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Abstract

In this paper, we compare the global accuracy of different strategies to build re-
sponse surfaces by varying sampling methods and modeling techniques. The final
application of the response surfaces being aerodynamic shape optimization, the test
cases are issued from CFD simulations of aerodynamic coefficients. For comparisons,
a robust strategy for model fit using a new efficient initialization technique followed by
a gradient optimization was applied. Firstly, a study of different sampling methods
proves that including ’a posteriori’ information on the function to sample distribu-
tion can improve accuracy over classical space filling methods like Latin Hypercube
Sampling. Secondly, comparing Kriging and gradient enhanced Kriging on two to six
dimensional test cases shows that interpolating gradient vectors drastically improves
response surface accuracy. Although direct and indirect Cokriging have equivalent
formulations, the indirect Cokriging outperforms the direct approach. The slow linear
phase of error convergence when increasing sample size is not avoided by Cokriging.
Thus, the number of samples needed to have a globally accurate surface stays generally
out of reach for problems considering more than four design variables.

Nomenclature
CV(x) Leave one out cross validation error
D Domain of design variables

dKdS(x)  Leave one out sensitivity error
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Regression vector [ny)]
Regression matrix [N x ny]
Model likelihood estimate
Order of the correlation matrix
Number of design variables
Dimension of regression vectors
Number of samples

SCF power coefficients [ng,]
Correlation matrix [N x N]
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r(z) Correlation vector [NV]

S Domain of sample points
SCF(.,.) Spatial correlation function

S(z) Standard error

st i-th sample

x Vector of design variables [ng,]
Yera() Exact function to approximate
Y Exact function at samples [V]

Y (z) Surrogate function

Z(x) Gaussian process

16 Regression coefficients [n,]

o? Model variance

0 SCF correlation coefficients [ng,]
Subscripts

k € [17 ndv]

l S [1, ndv]

m € [17 ndv]

Superscripts

i € [1,ng4]

—1 i-th sample left out for model build
J € (1, ng]

1 Introduction

UMERICAL shape optimization in the field of detailed aircraft design is more and more

Nused since high performance computers enable RANS flow simulation around complete
aircraft in a short time scale. Before building a complex optimization process around a
CFD suite considering a lot of design variables, some time must be spent to identify an
efficient optimizer.
When dealing with computer expensive simulation, the main requirement is to converge
to an optimal shape in as few simulations as possible excluding most of the global opti-
mizers such as Genetic Algorithm or Simulated Annealing that are generally applied to
conceptual or preliminary design. Assuming that the sensitivity of the functions with
respect to the design variables is available at a comparative computational cost of a direct
function evaluation (with an adjoint method), the quickest process is then gradient based.
Using this strategy, the high-fidelity aerodynamic shape optimization suite OPTaliA of
Airbus showed good results [1]. Despite their efficiency, gradient algorithms suffer from
some limitations. They solve only single objective problems (multiple objective functions
must be combined) and are easily blocked by local optima whereas aerodynamic func-
tions are generally multi-modal. Moreover, heavily constrained problems are hard to solve
efficiently.



Promising alternative approaches use response surfaces (or surrogate models) to approxi-
mate the expensive computer code on the whole domain by inexpensive models. Numer-
ous strategy exist [2] and have been applied to perform aerodynamic shape optimization
[3, 4, 5]. Firstly, response surfaces can lead the optimization process. The surrogate
management framework [6] and trust-region framework [7] are generally the most favored
methods, but refining the response surface at its predicted optimum is also efficient partic-
ularly when taking into account uncertainty (Expected Improvement or Lower Confidence
Bounding Function criteria) [8, 9, 10, 4, 5|. Response surfaces can be reliable discipline in-
dependent models applied to solve Multi-Disciplinary Optimization (MDQO) problems when
no code coupling is possible [2]. When the model is sufficiently accurate, the predicted
optimum on the response surface can be taken as the true optimum [11, 12]. Secondly, the
convergence of existing optimizers can be improved by switching between optimization on
expensive model and on response surface (variable fidelity) [3]. Thirdly, the exploration
capabilities of local optimizers can be improved by using the optimum found on the re-
sponse surface as initialization. Accordingly to these different applications, two concepts
of response surfaces are defined. The global response surface is considered an accurate sur-
rogate model of the true function on the whole domain, whereas the local response surface
is reliable only near sampled locations but gives information on the overall tendencies.
In this study we wanted to define how to build accurate response surfaces and assess
their domain of validity before any applications to shape optimization. Kriging model was
chosen to approximate the objective function for its accuracy and robustness with small
datasets [13]. An efficient methodology is detailed within this article including numerical
issues and a new technique to fit the model (section 2).

The sampling quality being essential to obtain an accurate model [14], section 4 compares
different distribution methods. For a given domain of study, classical sampling are space
filling and locations are computed without knowing the function ’a priori’. Beside other
modeling techniques, the uncertainty predictions available with Kriging are very useful.
Thus, methods of ’a posteriori’ sequential sampling based not solely on information on the
domain but also on information on the function through predicted errors are also described.
In addition to the standard error of Kriging and leave-one-out cross validation errors, two
new predicted error criteria are introduced (section 2-2.2-2.2.2) and tested (section 4-4.2).
Methods are compared by varying sample size for the reconstruction of a bidimensional
aerodynamic test function. ’A posteriori’ samplings were already applied to polynomial
test cases [10, 15] without in-depth comparison with classical methods. As ’a posteriori’
samplings are tuned to the function studied, their performance is closely related to the test
case. That is why it was necessary to perform the comparison directly on an aerodynamic
function. More than a sampling criterion, these predicted error are very important when
using the surrogate model as optimizer in order to have a balancing between exploration
of unknown locations and exploration of predicted optima on the model.

As a very powerful gradient computation method was available (adjoint state solver [16,
17, 1]), it was also interesting to evaluate Cokriging (gradient enhanced) model. General
comparison between Kriging and Cokriging existed only on analytic functions [18, 19]. In
the fields of aerodynamic, it was proven that refining iteratively at the predicted minimum
of a Cokriging response surface improved the shape of a supersonic business jet depending
on up to 15 design variables [20, 21], but the gradient information was issued from finite
differences analysis and no comparison with optimization on a Kriging-based response



surface was made. A graphical validation of Cokriging versus Kriging was made on the
same aerodynamic test case but considering only two design variables and small datasets
[21]. The benefits of Cokriging on global response surfaces accuracy cannot be assessed
by only varying the sample size as the information added to the model through gradients
is dimensional. Section 5 compares Cokriging and Kriging accuracy on an aerodynamic
test case, the number of design variables increasing from two to six. A total of 5800 CFD
computations were necessary to build reference surfaces.

2 Kriging and Cokriging for Computer Experiments

2.1 Sampling

A surrogate model only needs a sample distribution to approximate a function, thus it must
concentrate as much information as possible. In this way, the sampling must be adapted
to : known specificities of the function, modeling formulation and the final application of
the surrogate. Without information on the function, design optimal distribution meth-
ods using for example entropy criterion [22] (or DETMAX) give space filling locations.
Numerous methods exist to evenly distribute samples.

2.1.1 ’A priori’ Sampling Methods

Four ’a priori’ methods requiring only information on the domain and assuming that the
function is unknown a priori were used: grid, Halton, Sobol and Latin Hypercube (LHS)
sampling (source code of J. Burkardt http://www.scs.fsu.edu/ burkardt/).

The grid distribution is the most common in engineering and was thus included in the
benchmark. However, it should be used with great cares as truncated grids are to be
avoided and grids in high dimension require unreachable sample sizes. The LHS method
is also well known. It roughly corresponds to random sampling with guaranteed space
filling properties even for small sampling size. Among the four methods presented here
only LHS is applicable to high dimensions.

Quasi-random sequences enable methods such as generalized Halton or Sobol [23] to give
ordered space filling sampling. These methods are very efficient on low-dimensionnal
problems but unapplicable to dimensions higher than 10 without special care. Halton and
Sobol are sequential methods. A distribution of ns+1 samples inherits from the previously
computed ng samples. Latin Hypercube and grid sampling are not sequential methods.

2.1.2 ’A posteriori’ Sequential Sampling Methods

Maximum error sequential sampling includes information on the true function in sample
distribution, explaining the denomination of ’a posteriori’ sampling.

It consists in iteratively refining the sample datasets where the model exhibits its maximum
of error. By construction it ensures inheritance of samples. Its main drawback is that all
intermediate models must be computed. To compute a sampling of a given size the CFD
simulations must be launched one at a time, whereas with ’a priori’ methods the ng
computations can be launched in parallel. The only requirement is the availability of an
error criterion null at already sampled locations. ’A posteriori’ samplings are tuned to the
function studied.



2.2 Kriging

The French mathematician Georges Matheron developed in the early sixties the theory of
Kriging from the seminal work of D.G. Krige on mining data. In the field of computer ex-
periments, the Kriging method refers to the DACE formulation [22] (fitted by optimization
of the likelihood estimate instead of using covariogram) described in the late eighties.

2.2.1 Function Prediction

Kriging method is a statistical prediction of a function at untried inputs. It requires
fitting the correlation parameters of the model to each sample distribution by solving an
optimization problem.

Since computer codes are deterministic, and therefore not subject to measurement error,
the usual measures of uncertainty derived from least-square residuals have no obvious
meaning. Consequently, statisticians have suggested approximating responses as a combi-
nation of a polynomial regression plus localized deviations interpolating samples

Y(2) = f(2)B + Z(2) ® Yewa(@) (1)

fi(x)3 is a low-order (constant, linear or quadratic) polynomial regression model. Solving
a least-square regression problem gives

B=(F'R'F)'F'R™ 'Y, (2)

In this paper a constant regression model is used, so n, =1, f(z) =1 and F = 1.
Z(x) is the realization of a normally distributed random process with mean zero, variance

2
o b
0 = (¥, ~ FB)R (Y, ~ Ff) Q
and co-variance
cov[Z(s"), Z(s')] = o> R;; (4)

The matrix of correlation between samples R is determined by a Spatial Correlation Func-
tion (SCF).

Rij = SCF(s',s7) = [ [ scfu(|s} — s1)) (5)

k

This matrix is dense symmetric positive definite with ones along diagonal and become
ill-conditioned when samples are too close. The order of the Kriging correlation matrix
depends only on the number of samples considered (N = ny) and not on the number of
variables.
The SCF can be any function reflecting the characteristics of the output function. Ex-
ponentials or cubic splines are the most common functions. The exponential function is
adapted to a wide range of physical applications and is described below

scfr(x) = exp ( — Hkxpk),ﬂk > 0,px € [1,2] (6)

The 2ng4, correlation parameters (6g, px) need to be fitted through an optimization process
(see section 2-2.5-2.3.1)



The cubic spline function was also used

sefu(x) =< 2(1 —26;)3, ﬁ <z < é (7)
0,z> é

Only ng, correlation parameters 0 > 0 must be fitted. Commonly, cubic splines are less
adapted to very chaotic functions than exponentials.

To evaluate Kriging at an unknown location a vector of correlation r between sample
points and unknown is computed

ri(z) = SCF(z,s%) (8)
Finally, the Kriging prediction equation is
Y(z) = f'(x)B +r'(x) R (Ys — FP) (9)

Practically, the Kriging model can be evaluated as a black-box function by storing vectors
and rhs = R™1(Y;— F3). Then, the evaluation of the model at an unknown location costs
only two dot products.

2.2.2 Error Prediction

With the statistical prediction of the function is also associated an uncertainty prediction.
As by construction the model interpolates the function at samples, its error is null at
samples.

The standard error S(z) of the Kriging model grows with distance from samples, its
maximum value being o.

S%(z) = o2 (1 — ri(z)R™r(z)

10
—i—ut(x)(FtR*lF)*lu(x)) (10)

with u(z) vector n, x 1
u(z) = F'R™'r(x) — f() (11)

Other estimated errors can be computed with a technique of leave-one-out cross validation
[9]. The idea behind cross validation errors is to study the sensitivity of the model with
respect to sample dataset by altering it of one point. It implies n, intermediate Kriging
constructions and evaluations. Two predicted errors based on leave-one-out cross vali-
dation named sample sensitivity error (dKdS(z)) and cross validation error (CV (x)) are

defined )
dKdS(z) = - Z Y (z) — Y ()| (12)

CV(x) = ni Y5 7w) (13)

Kriging sensitivity error dKdS(x) grows at locations where sample points give more infor-
mation and is small at location where samples are redundant. Kriging standard sensitivity



error C'V(x) is very close to the standard error. As cross validation errors are a mean of
models built on altered sample datasets, they are not null at samples.

We decided to make a geometric mean between cross validation and standard errors to
set them null at samples. That is why errors dKdS(z) and CV(x) are mixed with the
standard error, and two new error predictions are introduced

dK dSpiz(z) = \/S(z) dKdS(z) (14)

CViiz(x) = \/S(x) CV (2) (15)

Predicted errors are very useful to improve iterative process. When minimizing a function,
iteratively refining at the minimum of the response surface usually leads to premature
convergence [6]. This can be improved by including exploration in the process using either
a domain exploration ("Poll’ step of the surrogate management framework [6]), either an
infill cirterion based on predicted error [10]. When minimizing global error of a response
surface, predicted errors can be used as sampling criteria (see MAXVAR [10], Application-
driven Sequential Designs [15] and 4-4.2).

2.3 Model Correlation Parameters Fit

Kriging spatial correlation parameters (0, pr) from equations 6 or 7 must always be fitted
to the samples. Otherwise, if the correlation strength is underestimated (6 too large),
the local deviation function Z(x) looks like a peak function interpolating each sample and
only the polynomial regression model gives information.

Z(x) — 0

Y(z) — f'(z)8 (16)

for 9—>+oo,{

2.3.1 Maximization of Model Likelihood

The correlation parameters (0, pr) of the model are fitted by Maximizing its Likelihood
Estimate (MLE method).
MLE = mazg,(In(L)) (17)

In(L(0,p)) =

-1 (ns(ln(UQ) +In(27) +1) + ln(|R|)> (18)

The model likelihood L evaluation is usually very quick compared to a high-fidelity CFD
computation, it only costs to compute the determinant of the correlation matrix R. Max-
imization of the likelihood estimate can sometimes lead to an incorrect model identifiable
by high standard error or by comparing M LE to its asymptotical value [24]. This is due
to the nature of the MLE function: quasi-null gradient on some zones, and multiple local
optima [25]. This sometimes high-dimensional problem (from ng, to 2ng4, parameters ac-
cording to the correlation function) can be efficiently solved using a gradient optimization
algorithm. By using a correct initialization of the correlation parameters as described
in the next section (2-2.3-2.3.2), the optimizer converges to the global optimum in most
cases. The gradient of the determinant of the correlation matrix is computed with a
forward finite differences method.



2.3.2 Initialization of the Spatial Correlation Parameters

Estimating the Likelihood requires inverting the correlation matrix and for large datasets,
as it is the case in 5, the MLE problem becomes computer expensive. A method was de-
veloped to easily find an initial guess and the optimization boundaries for the correlation
parameters. It enables to optimize the correlation parameters with a gradient optimizer
(local) requiring few evaluations of the Likelihood. The parameters ) govern the direc-
tional strength of the correlation between two locations. The correlation decreases with
distance between points. The log-Likelihood function is multimodal and has quasi null
gradients for large 0 [25]. The main idea is to define what a large correlation parameter
(0x) is by introducing a scaling factor depending on the samples. It is then possible to
overestimate the correlation strength with a small 6 in order to directly study the region
of the log-Likelihood exhibiting large gradients.

Considering the exponential SCF (Eqn. 6), pi values close to 2 are best suited to smooth
functions but less numerically robust that is why the initial value is py = 1.

First, assuming that all control points are correlated, the minimum correlation factor c is

defined as o
V(2 27) € D?, Je€l0; 1]/ (19)
exp( — Oplzl, —27]) > ¢

Thus, by fixing the strength of the correlation ¢ between the two most directional-distant

sample points (sé, si)

= ~> 0 /7 (20)
exp( — 9k|52, — si|) =c
Finally giving
o = — L) (21)
5% — 5%

According to our physical functions a good correlation factor is ¢ = 0.2. Experience shows
that underestimated 0 parameters usually give better approximation than overestimated
parameters, that is why a strong correlation factor was chosen. The initial parameters are

determined by

0, = _In(5) (22)

|si‘ - si|
The optimization boundaries are [10736, 10736,] around the initial guess.
The same method can be applied to cubic spline functions.

2.4 Cokriging - Gradient Enhanced Kriging

A Cokriging model [19] interpolates the function and the gradient at each sample loca-
tion. As Cokriging models include more information on the true function than Kriging
models, they need fewer samples to achieve a given level of accuracy. Moreover, the vecto-
rial information provided by the gradient should be more beneficial for high-dimensional
problems.

Two different formulations exist for Cokriging: direct or indirect. When using the same
correlation parameters both formulations give the same results.



2.4.1 Indirect Cokriging

The indirect Cokriging method does not require Kriging source code modification. In
fact, the original Kriging formulation is used with an augmented sample database. For
each sample point, one point determined by a first order Taylor approximation is added
in each direction. The size of the augmented sample set is n4(ng, 4+ 1). The step chosen to
add those points must not be too low in order to avoid ill-conditioning of the correlation
matrix. A good compromise is s™ T = st 4+ 10~ 4range(S).
(2
(54) = () + 201004y () (23)
8.%'k
The indirect Cokriging applied to very dense datasets is expected to be problematic. If the
delta used for the Taylor expansion is of the same order of magnitude than point density,
the Taylor augmented datasets could degrade the model. Hopefully, it does not happen
when approximating expensive computer codes.

2.4.2 Direct Cokriging

The direct Cokriging approach is equivalent to make one Kriging approximation for each
direction of the gradient, and the link between function and gradient is conserved through
an heritage of the correlation function and parameters. The vectors and matrix of size n
are augmented to a size of ng(ng, + 1).

Y, = [y(sl),y(SQ)w- y(s™),

Oxq dxe = 7 Omy,, (24)
dy(s*) 31/(8"5)}
or1 =7 Oxp,,
For a constant regression model
f@= |11
0,0,---,0, (25)
0, ,0}

The augmented correlation matrix is assembled through 4 blocks, representing covariance
of functions between functions, of functions between gradients, of gradients between func-
tions and of gradients between gradients. Whereas the indirect formulation approximates
the function on an augmented database, the direct formulation keeps the original database
unchanged but approximates more functions (ng, + 1).

([ Cov(y(s'),y(s?)) = o2SCF(s', s7)
i dy(s’) _ 2, OSCE(s',s7)
Cov(y(s ), e )=o0 e o
0y(s") iy 208CF(s',s7) 26
Cov( i e ) L —
(

Ne)



One should notice that the augmented correlation matrix is dense non-symmetric and its
order N = ng(ng, + 1) increases with the number of variables and the number of samples.
The 2 blocks of the new correlation vector are

SCF(z,s%) , [1,n4]
ri(z) =<4 OSCF(x,s")
oxy,

y [ns + 1,ng(ngy +1)] (27)

With the exponential function the distance (L1-norm) is elevated to a power lesser than
two and is not twice differentiable. That is why cubic spline correlation functions are used
with direct Cokriging. Derivatives of the cubic spline (Eqn. 7) are

(o i J
sign(sy, — sy.) ‘ ‘
x (1863 |si — s1|? — 1262 |si — s7|)
X T |1 = 6(15ty = 5hl6m)?
6(1s% — shal0n)?]
- - (28)
—60y.sign(s, — s,)
X (1 = Okls}, — sp1)?
% T 201 = Blsty — st lOm)?

OSCF(s', s/)
oxy,

0

Assuming k # [,

Hme{k,l} [Sign(.i - Szn)

x (1863, |st, — st|?
—1202|si — | }
X g ey A[l —6(/s;

o i 3
o25Cr(s, 1) | 05k — shl6m)”] (20)
8$k8$1 N ] )
Hme{k,l} [ — 602, sign(st, — si,)
% (1= O] si, — 5;;,4)2}
% Tnggray |21 = 65t — shl6)?]

st — sh|0m)

0
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((—12607 +366;|si — si‘])
% Tt |1 = 6(158 = Sl

+6(1s%, — shal0n)?]
O*SCF(s',s7)

0 | 1202(1 — Oklsi — 51))
[pn 201 = 6lst, = shal0n)?]

(30)

0

2.4.3 From Kriging to Cokriging

All Kriging functionalities are available when using Cokriging including error predictions.
Cokriging models are also fitted by MLE (Eqn. 17). The MLE correlation parameters of
Kriging, indirect Cokriging and direct Cokriging are different in general.

2.5 Numeric Implementation
2.5.1 Correlation Matrix Inversion and Robustness

Considering SCF formulation, close sample points can lead to quasi-identical columns
in the correlation matrix R the matrix being then ill-conditioned [26] (especially with
low 6 values). The optimization of Kriging parameters implies computing very small
determinants, and in order to avoid underflow truncature error the In |R| term is computed
as a sum of logarithms of eigenvalues with a LU method from LAPACK [27].

Typically, one can obtain a fitted Kriging with cond(R) ~ 10'® and still a good interpo-
lation of samples. That is why ill-conditioned matrix is not a stopping error criteria, but
sample interpolation is checked after each correlation matrix inversion.

We noticed that when using the same correlation parameters the direct Cokriging correla-
tion matrix (non-symmetric) is better conditioned than the indirect Cokriging correlation
matrix (symmetric). It can be explained by the fact that the augmented sampling of the
indirect method exhibits samples very close from each other.

2.5.2 Memory and Computation Time

The computational cost to build the model depends only on the correlation matrix order
N. On a standard Intel Pentium4 2.8GHz processor, the estimated computation time is:

tuser = 3.1079N3 seconds
memsize ~ 8.107N? Mbytes (31)
For example, saying that the model must be built in one minute with 300 computations of
the likelihood for the MLE fit, the maximum matrix order is then N = 400. For models
approximating high-fidelity CFD solver the typical maximum number of computations
authorized for an optimization is close to ng = 200. The Kriging computation cost de-
pending only on the number of samples (Nyyiging = ns) it is effectively negligible here. On

11



the contrary, the computation cost of Cokriging models can be limiting on high dimen-
sional problems (Neokriging = Ns(ndy + 1)). Considering an optimization problem with a
hundred variables, the computation time for a single correlation matrix inversion would
be tyser > 6 hours.

The ScaLAPACK user guide [28] (parallel version of LAPACK) recommends a maximum
matrix order of 1000 per CPU.

In term of memory, a Kriging code only requires to allocate the inverted correlation matrix
plus some vectors in double precision.

3 Definition of the Aerodynamic Test Case

The non-linearties observed on aerodynamic global coefficients when varying shape cannot
be represented by an analytical test function. This is why a typical CFD test case was
chosen. The aerodynamic function considered within this article is the far-field wave drag
[29] of a RAE2822 airfoil in an Euler flow at a Mach number M = 0.78 and an angle of
attack AOA = 0.6°. The flow analysis was performed with the elsA CFD code [30] on a
structured multiblock C-mesh (33 x 130). The second order Roe’s upwind scheme with
the Van Albada limiter is used as spatial scheme coupled with an implicit time resolution.
By modifying the shape of the transonic airfoil with Hicks-Henne sinusoidal bumps, the
objective function exhibits multiple local optima and a non-linear behavior (Figure 1).

log 0.5

HHy,(u) = Xysin* (ruesor ) 5 u € [0,1] (32)

The six design variables considered are amplitudes X, of Hicks-Henne bumps on the upper
part at ap, = 10%, 80%, 38%, 66%, 24%, 52% of the chord line so as the two first parameters
correspond to deformations of the leading edge and of the zone were the shock occurs. The
distribution is chosen so as when incrementally increasing the number of design variables,
the bumps stay equidistributed on the upper surface. The amplitude of each bump is in
the domain [—5; +5]mm, and the chord length of the airfoil is one meter.

At each update of the design variables the initial mesh is deformed using an improved
integral method (iso-topology). The mesh deformation module is also able to compute the
sensitivity of the mesh with respect to the shape variables needed to compute the gradient
of the objective function.

The gradient information used to build the Cokriging models was computed using the
discrete adjoint method [16, 1]. In term of computational cost, a gradient calculation with
the adjoint method costs about the same as one direct CFD computation, so a Cokriging
model built with ng samples costs the same as a Kriging model on 2n, samples for any
number of design variables. It should be noticed that the discrete adjoint formulation
used within this paper ensures a coherence between direct flow computation and gradient
computation and thus a correlation between numerical residual errors at convergence.
The dimension of the problem varies from two to six, and for each problem a reference
function considered exact is built using respectively 104, 208, 272, 1056 and 4160 samples.
The indirect Cokriging formulation was used to build the reference functions, but as the
five dimensional reference was already expensive to build with a matrix order N = 6336
the six dimensional reference was built with a Kriging formulation instead. The Cokriging
code should be made parallel to extend this study to higher dimensions.

12



Due to the important number of CFD evaluations required to establish references, a coarse
mesh was used. It is worth noting that this is not detrimental, since we are addressing
inviscid flow simulations and that aerodynamic objective functions on finer meshes or more
realistic problems exhibit the same kind of non-linearities.

A Sobol technique was used for the space filling sample distributions and the corners of
the box domain were added to the distributions.

Only the first test surface with two variables can be plotted, but about the same level of
complexity is expected when increasing the number of design variables.
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Figure 1: Aerodynamic reference surface for ng, = 2

4 Influence of Sampling Methods on Global Accuracy of
Response Surfaces

As predicted errors are available with Kriging we wanted to determine if using them as
'a posterioi’ sampling criteria could outperform ’a priori’ methods. Maximum error ’a
posteriori’ sampling were already applied to polynomial test cases [10, 15] , but without
comparison with classical space filling designs.

The different techniques presented in 2-2.1 were compared to reconstruct our first reference
function depending on two variables (Figure 1) with as few samples as possible. Figures
2 and 3 show the evolution of the exact relative root mean squared error (RMSE) when
increasing the number of samples from 6 to 64. The target is the dashed line corresponding
to the sampling refinement at maximum of exact error.

4.1 Performance of ’a priori’ Sampling Methods (grid, Halton, Sobol,
LHS)

The fact that LHS and grid method are not sequential explains why on Figure 2 the error
converges unsmoothly when increasing sampling size. Otherwise, the lack of coherence on
the convergence can also be explained by problems of correlation parameter optimization.
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The optimal parameters in the sense of MLE are not always the optimal parameters in
the sense of minimum exact error. More particularly, grid sampling is unadapted to build
Kriging because optimization of the directional correlation parameters is biased by the
linear dependence existing within the spatial distribution [31, 32].

Anyhow, regarding Figure 2 one can observe that the convergence of the error seems
composed of two phases. Firstly, we observe a transitory phase of strong error reduction
for small datasets with a negative power trend until reaching ns = 20. Secondly, the error
seems to reach a linear phase with a low negative slope. This linear phase is very costly
if a low level of error is required.

The Halton method was taken as the reference for ’a priori’ methods for its good overall
performance with small and large datasets. However, the only method applicable to high
dimensions is LHS.

—p>—— grid
—8—— halton
—v— |hs
—<—— sobol

----- maxexa

RIS ENENENE ENETETETEN SVETEENES ST SR M
10 20 30 40 50 60
NS

_.
o T—7FF"—71"

Figure 2: Evolution of error with sampling size for ’a priori’ sampling methods, n4, = 2

4.2 Performance of ’a posteriori’ Sequential Sampling Methods

Looking at Figure 3 it appears that all methods are quasi-equivalent to the Halton refer-
ence. The linear phase of convergence is not avoided using sampling at maximum predicted
error.

Regarding ’a posteriori’” methods, the maxz(dKdS,,;,) error refinement is the best. It is
understandable as the dKdS,;, error is based on dKdS error, the Kriging sensitivity to
the samples. It performs better than the Halton reference for large datasets (Table 1).
This is coherent with the fact that as the number of samples increases, the model is more
precise and the predicted error is also more precise.

On small datasets, sampling refinement at maximum of error (even max(Eza)) does not
outperform Halton but still produces very satisfying distributions.

When ignoring quasi-random sequence samplings, ’a posteriori’” methods outmatch LHS
and grid for small and large sampling size.

The fact that ’a posteriori’ methods outperform only slightly space filling designs shows
that the aerodynamic test function complexity is evenly distributed in the design space. In
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Figure 3: Evolution of error with sampling size for ’a posteriori’ sampling methods, n 4, = 2

our sense this is always the case in aerodynamic optimization and global reponse surface
are generally unaffordable.

method ‘ ng = 6...25 | ng > 25 ‘ ng > 6
grid 2.43 1.49 1.92
Halton 1.96 1.39 1.76
LHS 2.45 1.57 2.01
Sobol 2.11 1.61 1.85
maz(Ezxa) 2.17 0.89 1.47
max(S) 2.36 1.43 1.87
maz(CVimiz) 2.32 1.38 | 1.84
max(dK dSpz) 2.43 1.36 1.86

Table 1: Integrated relative RMSE for all sampling methods, ng, = 2

5 Influence of Dimension on Global Response Surface Ac-
curacy and Benefits of Cokriging

No general rule can be made to assess a priori the number of samples needed to achieve a
given accuracy as it depends on the complexity of the unknown function. It is generally
admitted that to obtain a correct global response surface, 10 samples per direction is a good
starting sample size (ng ~ 10" ). The sample size increasing exponentially it becomes
then impossible to build a global response surface on high dimensional problems. The
benefits of Cokriging beside Kriging cannot be assessed by only varying the sample size [18,
19, 21] because the information added to the model through gradients is dimensional. Thus
the accuracy of Kriging and Cokriging will be compared by varying the sample size and the
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number of design variables. The dependence between number of samples and dimension
is expected to be reduced with Cokriging. When dealing with approximation of expensive
computer analysis, the dataset size is generally very limiting and the reconstruction was
made with less than 300 samples. The comparison was conducted on an aerodynamic
function (section 3) in order to use the same solvers as in aerodynamic shape optimization
and gradient computed with the adjoint state formulation.

5.1 Results

Figures 4-8 show the evolution of the exact (with respect to the reference surface) root
mean squared error (RMSE in percent) when increasing the number of samples for the
five problems.

Firstly it appears that the indirect Cokriging method is the best. Despite the mathematical
appeal of direct Cokriging formulation its performance are deceiving. Overall, it is worse
than Kriging on the two, three and five dimensional tests (Table 2). The spikes occuring
on direct Cokriging convergence correspond to wrong MLE correlation parameters. The
MLE problem has more local minima representing optimal correlation parameters for each
of the ng,+1 functions (the function itself and its derivatives Eqn. 26). In fact, the MLE of
direct Cokriging sometimes gives the same parameters as MLE of Kriging and sometimes
gives the same parameters as MLE of indirect Cokriging, for example on Figure 7 between
150 and 200 samples. This does not discard the method as direct and indirect Cokriging
models give the same results when using the same correlation parameters, but shows that
direct Cokriging models fitted by MLE are easily ill-fitted.

The convergence in two phases described previously (in section 4) appears on all tests with
Kriging or Cokriging models.

The number of samples needed to switch from transitory to linear phase is roughly the
same for Kriging and Cokriging (Figures 4-8). The benefits of the Cokriging models on
error is obvious during the transitory phase (Table 2).

During the second phase, the low negative linear slope is the same for Kriging and Cok-
riging models. However, the indirect Cokriging is still more efficient due to the advance
taken during the first phase (Table 2).

In term of computation cost, the indirect Cokriging does effectively need fewer samples to
reach a given accuracy. As the samples are twice more expensive to compute for Cokriging
(cost of the adjoint solver), they should use at least twice less samples than Kriging to
reach a given accuracy to be interesting. This seems true in general. By interpolating the
gradient vector at each sample the surrogate models interpolate hyperspheres instead of
points and as expected the best gain is achieved on the higher dimensional problem with
small datasets.

It appears on table 2 that global error increases with the number of variables. It was
expected since it was not possible to have a sampling size of ten samples per direction for
all tests.
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N ng = 3...25 ng > 25 ng > 3

Krig. | D.Cok. | I.Cok. | Krig. | D.Cok. | I.Cok. | Krig. | D.Cok. | I.Cok.

3.45 2.87 2.42 2.20 1.76 1.57 2.57 2.09 1.82
5.23 6.18 3.36 2.44 2.60 1.66 2.84 3.11 1.91
8.40 8.16 3.91 3.14 3.58 2.57 3.75 4.11 2.72
17.9 15.7 8.68 5.59 6.05 4.73 6.62 6.85 5.05
22.8 20.0 11.6 7.25 6.71 6.71 8.45 7.74 7.08

S U W N

Table 2: Integrated relative RMSE for all formulations and tests
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Figure 5: Evolution of Kriging and Cokriging errors with sampling size, ng, = 3
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Figure 7: Evolution of Kriging and Cokriging errors with sampling size, ng, = 5

6 Conclusion

An efficient framework to fit Kriging correlation parameters by likelihood optimization
was described. It consisits in departing from a good initial guess for the parameters and
then apply a gradient optimizer. It shows good overall robustness, even during the fit of
computer expensive Kriging (up to order N = 6336).

Usualy, comparison of modeling techniques are made on analytical test functions. Aero-
dynamic functions being highly non-linear, anaytical test cases cannot represent the true
level of complexity encountered in aerodynamic shape optimization.

Classical response surface frameworks use space filling ’a priori’ sampling. It is possible
to tune the sample distribution to the function studied using ’a posteriori’ refinement
techniques to concentrate more information into the sampling. Compared to space fill-
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Figure 8: Evolution of Kriging and Cokriging errors with sampling size, ng, = 6

ing designs, 'a posteriori’ sampling at the maximum of exact error significantly increases
accuracy of the model. Kriging being an interpolating model, any error criterion null at
samples (standard error) can be used for sampling refinement. Two new predicted error
criteria based on cross-validation, but satisfying this property were introduced.

The convergence of the global error when increasing the number of samples proceeds in a
transitory phase of fast decrease followed by a linear phase of slow decrease. The sample
size needed to reach this second phase cannot be foretold, but increases with dimension
and complexity of the function studied.

Among ’a priori’ techniques, quasi-random Halton give best results. Moreover, it also
gives ordered samples. The new sequential sampling methods based on refinement at
maximum error show fair results compared to classical sampling methods, but do not
break the slow linear convergence as was expected regarding performance of refinement at
maximum of exact error. From all predicted errors, the new leave one out sensitivity error
introduced within this article enables to have the smallest exact error on large datasets, but
needs to build all intermediate models. The fact that ’a posteriori’ methods outperform
only slightly space filling designs shows that the aerodynamic test function complexity is
evenly distributed in the design space. In our sense this is always the case in aerodynamic
optimization and global reponse surface are generally unaffordable.

The use of adjoint gradient information to build Cokriging models drastically improves
global accuracy, but is unsufficient to break the slow convergence during the second linear
phase. The computation cost induced by Cokriging formulation makes the response surface
expensive to build when considering lots of design variables, but as the optimization pro-
cess usually takes place on parallel computer architecture, it is possible to lessen this cost.
As was stated in previous papers[19], indirect and direct Cokriging models are identical
when built with the same correlation parameters. However, the sample database augmen-
tation used to build indirect Cokriging induces bad condition number of the correlation
matrix that can be avoided using the direct formulation. Despite its better conditioning,
the direct Cokriging model cannot be easily fitted. In our view, the best framework to
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build gradient enhanced Kriging reuses correlation parameters from the indirect formu-
lation to build a direct Cokriging. The best gain of Cokriging is observed during the
transient phase, on small datasets with a large number of design variables.

Regarding the global error of reconstruction on all test cases considered within this paper,
it appears that a global response surface accurate at one percent is out of reach with less
than a few hundred samples except for dimension lesser than four. That is why, global
response surfaces should be used only when it is possible to identify a very small set of
interesting design variables or with low-fidelity solvers and large sample database.
However, physical functions generally exhibit a simple global tendency plus non-linear
perturbations and it is still possible to find an optimum by iteratively refining the model
at its predicted optimum. To overcome early convergence of this process it is interesting to
reuse predicted error to introduce some exploration. The general tendencies found on the
low-accuracy global response surface can also be used to initialize a local optimizer closer
to the global optimum. As the domain of accuracy around sample locations is increased
when interpolating gradient, an optimization process refining iteratively a local Cokriging
response surface around interesting locations should be investigated on a high dimensional
problem.
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