the burner mouth
(point D in Fig. 5) is known analytically, then one state can be sufficient: in this
case, the velocity signal at the burner mouth ûD can be obtained by ûD =MaD

21
p̂a

ρc
+

MaD
22 ûa and the standard n− τ model can be applied by determining n and τ such

that Ω̂ = neiωτ ûD. However in many cases, the transfer matrix MaD is not known
in which case two states are needed.
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acoustic source and/or by increasing the reflection coefficient at one boundary
(right or left). The resulting states are classified in three test cases (Table 2):

• Case 1: for states (1) and (2) the velocity is modulated on the left side
(upstream of the flame) and the outlet reflection coefficient RE of state (2)
is changed.

• Case 2: states (1) and (2) are obtained by applying forcing on the right and
left sides respectively and by increasing the outlet impedance of state (2).

• Case 3: states (1) and (2) are obtained by applying forcing on the left and
right sides respectively and by increasing the inlet impedance of state (2).

The calculations described in section 4 are used to determine the parameters of
the extended n−τ model. The velocity and pressure fluctuations are measured
at points B (x = −300 mm), C (x = −29 mm) and D (chamber inlet). The
coefficients are displayed in Figs. 9 to 11 at the forcing frequency 500 Hz. For
case 1 care is taken to select different load impedances between states (1) and
(2): indeed, if the outlet reflection coefficients RE used for states (1) and (2)
are too close, the two states become linearly dependent leading to an ill-posed
formulation. Typically RE was set to 0.05 for state (1) and varies between 0.5
and 1 for states (2).

For the three points (B, C and D) cases 1, 2 and 3 provide almost constant
values when the reflection coefficient RE. Any upstream reference point can
be chosen (point B in Fig. 9, C in Fig. 10 or D in Fig. 11) and provides results
for Au, Ap, τu and τp which do not depend on the upstream or downstream
boundary conditions (RA or RE).

An explanation for the deviations obtained with the standard n − τ model
(section 4) is also possible when comparing the amplification factors Au and
Ap. Using point B or C which are located respectively 300 and 29 mm upstream
of the chamber Au and Ap values are of the same order: Ap/Au ≈ 0.16 to 0.33
in Figs. 9 and 10 (a),(c). This does not mean that the pressure fluctuations
influence the combustion but that at this point both quantities u′ and p′ are
needed to describe the response of the flame to acoustic perturbations. Using
point D which is in the inlet plane of the chamber Ap is much lower than Au:
Ap/Au ≈ 0.04 in Fig. 11(a),(c): at the chamber inlet the effect of pressure
modulations on combustion is negligible confirming the steering idea of the
n− τ model as stated by Crocco [10, 11]. However, Ap does not go exactly to
zero for low values of H (points close to the burner mouth) showing the limits
of the ”compactness” assumption used in most FTF approaches. Evaluating
Ap is therefore a useful exercise to verify the validity of FTF measurements.

4

4 Note that at Point D the error in the evaluation of the delay τp can reach 15% in
Fig. 11(d) because Ap is very small: the flame is almost insensitive to pressure at
point D and the measurement of a delay is noisy.
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6 Equivalence of ITM and extended FTF methods

It is possible to demonstrate that extended FTF models are fully compatible
with ITM approaches by performing the following test (Fig. 12): consider
any point located upstream of the chamber (x < 0 in Fig. 5); perform first
system identification using ITM methods between this point and the outlet
of the chamber (point E in Fig. 12) to obtain a transfer matrix M between
the reference point and the outlet point E. Second, measure the coefficients
Fu(ω) and Fp(ω) using extended FTF methods and from these coefficients,
use Table 3 to construct a second transfer matrix M′ between the reference
point and the outlet point E. 5 These two matrices should be the same. This
is demonstrated in Fig. 13 which gives the amplitude and phase of the four
complex coefficients Mij obtained by ITM methods (circles) and by extended
FTF models (solid line).

The excellent agreement obtained for all values of the reference point between
point D (x = 0 mm) located at the chamber inlet and point B (x = −300 mm)
located far upstream of the chamber shows that extended FTF methods are
indeed equivalent to ITM approaches. This has important consequences: while
the previous sections had shown that standard FTF models were reliable only
for very small values of the Helmholtz number (H < 10−2), it is now clear that
extended FTF models can provide consistent results for all values of H and
are also fully compatible with ITM approaches. Experimentally, this means
that ITM approaches (which are often difficult to use) can be replaced by
extended FTF methods which are sometimes simpler to implement. It will
however require that experimentalists measure not only u′ at the reference
point but also p′ (in the fresh gases).

7 Conclusion

In this paper, the two standard methods for system identification of combus-
tors have been compared:

• ITM methods [17, 33] in which pressure and velocity perturbations upstream
and downstream of the flame are correlated through a single transfer matrix
M,

5 When the reference point is B or C (Fig. 5), the section change at x = −12 mm
must also be accounted for. Moreover, when the reference point is close to a pres-
sure or velocity node in the upstream duct, it is more convenient to determine the
amplitudes of the up and downstream waves travelling in the duct as discussed in
[5, 8, 33]. Reconstructing the matrix M from these waves is simple using Eq. (9) in
Ref.[8].
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• FTF methods in which the global unsteady heat release is correlated to the
upstream velocity oscillations at a point (a).

It was first shown that using FTF methods are formally equivalent to using
a simplified transfer matrix. However, a simulation of a laminar flame using
various reference points (a) and various outlet reflection coefficients was per-
formed to demonstrate that FTF models can not be used reliably when the
reference point is not very close to the chamber inlet: in those cases, the gain
and phase of the transfer function F (ω) depend both on the point location
and on the acoustic states upstream and downstream of the chamber. Typ-
ically, the distance between reference point and chamber inlet must be such
that the Helmholtz number H = ωLaf/c is smaller that 0.01 to obtain consis-
tent results. In practice, this would imply that combustors transfer functions
measured or computed for reference points which are not located close enough
to the chamber are not intrinsic parameters of the chamber but depend also
on upstream and downstream conditions: a combustion chamber installed in a
laboratory environment, in which upstream and downstream acoustic condi-
tions are different from the real machine, will have a different transfer function
so that the laboratory measurements become useless for the real device.

To overcome this difficulty, ITM methods can be used but these methods
are sometimes difficult to implement experimentally because precise acous-
tic measurements are required in the burnt gases. The alternative solution
proposed in this work is to extend FTF methods by expressing the unsteady
reaction rate as a function of both local velocity and pressure oscillations.
It was shown that these techniques provides consistent results: the transfer
function obtained by the extended n− τ model does not depend on the acous-
tic conditions upstream and downstream of the burner. Moreover the transfer
matrix which can be deduced from extended FTF formulations is exactly the
one obtained by ITM techniques. These results suggest that experimental and
computational studies of flame transfer functions could be performed with
this extended methods: in practice, this would mean measuring not only the
unsteady velocity at the reference point (done usually with hot wire anemom-
etry) but also the unsteady pressure (which is easy at the reference points
because they are located in fresh gases).
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[31] M. Åbom, J. Sound Vib. 155 (1) (1991) 185-188.

[32] A. G. Doige, M. L. Munjal and H. S. Alves, Proceedings of Noise-Con 88, 1988,
p. 481-485.

[33] C. O. Paschereit, W. Polifke, B. Schuermans and O. Mattson, J. Engng for
Gas Turb. and Power 124 (2002) 239-247.

[34] M. L. Munjal and A. G. Doige, J. Sound Vib. 141 (2) (1990) 323-333.

[35] T. Sattelmayer, J. Engng for Gas Turb. and Power 125 (1) (2003) 11-19.

[36] T. Sattelmayer and W. Polifke, Combust. Sci. Tech. 175 (3) (2003) 453-476.

[37] T. Sattelmayer and W. Polifke, Combust. Sci. Tech. 175 (3) (2003) 477-497.

[38] J. Eckstein, E. Freitag, C. Hirsch and T. Sattelmayer, ASME Turbo Expo 2004,
ASME Paper 2004-GT-54163, 2004.

[39] B. T. Chu, Proc. Combust. Institute 4 (1953) 603-612.

[40] W. Polifke, A. Poncet, C. O. Paschereit and K. Doebbeling, J. Sound Vib. 245
(3) (2001) 483-510.

[41] J. J. Keller, AIAA Journal 33 (12) (1995) 2280-2287.

[42] O. Colin and M. Rudgyard, J. Comput. Phys. 162 (2) (2000) 338-371.

[43] L. Selle, F. Nicoud and T. Poinsot, AIAA Journal 42 (5) (2004) 958-964.

[44] T. Poinsot and S. Lele, J. Comput. Phys. 101 (1) (1992) 104-129.
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8 Tables

Transfer matrix coefficients

M11 = cos(kll)cos(krr)− Γl (1 +KF (ω)) sin(kll)sin(krr)

M12 = iρlcl (sin(kll)cos(krr) + Γl (1 +KF (ω)) cos(kll)sin(krr))

M21 =
i

ρrcr
(cos(kll)sin(krr) + Γl (1 +KF (ω)) sin(kll)cos(krr))

M22 =
ρlcl

ρrcr
(−sin(kll)sin(krr) + Γl (1 +KF (ω)) cos(kll)cos(krr))

with K = γ−1
ρlc

3
l

Ω̇T,0

Sl

Table 1
Coefficients of the transfer matrix M obtained with FTF models.

Cases Acoustic waves at boundaries State 1 State 2

Forcing is applied left left

Case 1 RA 0.1 0.1
Reflection coefficient

RE 0.05 RE goes from 0.5 to 1

Forcing is applied right left

Case 2 RA 0.1 0.1
Reflection coefficient

RE 0.05 RE goes from 0.05 to 1

Forcing is applied left right

Case 3 RA 0.1 RA varies from 0.1 to 1
Reflection coefficient

RE 0.05 0.05

Table 2
Set of states used for the calculation of the flame transfer functions. Three cases are
chosen for comparisons.
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Transfer matrix coefficients

M11 = cos(kll)cos(krr)− Γl (1 +KFu(ω)) sin(kll)sin(krr)

+iγΓlKFp(ω)cos(kll)sin(krr)

M12 = iρlcl(sin(kll)cos(krr) + Γl (1 +KFu(ω)) cos(kll)sin(krr)

+iγΓlKFp(ω)sin(kll)sin(krr))

M21 =
i

ρrcr
(cos(kll)sin(krr) + Γl (1 +KFu(ω)) sin(kll)cos(krr)

−iγΓlKFp(ω)cos(kll)cos(krr))

M22 =
ρlcl

ρrcr
(−sin(kll)sin(krr) + Γl (1 + Fu(ω)) cos(kll)cos(krr)

+iγΓlKFp(ω)sin(kll)cos(krr))

with K = γ−1
ρlc

3
l

Ω̇T,0

Sl

Table 3
Coefficients of the transfer matrix M obtained with extended FTF models.

22



List of Figures

1 ITM approaches: the flame effect is contained in the matrix of
the element where the flame is located. 25

2 FTF approaches: the inlet velocity reference is measured at a
point a. 25

3 Decomposition of the combustor into two-dimensional sections. 25

4 Experimental setup of the burner. The dimensions are given
in mm. 26

5 Configuration for numerical simulations of the isolated laminar
propane air flame. 26

6 t1) to t4): Snapshots of heat release contours at different
times in the flame pulsation cycle (500 Hz). Underneath:
unsteady velocity (u′/u0) at the chamber inlet and heat release
(Ω̇′T/Ω̇T,0) signals with corresponding snapshots’ times. 27

7 Structure of the 500 Hz mode in the upstream duct (x < 0
mm) for various reflection coefficients at the outlet RE (point
E): (a) absolute value of the velocity amplitude, (b) absolute
value of the pressure amplitude. 28

8 Flame transfer function for the n− τ model versus the outlet
reflection coefficient RE (point E): (a) Amplification factor n,
(b) Time delay τ . The experimental results were obtained with
perfectly non reflecting outlet (RE ' 0). 29

9 Flame transfer function for the extended n − τ model as a
function of the outlet reflection coefficient RE for cases 1 and
2 and of the inlet reflection coefficient RA for case 3. The
velocity and pressure fluctuations are evaluated at point B
(300 mm upstream of the chamber). The forcing frequency is
500 Hz. 30

10 Flame transfer function for the extended n − τ model as a
function of the outlet reflection coefficient RE for cases 1 and
2 and of the inlet reflection coefficient RA for case 3. The
velocity and pressure fluctuations are evaluated at point C (29
mm upstream of the chamber). The forcing frequency is 500
Hz. 31

23



11 Flame transfer function for the extended n − τ model as a
function of the outlet reflection coefficient RE for cases 1 and
2 and of the inlet reflection coefficient RA for case 3. The
velocity and pressure fluctuations are evaluated at point D
(inlet plane of the chamber). The forcing frequency is 500 Hz. 32

12 Comparison of the transfer matricesM obtained by the ITM
approaches and extended FTF models. 33

13 The four coefficients of the transfer matrixM of the burner
for different positions of the reference point xa. Solid line:
absolute value; dashed line: phase [rad]. Line and symbols:
ITM; line: extended FTF (using the n− τ model). 33

24



9 Figures

Fig. 1. ITM approaches: the flame effect is contained in the matrix of the element
where the flame is located.

Fig. 2. FTF approaches: the inlet velocity reference is measured at a point a.

Fig. 3. Decomposition of the combustor into two-dimensional sections.
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Fig. 4. Experimental setup of the burner. The dimensions are given in mm.

Fig. 5. Configuration for numerical simulations of the isolated laminar propane air
flame.
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t1) t2)

t3) t4)

Fig. 6. t1) to t4): Snapshots of heat release contours at different times in the flame
pulsation cycle (500 Hz). Underneath: unsteady velocity (u′/u0) at the chamber
inlet and heat release (Ω̇′T /Ω̇T,0) signals with corresponding snapshots’ times.
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(a)

(b)

Fig. 7. Structure of the 500 Hz mode in the upstream duct (x < 0 mm) for various
reflection coefficients at the outlet RE (point E): (a) absolute value of the velocity
amplitude, (b) absolute value of the pressure amplitude.
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(a)

(b)

Fig. 8. Flame transfer function for the n−τ model versus the outlet reflection coeffi-
cient RE (point E): (a) Amplification factor n, (b) Time delay τ . The experimental
results were obtained with perfectly non reflecting outlet (RE ' 0).
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(a) (b)

(c) (d)

Fig. 9. Flame transfer function for the extended n − τ model as a function of the
outlet reflection coefficient RE for cases 1 and 2 and of the inlet reflection coefficient
RA for case 3. The velocity and pressure fluctuations are evaluated at point B (300
mm upstream of the chamber). The forcing frequency is 500 Hz.
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(a) (b)

(c) (d)

Fig. 10. Flame transfer function for the extended n− τ model as a function of the
outlet reflection coefficient RE for cases 1 and 2 and of the inlet reflection coefficient
RA for case 3. The velocity and pressure fluctuations are evaluated at point C (29
mm upstream of the chamber). The forcing frequency is 500 Hz.
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(a) (b)

(c) (d)

Fig. 11. Flame transfer function for the extended n− τ model as a function of the
outlet reflection coefficient RE for cases 1 and 2 and of the inlet reflection coefficient
RA for case 3. The velocity and pressure fluctuations are evaluated at point D (inlet
plane of the chamber). The forcing frequency is 500 Hz.
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Fig. 12. Comparison of the transfer matrices M obtained by the ITM approaches
and extended FTF models.

(a) (b)

(c) (d)

Fig. 13. The four coefficients of the transfer matrix M of the burner for different
positions of the reference point xa. Solid line: absolute value; dashed line: phase
[rad]. Line and symbols: ITM; line: extended FTF (using the n− τ model).
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