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Abstract

A Large Eddy Simulation approach for Eulerian-Eulerian dispersed two-phase
flow is presented. It is shown that not only a Sub-Grid Scales term modeling the
unresolved field in the mesoscopic momentum transport equation of the dispersed
phase, but also a stress term modeling the Random-Uncorrelated Motion is needed.
Simulations of a non-homogeneous particle laden turbulent gas flow allow to compare
dispersed phase quantities such as number density, time-averaged and rms mesoscopic
velocity, fluid-particle correlations with experimental results.

Keywords: Large Eddy Simulation, Solid particle, Turbulent dispersion, Mesoscopic
Velocity, Random Uncorrelated Motion

1 Introduction

Large Eddy Simulations (LES) are rapidly becoming a powerful tool to study flows in
complex geometries. They have recently been applied with success to modern combustion
devices ([4], [3], [1], [15], [20]), leading to new insights on the unsteady compressible gas
flow and improved understanding of the physical phenomena involved. For a complete
description of such systems, this promising method should be extended to two-phase flows,
including fuel droplets. These two-phase flows are characterized by a high level of dynamic
coupling and inertia effects that depend on the particle relaxation time. The present work
is part of a project which develops an LES numerical tool for the simulation of two-phase
reactive flows in industrial applications.
Commonly used Lagrangian tracking techniques are able to handle most of the complex
physical processes. However, they are also known to be numerically expensive as they
require a high particle number density to reach a minimum level of accuracy. Therefore,
Lagrangian methods are not efficient for unsteady simulations of turbulent industrial flows
in complex geometries.
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A three dimensional unsteady Euler-Euler approach is proposed as an alternative to sim-
ulate two-phase flows. In this approach, the dispersed phase is treated similarly to the
continuous gas phase. An averaging operator leads to a system of conservation equations
very similar to the ones for the gas. Therefore, the gas phase algorithm may be used on
the dispersed phase with the same numerical accuracy and computational efficiency.
Such an Euler-Euler approach has been validated for gas-particle homogeneous isotropic
turbulence. Druzhini and Elghobashi (1999) [5] analysed the case of very low inertia par-
ticles following the carrier flow almost instantaneously. However their model reaches its
limits when considering particles having response times larger than the Kolmogorov time
scales. In this case and following Fevrier et al. (2005) [7], it is necessary to decompose the
instantaneous particle velocity into two contributions. The Mesoscopic Eulerian Particle
Velocity (MEPV) field represents the turbulent velocity field shared by all the particles at
a given location, and is a transported variable. The Random Uncorrelated Velocity (RUV)
represents a random velocity component that is not spatially correlated and identified with
each particle of the system. An additional stress term which does not appear when using
the volume filtering approach ([14]), must be included in the MEPV transport equation to
account for this uncorrelated motion. However, this term can not be computed from the
resolved variables and needs to be modeled. Fevrier et al. (2005) [7] proposed an a priori
relation linking the mesoscopic kinetic energy to the total particle kinetic energy, show-
ing that the Random Uncorrelated Motion (RUM) of the particles increases with inertia.
It has been validated by Vance et al. (2004) [26] in a turbulent channel flow. Another
modeling approach based on a transport equation for the Random Uncorrelated kinetic En-
ergy (RUE) was developed by Kaufmann et al. (2004) [10] and validated on a temporally
decreasing homogeneous isotropic turbulence. When performing Large Eddy Simulations
that resolve only the energy contained in large scales, it is necessary to develop Subgrid
Scales (SGS) models for the dipersed phase in analogy with the gaseous phase. Moreau et
al. (2005) [12] recently proposed a Smagorinsky-like model.
The RUE models and SGS models should be validated by comparison with experiments on
generic simple configurations, still containing all the physical processes involved by these
models. When doing so, a particularly delicate aspect is the treatment of boundary condi-
tions. Indeed, the determination of the inlet turbulent characteristics of the discrete phase
is an open question.
The purpose of the present study is to evaluate the impact of different turbulent inlet
boundary conditions in the gas-solid turbulent confined jet experimentally investigated by
Hishida et al. (1987) [9]. In this configuration, light hollow glass particles with a Stokes
number (based on the most energetic eddies of the turbulence) of 0.4 are transported by
a jet with a Reynolds number of 22000 in gravitationnal direction without a recirculating
flow. Two-phase flow simulations have been performed with three different formulations
of the turbulent inlet boundary conditions for the discrete phase. In the first case, no
particle turbulent mesoscopic kinetic energy is injected. For the two other cases, the basic
idea is that the turbulent inlet particle velocity field is partially correlated to the gas one.
Therefore, two boundary conditions are written for the dispersed phase that verify both
a given turbulent kinetic energy and a given fluid-particle correlation at the inlet. Only
the two first cases are reported in this work. Results clearly show that the particle mass
flux highly depends on the inlet dispersed phase boundary condition. However, neither
the radial nor the axial turbulent mesoscopic energy seems to be much affected, only in
the near-inlet region. Using the correlation validated by Vance et al. (2004) [26] confirms
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that the part of kinetic energy residing in the RUM is more than non-negligible in this
configuration.

2 The Euler-Euler model

2.1 The dispersed phase

Eulerian equations for the dispersed phase may be derived by several means. A popular
and simple way consists of volume filtering of the separate, local, instantaneous phase
equations accounting for the inter-facial jump conditions ([6], [14]). Such an averaging
approach is very restrictive, because particle sizes and particle distances have to be smaller
than the smallest length scale of the turbulence. Besides, they do not account for the
Random Uncorrelated Motion ([7]).
A different, not totally equivalent way is the statistical approach in the framework of ki-
netic theory. In analogy to the derivation of the Navier-Stokes equations by kinetic theory
[2], a probability density function (pdf) f (1)

p (cp;xp, t) may be defined. This gives the local
instantaneous probable number of particles with the given translation velocity up = cp.
This function obeys a Boltzmann-type kinetic equation that accounts for momentum ex-
change with the carrier fluid and for the influence of external forces such as gravity and
inter-particle collisions. Transport equations of the first moments (such as particle con-
centration, mean velocity and particle kinetic stress) may be derived directly by averaging
from the pdf kinetic equation [21].
For the sake of simplicity, in this study interaction forces are limited to drag and gravity,
and only non-evaporating particles are considered. The extension to evaporating flows,
turbulence corrections in the drag force and other interaction forces is not in conflict with
the presented derivation of the Eulerian field equations. In the presented approach, the
gas is presumed undisturbed by the dispersed phase.

2.1.1 Mesoscopic Conservation Equations for particle properties

To derive local instantaneous Eulerian equations in dilute flows (without turbulence mod-
ification by the particles), Février et al. (2005) [7] propose to use an averaging over all
dispersed-phase realizations conditioned by one carrier-phase realization. Such an averag-
ing procedure leads to a conditional velocity pdf for the dispersed phase, f̆ (1)

p (cp;x, t, Hf ),
defining the local probable number of particle centers at the position x , with a given
translation velocity vp = cp at time t :

f̆ (1)
p (cp;x, t, Hf ) =

〈
W (1)

p (cp;x, t) |Hf

〉
(1)

W (1)
p are the realizations of position and velocity in time of any given particle ([18]) and

Hf is the unique carrier flow realization. With this definition one may define a local
instantaneous particulate velocity field, which is here named “Mesoscopic Eulerian Particle
Velocity (MEPV) field”. This field is obtained by averaging the conditioned velocity pdf
over all particle-flow realizations :

ŭp (x, t, Hf ) =
1

n̆p (x, t, Hf )

∫
cpf̆

(1)
p (cp;x, t, Hf ) dcp (2)
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Eq. (3) gives the “mesoscopic” particle-number density and Eq. (4) defines any ensemble
averaged quantity :

n̆p(x, t, Hf ) =
∫

f̆ (1)
p (cp;x, t, Hf ) dcp (3)

〈Φ̆〉 (x, t, Hf ) =
1

n̆p (x, t, Hf )

∫
f̆ (1)

p (x, t, Hf ) Φdcp (4)

Application of the conditional-averaging procedure to the kinetic equation governing the
particle pdf leads directly to the transport equations for the first moments of number
density and Mesoscopic Eulerian Partcile Velocity,

∂

∂t
n̆p +

∂

∂xi

n̆pŭp,i = 0 (5)

∂

∂t
n̆pŭp,i +

∂

∂xj

n̆pŭp,jŭp,i =
∂

∂xj

τ̆p,ij −
∂

∂xi

(
2

3
n̆pδθ̆p

)
− n̆p

τp

(ŭp,i − uf,i) + n̆pgi. (6)

Due to the very small droplet Reynolds number value measured in the simulation, the
particle relaxation time τp is defined as the relaxation time for Stokes drag :

τp =
ρpd

2

18µ
(7)

In Eq. (6), the Random Uncorrelated stress tensor, τ̆p,ij reads :

τ̆p,ij = −n̆p〈δup,iδup,j〉p +
2

3
n̆pδθ̆pδi,j (8)

where 〈δup,iδup,j〉p is the mesoscopic kinetic stress tensor of the particle velocity distribution

and δθ̆p is the RUM kinetic energy defined as:

δθ̆p =
1

2
〈δup,iδup,i〉p (9)

Modelisation of τ̆p,ij is part of Section 2.3.1.

Using the mean particle velocity Up(x, t), the mesoscopic fluctuating particle velocity is
defined by :

u
′
p(t) = ŭp(t) −Up (x, t) (10)

Using Eq. (10), the particle mesoscopic integral kinetic energy, q̆2
p and the fluid-particle

correlation, qfp are then expressed by :

q̆2
p =

1

2
〈u′

p,i(t)u
′

p,i(t)〉 (11)

q̆fp = 〈u′

p,i(t)u
′

f,i(t)〉 (12)

where u
′
f,i is the fluid velocity fluctuation at the particle location. The fluid integral kinetic

energy, q2
f reads :

q2
f =

1

2
〈u′

f,i(t)u
′

f,i(t)〉 (13)
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2.1.2 Filtered Conservation Equations for particle properties

In LES, the filtering procedure consists in defining averaged variables that are obtained by
a convolution product of the unfiltered variable f with a filter kernel F . Typical examples
for filtering kernels are top hat filters or Gaussian functions with the corresponding filtering
kernel in spectral space ([19], [8], [16]). A filtered quantity f̄ is defined as :

f̄ (x) =
∫

f (x) F (x′ − x) dx′ (14)

When studying flows with varying density, it is common practice to define Favre averaged
quantities. The Favre filtered quantity reads :

ρ̄f̃ (x) =
∫

ρ (x) f (x) F (x′ − x) dx′ (15)

Dealing with particles leads to replace the gas density ρ with the density number np.

This filtering procedure is applied to the conservation equations of the dispersed phase
obtained from the ensemble averaging procedure (see Section 2.1.1). The conservation
equations for the filtered dispersed phase are :

∂

∂t
n̄p +

∂

∂xj

n̄pũp,j = 0 (16)

∂

∂t
n̄pũp,i +

∂

∂xj

n̄pũp,iũp,j =
∂

∂xj

τ̃p,ij −
∂

∂xi

(
2

3
n̄pδθ̃p

)
− n̄p

τp

(ũp,i − ũf,i) + n̄pgi −
∂

∂xj

Tp,ij,SGS (17)

For the sake of simplicity, the mesoscopic sign has been omitted in Eqs. (16) & (17).
The filtered dispersed phase equations contain one unclosed term, Tp,ij,SGS that is due to
filtering. Its modelisation is discussed in Section 2.3.2.

2.2 The gas phase

Here, the filtering procedure described in Section 2.1.2 is applied to the compressible
Navier-Stokes equations. The filtered conservation equations for the gas phase are :

∂

∂t
ρ̄ +

∂

∂xj

ρ̄ũf,j = 0 (18)

∂

∂t
ρ̄ũf,i +

∂

∂xj

ρ̄ũf,iũf,j = − ∂

∂xi

P̄ +
∂

∂xj

τ̄ij −
∂

∂xj

Tij,SGS (19)

∂

∂t
ρ̄Ẽ +

∂

∂xj

ρ̄Ẽũf,j =
∂

∂xj

(−P + τij)uf,i +
∂

∂xj

qSGS (20)

where ρ̄ is the Favre filtered density, ũi is the resolved velocity field, P is the pressure, τij is
the viscous tensor, E is the total non-chemical energy, Tij,SGS is the Reynolds tensor and
qSGS is the Sub-Grid Scale heat flux vector. The treatment of these two unclosed terms is
discussed in Section 2.3.2.
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2.3 Modeling the unclosed terms

2.3.1 The unresolved Random Uncorrelated kinetic Stresses 〈δup,iδup,j〉p
When computing a temporally decreasing homogeneous isotropic turbulence, Fevrier et al.
(2005) [7] showed that the ratio of Random Uncorrelated kinetic Energy (RUE) to total
particle kinetic energy increases with particle inertia. They proposed a relation which
Vance et al. (2004) [26] extended to a turbulent channel flow that reads :

< δup,iδup,i >p=< ũ
′

p,iũ
′

p,i >p

(
< ũ

′
p,iũ

′
p,i >p< ũ

′
f,iũ

′
f,i >f

< ũ
′
f,iũ

′
p,i >2

p

− 1

)
(21)

Another modeling approach based on a transport equation for the Random Uncorrelated
kinetic Energy was proposed by Simonin et al. (2002) [22] and validated by Kaufmann et
al. (2004) [10] on a temporally decreasing homogeneous isotropic turbulence.

This term is however not taken into account in the equations resolved in this paper. Its
influence will be part of future work. In this work, Eq. (21) is only used a posteriori to
compute the RUE .

2.3.2 The unresolved Sub-Grid terms Tk,ij,SGS and qSGS

For each phase noted k, the filtered equations exhibit Sub-Grid Scales (SGS) tensors and
vectors that describe the interaction between the non-resolved and resolved motions. The
influence of the SGS on the resolved motion is taken into account by a SGS model based
on the introduction of a turbulent viscosity,νk,SGS.
For both phases, the LES-filtered Boussinesq tensor S̃k,ij and the LES-filtered Boussinesq
tensor without trace S̃∗

k,ij are defined as :

S̃k,ij =
1

2

(
∂

∂xj

ũk,i +
∂

∂xi

ũk,j

)
(22)

S̃∗
k,ij = S̃k,ij −

1

3
S̃k,mmδij (23)

• The gas phase

Ducros & Nicoud (1999) [13] developped a Wall-Adaptating Local Eddy-viscosity (WALE)
model for Tij,SGS based on the Smagorinsky model [23]. The difference is in the definition
of the turbulent viscosity, νSGS that differs from the Smagorinsky model, leading to less
dissipative flows and more accurate behaviour at the wall. The Reynolds Tensor Tij,SGS is
defined as:

Tij,SGS = ρ̄(ũiuj − ũiũj) (24)

Tij,SGS = −νSGSS̃∗
ij (25)

where νSGS reads :

νSGS = (Cw∆f )
2

(
sd

f,ijs
d
f,ij

) 3
2

(
S̃f,ijS̃f,ij

) 5
2 +

(
sd

f,ijs
d
f,ij

) 5
4

(26)
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with sd
f,ij = 1

2

([
∂

∂xi
ũf,j

]2
+
[

∂
∂xj

ũf,i

]2)
− 1

3

[
∂

∂xk
ũf,k

]2
δij. Cw = 0.4929503 is the model

constant and ∆f denotes the filter characteristic length.
Then the Sub-Grid Scale heat flux vector qSGS follows :

qSGS =
γ

P SGS
r

ρ̄νSGS ∇
(
Ẽ − ũ2

i

)
(27)

where γ is the gas constant and P SGS
r = 0.9 is the subgrid Prandtl number.

• The dispersed phase

Moreau et al. (2005) [12] developed a SGS model in analogy to the one developped by
Moin & al. (1991) [11] for compressible flows :

Tp,ij,SGS = ¯̆np( ˜ŭp,iŭp,j − ˜̆up,i
˜̆up,j) (28)

Tp,ij,SGS = Pp,SGSδij − νp,SGS
˜̆
S

∗

p,ij (29)

Following respectively Yoshizawa (1986) [27] and Smagorinsky (1963) [23], Pp,SGS and
νp,SGS are defined as:

Pp,SGS = 4 Cl
¯̆np ∆2

f
˜̆
Sp,ij

˜̆
Sp,ij with Cl = 0.012 (30)

νp,SGS = 4 CS
¯̆np ∆2

f

√
˜̆
Sp,ij

˜̆
Sp,ij with CS = 0.02 (31)

3 Description of the configuration and the numerical

test cases

3.1 Description of the configuration

The effect of solid particles on the flow structure of a confined jet was experimentally
investigated by Hishida et al. (1987) [9]. Figure 1 illustrates the configuration. The jet
from a tube of diameter D2 = 0.13mm (named T2) is confined with a tube of diameter
D1 = 0.6mm (named T1). Spherical light hollow glass particles of diameter d = 80.1µm
are loaded with a constant volume fraction. The Reynolds number is 22000 at the outlet
of the confined jet and the flow direction is parallel to the gravity vector. A laser Doppler
velocimeter system was used to measure both two-component velocities of gas and particles,
and their fluctuations at three different positions in the tube : z=0m, z=10D2 and z=20D2.

3.2 Numerical aspects

The LES solver AVBP TPF (see www.cerfacs.fr/cfd/CFDWeb.html) solves the full com-
pressible Navier Stokes equations for the gas phase and the full mesoscopic conservation
equations for the dispersed phase on hybrid (structures and unstructured) grids. The nu-
merical scheme uses third-order spatial accuracy and third-order temporal accuracy [3]. As
acoustics is part of the gas equations, characteristic boundary conditions are used for the
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Figure 1: Sketch

gas phase (see [17]). Dirichlet-like boundary conditions are used for the dispersed phase.
Zero gas velocity is imposed on the walls of the tube T2 whereas they are considered as
slipping walls for the particles. The static pressure is imposed at the outlet. At the main
duct inlet (Patch I2 in Fig. 1), the values of ũf,i, i∈[1,3] vary in time and space to reproduce
the effect of an incoming turbulent field as observed in the experiment. The method in con-
structing the incoming turbulent signal is based on the Random Flow Generation (RFG)
algorithm [24], [25]. The continuously homogeneous isotropic incoming field consists of
a superposition of harmonic functions (50 modes projected in the three directions) with
characteristic length-scales prescribed by the user. Forcing the flow in such a way consid-
erably accelerates the establishment of fully developed turbulent flows. It also ensures the
presence of coherent perturbations not warranted when a pure white noise is used. Special
treatments for particles on the same patch I2 are discussed in Section 3.3. Typical runs
are performed on grids of 520,000 structured elements on 48 processors.

3.3 The numerical test cases

The experiments show that the particle velocity field is turbulent at the outlet of the
tube T2. This work aims at determining the influence of the inlet boundary condition
on the flow. At the inlet, the turbulent particle mesoscopic velocity field is known to be
partially correlated to the gas turbulent velocity field. A simple way to account for this
correlation is to suppose that the turbulent mesoscopic particle velocity field is divided
into two contributions (see Eq. (32)).

ũ
′

p,i = Aũ
′

f,i + Bw̃
′

i (32)
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Both fields, ũ
′
f,i and w̃

′
i, are generated the same way (same characteristic length scales).

The first one, ũ
′
f,i, is directly collinear to the turbulent gas velocity field. The second

contribution, w̃
′
i, is completely decorrelated from the gas field and has no physical sense.

Then, the coefficients A and B from Eq. (32) are determined so as to ensure both a given
total particle turbulent kinetic energy and a given fluid-particle correlation :

(ũ
′

p,i)
2 = A2(ũ

′

f,i)
2 + B2(w̃

′

i)
2 (33)

ũ
′

p,iũ
′

f,i = A(ũ
′

f,i)
2 (34)

Such an approach allows to define several inlet boundary conditions for the particles. Three
of them are tested in this work :

q̃2
p q̃fp A B

BC1 0 0 0 0

BC2 q2
p 2Aq̃2

f

√
q2
p

q2
f

0

BC3 q2
p 0 0

√
q2
p

q2
f

Table 1: Description of the different boundary conditions tested for the disperse phase.

where q2
p is the particle turbulent kinetic energy experimentally measured.

The influence of the two first inlet boundary conditions on the particle flow is presented
and discussed in Section 4. For both cases, the Random Uncorrelated kinetic Energy is
computed a posteriori (see Eq. (21)).

4 Results and Discussion

Comparisons between the experiments and the simulations are made in three different plans
perpendicular to the duct axis and located at the positions : z=0, z=10D2 and z=20D2

where D2 is the diameter of tube T2. A fourth plan with position z=5D2 is added to
obtain more information. LES data are averaged over about 26 ms corresponding to two
flow times through the entire domain at the bulk velocity. For both phases, the mean axial
< Wk > and radial velocities < V rk > are plotted as well as the rms axial < wk,rms > and
radial < vrk,rms > velocities and the turbulent kinetic energy. The particle mass flux is
also considered. To do so, the field is spatially averaged in the circumferential direction.
As the influence of the particles on the gas flow is not taken into account, results for the
gas phase are presented in Section 4.1. Sections 4.2.1 and 4.2.2 focus on the dispersed
phase for the two first boundary conditions summarized in Table 1.

4.1 Gas phase

Figure 2 compares PDPA measurements (symbols) with averaged LES results (lines) at
the four downstream locations z in the tube for the gas phase. The overall agreement
between LES and experimental data is very good. The spreading of the turbulent jet is
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well predited, as well as the mean and fluctuating velocity levels. Concerning the RMS
profiles (Fig. 2 c. & d.), only the resolved part of the fluctuations is taken into account
here. This shows that for this flow, most of the unsteady motion lies in large structures
which are well predicted by LES methods.
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Figure 2: Gas phase ; comparison between time-averaged LES results (lines) and experi-
mental results (symbols) of a. and b., mean axial and radial velocity profiles, c. and d.,
turbulent axial and radial velocity profiles.
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4.2 Dispersed phase

4.2.1 BC1

This Section presents the results obtained for the dispersed phase when using the first
boundary condition described in Table 1. In this case, no turbulent mesoscopic kinetic
energy is injected at the inlet of the domain.
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Figure 3: Dispersed phase - BC1 ; comparison between time-averaged LES results (lines)
and experimental results (symbols) of a., mean axial velocity profiles, b., mean radial
velocity profiles, and c., mean mass flux profiles.
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Figure 3 compares PDPA measurements (symbols) with averaged LES results (lines)
at the four downstream locations z in the tube for mean quantities. The mean axial and
radial velocity levels are well predicted. Considering the mass flux profile, the particles are
not dispersed enough. Figure 4 compares the square rms axial and radial velocities (lines)
with both the fluid-particle correlations (dashed lines) and the Random Uncorrelated ki-
netic Energy (dot-dashed lines). Experimentally, the radial fluctuations are much smaller
than the axial fluctuations. This is also the case for the LES predictions although both
fluctuations are considerably under-estimated. The fluid-particle correlation levels show
that the numerical scheme used is still a little too much dissipative. Whatever the posi-
tion in the tube, the radial fluid-particle correlation is greater than the square rms radial
fluctuations. Finally, the Random Uncorrelated Motion is consequent in both directions.
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Figure 4: Dispersed phase - BC1 ; Time-averaged LES results for the square rms velocities
(lines), the fluid-particle correlation (dashed lines) and the a posteriori computed Random
Uncorrelated kinetic Energy (dot-dashed lines) compared to the experimental velocity fluc-
tuations ; a., axial profiles and b., radial profiles.

4.2.2 BC2

Figures 5 and 6 compare PDPA measurements (symbols) with averaged LES results (lines)
for the dispersed phase when BC2 is used at the inlet. In this case, the particle fluctuations
are colinear to the gas ones, which explains that the particle fluctuations imposed at the
inlet are isotropic. Therefore, the computed total particle kinetic energy corresponds to the
experimental one at the inlet but the distribution in space does not match the experiments
since the particle fluctuations are very anisotropic. The mesoscopic fluctuations at the inlet
do not affect much axial and radial mean and fluctuating velocities along the tube, only
in the near-inlet region. However, the mass flux is much more sensitive to the boundary
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condition and the particles are much more dispersed in this case. Considering Figure 6,
the Random Uncorrelated kinetic Energy (dot-dashed lines) is more than non-negligible
compared to the rms velocities. This partly explains the lack of rms axial and radial
velocities in comparison with the experimental results. Once more, the radial fluid-particle
correlation is greater than the square rms radial fluctuations.
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Figure 5: Dispersed phase - BC2 ; comparison between time-averaged LES results (lines)
and experimental results (symbols) of a., mean axial velocity profiles, b., mean radial
velocity profiles, and c., mean mass flux profiles.
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Figure 6: Dispersed phase - BC2 ; Time-averaged LES results for the square rms velocities
(lines), the fluid-particle correlation (dashed lines) and the a posteriori computed Random
Uncorrelated kinetic Energy (dot-dashed lines) compared to the experimental velocity fluc-
tuations ; a., axial profiles and b., radial profiles.

5 Conclusion and prospectives

The presented study shows the capacity of Euler-Euler model to simulate the dynamics of
particles in a confined jet. The treatment of the inlet boundary condition seems to have
a great influence on the particle mass flux. It seems important to also model the Random
Uncorrelated Motion to predict correctly the particle fluctuating motion.
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