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Abstract

In this study, Euler/Euler and Euler/Lagrange LES predictions of particle-laden turbulent flows are compared for the bluff-body
configuration from Boréeet al. (2001) where glass beads are injected into a complex recirculating flow. These tests are
performed for non-reacting, non-evaporating sprays but are mandatory validations before computing realistic combustion
chambers. The numerical code used for this study is a parallel explicit CFD code that solves the 3D compressible Navier-Stokes
equations on unstructured and hybrid grids. This solver contains both Euler/Euler and Euler/Lagrange formulations. Results
show that the gas flow and the dispersed phase are well predicted but the Lagrangian approach predicts RMS values more
precisely. The importance of inlet boundary conditions for the gas is revealed.

Introduction

Today, RANS (Reynolds-averaged Navier-Stokes) equations
are routinely solved to design combustion chambers, for both
gaseous and liquid fuels. Recently, in order to provide bet-
ter accuracy for the prediction of mean flows but also to give
access to unsteady phenomena occurring in combustion de-
vices (such as instabilities, flashback or quenching), Large-
Eddy Simulation (LES) has been extended to reacting flows.
The success of these approaches for gaseous flames in the
last years (Caraeniet al. 2000; Colinet al. 2000; Selleet
al. 2004; Rouxet al. 2005; Poinsot & Veynante 2005) is a
clear illustration of their potential. LES gives access to the
large scales structures of the flow reducing the importance of
modelling, and naturally capturing a significant part of the
physics controlling these flames. Even though LES has al-
ready demonstrated its potential for gaseous flames, its exten-
sion to two-phase flames is still largely to be done. First, the
physical submodels required to describe the atomization of a
liquid fuel jet, the dispersion of solid particles, their interac-
tion with walls, evaporation and combustion are as difficult to
build in LES as in RANS because they are essentially subgrid
phenomena. Second, the numerical implementation of two-
phase flow LES remains a challenge. The equations for both
the gaseous and the dispersed phases must be solved together
at each time step in a strongly coupled manner. This differs
from classical RANS where the resolution of the two phases
can be done in a weak procedure, bringing first the gas flow to
convergence, then the solid particles and finally iterating until
convergence of both phases. Finally, in the context of parallel
super-computing, numerical efficiency is an additional con-
straint. For single-phase flows, efficient and accurate solvers

have been developed and speedups of the order of5000
are not uncommon (http://www.cerfacs.fr/cfd/parallel.html).
Maintaining a similar parallel efficiency for a two-phase flow
solver while representing the main physics of the flow raises
additional questions.
In LES of two-phase flows, physics and numerics inter-
act strongly: the first question is to choose a paradigm
to describe the two-phase flow. Most RANS codes use
Euler/Lagrange (EL) methods in which the flow is solved
using an Eulerian method and the particles are tracked using
a Lagrangian approach. An alternative technique is to use
two-fluid models in which both the gas and the dispersed
phases are solved using an Eulerian method (Euler/Euler or
EE) (Reeks 1991; Février & Simonin 1999). The history
of RANS development has shown that both EE and EL are
useful and either is found today in most commercial codes.
For LES, both EE and EL formulations are being developed
and the focus of this study is to test them in a reference
case where complete sets of solutions for gas and dispersed
phase are available. This exercice is performed here without
evaporation or combustion.

Nomenclature

CD drag coefficient
CI , CS model constants
Cv specific heat at constant volume (J kg−1 K−1)
dp particle diameter (m)
eg internal energy (m2 s−2)
Eg total energy (m2 s−2)
fc,i coupling force (kg m−2 s−2)
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f̆p probability density function (s3 m−6)
g gravitational constant (m s−2)
np particle number density (m−3)
Nprocs number of processors
p pressure (N m−2)
Pr Prandtl number
qg,j heat tranfer vector (J m−2 s−1)
qgp,SGS subgrid covariance (m−2 s−2)
Q diffusion term (J m−2 s−1)
R air gas constant (J kg−1 K−1)
r radial direction (m)
Re Reynolds number
S strain rate tensor (s−1)
t time (s)
T temperature (K)
T stress tensor (kg m−1 s−2)
ui velocity vector, i=1,2,3 (m s−1)
vr local instantaneous relative velocity (m s−1)
xi position vector, i=1,2,3 (m)
z axial direction (m)

Greek letters
α volume fraction
δij Kronecker delta
δθp Random Uncorrelated Energy (RUE) (m2 s−2)
δRp,ij Random Uncorrelated Velocity (RUV) tensor (m2s−2)
δSp,iij RUV third correlation tensor (m−3 s−3)
∆f filter characteristic length (m)
η dynamic viscosity (kg m−1 s−1)
κ diffusion coefficient (m2 s−1)
ν kinematic viscosity (m2 s−1)
Πδθp production term by subgrid scales (m−1 s−3)
ρ density (kg m−3)
τp particle relaxation time (s)
τg,ij viscous stress tensor (kg m−1 s−2)
φ azimuthal direction (m)

Subscripts
g gas phase
i,j,k index of coordinates directions
p particle (dispersed phase)
RUM Random Uncorrelated Motion
SGS subgrid-scale

Symbols
·̄ LES-filtered quantity
·̃ gas Favre LES-filtered quantity
·̂ particle Favre LES-filtered quantity
·̆ mesoscopic quantity

Configuration and work objectives

In the present study, two approaches developed at CERFACS
within the same solver are used to investigate some critical
issues for LES of two-phase flows on massively parallel com-
puters. The explicit compressible solver AVBP is used with
both EE (Kaufmannet al.2003) and EL formulations on the
same tetrahedron-based grid.

Figure 1: Configuration of Boréeet al. (2001). The dimen-
sions are :Rj = 10 mm,R1 = 75 mm,R2 = 150 mm. The
total length of the experiment is1.5 m.

Both approaches are used to study a bluff-body configuration
(Boréeet al. 2001) where a jet of air and solid particles are
injected in a coflow of air (see the sketch in Fig. 1). The jet
velocity on the axis is4 m/s and the maximum coflow veloc-
ity is 6 m/s. The experiment is designed to provide large re-
circulation zones between the central jet and the coflow. The
dispersed phase consists of solid particles (glass beads with
diameter ranging from 20 to 100 microns with a mean value
of 60 microns) so that evaporation, coalescence and break up
do not have to be considered. The material density of the
glass particle isρp = 2470 kg m−3. The mass loading ratio
of particles in the inner jet is 0.22 corresponding to a solid
volume fraction smaller than 10−4. Thus collision effects
are assumed to be negligible in the modelling approaches.

Measurements are performed by a two-component phase-
Doppler anemometer (PDA). The origin is set at the edge of
the bluff body and at the centre of the inner jet (see Fig. 1).
The flow will be described using a cylindrical coordinate sys-
tem (z, r, φ) to indicate the axial (downward), radial and az-
imuthal directions. Single-phase data are provided in tab-
ulated form at different cross-sections within the jet, in the
annular direction and along thez axis. The radial profiles
of mean and RMS particle velocities for each size classes
are provided in tabulated form at 7 cross-sections of thez
axis (z = 3, 80, 160, 200, 240, 320 and400 mm) and along
the z axis up to500 mm. The complete data set, including
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accurate boundary conditions, at moderate mass loading (22
percent) has been selected for benchmarking at the ’Ninth
workshop on two-phase flow predictions’ (Ishimaet al.1999)
and can be obtained at the following web site: http://www-
mvt.iw.uni-halle.de/english/index.php?bluff_body_flow.
Despite of the relative simplicity, this test case contains
a number of issues relevant for LES of two-phase flows.
These include (i) the comparison of performances and CPU
cost for EE and EL approaches and (ii) the analysis of the
inlet boundary condition on the dispersed phase solution
(turbulent modulation).

Description of the solver

The AVBP solver is a finite volume code based on a
cell-vertex formulation. It solves the laminar and turbulent
compressible Navier-Stokes equations in two and three
space dimensions for hybrid and unstructured grids. Steady
state or unsteady flows can be simulated, furthermore it
takes into account the variations of molecular weights and
heat capacities with temperature and mixture composition.
A third-order scheme for spatial differencing and a Runge-
Kutta time advancement (Colin & Rudgyard 2000; Moureau
et al. 2005) is used for the present work. The Smagorinsky
model is used to model the subgrid stress tensor. Walls are
treated using the law-of-the-wall formulation by Schmittet
al. (2007). The boundary conditions are handled with the
NSCBC formulation (Poinsot & Veynante 2005; Moureauet
al. 2005).

The following sections briefly describe the governing equa-
tions solved by AVBP for the gaseous and dispersed phases.

Gaseous phase

The filtered conservation equation for gas-phase density,ρ̄g,
momentum,̃ug,i, and total energỹEg = ẽg + 1

2 ũ2
g,j (with

ẽg = CvT̃g, the internal energy,Cv the specific heat at con-
stant volume and̃Tg the temperature) read:

∂ρ̄g

∂t
+

∂(ρ̄gũg,j)
∂xj

= 0 (1)

∂(ρ̄gũg,i)
∂t

+
∂(ρ̄gũg,iũg,j)

∂xj
+

∂p̄g

∂xi
− ∂τ̄g,ij

∂xj
=

∂Tg,ij

∂xj
+ fc,i (2)

∂(ρ̄gẼg)
∂t

+
∂(ũg,j(ρ̄gẼg + p̄g))

∂xj
− ∂(τ̄g,ij ũg,i)

∂xj
+

∂q̄g,j

∂xj
=

∂(Tg,ij ũg,i)
∂xj

+
∂Qg,j

∂xj
+ fc,j ũg,j . (3)

The left-hand-side (LHS) of Eqs. 1-3 contains all resolved
(filtered) variables (beinḡτg,ij and q̄g,i the viscous stress
tensor and the heat transfer vector, while pressure is obtained

from the equation of statēpg = ρ̄gRT̃g). The right-hand-side
(RHS) of Eqs. 2 and 3 contains the SGS termsTg,ij andQg,i,
which are reconstructed using eddy-viscosity concepts (with
turbulent viscosity obtained from Smagorinsky model).
The last terms in Eqs. 2 and 3,fc,i and fc,j ũg,j , denote
respectively, the coupling force and energy applied to the
fluid by all particles.

Dispersed phase: Euler/Lagrange approach

The dispersed phase consists of particles which are assumed
to be rigid spheres with diameter comparable or smaller than
the Kolmogorov length scale. As the particle density is much
larger than the fluid density (ρp/ρg = 2470), the forces act-
ing on particles reduce to drag and gravity. Under these as-
sumptions, the particle equations of motion can then be writ-
ten for a single particle as:

dxp,i

dt
= up,i (4)

dup,i

dt
= −3

4
ρg

ρp

CD

dp
|vr| vr,i+gi = −up,i − ũg,i

τp
+gi (5)

with gi the gravity vector. The local drag coefficient in Eq.
(5) is CD and may be expressed in terms of the particle
Reynolds numberRep following Schiller & Nauman (1935):

CD =
24

Rep

[
1 + 0.15Re0.687

p

]
(6)

Rep =
|vr| dp

νg
≤ 800 (7)

wheredp is the particle diameter andνg is the kinematic
viscosity of the gas phase. The local instantaneous relative
velocity between the particle and the surrounding fluid is
vr,i = up,i − ũg,i, where ũg,i is the fluid velocity at the
position of the particle assuming that the flow field is locally
undisturbed by the presence of this particle (Gatignol 1983;
Maxey & Riley 1983). In first approximation, the velocity
is assumed to be equal to the interpolation of the filtered ve-
locity at the position of the particle (Wang & Squires 1996;
Yamamotoet al. 2001; Apteet al. 2003). The effect of the
subgrid fluid turbulence is assumed to be negligible owing to
the large inertia of the solid particles (Fede & Simonin 2006).
The particle relaxation timeτp is defined as the Stokes char-
acteristic time:

τp =
4
3

ρp

ρg

dp

CD |vr|
. (8)

The influence of the particles on the gas phase is taken into
account in the EL simulations by using the point-force ap-
proximation in the general framework of the particle-in-cell
method (PIC) (Boivinet al. 1998; Vermorelet al. 2003),
with standard single-phase subgrid turbulence modelling
approaches. According to Boivinet al. (2000), such an
assumption is valid for small mass loading ratio of particles
(typically, αpρp/ρg ≤ 1) with response time larger than the
subgrid turbulence characteristic time scale. Modification

3



S3_Fri_A_62 6th International Conference on Multiphase Flow,
ICMF 2007, Leipzig, Germany, July 9 – 13, 2007

of the gas subgrid-scale turbulence model by the particles
is neglected. A linear interpolation algorithm is used to
compute the fluid velocity at the position of the particle. If
particle relaxation time is much larger than the time scale
of filtered velocity fluctuations (as in the present case of 22
percent mass loading), such a linear interpolation is found to
be sufficiently accurate to resolve particle motions (see e.g.
Fede & Simonin (2006)).

Dispersed phase: Euler/Euler approach

Eulerian equations for the dispersed phase can be derived
using several approaches. A popular and simple way con-
sists in volume filtering of the separate, local, instantaneous
phase equations accounting for the inter-facial jump condi-
tions (Druzhinin & Elghobashi 1999). Such an averaging
approach is restrictive because particle sizes and particle dis-
tances have to be smaller than the smallest length scale of the
turbulence. Besides, they do not account for the crossing of
particle trajectories or Random Uncorrelated Motion (RUM),
shown by Févrieret al. (2005), which may appear when the
particle relaxation time is larger than the Kolmogorov time
scale. In the present study, a statistical approach analogous
to kinetic theory (Chapman & Cowling 1939) is used to con-
struct a probability density function (pdf)̆fp(cp,x, t) which
gives the local instantaneous probable number of particles
with the given translation velocityup = cp. The resulting
model (Févrieret al.2005; Moreauet al.2005) leads to equa-
tions for the particle number densitȳnp and the correlated
velocity ûp:

∂

∂t
n̄p +

∂

∂xj
n̄pûp,j = 0 (9)

∂

∂t
n̄pûp,i +

∂

∂xj
n̄pûp,iûp,j = − n̄p

τp
(ûp,i − ûg,i)

+n̄pgi −
∂

∂xj
Tp,ij −

∂

∂xj
n̄pδ̂R

∗
p,ij −

∂

∂xi

2
3
n̄pδ̂θp (10)

where n̄p, ûp and δ̂θp are respectively the filtered parti-
cle number density, correlated velocity and Random Uncor-
related Energy (RUE). The two first terms of the RHS of
Eq. (10) are the drag force and gravity effects on large scales,
the third one accounts for the subgrid-scale (SGS) effects,
the fourth one takes into account the dissipation effects in-
duced by the RUM and the last one is a particle-pressure term
proportional to the RUE.Tp,ij stands for the particle subgrid
stress tensor:

Tp,ij = n̄p( ̂up,iup,j − ûp,iûp,j). (11)

As in fluid non-isotherm turbulence, an additional equation
for energy is needed. The transport equation of filtered RUE
is:

∂

∂t
npδ̂θp +

∂

∂xj
npûp,j δ̂θp = −2

np

τp
δ̂θp −

2
3
npδ̂θp

∂ûp,j

∂xj

−npδ̂R
∗
p,ij

∂ûp,i

∂xj
−1

2
∂

∂xj
npδ̂Sp,iij+Πδθp−

∂

∂xj
Qp,j . (12)

The first RHS term is the RUE destruction by drag force,
the second one is a RUE-dilatation term, the third one is a
production term by filtered Random Uncorrelated Velocity
(RUV) tensor, the next one is the diffusion by filtered RUV
third correlation tensor.Πδθp

andQp,j are respectively pro-
duction and diffusion terms by subgrid scales:

Πδθp =
(

n̆pδRp,ij
∂ŭp,i

∂xj
− n̄pδ̂Rp,ij

∂ûp,i

∂xj

)
(13)

Qp,j = n̄p

( ̂up,jδθp − ûp,j δ̂θp

)
. (14)

The particle source term in the gas phase momentum Eq. 2 is
equal to minus the drag term in the particle phase Eq. 10.

Closure of filtered RUV terms

Assuming small anisotropy of the RUM, Simoninet al.
(2002) modelδR∗

p,ij by a viscous term and Kaufmannet al.
(2005) modelδSp,iij by a diffusive term similar to Fick’s law.
For LES approach these models are adapted by replacing non
filtered quantities by filtered ones leading to (Moreauet al.
2005):

δ̂R
∗
p,ij = −ν̂RUM (

∂ûp,i

∂xj
+

∂ûp,j

∂xi
− ∂ûp,k

∂xk

δij

3
) (15)

1
2
δ̂Sp,iij = −κ̂RUM

∂δ̂θp

∂xj
(16)

where the RUM viscosity,̂νRUM , and the RUM diffusion
coefficient,κ̂RUM , are given by:

ν̂RUM =
τp

3
δ̂θp and κ̂RUM =

10
27

τpδ̂θp. (17)

Subgrid terms modeling

By analogy to single phase flows (Moinet al.1991; Vreman
et al. 1995), Riberet al. (2005) propose a viscosity model
for the SGS tensorTp,ij . The trace-free SGS tensor is mod-
eled using a viscosity assumption (compressible Smagorin-
sky model), while the subgrid energy is parametrized by a
Yoshizawa model (Yoshizawa 1986):

Tp,ij = − CS2∆2
f n̄p|Ŝp|(Ŝp,ij −

δij

3
Ŝp,kk)

+ CI2∆2
f n̄p|Ŝp|2δij (18)

whereŜp is the filtered particle strain rate tensor,|Ŝp|2 =
2Sp,ijSp,ij and∆f the filter characteristic length. The model
constants have been evaluated in a priori tests (Riberet al.
2006) leading to the valuesCS = 0.02, CI = 0.012.
The subgrid diffusion term in the filtered RUE is modeled by
an eddy-diffusivity model:

Qp,j = −
n̄pCS2∆2

f |Ŝp|
Prp,SGS

∂δ̂θp

∂xj
(19)

with the particle turbulent Prandtl numberPrp,SGS = 0.8.
The subgrid production of filtered RUE termΠδθp

acts like
a dissipation term in the subgrid energy equation. Using an
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equilibrium assumption on the particle correlated subgrid en-
ergy and neglecting diffusion terms leads to:

− n̄p

τp
(
Tp,kk

n̄p
− qgp,SGS) + Πδθp − Tp,ij

∂ûp,i

∂xj
= 0 (20)

where the subgrid covariance isqgp,SGS = ̂up,kug,k −
ûp,kûg,k. To first order, the drag force term can be neglected
andΠδθp

can be modeled by:Πδθp
≈ Tp,ij∂ûp,i/∂xj with

the SGS tensor modeled by Eq. (18). This model ensures
that the correlated energy dissipated by subgrid effects is
fully transfered into RUE to be finally dissipated by friction
with the fluid.

Comparison of gas flow without particles

Before discussing results for the dispersed phase, the
accuracy of the LES solver for the gas phase is evaluated
by computing the flow without particles and comparing it
to the same data provided in Boréeet al. (2001). The grid
used with the code AVBP is presented in Fig. 2 and some
parameters of the simulation are summarized in Table 1.

Figure 2: Geometry of the computational domain. Grid ele-
ments used: tetrahedra.

Grid type Tetrahedra

Number of cells / nodes 2,058,883 / 367,313
Time step (µs) / CFL 3.2 / 0.7
Averaging time (s) / Iterations 1.03 / 320,000
LES model Smagorinsky

Wall model Law-of-the-wall

Table 1: Summary of parameters and models used in AVBP
for the gas-flow computation without particles.

A typical snapshot of the velocity field (modulus) in the cen-
tral plane is displayed in Fig. 3. The figure shows the com-
plex structure of the recirculating flow: on the axis, the flow
is recirculating down toz = 200 mm. On the sides of the
channel, the flow also separates fromz ≈ 50 mm toz ≈ 400
mm.

Figure 3: Instantaneous field of velocity modulus. Maximum
value (black): 6 m/s. Minimum value (white): 0 m/s.

In Figs 4 to 7, the radial profiles (averaged in the azimuthal
direction) of mean and RMS velocities obtained by AVBP
are compared with the experimental values at 7 stations
of the z axis (z = 3, 80, 160, 200, 240, 320 and400 mm).
The LES solver captures most of the flow physics: the
axial mean and RMS velocities (Fig. 4 and 5) agree with
the measurements. The length of the recirculation zone
(evidenced by the negative values of axial velocities on
the axis) is well predicted. In the coflow, the RMS values
predicted by LES are too low because no turbulence is
injected at the inlet of the domain for these computations.

Figure 4: Radial profiles of mean axial gas velocities at7 sta-
tions alongz axis. Symbols: experiment; solid line: AVBP.

Figure 5: Radial profiles of RMS axial gas velocities at7 sta-
tions alongz axis. Symbols: experiment; solid line: AVBP.

The mean radial velocity levels (Fig. 6) remain small (less
than 1 m/s) and the LES code captures the radial velocity
fields correctly (Fig. 7). The particle mean stagnation point
(aroundz = 160 mm) is a delicate zone where the AVBP
solver has some difficulties. The source of this problem
is the exact position of the stagnation point: any small
mismatch in this position leads to large changes in profiles
measured around this point. Upstream and downstream of
this point, the agreement is very good.
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Figure 6: Radial profiles of mean radial gas velocities at
7 stations alongz axis. Symbols: experiment; solid line:
AVBP.

Figure 7: Radial profiles of RMS radial gas velocities at7 sta-
tions alongz axis. Symbols: experiment; solid line: AVBP.

The code exhibits an overall good agreement with exper-
imental results. This indicates that tests for the dispersed
phase can be performed with reasonable confidence.

Results for two-phase flow cases

This section presents the results for the22 percent mass load-
ing of the central jet, obtained with two different computa-
tions summarized in Table 21. The grid and the time step
used are presented in Table 1. In all computations presented
here, the injected particles have a size of60 microns. Sep-
arated studies which are not reported here, using another
Lagrangian solver and multidisperse particles or60 microns
particles have shown that using a monodisperse distribution
of size was very close to the22 percent case of Boréeet al.
(2001) and was sufficient to capture both the mean flow ef-
fects on the gas (through two-way coupling) and the dynam-
ics of the60 microns class.

1For these runs, the RUM model is not used and theδ̂θp term in Eq. (10)
is set to zero.

EE EL

Averaging time (s) 0.64 0.80
Particle mean speed Exp. profile Exp. profile

Turbulent fluctuations Zero White noise (12%)

Particle distribution Exp. profile Homogeneous

Table 2: Summary of parameters and models used for the par-
ticle injection (22 percent mass loading computation). The
particles are injected in the central tube.

An essential part of these LES is the introduction of the
particles in terms of position and velocity. The injection
planes are not the same for both approaches (Fig. 8). The
methodologies used to inject the particles are also different
to evaluate their impact on results. In EE, both the mass
loading and the mean velocity imposed in the injection plane
(z = −200 mm) are the ones measured experimentally at
z = 3 mm. No turbulent fluctuations are introduced. In
the EL formulation, the mass loading is homogeneous over
the injection section and the injection speed profile is also
the experimental one measured atz = 3 mm. In the EL
formulation, a white noise (amplitude of the order of12
percent of the mean velocity) is added to the particle mean
velocity profiles to match experimental measurements at
z = 3 mm.

Figure 8: Injection position for particles.

The velocity fields for the gas phase change when the par-
ticles are injected but these effects are limited and are not
discussed here. Figures 9 to 12 show velocity fields for parti-
cles obtained with both approaches along with the measure-
ments of Borée. The agreement between the experiments and
the two LES sets of data is good. An interesting result is
that EE (solid line) and EL (dashed line) provide similar re-
sults showing that the EE approach is able to reproduce the
mean-flow properties predicted by the EL computation. On
the other hand, Figs. 10 and 12 show that EL formulation
predicts particle RMS velocity more precisely. This is con-
sistent with the fact that, when no RUM model is used, the
EE approach underestimates turbulent fluctuations of particle
velocity. Recent studies by Riberet al. (2006) have shown
that when these contributions are considered, particle veloc-
ity fluctuations are correctly predicted.
A convenient way to look at the results is to consider the
centralz axis of the configuration: a critical zone is the stag-
nation point for the gas located aroundz = 160 mm. This is
also a zone where particles accumulate and must stop before
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Figure 9: Radial profiles of mean axial particle velocities at
7 stations alongz axis. Symbols: experiment; solid line: EE;
dashed line: EL.

Figure 10: Radial profiles of RMS axial particle velocities at
7 stations alongz axis. Symbols: experiment; solid line: EE;
dashed line: EL.

Figure 11: Radial profiles of mean radial particle velocities
at 7 stations alongz axis. Symbols: experiment; solid line:
EE; dashed line: EL.

Figure 12: Radial profiles of RMS radial particle velocities
at 7 stations alongz axis. Symbols: experiment; solid line:
EE; dashed line: EL.

turning around to escape from the recirculating flows by the
sides. Figure 13 shows field of local volume fraction of solid
particles for the EE computation. Local droplet accumula-
tion is also observed upstream of the stagnation point within
the central jet.

Figure 13: Instantaneous volume fraction in the central plane
from Euler-Euler simulation.

This can be quantified by plotting mean velocities along the
axis for the gas (Fig. 14) and for the solid particles (Fig. 15).
On this axis, both AVBP results match but are slightly off
the experimental results. The cause of this discrepancy
was investigated through various tests and was identified
as the absence of turbulence injected on the gas phase in
the inner jet: a direct verification of this effect is that in
both computations (EE: solid and EL: dashed lines), the
gas and the particle velocities in the central duct increase
betweenz = −200 andz = 0 mm, indicating that the flow
is relaminarizing. This also demonstrates the importance
of injecting not only the proper mean profile for the gas
velocity but also fluctuations with a reasonably well-defined
turbulent spectrum. Additional tests also reveal that the
injection of white noise on the particle velocities has a very
limited effect on the results.

Figures 16 and 17 display axial profiles of RMS velocities
for the gas and the particles. These plots confirm that the
position where the maximum levels of gas and particle tur-
bulence are found on the axis is shifted towards the jet inlet
and is too intense for both computations.
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Figure 14: Axial profiles of mean gas velocities. Symbols:
experiment; solid line: EE; dashed line: EL.

Figure 15: Axial profiles of mean particle velocities. Sym-
bols: experiment; solid line: EE; dashed line: EL.

Figure 16: Axial profiles of RMS gas axial velocities. Sym-
bols: experiment; solid line: EE; dashed line: EL.

Analysis of code scalability

In terms of code implementation EE techniques are naturally
parallel because the flow and the droplets are solved using
the same solver (Kaufmann 2004). On the other hand, the
EL approach is not well-suited to parallel computers since
two different solvers must be coupled, which increases the
complexity of the implementation on a parallel computer. In
this case, two methods can be used for LES:

Figure 17: Axial profiles of RMS particle axial velocities.
Symbols: experiment; solid line: EE; dashed line: EL.

1. Task parallelization in which some processors compute
the gas flow and others compute the droplets flow.

2. Domain partitioning in which droplets are computed to-
gether with the gas flow on geometrical subdomains
mapped on parallel processors. Droplets must then be
exchanged between processors when leaving a subdo-
main to enter an adjacent domain.

For LES, it is easy to show that only domain partitioning is
efficient on large grids because task parallelization would
require the communication of very large three-dimensional
data sets at each iteration between all processors. How-
ever, codes based on domain partitioning are difficult to
optimize on massively parallel architectures when droplets
are clustered in one part of the domain (typically, near the
fuel injectors). Moreover, the distribution of droplets may
change during the computation: for a gas turbine reignition
sequence, for example, the chamber is filled with droplets
when the ignition begins thus ensuring an almost uniform
droplet distribution; these droplets then evaporate rapidly
during the computation, leaving droplets only in the near
injector regions. This leads to a poor speedup on a parallel
machine if the domain is decomposed in the same way for
the entire computation. As a result, dynamic load balancing
strategies are required to redecompose the domain during
the computation itself to preserve a high parallel efficiency
(Hamet al.2003).

In this section, the scalability of the EL model is analyzed by
means of two basic parameters used to measure the efficiency
of parallel implementation: the speedup and the reference
single-phase CPU time ratio. The former is defined as the
ratio between the CPU time of a simulation with 1 processor
and the CPU time of a simulation with a given number of
processors,Nprocs:

Speedup =
Trun(1)

Trun(Nprocs)
. (21)

The latter is defined as the ratio between the CPU time of a
simulation with a given number of procs and the CPU time
of the reference single-phase simulation with 1 processor:
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CPU time ratio =
Trun(Nprocs)

Tsingle−phase(1)
. (22)

Note that the speedup of the EE model can be considered
as good as the single-phase computation since the dispersed
phase uses the same parallelization applied to the gaseous
phase. The EE formulation additional cost is of the order
of 80 percent for this test case since the computational cost
does not depend on the number of particles.

A scalability study of the EL simulation has been performed
in a CRAY XD1 supercomputer at CERFACS for a number
of processors up to 64. Table 3-4 and Figs. 18-19 summarize
these results for this case (inner jet mass loading of 22
percent) with a total number of particles present in the
domain of the order of600,000.

Nprocs 1 2 4 8 16 32 64

Ideal scaling 1 2 4 8 16 32 64
Single-phase 1 2.01 4.06 8.2 16.2 32.7 62.5
Two-phase EL 1 1.92 3.85 7.4 13.3 22.9 34.9

Table 3: Summary of the speedup of the EL approach. Su-
percomputer: CRAY XD1.

Figure 18: Speedup of the single-phase and the two-phase
EL simulation. Supercomputer: CRAY XD1.

The drop of performances shown in Fig 18 is not related
to large communications costs between processors as it
might be thought at first sight but merely to the parallel load
imbalance generated by the partitioning algorithm (Garciaet
al. 2005). This effect can be observed by plotting the number
of nodes, cells and particles presented in each processor.
Figure 20 reports the number of nodes and cells presented
per processor for a 32-partition simulation by using a

Nprocs 1 2 4 8 16 32 64

Single-phase 1 0.50 0.25 0.12 0.06 0.030 0.016
Two-phase EL 1.05 0.54 0.27 0.14 0.08 0.046 0.030

Table 4: Summary of the CPU time ratios of the EL ap-
proach. Supercomputer: CRAY XD1.

Figure 19: CPU Time ratio of the single-phase and the two-
phase EL simulation. Supercomputer: CRAY XD1

recursive inertial bisection (RIB) partitioning algorithm. It
shows an excellent load-balancing for the gaseous phase:
all processors contains about the same number of cells
(≈ 64,500/processor) and nodes (≈ 13,000/processor). On
the other hand, Fig. 21 shows a huge particle load imbalance
where one single processor contains almost half the total
number of particles of the simulation. This increases signifi-
cantly the memory requirements (≈ 20 times the number of
nodes) and the floating-point operations for this processor.
This points out the need of dynamic load balancing for
two-phase flow simulations with a Lagrangian approach, for
example, by using multi-constraint partitioning algorithms
which take into account particle loading on each processor
(Hamet al.2003).

Figure 20: Number of cells and nodes per processor for a
32-partition by using a recursive inertial bisection (RIB) par-
titioning algorithm.
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Figure 21: Number of nodes and particles per processor for
a 32-partition by using a recursive inertial bisection (RIB)
partitioning algorithm.

Conclusions and perspectives

For the present test case (mass loading of22 percent), the
total number of particles present in the domain for the La-
grange codes is of the order of600,000. For such a small
number of particles, the computing power required by the
Lagrangian solvers compared to the power required for the
gas flow remains low: the additional cost due to the parti-
cles is small even with the load balancing problem observed
when increasing the number of parallel processors. The EE
formulation additional cost (of the order of80 percent) is in-
dependent of the mass loading, so that, for such a dilute case,
the EL formulations proved to be faster up to 64 processors.
In terms of results quality, the EL and the EE results im-
plemented into the AVBP solver are very close showing that
both formulations lead to equivalent results in this situation.
An important factor controlling the quality of the results is
the introduction of turbulence on the gas flow in the injec-
tion duct: without these turbulent fluctuations, the results are
not as good on the axis in terms of positions of the recircu-
lation zones. In addition, the absence of RUV contribution
considered in the present case evidences an underestimation
of turbulent fluctuations for the EE results to be taken into
account in future works. Future developments of the La-
grangian module of the AVBP solver will be devoted to the
integration of a particle/mesh load balancing capabilities to
improve scalability of the EL simulations.
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